WO2014144288A1 - Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing - Google Patents

Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing Download PDF

Info

Publication number
WO2014144288A1
WO2014144288A1 PCT/US2014/028630 US2014028630W WO2014144288A1 WO 2014144288 A1 WO2014144288 A1 WO 2014144288A1 US 2014028630 W US2014028630 W US 2014028630W WO 2014144288 A1 WO2014144288 A1 WO 2014144288A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
rna
grna
cas9
sites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2014/028630
Other languages
English (en)
French (fr)
Inventor
J. Keith Joung
Shengdar TSAI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51537665&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014144288(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP14764159.1A priority Critical patent/EP2971041B1/en
Priority to CA2907198A priority patent/CA2907198C/en
Priority to KR1020157029177A priority patent/KR102210322B1/ko
Priority to KR1020217002429A priority patent/KR102271292B1/ko
Priority to AU2014227653A priority patent/AU2014227653B2/en
Application filed by General Hospital Corp filed Critical General Hospital Corp
Priority to JP2016502853A priority patent/JP6622183B2/ja
Priority to ES14764159T priority patent/ES2713503T3/es
Priority to CN201480027950.1A priority patent/CN105247066B/zh
Priority to EP18208105.9A priority patent/EP3467125B1/en
Priority to US14/900,444 priority patent/US10011850B2/en
Priority to PCT/US2014/035162 priority patent/WO2014204578A1/en
Priority to CA2935032A priority patent/CA2935032C/en
Priority to JP2016542968A priority patent/JP6721508B2/ja
Priority to US15/107,550 priority patent/US10526589B2/en
Priority to EP21191144.1A priority patent/EP3985124A1/en
Priority to EP14875819.6A priority patent/EP3090044B1/en
Priority to CN201480076396.6A priority patent/CN106103706B/zh
Priority to AU2014370416A priority patent/AU2014370416B2/en
Publication of WO2014144288A1 publication Critical patent/WO2014144288A1/en
Priority to CN202110920229.7A priority patent/CN113684205B/zh
Priority to KR1020167020111A priority patent/KR20160102056A/ko
Anticipated expiration legal-status Critical
Priority to AU2017204909A priority patent/AU2017204909B2/en
Priority to US16/003,973 priority patent/US10544433B2/en
Priority to AU2019204675A priority patent/AU2019204675B2/en
Priority to JP2019218086A priority patent/JP7005580B2/ja
Priority to US16/735,146 priority patent/US20200165587A1/en
Priority to US16/751,578 priority patent/US11098326B2/en
Priority to AU2021203309A priority patent/AU2021203309B2/en
Priority to AU2021203370A priority patent/AU2021203370B2/en
Priority to AU2023258349A priority patent/AU2023258349A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1031Mutagenizing nucleic acids mutagenesis by gene assembly, e.g. assembly by oligonucleotide extension PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases [RNase]; Deoxyribonucleases [DNase]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/21Endodeoxyribonucleases producing 5'-phosphomonoesters (3.1.21)
    • C12Y301/21004Type II site-specific deoxyribonuclease (3.1.21.4)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/00033Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/00033Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/11Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors (1.14.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)

Definitions

  • RNA-guided Fokl Nucleases RNNs
  • RNA-guided genome editing e.g., editing using CRISPR/Cas9 systems
  • FNNs RNA-guided Fokl Nucleases
  • FokI-dCas9 fusion proteins e.g., FokI-dCas9 fusion proteins
  • CRISPR clustered, regularly interspaced, short palindromic repeats
  • Cas CRISPR-associated systems
  • the Cas9 nuclease from S. pyogenes can be guided via base pair complementarity between the first 20 nucleotides of an engineered gRNA and the complementary strand of a target genomic DNA sequence of interest that lies next to a protospacer adjacent motif (PAM), e.g., a PAM matching the sequence NGG or NAG (Shen et al, Cell Res (2013); Dicarlo et al, Nucleic Acids Res (2013); Jiang et al, Nat Biotechnol 31 , 233-239 (2013); Jinek et al, Elife 2, e00471 (2013); Hwang et al, Nat Biotechnol 31, 227-229 (2013); Cong et al, Science 339, 819-823 (2013); Mali et al, Science 339, 823-826 (2013c); Cho et al, Nat
  • CRISPR-Cas nucleases can tolerate up to five mismatches and still cleave; it is hard to predict the effects of any given single or combination of mismatches on activity. Taken together, these nucleases can show significant off-target effects but it can be challenging to predict these sites. Described herein are methods for increasing the specificity of genome editing using the
  • RNA-guided Fokl Nucleases e.g., Fokl- Cas9 or FokI-dCas9-based fusion proteins.
  • the invention provides FokI-dCas9 fusion proteins, comprising a Fokl catalytic domain sequence fused to the terminus, e.g., the N terminus, of dCas9, optionally with an intervening linker, e.g., a linker of from 2-30 amino acids, e.g., 4-12 amino acids, e.g., Gly 4 Ser.
  • the Fokl catalytic domain comprises amino acids 388-583 or 408-583 of SEQ ID NO:4.
  • the dCas9 comprises mutations at the dCas9 comprises mutations at D10, E762, H983, or D986; and at H840 or N863; e.g., at: (i) DIOA or DION; and (ii) H840A, H840Y or H840N.
  • the invention provides nucleic acids encoding these fusion proteins, vector comprising the nucleic acids, and host cells harboring or expressing the nucleic acids, vectors, or fusion proteins.
  • the invention provides methods for inducing a sequence- specific break in a double-stranded DNA molecule, e.g., in a genomic sequence in a cell, the method comprising expressing in the cell, or contacting the cell with, the FokI-dCas9 fusion protein described herein, and:
  • each of the two single guide R As include sequences that are each complementary to one strand of the target sequence such that using both guide RNAs results in targeting both strands (i.e., one single guide RNA targets a first strand, and the other guide RNA targets the complementary strand), and Fokl cuts each strand resulting in a pair of nicks on opposite DNA strands, thereby creating a double-stranded break, or
  • each of the two crRNAs include sequences that are complementary to one strand of the target sequence such that using both crRNAs results in targeting both strands (i.e., one crRNA targets a first strand, and the other crRNA targets the complementary strand), and Fokl cuts each strand resulting in a pair of nicks on opposite DNA strands, thereby creating a double- stranded break.
  • the invention provides methods for increasing specificity of RNA-guided genome editing in a cell, the method comprising contacting the cell with an RNA-guided Fokl Nuclease (RFN) fusion protein described herein.
  • RFN RNA-guided Fokl Nuclease
  • the method may further comprise expressing in the cell, or contacting the cell with, (a) two single guide RNAs, wherein each of the two single guide RNAs include sequences that are each complementary to one strand of the target sequence such that using both guide RNAs results in targeting both strands (i.e., one single guide RNA targets a first strand, and the other guide RNA targets the complementary strand), and Fokl cuts each strand resulting in a pair of nicks on opposite DNA strands, thereby creating a double-stranded break, or
  • each of the two crRNAs include sequences that are complementary to one strand of the target sequence such that using both crRNAs results in targeting both strands (i.e., one crRNA targets a first strand, and the other crRNA targets the complementary strand), and Fokl cuts each strand resulting in a pair of nicks on opposite DNA strands, thereby creating a double- stranded break.
  • the two target genomic sequences i.e., the sequences to which the target complementarity regions of the crR A or single guide R As are complementary
  • an indel mutation is induced between the two target sequences.
  • the specificity of RNA-guided genome editing in a cell is increased.
  • Figure 1 Schematic illustrating a gR A/Cas9 nuclease complex bound to its target DNA site. Scissors indicate approximate cleavage points of the Cas9 nuclease on the genomic DNA target site. Note the numbering of nucleotides on the guide RNA proceeds in an inverse fashion from 5' to 3'.
  • FIG. 2B Schematic overview of the EGFP disruption assay. Repair of targeted Cas9-mediated double-stranded breaks in a single integrated EGFP-PEST reporter gene by error-prone NHEJ-mediated repair leads to frame-shift mutations that disrupt the coding sequence and associated loss of fluorescence in cells.
  • Figures 2C-F Activities of RGNs harboring sgRNAs bearing (C) single mismatches, (D) adjacent double mismatches, (E) variably spaced double mismatches, and (F) increasing numbers of adjacent mismatches assayed on three different target sites in the EGFP reporter gene sequence. Mean activities of replicates (see Online Methods) are shown, normalized to the activity of a perfectly matched gRNA. Error bars indicate standard errors of the mean. Positions mismatched in each gRNA are highlighted in grey in the grid below. Sequences of the three EGFP target sites were as follows:
  • EGFP Site 1 GGGCACGGGCAGCTTGCCGGTGG (SEQ ID NO : 1 )
  • EGFP Site 2 GATGCCGTTCTTCTGCTTGTCGG (SEQ ID NO:2)
  • EGFP Site 3 GGTGGTGCAGATGAACTTCAGGG (SEQ ID NO:3)
  • Figure 2G Mismatches at the 5' end of the gRNA make CRISPR/Cas more sensitive more 3' mismatches.
  • the gRNAs Watson-Crick base pair between the RNA&DNA with the exception of positions indicated with an "m" which are mismatched using the Watson-Crick transversion (i.e. EGFP Site#2 M18-19 is mismatched by changing the gRNA to its Watson-Crick partner at positions 18 & 19.
  • positions near the 5 ' of the gRNA are generally very well tolerated, matches in these positions are important for nuclease activity when other residues are mismatched.
  • Figure 2H Efficiency of Cas9 nuclease activities directed by gRNAs bearing variable length complementarity regions ranging from 15 to 25 nts in a human cell- based U20S EGFP disruption assay. Expression of a gRNA from the U6 promoter requires the presence of a 5 ' G and therefore it was only possible to evaluate gRNAs harboring certain lengths of complementarity to the target DNA site (15, 17, 19, 20, 21, 23, and 25 nts).
  • Figure 3B Efficiencies of targeted indel mutations introduced at seven different human endogenous gene targets by matched standard and tru-RGNs.
  • Figure 3C DNA sequences of indel mutations induced by RGNs using a tru- gRNA or a matched full-length gRNA targeted to the EMXl site.
  • the portion of the target DNA site that interacts with the gRNA complementarity region is highlighted in grey with the first base of the PAM sequence shown in lowercase. Deletions are indicated by dashes highlighted in grey and insertions by italicized letters highlighted in grey. The net number of bases deleted or inserted and the number of times each sequence was isolated are shown to the right.
  • FIG. 3E U20S.EGFP cells were transfected with variable amounts of full- length gRNA expression plasmids (top) or tru-gRNA expression plasmids (bottom) together with a fixed amount of Cas9 expression plasmid and then assayed for percentage of cells with decreased EGFP expression. Mean values from duplicate experiments are shown with standard errors of the mean. Note that the data obtained with tru-gRNA matches closely with data from experiments performed with full- length gRNA expression plasmids instead of tru-gRNA plasmids for these three EGFP target sites.
  • Figure 3F U20S.EGFP cells were transfected with variable amount of Cas9 expression plasmid together with variable amounts of full-length gRNA expression plasmids (top) or tru-gRNA expression plasmids (bottom) (amounts determined for each tru-gRNA from the experiments of Figure 3E). Mean values from duplicate experiments are shown with standard errors of the mean. Note that the data obtained with tru-gRNA matches closely with data from experiments performed with full- length gRNA expression plasmids instead of tru-gRNA plasmids for these three EGFP target sites. The results of these titrations determined the concentrations of plasmids used in the EGFP disruption assays performed in Examples 1 and 2.
  • Figures 4A-C RNA-guided Fokl nucleases and a CRISPR/Cas Subtype Ypest protein 4 (Csy4)-based multiplex gRNA expression system.
  • FIG. 1 Schematic overview of a Csy4-based multiplex gRNA expression system.
  • Two gRNAs (with any 5 ' end nucleotide) are co-expressed in a single transcript from a U6 promoter with each gRNA flanked by Csy4 recognition sites.
  • Csy4 cleaves and releases gRNAs from the transcript.
  • the Csy4 recognition site remains at the 3 ' end of the gRNA with a Csy4 nuclease bound to that site.
  • Figures 5A-F Design and optimization of RNA-guided Fokl nucleases.
  • FIGS 6A-D Dimerization of FokI-dCas9 RFNs is required for efficient genome editing activity.
  • MLHl mutL homo log 1
  • FIGS 7A-B Mutagenic activities of a Cas9 nickase or FokI-dCas9 co- expressed with a single gRNA.
  • Indel mutation frequencies were determined by deep sequencing. Each indel frequency value reported was determined from a single deep sequencing library prepared from genomic DNA pooled from three independent transfection
  • VEGFA Vascular Endothelial Growth Factor A
  • DDB2 Damage- Specific DNA Binding Protein 2
  • FANCF Fanconi Anemia, Complementation Group F
  • FES Feline Sarcoma Oncogene
  • RUNX Runt-Related Transcription Factor 1.
  • Figures 8A-C Single Cas9 nickases can introduce point mutations with high efficiencies into their target sites.
  • RGNs CRISPR RNA-guided nucleases
  • T7EI assay (which, as performed in our laboratory, has a reliable detection limit of ⁇ 2 to 5% mutation frequency). Because these mutation rates were very high, it was possible to avoid using deep sequencing methods previously required to detect much lower frequency ZFN- and TALEN-induced off-target alterations (Pattanayak et al., Nat Methods 8, 765-770 (2011); Perez et al, Nat Biotechnol 26, 808-816 (2008);
  • off-target sites were seen for a number of RGNs, identification of these sites was neither comprehensive nor genome -wide in scale. For the six RGNs studied, only a very small subset of the much larger total number of potential off-target sequences in the human genome was examined. Although examining such large numbers of loci for off-target mutations by T7EI assay is neither a practical nor a cost-effective strategy, the use of high-throughput sequencing in future studies might enable the interrogation of larger numbers of candidate off-target sites and provide a more sensitive method for detecting bona fide off-target mutations. For example, such an approach might enable the unveiling of additional off-target sites for the two RGNs for which we failed to uncover any off-target mutations.
  • a number of strategies can be used to minimize the frequencies of genomic off-target mutations.
  • the specific choice of RGN target site can be optimized; given that off-target sites that differ at up to five positions from the intended target site can be efficiently mutated by RGNs, choosing target sites with minimal numbers of off-target sites as judged by mismatch counting seems unlikely to be effective; thousands of potential off-target sites that differ by four or five positions within the 20 bp RNA:DNA complementarity region will typically exist for any given RGN targeted to a sequence in the human genome. It is also possible that the nucleotide content of the gRNA complementarity region might influence the range of potential off-target effects.
  • RNA:DNA hybrids For example, high GC-content has been shown to stabilize RNA:DNA hybrids (Sugimoto et al, Biochemistry 34, 1121 1-11216 (1995)) and therefore might also be expected to make gRNA/genomic DNA hybridization more stable and more tolerant to mismatches. Additional experiments with larger numbers of gRNAs will be needed to assess if and how these two parameters (numbers of mismatched sites in the genome and stability of the RNA:DNA hybrid) influence the genome-wide specificities of RGNs. However, it is important to note that even if such predictive parameters can be defined, the effect of implementing such guidelines would be to further restrict the targeting range of RGNs.
  • RGN-induced off-target effects might be to reduce the concentrations of gRNA and Cas9 nuclease expressed in the cell. This idea was tested using the RGNs for VEGFA target sites 2 and 3 in
  • CRISPR-Cas RNA-guided nucleases based on the S.
  • pyogenes Cas9 protein can have significant off-target mutagenic effects that are comparable to or higher than the intended on-target activity (Example 1). Such off-target effects can be problematic for research and in particular for potential therapeutic applications. Therefore, methods for improving the specificity of
  • RGNs RNA guided nucleases
  • Cas9 RGNs can induce high-frequency indel mutations at off-target sites in human cells (see also Cradick et al., 2013; Fu et al., 2013; Hsu et al., 2013; Pattanayak et al, 2013). These undesired alterations can occur at genomic sequences that differ by as many as five mismatches from the intended on- target site (see Example 1).
  • RNA-guided nucleases are to be used for research and therapeutic applications.
  • Dimerization is an attractive potential strategy for improving the specificity of Cas9 nucleases. This is distinct from a paired Cas9 nickase approach, which is not a true dimeric system. Paired nickases work by co-localizing two Cas9 nickases on a segment of DNA, thereby inducing high efficiency genome editing via an undefined mechanism. Because dimerization is not required for enzymatic activity, single Cas9 nickases can also induce indels with high efficiencies at certain sites (via an unknown mechanism) and can therefore potentially cause unwanted off-target mutations in the genome.
  • one strategy to improve the specificity of RGNs is fusing a Fokl endonuclease domain to a catalytically inactive form of Cas9 bearing the D10A and H840A mutations (also known as dCas9).
  • Fokl nuclease domain functions as a dimer and therefore two subunits must be recruited to the same local piece of DNA in order to induce a double-stranded break.
  • Figure 9A and Example 2 two FokI-dCas9 fusions are recruited in an appropriate configuration using two different gRNAs to yield a double-stranded break.
  • the Fokl- dCas9 fusions would bind to a site that is twice as long as that of a single RGN and therefore this system would be expected to be more specific.
  • FokI-dCas9 fusion proteins wherein the Fokl sequence is fused to dCas9 (preferably to the amino-terminal end of dCas9, but also optionally to the carboxy terminus), optionally with an intervening linker, e.g., a linker of from 2-30 amino acids, e.g., 4-12 amino acids, e.g., Gly 4 Ser (SEQ ID NO:23) or (Gly 4 Ser) 3 .
  • the fusion proteins include a linker between the dCas9 and the Fokl domains.
  • Linkers that can be used in these fusion proteins (or between fusion proteins in a concatenated structure) can include any sequence that does not interfere with the function of the fusion proteins.
  • the linkers are short, e.g., 2-20 amino acids, and are typically flexible (i.e., comprising amino acids with a high degree of freedom such as glycine, alanine, and serine).
  • the linker comprises one or more units consisting of GGGS (SEQ ID NO:22) or GGGGS (SEQ ID NO:23), e.g., two, three, four, or more repeats of the GGGS (SEQ ID NO:22) or GGGGS (SEQ ID NO:23) unit.
  • linker sequences can also be used.
  • a RNA-guided Fokl nuclease platform in which dimerization, rather than just co-localization, is required for efficient genome editing activity. These nucleases can robustly mediate highly efficient genome editing in human cells and can reduce off-target mutations to undetectable levels as judged by sensitive deep sequencing methods. Also described is an efficient system for expressing pairs of gRNAs with any 5 ' end nucleotide, a method that confers a wider targeting range on the RFN platform. Finally, monomeric Cas9 nickases generally introduce more undesirable indels and point mutations than the nucleases described herein in the presence of a single gRNA.
  • RNA-guided Fokl Nuclease (RFN) platform for performing robust and highly specific genome editing in human cells.
  • RFNs require two gRNAs for activity and function as dimers.
  • the engineering of an active RFN required fusion of the Fokl nuclease domain to the amino-terminal end of the dCas9 protein, an architecture different from ZFNs and TALENs in which the Fokl domain is fused to the carboxy-terminal end of engineered zinc finger or transcription activator-like effector repeat arrays.
  • RFNs also require that the half-sites bound by each Fok-dCas9/gRNA complex have a particular relative orientation (PAMs out) with a relatively restricted intervening spacer length of 14 to 17 bps (although activity may be possible at additional spacings but with less consistent success).
  • PAMs out relative orientation
  • RFNs The dimeric nature of RFNs provides important specificity advantages relative to standard monomeric Cas9 nucleases. In an ideal dimeric system, little to no activity will be observed with monomers on half-sites.
  • the present data demonstrate that FokI-dCas9 directed by a single gRNA induces very little or no mutagenesis at RFN half-sites. 12 single gRNAs (for six RFN target sites) were tested with co- expressed FokI-dCas9 and indels were observed at very low frequencies (range of 0.0045% to 0.47%), in some cases at levels as low as background rates observed in control cells in which there was no expression of gRNA or nuclease.
  • Fokl nuclease domain functions as a dimer
  • any indels observed with a single gR A are likely due to recruitment of a FokI-dCas9 dimer to the DNA.
  • FokI-dCas9 dimer Regardless of mechanism, given that only very low level mutagenesis was observed when FokI-dCas9 was tested with single gRNAs at 12 on-target half-sites, it is very unlikely that any mutagenesis will be induced at partially mismatched, off-target half- sites. Indeed, an RFN targeted to VEGFA did not induce detectable mutations at known off-target sites of one of the gRNAs as judged by deep sequencing.
  • RFNs are a true dimeric system, they possess a number of important advantages over paired nickase technology, which depends on co-localization but does not require dimerization.
  • paired Cas9 nickases show greater promiscuity in the orientation and spacing of target half-sites than dimeric RFNs and therefore have a greater potential range of sites at which off-target mutations might be induced.
  • Paired nickase half-sites can be oriented with their PAMs in or PAMs out and with spacer sequences ranging in length from 0 to 1000 bps (Ran et al, Cell 154, 1380-1389 (2013); Mali et al, Nat Biotechnol 31, 833-838 (2013); Cho et al, Genome Res (2013)).
  • This promiscuity exists because the genome editing activities of Cas9 nickases do not depend on dimerization of the enzyme but rather just co- localization of the two nicks.
  • RFNs are much more stringent in their specificities— half-sites must have their PAMs out and must be spaced apart by 14 to 17 bps, due to the requirement for two appropriately positioned Fokl cleavage domains for efficient cleavage.
  • Fokl is a type lis restriction endonuclease that includes a DNA recognition domain and a catalytic (endonuclease) domain.
  • the fusion proteins described herein can include all of Fokl or just the catalytic endonuclease domain, e.g., amino acids 388-583 or 408-583 of GenBank Acc. No. AAA24927.1, e.g., as described in Li et al, Nucleic Acids Res. 39(1): 359-372 (2011); Cathomen and Joung, Mol. Ther. 16: 1200-1207 (2008), or a mutated form of Fokl as described in Miller et al. Nat
  • An exemplary nucleic acid sequence encoding Fokl is as follows:
  • the Fokl nuclease used herein is at least about 50% identical SEQ ID NO:4, e.g., to amino acids 388-583 or 408-583 of SEQ ID NO:4. These variant nucleases must retain the ability to cleave DNA.
  • the nucleotide sequences are about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100% identical to amino acids 388-583 or 408-583 of SEQ ID NO:4. In some embodiments, any differences from amino acids 388-583 or 408-583 of SEQ ID NO:4 are in non-conserved regions.
  • the sequences are aligned for optimal comparison purposes (gaps are introduced in one or both of a first and a second amino acid or nucleic acid sequence as required for optimal alignment, and non-homologous sequences can be disregarded for comparison purposes).
  • the length of a reference sequence aligned for comparison purposes is at least 50%> (in some embodiments, about 50%, 55%, 60%, 65%, 70%, 75%, 85%, 90%, 95%, or 100% of the length of the reference sequence is aligned).
  • the nucleotides or residues at corresponding positions are then compared. When a position in the first sequence is occupied by the same nucleotide or residue as the corresponding position in the second sequence, then the molecules are identical at that position.
  • the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
  • the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
  • the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG software package, using a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
  • a number of bacteria express Cas9 protein variants.
  • Streptococcus pyogenes is presently the most commonly used; some of the other Cas9 proteins have high levels of sequence identity with the S. pyogenes Cas9 and use the same guide R As. Others are more diverse, use different gR As, and recognize different PAM sequences as well (the 2-5 nucleotide sequence specified by the protein which is adjacent to the sequence specified by the RNA). Chylinski et al. classified Cas9 proteins from a large group of bacteria (RNA Biology 10:5, 1-12; 2013), and a large number of Cas9 proteins are listed in supplementary figure 1 and supplementary table 1 thereof, which are incorporated by reference herein. Additional Cas9 proteins are described in Esvelt et al., Nat Methods.
  • Cas9 molecules of a variety of species can be used in the methods and compositions described herein. While the S. pyogenes and S. thermophilus Cas9 molecules are the subject of much of the disclosure herein, Cas9 molecules of, derived from, or based on the Cas9 proteins of other species listed herein can be used as well. In other words, while the much of the description herein uses S. pyogenes and S. thermophilus Cas9 molecules, Cas9 molecules from the other species can replace them. Such species include those set forth in the following table, which was created based on supplementary figure 1 of Chylinski et al, 2013.
  • the constructs and methods described herein can include the use of any of those Cas9 proteins, and their corresponding guide RNAs or other guide RNAs that are compatible.
  • the Cas9 from Streptococcus thermophilus LMD-9 CRISPR1 system has also been shown to function in human cells in Cong et al (Science 339, 819 (2013)).
  • Cas9 orthologs from N. meningitides are described in Hou et al, Proc Natl Acad Sci U S A. 2013 Sep 24;110(39): 15644-9 and Esvelt et al, Nat Methods. 2013 Nov;10(l 1): 1116-21. Additionally, Jinek et al. showed in vitro that Cas9 orthologs from S. thermophilus and L.
  • innocua (but not from N. meningitidis or C. jejuni, which likely use a different guide RNA), can be guided by a dual S. pyogenes gRNA to cleave target plasmid DNA, albeit with slightly decreased efficiency.
  • the present system utilizes the Cas9 protein from S. pyogenes, either as encoded in bacteria or codon-optimized for expression in mammalian cells, containing mutations at D10, E762, H983, or D986 and H840 or N863, e.g., D10A/D10N and H840A/H840N/H840Y, to render the nuclease portion of the protein catalytically inactive; substitutions at these positions could be alanine (as they are in Nishimasu al, Cell 156, 935-949 (2014)) or they could be other residues, e.g., glutamine, asparagine, tyrosine, serine, or aspartate, e.g.,, E762Q, H983N, H983Y, D986N, N863D, N863S, or N863H ( Figure 1C).
  • S. pyogenes either as encoded in bacteria or codon-optimized for expression in
  • sequence of the catalytically inactive S. pyogenes Cas9 that can be used in the methods and compositions described herein is as follows; the exemplary mutations of D10A and H840A are in bold and underlined. 10 20 30 40 50 60
  • PAAFKYFDTT IDRKRYTSTK EVLDATLIHQ SITGLYETRI DLSQLGGD SEQ ID NO: 5
  • the Cas9 nuclease used herein is at least about 50% identical to the sequence of S. pyogenes Cas9, i.e., at least 50% identical to SEQ ID NO:5.
  • the nucleotide sequences are about 50%>, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100% identical to SEQ ID NO:5.
  • any differences from SEQ ID NO:5 are in non-conserved regions, as identified by sequence alignment of sequences set forth in Chylinski et al, RNA Biology 10:5, 1-12; 2013 (e.g., in supplementary figure 1 and supplementary table 1 thereof); Esvelt et al, Nat Methods. 2013 Nov; 10(11): 1116-21 and Fonfara et al, Nucl. Acids Res. (2014) 42 (4): 2577-2590. [Epub ahead of print 2013 Nov 22] doi: 10.1093/nar/gktl074. Identity is determined as set forth above.
  • gRNAs Guide RNAs
  • RNAs generally speaking come in two different systems: System 1, which uses separate crRNA and tracrRNAs that function together to guide cleavage by Cas9, and System 2, which uses a chimeric crRNA-tracrRNA hybrid that combines the two separate guide RNAs in a single system (referred to as a single guide RNA or sgRNA, see also Jinek et al., Science 2012; 337:816-821).
  • the tracrRNA can be variably truncated and a range of lengths has been shown to function in both the separate system (system 1) and the chimeric gRNA system (system 2).
  • tracrRNA may be truncated from its 3' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • the tracrRNA molecule may be truncated from its 5' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • the tracrRNA molecule may be truncated from both the 5' and 3' end, e.g., by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nts on the 5' end and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts on the 3' end.
  • vectors e.g., plasmids
  • plasmids encoding more than one gRNA are used, e.g., plasmids encoding, 2, 3, 4, 5, or more gRNAs directed to different sites in the same region of the target gene.
  • Cas9 nuclease can be guided to specific 17-20 nt genomic targets bearing an additional proximal protospacer adjacent motif (PAM), e.g., of sequence NGG, using a guide RNA, e.g., a single gRNA or a tracrRNA/crRNA, bearing 17-20 nts at its 5' end that are complementary to the complementary strand of the genomic DNA target site.
  • PAM proximal protospacer adjacent motif
  • the present methods can include the use of a single guide RNA comprising a crRNA fused to a normally trans-encoded tracrRNA, e.g., a single Cas9 guide RNA as described in Mali et al, Science 2013 Feb 15; 339(6121):823-6, with a sequence at the 5' end that is complementary to the target sequence, e.g., of 25-17, optionally 20 or fewer nucleotides (nts), e.g., 20, 19, 18, or 17 nts, preferably 17 or 18 nts, of the complementary strand to a target sequence immediately 5 Of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG
  • the single Cas9 guide RNA consists of the sequence:
  • X17-20 is the nucleotide sequence complementary to 17-20 consecutive nucleotides of the target sequence.
  • DNAs encoding the single guide RNAs have been described previously in the literature (Jinek et al, Science. 337(6096):816-21 (2012) and Jinek et al, Elife. 2:e00471 (2013)).
  • the guide RNAs can include X N which can be any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9.
  • the guide RNA includes one or more Adenine (A) or Uracil (U) nucleotides on the 3 ' end.
  • the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUU, UUUUUU, UUUUUU, UUUUUU, UUUUUUUUUU, UUUUUUUUUUU) at the 3' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.
  • gRNA e.g., the crRNA and tracrRNA found in naturally occurring systems.
  • a single tracrRNA would be used in conjunction with multiple different crRNAs expressed using the present system, e.g., the following:
  • the methods include contacting the cell with a tracrRNA comprising or consisting of the sequence
  • the tracrRNA molecule may be truncated from its 3' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • the tracrR A molecule may be truncated from its 5 ' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • the tracrRNA molecule may be truncated from both the 5' and 3' end, e.g., by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nts on the 5' end and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts on the 3' end.
  • Exemplary tracrRNA sequences in addition to SEQ ID NO: 8 include the following:
  • GGCACCGAGUCGGUGC SEQ ID NO: 18 or an active portion thereof.
  • tracrRNA (SEQ ID NO: 14) is used as a crRNA, the following tracrRNA is used:
  • tracrRNA is used as a crRNA, the following tracrRNA is used:
  • the gRNA is targeted to a site that is at least three or more mismatches different from any sequence in the rest of the genome in order to minimize off-target effects.
  • RNA oligonucleotides such as locked nucleic acids (LNAs) have been demonstrated to increase the specificity of RNA-DNA hybridization by locking the modified oligonucleotides in a more favorable (stable) conformation.
  • LNAs locked nucleic acids
  • 2'-0-methyl RNA is a modified base where there is an additional covalent linkage between the 2' oxygen and 4' carbon which when incorporated into oligonucleotides can improve overall thermal stability and selectivity (Formula I).
  • the tru-gRNAs disclosed herein may comprise one or more modified RNA oligonucleotides.
  • the truncated guide RNAs molecules described herein can have one, some or all of the 17-18 or 17-19 nts 5 ' region of the guideRNA complementary to the target sequence are modified, e.g., locked (2'-0-4'-C methylene bridge), 5'-methylcytidine, 2'-0-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain (peptide nucleic acid), e.g., a synthetic ribonucleic acid.
  • a polyamide chain peptide nucleic acid
  • one, some or all of the nucleotides of the tru-gRNA sequence may be modified, e.g., locked (2'-0-4'-C methylene bridge), 5'- methylcytidine, 2'-0-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain (peptide nucleic acid), e.g., a synthetic ribonucleic acid.
  • the single guide RNAs and/or crRNAs and/or tracrRNAs can include one or more Adenine (A) or Uracil (U) nucleotides on the 3 ' end.
  • A Adenine
  • U Uracil
  • RNA-DNA heteroduplexes can form a more promiscuous range of structures than their DNA-DNA counterparts.
  • DNA-DNA duplexes are more sensitive to mismatches, suggesting that a DNA- guided nuclease may not bind as readily to off-target sequences, making them comparatively more specific than RNA-guided nucleases.
  • the guide RNAs usable in the methods described herein can be hybrids, i.e., wherein one or more deoxyribonucleotides, e.g., a short DNA oligonucleotide, replaces all or part of the gRNA, e.g., all or part of the complementarity region of a gRNA.
  • This DNA-based molecule could replace either all or part of the gRNA in a single gRNA system or alternatively might replace all of part of the crRNA and/or tracrRNA in a dual crRNA/tracrRNA system.
  • complementarity region should more reliably target the intended genomic DNA sequences due to the general intolerance of DNA-DNA duplexes to mismatching compared to R A-DNA duplexes.
  • Methods for making such duplexes are known in the art, See, e.g., Barker et al, BMC Genomics. 2005 Apr 22;6:57; and Sugimoto et al, Biochemistry. 2000 Sep 19;39(37): 11270-81.
  • one or both can be synthetic and include one or more modified (e.g., locked) nucleotides or deoxyribonucleotides .
  • complexes of Cas9 with these synthetic gR could be used to improve the genome-wide specificity of the CRISPR/Cas9 nuclease system.
  • the methods described can include expressing in a cell, or contacting the cell with, a Cas9 gRNA plus a fusion protein as described herein.
  • the nucleic acid encoding the guide RNA can be cloned into an intermediate vector for transformation into prokaryotic or eukaryotic cells for replication and/or expression.
  • Intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors, or insect vectors, for storage or manipulation of the nucleic acid encoding the fusion proteins for production of the fusion proteins.
  • the nucleic acid encoding the fusion proteins can also be cloned into an expression vector, for administration to a plant cell, animal cell, preferably a mammalian cell or a human cell, fungal cell, bacterial cell, or protozoan cell.
  • a sequence encoding a fusion protein is typically subcloned into an expression vector that contains a promoter to direct transcription.
  • Suitable bacterial and eukaryotic promoters are well known in the art and described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual (3d ed. 2001); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al, eds., 2010).
  • Bacterial expression systems for expressing the engineered protein are available in, e.g., E. coli, Bacillus sp., and Salmonella (Palva et al, 1983, Gene 22:229-235).
  • Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available.
  • the promoter used to direct expression of a nucleic acid depends on the particular application. For example, a strong constitutive promoter is typically used for expression and purification of fusion proteins.
  • a constitutive or an inducible promoter can be used, depending on the particular use of the guide RNA.
  • a preferred promoter for administration of the guide RNA can be a weak promoter, such as HSV TK or a promoter having similar activity.
  • the promoter can also include elements that are responsive to transactivation, e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, 1992, Proc. Natl. Acad. Sci. USA, 89:5547; Oligino et al, 1998, Gene Ther., 5:491-496; Wang et al, 1997, Gene Ther., 4:432-441; Neering et al, 1996, Blood, 88: 1147-55; and Rendahl et al, 1998, Nat. BiotechnoL, 16:757-761).
  • elements that are responsive to transactivation e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system (see, e
  • the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the nucleic acid in host cells, either prokaryotic or eukaryotic.
  • Atypical expression cassette thus contains a promoter operably linked, e.g., to the nucleic acid sequence encoding the gRNA, and any signals required, e.g., for efficient polyadenylation of the transcript, transcriptional termination, ribosome binding sites, or translation termination.
  • Additional elements of the cassette may include, e.g., enhancers, and heterologous spliced intronic signals.
  • the particular expression vector used to transport the genetic information into the cell is selected with regard to the intended use of the gRNA, e.g., expression in plants, animals, bacteria, fungus, protozoa, etc.
  • Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and commercially available tag-fusion expression systems such as GST and LacZ.
  • Expression vectors containing regulatory elements from eukaryotic viruses are often used in eukaryotic expression vectors, e.g., SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus.
  • eukaryotic vectors include pMSG, pAV009/A+, pMTO10/A+, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the SV40 early promoter, SV40 late promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.
  • the vectors for expressing the guide RNAs can include RNA Pol III promoters to drive expression of the guide RNAs, e.g., the HI, U6 or 7SK promoters. These human promoters allow for expression of gRNAs in mammalian cells following plasmid transfection. Alternatively, a T7 promoter may be used, e.g., for in vitro transcription, and the RNA can be transcribed in vitro and purified. Vectors suitable for the expression of short RNAs, e.g., siRNAs, shRNAs, or other small RNAs, can be used. With the Cys4-based multiplex system described in Figure 4B, multiple gRNAs can be expressed in a single transcript (driven by a RNA Pol II or Pol III promoter) and then cleaved out from that larger transcript.
  • RNA Pol III promoters to drive expression of the guide RNAs.
  • Some expression systems have markers for selection of stably transfected cell lines such as thymidine kinase, hygromycin B phosphotransferase, and dihydrofolate reductase.
  • High yield expression systems are also suitable, such as using a baculovirus vector in insect cells, with the gRNA encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.
  • the elements that are typically included in expression vectors also include a replicon that functions in E. coli, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of recombinant sequences.
  • Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of protein, which are then purified using standard techniques (see, e.g., Colley et al, 1989, J. Biol. Chem., 264: 17619-22; Guide to Protein Purification, in Methods in Enzymology, vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, 1977, J. Bacteriol. 132:349-351; Clark-Curtiss & Curtiss, Methods in Enzymology 101 :347-362 (Wu et al, eds, 1983).
  • Any of the known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, nucleofection, liposomes,
  • microinjection naked DNA, plasmid vectors, viral vectors, both episomal and integrative, and any of the other well-known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the gRNA.
  • the present invention includes the vectors and cells comprising the vectors.
  • RGNs CRISPR RNA-guided nucleases
  • Example 1 The following materials and methods were used in Example 1.
  • DNA oligonucleotides harboring variable 20 nt sequences for Cas9 targeting were annealed to generate short double-strand DNA fragments with 4 bp overhangs compatible with ligation into BsmBI-digested plasmid pMLM3636. Cloning of these annealed oligonucleotides generates plasmids encoding a chimeric +103 single-chain guide RNA with 20 variable 5 ' nucleotides under expression of a U6 promoter
  • pMLM3636 and the expression plasmid pJDS246 (encoding a codon optimized version of Cas9) used in this study are both available through the non-profit plasmid distribution service Addgene (addgene.org/crispr-cas).
  • U20S.EGFP cells harboring a single integrated copy of an EGFP-PEST fusion gene were cultured as previously described (Reyon et al, Nat Biotech 30, 460- 465 (2012)).
  • 200,000 cells were Nucleofected with the indicated amounts of gRNA expression plasmid and pJDS246 together with 30 ng of a Td- tomato-encoding plasmid using the SE Cell Line 4D-NucleofectorTM X Kit (Lonza) according to the manufacturer's protocol. Cells were analyzed 2 days post- transfection using a BD LSRII flow cytometer. Transfections for optimizing gR A/Cas9 plasmid concentration were performed in triplicate and all other transfections were performed in duplicate.
  • PCR reactions were performed using Phusion Hot Start II high-fidelity DNA polymerase (NEB). Most loci amplified successfully using touchdown PCR (98 °C, 10 s; 72-62 °C, -1 °C/cycle, 15 s; 72 °C, 30 s]10 cycles, [98 °C, 10 s; 62 °C, 15 s; 72 °C, 30 s]25 cycles). PCR for the remaining targets were performed with 35 cycles at a constant annealing temperature of 68 °C or 72 °C and 3% DMSO or 1M betaine, if necessary. PCR products were analyzed on a QIAXCEL capillary electrophoresis system to verify both size and purity. Validated products were treated with ExoSap-IT (Affymetrix) and sequenced by the Sanger method (MGH DNA Sequencing Core) to verify each target site.
  • NEB Phusion Hot Start II high-fidelity DNA polymerase
  • Lipofectamine LTX reagent according to the manufacturer's instructions (Life Technologies). Genomic DNA was harvested from transfected U20S.EGFP,
  • HEK293, or K562 cells using the QIAamp DNA Blood Mini Kit (QIAGEN), according to the manufacturer's instructions.
  • QIAGEN QIAamp DNA Blood Mini Kit
  • PCR was then performed using these genomic DNAs as templates as described above and purified using Ampure XP beads (Agencourt) according to the manufacturer's instructions. T7EI assays were performed as previously described (Reyon et al, 2012, supra).
  • EGFP enhanced green fluorescent protein
  • the activities of nucleases targeted to a single integrated EGFP reporter gene can be quantified by assessing loss of fiuorescence signal in human U20S.EGFP cells caused by inactivating frameshift insertion/deletion (indel) mutations introduced by error prone non-homologous end-joining (NHEJ) repair of nuclease-induced double- stranded breaks (DSBs) (Fig. 2B).
  • sgRNAs three -100 nt single gRNAs targeted to different sequences within EGFP were used, as follows:
  • EGFP Site 1 GGGCACGGGCAGCTTGCCGGTGG (SEQ ID NO : 1 )
  • EGFP Site 2 GATGCCGTTCTTCTGCTTGTCGG (SEQ ID NO:2)
  • Each of these sgRNAs can efficiently direct Cas9-mediated disruption of EGFP expression (see Example le and 2a, and FIGs. 3E (top) and 3F (top)).
  • variant sgRNAs were generated for each of the three target sites harboring Watson-Crick transversion mismatches at positions 1 through 19 (numbered 1 to 20 in the 3' to 5' direction; see Fig. 1) and the abilities of these various sgR As to direct Cas9-mediated EGFP disruption in human cells tested (variant sgRNAs bearing a substitution at position 20 were not generated because this nucleotide is part of the U6 promoter sequence and therefore must remain a guanine to avoid affecting expression.)
  • target site #1 was particularly sensitive to a mismatch at position 2 whereas target site #3 was most sensitive to mismatches at positions 1 and 8.
  • variant sgRNAs were constructed bearing increasing numbers of mismatched positions ranging from positions 19 to 15 in the 5' end of the gRNA targeting region (where single and double mismatches appeared to be better tolerated).
  • sgRNAs that target three different sites in the VEGFA gene, one in the EMX1 gene, one in the RNF2 gene, and one in the FANCF gene were used. These six sgRNAs efficiently directed Cas9-mediated indels at their respective endogenous loci in human U20S.EGFP cells as detected by T7
  • T7EI Endonuclease I assay
  • U20S.EGFP cells The loci assessed included all genomic sites that differ by one or two nucleotides as well as subsets of genomic sites that differ by three to six nucleotides and with a bias toward those that had one or more of these mismatches in the 5' half of the gRNA targeting sequence.
  • T7EI assay four off-target sites (out of 53 candidate sites examined) for VEGFA site 1, twelve (out of 46 examined) for VEGFA site 2, seven (out of 64 examined) for VEGFA site 3 and one (out of 46 examined) for the EMX1 site were readily identified. No off-target mutations were detected among the 43 and 50 potential sites examined for the RNF2 or FANCF genes, respectively.
  • the rates of mutation at verified off-target sites were very high, ranging from 5.6% to 125% (mean of 40%) of the rate observed at the intended target site.
  • These bona fide off-targets included sequences with mismatches in the 3' end of the target site and with as many as a total of five mismatches, with most off-target sites occurring within protein coding genes.
  • DNA sequencing of a subset of off-target sites provided additional molecular confirmation that indel mutations occur at the expected RGN cleavage site (Figs. 8A-C).
  • NHEJ-mediated indel mutations at their intended on-target site in these two additional human cell lines (as assessed by T7EI assay), albeit with somewhat lower mutation frequencies than those observed in U20S.EGFP cells.
  • Assessment of the 24 off-target sites for these four RGNs originally identified in U20S.EGFP cells revealed that many were again mutated in HEK293 and K562 cells with frequencies similar to those at their corresponding on-target site.
  • DNA sequencing of a subset of these off-target sites from HEK293 cells provided additional molecular evidence that alterations are occurring at the expected genomic loci.
  • Single guide RNAs were generated for three different sequences (EGFP SITES 1-3, shown above) located upstream of EGFP nucleotide 502, a position at which the introduction of frameshift mutations via non-homologous end- joining can robustly disrupt expression of EGFP (Maeder, M.L. et al, Mol Cell 31, 294-301 (2008); Reyon, D. et al, Nat Biotech 30, 460-465 (2012)).
  • gRNA-expressing plasmid amounts (12.5 to 250 ng) was initially trans fected together with 750 ng of a plasmid expressing a codon-optimized version of the Cas9 nuclease into our U20S.EGFP reporter cells bearing a single copy, constitutively expressed EGFP-PEST reporter gene. All three RGNs efficiently disrupted EGFP expression at the highest concentration of gRNA plasmid (250 ng) (Fig. 3E (top)).
  • RGNs for target sites #1 and #3 exhibited equivalent levels of disruption when lower amounts of gRNA-expressing plasmid were transfected whereas RGN activity at target site #2 dropped immediately when the amount of gRNA-expressing plasmid transfected was decreased (Fig. 3E (top)).
  • the amount of Cas9-encoding plasmid (range from 50 ng to 750 ng) transfected into our U20S.EGFP reporter cells was titrated EGFP disruption assayed. As shown in Fig. 3F (top), target site #1 tolerated a three-fold decrease in the amount of Cas9-encoding plasmid transfected without substantial loss of EGFP disruption activity. However, the activities of RGNs targeting target sites #2 and #3 decreased immediately with a three-fold reduction in the amount of Cas9 plasmid transfected (Fig. 3F (top)).
  • Off-target sites for each of the six RGNs targeted to the VEGFA, RNF2, FANCF, and EMX1 genes and the three RGNs targeted to EGFP Target Sites #1, #2 and #3 were identified in human genome sequence build GRCh37. Mismatches were only allowed for the 20 nt region to which the gRNA anneals and not to the PAM sequence.
  • Example 2 Using pairs of guideRNAs with FokI-dCas9 fusion proteins
  • Monomeric CRISPR-Cas9 nucleases are widely used for targeted genome editing but can induce unwanted off-target mutations with high frequencies.
  • This example describes new dimeric RNA-guided Fokl Nucleases (RFNs) that recognize an extended, double-length sequence and that strictly depend on two single guide RNAs (gRNAs) for cleavage activity. RFNs can robustly edit DNA sequences in endogenous human genes with high efficiencies. Additionally, a method for expressing gRNAs bearing any 5 ' end nucleotide is described, a critical advance that gives dimeric RFNs a useful targeting range.
  • RFNs RNA-guided Fokl Nucleases
  • monomeric Cas9 nickases In direct comparisons, monomeric Cas9 nickases generally induce unwanted indels and unexpected focal point mutations with higher frequencies than RFNs directed by a matched single gRNA.
  • RFNs combine the ease of CRISPR RNA-based targeting with the specificity enhancements of dimerization and provide an important new platform for research and therapeutic applications that require highly precise genome editing.
  • Plasmids encoding single or multiplex gRNAs were assembled in a single-step ligation of annealed target site oligosduplexes (Integrated DNA Technologies) and a constant region oligoduplex (for multiplex gRNAs) with BsmBI-digested Csy4- flanked gRNA backbone (pSQT1313; Addgene).
  • Multiplex gRNA encoding plasmids were constructed by ligating: 1) annealed oligos encoding the first target site, 2) phosphorylated annealed oligos encoding crRNA, tracrRNA, and Csy4-binding site, and 3) annealed oligos encoding the second target site, into a U6-Csy4site-gRNA plasmid backbone digested with BsmBI Type lis restriction enzyme.
  • Csy4 RNA binding sites were attached to the 3' and 5' ends of a gRNA sequence and expressed with Cas9 in cells.
  • the Csy4 RNA binding site sequence ' GUUC ACUGCCGUAUAGGC AGCUAAGAAA' was fused to the 5' and 3' end of the standard gRNA sequence.
  • This sequence is a multiplex gRNA sequence flanked by Csy4 sites (underlined). Functionally, encoding these in multiplex on one transcript should have the same result as encoding them separately. Although all pairs of Csy4-flanked sgRNAs were expressed in a multiplex context in the experiments described herein, the sgRNAs can be encoded in multiplex sgRNAs separated by Csy4 sites encoded on one transcript as well as individual sgRNAs that have an additional Csy4 sequence.
  • the first N20 sequence represents the sequence complementary to one strand of the target genomic sequence
  • the second N20 sequence represents the sequence complementary to the other strand of the target genomic sequence.
  • a plasmid encoding the Csy4 recognition site containing gR A was co- transfected with plasmid encoding Cas9 and Csy4 proteins separated by a '2A' peptide linkage.
  • the results showed that gR As with Csy4 sites fused to the 5' and 3 ' ends remained capable of directing Cas9-mediated cleavage in human cells using the U20S-EGFP disruption assay previously described.
  • Csy4 R A binding sites can be attached to 3 ' end of a gRNA sequence and complexes of these Csy4 site- containing gRNAs with Cas9 remain functional in the cell.
  • the sequences of the FokI-dCas9 fusions are shown below, and include a GGGGS (SEQ ID NO:23) linker (underlined) between the Fokl and dCas9 and a nuclear localization sequence.
  • FokI-dCas9 amino acid sequence (FokI-G4S-dCas9-nls-3XFLAG) MQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYR GKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRN KHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLI GGEMIKAGTLTLEEVRRKFNNGEINFGGGGSDKKYS IGLAIGTNSVGWAVITDEYKV PSKKFKVLGN DRHS IKKNLIGALLFDSGE AEATRLKRTARRRYTRRKNRICYLQE IFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFG IVDEVAYHEKYP IYHLRKK LVDS DKADLRLIYLALAHMI
  • FokI-dCas9 nucleotide sequence (FokI-G4S-dCas9-nls-3XFLAG)
  • U20S.EGFP cells were cultured in the presence of 400 ⁇ g/ml of G418.
  • U20S cells and U20S.EGFP cells were transfected using the DN-100 program of a Lonza 4D-Nucleofector according to the manufacturer's instructions.
  • 750 ng of pCAG-Csy4-FokI-dCas9-nls nuclease plasmid and 250 ng of gRNA encoding plasmids were transfected together with 50 ng tdTomato expression plasmid (Clontech) as a transfection control.
  • tdTomato expression plasmid (Clontech)
  • U20S.EGFP cells 975 ng of human codon optimized pCAG-Csy4-T2A-nls-hFokI- dCas9-nls (SQT1601) or pCAG-Cas9-D10A nickase (NW3) were transfected along with 325 ng of gRNA vector and 10 ng of Td tomato expression plasmid and analyzed 3 days after transfection.
  • HEK293 cells were transfected with 750 ng of nuclease plasmid, 250 ng of gRNA expression plasmid and 10 ng of Td tomato, using
  • the EGFP disruption assay was performed as previously described (see Example 1 and Reyon et al, Nat Biotech 30, 460-465 (2012)) using U20S.EGFP reporter cells. Cells were assayed for EGFP and tdTomato expression using an BD Biosciences LSR II or Fortessa FACS analyzer.
  • T7E1 assays were performed as previously described (Reyon et al, Nat Biotech 30, 460-465 (2012)). Briefly, genomic DNA was isolated 72 hours post transfection using the Agencourt DNAdvance Genomic DNA Isolation kit (Beckman Coulter Genomics) according to the manufacturer's instructions with a Sciclone G3 liquid-handling workstation (Caliper). PCR reactions to amplify genomic loci were performed using Phusion Hot- start Flex DNA polymerase (New England Biolabs).
  • Samples were amplified using a two-step protocol (98 °C, 30 sec; (98 °C, 7 sec; 72 °C, 30 sec) x 35; 72 °C, 5 min) or a touchdown PCR protocol ((98 °C, 10 s; 72-62 °C, -1 °C/cycle, 15 s; 72 °C, 30 s) 10 cycles, (98 °C, 10 s; 62 °C, 15 s; 72 °C, 30 s) 25 cycles).
  • 200 ng of purified PCR amplicons were denatured, hybridized, and treated with T7 Endonuclease I (New England Biolabs). Mutation frequency was quantified using a Qiaxcel capillary electrophoresis instrument (Qiagen) as previously described (Reyon et al, Nat Biotech 30, 460-465 (2012)).
  • Short 200-350 bp PCR products were amplified using Phusion Hot- start FLEX DNA polymerase. PCR products were purified using Ampure XP beads (Beckman Coulter Genomics) according to manufacturer's instructions. Dual-indexed TruSeq Illumina deep sequencing libraries were prepared using a high-throughput library preparation system (Kapa Biosystems) on a Sciclone G3 liquid-handling workstation. Final adapter-ligated libraries were quantified using a Qiaxcel capillary electrophoresis instrument (Qiagen). 150 bp paired end sequencing was performed on an Illumina MiSeq Sequencer by the Dana-Farber Cancer Institute Molecular Biology Core.
  • MiSeq paired-end reads were mapped to human genome reference GChr37 using bwa. Reads with an average quality score >30 were analyzed for insertion or deletion mutations that overlapped the intended target or candidate off-target nuclease binding site. Mutation analyses were conducted using the Genome Analysis Toolkit (GATK) and Python.
  • GATK Genome Analysis Toolkit
  • a target-site matching algorithm was implemented that looks for matches with less than a specified number of mismatches in a sliding window across the human genome.
  • Example 2a Rationale for designing dimeric RNA-guided nucleases
  • Example 2b Multiplex expression of gRNAs without 5 '-end nucleotide limitations
  • the targeting range for a dimeric RNA-guided nuclease would be low using existing gRNA expression methods.
  • Two sequence requirements typically restrict the targeting range of a dCas9 monomer: the requirement for a PAM sequence of 5'- NGG that is specified by the dCas9 and a requirement for a G nucleotide at the 5' end of the gRNA imposed by the use of a U6 promoter in most expression vectors. If, however, the requirement for the 5 ' G in the gRNA could be relieved, then the targeting range would improve by 16-fold.
  • a plasmid was constructed from which two gRNAs, each flanked by cleavage sites for the Csy4 ribonuclease (Haurwitz et al, Science 329, 1355-1358 (2010)), can be expressed within a single RNA transcribed from a U6 promoter (Fig. 4B). Csy4 would be expected to process this transcript thereby releasing the two gRNAs.
  • each processed gRNA should retain a Csy4 recognition site on its 3' end with a Csy4 protein bound to that site (Fig. 4B).
  • gRNAs with any 5' nucleotide. This system was tested by using it to express two gRNAs targeted to sites within the EGFP reporter gene.
  • Example 2c Construction and optimization of dimeric RNA-guided nucleases Two different hybrid proteins harboring the Fokl nuclease domain and the dCas9 protein were constructed: one in which the Fokl nuclease domain is fused to the carboxy-terminus of dCas9 (dCas9-FokI) and the other in which it is fused to the amino-terminus (FokI-dCas9) (Fig. 5A).
  • the dCas9-FokI protein is analogous in architecture to ZFNs and TALENs (Fig. 5A).
  • the dCas9-FokI protein did not show detectable EGFP disruption activity when co-expressed with any of the 60 gRNA pairs in human U20S.EGFP cells (Fig. 5E).
  • screening of the FokI-dCas9 protein with the same 60 gRNA pairs did reveal EGFP disruption activity on target sites composed of half-sites in the PAM out orientation and with spacer lengths of 13 to 17 bps and of 26 bps (approximately one turn of the DNA helix more than the 13-17 bp spacer lengths) (Fig. 5B).
  • FokI-dCas9 can be directed by two appropriately positioned gRNAs to efficiently cleave a full-length target site of interest.
  • the complex of two FokI-dCas9 fusions and two gRNAs are referred to herein as RNA-guided Fokl Nucleases (RFNs).
  • gRNA pairs were designed for 12 different target sites in nine different human genes (Table 2). Eleven of the 12 RFNs tested introduced indels with high efficiencies (range of 3 to 40%) at their intended target sites in human U20S.EGFP cells as judged by T7EI assay (Table 2). Similar results were obtained with these same 12 RFN pairs in HEK293 cells (Table 2). Sanger sequencing of successfully targeted alleles from U20S.EGFP cells revealed the introduction of a range of indels (primarily deletions) at the expected cleavage site (Fig. 5F). The high success rate and high efficiencies of modifications observed in two different human cell lines demonstrate the robustness of RFNs for modifying endogenous human genes.
  • Example 2d RFNs possess extended specificities for their cleavage sites To test whether RFNs possess enhanced recognition specificities associated with dimerization, whether these nucleases strictly depend upon the presence of both gRNAs in a pair was examined. In an ideal dimeric system, single gRNAs should not be able to efficiently direct FokI-dCas9-induced indels. To perform an initial test, two pairs of gRNAs directed to two target sites in EGFP were used that had been shown to efficiently direct FokI-dCas9-induced indels to their target sites (EGFP sites 47 and 81) in human U20S.EGFP cells (Fig. 5C).
  • Example 2e Monomeric Cas9 nickases induce higher rates of mutagenesis than single gRNA/FokI-dCas9 complexes
  • FokI-dCas9 and Cas9 nickase were compared in the presence of a single gRNA at six dimeric human gene target sites (a total of 12 half-sites; Table 4). These particular sites were chosen because monomeric Cas9 nickases directed by just one and/or the other gRNA in a pair could induce indel mutations at these targets.
  • Table 4 the activities of FokI-dCas9 or Cas9 nickase were assessed in the presence of both or only one or the other gRNAs.
  • Example 2f Dimeric RFNs possess a high degree of specificity
  • Dimeric RFNs directed by two gRNAs are not expected to induce appreciable off-target mutations in human cells.
  • RFNs directed by a pair of gRNAs to cleave a full-length sequence composed of two half-sites, would be expected to specify up to 44 bps of DNA in the target site. A sequence of this length will, by chance, almost always be unique (except in certain circumstances where the target might lie in duplicated genome sequence).
  • the most closely matched sites in the genome to this full-length site should, in most cases, possess a large number of mismatches, which in turn would be expected to minimize or abolish cleavage activity by an RFN dimer.
  • VEGFA-2 1 4 9 99 447 1675 5608 18599
  • VEGFA-3 1 20 120 623 2783 References

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Prostheses (AREA)
  • Lubricants (AREA)
PCT/US2014/028630 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing Ceased WO2014144288A1 (en)

Priority Applications (29)

Application Number Priority Date Filing Date Title
EP18208105.9A EP3467125B1 (en) 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
CA2907198A CA2907198C (en) 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
KR1020157029177A KR102210322B1 (ko) 2013-03-15 2014-03-14 Rna-안내 게놈 편집의 특이성을 증가시키기 위한 rna-안내 foki 뉴클레아제(rfn)의 용도
KR1020217002429A KR102271292B1 (ko) 2013-03-15 2014-03-14 Rna-안내 게놈 편집의 특이성을 증가시키기 위한 rna-안내 foki 뉴클레아제(rfn)의 용도
AU2014227653A AU2014227653B2 (en) 2013-03-15 2014-03-14 Using RNA-guided foki nucleases (RFNs) to increase specificity for RNA-guided genome editing
EP14764159.1A EP2971041B1 (en) 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
JP2016502853A JP6622183B2 (ja) 2013-03-15 2014-03-14 RNA誘導型FokIヌクレアーゼ(RFN)を用いたRNA誘導型ゲノム編集の特異性の増大
ES14764159T ES2713503T3 (es) 2013-03-15 2014-03-14 Uso de nucleasas FOKI guiadas por ARN (RFN) para aumentar la especificidad para la edición del genoma guiada por ARN
CN201480027950.1A CN105247066B (zh) 2013-03-15 2014-03-14 使用RNA引导的FokI核酸酶(RFN)提高RNA引导的基因组编辑的特异性
US14/900,444 US10011850B2 (en) 2013-06-21 2014-04-23 Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
PCT/US2014/035162 WO2014204578A1 (en) 2013-06-21 2014-04-23 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
CN202110920229.7A CN113684205B (zh) 2013-12-26 2014-09-18 多重引导rna
EP21191144.1A EP3985124A1 (en) 2013-12-26 2014-09-18 Multiplex guide rnas
KR1020167020111A KR20160102056A (ko) 2013-12-26 2014-09-18 멀티플렉스 가이드 rna
US15/107,550 US10526589B2 (en) 2013-03-15 2014-09-18 Multiplex guide RNAs
CA2935032A CA2935032C (en) 2013-12-26 2014-09-18 Multiplex guide rnas
EP14875819.6A EP3090044B1 (en) 2013-12-26 2014-09-18 Multiplex guide rnas
CN201480076396.6A CN106103706B (zh) 2013-12-26 2014-09-18 多重引导rna
AU2014370416A AU2014370416B2 (en) 2013-12-26 2014-09-18 Multiplex guide RNAs
JP2016542968A JP6721508B2 (ja) 2013-12-26 2014-09-18 多重ガイドrna
AU2017204909A AU2017204909B2 (en) 2013-03-15 2017-07-17 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
US16/003,973 US10544433B2 (en) 2013-03-15 2018-06-08 Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
AU2019204675A AU2019204675B2 (en) 2013-03-15 2019-07-01 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
JP2019218086A JP7005580B2 (ja) 2013-12-26 2019-12-02 多重ガイドrna
US16/735,146 US20200165587A1 (en) 2013-12-26 2020-01-06 Multiplex Guide RNAS
US16/751,578 US11098326B2 (en) 2013-03-15 2020-01-24 Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
AU2021203309A AU2021203309B2 (en) 2013-12-26 2021-05-23 Multiplex guide RNAs
AU2021203370A AU2021203370B2 (en) 2013-03-15 2021-05-25 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
AU2023258349A AU2023258349A1 (en) 2013-12-26 2023-10-31 Multiplex guide RNAs

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201361799647P 2013-03-15 2013-03-15
US61/799,647 2013-03-15
US201361838178P 2013-06-21 2013-06-21
US201361838148P 2013-06-21 2013-06-21
US61/838,178 2013-06-21
US61/838,148 2013-06-21
US201361921007P 2013-12-26 2013-12-26
US61/921,007 2013-12-26

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2014/035162 Continuation WO2014204578A1 (en) 2013-03-15 2014-04-23 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
US15/415,431 Continuation US10138476B2 (en) 2013-03-15 2017-01-25 Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing

Related Child Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2014/029304 Continuation WO2014144761A2 (en) 2013-03-15 2014-03-14 Increasing specificity for rna-guided genome editing
PCT/US2014/029068 Continuation WO2014144592A2 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
US14/900,444 Continuation-In-Part US10011850B2 (en) 2013-06-21 2014-04-23 Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
PCT/US2014/035162 Continuation-In-Part WO2014204578A1 (en) 2013-03-15 2014-04-23 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing

Publications (1)

Publication Number Publication Date
WO2014144288A1 true WO2014144288A1 (en) 2014-09-18

Family

ID=51537665

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2014/028630 Ceased WO2014144288A1 (en) 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
PCT/US2014/029304 Ceased WO2014144761A2 (en) 2013-03-15 2014-03-14 Increasing specificity for rna-guided genome editing
PCT/US2014/027335 Ceased WO2014152432A2 (en) 2013-03-15 2014-03-14 Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
PCT/US2014/029068 Ceased WO2014144592A2 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/US2014/029304 Ceased WO2014144761A2 (en) 2013-03-15 2014-03-14 Increasing specificity for rna-guided genome editing
PCT/US2014/027335 Ceased WO2014152432A2 (en) 2013-03-15 2014-03-14 Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
PCT/US2014/029068 Ceased WO2014144592A2 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing

Country Status (12)

Country Link
US (17) US9567603B2 (cg-RX-API-DMAC7.html)
EP (10) EP2971041B1 (cg-RX-API-DMAC7.html)
JP (11) JP6622183B2 (cg-RX-API-DMAC7.html)
KR (8) KR102271292B1 (cg-RX-API-DMAC7.html)
CN (6) CN112301024A (cg-RX-API-DMAC7.html)
AU (10) AU2014239665B2 (cg-RX-API-DMAC7.html)
BR (1) BR112015023489B1 (cg-RX-API-DMAC7.html)
CA (4) CA2907198C (cg-RX-API-DMAC7.html)
ES (1) ES2713503T3 (cg-RX-API-DMAC7.html)
IL (2) IL289396B2 (cg-RX-API-DMAC7.html)
WO (4) WO2014144288A1 (cg-RX-API-DMAC7.html)
ZA (1) ZA201506814B (cg-RX-API-DMAC7.html)

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104531633A (zh) * 2014-11-18 2015-04-22 李云英 Cas9-scForkI融合蛋白及其应用
WO2015035162A3 (en) * 2013-09-06 2015-06-04 President And Fellows Of Harvard College Cas9 variants and uses thereof
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
WO2016057961A1 (en) * 2014-10-10 2016-04-14 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
US9322006B2 (en) 2011-07-22 2016-04-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9567603B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
WO2017059313A1 (en) 2015-09-30 2017-04-06 The General Hospital Corporation Comprehensive in vitro reporting of cleavage events by sequencing (circle-seq)
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
WO2017209809A1 (en) * 2016-06-02 2017-12-07 Sigma-Aldrich Co. Llc Using programmable dna binding proteins to enhance targeted genome modification
EP3167071A4 (en) * 2014-07-09 2018-01-17 Gen9, Inc. Compositions and methods for site-directed dna nicking and cleaving
JP2018506987A (ja) * 2015-03-03 2018-03-15 ザ ジェネラル ホスピタル コーポレイション 変更PAM特異性を有する遺伝子操作CRISPR−Cas9ヌクレアーゼ
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
WO2018071892A1 (en) 2016-10-14 2018-04-19 Joung J Keith Epigenetically regulated site-specific nucleases
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
WO2018129129A1 (en) * 2017-01-05 2018-07-12 Rutgers, The State University Of New Jersey Targeted gene editing platform independent of dna double strand break and uses thereof
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10081807B2 (en) 2012-04-24 2018-09-25 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10202608B2 (en) 2006-08-31 2019-02-12 Gen9, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
EP3473720A1 (en) * 2013-08-22 2019-04-24 Pioneer Hi-Bred International, Inc. Genome modification using guide polynucleotide/cas endonuclease systems and methods of use
US10308931B2 (en) 2012-03-21 2019-06-04 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
US10337001B2 (en) 2014-12-03 2019-07-02 Agilent Technologies, Inc. Guide RNA with chemical modifications
US10428319B2 (en) 2017-06-09 2019-10-01 Editas Medicine, Inc. Engineered Cas9 nucleases
US10457935B2 (en) 2010-11-12 2019-10-29 Gen9, Inc. Protein arrays and methods of using and making the same
US10526589B2 (en) 2013-03-15 2020-01-07 The General Hospital Corporation Multiplex guide RNAs
EP3502261A4 (en) * 2016-08-19 2020-07-15 Toolgen Incorporated ARTIFICIALLY MODIFIED ANGIOGENESIS REGULATION SYSTEM
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US20210040460A1 (en) 2012-04-27 2021-02-11 Duke University Genetic correction of mutated genes
EP3812472A1 (en) 2019-10-21 2021-04-28 Albert-Ludwigs-Universität Freiburg A truly unbiased in vitro assay to profile off-target activity of one or more target-specific programmable nucleases in cells (abnoba-seq)
US11028388B2 (en) 2014-03-05 2021-06-08 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa
US11072789B2 (en) 2012-06-25 2021-07-27 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
US11084014B2 (en) 2010-11-12 2021-08-10 Gen9, Inc. Methods and devices for nucleic acids synthesis
US11111521B2 (en) 2011-12-22 2021-09-07 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
EP3728589A4 (en) * 2017-12-22 2021-11-03 G+Flas Life Sciences CHEMICAL GENOMIC ENGINEERING MOLECULES AND PROCESSES
US11180793B2 (en) 2015-04-24 2021-11-23 Editas Medicine, Inc. Evaluation of Cas9 molecule/guide RNA molecule complexes
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US11242525B2 (en) 2014-03-26 2022-02-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating sickle cell disease
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11286468B2 (en) 2017-08-23 2022-03-29 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11299767B2 (en) 2013-03-12 2022-04-12 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
US11306309B2 (en) 2015-04-06 2022-04-19 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
EP4017976A1 (en) * 2019-08-20 2022-06-29 Kemijski Institut Coiled-coil mediated tethering of crispr/cas and exonucleases for enhanced genome editing
US11390884B2 (en) 2015-05-11 2022-07-19 Editas Medicine, Inc. Optimized CRISPR/cas9 systems and methods for gene editing in stem cells
US11421251B2 (en) 2015-10-13 2022-08-23 Duke University Genome engineering with type I CRISPR systems in eukaryotic cells
US11427817B2 (en) 2015-08-25 2022-08-30 Duke University Compositions and methods of improving specificity in genomic engineering using RNA-guided endonucleases
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11466271B2 (en) 2017-02-06 2022-10-11 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
US11479793B2 (en) 2015-07-15 2022-10-25 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
EP4095243A1 (en) 2021-05-25 2022-11-30 European Molecular Biology Laboratory System for hybridization-based precision genome cleavage and editing, and uses thereof
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542554B2 (en) 2015-11-03 2023-01-03 President And Fellows Of Harvard College Method and apparatus for volumetric imaging
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11566263B2 (en) 2016-08-02 2023-01-31 Editas Medicine, Inc. Compositions and methods for treating CEP290 associated disease
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
US11702662B2 (en) 2011-08-26 2023-07-18 Gen9, Inc. Compositions and methods for high fidelity assembly of nucleic acids
US11713485B2 (en) 2016-04-25 2023-08-01 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11851690B2 (en) 2017-03-14 2023-12-26 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
US11884915B2 (en) 2021-09-10 2024-01-30 Agilent Technologies, Inc. Guide RNAs with chemical modification for prime editing
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11911415B2 (en) 2015-06-09 2024-02-27 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for improving transplantation
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11920128B2 (en) 2013-09-18 2024-03-05 Kymab Limited Methods, cells and organisms
US11963982B2 (en) 2017-05-10 2024-04-23 Editas Medicine, Inc. CRISPR/RNA-guided nuclease systems and methods
WO2024084025A1 (en) 2022-10-21 2024-04-25 Keygene N.V. Rna transfection in plant cells with modified rna
US11981917B2 (en) 2013-06-04 2024-05-14 President And Fellows Of Harvard College RNA-guided transcriptional regulation
WO2024121354A1 (en) 2022-12-08 2024-06-13 Keygene N.V. Duplex sequencing with covalently closed dna ends
US12031132B2 (en) 2018-03-14 2024-07-09 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US12098425B2 (en) 2018-10-10 2024-09-24 Readcoor, Llc Three-dimensional spatial molecular indexing
US12110545B2 (en) 2017-01-06 2024-10-08 Editas Medicine, Inc. Methods of assessing nuclease cleavage
WO2024209000A1 (en) 2023-04-04 2024-10-10 Keygene N.V. Linkers for duplex sequencing
US12152241B2 (en) 2014-06-25 2024-11-26 The General Hospital Corporation Targeting human satellite II (HSATII)
US12157760B2 (en) 2018-05-23 2024-12-03 The Broad Institute, Inc. Base editors and uses thereof
US12203136B2 (en) 2020-08-17 2025-01-21 Readcoor, Llc Methods and systems for spatial mapping of genetic variants
US12215345B2 (en) 2013-03-19 2025-02-04 Duke University Compositions and methods for the induction and tuning of gene expression
US12215366B2 (en) 2015-02-09 2025-02-04 Duke University Compositions and methods for epigenome editing
US12214056B2 (en) 2016-07-19 2025-02-04 Duke University Therapeutic applications of CPF1-based genome editing
US12264341B2 (en) 2020-01-24 2025-04-01 The General Hospital Corporation CRISPR-Cas enzymes with enhanced on-target activity
US12281338B2 (en) 2018-10-29 2025-04-22 The Broad Institute, Inc. Nucleobase editors comprising GeoCas9 and uses thereof
US12286727B2 (en) 2016-12-19 2025-04-29 Editas Medicine, Inc. Assessing nuclease cleavage
US12312613B2 (en) 2020-01-24 2025-05-27 The General Hospital Corporation Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants
US12331347B2 (en) 2014-07-11 2025-06-17 President And Fellows Of Harvard College Methods for high-throughput labelling and detection of biological features in situ using microscopy
US12338436B2 (en) 2018-06-29 2025-06-24 Editas Medicine, Inc. Synthetic guide molecules, compositions and methods relating thereto
US12351837B2 (en) 2019-01-23 2025-07-08 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof
US12390514B2 (en) 2017-03-09 2025-08-19 President And Fellows Of Harvard College Cancer vaccine
US12406749B2 (en) 2017-12-15 2025-09-02 The Broad Institute, Inc. Systems and methods for predicting repair outcomes in genetic engineering
US12428631B2 (en) 2016-04-13 2025-09-30 Duke University CRISPR/Cas9-based repressors for silencing gene targets in vivo and methods of use
US12435330B2 (en) 2019-10-10 2025-10-07 The Broad Institute, Inc. Methods and compositions for prime editing RNA
US12460231B2 (en) 2014-04-02 2025-11-04 Editas Medicine, Inc. Crispr/CAS-related methods and compositions for treating primary open angle glaucoma
US12467086B2 (en) 2011-10-14 2025-11-11 President And Fellows Of Harvard College Sequencing by structure assembly
US12473543B2 (en) 2019-04-17 2025-11-18 The Broad Institute, Inc. Adenine base editors with reduced off-target effects
US12509680B2 (en) 2023-05-31 2025-12-30 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences

Families Citing this family (327)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048113A2 (en) 2010-10-07 2012-04-12 The General Hospital Corporation Biomarkers of cancer
CN103842511A (zh) 2011-03-23 2014-06-04 先锋国际良种公司 产生复合转基因性状基因座的方法
US20140274812A1 (en) 2011-07-15 2014-09-18 The General Hospital Corporation Methods of Transcription Activator Like Effector Assembly
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
US10039777B2 (en) 2012-03-20 2018-08-07 Neuro-Lm Sas Methods and pharmaceutical compositions of the treatment of autistic syndrome disorders
WO2013176772A1 (en) 2012-05-25 2013-11-28 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US9890364B2 (en) 2012-05-29 2018-02-13 The General Hospital Corporation TAL-Tet1 fusion proteins and methods of use thereof
EP3789405A1 (en) 2012-10-12 2021-03-10 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins
LT3138910T (lt) 2012-12-06 2017-11-10 Sigma-Aldrich Co. Llc Crispr pagrįstas genomo modifikavimas ir reguliavimas
WO2014093701A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
EP3434776A1 (en) 2012-12-12 2019-01-30 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
SG10201707569YA (en) 2012-12-12 2017-10-30 Broad Inst Inc Delivery, Engineering and Optimization of Systems, Methods and Compositions for Sequence Manipulation and Therapeutic Applications
EP2946015B1 (en) 2013-01-16 2021-05-26 Emory University Cas9-nucleic acid complexes and uses related thereto
CA2900338C (en) 2013-02-07 2024-11-05 The General Hospital Corporation TRANSCRIPTIONAL ACTIVATORS TALE
NZ712727A (en) 2013-03-14 2017-05-26 Caribou Biosciences Inc Compositions and methods of nucleic acid-targeting nucleic acids
CN115261411A (zh) 2013-04-04 2022-11-01 哈佛学院校长同事会 利用CRISPR/Cas系统的基因组编辑的治疗性用途
US20140356956A1 (en) * 2013-06-04 2014-12-04 President And Fellows Of Harvard College RNA-Guided Transcriptional Regulation
ES2987399T3 (es) * 2013-06-05 2024-11-14 Univ Duke Edición génica guiada por ARN y regulación génica
EP3825406A1 (en) 2013-06-17 2021-05-26 The Broad Institute Inc. Delivery and use of the crispr-cas systems, vectors and compositions for hepatic targeting and therapy
CA2915795C (en) 2013-06-17 2021-07-13 The Broad Institute, Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components
ES2777217T3 (es) 2013-06-17 2020-08-04 Broad Inst Inc Suministro, modificación y optimización de sistemas de guía en tándem, métodos y composiciones para la manipulación de secuencias
EP3725885A1 (en) 2013-06-17 2020-10-21 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
WO2014204725A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation
EP3019595A4 (en) 2013-07-09 2016-11-30 THERAPEUTIC USES OF A GENERIC CHANGE WITH CRISPR / CAS SYSTEMS
WO2015021426A1 (en) * 2013-08-09 2015-02-12 Sage Labs, Inc. A crispr/cas system-based novel fusion protein and its application in genome editing
WO2015066119A1 (en) 2013-10-30 2015-05-07 North Carolina State University Compositions and methods related to a type-ii crispr-cas system in lactobacillus buchneri
AU2014362248A1 (en) 2013-12-12 2016-06-16 Massachusetts Institute Of Technology Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders
EP3080266B1 (en) * 2013-12-12 2021-02-03 The Regents of The University of California Methods and compositions for modifying a single stranded target nucleic acid
WO2015089465A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders
WO2015089364A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crystal structure of a crispr-cas system, and uses thereof
EP3080271B1 (en) 2013-12-12 2020-02-12 The Broad Institute, Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
EP4219699A1 (en) 2013-12-12 2023-08-02 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation
AU2014361781B2 (en) 2013-12-12 2021-04-01 Massachusetts Institute Of Technology Delivery, use and therapeutic applications of the CRISPR -Cas systems and compositions for genome editing
AU2014370416B2 (en) * 2013-12-26 2021-03-11 The General Hospital Corporation Multiplex guide RNAs
US10787654B2 (en) 2014-01-24 2020-09-29 North Carolina State University Methods and compositions for sequence guiding Cas9 targeting
EP3690044B1 (en) 2014-02-11 2024-01-10 The Regents of the University of Colorado, a body corporate Crispr enabled multiplexed genome engineering
CN106460003A (zh) 2014-04-08 2017-02-22 北卡罗来纳州立大学 用于使用crispr相关基因rna引导阻遏转录的方法和组合物
US20160060655A1 (en) 2014-05-30 2016-03-03 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods to treat latent viral infections
CN106604994B (zh) 2014-06-23 2021-12-14 通用医疗公司 通过测序评估的DSBs的全基因组无偏鉴定(GUIDE-Seq)
US20150376587A1 (en) * 2014-06-25 2015-12-31 Caribou Biosciences, Inc. RNA Modification to Engineer Cas9 Activity
MX2017000422A (es) 2014-07-11 2017-05-01 Du Pont Composiciones y metodos para producir plantas resistentes al herbicida glifosato.
US9932566B2 (en) 2014-08-07 2018-04-03 Agilent Technologies, Inc. CIS-blocked guide RNA
EP3186375A4 (en) 2014-08-28 2019-03-13 North Carolina State University Novel CAS9 PROTEINS AND CHARACTERISTICS FOR DNA TARGETING AND GENOME EDITING
AU2015315651A1 (en) 2014-09-12 2017-02-16 E. I. Du Pont De Nemours And Company Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use
WO2016049258A2 (en) * 2014-09-25 2016-03-31 The Broad Institute Inc. Functional screening with optimized functional crispr-cas systems
WO2016054106A1 (en) * 2014-09-29 2016-04-07 The Regents Of The University Of California SCAFFOLD RNAs
GB201418965D0 (cg-RX-API-DMAC7.html) 2014-10-24 2014-12-10 Ospedale San Raffaele And Fond Telethon
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
US12180263B2 (en) 2014-11-06 2024-12-31 President And Fellows Of Harvard College Cells lacking B2M surface expression and methods for allogeneic administration of such cells
US11352666B2 (en) 2014-11-14 2022-06-07 Institute For Basic Science Method for detecting off-target sites of programmable nucleases in a genome
JP6621820B2 (ja) * 2014-11-14 2019-12-18 インスティチュート フォー ベーシック サイエンスInstitute For Basic Science ゲノムでプログラマブルヌクレアーゼの非標的位置を検出する方法
EP3222728B1 (en) 2014-11-19 2021-07-14 Institute for Basic Science Method for regulating gene expression using cas9 protein expressed from two vectors
CN107208079B (zh) * 2014-12-05 2021-06-29 应用干细胞有限公司 整合转基因的位点定向crispr/重组酶组合物和方法
CN116059378A (zh) 2014-12-10 2023-05-05 明尼苏达大学董事会 用于治疗疾病的遗传修饰的细胞、组织和器官
EP3230452B1 (en) * 2014-12-12 2025-06-11 The Broad Institute, Inc. Dead guides for crispr transcription factors
EP3230451B1 (en) * 2014-12-12 2021-04-07 The Broad Institute, Inc. Protected guide rnas (pgrnas)
US20180179523A1 (en) * 2014-12-18 2018-06-28 Integrated Dna Technologies, Inc. Crispr-based compositions and methods of use
EP3234133B1 (en) 2014-12-18 2020-11-11 Integrated DNA Technologies, Inc. Crispr-based compositions and methods of use
US10190106B2 (en) * 2014-12-22 2019-01-29 Univesity Of Massachusetts Cas9-DNA targeting unit chimeras
WO2016106244A1 (en) 2014-12-24 2016-06-30 The Broad Institute Inc. Crispr having or associated with destabilization domains
US11208638B2 (en) 2015-01-12 2021-12-28 The Regents Of The University Of California Heterodimeric Cas9 and methods of use thereof
US9650617B2 (en) * 2015-01-28 2017-05-16 Pioneer Hi-Bred International. Inc. CRISPR hybrid DNA/RNA polynucleotides and methods of use
US11180792B2 (en) * 2015-01-28 2021-11-23 The Regents Of The University Of California Methods and compositions for labeling a single-stranded target nucleic acid
CN114990070B (zh) 2015-02-18 2025-01-14 衣阿华州立大学研究基金公司 修饰nf-yc4启动子的转录抑制子结合位点以增加蛋白质含量和抗应力
EP3274460A1 (en) 2015-03-27 2018-01-31 E. I. du Pont de Nemours and Company Soybean u6 small nuclear rna gene promoters and their use in constitutive expression of small rna genes in plants
US10968426B2 (en) 2015-05-08 2021-04-06 President And Fellows Of Harvard College Universal donor stem cells and related methods
US10117911B2 (en) 2015-05-29 2018-11-06 Agenovir Corporation Compositions and methods to treat herpes simplex virus infections
JP2018516984A (ja) 2015-05-29 2018-06-28 アジェノビア コーポレーション 細胞を標的にしたhpv処置のための組成物および方法
HK1253712A1 (zh) 2015-05-29 2019-06-28 North Carolina State University 使用crispr核酸筛选细菌、古细菌、藻类和酵母的方法
EP3303634B1 (en) 2015-06-03 2023-08-30 The Regents of The University of California Cas9 variants and methods of use thereof
EP3302525A2 (en) 2015-06-05 2018-04-11 Novartis AG Methods and compositions for diagnosing, treating, and monitoring treatment of shank3 deficiency associated disorders
AU2016274784B2 (en) * 2015-06-10 2021-10-28 Firmenich Sa Cell lines for screening odorant and aroma receptors
US20160362705A1 (en) 2015-06-12 2016-12-15 Lonza Walkersville, Inc. Methods for Nuclear Reprogramming Using Synthetic Transcription Factors
CN107922918B (zh) 2015-06-15 2022-10-21 北卡罗来纳州立大学 用于有效递送核酸和基于rna的抗微生物剂的方法和组合物
KR102840885B1 (ko) 2015-06-18 2025-07-30 더 브로드 인스티튜트, 인코퍼레이티드 표적외 효과를 감소시키는 crispr 효소 돌연변이
WO2016205759A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
US11279928B2 (en) * 2015-06-29 2022-03-22 Massachusetts Institute Of Technology Compositions comprising nucleic acids and methods of using the same
EP3313989B1 (en) * 2015-06-29 2024-12-25 Ionis Pharmaceuticals, Inc. Modified crispr rna and modified single crispr rna and uses thereof
US10676735B2 (en) 2015-07-22 2020-06-09 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
US10166255B2 (en) 2015-07-31 2019-01-01 Regents Of The University Of Minnesota Intracellular genomic transplant and methods of therapy
WO2017024047A1 (en) * 2015-08-03 2017-02-09 Emendobio Inc. Compositions and methods for increasing nuclease induced recombination rate in cells
US20180230450A1 (en) * 2015-08-03 2018-08-16 President And Fellows Of Harvard College Cas9 Genome Editing and Transcriptional Regulation
WO2017040511A1 (en) 2015-08-31 2017-03-09 Agilent Technologies, Inc. Compounds and methods for crispr/cas-based genome editing by homologous recombination
WO2017044776A1 (en) * 2015-09-10 2017-03-16 Texas Tech University System Single-guide rna (sgrna) with improved knockout efficiency
CA3000816A1 (en) * 2015-09-11 2017-03-16 The General Hospital Corporation Full interrogation of nuclease dsbs and sequencing (find-seq)
EP3356533A1 (en) 2015-09-28 2018-08-08 North Carolina State University Methods and compositions for sequence specific antimicrobials
AU2016336566B2 (en) 2015-10-06 2020-05-14 Aict Method for producing whole plants from protoplasts
WO2017070598A1 (en) 2015-10-23 2017-04-27 Caribou Biosciences, Inc. Engineered crispr class 2 cross-type nucleic-acid targeting nucleic acids
WO2017081288A1 (en) 2015-11-11 2017-05-18 Lonza Ltd Crispr-associated (cas) proteins with reduced immunogenicity
JP7054678B2 (ja) 2015-11-20 2022-04-14 ワシントン・ユニバーシティ ゲノムdna断片の標的化された精製のための調製用電気泳動方法
EP3382018B1 (en) * 2015-11-25 2022-03-30 National University Corporation Gunma University Dna methylation editing kit and dna methylation editing method
EP3384055B1 (en) 2015-11-30 2025-07-16 Duke University Therapeutic targets for the correction of the human dystrophin gene by gene editing and methods of use
US11345931B2 (en) 2015-12-14 2022-05-31 President And Fellows Of Harvard College Cas discrimination using tuned guide RNA
WO2017112620A1 (en) 2015-12-22 2017-06-29 North Carolina State University Methods and compositions for delivery of crispr based antimicrobials
MY192848A (en) * 2015-12-28 2022-09-12 Intellia Therapeutics Inc Compositions and methods for the treatment of hemoglobinopathies
MY196175A (en) 2016-01-11 2023-03-20 Univ Leland Stanford Junior Chimeric Proteins And Methods Of Regulating Gene Expression
AU2017207281B2 (en) 2016-01-11 2022-03-10 The Board Of Trustees Of The Leland Stanford Junior University Chimeric proteins and methods of immunotherapy
WO2017136794A1 (en) 2016-02-03 2017-08-10 Massachusetts Institute Of Technology Structure-guided chemical modification of guide rna and its applications
EP3414327B1 (en) 2016-02-10 2020-09-30 The Regents of The University of Michigan Detection of nucleic acids
US20190249172A1 (en) 2016-02-18 2019-08-15 The Regents Of The University Of California Methods and compositions for gene editing in stem cells
US10538750B2 (en) 2016-02-29 2020-01-21 Agilent Technologies, Inc. Methods and compositions for blocking off-target nucleic acids from cleavage by CRISPR proteins
JP7140386B2 (ja) 2016-03-15 2022-09-21 アプス, インコーポレイテッド 増加した二本鎖rna産生のための方法及び組成物
EP3429567B1 (en) 2016-03-16 2024-01-10 The J. David Gladstone Institutes Methods and compositions for treating obesity and/or diabetes and for identifying candidate treatment agents
EP3219799A1 (en) 2016-03-17 2017-09-20 IMBA-Institut für Molekulare Biotechnologie GmbH Conditional crispr sgrna expression
CN106701765A (zh) * 2016-04-11 2017-05-24 广东赤萌医疗科技有限公司 用于hiv感染治疗的多核苷酸及其制备药物应用
CN107326046A (zh) * 2016-04-28 2017-11-07 上海邦耀生物科技有限公司 一种提高外源基因同源重组效率的方法
AU2017268458B2 (en) 2016-05-20 2022-07-21 Regeneron Pharmaceuticals, Inc. Methods for breaking immunological tolerance using multiple guide RNAS
WO2017208247A1 (en) 2016-06-02 2017-12-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Assay for the removal of methyl-cytosine residues from dna
WO2017217768A1 (ko) * 2016-06-15 2017-12-21 주식회사 툴젠 온타겟 및 오프타겟의 다중 타겟 시스템을 이용하는, 표적 특이적 유전자 가위 스크리닝 방법 및 이의 용도
AU2017280353B2 (en) 2016-06-24 2021-11-11 Inscripta, Inc. Methods for generating barcoded combinatorial libraries
EP3474849B1 (en) * 2016-06-27 2025-05-21 The Broad Institute, Inc. Compositions and methods for detecting and treating diabetes
US10669558B2 (en) * 2016-07-01 2020-06-02 Microsoft Technology Licensing, Llc Storage through iterative DNA editing
US20180004537A1 (en) 2016-07-01 2018-01-04 Microsoft Technology Licensing, Llc Molecular State Machines
US11359234B2 (en) 2016-07-01 2022-06-14 Microsoft Technology Licensing, Llc Barcoding sequences for identification of gene expression
US20230151341A1 (en) * 2016-07-13 2023-05-18 Qihan Chen Method for specifically editing genomic dna and application thereof
CN109863143B (zh) * 2016-07-13 2021-10-15 威泰克斯制药公司 提高基因组编辑效率的方法、组合物和试剂盒
CN109790527A (zh) * 2016-07-26 2019-05-21 通用医疗公司 普氏菌属和弗朗西斯氏菌属的CRISPR1(Cpf1)的变体
KR101961332B1 (ko) * 2016-07-28 2019-03-22 기초과학연구원 Cas9 단백질 및 가이드 RNA를 포함하는 안질환 치료용 약학 조성물
CN109803530A (zh) 2016-07-29 2019-05-24 瑞泽恩制药公司 包含引起c-截短的原纤维蛋白-1表达的突变的小鼠
TWI874884B (zh) 2016-08-10 2025-03-01 日商領先基因生技股份有限公司 檢測標的部位中的檢測對象核酸序列之存在或不存在之方法
AU2017313912B2 (en) * 2016-08-19 2024-01-04 Whitehead Institute For Biomedical Research Methods of editing DNA methylation
KR20240144493A (ko) 2016-08-24 2024-10-02 상가모 테라퓨틱스, 인코포레이티드 가공된 표적 특이적 뉴클레아제
ES2900317T3 (es) 2016-08-24 2022-03-16 Sangamo Therapeutics Inc Regulación de la expresión génica al usar nucleasas genomanipuladas
WO2018048194A1 (ko) * 2016-09-07 2018-03-15 울산대학교 산학협력단 dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법
US20190255106A1 (en) * 2016-09-07 2019-08-22 Flagship Pioneering Inc. Methods and compositions for modulating gene expression
EP3523426A4 (en) 2016-09-30 2020-01-22 The Regents of The University of California RNA GUIDED NUCLEIC ACID MODIFYING ENZYMES AND METHOD FOR USE THEREOF
CN107880132B (zh) * 2016-09-30 2022-06-17 北京大学 一种融合蛋白及使用其进行同源重组的方法
US10669539B2 (en) 2016-10-06 2020-06-02 Pioneer Biolabs, Llc Methods and compositions for generating CRISPR guide RNA libraries
KR102606680B1 (ko) 2016-10-07 2023-11-27 인티그레이티드 디엔에이 테크놀로지스 아이엔씨. S. 피오게네스 cas9 돌연변이 유전자 및 이에 의해 암호화되는 폴리펩티드
US11242542B2 (en) 2016-10-07 2022-02-08 Integrated Dna Technologies, Inc. S. pyogenes Cas9 mutant genes and polypeptides encoded by same
GB2604416B (en) 2016-10-18 2023-03-15 Univ Minnesota Tumor infiltating lymphocytes and methods of therapy
US20180245065A1 (en) 2016-11-01 2018-08-30 Novartis Ag Methods and compositions for enhancing gene editing
US20180282722A1 (en) * 2016-11-21 2018-10-04 Massachusetts Institute Of Technology Chimeric DNA:RNA Guide for High Accuracy Cas9 Genome Editing
KR20190082318A (ko) 2016-11-22 2019-07-09 인티그레이티드 디엔에이 테크놀로지스 아이엔씨. Crispr/cpf1 시스템 및 방법
IL267024B2 (en) 2016-12-08 2023-12-01 Intellia Therapeutics Inc Adapted leader RNAs for genomic editing
US11293022B2 (en) 2016-12-12 2022-04-05 Integrated Dna Technologies, Inc. Genome editing enhancement
EP3551218A4 (en) 2016-12-12 2020-12-09 Whitehead Institute for Biomedical Research REGULATION OF TRANSCRIPTION THANKS TO CTCF LOOP ANCHORS
CN110582301A (zh) 2016-12-14 2019-12-17 利甘达尔股份有限公司 用于核酸和蛋白质有效负载递送的方法和组合物
EP3559232A1 (en) * 2016-12-22 2019-10-30 Intellia Therapeutics, Inc. Compositions and methods for treating alpha-1 antitrypsin deficiency
CA3047330A1 (en) * 2016-12-28 2018-07-05 Ionis Pharmaceuticals, Inc. Modified crispr rna and uses thereof
US11873496B2 (en) 2017-01-09 2024-01-16 Whitehead Institute For Biomedical Research Methods of altering gene expression by perturbing transcription factor multimers that structure regulatory loops
WO2018135838A2 (ko) * 2017-01-17 2018-07-26 기초과학연구원 Dna 단일가닥 절단에 의한 염기 교정 비표적 위치 확인 방법
CN118325899A (zh) 2017-01-23 2024-07-12 瑞泽恩制药公司 Hsd17b13变体及其应用
KR20190116282A (ko) 2017-02-10 2019-10-14 지머젠 인코포레이티드 복수의 숙주를 위한 다중 dna 구조체의 조립 및 편집을 위한 모듈식 범용 플라스미드 디자인 전략
EP3655533A1 (en) 2017-02-24 2020-05-27 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin Method for re-expression of different hypermethylated genes involved in fibrosis, like hypermethylated rasal,1 and use thereof in treatment of fibrosis as well as kit of parts for re-expression of hypermethylated genes including rasal1 in a subject
JP7145517B2 (ja) 2017-03-08 2022-10-03 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 分析物の検出
CN108660161B (zh) * 2017-03-31 2023-05-09 中国科学院脑科学与智能技术卓越创新中心 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
AU2018250330A1 (en) * 2017-04-07 2019-09-19 Sage Science, Inc. Systems and methods for detection of genetic structural variation using integrated electrophoretic DNA purification
EP3612204A4 (en) 2017-04-21 2021-01-27 The General Hospital Corporation INDUCTIBLE, TUNING AND MULTIPLEX HUMAN GENE REGULATION USING CRISPR-CPF1
EP3612551B1 (en) 2017-04-21 2024-09-04 The General Hospital Corporation Variants of cpf1 (cas12a) with altered pam specificity
WO2018218188A2 (en) 2017-05-25 2018-11-29 The General Hospital Corporation Base editors with improved precision and specificity
CN108977442B (zh) * 2017-06-05 2023-01-06 广州市锐博生物科技有限公司 用于dna编辑的系统及其应用
EP3635102B1 (en) 2017-06-05 2025-08-13 Regeneron Pharmaceuticals, Inc. B4galt1 variants and uses thereof
AU2018283155B2 (en) 2017-06-14 2024-11-28 Wisconsin Alumni Research Foundation Modified guide rnas, crispr-ribonucleoprotein complexes and methods of use
KR20240027153A (ko) 2017-06-15 2024-02-29 더 리전트 오브 더 유니버시티 오브 캘리포니아 표적화된 비-바이러스 dna 삽입
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
JP2020530307A (ja) 2017-06-30 2020-10-22 インティマ・バイオサイエンス,インコーポレーテッド 遺伝子治療のためのアデノ随伴ウイルスベクター
EP3645721A1 (en) 2017-06-30 2020-05-06 Novartis AG Methods for the treatment of disease with gene editing systems
CA3066790C (en) 2017-07-11 2023-07-18 Sigma-Aldrich Co. Llc Using nucleosome interacting protein domains to enhance targeted genome modification
CA3065579A1 (en) 2017-07-31 2019-02-07 Regeneron Pharmaceuticals, Inc. Assessment of crispr/cas-induced recombination with an exogenous donor nucleic acid in vivo
ES3033963T3 (en) 2017-07-31 2025-08-11 Regeneron Pharma Method of testing the ability of a crispr/cas9 nuclease to modify a target genomic locus in vivo, by making use of a cas-transgenic mouse or rat which comprises a cas9 expression cassette in its genome
US11021719B2 (en) * 2017-07-31 2021-06-01 Regeneron Pharmaceuticals, Inc. Methods and compositions for assessing CRISPER/Cas-mediated disruption or excision and CRISPR/Cas-induced recombination with an exogenous donor nucleic acid in vivo
CN111278848B (zh) 2017-08-04 2023-06-27 北京大学 特异性识别甲基化修饰dna碱基的tale rvd及其应用
CN111278983A (zh) 2017-08-08 2020-06-12 北京大学 基因敲除方法
WO2019067875A1 (en) 2017-09-29 2019-04-04 Regeneron Pharmaceuticals, Inc. NON-HUMAN ANIMALS COMPRISING A HUMANIZED TTR LOCUS AND METHODS OF USE
EP3694993A4 (en) 2017-10-11 2021-10-13 The General Hospital Corporation SITE-SPECIFIC AND PARASITIC GENOMIC DESAMINATION DETECTION METHODS INDUCED BY BASIC EDITING TECHNOLOGIES
CN107602707B (zh) * 2017-10-17 2021-04-23 湖北大学 一种特异性调节枯草芽孢杆菌外源基因表达的dcas9-ω融合蛋白及其应用
AU2018355587B2 (en) 2017-10-27 2023-02-02 The Regents Of The University Of California Targeted replacement of endogenous T cell receptors
US20210180053A1 (en) 2017-11-01 2021-06-17 Novartis Ag Synthetic rnas and methods of use
KR20200075000A (ko) * 2017-11-01 2020-06-25 에디타스 메디신, 인코포레이티드 면역요법을 위한 t 세포 내 tgfbr2의 crispr-cas9 편집 방법, 조성물 및 성분
CN111448313A (zh) * 2017-11-16 2020-07-24 阿斯利康(瑞典)有限公司 用于改善基于Cas9的敲入策略的有效性的组合物和方法
CN109504711A (zh) * 2018-02-14 2019-03-22 复旦大学 基于CRISPR/cas9和过氧化物酶APEX2系统识别分析特异性基因组位点相互作用DNA的方法
EP3755798A4 (en) 2018-02-19 2022-04-06 Yale University PHOSPHOPEPTIDE-ENCODING OLIGONUCLEOTIDE LIBRARIES AND METHODS FOR DETECTING PHOSPHORYLATION-DEPENDENT MOLECULAR INTERACTIONS
WO2019165168A1 (en) 2018-02-23 2019-08-29 Pioneer Hi-Bred International, Inc. Novel cas9 orthologs
WO2019183123A1 (en) 2018-03-19 2019-09-26 Regeneron Pharmaceuticals, Inc. Transcription modulation in animals using crispr/cas systems
CN112272516B (zh) 2018-04-06 2023-05-30 儿童医疗中心有限公司 用于体细胞重新编程和调整印记的组合物和方法
CA3097044A1 (en) 2018-04-17 2019-10-24 The General Hospital Corporation Sensitive in vitro assays for substrate preferences and sites of nucleic acid binding, modifying, and cleaving agents
CN117534769A (zh) 2018-04-19 2024-02-09 加利福尼亚大学董事会 用于基因编辑的组合物和方法
WO2019213430A1 (en) * 2018-05-03 2019-11-07 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for nicking target dna sequences
CN108588123A (zh) * 2018-05-07 2018-09-28 南京医科大学 CRISPR/Cas9载体组合在制备基因敲除猪的血液制品中的应用
KR20250134703A (ko) 2018-05-11 2025-09-11 빔 테라퓨틱스, 인크. 프로그래밍가능한 염기 편집기 시스템을 이용하여 병원성 아미노산을 치환하는 방법
WO2019222545A1 (en) 2018-05-16 2019-11-21 Synthego Corporation Methods and systems for guide rna design and use
EP3575396A1 (en) * 2018-06-01 2019-12-04 Algentech SAS Gene targeting
US12227776B2 (en) 2018-06-13 2025-02-18 Caribou Biosciences, Inc. Engineered cascade components and cascade complexes
US10227576B1 (en) 2018-06-13 2019-03-12 Caribou Biosciences, Inc. Engineered cascade components and cascade complexes
CN110592141B (zh) * 2018-06-13 2023-07-07 中国科学院上海有机化学研究所 用于调控基因编辑效率的化合物及其应用
EP3821012A4 (en) 2018-07-13 2022-04-20 The Regents of The University of California Retrotransposon-based delivery vehicle and methods of use thereof
JP2021533773A (ja) 2018-08-15 2021-12-09 ザイマージェン インコーポレイテッド ハイスループット代謝操作におけるCRISPRiの適用
WO2020041456A1 (en) 2018-08-22 2020-02-27 The Regents Of The University Of California Variant type v crispr/cas effector polypeptides and methods of use thereof
EP3841204A4 (en) 2018-08-23 2022-05-18 Sangamo Therapeutics, Inc. CHANGED TARGET SPECIFIC BASE EDITORS
CN112654702B (zh) 2018-09-07 2025-05-13 阿斯利康(瑞典)有限公司 改进的核酸酶的组合物和方法
US12203123B2 (en) 2018-10-01 2025-01-21 North Carolina State University Recombinant type I CRISPR-Cas system and uses thereof for screening for variant cells
WO2020072250A1 (en) 2018-10-01 2020-04-09 North Carolina State University Recombinant type i crispr-cas system and uses thereof for genome modification and alteration of expression
EP3861120A4 (en) 2018-10-01 2023-08-16 North Carolina State University Recombinant type i crispr-cas system
US12264330B2 (en) 2018-10-01 2025-04-01 North Carolina State University Recombinant type I CRISPR-Cas system and uses thereof for killing target cells
US11407995B1 (en) 2018-10-26 2022-08-09 Inari Agriculture Technology, Inc. RNA-guided nucleases and DNA binding proteins
US11434477B1 (en) 2018-11-02 2022-09-06 Inari Agriculture Technology, Inc. RNA-guided nucleases and DNA binding proteins
US11739320B2 (en) 2018-11-05 2023-08-29 Wisconsin Alumni Research Foundation Gene correction of Pompe disease and other autosomal recessive disorders via RNA-guided nucleases
WO2020097445A1 (en) 2018-11-09 2020-05-14 Inari Agriculture, Inc. Rna-guided nucleases and dna binding proteins
CN113166744B (zh) 2018-12-14 2025-02-07 先锋国际良种公司 用于基因组编辑的新颖crispr-cas系统
CN113423831B (zh) 2018-12-20 2023-03-10 瑞泽恩制药公司 核酸酶介导的重复扩增
WO2020148206A1 (en) 2019-01-14 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for generating and selecting a variant of a binding protein with increased binding affinity and/or specificity
EP3921417A4 (en) 2019-02-04 2022-11-09 The General Hospital Corporation VARIANTS OF ADENINE DNA BASES WITH REDUCED OFF-TARGET RNA EDIT
US12460230B2 (en) 2019-02-10 2025-11-04 The J. David Gladstone Institutes Modified mitochondrion and methods of use thereof
AU2020231380B2 (en) 2019-03-07 2025-07-17 The Regents Of The University Of California CRISPR-Cas effector polypeptides and methods of use thereof
ES2969026T3 (es) 2019-03-18 2024-05-16 Regeneron Pharma Plataforma de detección de abandonos CRISPR/CAS para revelar vulnerabilidades genéticas asociadas con la agregación de tau
CN113631700B (zh) 2019-03-18 2025-07-18 瑞泽恩制药公司 用于鉴定tau接种或聚集的基因修饰因子的CRISPR/Cas筛选平台
AU2020256225B9 (en) 2019-04-03 2025-04-10 Regeneron Pharmaceuticals, Inc. Methods and compositions for insertion of antibody coding sequences into a safe harbor locus
IL286905B2 (en) 2019-04-04 2024-06-01 Regeneron Pharma Non-human animals containing the human coagulation factor 12 locus
CN113795588B (zh) 2019-04-04 2025-02-25 瑞泽恩制药公司 用于在靶向性载体中无瘢痕引入靶向修饰的方法
JP7641233B2 (ja) 2019-04-12 2025-03-06 アストラゼネカ・アクチエボラーグ 改善された遺伝子編集のための組成物及び方法
WO2020247452A1 (en) 2019-06-04 2020-12-10 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus with a beta-slip mutation and methods of use
SG11202111256XA (en) 2019-06-07 2021-11-29 Regeneron Pharma Non-human animals comprising a humanized albumin locus
CN113906134B (zh) 2019-06-14 2025-06-24 瑞泽恩制药公司 Tau蛋白病模型
AU2020346056A1 (en) 2019-09-13 2022-03-31 Regeneron Pharmaceuticals, Inc. Transcription modulation in animals using CRISPR/Cas systems delivered by lipid nanoparticles
US11987791B2 (en) 2019-09-23 2024-05-21 Omega Therapeutics, Inc. Compositions and methods for modulating hepatocyte nuclear factor 4-alpha (HNF4α) gene expression
US11331333B2 (en) 2019-11-08 2022-05-17 Georg-August-Universität Göttingen Stiftung Öffentichen Rechts, Universitätsmadizin Treatment of aberrant fibroblast proliferation
CA3156277A1 (en) 2019-11-08 2021-05-14 Regeneron Pharmaceuticals, Inc. CRISPR-VAA STRATEGIES FOR THE THERAPY OF X-LINKED JUVENILE RETINOSCHISIS
WO2021108561A1 (en) * 2019-11-25 2021-06-03 La Jolla Institute For Immunology Methods and compositions for modulating heterochromatin dysfunction, genomic instability, and associated conditions
WO2021108363A1 (en) 2019-11-25 2021-06-03 Regeneron Pharmaceuticals, Inc. Crispr/cas-mediated upregulation of humanized ttr allele
JP2023506482A (ja) 2019-12-11 2023-02-16 インテリア セラピューティクス,インコーポレイテッド 遺伝子編集のための修飾されたガイドrna
CN111088357B (zh) * 2019-12-31 2022-09-20 深圳大学 针对escc的肿瘤标志物及其应用
EP4103238A4 (en) 2020-02-12 2024-03-20 Massachusetts Eye and Ear Infirmary HAPLOTYPE-BASED TREATMENT OF RP1-ASSOCIATED RETINAL DEGENERATION
CN115485385A (zh) 2020-03-04 2022-12-16 瑞泽恩制药公司 用于使肿瘤细胞对免疫疗法敏感的方法和组合物
US20230122226A1 (en) * 2020-03-05 2023-04-20 Board Of Regents Of The University Of Nebraska Crispr/cas9 system for multistrain hiv-1 treatment
EP4125348A1 (en) 2020-03-23 2023-02-08 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use
AU2021253959B2 (en) * 2020-04-09 2025-04-24 Verve Therapeutics, Inc. Base editing of PCSK9 and methods of using same for treatment of disease
EP4146813A4 (en) * 2020-05-04 2024-09-04 Editas Medicine, Inc. Selection by essential-gene knock-in
WO2021224633A1 (en) 2020-05-06 2021-11-11 Orchard Therapeutics (Europe) Limited Treatment for neurodegenerative diseases
US20230279438A1 (en) 2020-05-13 2023-09-07 Inserm (Institut National De La Santé Et La Recherche Médicale) Base editing approaches for the treatment of betahemoglobinopathies
WO2021246165A1 (ja) * 2020-06-03 2021-12-09 国立大学法人広島大学 Oasis遺伝子の脱メチル化のための核酸及びそれを用いた脱メチル化方法
MX2022015284A (es) * 2020-06-05 2023-01-19 Univ California Composiciones y metodos para la edicion del epigenoma.
EP4179079A1 (en) 2020-07-10 2023-05-17 Horizon Discovery Limited Method for producing genetically modified cells
EP4582143A3 (en) 2020-08-11 2025-10-22 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. Method for the treatment of wwox associated diseases
KR102674574B1 (ko) * 2020-09-02 2024-06-13 한국과학기술연구원 Cas9을 위한 신규 tracrRNA 시스템
WO2022079020A1 (en) 2020-10-13 2022-04-21 Centre National De La Recherche Scientifique (Cnrs) Targeted-antibacterial-plasmids combining conjugation and crispr /cas systems and uses thereof
CN112430622A (zh) * 2020-10-26 2021-03-02 扬州大学 一种FokI和dCpf1融合蛋白表达载体及其介导的定点基因编辑方法
RU2762831C1 (ru) * 2020-10-26 2021-12-23 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии" (ФГБНУ ВНИИСБ) Молекула рнк-проводника для геномного редактирования протомоторной области гена vrn-a1 однодольных зерновых с применением системы crispr/cas9
EP4256052A1 (en) 2020-12-02 2023-10-11 Decibel Therapeutics, Inc. Crispr sam biosensor cell lines and methods of use thereof
KR20220082186A (ko) 2020-12-10 2022-06-17 한세준 유,무선 충전이 가능한 보조배터리형 uv-led살균기
EP4274893B1 (en) 2021-01-05 2025-01-01 Revvity Discovery Limited Method for producing genetically modified cells
CA3207527A1 (en) 2021-02-05 2022-08-11 Eric B. Kmiec Methods of and compositions for reducing gene expression and/or activity
US20240052372A1 (en) 2021-02-25 2024-02-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Allele-specific genome editing of the nr2e3 mutation g56r
KR102882704B1 (ko) * 2021-03-03 2025-11-12 중앙대학교 산학협력단 CRISPR/Cas9 시스템을 이용한 유전체 단일염기 편집 방법 및 이의 용도
CN113846019B (zh) * 2021-03-05 2023-08-01 海南师范大学 一种海洋微拟球藻靶向表观基因组遗传调控方法
EP4347805A1 (en) 2021-05-27 2024-04-10 Astrazeneca AB Cas9 effector proteins with enhanced stability
AU2022290565A1 (en) 2021-06-10 2023-12-21 Intellia Therapeutics, Inc. Modified guide rnas comprising an internal linker for gene editing
AU2022318664A1 (en) 2021-07-30 2024-02-29 Tune Therapeutics, Inc. Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2)
CA3227103A1 (en) 2021-07-30 2023-02-02 Matthew P. GEMBERLING Compositions and methods for modulating expression of frataxin (fxn)
EP4387992A1 (en) 2021-08-20 2024-06-26 Wisconsin Alumni Research Foundation Nonviral generation of genome edited chimeric antigen receptor t cells
US20240392272A1 (en) 2021-09-28 2024-11-28 Acrigen Biosciences Compositions and methods for nucleic acid modifications
WO2023052366A1 (en) 2021-09-28 2023-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Base editing approaches for the treatment of beta-hemoglobinopathies
EP4408996A2 (en) 2021-09-30 2024-08-07 Astrazeneca AB Use of inhibitors to increase efficiency of crispr/cas insertions
PE20241173A1 (es) 2021-10-14 2024-05-28 Arsenal Biosciences Inc Celulas inmunitarias que tienen arnhc coexpresados y sistemas de compuerta logica
EP4419665A1 (en) 2021-10-20 2024-08-28 University of Rochester Rejuvenation treatment of age-related white matter loss
EP4423271A2 (en) 2021-10-28 2024-09-04 Regeneron Pharmaceuticals, Inc. Crispr/cas-related methods and compositions for knocking out c5
IL312508A (en) 2021-11-03 2024-07-01 Intellia Therapeutics Inc Polynucleotides, compounds and methods for genome editing
EP4426832A1 (en) 2021-11-03 2024-09-11 The J. David Gladstone Institutes, A Testamentary Trust Established under The Will of J. David Gladstone Precise genome editing using retrons
EP4441089A1 (en) 2021-12-01 2024-10-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for increasing fetal hemoglobin content by editing the +55-kb region of the erythroid-specific bcl11a enhancer
IL312971A (en) 2021-12-08 2024-07-01 Regeneron Pharma Mutant myocilin disease model and uses thereof
US20230279442A1 (en) 2021-12-15 2023-09-07 Versitech Limited Engineered cas9-nucleases and method of use thereof
CA3247928A1 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems and methods for programming T-lymphocyte phenotypes by targeted gene repression
CA3247927A1 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems and methods for programming T-lymphocyte phenotypes by targeted gene repression
US20250113795A1 (en) * 2022-01-20 2025-04-10 Inari Agriculture Technology, Inc. Improved soybean explant preparation and transformation
WO2023141602A2 (en) 2022-01-21 2023-07-27 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
US20250161492A1 (en) 2022-01-25 2025-05-22 Institut National de la Santé et de la Recherche Médicale Base editing approaches for the treatment of beta-thalassemia
CA3242731A1 (en) 2022-02-02 2023-08-10 Regeneron Pharmaceuticals, Inc. Anti-tfr:gaa and anti-cd63:gaa insertions for treatment of pompe disease
US20250152677A1 (en) 2022-02-14 2025-05-15 Institut National de la Santé et de la Recherche Médicale Treatment of liver cancers by disrupting the beta-catenin/tcf-4 binding site located upstreatm of meg3 in the dlk1/dio3 locus
EP4514981A2 (en) 2022-04-29 2025-03-05 Regeneron Pharmaceuticals, Inc. Identification of tissue-specific extragenic safe harbors for gene therapy approaches
JP2025516527A (ja) 2022-05-09 2025-05-30 リジェネロン・ファーマシューティカルズ・インコーポレイテッド インビボ抗体産生のためのベクター及び方法
EP4522647A1 (en) 2022-05-10 2025-03-19 Institut National de la Santé et de la Recherche Médicale Base editing approaches for correcting the cd39 (cag>tag) mutation in patients suffering from beta-thalassemia
JP2025521154A (ja) 2022-05-31 2025-07-08 リジェネロン・ファーマシューティカルズ・インコーポレイテッド C9orf72反復伸長疾患のためのcrispr干渉療法
WO2023235725A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr-based therapeutics for c9orf72 repeat expansion disease
CA3260237A1 (en) 2022-06-24 2023-12-28 Tune Therapeutics, Inc. Compositions, systems and methods for reducing low-density lipoprotein by targeted gene repression
WO2024015881A2 (en) 2022-07-12 2024-01-18 Tune Therapeutics, Inc. Compositions, systems, and methods for targeted transcriptional activation
MA71557A (fr) 2022-07-18 2025-05-30 Renagade Therapeutics Management Inc. Composants d'édition génique, systèmes et procédés d'utilisation
WO2024018056A1 (en) 2022-07-22 2024-01-25 Institut National de la Santé et de la Recherche Médicale Base editing approaches for correcting the ivs2-1 (g>a) mutation in patients suffering from βeta-thalassemia
IL318625A (en) 2022-07-29 2025-03-01 Regeneron Pharma Compositions and methods for transferrin receptor (TFR)-mediated delivery to brain and muscle
AU2023325407A1 (en) 2022-08-19 2025-02-20 Tune Therapeutics, Inc. Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression
WO2024044723A1 (en) 2022-08-25 2024-02-29 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
WO2024047247A1 (en) 2022-09-02 2024-03-07 Institut National de la Santé et de la Recherche Médicale Base editing approaches for the treatment of amyotrophic lateral sclerosis
JP2025531268A (ja) 2022-09-19 2025-09-19 チューン セラピューティクス インコーポレイテッド T細胞機能を調節するための組成物、システム、および方法
IL319122A (en) 2022-09-28 2025-04-01 Regeneron Pharma Different antibody-resistant receptors improve cell-based therapies
EP4612184A1 (en) 2022-11-04 2025-09-10 Regeneron Pharmaceuticals, Inc. Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle
US20240173426A1 (en) 2022-11-14 2024-05-30 Regeneron Pharmaceuticals, Inc. Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes
CN115820603B (zh) * 2022-11-15 2024-07-05 吉林大学 一种基于dCasRx-NSUN6单基因特异性M5C修饰编辑方法
KR20250128349A (ko) * 2022-12-23 2025-08-27 에피제닉 테라퓨틱스 피티이 리미티드 융합체 및 이의 용도
WO2024163683A2 (en) 2023-02-01 2024-08-08 Tune Therapeutics, Inc. Systems, compositions, and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) and x-inactive specific transcript (xist)
WO2024163678A2 (en) 2023-02-01 2024-08-08 Tune Therapeutics, Inc. Fusion proteins and systems for targeted activation of frataxin (fxn) and related methods
WO2024165484A1 (en) 2023-02-06 2024-08-15 Institut National de la Santé et de la Recherche Médicale Enrichment of genetically modified hematopoietic stem cells through multiplex base editing
CN116376975B (zh) * 2023-02-27 2024-05-14 中国科学院脑科学与智能技术卓越创新中心 激活异染色质基因的方法及应用
WO2024186890A1 (en) 2023-03-06 2024-09-12 Intellia Therapeutics, Inc. Compositions and methods for hepatitis b virus (hbv) genome editing
CN118684781A (zh) * 2023-03-21 2024-09-24 深圳赫兹生命科学技术有限公司 GnRH-VLP重组去势疫苗及其制备方法
CN121127605A (zh) 2023-03-29 2025-12-12 阿斯利康(瑞典)有限公司 使用抑制剂来提高CRISPR/Cas插入的效率
AU2024270764A1 (en) 2023-05-15 2025-12-04 Nchroma Bio, Inc. Compositions and methods for epigenetic regulation of hbv gene expression
AU2024309884A1 (en) 2023-06-30 2025-12-18 Regeneron Pharmaceuticals, Inc. Methods and compositions for increasing homology-directed repair
WO2025017030A1 (en) 2023-07-17 2025-01-23 Institut National de la Santé et de la Recherche Médicale Prime editing of the -200 region in the hbg1 and/or hbg2 promoter for increasing fetal hemoglobin content in a eukaryotic cell
WO2025017033A1 (en) 2023-07-17 2025-01-23 Institut National de la Santé et de la Recherche Médicale Prime editing of the -115 region in the hbg1 and/or hbg2 promoter for increasing fetal hemoglobin content in a eukaryotic cell
KR20250016657A (ko) * 2023-07-21 2025-02-04 한국화학연구원 dxCas9 및 CRP 유도체를 포함하는, 표적 유전자 발현 조절 시스템 및 이의 제조방법
WO2025029654A2 (en) 2023-07-28 2025-02-06 Regeneron Pharmaceuticals, Inc. Use of bgh-sv40l tandem polya to enhance transgene expression during unidirectional gene insertion
TW202519551A (zh) 2023-07-28 2025-05-16 美商雷傑納榮製藥公司 用於治療酸性神經髓磷脂酶缺乏症之抗TfR:酸性神經髓磷脂酶
TW202513801A (zh) 2023-07-28 2025-04-01 美商雷傑納榮製藥公司 用於治療龐貝氏症之抗TfR:GAA及抗CD63:GAA插入
WO2025029840A1 (en) 2023-07-31 2025-02-06 Tune Therapeutics, Inc. Compositions and methods for multiplexed activation and repression of t cell gene expression
WO2025029835A1 (en) 2023-07-31 2025-02-06 Tune Therapeutics, Inc. Compositions and methods for modulating il-2 gene expression
WO2025038494A1 (en) 2023-08-11 2025-02-20 Tune Therapeutics, Inc. Compositions, systems, and methods for lymphoid cell differentiation using targeted gene activation
WO2025038637A1 (en) 2023-08-14 2025-02-20 Intellia Therapeutics, Inc. Compositions and methods for genetically modifying transforming growth factor beta receptor type 2 (tgfβr2)
TW202515992A (zh) 2023-08-14 2025-04-16 美商英特利亞醫療公司 用於對轉形生長因子β受體2型(TGFβR2)進行基因修飾之組合物及方法
WO2025038642A1 (en) 2023-08-14 2025-02-20 Intellia Therapeutics, Inc. Compositions and methods for genetically modifying cd70
WO2025038646A1 (en) 2023-08-14 2025-02-20 Intellia Therapeutics, Inc. Cd70 car-t compositions and methods for cell-based therapy
WO2025049524A1 (en) 2023-08-28 2025-03-06 Regeneron Pharmaceuticals, Inc. Cxcr4 antibody-resistant modified receptors
WO2025049959A2 (en) 2023-09-01 2025-03-06 Renagade Therapeutics Management Inc. Gene editing systems, compositions, and methods for treatment of vexas syndrome
WO2025059073A1 (en) 2023-09-11 2025-03-20 Tune Therapeutics, Inc. Epigenetic editing methods and systems for differentiating stem cells
WO2025064408A1 (en) 2023-09-18 2025-03-27 The Broad Institute, Inc. Compositions and methods for treating cardiovascular disease
WO2025081042A1 (en) 2023-10-12 2025-04-17 Renagade Therapeutics Management Inc. Nickase-retron template-based precision editing system and methods of use
WO2025090427A1 (en) 2023-10-23 2025-05-01 University Of Rochester Glial-targeted relief of hyperexcitability in neurodegenerative diseases
WO2025096638A2 (en) 2023-10-30 2025-05-08 Turnstone Biologics Corp. Genetically modified tumor infilitrating lymphocytes and methods of producing and using the same
WO2025117544A1 (en) 2023-11-29 2025-06-05 The Broad Institute, Inc. Engineered omega guide molecule and iscb compositions, systems, and methods of use thereof
WO2025155753A2 (en) 2024-01-17 2025-07-24 Renagade Therapeutics Management Inc. Improved gene editing system, guides, and methods
WO2025174765A1 (en) 2024-02-12 2025-08-21 Renagade Therapeutics Management Inc. Lipid nanoparticles comprising coding rna molecules for use in gene editing and as vaccines and therapeutic agents
US20250276092A1 (en) 2024-03-01 2025-09-04 Regeneron Pharmaceuticals, Inc. Methods and compositions for re-dosing aav using anti-cd40 antagonistic antibody to suppress host anti-aav antibody response
WO2025202473A1 (en) 2024-03-28 2025-10-02 Revvity Discovery Limited A nucleic acid deaminase, a base editor and uses thereof
WO2025235388A1 (en) 2024-05-06 2025-11-13 Regeneron Pharmaceuticals, Inc. Transgene genomic identification by nuclease-mediated long read sequencing
WO2025240946A1 (en) 2024-05-17 2025-11-20 Intellia Therapeutics, Inc. Lipid nanoparticles and lipid nanoparticle compositions
WO2025250457A1 (en) 2024-05-28 2025-12-04 University Of Rochester Enhanced brain transduction by gene therapeutics
WO2025255308A1 (en) 2024-06-07 2025-12-11 Intellia Therapeutics, Inc. Cd8 co-receptor chimeric polypeptides in tcr cell therapy
WO2025260068A1 (en) 2024-06-14 2025-12-18 Tune Therapeutics, Inc. Lipid nanoparticle formulation for delivery of nucleic acids to cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055793A1 (en) * 2005-07-25 2010-03-04 Johns Hopkins University Site-specific modification of the human genome using custom-designed zinc finger nucleases
WO2012093833A2 (en) 2011-01-03 2012-07-12 Toolgen Incorporation Genome engineering via designed tal effector nucleases
WO2015035162A2 (en) 2013-09-06 2015-03-12 President And Fellows Of Harvard College Cas9 variants and uses thereof

Family Cites Families (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603044A (en) 1983-01-06 1986-07-29 Technology Unlimited, Inc. Hepatocyte Directed Vesicle delivery system
US4957773A (en) 1989-02-13 1990-09-18 Syracuse University Deposition of boron-containing films from decaborane
US5436150A (en) 1992-04-03 1995-07-25 The Johns Hopkins University Functional domains in flavobacterium okeanokoities (foki) restriction endonuclease
USRE45721E1 (en) 1994-08-20 2015-10-06 Gendaq, Ltd. Relating to binding proteins for recognition of DNA
US20030017149A1 (en) 1996-10-10 2003-01-23 Hoeffler James P. Single chain monoclonal antibody fusion reagents that regulate transcription in vivo
US6503717B2 (en) 1999-12-06 2003-01-07 Sangamo Biosciences, Inc. Methods of using randomized libraries of zinc finger proteins for the identification of gene function
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US20020164575A1 (en) 1999-09-14 2002-11-07 Sangamo Biosciences, Inc., A Delaware Corporation Gene identification
AU2001257331A1 (en) 2000-04-28 2001-11-12 Sangamo Biosciences, Inc. Methods for designing exogenous regulatory molecules
ATE353361T1 (de) 2000-04-28 2007-02-15 Sangamo Biosciences Inc Gezielten modifikation der chromatinstruktur
US20030198627A1 (en) 2001-09-01 2003-10-23 Gert-Jan Arts siRNA knockout assay method and constructs
AU2003219847A1 (en) 2002-02-21 2003-09-09 The Wistar Institute Of Anatomy And Biology Methods and compositions for reversibly controlling expression of target genes in cells
US20070020627A1 (en) 2002-06-11 2007-01-25 The Scripps Research Institute Artificial transcription factors
WO2004099366A2 (en) 2002-10-23 2004-11-18 The General Hospital Corporation Context sensitive parallel optimization of zinc finger dna binding domains
US7021555B2 (en) 2004-01-06 2006-04-04 Zoo Med Laboratories, Inc. Spraying/misting for plants and animals
US7919277B2 (en) 2004-04-28 2011-04-05 Danisco A/S Detection and typing of bacterial strains
SG160329A1 (en) 2005-02-18 2010-04-29 Novartis Vaccines & Diagnostic Proteins and nucleic acids from meningitis/sepsis-associated escherichia coli
WO2007014275A2 (en) 2005-07-26 2007-02-01 Sangamo Biosciences, Inc. Targeted integration and expression of exogenous nucleic acid sequences
DE602006015484D1 (de) 2005-08-26 2010-08-26 Danisco Verwendung der crispr assoziierten gene (cas)
CA2631422A1 (en) 2005-11-28 2007-05-31 The Scripps Research Institute Zinc finger binding domains for tnn
ES2590925T3 (es) 2006-05-19 2016-11-24 Dupont Nutrition Biosciences Aps Microorganismos marcados y métodos de marcado
CA2651494C (en) 2006-05-25 2015-09-29 Sangamo Biosciences, Inc. Engineered cleavage half-domains
EP2034848B1 (en) 2006-06-16 2016-10-19 DuPont Nutrition Biosciences ApS Streptococcus thermophilus bacterium
US9201063B2 (en) 2006-11-16 2015-12-01 General Electric Company Sequential analysis of biological samples
WO2008093152A1 (en) * 2007-02-01 2008-08-07 Cellectis Obligate heterodimer meganucleases and uses thereof
ES2719789T3 (es) 2007-03-02 2019-07-16 Dupont Nutrition Biosci Aps Cultivos con resistencia mejorada a fagos
WO2008118394A1 (en) 2007-03-23 2008-10-02 New York University Methods of affecting nitrogen assimilation in plants
WO2008122314A1 (de) 2007-04-10 2008-10-16 Qiagen Gmbh Rna-interferenz tags
WO2008151032A2 (en) 2007-05-31 2008-12-11 Washington University In St. Louis Arrays and methods comprising m. smithii gene products
EP3327030B1 (en) 2007-09-25 2021-07-21 Pastoral Greenhouse Gas Research LTD Vaccines and vaccine components for inhibition of microbial cells
FR2925918A1 (fr) 2007-12-28 2009-07-03 Pasteur Institut Typage et sous-typage moleculaire de salmonella par identification des sequences nucleotidiques variables des loci crispr
FR2930264B1 (fr) 2008-04-18 2013-02-22 Gervais Danone Sa Nouvelle souche de lactobacillus paracasei subsp. paracasei dotee de proprietes antimicrobiennes et immunomodulatrices.
JP2010017179A (ja) 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Dnaを定量又は検出する方法
JP2010017178A (ja) 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Dnaを定量又は検出する方法
US8546553B2 (en) 2008-07-25 2013-10-01 University Of Georgia Research Foundation, Inc. Prokaryotic RNAi-like system and methods of use
JP2010068800A (ja) 2008-08-19 2010-04-02 Sumitomo Chemical Co Ltd Dnaを定量又は検出する方法
JP2010048566A (ja) 2008-08-19 2010-03-04 Sumitomo Chemical Co Ltd Dnaを定量又は検出する方法
US20100076057A1 (en) 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
WO2010037001A2 (en) 2008-09-26 2010-04-01 Immune Disease Institute, Inc. Selective oxidation of 5-methylcytosine by tet-family proteins
US20110201007A1 (en) 2008-10-21 2011-08-18 Animal Health Trust Diagnostic test for streptococcus equi
EP2344641A2 (en) 2008-10-23 2011-07-20 Université de Lausanne Gene transfer vectors comprising at least one isolated dna molecule having insulator and or boundary properties and methods to identify the same
WO2010054108A2 (en) 2008-11-06 2010-05-14 University Of Georgia Research Foundation, Inc. Cas6 polypeptides and methods of use
RU2570562C2 (ru) 2008-11-07 2015-12-10 ДюПон НЬЮТРИШН БАЙОСАЙЕНСИЗ АпС Последовательности crispr бифидобактерий
US9771624B2 (en) 2008-11-11 2017-09-26 The Procter & Gamble Company Bifidobacterium longum
GB2466177A (en) 2008-12-03 2010-06-16 Arab Science & Technology Found Bacteriophage selection and breeding
WO2010066907A1 (en) 2008-12-12 2010-06-17 Danisco A/S Genetic cluster of strains of streptococcus thermophilus having unique rheological properties for dairy fermentation
KR20100093626A (ko) 2009-02-17 2010-08-26 서강대학교산학협력단 슈도모나스 애루지노사에 대한 파아지 치료
WO2010113037A1 (en) 2009-04-03 2010-10-07 Centre National De La Recherche Scientifique Gene transfer vectors comprising genetic insulator elements and methods to identify genetic insulator elements
WO2010129019A2 (en) 2009-04-27 2010-11-11 Pacific Biosciences Of California, Inc. Real-time sequencing methods and systems
US8609421B2 (en) 2009-06-12 2013-12-17 Pacific Biosciences Of California, Inc. Single-molecule real-time analysis of protein synthesis
US20120178647A1 (en) 2009-08-03 2012-07-12 The General Hospital Corporation Engineering of zinc finger arrays by context-dependent assembly
CN102648282A (zh) 2009-09-25 2012-08-22 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物和用于产生该植物的方法
US9677125B2 (en) 2009-10-21 2017-06-13 General Electric Company Detection of plurality of targets in biological samples
US20110269119A1 (en) 2009-10-30 2011-11-03 Synthetic Genomics, Inc. Encoding text into nucleic acid sequences
AU2011213242B2 (en) 2010-02-08 2015-01-29 Sangamo Therapeutics, Inc. Engineered cleavage half-domains
WO2011101696A1 (en) * 2010-02-18 2011-08-25 Cellectis Improved meganuclease recombination system
US20120027786A1 (en) 2010-02-23 2012-02-02 Massachusetts Institute Of Technology Genetically programmable pathogen sense and destroy
US10087431B2 (en) 2010-03-10 2018-10-02 The Regents Of The University Of California Methods of generating nucleic acid fragments
MX379482B (es) 2010-03-12 2025-03-10 Brookhaven Science Associates/Brookhaven Nat Laboratory Enterobacter sp.638 y metodos de uso de la misma.
WO2011143124A2 (en) 2010-05-10 2011-11-17 The Regents Of The University Of California Endoribonuclease compositions and methods of use thereof
WO2011159369A1 (en) 2010-06-14 2011-12-22 Iowa State University Research Foundation, Inc. Nuclease activity of tal effector and foki fusion protein
WO2012047726A1 (en) 2010-09-29 2012-04-12 The Broad Institute, Inc. Methods for chromatin immuno-precipitations
WO2012054726A1 (en) 2010-10-20 2012-04-26 Danisco A/S Lactococcus crispr-cas sequences
SG189482A1 (en) 2010-10-27 2013-05-31 Cellectis Method for increasing the efficiency of double-strand break-induced mutagenesis
WO2012097353A1 (en) 2011-01-14 2012-07-19 Life Technologies Corporation Methods, compositions, and kits for detecting rare cells
WO2012164565A1 (en) 2011-06-01 2012-12-06 Yeda Research And Development Co. Ltd. Compositions and methods for downregulating prokaryotic genes
ES2767884T5 (es) 2011-07-04 2023-05-09 Dsm Ip Assets Bv Cultivo mixto anti-listeria y método para la producción de queso
US20140274812A1 (en) 2011-07-15 2014-09-18 The General Hospital Corporation Methods of Transcription Activator Like Effector Assembly
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
KR20180009383A (ko) 2012-02-24 2018-01-26 프레드 헛친슨 켄서 리서치 센터 이상혈색소증 치료를 위한 조성물 및 방법
CN108285491B (zh) 2012-02-29 2021-08-10 桑格摩生物科学股份有限公司 治疗亨廷顿氏病的方法和组合物
WO2013141680A1 (en) 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
MX344903B (es) 2012-05-02 2017-01-11 Dow Agrosciences Llc Modificación dirigida de deshidrogenasa de malato.
AU2013259647B2 (en) 2012-05-07 2018-11-08 Corteva Agriscience Llc Methods and compositions for nuclease-mediated targeted integration of transgenes
US11120889B2 (en) 2012-05-09 2021-09-14 Georgia Tech Research Corporation Method for synthesizing a nuclease with reduced off-site cleavage
WO2013176772A1 (en) * 2012-05-25 2013-11-28 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
WO2013188037A2 (en) 2012-06-11 2013-12-19 Agilent Technologies, Inc Method of adaptor-dimer subtraction using a crispr cas6 protein
EP2674501A1 (en) 2012-06-14 2013-12-18 Agence nationale de sécurité sanitaire de l'alimentation,de l'environnement et du travail Method for detecting and identifying enterohemorrhagic Escherichia coli
US10025647B2 (en) * 2012-06-30 2018-07-17 Intel Corporation Memory poisoning with hints
EP2872154B1 (en) 2012-07-11 2017-05-31 Sangamo BioSciences, Inc. Methods and compositions for delivery of biologics
EP3808844A1 (en) 2012-07-25 2021-04-21 The Broad Institute, Inc. Inducible dna binding proteins and genome perturbation tools and applications thereof
EP3406715B1 (en) 2012-09-07 2023-12-13 Corteva Agriscience LLC Fad3 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
SG11201502693SA (en) 2012-10-09 2015-05-28 Liposcience Inc Nmr quantification of branched chain amino acids
EP3789405A1 (en) * 2012-10-12 2021-03-10 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins
US20150315576A1 (en) 2012-11-01 2015-11-05 Massachusetts Institute Of Technology Genetic device for the controlled destruction of dna
LT3138910T (lt) 2012-12-06 2017-11-10 Sigma-Aldrich Co. Llc Crispr pagrįstas genomo modifikavimas ir reguliavimas
EP2840140B2 (en) 2012-12-12 2023-02-22 The Broad Institute, Inc. Crispr-Cas based method for mutation of prokaryotic cells
EP2921557B1 (en) 2012-12-12 2016-07-13 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
US20140310830A1 (en) 2012-12-12 2014-10-16 Feng Zhang CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes
ES2786193T3 (es) 2012-12-12 2020-10-09 Broad Inst Inc Modificación por tecnología genética y optimización de sistemas, métodos y composiciones enzimáticas mejorados para la manipulación de secuencias
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
WO2014093655A2 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains
EP3434776A1 (en) 2012-12-12 2019-01-30 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
SG10201707569YA (en) * 2012-12-12 2017-10-30 Broad Inst Inc Delivery, Engineering and Optimization of Systems, Methods and Compositions for Sequence Manipulation and Therapeutic Applications
WO2014093701A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
PL2771468T3 (pl) * 2012-12-12 2015-07-31 Broad Inst Inc Inżynieria systemów, metod i zoptymalizowanych kompozycji kierujących dla manipulacji sekwencjami
EP2931950A4 (en) 2012-12-13 2016-06-22 Dow Agrosciences Llc DNA DETECTION PROCEDURE FOR STAGE-SPECIFIC NUCLEASE ACTIVITY
SG10201704932UA (en) * 2012-12-17 2017-07-28 Harvard College Rna-guided human genome engineering
BR102013032677A2 (pt) * 2012-12-19 2014-09-23 Dow Agrosciences Llc Transformação melhorada do feijão de soja para a produção do evento transgênico eficiente e de alto-rendimento
NZ629569A (en) 2013-01-14 2018-07-27 Recombinetics Inc Hornless livestock
US20140212869A1 (en) 2013-01-25 2014-07-31 Agilent Technologies, Inc. Nucleic Acid Proximity Assay Involving the Formation of a Three-way junction
CN103233028B (zh) 2013-01-25 2015-05-13 南京徇齐生物技术有限公司 一种无物种限制无生物安全性问题的真核生物基因打靶方法及螺旋结构dna序列
WO2014124226A1 (en) 2013-02-07 2014-08-14 The Rockefeller University Sequence specific antimicrobials
CA2900338C (en) 2013-02-07 2024-11-05 The General Hospital Corporation TRANSCRIPTIONAL ACTIVATORS TALE
WO2014127287A1 (en) 2013-02-14 2014-08-21 Massachusetts Institute Of Technology Method for in vivo tergated mutagenesis
US10227610B2 (en) 2013-02-25 2019-03-12 Sangamo Therapeutics, Inc. Methods and compositions for enhancing nuclease-mediated gene disruption
WO2014131833A1 (en) 2013-02-27 2014-09-04 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Gene editing in the oocyte by cas9 nucleases
SG11201507138RA (en) 2013-03-08 2015-10-29 Oxford Nanopore Tech Ltd Enzyme stalling method
WO2014143381A1 (en) 2013-03-09 2014-09-18 Agilent Technologies, Inc. Methods of in vivo engineering of large sequences using multiple crispr/cas selections of recombineering events
NZ712727A (en) 2013-03-14 2017-05-26 Caribou Biosciences Inc Compositions and methods of nucleic acid-targeting nucleic acids
KR102271292B1 (ko) 2013-03-15 2021-07-02 더 제너럴 하스피탈 코포레이션 Rna-안내 게놈 편집의 특이성을 증가시키기 위한 rna-안내 foki 뉴클레아제(rfn)의 용도
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US11332719B2 (en) 2013-03-15 2022-05-17 The Broad Institute, Inc. Recombinant virus and preparations thereof
US20140349400A1 (en) 2013-03-15 2014-11-27 Massachusetts Institute Of Technology Programmable Modification of DNA
JP2016512048A (ja) 2013-03-15 2016-04-25 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ CRISPR/Casシステムを使用した植物ゲノム操作
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
US20140273230A1 (en) 2013-03-15 2014-09-18 Sigma-Aldrich Co., Llc Crispr-based genome modification and regulation
HK1214920A1 (zh) 2013-04-05 2016-08-12 美国陶氏益农公司 用於在植物基因組內整合外源序列的方法和組合物
US20150056629A1 (en) 2013-04-14 2015-02-26 Katriona Guthrie-Honea Compositions, systems, and methods for detecting a DNA sequence
HUE040575T2 (hu) 2013-04-16 2019-03-28 Regeneron Pharma A patkány genom célzott módosítása
CN103224947B (zh) 2013-04-28 2015-06-10 陕西师范大学 一种基因打靶系统
AU2014262867B2 (en) 2013-05-10 2019-12-05 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
US11414695B2 (en) 2013-05-29 2022-08-16 Agilent Technologies, Inc. Nucleic acid enrichment using Cas9
WO2014194190A1 (en) 2013-05-30 2014-12-04 The Penn State Research Foundation Gene targeting and genetic modification of plants via rna-guided genome editing
US20150315252A1 (en) 2013-06-11 2015-11-05 Clontech Laboratories, Inc. Protein enriched microvesicles and methods of making and using the same
ES2777217T3 (es) 2013-06-17 2020-08-04 Broad Inst Inc Suministro, modificación y optimización de sistemas de guía en tándem, métodos y composiciones para la manipulación de secuencias
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
CN103343120B (zh) 2013-07-04 2015-03-04 中国科学院遗传与发育生物学研究所 一种小麦基因组定点改造方法
JP6482546B2 (ja) 2013-07-19 2019-03-13 ラリクス・バイオサイエンス・リミテッド・ライアビリティ・カンパニーLarix Bioscience, Llc 二重対立遺伝子ノックアウトを生成するための方法および組成物
WO2015021426A1 (en) 2013-08-09 2015-02-12 Sage Labs, Inc. A crispr/cas system-based novel fusion protein and its application in genome editing
KR20160060659A (ko) 2013-08-29 2016-05-30 템플 유니버시티-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 Hiv 감염증의 rna-유도 치료를 위한 방법 및 조성물
EP3041931B1 (en) 2013-09-04 2020-06-10 Csir Site-specific nuclease single-cell assay targeting gene regulatory elements to silence gene expression
US9074199B1 (en) 2013-11-19 2015-07-07 President And Fellows Of Harvard College Mutant Cas9 proteins
US9546384B2 (en) 2013-12-11 2017-01-17 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a mouse genome
WO2015089364A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crystal structure of a crispr-cas system, and uses thereof
CN106536729A (zh) 2013-12-12 2017-03-22 布罗德研究所有限公司 使用粒子递送组分靶向障碍和疾病的crispr‑cas系统和组合物的递送、用途和治疗应用
US20150191744A1 (en) 2013-12-17 2015-07-09 University Of Massachusetts Cas9 effector-mediated regulation of transcription, differentiation and gene editing/labeling
AU2014370416B2 (en) 2013-12-26 2021-03-11 The General Hospital Corporation Multiplex guide RNAs
JP2017511694A (ja) 2014-02-12 2017-04-27 トーマス・ジェファーソン・ユニバーシティ マイクロrna阻害剤を使用するための組成物および方法
EP3116997B1 (en) 2014-03-10 2019-05-15 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating leber's congenital amaurosis 10 (lca10)
EP3117004A4 (en) 2014-03-14 2017-12-06 University of Washington Genomic insulator elements and uses thereof
WO2015139139A1 (en) 2014-03-20 2015-09-24 UNIVERSITé LAVAL Crispr-based methods and products for increasing frataxin levels and uses thereof
EP3126503A1 (en) * 2014-04-03 2017-02-08 Massachusetts Institute Of Technology Methods and compositions for the production of guide rna
WO2016073990A2 (en) 2014-11-07 2016-05-12 Editas Medicine, Inc. Methods for improving crispr/cas-mediated genome-editing
MA41349A (fr) 2015-01-14 2017-11-21 Univ Temple Éradication de l'herpès simplex de type i et d'autres virus de l'herpès associés guidée par arn
US9650617B2 (en) 2015-01-28 2017-05-16 Pioneer Hi-Bred International. Inc. CRISPR hybrid DNA/RNA polynucleotides and methods of use
KR102605464B1 (ko) 2015-01-30 2023-11-22 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 일차 조혈 세포에서의 단백질 전달
US10676726B2 (en) 2015-02-09 2020-06-09 Duke University Compositions and methods for epigenome editing
CN107532161A (zh) 2015-03-03 2018-01-02 通用医疗公司 具有改变的PAM特异性的工程化CRISPR‑Cas9核酸酶
HK1253403A1 (zh) 2015-05-28 2019-06-14 Coda Biotherapeutics 基因組編輯載體
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
WO2016205759A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
US11214800B2 (en) 2015-08-18 2022-01-04 The Broad Institute, Inc. Methods and compositions for altering function and structure of chromatin loops and/or domains
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
EP3525832A4 (en) 2016-10-14 2020-04-29 The General Hospital Corp. Epigenetically regulated site-specific nucleases
EP3579858A4 (en) 2017-02-07 2020-12-23 The Regents of The University of California GENE THERAPY AGAINST HAPLOINSUFFICIENCY
EP3612204A4 (en) 2017-04-21 2021-01-27 The General Hospital Corporation INDUCTIBLE, TUNING AND MULTIPLEX HUMAN GENE REGULATION USING CRISPR-CPF1
AU2019269692A1 (en) 2018-05-17 2020-11-19 The General Hospital Corporation CCCTC-binding factor variants
EP4065702A4 (en) 2019-11-27 2024-03-20 The General Hospital Corporation SYSTEM AND METHOD FOR ACTIVATING GENE EXPRESSION
WO2021243289A1 (en) 2020-05-29 2021-12-02 The General Hospital Corporation Systems and methods for stable and heritable alteration by precision editing (shape)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055793A1 (en) * 2005-07-25 2010-03-04 Johns Hopkins University Site-specific modification of the human genome using custom-designed zinc finger nucleases
WO2012093833A2 (en) 2011-01-03 2012-07-12 Toolgen Incorporation Genome engineering via designed tal effector nucleases
WO2015035162A2 (en) 2013-09-06 2015-03-12 President And Fellows Of Harvard College Cas9 variants and uses thereof

Non-Patent Citations (110)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 2010
"GenBank", Database accession no. AAA24927.1
"Guide to Protein Purification", vol. 182, 1990, article "Methods in Enzymology"
BARKER ET AL., BMC GENOMICS, vol. 6, 22 April 2005 (2005-04-22), pages 57
BITINAITE ET AL., PROC. NATL. ACAD. SCI. USA, vol. 95, 1998, pages 10570 - 10575
CATHOMEN; JOUNG, MOL. THER., vol. 16, 2008, pages 1200 - 1207
CHENG, A.W.; WANG, H.; YANG, H.; SHI, L.; KATZ, Y.; THEUNISSEN, T.W.; RANGARAJAN, S.; SHIVALILA, C.S.; DADON, D.B.; JAENISCH, R.: "Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system", CELL RES, vol. 23, 2013, pages 1163 - 1171
CHO ET AL., GENOME RES, 2013
CHO ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 230 - 232
CHO, S.W.; KIM, S.; KIM, J.M.; KIM, J.S.: "Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease", NAT BIOTECHNOL, vol. 31, 2013, pages 230 - 232
CHYLINSKI ET AL., RNA BIOLOGY, vol. 10, no. 5, 2013, pages 1 - 12
CHYLINSKI ET AL.: "classified Cas9 proteins from a large group of bacteria", RNA BIOLOGY, vol. 10, no. 5, 2013, pages 1 - 12
CLARK-CURTISS; CURTISS ET AL.: "Methods in Enzymology", vol. 101, 1983, pages: 347 - 362
COLLEY ET AL., J. BIOL. CHEM., vol. 264, 1989, pages 17619 - 22
CONG ET AL., SCIENCE, vol. 339, 2013, pages 819
CONG ET AL., SCIENCE, vol. 339, 2013, pages 819 - 823
CONG ET AL., SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 819 - 23
CONG, L. ET AL.: "Multiplex genome engineering using CRISPR/Cas systems", SCIENCE, vol. 339, 2013, pages 819 - 823, XP055400719, DOI: doi:10.1126/science.1231143
CRADICK, T.J.; FINE, E.J.; ANTICO, C.J.; BAO, G.: "CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity", NUCLEIC ACIDS RES., 2013
DICARLO ET AL., NUCLEIC ACIDS RES, 2013
DICARLO, J.E. ET AL.: "Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems", NUCLEIC ACIDS RES, 2013
DING, Q.; REGAN, S.N.; XIA, Y.; OOSTROM, L.A.; COWAN, C.A.; MUSUNURU, K.: "Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs", CELL STEM CELL, vol. 12, 2013, pages 393 - 394, XP055247447, DOI: doi:10.1016/j.stem.2013.03.006
ESVELT ET AL., NAT METHODS, vol. 10, no. 11, November 2013 (2013-11-01), pages 1116 - 21
ESVELT ET AL., NAT METHODS, vol. 10, no. l 1, November 2013 (2013-11-01), pages 1116 - 21
ESVELT ET AL., NAT METHODS., vol. 10, no. 11, November 2013 (2013-11-01), pages 1116 - 21
FISHER, S.; BARRY, A.; ABREU, J.; MINIE, B.; NOLAN, J.; DELOREY, T.M.; YOUNG, G.; FENNELL, T.J.; ALLEN, A.; AMBROGIO, L. ET AL.: "A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries", GENOME BIOL, vol. 12, 2011, XP021091778, DOI: doi:10.1186/gb-2011-12-1-r1
FONFARA ET AL., NUCL. ACIDS RES., vol. 42, no. 4, 2014, pages 2577 - 2590
FONFARA ET AL.: "Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems", NUCLEIC ACIDS RES., 22 November 2013 (2013-11-22)
FRIEDLAND, A.E.; TZUR, Y.B.; ESVELT, K.M.; COLAIACOVO, M.P.; CHURCH, G.M.; CALARCO, J.A.: "Heritable genome editing in C. elegans via a CRISPR-Cas9 system", NAT METHODS, vol. 10, 2013, pages 741 - 743, XP055429694, DOI: doi:10.1038/nmeth.2532
FU ET AL.: "Methods in Enzymology", vol. 546, ELSEVIER, pages: 21 - 45
FU, Y.; FODEN, J.A.; KHAYTER, C.; MAEDER, M.L.; REYON, D.; JOUNG, J.K.; SANDER, J.D.: "High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells", NAT BIOTECHNOL, vol. 31, 2013, pages 822 - 826, XP055153951, DOI: doi:10.1038/nbt.2623
GABRIEL ET AL., NAT BIOTECHNOL, vol. 29, 2011, pages 816 - 823
GABRIEL, R. ET AL.: "An unbiased genome-wide analysis of zinc-finger nuclease specificity", NAT BIOTECHNOL, vol. 29, 2011, pages 816 - 823, XP055073828, DOI: doi:10.1038/nbt.1948
GILBERT, L.A.; LARSON, M.H.; MORSUT, L.; LIU, Z.; BRAR, G.A.; TORRES, S.E.; STERN-GINOSSAR, N.; BRANDMAN, O.; WHITEHEAD, E.H.; DOU: "CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes", CELL, vol. 154, 2013, pages 442 - 451, XP055115843, DOI: doi:10.1016/j.cell.2013.06.044
GOSSEN; BUJARD, PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 5547
GRATZ ET AL., GENETICS, vol. 194, no. 4, 2013, pages 1029 - 35
GRATZ, S.J. ET AL.: "Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease", GENETICS, 2013
GUILINGER ET AL.: "Fusion of catalytically inactive Cas9 to Fokl nuclease improves the specificity of genome modification.", NAT BIOTECHNOL, vol. 32, no. 6, 25 April 2014 (2014-04-25), pages 577 - 582, XP055157221 *
HAURWITZ ET AL., SCIENCE, vol. 329, 2010, pages 1355 - 1358
HOCKEMEYER ET AL., NAT BIOTECHNOL, vol. 29, 2011, pages 731 - 734
HOCKEMEYER, D. ET AL.: "Genetic engineering of human pluripotent cells using TALE nucleases", NAT BIOTECHNOL, vol. 29, 2011, pages 731 - 734, XP055018244, DOI: doi:10.1038/nbt.1927
HORVATH ET AL., SCIENCE, vol. 327, 2010, pages 167 - 170
HORVATH, P.; BARRANGOU, R.: "CRISPR/Cas, the immune system of bacteria and archaea", SCIENCE, vol. 327, 2010, pages 167 - 170, XP055016971, DOI: doi:10.1126/science.1179555
HOU ET AL., PROC NATL ACAD SCI USA, vol. 110, no. 39, 24 September 2013 (2013-09-24), pages 15644 - 9
HSU, P.D.; SCOTT, D.A.; WEINSTEIN, J.A.; RAN, F.A.; KONERMANN, S.; AGARWALA, V.; LI, Y.; FINE, E.J.; WU, X.; SHALEM, O. ET AL.: "DNA targeting specificity of RNA-guided Cas9 nucleases", NAT BIOTECHNOL, vol. 31, 2013, pages 827 - 832, XP055219426, DOI: doi:10.1038/nbt.2647
HWANG ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 227 - 229
HWANG, W.Y. ET AL.: "Efficient genome editing in zebrafish using a CRISPR-Cas system", NAT BIOTECHNOL, vol. 31, 2013, pages 227 - 229, XP055086625, DOI: doi:10.1038/nbt.2501
HWANG, W.Y.; FU, Y.; REYON, D.; MAEDER, M.L.; KAINI, P.; SANDER, J.D.; JOUNG, J.K.; PETERSON, R.T.; YEH, J.R.: "Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System", PLOS ONE, vol. 8, 2013, pages e68708, XP055196397, DOI: doi:10.1371/journal.pone.0068708
HWANG; FU ET AL., NAT BIOTECHNOL., vol. 31, no. 3, March 2013 (2013-03-01), pages 227 - 9
JIANG ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 233 - 239
JIANG, W.; BIKARD, D.; COX, D.; ZHANG, F.; MARRAFFINI, L.A.: "RNA-guided editing of bacterial genomes using CRISPR-Cas systems", NAT BIOTECHNOL, vol. 31, 2013, pages 233 - 239, XP055249123, DOI: doi:10.1038/nbt.2508
JINEK ET AL., ELIFE, vol. 2, 2013, pages e00471
JINEK ET AL., SCIENCE, vol. 337, 2012, pages 816 - 821
JINEK ET AL., SCIENCE, vol. 337, no. 6096, 2012, pages 816 - 21
JINEK ET AL.: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.", SCIENCE, vol. 337, no. 6096, 17 August 2012 (2012-08-17), pages 816 - 821, XP055229606 *
JINEK, M. ET AL.: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity", SCIENCE, vol. 337, 2012, pages 816 - 821, XP055299674, DOI: doi:10.1126/science.1225829
JINEK, M. ET AL.: "RNA-programmed genome editing in human cells", ELIFE, vol. 2, 2013, pages e00471, XP002699851, DOI: doi:10.7554/eLife.00471
KRIEGLER: "Gene Transfer and Expression: A Laboratory Manual", 1990
LI ET AL., NUCLEIC ACIDS RES., vol. 39, no. 1, 2011, pages 359 - 372
LI, D.; QIU, Z.; SHAO, Y.; CHEN, Y.; GUAN, Y.; LIU, M.; LI, Y.; GAO, N.; WANG, L.; LU, X. ET AL.: "Heritable gene targeting in the mouse and rat using a CRISPR-Cas system", NAT BIOTECHNOL, vol. 31, 2013, pages 681 - 683, XP055372215, DOI: doi:10.1038/nbt.2661
LI, W.; TENG, F.; LI, T.; ZHOU, Q.: "Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems", NAT BIOTECHNOL, vol. 31, 2013, pages 684 - 686, XP055324100, DOI: doi:10.1038/nbt.2652
MAEDER, M.L. ET AL., MOL CELL, vol. 31, 2008, pages 294 - 301
MAEDER, M.L.; LINDER, S.J.; CASCIO, V.M.; FU, Y.; HO, Q.H.; JOUNG, J.K.: "CRISPR RNA-guided activation of endogenous human genes", NAT METHODS, vol. 10, 2013, pages 977 - 979, XP055291599, DOI: doi:10.1038/nmeth.2598
MALI ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 833 - 838
MALI ET AL., SCIENCE, vol. 339, 2013, pages 823 - 826
MALI ET AL., SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 823 - 6
MALI, P. ET AL.: "RNA-guided human genome engineering via Cas9", SCIENCE, vol. 339, 2013, pages 823 - 826
MALI, P.; AACH, J.; STRANGES, P.B.; ESVELT, K.M.; MOOSBURNER, M.; KOSURI, S.; YANG, L.; CHURCH, G.M.: "CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering", NAT BIOTECHNOL, vol. 31, 2013, pages 833 - 838, XP055294730, DOI: doi:10.1038/nbt.2675
MALI, P.; ESVELT, K.M.; CHURCH, G.M.: "Cas9 as a versatile tool for engineering biology", NAT METHODS, vol. 10, 2013, pages 957 - 963, XP002718606, DOI: doi:10.1038/nmeth.2649
MILLER ET AL., NAT BIOTECHNOL, vol. 25, 2007, pages 778 - 785
MORRISON, J. BACTERIOL., vol. 132, 1977, pages 349 - 351
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 444 - 453
NEERING ET AL., BLOOD, vol. 88, 1996, pages 1147 - 55
NISHIMASU, CELL, vol. 156, 2014, pages 935 - 949
OLIGINO ET AL., GENE THER., vol. 5, 1998, pages 491 - 496
PALVA ET AL., GENE, vol. 22, 1983, pages 229 - 235
PATTANAYAK ET AL., NAT METHODS, vol. 8, 2011, pages 765 - 770
PATTANAYAK, V.; LIN, S.; GUILINGER, J.P.; MA, E.; DOUDNA, J.A.; LIU, D.R.: "High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity", NAT BIOTECHNOL, vol. 31, 2013, pages 839 - 843, XP055148795, DOI: doi:10.1038/nbt.2673
PATTANAYAK, V.; RAMIREZ, C.L.; JOUNG, J.K.; LIU, D.R.: "Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection", NAT METHODS, vol. 8, 2011, pages 765 - 770, XP055073829, DOI: doi:10.1038/nmeth.1670
PEREZ ET AL., NAT BIOTECHNOL, vol. 26, 2008, pages 808 - 816
PEREZ, E.E. ET AL.: "Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases", NAT BIOTECHNOL, vol. 26, 2008, pages 808 - 816, XP055024363, DOI: doi:10.1038/nbt1410
PEREZ-PINERA, P.; KOCAK, D.D.; VOCKLEY, C.M.; ADLER, A.F.; KABADI, A.M.; POLSTEIN, L.R.; THAKORE, P.I.; GLASS, K.A.; OUSTEROUT, D.: "RNA-guided gene activation by CRISPR-Cas9-based transcription factors", NAT METHODS, vol. 10, 2013, pages 973 - 976, XP055181249, DOI: doi:10.1038/nmeth.2600
QI ET AL.: "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.", CELL, vol. 152, no. 5, 28 February 2013 (2013-02-28), pages 1173 - 1183, XP055068548 *
QI, L.S.; LARSON, M.H.; GILBERT, L.A.; DOUDNA, J.A.; WEISSMAN, J.S.; ARKIN, A.P.; LIM, W.A.: "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression", CELL, vol. 152, 2013, pages 1173 - 1183, XP055346792, DOI: doi:10.1016/j.cell.2013.02.022
RAN ET AL., CELL, vol. 154, 2013, pages 1380 - 1389
RAN, F.A.; HSU, P.D.; LIN, C.Y.; GOOTENBERG, J.S.; KONERMANN, S.; TREVINO, A.E.; SCOTT, D.A.; INOUE, A.; MATOBA, S.; ZHANG, Y. ET: "Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity", CELL, vol. 154, 2013, pages 1380 - 1389, XP055299681, DOI: doi:10.1016/j.cell.2013.08.021
RENDAHL ET AL., NAT. BIOTECHNOL., vol. 16, 1998, pages 757 - 761
REYON ET AL., NAT BIOTECH, vol. 30, 2012, pages 460 - 465
REYON, D. ET AL., NAT BIOTECH, vol. 30, 2012, pages 460 - 465
REYON, D. ET AL.: "FLASH assembly of TALENs for high-throughput genome editing", NAT BIOTECH, vol. 30, 2012, pages 460 - 465, XP055171172, DOI: doi:10.1038/nbt.2170
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 2001
SANDER, J.D.; MAEDER, M.L.; REYON, D.; VOYTAS, D.F.; JOUNG, J.K.; DOBBS, D.: "ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool", NUCLEIC ACIDS RES, vol. 38, 2010, pages W462 - 468, XP055247371, DOI: doi:10.1093/nar/gkq319
SANDER, J.D.; RAMIREZ, C.L.; LINDER, S.J.; PATTANAYAK, V.; SHORESH, N.; KU, M.; FODEN, J.A.; REYON, D.; BERNSTEIN, B.E.; LIU, D.R.: "In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites", NUCLEIC ACIDS RES., 2013
SANDER, J.D.; ZABACK, P.; JOUNG, J.K.; VOYTAS, D.F.; DOBBS, D.: "Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool", NUCLEIC ACIDS RES, vol. 35, 2007, pages W599 - 605, XP002543579, DOI: doi:10.1093/nar/gkm349
SHEN ET AL., CELL RES, 2013
SHEN, B. ET AL.: "Generation of gene-modified mice via Cas9/RNA-mediated gene targeting", CELL RES, 2013
STERNBERG ET AL., RNA, vol. 18, 2012, pages 661 - 672
SUGIMOTO ET AL., BIOCHEMISTRY, vol. 34, 1995, pages 11211 - 11216
SUGIMOTO ET AL., BIOCHEMISTRY, vol. 39, no. 37, 19 September 2000 (2000-09-19), pages 11270 - 81
SUGIMOTO, N. ET AL.: "Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes", BIOCHEMISTRY, vol. 34, 1995, pages 11211 - 11216, XP002250298, DOI: doi:10.1021/bi00035a029
SZCZEPEK ET AL., NAT BIOTECHNOL, vol. 25, 2007, pages 786 - 793
TERNS ET AL., CURR OPIN MICROBIOL, vol. 14, 2011, pages 321 - 327
TERNS, M.P.; TERNS, R.M.: "CRISPR-based adaptive immune systems", CURR OPIN MICROBIOL, vol. 14, 2011, pages 321 - 327, XP055097823, DOI: doi:10.1016/j.mib.2011.03.005
TSA I ET AL.: "Dimeric CRISPR RNA-guided Fokl nucleases for highly specific genome editing.", NAT BIOTECHNOL., vol. 32, no. 6, 25 April 2014 (2014-04-25), pages 569 - 576, XP055178523 *
WANG ET AL., CELL, vol. 153, 2013, pages 910 - 918
WANG ET AL., GENE THER., vol. 4, 1997, pages 432 - 441
WANG, H. ET AL.: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering", CELL, vol. 153, 2013, pages 910 - 918, XP028538358, DOI: doi:10.1016/j.cell.2013.04.025
WIEDENHEFT ET AL., NATURE, vol. 482, 2012, pages 331 - 338
WIEDENHEFT, B.; STERNBERG, S.H.; DOUDNA, J.A.: "RNA-guided genetic silencing systems in bacteria and archaea", NATURE, vol. 482, 2012, pages 331 - 338, XP002723433, DOI: doi:10.1038/nature10886
YANG, L.; GUELL, M.; BYRNE, S.; YANG, J.L.; DE LOS ANGELES, A.; MALI, P.; AACH, J.; KIM-KISELAK, C.; BRIGGS, A.W.; RIOS, X. ET AL.: "Optimization of scarless human stem cell genome editing", NUCLEIC ACIDS RES, vol. 41, 2013, pages 9049 - 9061, XP055113989, DOI: doi:10.1093/nar/gkt555

Cited By (233)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202608B2 (en) 2006-08-31 2019-02-12 Gen9, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
US11845054B2 (en) 2010-11-12 2023-12-19 Gen9, Inc. Methods and devices for nucleic acids synthesis
US10457935B2 (en) 2010-11-12 2019-10-29 Gen9, Inc. Protein arrays and methods of using and making the same
US10982208B2 (en) 2010-11-12 2021-04-20 Gen9, Inc. Protein arrays and methods of using and making the same
US11084014B2 (en) 2010-11-12 2021-08-10 Gen9, Inc. Methods and devices for nucleic acids synthesis
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9322006B2 (en) 2011-07-22 2016-04-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11702662B2 (en) 2011-08-26 2023-07-18 Gen9, Inc. Compositions and methods for high fidelity assembly of nucleic acids
US12467086B2 (en) 2011-10-14 2025-11-11 President And Fellows Of Harvard College Sequencing by structure assembly
US11293052B2 (en) 2011-12-22 2022-04-05 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11976318B2 (en) 2011-12-22 2024-05-07 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11111521B2 (en) 2011-12-22 2021-09-07 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11639518B2 (en) 2011-12-22 2023-05-02 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11293051B2 (en) 2011-12-22 2022-04-05 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11566277B2 (en) 2011-12-22 2023-01-31 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11549136B2 (en) 2011-12-22 2023-01-10 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11566276B2 (en) 2011-12-22 2023-01-31 President And Fellows Of Harvard College Compositions and methods for analyte detection
US10308931B2 (en) 2012-03-21 2019-06-04 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
US10081807B2 (en) 2012-04-24 2018-09-25 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US10927369B2 (en) 2012-04-24 2021-02-23 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US11976307B2 (en) 2012-04-27 2024-05-07 Duke University Genetic correction of mutated genes
US20210040460A1 (en) 2012-04-27 2021-02-11 Duke University Genetic correction of mutated genes
US11072789B2 (en) 2012-06-25 2021-07-27 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
US12241057B2 (en) 2012-06-25 2025-03-04 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
US12264358B2 (en) 2013-03-12 2025-04-01 President And Fellows Of Harvard College Method of selectively sequencing amplicons in a biological sample
US11299767B2 (en) 2013-03-12 2022-04-12 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
US10844403B2 (en) 2013-03-15 2020-11-24 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US10526589B2 (en) 2013-03-15 2020-01-07 The General Hospital Corporation Multiplex guide RNAs
US12065668B2 (en) 2013-03-15 2024-08-20 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US11098326B2 (en) 2013-03-15 2021-08-24 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US9885033B2 (en) 2013-03-15 2018-02-06 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US11634731B2 (en) 2013-03-15 2023-04-25 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US9567603B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US10544433B2 (en) 2013-03-15 2020-01-28 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US11920152B2 (en) 2013-03-15 2024-03-05 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US10119133B2 (en) 2013-03-15 2018-11-06 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US10138476B2 (en) 2013-03-15 2018-11-27 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US11168338B2 (en) 2013-03-15 2021-11-09 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US10415059B2 (en) 2013-03-15 2019-09-17 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US9567604B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US10378027B2 (en) 2013-03-15 2019-08-13 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US12215345B2 (en) 2013-03-19 2025-02-04 Duke University Compositions and methods for the induction and tuning of gene expression
US11981917B2 (en) 2013-06-04 2024-05-14 President And Fellows Of Harvard College RNA-guided transcriptional regulation
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
EP3473720A1 (en) * 2013-08-22 2019-04-24 Pioneer Hi-Bred International, Inc. Genome modification using guide polynucleotide/cas endonuclease systems and methods of use
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US12428645B2 (en) 2013-08-22 2025-09-30 Pioneer Hi-Bred International, Inc. Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof
US12378566B2 (en) 2013-08-22 2025-08-05 Pioneer Hi-Bred International, Inc. Plant genome modification using guide RNA/Cas endonuclease systems and methods of use
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
JP2016537008A (ja) * 2013-09-06 2016-12-01 プレジデント アンド フェローズ オブ ハーバード カレッジ Cas9バリアントおよびその使用
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US12473573B2 (en) 2013-09-06 2025-11-18 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
AU2021201257B2 (en) * 2013-09-06 2023-02-16 President And Fellows Of Harvard College Cas9 variants and uses thereof
WO2015035162A3 (en) * 2013-09-06 2015-06-04 President And Fellows Of Harvard College Cas9 variants and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US11920128B2 (en) 2013-09-18 2024-03-05 Kymab Limited Methods, cells and organisms
US10190137B2 (en) 2013-11-07 2019-01-29 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US10640788B2 (en) 2013-11-07 2020-05-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAs
US11390887B2 (en) 2013-11-07 2022-07-19 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
JP2017500035A (ja) * 2013-12-12 2017-01-05 プレジデント アンド フェローズ オブ ハーバード カレッジ 遺伝子編集用のcas多様体
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
JP2020164529A (ja) * 2013-12-12 2020-10-08 プレジデント アンド フェローズ オブ ハーバード カレッジ 遺伝子編集用のcas多様体
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US12215365B2 (en) 2013-12-12 2025-02-04 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
US11028388B2 (en) 2014-03-05 2021-06-08 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa
US10253312B2 (en) 2014-03-10 2019-04-09 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating Leber's Congenital Amaurosis 10 (LCA10)
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
US11268086B2 (en) 2014-03-10 2022-03-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating Leber's Congenital Amaurosis 10 (LCA10)
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US12234449B2 (en) 2014-03-10 2025-02-25 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Leber's congenital amaurosis 10 (LCA10)
US11242525B2 (en) 2014-03-26 2022-02-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating sickle cell disease
US12460231B2 (en) 2014-04-02 2025-11-04 Editas Medicine, Inc. Crispr/CAS-related methods and compositions for treating primary open angle glaucoma
US12152241B2 (en) 2014-06-25 2024-11-26 The General Hospital Corporation Targeting human satellite II (HSATII)
EP3167071A4 (en) * 2014-07-09 2018-01-17 Gen9, Inc. Compositions and methods for site-directed dna nicking and cleaving
US12331347B2 (en) 2014-07-11 2025-06-17 President And Fellows Of Harvard College Methods for high-throughput labelling and detection of biological features in situ using microscopy
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US12398406B2 (en) 2014-07-30 2025-08-26 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
AU2022201038B2 (en) * 2014-10-10 2024-10-31 Editas Medicine,Inc. Compositions and methods for promoting homology directed repair
US12201699B2 (en) 2014-10-10 2025-01-21 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
AU2015330699B2 (en) * 2014-10-10 2021-12-02 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
WO2016057961A1 (en) * 2014-10-10 2016-04-14 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
CN104531633A (zh) * 2014-11-18 2015-04-22 李云英 Cas9-scForkI融合蛋白及其应用
US10900034B2 (en) 2014-12-03 2021-01-26 Agilent Technologies, Inc. Guide RNA with chemical modifications
US10337001B2 (en) 2014-12-03 2019-07-02 Agilent Technologies, Inc. Guide RNA with chemical modifications
US12215366B2 (en) 2015-02-09 2025-02-04 Duke University Compositions and methods for epigenome editing
US11220678B2 (en) 2015-03-03 2022-01-11 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
JP2018506987A (ja) * 2015-03-03 2018-03-15 ザ ジェネラル ホスピタル コーポレイション 変更PAM特異性を有する遺伝子操作CRISPR−Cas9ヌクレアーゼ
US11859220B2 (en) 2015-03-03 2024-01-02 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US10767168B2 (en) 2015-03-03 2020-09-08 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US12180520B2 (en) 2015-03-03 2024-12-31 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US10808233B2 (en) 2015-03-03 2020-10-20 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11851652B2 (en) 2015-04-06 2023-12-26 The Board Of Trustees Of The Leland Stanford Junior Compositions comprising chemically modified guide RNAs for CRISPR/Cas-mediated editing of HBB
US11306309B2 (en) 2015-04-06 2022-04-19 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation
US11535846B2 (en) 2015-04-06 2022-12-27 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAS for CRISPR/Cas-mediated gene regulation
US11180793B2 (en) 2015-04-24 2021-11-23 Editas Medicine, Inc. Evaluation of Cas9 molecule/guide RNA molecule complexes
US11390884B2 (en) 2015-05-11 2022-07-19 Editas Medicine, Inc. Optimized CRISPR/cas9 systems and methods for gene editing in stem cells
US11911415B2 (en) 2015-06-09 2024-02-27 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for improving transplantation
US12188043B2 (en) 2015-07-15 2025-01-07 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
US11479793B2 (en) 2015-07-15 2022-10-25 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
US11427817B2 (en) 2015-08-25 2022-08-30 Duke University Compositions and methods of improving specificity in genomic engineering using RNA-guided endonucleases
US10093910B2 (en) 2015-08-28 2018-10-09 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US10526591B2 (en) 2015-08-28 2020-01-07 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US10633642B2 (en) 2015-08-28 2020-04-28 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US11060078B2 (en) 2015-08-28 2021-07-13 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
EP4036236A1 (en) 2015-08-28 2022-08-03 The General Hospital Corporation Engineered crispr-cas9 nucleases
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
WO2017059313A1 (en) 2015-09-30 2017-04-06 The General Hospital Corporation Comprehensive in vitro reporting of cleavage events by sequencing (circle-seq)
US11421251B2 (en) 2015-10-13 2022-08-23 Duke University Genome engineering with type I CRISPR systems in eukaryotic cells
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US12344869B2 (en) 2015-10-23 2025-07-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11542554B2 (en) 2015-11-03 2023-01-03 President And Fellows Of Harvard College Method and apparatus for volumetric imaging
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
US12049651B2 (en) 2016-04-13 2024-07-30 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US12428631B2 (en) 2016-04-13 2025-09-30 Duke University CRISPR/Cas9-based repressors for silencing gene targets in vivo and methods of use
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US11713485B2 (en) 2016-04-25 2023-08-01 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
JP7535142B2 (ja) 2016-06-02 2024-08-15 シグマ-アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー 標的ゲノム修飾を増強するためのプログラム可能なdna結合タンパク質の使用
AU2021200636B2 (en) * 2016-06-02 2023-03-02 Sigma-Aldrich Co. Llc Using programmable dna binding proteins to enhance targeted genome modification
US12275952B2 (en) 2016-06-02 2025-04-15 Sigma-Aldrich Co. Llc Using programmable DNA binding proteins to enhance targeted genome modification
US12084675B2 (en) 2016-06-02 2024-09-10 Sigma-Aldrich Co. Llc Using programmable DNA binding proteins to enhance targeted genome modification
JP2019517795A (ja) * 2016-06-02 2019-06-27 シグマ−アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニーSigma−Aldrich Co., LLC 標的ゲノム修飾を増強するためのプログラム可能なdna結合タンパク質の使用
JP7220737B2 (ja) 2016-06-02 2023-02-10 シグマ-アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー 標的ゲノム修飾を増強するためのプログラム可能なdna結合タンパク質の使用
JP2021121193A (ja) * 2016-06-02 2021-08-26 シグマ−アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニーSigma−Aldrich Co. LLC 標的ゲノム修飾を増強するためのプログラム可能なdna結合タンパク質の使用
US10266851B2 (en) 2016-06-02 2019-04-23 Sigma-Aldrich Co. Llc Using programmable DNA binding proteins to enhance targeted genome modification
JP2023065365A (ja) * 2016-06-02 2023-05-12 シグマ-アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー 標的ゲノム修飾を増強するためのプログラム可能なdna結合タンパク質の使用
WO2017209809A1 (en) * 2016-06-02 2017-12-07 Sigma-Aldrich Co. Llc Using programmable dna binding proteins to enhance targeted genome modification
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US12214056B2 (en) 2016-07-19 2025-02-04 Duke University Therapeutic applications of CPF1-based genome editing
US11566263B2 (en) 2016-08-02 2023-01-31 Editas Medicine, Inc. Compositions and methods for treating CEP290 associated disease
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
EP3502261A4 (en) * 2016-08-19 2020-07-15 Toolgen Incorporated ARTIFICIALLY MODIFIED ANGIOGENESIS REGULATION SYSTEM
US11999952B2 (en) 2016-08-19 2024-06-04 Toolgen Incorporated Artificially-manipulated neovascularization regulatory system
EP4012032A1 (en) * 2016-08-19 2022-06-15 Toolgen Incorporated Artificially engineered angiogenesis regulatory system
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
WO2018071892A1 (en) 2016-10-14 2018-04-19 Joung J Keith Epigenetically regulated site-specific nucleases
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US12286727B2 (en) 2016-12-19 2025-04-29 Editas Medicine, Inc. Assessing nuclease cleavage
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US12065666B2 (en) 2017-01-05 2024-08-20 Rutgers, The State University Of New Jersey Targeted gene editing platform independent of DNA double strand break and uses thereof
WO2018129129A1 (en) * 2017-01-05 2018-07-12 Rutgers, The State University Of New Jersey Targeted gene editing platform independent of dna double strand break and uses thereof
US12110545B2 (en) 2017-01-06 2024-10-08 Editas Medicine, Inc. Methods of assessing nuclease cleavage
US11466271B2 (en) 2017-02-06 2022-10-11 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
US12390514B2 (en) 2017-03-09 2025-08-19 President And Fellows Of Harvard College Cancer vaccine
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US12435331B2 (en) 2017-03-10 2025-10-07 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11851690B2 (en) 2017-03-14 2023-12-26 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
US11963982B2 (en) 2017-05-10 2024-04-23 Editas Medicine, Inc. CRISPR/RNA-guided nuclease systems and methods
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US10428319B2 (en) 2017-06-09 2019-10-01 Editas Medicine, Inc. Engineered Cas9 nucleases
US12297466B2 (en) 2017-06-09 2025-05-13 Editas Medicine, Inc. Engineered Cas9 nucleases
US11098297B2 (en) 2017-06-09 2021-08-24 Editas Medicine, Inc. Engineered Cas9 nucleases
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US12359218B2 (en) 2017-07-28 2025-07-15 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US12241096B2 (en) 2017-08-23 2025-03-04 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11624058B2 (en) 2017-08-23 2023-04-11 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11286468B2 (en) 2017-08-23 2022-03-29 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US12406749B2 (en) 2017-12-15 2025-09-02 The Broad Institute, Inc. Systems and methods for predicting repair outcomes in genetic engineering
US11293019B2 (en) 2017-12-22 2022-04-05 Gflas Life Sciences, Inc. Chimeric genome engineering molecules and methods
EP3728589A4 (en) * 2017-12-22 2021-11-03 G+Flas Life Sciences CHEMICAL GENOMIC ENGINEERING MOLECULES AND PROCESSES
US12031132B2 (en) 2018-03-14 2024-07-09 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US12157760B2 (en) 2018-05-23 2024-12-03 The Broad Institute, Inc. Base editors and uses thereof
US12338436B2 (en) 2018-06-29 2025-06-24 Editas Medicine, Inc. Synthetic guide molecules, compositions and methods relating thereto
US12098425B2 (en) 2018-10-10 2024-09-24 Readcoor, Llc Three-dimensional spatial molecular indexing
US12281338B2 (en) 2018-10-29 2025-04-22 The Broad Institute, Inc. Nucleobase editors comprising GeoCas9 and uses thereof
US12351837B2 (en) 2019-01-23 2025-07-08 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12281303B2 (en) 2019-03-19 2025-04-22 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12473543B2 (en) 2019-04-17 2025-11-18 The Broad Institute, Inc. Adenine base editors with reduced off-target effects
EP4017976A1 (en) * 2019-08-20 2022-06-29 Kemijski Institut Coiled-coil mediated tethering of crispr/cas and exonucleases for enhanced genome editing
EP4017976B1 (en) * 2019-08-20 2025-07-02 Kemijski Institut Coiled-coil mediated tethering of crispr/cas and exonucleases for enhanced genome editing
US12435330B2 (en) 2019-10-10 2025-10-07 The Broad Institute, Inc. Methods and compositions for prime editing RNA
EP3812472A1 (en) 2019-10-21 2021-04-28 Albert-Ludwigs-Universität Freiburg A truly unbiased in vitro assay to profile off-target activity of one or more target-specific programmable nucleases in cells (abnoba-seq)
WO2021078645A1 (en) 2019-10-21 2021-04-29 Albert-Ludwigs-Universität Freiburg A truly unbiased in vitro assay to profile off-target activity of one or more target-specific programmable nucleases in cells (abnoba-seq)
US12312613B2 (en) 2020-01-24 2025-05-27 The General Hospital Corporation Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants
US12264341B2 (en) 2020-01-24 2025-04-01 The General Hospital Corporation CRISPR-Cas enzymes with enhanced on-target activity
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12203136B2 (en) 2020-08-17 2025-01-21 Readcoor, Llc Methods and systems for spatial mapping of genetic variants
EP4095243A1 (en) 2021-05-25 2022-11-30 European Molecular Biology Laboratory System for hybridization-based precision genome cleavage and editing, and uses thereof
WO2022248477A1 (en) 2021-05-25 2022-12-01 European Molecular Biology Laboratory System for hybridization-based precision genome cleavage and editing, and uses thereof
US11884915B2 (en) 2021-09-10 2024-01-30 Agilent Technologies, Inc. Guide RNAs with chemical modification for prime editing
WO2024084025A1 (en) 2022-10-21 2024-04-25 Keygene N.V. Rna transfection in plant cells with modified rna
WO2024121354A1 (en) 2022-12-08 2024-06-13 Keygene N.V. Duplex sequencing with covalently closed dna ends
WO2024209000A1 (en) 2023-04-04 2024-10-10 Keygene N.V. Linkers for duplex sequencing
US12509680B2 (en) 2023-05-31 2025-12-30 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12516308B2 (en) 2023-12-19 2026-01-06 President And Fellows Of Harvard College Suppression of pain by gene editing

Also Published As

Publication number Publication date
KR102602047B1 (ko) 2023-11-15
AU2014228981A1 (en) 2015-10-01
JP6622183B2 (ja) 2019-12-18
EP2971125A4 (en) 2016-08-24
CA2906724A1 (en) 2014-09-18
EP2970208A4 (en) 2016-11-30
WO2014152432A3 (en) 2015-10-29
US20160010076A1 (en) 2016-01-14
CA3161835A1 (en) 2014-09-25
IL289396B2 (en) 2023-12-01
JP6960438B2 (ja) 2021-11-05
CA2907198C (en) 2019-12-10
US20140295556A1 (en) 2014-10-02
KR102271291B1 (ko) 2021-07-02
KR102210322B1 (ko) 2021-02-01
EP2970986A2 (en) 2016-01-20
US10844403B2 (en) 2020-11-24
US20170327805A1 (en) 2017-11-16
EP4428141A2 (en) 2024-09-11
EP2970986A4 (en) 2016-09-07
WO2014144592A2 (en) 2014-09-18
US10119133B2 (en) 2018-11-06
AU2022209254A1 (en) 2022-08-18
IL289396A (en) 2022-02-01
JP7379572B2 (ja) 2023-11-14
KR20150131250A (ko) 2015-11-24
WO2014144761A2 (en) 2014-09-18
AU2014228981B2 (en) 2019-11-28
US9885033B2 (en) 2018-02-06
US20200071730A1 (en) 2020-03-05
EP4428141A3 (en) 2024-12-18
AU2022252788B2 (en) 2025-02-20
AU2014227653A1 (en) 2015-10-01
KR102210319B1 (ko) 2021-02-01
CA2906553A1 (en) 2014-09-25
KR20230157540A (ko) 2023-11-16
US20160024523A1 (en) 2016-01-28
EP3467125A1 (en) 2019-04-10
EP3467125B1 (en) 2023-08-30
KR102271292B1 (ko) 2021-07-02
US20240240207A1 (en) 2024-07-18
US20250034597A1 (en) 2025-01-30
US10138476B2 (en) 2018-11-27
US20170152508A1 (en) 2017-06-01
BR112015023489A2 (pt) 2017-10-10
IL241671B (en) 2022-03-01
CN105408497A (zh) 2016-03-16
AU2020207840B2 (en) 2022-07-21
AU2022209254B2 (en) 2025-01-23
ES2713503T3 (es) 2019-05-22
JP2016517276A (ja) 2016-06-16
JP2020039350A (ja) 2020-03-19
US20160024524A1 (en) 2016-01-28
KR20210013304A (ko) 2021-02-03
JP2016512691A (ja) 2016-05-09
EP3865586A1 (en) 2021-08-18
CA2906553C (en) 2022-08-02
BR112015023489B1 (pt) 2022-06-07
EP3988667A1 (en) 2022-04-27
US20210130850A1 (en) 2021-05-06
AU2021203370B2 (en) 2023-07-27
KR20210013303A (ko) 2021-02-03
US11634731B2 (en) 2023-04-25
EP3741868B1 (en) 2024-05-22
WO2014144592A3 (en) 2014-12-31
CN110540991A (zh) 2019-12-06
KR102874079B1 (ko) 2025-10-22
US10544433B2 (en) 2020-01-28
US9567603B2 (en) 2017-02-14
US10415059B2 (en) 2019-09-17
KR20220080012A (ko) 2022-06-14
US20190376090A1 (en) 2019-12-12
JP2016512264A (ja) 2016-04-25
US10378027B2 (en) 2019-08-13
US11098326B2 (en) 2021-08-24
EP2971041A1 (en) 2016-01-20
US11168338B2 (en) 2021-11-09
AU2019204675A1 (en) 2019-07-18
EP2971125B2 (en) 2023-11-22
US12065668B2 (en) 2024-08-20
US20220090145A1 (en) 2022-03-24
IL289396B1 (en) 2023-08-01
CA2907198A1 (en) 2014-09-18
JP2024012446A (ja) 2024-01-30
KR20210013302A (ko) 2021-02-03
EP2971041B1 (en) 2018-11-28
US20200224222A1 (en) 2020-07-16
ZA201506814B (en) 2018-11-28
AU2014227653A2 (en) 2015-11-12
AU2017204909B2 (en) 2019-04-04
US20230407341A1 (en) 2023-12-21
AU2020201465A1 (en) 2020-03-19
AU2017204909A1 (en) 2017-08-31
JP6878554B2 (ja) 2021-05-26
KR20150131251A (ko) 2015-11-24
JP6980380B2 (ja) 2021-12-15
US20180208921A1 (en) 2018-07-26
CN105408497B (zh) 2019-09-13
AU2014239665A1 (en) 2015-10-01
EP2971125A2 (en) 2016-01-20
CN105408483A (zh) 2016-03-16
CN105247066B (zh) 2020-10-20
US9567604B2 (en) 2017-02-14
EP3744842A1 (en) 2020-12-02
JP6657069B2 (ja) 2020-03-04
CN113563476A (zh) 2021-10-29
US20180340189A1 (en) 2018-11-29
WO2014144761A3 (en) 2015-10-29
JP2022106710A (ja) 2022-07-20
JP7053706B2 (ja) 2022-04-12
CN112301024A (zh) 2021-02-02
JP2020120661A (ja) 2020-08-13
JP2021118726A (ja) 2021-08-12
EP2970986B1 (en) 2020-05-06
AU2021203370A1 (en) 2021-06-24
JP2021192624A (ja) 2021-12-23
AU2014239665B2 (en) 2020-04-30
US20140295557A1 (en) 2014-10-02
JP7126588B2 (ja) 2022-08-26
KR102210323B1 (ko) 2021-02-01
US11920152B2 (en) 2024-03-05
EP3741868A1 (en) 2020-11-25
AU2019204675B2 (en) 2021-03-11
AU2020207840A1 (en) 2020-08-13
EP2971041A4 (en) 2016-09-07
AU2014227653B2 (en) 2017-04-20
EP2970208A2 (en) 2016-01-20
CN105247066A (zh) 2016-01-13
KR20150132395A (ko) 2015-11-25
JP2020031637A (ja) 2020-03-05
EP2971125B1 (en) 2020-05-06
KR102405549B1 (ko) 2022-06-08
CN110540991B (zh) 2023-10-24
JP2023061983A (ja) 2023-05-02
AU2020201465B2 (en) 2022-05-12
WO2014152432A2 (en) 2014-09-25
AU2022252788A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US11098326B2 (en) Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US10011850B2 (en) Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2907198

Country of ref document: CA

Ref document number: 2016502853

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014227653

Country of ref document: AU

Date of ref document: 20140314

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157029177

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014764159

Country of ref document: EP