WO2018048194A1 - dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법 - Google Patents

dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법 Download PDF

Info

Publication number
WO2018048194A1
WO2018048194A1 PCT/KR2017/009765 KR2017009765W WO2018048194A1 WO 2018048194 A1 WO2018048194 A1 WO 2018048194A1 KR 2017009765 W KR2017009765 W KR 2017009765W WO 2018048194 A1 WO2018048194 A1 WO 2018048194A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
specificity
sensitivity
dcas9
target
Prior art date
Application number
PCT/KR2017/009765
Other languages
English (en)
French (fr)
Inventor
신용
김용섭
Original Assignee
울산대학교 산학협력단
재단법인 아산사회복지재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170112474A external-priority patent/KR101964746B1/ko
Application filed by 울산대학교 산학협력단, 재단법인 아산사회복지재단 filed Critical 울산대학교 산학협력단
Priority to US16/331,148 priority Critical patent/US20190203280A1/en
Priority to EP17849078.5A priority patent/EP3511421A4/en
Publication of WO2018048194A1 publication Critical patent/WO2018048194A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to compositions and methods for enhancing the sensitivity and specificity of nucleic acid detection using dCas9 protein and gRNA binding to a target nucleic acid sequence.
  • Labeling and detecting nucleic acids that are difficult to detect in their natural state have been applied to various fields of molecular biology and cell biology. Labeling agents to detect signals in Southern blotting, Northern blotting, in situ hybridization, nucleic acid microarrays using specific hybridization reactions This attached nucleic acid has been widely used.
  • PCR polymerase chain reaction
  • a method of amplifying DNA using a labeled monomer (labeled dNTP) or a labeled primer and simultaneously labeling the DNA is known.
  • the labeled DNA can be detected by microarray.
  • the method of labeling nucleic acids at the same time as PCR has the advantage that a separate step for labeling is not required, whereas the use of monomers labeled with fluorescent dyes is less efficient than PCR using unlabeled monomers. There is this.
  • RNA cannot be amplified by the PCR method, detecting the RNA by the PCR-labeled method requires a step of preparing cDNA through reverse transcription, and in particular, a length such as microRNA (microRNA, miRNA) is required. In the short case, cDNA production is a cumbersome problem. Therefore, the development of nucleic acid detection technology with improved sensitivity and specificity is urgently needed.
  • the above-described methods are easy to detect the target nucleic acid in the case of having a large amount of detection nucleic acid, even if a large amount of the target nucleic acid is present, even if a small amount of the target nucleic acid is present Is very difficult (low sensitivity), and due to other inhibitors, only a specific target cannot be detected, and a non-specific target is incorrectly detected (low specificity).
  • An object of the present invention includes a composition for improving sensitivity and specificity of nucleic acid detection and nucleic acid detection using the same, including dCas9 (dead Cas, nuclease-inactive Cas9) protein and gRNA (guide RNA) binding to a target nucleic acid sequence as an active ingredient.
  • dCas9 dead Cas, nuclease-inactive Cas9 protein
  • gRNA guide RNA
  • the present invention provides a protein binding to the target nucleic acid sequence; Or it provides a composition for improving the sensitivity and specificity of nucleic acid detection, comprising the protein and gRNA (guide RNA) complex binding thereto as an active ingredient.
  • the present invention also provides a composition for improving sensitivity and specificity of nucleic acid detection, including dCas9 (dead Cas, nuclease-inactive Cas9) protein and gRNA (guide RNA) binding to a target nucleic acid sequence as an active ingredient.
  • dCas9 dead Cas, nuclease-inactive Cas9 protein
  • gRNA guide RNA
  • the present invention also provides a kit for improving sensitivity and specificity of nucleic acid detection, including dCas9 (dead Cas, nuclease-inactive Cas9) protein and gRNA (guide RNA) binding to a target nucleic acid sequence as an active ingredient.
  • dCas9 dead Cas, nuclease-inactive Cas9 protein
  • gRNA guide RNA
  • the present invention also provides a method for amplifying a target nucleic acid by adding a dCas9 protein and a guide RNA (gRNA) that binds to a target nucleic acid sequence to a target nucleic acid-containing sample; And it provides a method for improving the sensitivity and specificity of nucleic acid detection, comprising the step of detecting the amplified target nucleic acid amplification product.
  • gRNA guide RNA
  • the present invention relates to a composition and a method for enhancing the sensitivity and specificity of nucleic acid detection using dCas9 protein and gRNA binding to a target nucleic acid sequence, wherein the Cas9 having a binding and cleavage function and the cleavage function are inactivated and have only a binding function.
  • the use of gRNA binding to dCas9 protein and target nucleic acid sequence increases the efficiency of nucleic acid amplification when used for nucleic acid amplification such as DNA and RNA, resulting in superior sensitivity and specificity of target diagnosis. Can be improved.
  • the composition for improving the sensitivity and specificity of nucleic acid detection using the dCas9 protein and the gRNA binding to the target nucleic acid sequence according to the present invention is applied to a biosensor, the amplification efficiency is about 2 times higher than before, and the target and the target are not targeted. Since the difference is increased by more than four times, and particularly prevents the non-specific amplification of the non-target, the sensitivity and specificity are excellently improved, the present invention can be usefully used for nucleic acid detection with improved sensitivity and specificity.
  • FIG. 1 is a schematic diagram of a CRISPR mediated biosensor according to the present invention (SMR sensor: silicon microring resonator sensor, with dCas9: using dCas9, with dCas9: No dCas9: dCas9 not used),
  • SMR sensor silicon microring resonator sensor, with dCas9: using dCas9, with dCas9: No dCas9: dCas9 not used
  • gRNAs Shows a schematic design of gRNAs designed for detection (dsDNA: double stranded DNA, ssRNA: single stranded RNA, target sites highlighted in blue and PAM sequences in red),
  • FIG. 4 shows the results of in vitro cleavage analysis to confirm gRNA activity in buffer conditions, showing that Cas9 RNP cleaves PRC products in both RPA buffer and NEBuffer 3.1 conditions only when gRNA matches the target PCR product (ST: scrub typhus, SFTS: severe fever with thrombocytopenia syndrome),
  • FIG. 5 shows EMSA analysis using dCas9 RNP and 5 ′ biotinylated DNA duplex, showing that target DNA duplexes were only migrated by the matched gRNA in both RPA buffer and NEBuffer 3.1 conditions and were not cleaved (ST: scrub typhus, Ctrl: control without target nucleic acid, sgRNA: single guide RNA),
  • ST-DNA detection results ST: SMR biosensor alone, ST with dCas9 RNP: SMR biosensor treated with dCas9, ST with Cas9 RNP: SMR biosensor treated with Cas9) within 30 minutes of CRISPR mediated biosensor.
  • FIG. 7 shows resonance wavelength shift results (SMR biosensor alone: black, with dCas9 RNP: light gray, with Cas9 RNP: dark gray) for ST detection within 15 minutes of CRISPR mediated biosensor (ST: scrub typhus, Empty) : Control without target nucleic acid),
  • Figure 9a shows the detection limit of the dsDNA of ST according to the CRISPR mediated biosensor (0.54 aM or less, gray), which is more sensitive than the SMR biosensor alone (black) (ST: scrub typhus, ST with dCas9 RNP: dCas9 RNP Use ST detection),
  • Figure 9b shows the detection limit (0.63 aM or less, gray) of the RNA of SFTS according to the CRISPR mediated biosensor, more sensitive than the SMR biosensor alone (black)
  • SFTS fever with thrombocytopenia syndrome
  • SFTS with dCas9 RNP SFTS detection using dCas9 RNP
  • 10 is a detection limit of real-time PCR for DNA and a real-time RT-PCR for RNA, and (a) shows a linear correlation between the concentration of target DNA and the Ct value of fluorescence signal by real-time PCR, and shows a low concentration ( ⁇ 100 copies / ml) of target DNA was not detected (over 40 Ct value), and (b) showed a linear correlation between the concentration of target RNA and the Ct value of fluorescence signal by real-time RT-PCR, with a low concentration ( ⁇ 100 copies / ml) of the target RNA showed an undetectable (over 40 Ct value) (ST standard curve, SFTS standard curve: SFTS standard curve),
  • Figure 11a shows the distress and specific detection (ST) of ST from clinical samples according to the CRISPR mediated biosensor, which is more sensitive and specific than SMR biosensor alone (black) (P1-3: ST patient serum) Positive, N1-3: negative to SFTS patient serum),
  • FIG. 11B shows the distress and specific detection (gray) of SFTS-RNA from clinical samples according to the CRISPR mediated biosensor, which is more sensitive and specific than the SMR biosensor alone (black) (P1-3: SFTS). Positive with patient serum, N1-3: negative with ST patient serum).
  • the present invention provides a protein that binds to a target nucleic acid sequence; Or it provides a composition for improving the sensitivity and specificity of nucleic acid detection, comprising the protein and gRNA (guide RNA) complex binding thereto as an active ingredient.
  • gRNA guide RNA
  • the protein binding to the target nucleic acid sequence may be a zinc finger protein or a TAL effector protein, but is not limited thereto.
  • the protein and the gRNA (gRNA) complex that binds to it are a dCas9 (dead Cas, nuclease-inactive Cas9) protein and a complex of gRNA that binds to it or dCpf1 (dead Cpf1, nuclease-inactive Cpf1) protein and binding thereto It may be a complex of gRNA, but is not limited thereto.
  • the present invention when the present invention includes a complex of a dCas9 (dead Cas, nuclease-inactive Cas9) protein and a gRNA binding thereto as an active ingredient, the present invention may provide a composition with greatly improved sensitivity and specificity of nucleic acid detection. .
  • dCas9 dead Cas, nuclease-inactive Cas9
  • the present invention provides a composition for improving the sensitivity and specificity of nucleic acid detection, including dCas9 (dead Cas, nuclease-inactive Cas9) protein and gRNA (guide RNA) binding to a target nucleic acid sequence as an active ingredient.
  • dCas9 dead Cas, nuclease-inactive Cas9 protein
  • gRNA guide RNA binding to a target nucleic acid sequence as an active ingredient.
  • the dCas9 protein may be represented by the amino acid sequence of SEQ ID NO: 1, but is not limited thereto.
  • the target may be any one of the causative agents of an infectious disease selected from the group consisting of Orientia tsutsugamushi (OT), Bunyavirus, Mycobacterium tuberculosis, MERS virus and respiratory virus, but is not limited thereto. .
  • OT Orientia tsutsugamushi
  • Bunyavirus Bunyavirus
  • Mycobacterium tuberculosis Mycobacterium tuberculosis
  • MERS virus respiratory virus
  • the composition may further include a nucleic acid polymerase, a primer capable of amplifying a target nucleic acid, and a buffer solution.
  • the nucleic acid is not particularly limited, but may be any DNA or RNA, and may be chromosomal DNA, mitochondrial DNA, mRNA, rRNA, tRNA, miRNA, cfDNA, cfRNA, ctDNA and the like present in the cell.
  • DCas9 of the present invention is a variant in which the 10th aspartic acid is replaced with alanine and the 840th histidine is replaced with alanine in the amino acid of Cas9, and the nuclease activity is inhibited.
  • electrophoresis resulted in Cas9 WT cutting the target DNA, resulting in cleavage fragments, but dCas9 did not show cleavage fragments. This shows that the nuclease activity of dCas9 is inhibited (Conformational control of DNA target cleavage by CRISPR-Cas9, Nature 527, 110-113).
  • the present invention also provides a kit for improving sensitivity and specificity of nucleic acid detection, including dCas9 (dead Cas, nuclease-inactive Cas9) protein and gRNA (guide RNA) binding to a target nucleic acid sequence as an active ingredient.
  • dCas9 dead Cas, nuclease-inactive Cas9 protein
  • gRNA guide RNA
  • the present invention also provides a method for amplifying a target nucleic acid by adding a dCas9 protein and a guide RNA (gRNA) that binds to a target nucleic acid sequence to a target nucleic acid-containing sample; And it provides a method for improving the sensitivity and specificity of nucleic acid detection, comprising the step of detecting the amplified target nucleic acid amplification product.
  • the dCas9 protein may be represented by the amino acid sequence of SEQ ID NO: 1, but is not limited thereto.
  • the step of amplifying the target nucleic acid is not particularly limited as long as it is a method capable of amplifying the target nucleic acid, PCR, real-time PCR (RT-PCR), reverse transcriptase PCR (reverse transcriptase PCR), Isothermal nucleic acid amplification and Silicon Microring Resonator (SMR) may be used to amplify the target nucleic acid.
  • PCR real-time PCR
  • reverse transcriptase PCR reverse transcriptase PCR
  • Isothermal nucleic acid amplification Silicon Microring Resonator (SMR) may be used to amplify the target nucleic acid.
  • SMR Silicon Microring Resonator
  • the nucleic acid is not particularly limited, but may be any DNA or RNA, chromosomal DNA, mitochondrial DNA, mRNA, rRNA, tRNA, miRNA and the like present in the cell.
  • the amplified product may be detected by methods known in the art, for example, gel electrophoresis, enzyme-linked gel assay (ELGA), electrochmiluminescent (ECL), fluorescent material And radioisotopes may be used.
  • gel electrophoresis enzyme-linked gel assay (ELGA), electrochmiluminescent (ECL), fluorescent material And radioisotopes may be used.
  • the fluorescent material includes a rhodamine-based compound including rhodamine, tamra, and the like; Fluorescein including fluorine, fluorescein isothiocyanate (FITC) and fluorecein amidite (FAM); Bodipy (boron-dipyrromethene); Alexa fluor (alexa fluor); And fluorescent materials such as cyanine, such as Cy3, Cy5, Cy7, and indocianin green, but are not limited thereto.
  • Fluorescein including fluorine, fluorescein isothiocyanate (FITC) and fluorecein amidite (FAM)
  • Bodipy boron-dipyrromethene
  • Alexa fluor alexa fluor
  • fluorescent materials such as cyanine, such as Cy3, Cy5, Cy7, and indocianin green, but are not limited thereto.
  • the radioisotope is H-3, C-14, P-32, S-35, Cl-36, Cr-51, Co-57, Co-58, Cu-64, Fe-59, Y- 90, I-124, I-125, Re-186, I-131, Tc-99m, Mo-99, P-32, CR-51, Ca-45, Ca-68, etc. may be used, but is not particularly limited thereto. It doesn't work.
  • dCas9 ribonucleoprotein (RNP) purification T7 Express BL21 (DE3) E. coli cells were transformed with pET28a-His6-dCas9 plasmid. Incubate E. coli in Luria-Bertani (LB) broth until OD600 is 0.5-0.7 and then 0.2 mM isopropyl ⁇ -dl-thiogalactopyranoside (IPTG) at 16 ° C. for 16 hours. Cultures) to induce protein expression.
  • LB Luria-Bertani
  • IPTG isopropyl ⁇ -dl-thiogalactopyranoside
  • Cell pellets were obtained by centrifugation at 5,000 g and sonicated in elution buffer [50 mM NaH 2 PO 4 , 300 mM NaCl, 10 mM imidazole (pH 8.0), 1 mM PMSF, 1 mM DTT, 1 mg / mL lysozyme]. Treated and eluted. The aqueous eluate was obtained by centrifugation at 8,000 g and reacted with Ni-NTA agarose beads for 1-2 hours (Qiagen).
  • Protein bound Ni-NTA agarose beads were washed with rinse [50 mM NaH 2 PO 4 , 300 mM NaCl, 20 mM imidazole (pH 8.0)] and dCas9 protein was imidazole containing buffer [50 mM NaH 2 PO 4 , 300 mM NaCl, 250 mM imidazole, pH 8.0). Eluted protein buffer was ion exchanged using a 100 K Amicon centrifugal filter (Millipore), concentrated and analyzed on a 4-12% Bis-Tris gel (ThermoFisher).
  • PCR products 400 ng containing Orientia Tsutsugamushi (OT) and severe fever with thrombocytopenia syndrome (SFTS) DNA sequences, respectively, were treated with 5.9 ⁇ l of rehydration buffer and 280 mM magnesium acetate (MgAc). ) 0.5 [mu] l solution provided by TwistAmp Basic RT Kit. 10 ⁇ l of the buffered PCR product was reacted with 1 ⁇ g Cas9 protein and 750 ng sgRNA at 37 ° C. for 1 hour. As a positive control of the cleavage assay, the same PCR product was cleaved under lx buffer 3.1 (New England BioLabs). RNase A (4 ⁇ g) was added to remove sgRNA and the final product analyzed by agarose gel electrophoresis.
  • MgAc mM magnesium acetate
  • the dsDNA template was prepared by annealing the 5 ′ biotinylated target DNA strand and the non-biotinylated non-target DNA strand at a 1: 1.5 molar ratio. Each sequence is as follows.
  • OT_1_F_biotin TATAAAGATCTTGTTA AATTGCAGCGTCATGCAGGAATTAGGAAAGC (SEQ ID NO: 2)
  • OT_1_R GCTTTCCTAATTCCTGCATGACG CTGCAATTTAACAAGATCTTTATA (SEQ ID NO: 3)
  • SFTS_F_biotin AAAAATTAGCTGCCCAACAAGAAGAA GATGCAAAGAATCAAGGTGAA (SEQ ID NO: 4)
  • SFTS_R TTCACCTTGATTCTTTGCATCTTCTTCTTGTTGG GCAGCTAATTTTT (SEQ ID NO: 5)
  • SMR and RPA Recombinase Polymerase Amplification
  • the SMR biosensor was treated with oxygen plasma cleaning (power: 100 W, O 2 : 80 sccm) for 1 minute, and 2% 3-aminopropyltriethoxysilane (APTES) dissolved in 95% ethanol for 2 hours at room temperature. ) Soaked in solution.
  • the SMR biosensor was then cured at 120 ° C. for 15 minutes.
  • the SMR biosensor is then reacted with 2.5% glutaraldehyde (GAD) dissolved in deionized water containing 10 mM sodium cyanoborohydride for 1 hour at room temperature, washed with deionized water and under high purity nitrogen gas. Dried.
  • GAD glutaraldehyde
  • the biosensor was reacted with the target primer dissolved in PBS (1 mM) containing 20 mM sodium cyanoborohydride solution for 16 hours at room temperature, and the PBS Washing with to remove unbound target primer.
  • PBS 1 mM
  • an amine group was introduced and used at the 5 'position of the target primer.
  • Primers for ST and SFTS detection were designed using SFTS-S fragments and ST-56-kDa type-specific genes (see Table 1).
  • RPA and RT-RPA solutions were prepared, respectively.
  • 29.5 ⁇ l of rehydration buffer, 15 ⁇ l of RNase inhibitor and water, and 2.5 ⁇ l of each 10 ⁇ M primer were mixed.
  • the reaction mixture was then added to the lyophilized enzyme, and 2.5 ⁇ l of 280 mM magnesium acetate (MgAc) solution dispensed into the cap of each tube.
  • MgAc magnesium acetate
  • dCas9 RNP 300 ng dCas9 and 225 ng gRNA
  • the biosensor was placed on TEC, Alpha Omega Instruments, and a constant DC voltage was applied and the temperature was maintained at 38 ° C for DNA and 43 ° C for RNA.
  • the resonance spectrum of the biosensor was measured immediately and the reference was used to obtain a baseline. Wavelength shifts were measured every 5 minutes up to 30 minutes to monitor amplification of the target nucleic acid in the absence of expression and in real time. Relative resonance wavelength shift was calculated by the following equation.
  • ⁇ pm (target wavelength value, pm)-(non-target wavelength value, pm)
  • Viral RNA was extracted from SFTS samples using QIAamp Viral RNA Kit (Qiagen Inc., Chatsworth, CA, USA), and genomic DNA was extracted from ST samples using QIAamp DNA mini kit (Qiagen).
  • RNA fragments containing the target region were amplified with primers containing the T7 promoter sequence on the antisense strand. Amplification products were transcribed in vitro using the MEGAscript T7 Transcription Kit (Ambion Life Technologies, Carlsbad, Calif., USA). Synthetic RNA transcripts were purified using a MEGAclear Kit (Ambion) and quantified with a Nanodrop spectrophotometer (Thermo Scientific, Waltham, Mass., USA).
  • ST bacterial DNA control DNA fragments containing the target region were amplified by PCR. Amplified DNA fragments were quantified with a Nanodrop spectrophotometer (Thermo Scientific, Waltham, Mass., USA).
  • Target DNA used as a template was obtained from clinical samples and real time PCR and real time RT-PCR analysis were performed using the primers listed in Table 1.
  • Real-time PCR was performed in a denaturation process at 95 ° C. for 15 minutes, 45 cycles of 30 seconds at 95 ° C., 30 seconds at 55 ° C., and 30 seconds at 72 ° C., and a final extension step of 10 minutes at 72 ° C.
  • Target DNA (5 ⁇ l) was amplified in a total of 20 ⁇ l of reaction [2 ⁇ brilliant SYBR green RT-qPCR master mix and 25 pmol of each primer].
  • Real-time RT-PCR analysis was performed by modifying the AriaMx (Aligent) Instrument protocol as follows. That is, target RNA (5 ⁇ l) was amplified in a total of 20 ⁇ l of reaction [2 ⁇ brilliant SYBR green RT-qPCR master mix and 25 pmol of each primer]. The initial cDNA synthesis step was followed by 15 cycles of 20 minutes at 50 ° C., then 15 minutes at 95 ° C., 15 seconds at 95 ° C., 20 seconds at 55 ° C. and 20 seconds at 72 ° C., and a cooling step at 40 ° C. for 30 seconds. Was performed. SYBR Green signal of amplified product was obtained using AriaMx Real-Time PCR System (Agilent).
  • ST and SFTS serum samples were collected from patients at Asan Medical Center.
  • SFTS was detected viral RNA by real-time RT-PCR in serum using DiaStar 2X OneStep RT-PCR Pre-Mix kit (SolGent, Daejeon, South Korea).
  • ST diagnosis was determined by confirming either a single positive result of an immunofluorescence assay (IFA; SD Bioline Tsutsugamushi Assay; Standard Diagnostics, Yongin, South Korea) or a ⁇ 1: 640 or 4-fold increase in IFA titers in serial samples. This protocol was approved by the Institutional Review Board (IRB) of the Asan Medical Center and proceeded with the consent of all participants.
  • IFA immunofluorescence assay
  • a combination of CRISPR / dCas9 and SMR biosensors could detect pathogenic nucleic acids from clinical samples in real time without labeling.
  • pathogenic nucleic acids Oriantia tsutsugamushi (OT), the causative agent of S. typus (ST), and Swine virus, the cause of severe fever with thrombocytopenia syndrome (SFTS) gRNAs targeting (bunyavirus) were produced respectively (see FIGS. 2 and 3).
  • dCas9 RNP enhances detection sensitivity in SMR biosensors
  • amplification of DNA fragments from ST samples and enhancement of signals in ST treated with dCas9 RNP were observed, which were treated with ST alone and Cas9 RNP.
  • detection sensitivity was improved in ST treated with dCas9 RNP as shown in FIG. 6, and this sensitivity improvement was due to specific binding of dCas9 RNP to a target fragment on an SMR biosensor. 2 times higher, the difference between the non-target and the target was increased by more than 4 times, particularly prevented the non-specific amplification of the non-target was shown to significantly improve the sensitivity and specificity (see Fig. 7).
  • dCas9 RNP was treated by concentration to improve detection sensitivity of pathogenic nucleic acids as shown in FIG. 8, and the detection efficiency of pathogenic nucleic acids was the best in 3x dCas9 RNP (300 ng of dCas9 + 225 ng gRNA). [1x dCas9 RNP (100 ng dCas9 + 75 ng gRNA), 3x dCas9 RNP (300 ng dCas9 + 225 ng gRNA), 5x dCas9 RNP (500 ng dCas9 + 375 ng gRNA)]
  • the detection limit of the CRISPR mediated biosensor according to the present invention was confirmed to be detected by ST (0.54 aM) and SFTS (0.63 aM) within 30 minutes using dCas9 RNP as shown in FIGS. 9A and 9B. This detection limit was found to be superior to the detection limit of SMR biosensors alone ( ⁇ 10 copies) (FIG. 9A, FIG. 9B) and real time PCR ( ⁇ 100 copies) (FIG. 10).
  • pathogenic nucleic acids such as ST and SFTS could be detected more sensitively than SMR biosensor alone or real-time PCR.
  • a clinical sample was selected from a total of six patients consisting of three patients with ST and three patients with SFTS.
  • the CRISPR mediated biosensor according to the present invention was able to clearly distinguish between ST and SFTS quickly, sensitively and specifically from clinical samples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 dCas9 단백질을 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법에 관한 것으로서, Cas9과 dCas9에 대한 기능적 차이를 바탕으로, dCas9 및 표적 핵산 서열에 결합하는 gRNA를 DNA, RNA 등을 포함한 핵산 증폭에 이용하면 핵산 증폭의 효율을 증가시킴으로써 최종적으로 타겟 진단의 민감도와 특이도를 향상시킬 수 있다. 특히, 바이오센서에 dCas9 및 이의 gRNA를 이용하면, 기존보다 핵산 증폭 효율이 2배 가량 높아지고, 비타겟과 타겟의 차이가 4배 이상 증가하며, 비타겟의 비특이적 증폭을 막아주기 때문에, 민감도와 특이도가 크게 향상되므로, 상기 조성물은 핵산 검출의 민감도 및 특이도 향상을 위해 매우 유용하게 활용될 수 있다.

Description

dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법
본 발명은 dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법에 관한 것이다.
천연 상태 그대로 검출하기 어려운 핵산을 표지하여 검출하는 방법은 분자생물학이나 세포생물학의 다양한 분야에 응용되어 왔다. 특이적인 혼성화 반응 (specific hybridization reaction)을 이용하는 서던 블로팅 (Southern blotting), 노던 블로팅 (Northern blotting), 인시츄 혼성화 (in situ hybridization), 핵산 마이크로어레이 (microarray)에서 신호를 검출하기 위해 표지 물질이 부착된 핵산이 널리 사용되어 왔다. 중합효소연쇄반응 (polymerase chain reaction, PCR)에서 표지된 단량체 (표지된 dNTP) 또는 표지된 프라이머를 사용하여 DNA를 증폭함과 동시에 DNA를 표지하는 방법이 알려져 있다. 이렇게 표지된 DNA를 마이크로어레이로 검출할 수 있다.
PCR과 동시에 핵산을 표지하는 방법은 표지를 위한 별도의 단계가 필요하지 않은 장점이 있는 반면, 형광 염료 등으로 표지된 단량체를 사용하는 경우 표지되지 않은 단량체를 사용하는 경우보다 PCR의 효율이 떨어지는 단점이 있다. 또한, RNA는 PCR 방법으로 증폭할 수 없기 때문에 PCR로 표지하는 방법으로 RNA를 검출하려면 역전사 (reverse transcription)를 통해 cDNA를 제조하는 단계가 필요하고, 특히 마이크로RNA (microRNA, miRNA)와 같이 길이가 짧은 경우 cDNA 제조가 번거로운 문제가 있다. 이에, 보다 향상된 민감도와 특이도를 갖는 핵산 검출 기술의 개발이 절실한 실정이다.
앞서 설명된 방법들의 경우, 많은 양의 검출 핵산을 보유한 경우에 타겟이 되는 핵산을 검출하기에 용이한 방법들이다, 현재도 많이 사용하고 있음에도 불구하고, 적은 양의 타겟 핵산이 존재할 시에는 이를 검출하기가 매우 어려운 실정이며 (민감도가 낮음), 다른 저해제들로 인해서 특정 타겟만을 검출하지 못하고, 비특정 타겟을 잘못 검출하는 경우 (특이도가 낮음)가 빈번하다.
직접 환자를 대상으로 환자의 혈액, 소변 등과 같은 체액에서 검출할 시에는 보다 많은 저해제들로 인해서 민감도와 특이도가 매우 낮게 나오고 있는 실정이다. 요즘 전 세계적으로 새롭게 출범하는 바이러스나 박테리아의 경우, 초기에 진단하고 치료하는 것을 필요로 하기 때문에 빠르고 정확하게 검출할 수 있는 방법들이 필요한데, 이러한 신변종 질병의 경우, 타겟 인자들이 매우 적은 양으로 존재하기 때문에 보다 민감하고 특이도 있는 방법의 개발이 절실하다.
이와 더불어서 암을 일으키는 바이오마커들의 변이들을 확인하기 위한 방법에도 민감도와 특이도가 향상된 방법의 적용이 필요한 상황이다. 민감도와 특이도가 높은 새로운 기술의 개발만큼, 기존의 기술과 접목함으로써 민감도와 특이도를 높일 수 있는 기술의 개발이 중요하다.
본 발명의 목적은 dCas9(dead Cas, nuclease-inactive Cas9) 단백질 및 표적 핵산 서열에 결합하는 gRNA(guide RNA)를 유효성분으로 포함하는, 핵산 검출의 민감도 및 특이도 향상용 조성물 및 이를 이용한 핵산 검출의 민감도 및 특이도 향상 방법을 제공하는 데에 있다.
상기 목적을 달성하기 위하여, 본 발명은 표적 핵산 서열에 결합하는 단백질; 또는 상기 단백질 및 이와 결합하는 gRNA(guide RNA) 복합체를 유효성분으로 포함하는, 핵산 검출의 민감도 및 특이도 향상용 조성물을 제공한다.
또한, 본 발명은 dCas9(dead Cas, nuclease-inactive Cas9) 단백질 및 표적 핵산 서열에 결합하는 gRNA(guide RNA)를 유효성분으로 포함하는, 핵산 검출의 민감도 및 특이도 향상용 조성물을 제공한다.
또한, 본 발명은 dCas9(dead Cas, nuclease-inactive Cas9) 단백질 및 표적 핵산 서열에 결합하는 gRNA(guide RNA)를 유효성분으로 포함하는, 핵산 검출의 민감도 및 특이도 향상용 키트를 제공한다.
또한, 본 발명은 표적 핵산 함유 시료에 dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA(guide RNA)를 첨가하여 표적 핵산을 증폭시키는 단계; 및 상기 증폭된 표적 핵산 증폭 산물을 검출하는 단계를 포함하는, 핵산 검출의 민감도 및 특이도 향상 방법을 제공한다.
본 발명은 dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법에 관한 것으로서, 결합 및 절단 기능을 갖는 Cas9과 절단 기능이 불활성화 되고 단지 결합 기능만을 갖는 dCas9에 대한 기능적 차이를 바탕으로, dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용하면 DNA, RNA와 같은 핵산 증폭에 이용할 경우 핵산 증폭의 효율을 증가시킴으로써 최종적으로 타겟 진단의 민감도와 특이도를 탁월하게 향상시킬 수 있다.
또한, 본 발명에 따른 dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물을 바이오센서에 적용할 경우, 기존보다 증폭효율이 2배 가량 높아지고, 비타겟과 타겟의 차이가 4배 이상 증가하며, 특히 비타겟의 비특이적 증폭을 막아주어 민감도와 특이도가 탁월하게 향상되므로, 본 발명은 민감도 및 특이도가 향상된 핵산 검출에 유용하게 활용될 수 있다.
도 1은 본 발명에 따른 CRISPR 매개 바이오센서의 개략도 (SMR sensor: silicon microring resonator sensor, with dCas9: dCas9 사용, with dCas9: No dCas9: dCas9 미사용)를 나타낸 것이고,
도 2 및 도 3은 쯔쯔가무시병 (scrub typhus, ST)의 원인균인 오리엔티아 쯔쯔가무시균 (Orientia tsutsugamushi, OT)과 중증열성혈소판감소증후군 (severe fever with thrombocytopenia syndrome, SFTS)의 원인균인 부니아바이러스 (Bunyavirus)을 검출을 위해 제작한 gRNAs 디자인 개략도를 나타낸 것이고 (dsDNA: double stranded DNA, ssRNA: single stranded RNA, 표적 부위는 파란색으로 강조하고 PAM 서열은 붉은 색으로 표시),
도 4는 완충액 조건에서 gRNA 활성을 확인하기 위한 In vitro 절단 분석 결과로서, gRNA가 표적 PCR 산물과 매칭될 때만 Cas9 RNP는 RPA 완충액과 NEBuffer 3.1 조건 모두에서 PRC 산물을 절단하는 것을 나타낸 것이고 (ST: scrub typhus, SFTS: severe fever with thrombocytopenia syndrome),
도 5는 dCas9 RNP 및 5' 비오틴화 DNA 듀플렉스를 이용한 EMSA 분석 결과로서, 표적 DNA 듀플렉스는 RPA 완충액과 NEBuffer 3.1 조건 모두에서 매칭된 gRNA에 의해 단지 이동되었을 뿐, 절단되지 않는 것을 나타낸 것이고 (ST: scrub typhus, Ctrl: 표적 핵산 없는 대조군, sgRNA: single guide RNA),
도 6은 CRISPR 매개 바이오센서의 30분 이내 ST-DNA 검출 결과 (ST: SMR biosensor 단독, ST with dCas9 RNP: dCas9을 처리한 SMR 바이오센서, ST with Cas9 RNP: Cas9 처리한 SMR 바이오센서)를 나타낸 것이고 (ST: scrub typhus, ST with dCas9 RNP: dCas9 사용한 ST 검출, ST with Cas9 RNP: No dCas9: dCas9 미사용 ST 검출),
도 7은 CRISPR 매개 바이오센서의 15분 이내 ST 검출을 위한 공명 파장 이동 결과 (SMR biosensor alone: 검정, with dCas9 RNP: 밝은 회색, with Cas9 RNP: 어두운 회색)를 나타낸 것이고 (ST: scrub typhus, Empty: 표적 핵산 없는 대조군),
도 8은 CRISPR 매개 바이오센서의 30분 동안 상대적 공명 파장 이동 결과 [ST: scrub typhus, dCas9 RNP; ST without dCas9 RNP, ST with 1x dCas9 RNP (100 ng dCas9 + 75 ng gRNA), ST with 3x dCas9 RNP (300 ng dCas9 + 225 ng gRNA), and ST with 5x dCas9 RNP (500 ng dCas9 + 375 ng gRNA)]를 나타낸 것이고,
도 9a는 CRISPR 매개 바이오센서에 따른 ST의 dsDNA의 검출 한계 (0.54 aM 이하, 회색)를 나타낸 것으로 SMR 바이오센서 단독(검정색)보다 민감한 것을 나타낸 것이고 (ST: scrub typhus, ST with dCas9 RNP: dCas9 RNP 이용 ST 검출),
도 9b는 CRISPR 매개 바이오센서에 따른 SFTS의 RNA의 검출 한계 (0.63 aM 이하, 회색)를 나타낸 것으로 SMR 바이오센서 단독(검정색)보다 민감한 것을 나타낸 것이고 (SFTS: fever with thrombocytopenia syndrome, SFTS with dCas9 RNP: dCas9 RNP 이용 SFTS 검출),
도 10은 DNA용 실시간 PCR의 검출 한계와 RNA용 실시간 RT-PCR의 검출 한계로, (a) 실시간 PCR에 의해 표적 DNA의 농도와 형광 신호의 Ct 값 간의 선형 상관관계를 나타내며, 낮은 농도(<100 copies/ml)의 표적 DNA는 검출되지 않았고 (over 40 Ct value), (b) 실시간 RT-PCR에 의해 표적 RNA의 농도와 형광 신호의 Ct 값 간의 선형 상관관계를 나타내며, 낮은 농도(<100 copies/ml)의 표적 RNA는 검출되지 않은 것 (over 40 Ct value)을 나타낸 것이고 (ST standard curve: ST 표준 검량선, SFTS standard curve: SFTS 표준 검량선),
도 11a는 CRISPR 매개 바이오센서에 따른 임상시료로부터 ST의 고민감 및 특이적 검출(회색)을 나타낸 것으로 SMR 바이오센서 단독(검정색)보다 민감하고 특이적으로 검출된 것 (P1-3: ST 환자 혈청으로 양성, N1-3: SFTS 환자 혈청으로 음성)을 나타낸 것이고,
도 11b는 CRISPR 매개 바이오센서에 따른 임상시료로부터 SFTS-RNA의 고민감 및 특이적 검출(회색)을 나타낸 것으로 SMR 바이오센서 단독(검정색)보다 민감하고 특이적으로 검출된 것 (P1-3: SFTS 환자 혈청으로 양성, N1-3: ST 환자 혈청으로 음성)을 나타낸 것이다.
본 발명은 표적 핵산 서열에 결합하는 단백질; 또는 상기 단백질 및 이와 결합하는 gRNA(guide RNA) 복합체를 유효성분으로 포함하는, 핵산 검출의 민감도 및 특이도 향상용 조성물을 제공한다.
상세하게는, 상기 표적 핵산 서열에 결합하는 단백질은 징크핑거 단백질(zinc finger protein) 또는 TAL 이펙터 단백질(Transription activator-like effector protein)일 수 있으나, 이에 제한되는 것은 아니다.
상세하게는, 상기 단백질 및 이와 결합하는 gRNA(guide RNA) 복합체는 dCas9(dead Cas, nuclease-inactive Cas9) 단백질 및 이와 결합하는 gRNA의 복합체 또는 dCpf1(dead Cpf1, nuclease-inactive Cpf1) 단백질 및 이와 결합하는 gRNA의 복합체일 수 있으나, 이에 제한되는 것은 아니다.
가장 바람직하게는, 본 발명은 dCas9(dead Cas, nuclease-inactive Cas9) 단백질 및 이와 결합하는 gRNA의 복합체를 유효성분으로 포함할 경우, 핵산 검출의 민감도 및 특이도가 크게 향상된 조성물을 제공할 수 있다.
이에, 본 발명은 dCas9(dead Cas, nuclease-inactive Cas9) 단백질 및 표적 핵산 서열에 결합하는 gRNA(guide RNA)를 유효성분으로 포함하는, 핵산 검출의 민감도 및 특이도 향상용 조성물을 제공한다. 바람직하게는, 상기 dCas9 단백질은 서열번호 1의 아미노산 서열로 표시될 수 있으나, 이에 제한되는 것은 아니다.
상기 표적은 오리엔티아 쯔쯔가무시균 (Orientia tsutsugamushi, OT), 부니아 바이러스 (Bunyavirus), 결핵균, 메르스 바이러스 및 호흡기 바이러스로 이루어진 군에서 선택된 감염성 질환의 원인균 중 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.
상세하게는, 상기 조성물은 핵산 중합효소, 표적 핵산을 증폭할 수 있는 프라이머 및 완충용액을 추가적으로 포함할 수 있다.
상세하게는, 상기 핵산은 특별히 제한되지 않으나, 모든 DNA 또는 RNA가 될 수 있고, 세포에 존재하는 염색체 DNA, 미토콘드리아 DNA, mRNA, rRNA, tRNA, miRNA, cfDNA, cfRNA, ctDNA 등이 될 수 있다.
본 발명의 "dCas9"은 Cas9의 아미노산 중에서 10번째 아스파르트산을 알라닌으로, 840번째 히스티딘을 알라닌으로 바꾼 변형체로 뉴클레아제 활동성을 억제한 것이다. 이전 보고에 따르면, Cas9 WT과 dCas9을 타겟하는 gRNA 및 DNA와 함께 처리한 후 전기영동한 결과로 Cas9 WT은 타겟하는 DNA를 잘라 절단 조각이 나타나지만, dCas9은 절단 조각이 나타나지 않는다. 이는 dCas9의 뉴클레아제 활동성이 억제된 것을 보여준다(Conformational control of DNA target cleavage by CRISPR-Cas9, Nature 527, 110-113).
또한, 본 발명은 dCas9(dead Cas, nuclease-inactive Cas9) 단백질 및 표적 핵산 서열에 결합하는 gRNA(guide RNA)를 유효성분으로 포함하는, 핵산 검출의 민감도 및 특이도 향상용 키트를 제공한다.
또한, 본 발명은 표적 핵산 함유 시료에 dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA(guide RNA)를 첨가하여 표적 핵산을 증폭시키는 단계; 및 상기 증폭된 표적 핵산 증폭 산물을 검출하는 단계를 포함하는, 핵산 검출의 민감도 및 특이도 향상 방법을 제공한다. 바람직하게는, 상기 dCas9 단백질은 서열번호 1의 아미노산 서열로 표시될 수 있으나, 이에 제한되는 것은 아니다.
상세하게는, 상기 표적 핵산을 증폭시키는 단계는 표적 핵산을 증폭시킬 수 있는 방법이면 특별히 제한되지 않으나, PCR, 실시간 PCR(real-time PCR; RT-PCR), 역전사 효소 PCR(reverse transcriptase PCR), 등온 핵산 증폭(isothermal nucleic acid amplification) 및 실리콘 공진기 센서(Silicon Microring Resonator; SMR) 등을 이용하여 표적 핵산을 증폭시킬 수 있다.
상세하게는, 상기 핵산은 특별히 제한되지 않으나, 모든 DNA 또는 RNA가 될 수 있고, 세포에 존재하는 염색체 DNA, 미토콘드리아 DNA, mRNA, rRNA, tRNA, miRNA 등이 될 수 있다.
한편, 상기에서 증폭된 산물은 당업계에서 알려진 방법에 의하여 검출(detection)될 수 있는데, 예를 들면 젤 전기영동(gel electrophoresis), ELGA(enzyme-linked gel assay), ECL(electrochmiluminescent), 형광물질, 방사선 동위원소 등을 이용할 수 있다.
상기 형광물질로는 로다민(rhodamine), 탐라(TAMRA) 등을 포함하는 로다민계; 플루오세인, FITC (fluorescein isothiocyanate) 및 FAM (fluorecein amidite)등을 포함하는 플루오세인계(fluorescein); 보디피계(bodipy, boron-dipyrromethene); 알렉사플로어계 (alexa fluor); 및 Cy3, Cy5, Cy7, 인도시아닌그린을 포함하는 시아닌계(cyanine) 등의 형광물질을 사용할 수 있으나, 이에 제한되지 않는다.
또한, 상기 방사성 동위원소로는 H-3, C-14, P-32, S-35, Cl-36, Cr-51, Co-57, Co-58, Cu-64, Fe-59, Y-90, I-124, I-125, Re-186, I-131, Tc-99m, Mo-99, P-32, CR-51, Ca-45, Ca-68 등을 사용할 수 있으나, 특별히 이에 제한되지는 않는다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<실험예>
하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.
1. 단백질 정제
재조합 dCas9 RNP (ribonucleoprotein) 정제를 위해, T7 Express BL21 (DE3) E.coli 세포를 pET28a-His6-dCas9 플라스미드로 형질전환 시켰다. 30 ℃, Luria-Bertani (LB) 브로스에서 E.coli를 OD600가 0.5-0.7이 될 때까지 배양한 후 16 ℃에서 16 시간 동안 0.2 mM의 이소프로필 β-d-l-티오갈락토피라노사이드 (IPTG)로 배양하여 단백질 발현을 유도하였다. 5,000 g에서 원심분리하여 세포 펠렛을 얻었고, 용출 완충액 [50 mM NaH2PO4, 300 mM NaCl, 10 mM 이미다졸 (pH 8.0), 1 mM PMSF, 1 mM DTT, 1 mg/mL 라이소자임]에서 초음파 처리하여 용출시켰다. 수용성 용출액은 8,000 g에서 원심분리하여 수득하였고, Ni-NTA 아가로스 비즈와 1-2 시간 동안 반응시켰다 (Qiagen). 단백질 결합 Ni-NTA 아가로스 비즈를 세정액[50 mM NaH2PO4, 300 mM NaCl, 20 mM 이미다졸 (pH 8.0)]으로 세정하였고, dCas9 단백질은 이미다졸 함유 완충액 [50 mM NaH2PO4, 300 mM NaCl, 250 mM 이미다졸 (pH 8.0)]으로 용출시켰다. 100 K Amicon 원심분리 필터 (Millipore)를 이용하여 용출된 단백질 완충액을 이온 교환하고, 농축한 후 4-12 % Bis-Tris 겔 (ThermoFisher)로 분석하였다.
2. in vitro 절단 분석
오리엔티아 쯔쯔가무시균 (Orientia Tsutsugamushi, OT) 및 중증열성혈소판감소증후군 (severe fever with thrombocytopenia syndrome, SFTS) DNA 서열을 각각 함유하는 PCR 산물 (400 ng)을 재수화 완충액 5.9 ㎕ 과 280 mM 마그네슘 아세테이트 (MgAc) 용액 0.5 ㎕ [TwistAmp Basic RT 키트 제공]으로 혼합하였다. 완충액이 혼합된 PCR 산물 10 ㎕을 37 ℃에서 1 시간 동안 1 ㎍ Cas9 단백질과 750 ng sgRNA와 반응시켰다. 절단 분석의 양성 대조군으로 동일한 PCR 산물을 1x 완충액 3.1 (New England BioLabs) 조건으로 절단시켰다. RNase A (4 ㎍)을 첨가하여 sgRNA를 제거하고 아가로스 겔 전기영동으로 최종 산물을 분석하였다.
3. in vitro 결합 분석
dsDNA 주형은 5' 비오틴화 표적 DNA 가닥과 비-비오틴화 비-표적 DNA 가닥을 1:1.5 몰비율에서 어닐링 하여 준비하였다. 이때 각각의 서열은 다음과 같다.
1) 오리엔티아 쯔쯔가무시균의 5' 비오틴화 표적 DNA 가닥
OT_1_F_biotin: TATAAAGATCTTGTTA AATTGCAGCGTCATGCAGGAATTAGGAAAGC (서열번호 2)
2) 오리엔티아 쯔쯔가무시균의 비-비오틴화 비표적 DNA 가닥
OT_1_R: GCTTTCCTAATTCCTGCATGACG CTGCAATTTAACAAGATCTTTATA (서열번호 3)
3) SFTS의 5' 비오틴화 표적 DNA 가닥
SFTS_F_biotin: AAAAATTAGCTGCCCAACAAGAAGAA GATGCAAAGAATCAAGGTGAA (서열번호 4)
4) SFTS의 비-비오틴화 비표적 DNA 가닥
SFTS_R: TTCACCTTGATTCTTTGCATCTTCTTCTTGTTGG GCAGCTAATTTTT (서열번호 5)
10 nM dsDNA를 절단 완충액 조건 하에서 300 nM dCas9 및 1 μM sgRNA와 반응시켰다. 37 ℃에서 20 분 동안 반응시킨 후, 5 mM MgCl2로 보강된 0.5x TBE 완충액을 이용하여 10% TBE 겔에 처리하였다. 그 후, in vitro 결합 상태를 화학발광 핵산 검출 모듈 키트 (ThermoFisher) 및 Biodyne B 나일론 멤브레인 (ThermoFisher)을 이용하여 제조자의 지침에 따라 전기영동 이동성 분석 (EMSA)을 수행하였다.
4. 실리콘 마이크로링 공진기(Silicon Microring Resonator; SMR) 제작
SMR 바이오센서를 표적 핵산의 검출을 위한 검출 시스템으로 이용하기 위해 종래 알려진 방법에 따라 SMR과 RPA (Recombinase Polymerase Amplification)를 제작하고 작동시켰다.
먼저, SMR 바이오센서를 산소 플라즈마 클리닝 (전력: 100W, O2: 80 sccm)을 1분 동안 처리하고, 실온에서 2시간 동안 95 % 에탄올에 용해된 2% 3-아미노프로필트리에톡시실란 (APTES) 용액에 담구었다. 그 후, SMR 바이오센서를 120 ℃에서 15분 동안 경화시켰다. 그 후, SMR 바이오센서를 10 mM 소듐 시아노보로하이드라이드를 함유한 탈이온수에 용해된 2.5% 글루타르알데히드 (GAD)과 실온에서 1시간 동안 반응시키고, 탈이온수로 세정하며, 고순도 질소 가스 하에서 건조하였다. 다음으로, SMR 바이오센서 상에 표적 프라이머를 고정화 하기 위하여, 바이오센서를 20 mM 소듐 시아노보로하이드라이드 용액을 함유한 PBS (1 mM)에 용해시킨 표적 프라이머와 실온에서 16 시간 동안 반응시키고, PBS로 세정하여 결합되지 않은 표적 프라이머를 제거하였다. 이때, 상기 표적 프라이머의 5' 위치에 아민기를 도입하여 사용하였다. ST와 SFTS 검출을 위한 프라이머는 SFTS-S 단편과 ST-56-kDa 타입-특이적 유전자를 각각 이용하여 디자인 하였다 (표 1 참조).
분석법 명명 서열 (5’-3’) 서열번호
RT-PCR SFTS-F CGAGAGAGCTGGCCTATGAA 서열번호 6
SFTS-R TTCCCTGATGCCTTGACGAT 서열번호 7
ST-F GCAGCAGCTGTTAGGCTTTT 서열번호 8
ST-R TTGCAGTCACCTTCACCTTG 서열번호 9
SMR 바이오센서 SFTS-F GGAGGCCTACTCTCTGTGGCAAGATGCCTTCA 서열번호 10
SFTS-R GGCCTTCAGCCACTTTACCCGAACATCATTGG 서열번호 11
ST-F GCAGCAGCAGCTGTTAGGCTTTTAAATGGCAATG 서열번호 12
ST-R GCTGCTTGCAGTCACCTTCACCTTGATTCTTTG 서열번호 13
5. SMR 바이오센서 단독 및 CRISPR 매개 바이오센서 작동
SMR 바이오센서 단독으로 이용하여 표적 핵산을 증폭하고 검출하기 위하여, RPA와 RT-RPA 용액을 각각 준비하였다. RPA와 RT-RPA 용액을 준비하기 위해 재수화 완충액 29.5 ㎕, RNase 억제제와 물 15 ㎕, 10 μM 각 프라이머 2.5 ㎕를 혼합하였다. 그 후, 반응 혼합물을 동결건조 효소에 첨가하고, 각 튜브의 캡에 분주된 280 mM 마그네슘 아세테이트 (MgAc) 용액 2.5 ㎕을 첨가하였다. 균질한 분배를 위해 단일 방향 진탕 혼합을 하였다. 혼합 후, 50 ㎕의 반응 완충액을 10 ㎕ 액적으로 5회 나누었다. 검출을 위한 반응 개시를 위해, 각각의 10 ㎕ 반응 액적에 환자의 혈청으로부터 추출된 핵산 5 ㎕와 dCas9 RNP (300 ng dCas9 및 225 ng gRNA) 3 ㎕를 첨가한 후, 컨트롤러를 갖는 thermo electric cooler (TEC, Alpha Omega Instruments) 상에 바이오센서를 놓고 일정한 DC 전압을 인가하였고 일정한 온도 (DNA는 38 ℃, RNA는 43 ℃)를 유지하였다. 바이오센서의 공명 스펙트럼을 즉시 측정하였고, 기준선을 얻기 위해 레퍼런스를 이용하였다. 파장 시프트는 최대 30분까지 매 5분 마다 측정하여 무표식 및 실시간으로 표적 핵산의 증폭을 모니터링 하였다. 상대 공명 파장 시프트는 다음 식으로 계산하였다.
ΔΔpm = (표적 파장 값, pm) - (비표적 파장 값, pm)
6. 핵산 시료의 추출 및 준비
QIAamp Viral RNA Kit (Qiagen Inc., Chatsworth, CA, USA)를 이용하여 SFTS 시료로부터 바이러스 RNA를 추출하였고, QIAamp DNA mini kit (Qiagen)를 이용하여 ST 시료로부터 게놈 DNA를 추출하였다. SFTS 바이러스 RNA 전사체 대조군을 준비하기 위해, 표적 영역을 함유한 RNA 단편을 안티센스 가닥 상에 T7 프로모터 서열을 함유하는 프라이머로 증폭하였다. MEGAscript T7 Transcription Kit (Ambion Life Technologies, Carlsbad, CA, USA)을 이용하여 in vitro에서 증폭산물을 전사시켰다. MEGAclear Kit (Ambion)를 이용하여 합성 RNA 전사체를 정제하였고 Nanodrop spectrophotometer (Thermo Scientific, Waltham, MA, USA)으로 정량하였다. ST 박테리아 DNA 대조군을 준비하기 위해, 표적 영역을 함유한 DNA 단편을 PCR에 의해 증폭하였다. 증폭된 DNA 단편을 Nanodrop spectrophotometer (Thermo Scientific, Waltham, MA, USA)로 정량하였다.
7. 실시간 PCR 및 실시간 RT-PCR 분석
주형으로 이용한 표적 DNA는 임상 시료로부터 얻었고, 표 1에 기재된 프라이머를 이용하여 실시간 PCR 및 실시간 RT-PCR 분석을 수행하였다. 실시간 PCR은 95 ℃에서 15분 동안 변성 공정, 95 ℃에서 30초, 55 ℃에서 30초 및 72 ℃에서 30초의 45회 주기와, 72 ℃에서 10분 최종 연장 단계로 수행하였다. 표적 DNA (5 ㎕)를 총 20 ㎕의 반응물 [2x brilliant SYBR green RT-qPCR master mix 및 25 pmol의 각 프라이머]에서 증폭시켰다.
그리고, 실시간 RT-PCR 분석은 AriaMx (Aligent) Instrument 프로토콜을 변형하여 다음과 같이 수행하였다. 즉, 표적 RNA (5 ㎕)를 총 20 ㎕의 반응물 [2x brilliant SYBR green RT-qPCR master mix 및 25 pmol의 각 프라이머]에서 증폭시켰다. 초기 cDNA 합성 단계는 50 ℃에서 20분, 그 후 95 ℃에서 15분, 95 ℃에서 15초, 55 ℃에서 20초 및 72 ℃에서 20초의 15회 주기와, 40 ℃에서 30초 동안 냉각 단계로 수행하였다. AriaMx Real-Time PCR System (Agilent)를 이용하여 증폭산물의 SYBR Green 신호를 얻었다.
8. 임상 표본 준비
ST 및 SFTS 혈청 시료를 아산 메디컬 센터의 환자로부터 수집하였다. SFTS는 DiaStar 2X OneStep RT-PCR Pre-Mix kit (SolGent, Daejeon, South Korea)를 이용하여 혈청에서 실시간 RT-PCR에 의해 바이러스 RNA를 검출하였다. ST 진단은 연속 시료에서 면역형광 분석 (IFA; SD Bioline Tsutsugamushi Assay; Standard Diagnostics, Yongin, South Korea)의 단일 양성 결과 또는 IFA 역가의 ≥ 1:640 또는 4배 증가 중 어느 하나를 확인하여 판단하였다. 이러한 프로토콜은 아산 메디컬 센터의 IRB (Institutional Review Board, 임상시험심사위원회)에 의해 승인 받았고, 모든 참가자에게 동의를 받아 진행하였다.
< 실시예 1> CRISPR 매개 바이오센서의 민감도 및 특이도 분석
도 1과 같이, CRISPR/dCas9와 SMR 바이오센서의 조합을 이용하여 표식 없이 실시간으로 임상 시료로부터 병원성 핵산을 검출할 수 있었다. 이러한 병원성 핵산의 검출을 위해, 쯔쯔가무시병 (scrub typhus, ST)의 원인균인 오리엔티아 쯔쯔가무시균(Orientia tsutsugamushi, OT)과 중증열성혈소판감소증후군 (severe fever with thrombocytopenia syndrome, SFTS)의 원인균인 부니아바이러스 (bunyavirus)를 표적으로 하는 gRNA를 각각 제작하였다 (도 2 및 도 3 참조).
in vitro 절단 분석과 전기영동 이동성 분석 (EMSA)을 통해 RPA 완충액에서 Cas9 RNP는 표적 DNA 절단을 유도하고, dCas9 RNP는 표적 DNA와 결합하는 것을 관찰하였다 (도 4 및 도 5 참조).
또한, SMR 바이오센서에서 dCas9 RNP가 검출 민감도를 향상시키는지를 검토하기 위해, ST 시료로부터 DNA 단편을 증폭하고 dCas9 RNP로 처리된 ST에서 신호의 증강을 관찰하였고, 이를 ST 단독과 Cas9 RNP로 처리된 ST와 비교한 결과, 도 6과 같이 dCas9 RNP로 처리된 ST에서 검출 민감도가 향상되었고, 이러한 민감도 향상은 SMR 바이오센서 상에서 dCas9 RNP의 표적 단편과의 특이적 결합에 의한 것이며,기존보다 증폭효율이 2배 가량 높아졌고, 비타겟과 타겟의 차이가 4배 이상 증가하였으며, 특히 비타겟의 비특이적 증폭을 막아주어 민감도와 특이도가 탁월하게 향상된 것으로 나타났다 (도 7 참조).
그리고, 도 8과 같이 병원성 핵산의 검출 민감도 향상을 위해 dCas9 RNP를 농도별로 처리하였고, 3x dCas9 RNP (300 ng의 dCas9 + 225 ng의 gRNA)에서 병원성 핵산의 검출 효율이 가장 우수한 것으로 나타났다. [1x dCas9 RNP (100 ng dCas9 + 75 ng gRNA), 3x dCas9 RNP (300 ng dCas9 + 225 ng gRNA), 5x dCas9 RNP (500 ng dCas9 + 375 ng gRNA)]
본 발명에 따른 CRISPR 매개 바이오센서의 검출 한계는 도 9a 및 도 9b와 같이 dCas9 RNP를 이용하여 30분 이내 ST (0.54 aM) 및 SFTS (0.63 aM)로 각각 검출하는 것을 확인하였다. 이러한 검출 한계는 SMR 바이오센서 단독 (~10 copies) (도 9a, 도 9b) 및 실시간 PCR (~100 copies)의 검출 한계 (도 10)보다 탁월한 것으로 확인되었다.
따라서, 본 발명에 따른 CRISPR 매개 바이오센서를 이용하면 ST 및 SFTS와 같은 병원성 핵산을 SMR 바이오센서 단독 또는 실시간 PCR 방법보다 매우 민감하게 검출할 수 있었다.
<실시예 2> CRISPR 매개 바이오센서를 이용한 임상 시료 분석
본 발명에 따른 CRISPR 매개 바이오센서가 신속성, 고민감성 및 특이성을 요구하는 신종 감염성 질환에서의 임상 적용에 유용한지를 검토하였다. SFTS와 ST는 실질적으로 임상 증상이 중첩되므로, 초기에 이들을 구분하기 위한 분자적 진단 테스트는 매우 중요하며, ST용 특이적 항미생물 치료법과 SFTS용 적절한 예방법을 제공하기 위해 반드시 필요하다.
이에, 본 발명에서는 3명의 ST를 갖는 환자와, 3명의 SFTS를 갖는 환자로 구성된 총 6명의 환자로부터 임상 시료를 선별하였다.
ST의 진단용 시료를 ST 프라이머를 갖는 CRISPR 매개 바이오센서로 분석한 결과, 도 11a와 같이 SFTS 시료가 아닌 ST 시료에서만 향상된 신호가 관찰되었다. 또한, 이러한 시료들로부터 SFTS를 진단하기 위해 SFTS 프라이머를 갖는 CRISPR 매개 바이오센서로 분석한 결과, 도 11b와 같이 단지 SFTS 시료에서만 향상된 신호가 관찰되었다.
따라서, 본 발명에 따른 CRISPR 매개 바이오센서는 임상시료로부터 ST와 SFTS를 신속하면서도 민감하고 특이적으로 명확하게 구분할 수 있었다.

Claims (11)

  1. 표적 핵산 서열에 결합하는 단백질; 또는 상기 단백질 및 이와 결합하는 gRNA(guide RNA) 복합체를 유효성분으로 포함하는, 핵산 검출의 민감도 및 특이도 향상용 조성물.
  2. dCas9(dead Cas, nuclease-inactive Cas9) 단백질 및 표적 핵산 서열에 결합하는 gRNA(guide RNA)를 유효성분으로 포함하는, 핵산 검출의 민감도 및 특이도 향상용 조성물.
  3. 제2항에 있어서, 상기 dCas9 단백질은 서열번호 1의 아미노산 서열로 표시되는 것을 특징으로 하는, 핵산 검출의 민감도 및 특이도 향상용 조성물.
  4. 제2항에 있어서, 상기 표적은 오리엔티아 쯔쯔가무시균 (Orientia tsutsugamushi, OT), 부니아 바이러스 (Bunyavirus), 결핵균, 메르스 바이러스 및 호흡기 바이러스로 이루어진 군에서 선택된 감염성 질환의 원인균인 것을 특징으로 하는, 핵산 검출의 민감도 및 특이도 향상용 조성물.
  5. 제2항에 있어서, 상기 조성물은 핵산 중합효소, 표적 핵산을 증폭할 수 있는 프라이머 및 완충용액을 추가적으로 포함하는 것을 특징으로 하는, 핵산 검출의 민감도 및 특이도 향상용 조성물.
  6. 제2항에 있어서, 상기 핵산은 DNA 또는 RNA인 것을 특징으로 하는, 핵산 검출의 민감도 및 특이도 향상용 조성물.
  7. 제1항 내지 제6항 중 어느 한 항의 조성물을 포함하는, 핵산 검출의 민감도 및 특이도 향상용 키트.
  8. 표적 핵산 함유 시료에 dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA(guide RNA)를 첨가하여 표적 핵산을 증폭시키는 단계; 및
    상기 증폭된 표적 핵산 증폭 산물을 검출하는 단계를 포함하는, 핵산 검출의 민감도 및 특이도 향상 방법.
  9. 제8항에 있어서, 상기 dCas9 단백질은 서열번호 1의 아미노산 서열로 표시되는 것을 특징으로 하는, 핵산 검출의 민감도 및 특이도 향상 방법.
  10. 제8항에 있어서, 상기 표적 핵산을 증폭시키는 단계는 PCR, 실시간 PCR(real-time PCR; RT-PCR), 역전사 효소 PCR(reverse transcriptase PCR), 등온 핵산 증폭(isothermal nucleic acid amplification) 및 실리콘 공진기 센서(Silicon Microring Resonator; SMR)로 이루어진 군에서 선택된 어느 하나 이상을 이용하여 표적 핵산을 증폭시키는 것을 특징으로 하는, 핵산 검출의 민감도 및 특이도 향상 방법.
  11. 제8항에 있어서, 상기 핵산은 DNA 또는 RNA인 것을 특징으로 하는, 핵산 검출의 민감도 및 특이도 향상 방법.
PCT/KR2017/009765 2016-09-07 2017-09-06 dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법 WO2018048194A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/331,148 US20190203280A1 (en) 2016-09-07 2017-09-06 Composition and method for improving sensitivity and specificity of detection of nucleic acids using dcas9 protein and grna binding to target nucleic acid sequence
EP17849078.5A EP3511421A4 (en) 2016-09-07 2017-09-06 COMPOSITION AND METHOD FOR IMPROVING THE SENSITIVITY AND SPECIFICITY OF DETECTING NUCLEIC ACIDS USING DCAS9 PROTEIN AND GRNA BINDING TO THE DESIRED NUCLEIC ACID SEQUENCE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0115024 2016-09-07
KR20160115024 2016-09-07
KR10-2017-0112474 2017-09-04
KR1020170112474A KR101964746B1 (ko) 2016-09-07 2017-09-04 dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법

Publications (1)

Publication Number Publication Date
WO2018048194A1 true WO2018048194A1 (ko) 2018-03-15

Family

ID=61561878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009765 WO2018048194A1 (ko) 2016-09-07 2017-09-06 dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법

Country Status (1)

Country Link
WO (1) WO2018048194A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109811072A (zh) * 2019-02-28 2019-05-28 广州微远基因科技有限公司 用于结核分枝杆菌复合群的crispr检测引物组及其用途
CN111187804A (zh) * 2020-02-20 2020-05-22 国家卫生健康委科学技术研究所 一种基于CRISPR/Cas12a的肺炎支原体核酸快速检测试剂盒及其检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150126946A (ko) * 2013-03-14 2015-11-13 카리부 바이오사이언시스 인코포레이티드 핵산-표적화 핵산의 조성물 및 방법
KR20150138075A (ko) * 2014-05-28 2015-12-09 주식회사 툴젠 불활성화된 표적 특이적 뉴클레아제를 이용한 표적 dna의 분리 방법
US20160010076A1 (en) * 2013-03-15 2016-01-14 The General Hospital Corporation RNA-Guided Targeting of Genetic and Epigenomic Regulatory Proteins to Specific Genomic Loci

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150126946A (ko) * 2013-03-14 2015-11-13 카리부 바이오사이언시스 인코포레이티드 핵산-표적화 핵산의 조성물 및 방법
US20160010076A1 (en) * 2013-03-15 2016-01-14 The General Hospital Corporation RNA-Guided Targeting of Genetic and Epigenomic Regulatory Proteins to Specific Genomic Loci
KR20150138075A (ko) * 2014-05-28 2015-12-09 주식회사 툴젠 불활성화된 표적 특이적 뉴클레아제를 이용한 표적 dna의 분리 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI [O] 23 August 2016 (2016-08-23), XP055473764, Database accession no. BAV54124.1 *
MORITA, SUMIYO ET AL.: "Targeted DNA Demethylation in Vivo Using dCas9-peptide Repeat and scFv-TET1 Catalytic Domain Fusions", NATURE BIOTECHNOLOGY, vol. 34, no. 10, 29 August 2016 (2016-08-29), pages 1060 - 1065, XP055459997 *
See also references of EP3511421A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109811072A (zh) * 2019-02-28 2019-05-28 广州微远基因科技有限公司 用于结核分枝杆菌复合群的crispr检测引物组及其用途
CN109811072B (zh) * 2019-02-28 2022-05-06 广州微远医疗器械有限公司 用于结核分枝杆菌复合群的crispr检测引物组及其用途
CN111187804A (zh) * 2020-02-20 2020-05-22 国家卫生健康委科学技术研究所 一种基于CRISPR/Cas12a的肺炎支原体核酸快速检测试剂盒及其检测方法

Similar Documents

Publication Publication Date Title
KR101964746B1 (ko) dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법
EP1330553B1 (en) A kit for detecting non-pathogenic or pathogenic influenza a subtype h5 virus
WO2016046635A1 (en) Methods for characterizing human papillomavirus associated cervical lesions
JPH08298A (ja) 臨床材料中のキノロン−耐性スタフイロコツカス・アウレウス(Staphylococcus aureus)病原体の検出のための迅速DNA試験
JP2008502362A (ja) 鳥インフルエンザウイルスサブタイプh5及びh5n1を検出するための診断用プライマー及び方法
CN113046475B (zh) 一种快速检测突变型新型冠状病毒的引物组合物及试剂盒
KR102245849B1 (ko) 코로나바이러스 검출용 조성물 및 이의 검출용 키트
WO2018048194A1 (ko) dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법
Roy et al. Diverse molecular techniques for early diagnosis of COVID-19 and other coronaviruses
WO2018151339A1 (ko) Dcas9/grna 복합체와 형광표지인자를 이용한 표적 유전자 검출 방법
WO2019059644A1 (ko) Esat6에 특이적으로 결합하는 dna 압타머 및 이의 용도
WO2019059645A1 (ko) Tb7.7에 특이적으로 결합하는 dna 압타머 및 이의 용도
WO2012002597A1 (ko) Β형 간염 바이러스 진단용 프라이머, 프로브, 이를 포함하는 키트 및 상기 키트를 이용한 β형 간염 바이러스 진단 방법
WO2011069398A1 (zh) 基于qcm和lamp的核酸快速检测方法
WO2005001097A1 (ja) Sarsコロナウイルスの検出法
JPH0556800A (ja) 単純ヘルペスウイルスの型特異的検出方法
WO2013078786A1 (zh) 乙型肝炎病毒突变体、突变扩增试剂盒及应用
WO2011142646A9 (ko) 인유두종바이러스 검출 및 유전형 확인 방법
CA2649456A1 (en) Primers for use in detecting metallo-beta-lactamases
WO2021015452A1 (ko) 표적 물질의 검출용 키트 및 이를 이용하여 표적 물질을 검출하는 방법
WO2012081907A2 (ko) 이콜라이 o157:h7균주에 대한 rna 앱타머
WO2012002594A1 (ko) C형 간염 바이러스 진단용 프라이머, 프로브, 이를 포함하는 키트 및 상기 키트를 이용한 c형 간염 바이러스 진단 방법
RU2762759C1 (ru) Способ пробоподготовки образцов изолятов коронавируса SARS-CoV-2 и олигонуклеотидные праймеры для его реализации
WO2019059643A1 (ko) Cfp10에 특이적으로 결합하는 dna 압타머 및 이의 용도
WO2017200249A1 (ko) 고형상 대상물을 이용한 핵산 추출방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17849078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017849078

Country of ref document: EP

Effective date: 20190408