WO2019059643A1 - Cfp10에 특이적으로 결합하는 dna 압타머 및 이의 용도 - Google Patents

Cfp10에 특이적으로 결합하는 dna 압타머 및 이의 용도 Download PDF

Info

Publication number
WO2019059643A1
WO2019059643A1 PCT/KR2018/011065 KR2018011065W WO2019059643A1 WO 2019059643 A1 WO2019059643 A1 WO 2019059643A1 KR 2018011065 W KR2018011065 W KR 2018011065W WO 2019059643 A1 WO2019059643 A1 WO 2019059643A1
Authority
WO
WIPO (PCT)
Prior art keywords
cfp10
protein
dna
present
tuberculosis
Prior art date
Application number
PCT/KR2018/011065
Other languages
English (en)
French (fr)
Inventor
김윤근
반창일
장철훈
Original Assignee
주식회사 엠디엡투스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠디엡투스 filed Critical 주식회사 엠디엡투스
Priority to US16/649,741 priority Critical patent/US11028396B2/en
Priority to CN201880062221.8A priority patent/CN111212910B/zh
Publication of WO2019059643A1 publication Critical patent/WO2019059643A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/5695Mycobacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/205Aptamer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/26Infectious diseases, e.g. generalised sepsis

Definitions

  • the present invention relates to a protein detection pressure tamer, and more particularly, to a DNA thermometer that specifically binds to CFP10 (Culture Filtrate Protein 10 kDa) known to be expressed in Mycobacterium tuberculosis H37Rv.
  • CFP10 Cosmetic Filtrate Protein 10 kDa
  • Tuberculosis is a common and fatal disease that is caused by infection with Mycobacterium tuberculosis. Symptoms of tuberculosis include symptoms such as a sudden loss of weight due to anorexia, high fever, and coughing with sputum mixed with blood. Diagnostic methods include X-ray, sputum smear, and PCR (PCR). These tuberculosis are commonly known to occur in many developing countries, including Africa, and are also recognized as diseases that have recently been eradicated. However, according to the statistics of the World Health Organization, according to the statistics of the world's top 10 deaths in 2015 is a serious disease, especially in Korea, OECD countries in the incidence and death rate of tuberculosis is overwhelming number one disgrace.
  • the National Tuberculosis Control Guideline has been put in place, and the first problem is the diagnosis of latent tuberculosis.
  • the number of patients with latent tuberculosis is estimated to be 2 billion, which is one third of the world 's population. 10% of them progress to active tuberculosis, and it is important to make an early diagnosis and treatment before they show symptoms.
  • TST tuberculin skin test
  • IGRA interferon gamma releasing assay
  • the rate of false positives is low due to the use of Mycobacterium tuberculosis-specific antigen compared to TST, but the lack of stability is a disadvantage when considering that the epidemic area of TB is mostly hot or humid.
  • the secretion of IFN-g is indirectly measured through stimulation in the blood, there is a drawback that the sensitivity is lowered.
  • CFP10 is known to be overexpressed in Mycobacterium tuberculosis H37Rv, which causes lethal tuberculosis in humans.
  • the mechanism of disease induction in the host is not known precisely, but it is presumed that IGRA mediates the Th1 cell-mediated immune response by forming a complex with ESAT6, which is used as an M. tuberculosis-specific antigen for IFN-g secretion.
  • Aptamer is a single-stranded DNA (ssDNA) or RNA having high specificity and affinity for a specific substance. Since it has a very high affinity to a specific substance and is stable, it has been recently developed and its application as a therapeutic agent and a sensor for diagnosis (Korean Patent No. 10-1279585).
  • the synthesis of platamer is possible by a relatively simple method, and it is possible to develop new detection methods using cells, proteins and even small organic substances as target substances, and its specificity and stability are much higher than those of already developed antibodies Therefore, it is possible to apply it to therapeutic drug development, drug delivery system, and diagnostic biosensor, and research is continuing.
  • the present inventors have made intensive efforts to develop a platamer which can replace an antibody against CFP10 (Culture Filtrate Protein 10 kDa). As a result, the inventors of the present invention prepared a DNA plasmid having a specific binding potency to CFP10 protein, .
  • an object of the present invention is to provide a DNA plasmid, which is a DNA aptamer that specifically binds to CFP10 (Culture Filtrate Protein 10 kDa), and which is composed of the nucleotide sequence of SEQ ID NO: 6 .
  • Another object of the present invention is to provide a composition for diagnosing tuberculosis, which comprises the DNA plasmin.
  • Yet another object of the present invention is to provide a culture filtrate protein 10 kDa (CFP10) -specific DNA plasmid; And a substrate on which the DNA aptamer is immobilized, wherein the DNA aptamer comprises the nucleotide sequence of SEQ ID NO: 6.
  • CFP10 culture filtrate protein 10 kDa
  • Still another object of the present invention is (1) a method for analyzing a biological sample, comprising the steps of: And measuring a level of CFP10 (Culture Filtrate Protein 10 kDa) bound to the biosensor.
  • the present invention also provides a method for providing information for diagnosis of tuberculosis.
  • the present invention provides a DNA Aptamer specifically binding to CFP10 (Culture Filtrate Protein 10 kDa), which comprises a nucleotide sequence of SEQ ID NO: 6 , And DNA thermometer.
  • CFP10 Cosmetic Filtrate Protein 10 kDa
  • the CFP10 may be expressed in, but is not limited to, Mycobacterium tuberculosis H37Rv.
  • the present invention provides a composition for diagnosing tuberculosis, which comprises the DNA plasmid.
  • the present invention also relates to a culture filtrate protein 10 kDa (CFP10) -specific DNA plasmid; And a substrate on which the DNA aptamer is immobilized, wherein the DNA aptamer comprises the nucleotide sequence of SEQ ID NO: 6.
  • CFP10 culture filtrate protein 10 kDa
  • the substrate may be composed of a metal electrode layer and a metal nanoparticle layer, and the metal may be gold (Au), but is not limited thereto.
  • the present invention provides a method for diagnosing tuberculosis comprising the step of contacting the DNA compactor with a sample of a test sample.
  • the present invention provides a method for testing a biosensor comprising the steps of: And measuring the level of the CFP 10 coupled to the biosensor.
  • the test sample may be blood of a subject requiring diagnosis of tuberculosis, and the blood may be whole blood, serum, plasma, or blood mononuclear cells.
  • the present invention provides diagnostic use of DNA Aptamer that specifically binds to CFP10 (Culture Filtrate Protein 10 kDa).
  • the DNA Aptamer according to the present invention not only has a specific binding ability to CFP10 (Culture Filtrate Protein 10 kDa) protein but also has a strong binding ability, so that the false negative reaction can be excluded in diagnosis of tuberculosis.
  • CFP10 Cosmetic Filtrate Protein 10 kDa
  • the DNA aptamer of the present invention has a high affinity with the target (CFP10) and a high exclusion to a substance other than the target, the false positive reaction can be excluded in the diagnosis of tuberculosis.
  • the DNA plasmid of the present invention is used, stability of the ELISA using the conventional antibody can be expected, and the aptamer is useful for development of a composition for diagnosing tuberculosis, biosensor for diagnosing tuberculosis, information providing method for diagnosing tuberculosis, etc. It is expected to be used for
  • FIG. 1 shows the results of high-purity recombinant CFP10 protein obtained by FPLC by amplifying CFP10 gene and confirming overexpression of recombinant CFP10 protein (the result of overexpression of Aft lane by inducing overexpression of Aft lane before induction of overexpression of Bef lane) to be.
  • FIG. 2 shows the result of selecting and confirming the binding (%) between ssDNA (single strand DNA) and CFP10.
  • FIG. 3 shows the result of confirming the Kd value for the platelet sequence through fluorescence measurement.
  • FIG. 4 shows the results of the electrophoretic mobility shift assay (EMSA) for the binding of CG6 and CG2 depressants to the CFP10 protein.
  • ESA electrophoretic mobility shift assay
  • FIG. 5 is a schematic diagram of a biosensor for detecting CFP10 protein using a DNA compactor.
  • 6A and 6B show the detection results of the CFP10 using the CG6 pressure tester.
  • FIG. 7 shows the results of the relative impedance change according to the reaction with each protein in the binding specificity test for the CFP10 protein.
  • FIG. 8 shows the change in the impedance value when the serum of a normal human and a tuberculosis patient was separated and treated with a CG6 caliper.
  • the present inventors have developed and purified a CFP10 in a bacterial expression system and used it as a systematic evolution of ligands by Exponential Enrichment technique, and the sequence and structure of the DNA plasmids were established to confirm the specific binding potency to the CFP10 (Culture Filtrate Protein 10 kDa) protein of the DNA compactor prepared in the present invention
  • the present invention has been completed on the basis thereof.
  • the present invention provides a DNA plasmid that specifically binds to CFP10 (Culture Filtrate Protein 10 kDa), and is characterized by comprising the nucleotide sequence of SEQ ID NO: 6.
  • CFP10 (culture filtrate protein 10 kDa)
  • ESAT6 early secretory antigen target
  • the ESAT6 / CFP10 complex is secreted by the ESX-1 secretion system, which uses the ESX-1 secretion system to deliver virulence factors to host macrophages and mononuclear leukocytes during infection. Malignant host cell secretion and attachment of the complex is known to contribute to the onset of M. tuberculosis.
  • the term " abtamer" is single stranded DNA (ssDNA) or RNA having high specificity and affinity for a particular material.
  • ssDNA single stranded DNA
  • RNA RNA having high specificity and affinity for a particular material.
  • the existing antibody-based methods are produced using a living body's immune system, so that they are relatively expensive and expensive. In some cases, the stability of the protein is problematic. It is possible to develop new detection methods by using simple methods and can use cell, protein, and even small organic substances as target substances. Therefore, it is possible to develop new detection methods using this method and its specificity and stability are much higher than those of antibodies already developed.
  • a DNA platemer was used for the specific detection of the protein.
  • the aptamer may preferably consist of the nucleotide sequence of SEQ ID NO: 6, but is not limited thereto.
  • the present invention provides a composition for diagnosing tuberculosis, which comprises the DNA plasmid.
  • the composition of the present invention may further include pharmacologically and physiologically acceptable carriers, excipients and diluents in addition to the DNA plasmin.
  • suitable carriers, excipients and diluents include lactose, dextrose Starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methylcellulose, amorphous cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate , Propylhydroxybenzoate, talc, magnesium stearate, and mineral oil.
  • the composition may further include conventional fillers, extenders, binders, disintegrants, surfactants, anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers, preservatives and the like in the case of pharmaceutical formulation.
  • the present invention also relates to a culture filtrate protein 10 kDa (CFP10) -specific DNA plasmid; And a substrate on which the DNA aptamer is immobilized, wherein the DNA aptamer comprises the nucleotide sequence of SEQ ID NO: 6.
  • CFP10 culture filtrate protein 10 kDa
  • the substrate on which the DNA aptamer of the present invention is immobilized is composed of a metal electrode layer and a metal nanoparticle layer.
  • the material of the electrode layer and the nanoparticle can be attracted by an electric field or a magnetic field, and any material And may be made of gold (Au), but is not limited thereto.
  • a specific binding sequence was identified by expressing and purifying CFP10 (Culture Filtrate Protein 10 kDa) protein (see Examples 1 to 3), and a tyramer having strong binding ability with CFP10 protein was screened See Example 4). Based on the experimental results, the binding force between the protein and the tympanic membrane was measured for fluorescence, and the presence or absence of the actual binding to the CFP10 protein was measured through the EMSA method (see Examples 5 to 6) To prepare a biosensor using the EIS method (see Example 7). In addition, the biosensor has excellent binding specificity to CFP10 protein, and thus it can be used as a method for providing information for diagnosis of tuberculosis (see Example 8).
  • CFP10 Cosmetic Filtrate Protein 10 kDa
  • the present invention provides a biosensor comprising: (1) treating a sample of a test sample with the biosensor; And measuring the level of CFP10 (Culture Filtrate Protein 10 kDa) bound to the biosensor.
  • CFP10 Cosmetic Filtrate Protein 10 kDa
  • the subject is not limited as long as it is a subject in need of diagnosis of tuberculosis, and the subject includes mammals and non-mammals, and the mammal includes rats, livestock, humans and the like, but can preferably be human.
  • the sample of the test sample may be blood of a subject requiring diagnosis of the tuberculosis, and the blood may be whole blood, serum, plasma, or blood mononuclear cells.
  • a forward primer (5'-CCC GGA TCC ATG GCA GAG ATG AAG ACC G3 '(SEQ ID NO: 1) containing BamH1 restriction enzyme recognition sequence) and Xho1 restriction enzyme recognition (5'CCC CTC GAG TCA GAA GCC CAT TTG CGA GGA CAG 3 '(SEQ ID NO: 2)) containing the sequence was used.
  • Genomic DNA of Mycobacterium tuberculosis H37Rv was used as a template for gene amplification and amplified by polymerase chain reaction (PCR) using i-pfu polymerase.
  • PCR polymerase chain reaction
  • Each step of the polymerase chain reaction is as follows. 1) Incubation at 98 ° C for 20 seconds, 2) Incubation at 55 ° C for 20 seconds in the step of combining template and primer, 3) Synthesis of new strand, The incubation was carried out in seconds, and this step was repeated 20 times.
  • the amplified CFP10 gene was cloned into a pET32a vector containing a (His) 6-tag through a reaction with a restriction enzyme and a DNA ligase, and the vector was used to transform BL21 (DE3) E. coli cells.
  • BL21 (DE3) cells transformed with CFP10 gene were cultured in LB (Luria Bertani) medium and cultured at 37 ° C until OD (optical density) reached 0.563 at UV 600nm. After that, IPTG (isopropyl-thio-b-D-galactopyranoside) was added to a final concentration of 20 mM to induce expression of the protein, followed by incubation at 37 ° C for 4 hours. Protein expression was confirmed by SDS PAGE, and the cells were separated from the culture medium using a centrifuge and washed once with PBS (10 mM sodium phosphate, 150 mM NaCl, pH 8.0) buffer.
  • PBS 10 mM sodium phosphate, 150 mM NaCl, pH 8.0
  • Cells were dissolved in a lysis buffer (20 mM Tris, 500 mM NaCl, 0.5 mM ⁇ -mercaptoethanol, 5% glycerol, pH 8.0) to purify the CFP10 protein expressed in the bacterial cell BL21 (DE3) Cells were destroyed by ultrasonication sonication for 15 minutes using an ultrasonic sonicator. The proteins and cells in the aqueous phase were separated for 40 minutes at 18,000 rpm using a centrifuge to separate them.
  • a lysis buffer (20 mM Tris, 500 mM NaCl, 0.5 mM ⁇ -mercaptoethanol, 5% glycerol, pH 8.0
  • Ni-NTA Ni-nitrilotriacetic acid
  • His 6-tag amino acid bind to obtain high purity protein.
  • a Ni-NTA column was connected to Fast protein liquid chromatography (FPLC), and CFP10 in an aqueous solution was poured into a column. Since the (His) 6-tag of the protein bound to the Ni-NTA column competitively binds to the compound of the imidazole, the elution buffer (20 mM Tris, 500 mM NaCl, 0.5 mM ⁇ -mercaptoethanol, 5% glycerol, 300 mM immidazole, pH 8.0) in order to separate CFP10 with high purity.
  • FPLC Fast protein liquid chromatography
  • MonoQ column which is an ion exchange column for separating according to the pI value of the protein, was connected to FPLC, and protein aqueous solution was flowed.
  • CFP10 was bound to the column and the purity was increased by repeating the elution buffer (50 mM Tris-HCl, 1 M NaCl, 0.5 mM ⁇ -MercaptoEthanol, 5% Glycerol, pH 8.00) sequentially. As a result, as shown in Fig. 1, high purity recombinant CFP10 protein was observed.
  • the purified CFP10 was immobilized on beads using Dynalbead (Invitrogen, Norway), a magnetic bead that was coated with cobalt on the surface and bound to the His-tag of the protein.
  • ssDNA library (100 pmole) dissolved in 100 uL binding buffer was incubated at 90 ° C for 3 minutes and then incubated at 4 ° C for 30 minutes. Then, it was reacted for 1 hour while shaking weakly with CFP10 protein immobilized on a magnetic bead. The beads were then washed twice with binding buffer to remove ssDNA that did not bind to the CFP10 protein bound to the beads.
  • the protein and the protein were separated using an elution buffer (20 mM Tris, 50 mM NaCl, 5 mM KCl, 5 mM MgCl 2 , 0.01% tween 20, 300 mM immidazole, pH 8.0)
  • the bound ssDNA was eluted.
  • the eluted ssDNA was precipitated with ethanol, dissolved in 60 ⁇ L of distilled water, and amplified by PCR using i-pfu polymerase (Intron Biotechnology, Korea) using a forward primer and a biotin-coupled reverse primer.
  • the concentration of ssDNA eluted from the repeated sorting was measured with a UV spectrometer (Biochrom Libra S22 spectrometer) The degree of binding was checked and the selection process was carried out. The degree of bonding (%) is as shown in Fig.
  • the 17th repeated ssDNA was amplified by PCR using unmodified Forward primer and Reverse primer, cloned into pENTR / TOPO vector (TOPO TA Cloning kit, Invitrogen, USA), and E. coli TOP10 cells (Invitrogen, USA).
  • the ssDNA-inserted clone was purified using a miniprep kit (MACHEREY-NAGEL, Germany) and analyzed for its nucleotide sequence (COSMO Genetech, Korea).
  • COSMO Genetech Korean
  • the amount of Cy3-labeled ssDNA aptamer bound to CFP10-immobilized magnetic beads was determined by fluorescence measurement (1420 Victor multilabel counter, PerkinElmer, USA) by separating only Cy3-labeled ssDNA bound to CFP10 using a magnet .
  • fluorescence measurement (1420 Victor multilabel counter, PerkinElmer, USA) by separating only Cy3-labeled ssDNA bound to CFP10 using a magnet .
  • the kd value of the DNA plasmomer having the CG6 base sequence could be measured.
  • FIG. 5 is a schematic diagram of a biosensor for detecting CFP10 protein using the DNA plasmin of the present invention.
  • the Nyquist scheme showed that the impedance value increased as the concentration of CFP10 increased (10 fM to 10 nM) (see FIG. 6A).
  • the detection limit of the CFP10 was quantitatively determined through the biosensor prepared above, and the detection limit was 0.97fM (See FIG. 6B).
  • binding specificity that does not react with other proteins in the blood is important in addition to the target CFP10.
  • binding specificity Respectively. At this time, the concentration of each protein in PBS was mixed and detected to be 10 pM.
  • CFP10 protein was excellent in specificity.
  • CFP10 is known to overexpress Mycobacterium tuberculosis in a host, and it is confirmed that CFP10 does not bind to the DNA plasmamer developed in the present invention, although it is known to be a Mycobacterium tuberculosis specific protein known to function by forming a complex with ESAT6. This means that the DNA aptamer of the present invention reacts with CFP10 with high binding specificity.
  • the serum of normal and tuberculous patients was treated with 10 ng / ml each on CG6 aptamer fixed electrode. As shown in Fig. 8, The higher impedance value was obtained.
  • the DNA plasmid CG6 developed in the present invention not only has a very high binding specificity to CFP10 but also can be used as a biosensor in a complex biological sample.
  • the DNA aptamer of the present invention targets CFP10 expressed in Mycobacterium tuberculosis as a target and exhibits a high affinity for a target and a low binding force to a substance other than a target.
  • a false diagnosis and a false- There is an advantage in obtaining the result.
  • the DNA plasmamer of the present invention, the composition for diagnosing tuberculosis using the same, the biosensor for diagnosing tuberculosis, and the tuberculosis diagnosis method can provide high reliability in the diagnosis of tuberculosis, Is expected to be widely used for the diagnosis of tuberculosis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 CFP10(Culture Filtrate Protein 10 kDa)에 특이적으로 결합하는 DNA 압타머, 이를 포함하는 결핵 진단용 바이오센서, 및 결핵 진단을 위한 정보제공 방법에 관한 것으로, 본 발명자들은 본 발명에 따른 DNA 압타머(DNA Aptamer)가 CFP10 단백질에 대하여 특이적인 결합능을 가질 뿐만이 아니라, 그 결합력 또한 우수하다는 사실을 확인하였다. 따라서 본 발명의 DNA 압타머를 이용한다면, 기존의 항체를 이용한 ELISA 방법보다 뛰어난 안정성을 기대할 수 있어, 상기 압타머는 결핵 진단용 조성물, 결핵 진단용 바이오센서, 결핵 진단을 위한 정보제공 방법 등의 개발 시에 유용하게 이용될 수 있을 것으로 기대된다.

Description

CFP10에 특이적으로 결합하는 DNA 압타머 및 이의 용도
본 발명은 단백질 검출 압타머에 관한 것으로, 보다 상세하게는 결핵균(Mycobacterium Tuberculosis) H37Rv에서 발현하는 것으로 알려진 CFP10(Culture Filtrate Protein 10 kDa)에 특이적으로 결합하는 DNA 압타머에 관한 것이다.
결핵은 Mycobacterium tuberculosis 균에 감염되어 발병하는 흔하고 치명적인 질병이다. 결핵의 증상은 식욕 부진으로 인한 급격한 체중 저하, 고열, 피가 섞인 가래를 동반한 기침 등의 증상이 있다. 진단법은 X선 검사, 객담 도말 검사, 중합효소 연쇄 반응법 (PCR) 등이 있으며 복합적으로 시도하여 최종 진단한다. 이러한 결핵은 흔히 아프리카 지역을 포함한 후진국에서 많이 발병하는 것으로 알려져 있고, 또한, 최근에는 퇴치된 질병이라 인식되어있다. 그러나 실제 세계보건기구의 통계에 따르면 2015년 전 세계 사망원인 10위 안에 드는 무서운 질병으로, 특히 우리나라는 OECD 국가 중 결핵의 발생률과 사망률에서 압도적인 수치로 1위의 불명예를 안고 있다. 이에 국가차원의 결핵관리지침을 내세웠고, 제일 문제시되는 점이 잠복 결핵의 진단으로, 잠복 결핵의 환자는 전 세계인구의 1/3인 20억 명으로 추산된다. 이들 중 10%가 활동성 결핵으로 진행하는데, 이들이 증상을 보이기 전에 조기 진단을 하여 치료를 하는 것이 중요하다.
현재 잠복결핵의 진단은 투베르쿨린 스킨 테스트 (Tuberculin Skin Test; TST), 인터페론감마 분비 검사 (Inteferon-gamma releasing assay; IGRA) 두 가지를 적용하고 있다. TST는 최소 48시간에서 72시간이 소요되고, BCG 백신 접종 또는 비결핵항산균 감염에 의해서 위양성을 나타낼 수 있다. IGRA의 경우 환자의 혈액을 결핵균 특이 항원이 부착된 튜브에 첨가하여 16시간의 자극을 준 후 인터페론감마의 분비량을 측정하는 간접적인 진단법이다. TST에 비해 결핵균 특이 항원의 사용으로 위양성 비율은 낮으나, 결핵의 유행 지역이 대부분 온도가 높거나 습한 지역임을 감안했을 때, 안정성의 부족이 단점으로 작용한다. 또한, 혈액 내 자극을 통해 IFN-g의 분비를 간접적으로 측정하므로 민감도가 떨어지는 단점이 존재한다.
한편, CFP10은 인간에 치명적인 결핵을 유발하는 Mycobacterium tuberculosis H37Rv에서 과발현하는 것으로 알려져 있다. 감염 시 숙주 내 질병 유발 메커니즘은 정확하게 알려져 있지 않으나, IGRA에서 IFN-g 분비를 위한 결핵균 특이 항원으로 사용되는 ESAT6와 함께 복합체를 형성하여 Th1 세포성 면역반응을 매개하는 것으로 추정된다.
압타머는 특정 물질에 대해 높은 특이성과 친화도를 가지는 단일가닥 DNA(ssDNA) 또는 RNA로서, 특정물질에 대한 친화도가 매우 높고 안정하기 때문에 최근 많이 개발되고 있고 이를 이용한 치료제 및 진단용 센서로의 응용이 활발히 진행되고 있다(한국 등록특허 10-1279585 참조). 압타머의 합성은 비교적 단순한 방법으로 가능하고 세포, 단백질 그리고 작은 유기물질까지도 표적물질이 될 수 있기 때문에 이를 이용한 새로운 검출방법들의 개발이 가능하며 그 특이성 및 안정성이 이미 개발되어 있는 항체에 비해 매우 높기 때문에 치료제 개발 및 약물전달 시스템, 진단용 바이오센서로의 응용이 가능하여, 이에 대한 연구가 계속 이루어지고 있다.
본 발명자는 CFP10(Culture Filtrate Protein 10 kDa)에 대한 항체를 대신할 수 있는 압타머를 개발하기 위하여 예의 노력한 결과, CFP10 단백질에 대한 특이적인 결합능을 가지는 DNA 압타머를 제조하였으며, 이에 기초하여 본 발명을 완성하게 되었다.
이에, 본 발명의 목적은 CFP10(Culture Filtrate Protein 10 kDa)에 특이적으로 결합하는 DNA 압타머 (DNA Aptamer)로서, 서열번호 6의 염기서열로 이루어지는 것을 특징으로 하는, DNA 압타머를 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 DNA 압타머를 포함하는, 결핵 진단용 조성물을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 CFP10(Culture Filtrate Protein 10 kDa) 특이적 DNA 압타머; 및 상기 DNA 압타머가 고정되어 있는 기판을 포함하되, 상기 DNA 압타머는 서열번호 6의 염기서열로 이루어지는 것을 특징으로 하는, 결핵 진단용 바이오센서를 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 (1) 피검체 시료를 상기 바이오센서에 처리하는 단계; 및 상기 바이오센서에 결합된 CFP10(Culture Filtrate Protein 10 kDa)의 수준(level)을 측정하는 단계를 포함하는, 결핵 진단을 위한 정보제공 방법을 제공하는 것이다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 CFP10(Culture Filtrate Protein 10 kDa)에 특이적으로 결합하는 DNA 압타머 (DNA Aptamer)로서, 서열번호 6의 염기서열로 이루어지는 것을 특징으로 하는, DNA 압타머를 제공한다.
본 발명의 일 구현예로서, 상기 CFP10는 결핵균 H37Rv에서 발현하는 것일 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명은 상기 DNA 압타머를 포함하는, 결핵 진단용 조성물을 제공한다.
또한, 본 발명은 CFP10(Culture Filtrate Protein 10 kDa) 특이적 DNA 압타머; 및 상기 DNA 압타머가 고정되어 있는 기판을 포함하되, 상기 DNA 압타머는 서열번호 6의 염기서열로 이루어지는 것을 특징으로 하는, 결핵 진단용 바이오센서를 제공한다.
본 발명의 일 구현예로서, 상기 기판은 금속 전극층 및 금속 나노입자층로 이루어지는 것일 수 있으며, 상기 금속은 바람직하게는 금(Au)일 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명은 (1) 피검체 시료를 상기 바이오센서에 처리하는 단계; 및 상기 바이오센서에 결합된 CFP10(Culture Filtrate Protein 10 kDa)의 수준(level)을 측정하는 단계를 포함하는, 결핵 진단을 위한 정보제공 방법을 제공한다.
또한, 본 발명은 상기 DNA 압타머와 피검체 시료를 접촉시키는 단계를 포함하는 결핵 진단방법을 제공한다.
또한, 본 발명은 상기 바이오센서에 피검체 시료를 처리하는 단계; 및 상기 바이오센서에 결합된 CFP10의 수준을 측정하는 단계를 포함하는 결핵 진단방법을 제공한다.
본 발명의 일 구현예로서, 상기 피검체 시료는 결핵의 진단이 필요한 개체의 혈액일 수 있으며, 상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있다.
또한, 본 발명은 CFP10(Culture Filtrate Protein 10 kDa)에 특이적으로 결합하는 DNA 압타머 (DNA Aptamer)의 결핵 진단용도를 제공한다.
본 발명에 따른 DNA 압타머(DNA Aptamer)는 CFP10(Culture Filtrate Protein 10 kDa) 단백질에 대하여 특이적인 결합능을 가질 뿐만이 아니라, 그 결합력 또한 우수한바, 결핵 진단에 있어 위음성 반응을 배제할 수 있다. 또한, 본 발명의 DNA 압타머는 표적(CFP10)과의 높은 친화력과 표적 외의 물질에 대한 높은 배타성을 가지고 있는바, 결핵 진단에 있어 위양성 반응을 배제할 수 있다. 본 발명의 DNA 압타머를 이용한다면, 기존의 항체를 이용한 ELISA 방법보다 뛰어난 안정성을 기대할 수 있어, 상기 압타머는 결핵 진단용 조성물, 결핵 진단용 바이오센서, 결핵 진단을 위한 정보제공 방법 등의 개발 시에 유용하게 이용될 수 있을 것으로 기대된다.
도 1은 CFP10 유전자를 증폭하여 재조합 CFP10 단백질의 과발현을 확인(Bef 레인은 과발현 유도 전, Aft 레인은 IPTG를 처리하여 과발현 유도한 결과)하고, FPLC를 통해 얻은 고순도의 재조합 CFP10 단백질을 관찰한 결과이다.
도 2는 ssDNA(single strand DNA)와 CFP10의 결합 정도(%)를 확인하고, 선별 과정을 진행한 결과이다.
도 3은 압타머 서열에 대한 Kd 값을 형광측정을 통하여 확인한 결과이다.
도 4는 CG6 및 CG2 압타머의 CFP10 단백질과의 결합여부를 EMSA(Electrophoric Mobility Shift Assay) 방법을 통하여 확인한 결과이다.
도 5는 DNA 압타머를 이용한 CFP10 단백질 검출용 바이오센서에 대한 개략적인 모식도이다.
도 6a 및 도 6b는 CG6 압타머를 이용한 CFP10 검출 결과를 나타낸 것이다.
도 7은 CFP10 단백질에 대한 결합특이성 실험에서 각 단백질과 반응에 따른 상대적인 임피던스 값의 변화를 나타낸 결과이다.
도 8은 정상인과 결핵 환자의 혈청을 분리하여 CG6 압타머에 처리하였을 때 임피던스 값의 변화를 나타낸 결과이다.
본 발명자는 CFP10(Culture Filtrate Protein 10 kDa)에 대한 항체를 대신할 수 있는 압타머를 개발하기 위하여 예의 노력한 결과, CFP10을 박테리아 발현시스템에서 발현 및 정제를 하고, 이를 이용하여 SELEX(Systematic Evolution of Ligands by Exponential enrichment) 기법을 이용하여 압타머를 선별하였으며, DNA 압타머들의 서열 및 구조를 확립하여, 본 발명에서 제조된 DNA 압타머의 CFP10(Culture Filtrate Protein 10 kDa) 단백질에 대한 특이적인 결합능을 확인하고, 이에 기초하여 본 발명을 완성하였다.
이하 본 발명을 상세히 설명한다.
본 발명은 CFP10(Culture Filtrate Protein 10 kDa)에 특이적으로 결합하는 DNA 압타머 (DNA Aptamer)로서, 서열번호 6의 염기서열로 이루어지는 것을 특징을 하는, DNA 압타머를 제공한다.
본 발명에서, "CFP10(Culture Filtrate Protein 10 kDa)"은 결핵균(Mycobacterium tuberculosis)의 병독성에 기여하는 항원으로서, 6kDaA 초기 분비 항원 표적(ESAT6)과 단단한 1 : 1 이합복합체를 형성한다. 상기 ESAT6/CFP10 복합체는 ESX-1 분비 시스템에 의해 분비되는데, 결핵균은 이 ESX-1 분비 시스템을 사용하여 감염 중, 숙주 대식세포와 단핵 세포 백혈구에 병독성 인자를 전달한다. 상기 복합체의 악성 숙주 세포 분비와 부착은 결핵균의 발병성에 대한 기여하는 것으로 알려져 있다.
본 발명에서 사용되는 용어, "압타머"란 특정 물질에 대해 높은 특이성과 친화도를 가지는 단일가닥 DNA(ssDNA) 또는 RNA이다. 기존에 개발되어 있는 항체를 이용한 방법은 생체의 면역시스템을 이용하여 만들어지기 때문에 비교적 많은 시간이 들고 고비용이라는 점, 단백질이기 때문에 그 안정성이 문제가 되는 경우가 있는 반면, 압타머는 합성에 있어서, 비교적 단순한 방법으로 가능하고 세포, 단백질 그리고 작은 유기물질까지도 표적물질이 될 수 있기 때문에 이를 이용한 새로운 검출방법들의 개발이 가능하며 그 특이성 및 안정성이 이미 개발되어 있는 항체에 비해 매우 높은 점에 착안하여, CFP10 단백질의 특이적 검출을 위하여 DNA 압타머를 사용하였다. 상기 압타머는 바람직하게는 서열번호 6의 염기서열로 이루어질 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명은 상기 DNA 압타머를 포함하는, 결핵 진단용 조성물을 제공한다.
본 발명의 조성물은 상기 DNA 압타머 외에 약리학적으로나 생리학적으로 허용되는 담체, 부형제, 희석제를 추가로 포함할 수 있으며, 이러한 조성물에 포함될 수 있는 적합한 담체, 부형제 및 희석제의 예로는 락토오스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 비정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유 등을 들 수있다. 상기 조성물은 약제화하는 경우, 통상의 충진제, 증량제, 결합제, 붕해제, 계면활성제, 항응집제, 윤활제, 습윤제, 향료, 유화제, 방부제 등을 추가로 포함할 수 있다.
또한, 본 발명은 CFP10(Culture Filtrate Protein 10 kDa) 특이적 DNA 압타머; 및 상기 DNA 압타머가 고정되어 있는 기판을 포함하되, 상기 DNA 압타머는 서열번호 6의 염기서열로 이루어지는 것을 특징을 하는, 결핵 진단용 바이오센서를 제공한다.
본 발명의 상기 DNA 압타머가 고정되어 있는 기판은 금속 전극층 및 금속 나노입자층으로 이루어지며, 상기 전극층 및 나노입자의 재질은 전기장 또는 자기장에 의해 유인될 수 있고 전기장의 특성을 변화시킬 수 있는 어떤 재질도 사용할 수 있으며, 바람직하게는 금(Au)으로 이루어질 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예에서는 CFP10(Culture Filtrate Protein 10 kDa) 단백질을 발현, 정제하여 특정 결합서열을 확인하였으며(실시예 1 내지 3 참조), CFP10 단백질과의 강한 결합능을 가진 압타머를 탐색하였다(실시예 4 참조). 또한, 상기 실험 결과에 기초하여, 단백질과 압타머 간의 결합력을 형광 측정하였고, EMSA 방법을 통해 CFP10 단백질에 대한 실제 결합 유무를 측정하였으며(실시예 5 내지 6 참조), 이를 통하여 발굴한 DNA 압타머를 가지고 CFP10를 검출하고자 EIS 방법을 이용하여 바이오센서를 제작하였다(실시예 7 참조). 또한, 상기 바이오센서는 CFP10 단백질에 대한 결합 특이성 역시 매우 우수한 바, 결핵 진단을 위한 정보제공 방법으로 이용될 수 있음을 확인하였다(실시예 8 참조).
이에, 본 발명은 (1) 피검체 시료를 상기 바이오센서에 처리하는 단계; 및 상기 바이오센서에 결합된 CFP10(Culture Filtrate Protein 10 kDa)의 수준(level)을 측정하는 단계를 포함하는, 결핵 진단을 위한 정보제공 방법을 제공한다.
본 발명에서 피검체는 결핵의 진단이 필요한 개체라면 제한되지 아니하며, 상기 개체는 포유류 및 비-포유류를 포함하고, 상기 포유류는 쥐, 가축, 인간 등을 포함하나, 바람직하게는 인간일 수 있다.
또한, 본 발명에서 피검체 시료는 상기 결핵의 진단이 필요한 개체의 혈액일 수 있으며, 상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1. CFP10 유전자 클로닝
CFP10(Culture Filtrate Protein 10 kDa)에 대한 유전자를 증폭하기 위해 BamH1 제한효소 인식 서열을 포함한 Forward 프라이머 (5'-CCC GGA TCC ATG GCA GAG ATG AAG ACC G3'(서열번호 1))와 Xho1 제한효소 인식서열을 포함하는 Reverse 프라이머 (5'CCC CTC GAG TCA GAA GCC CAT TTG CGA GGA CAG3'(서열번호 2))를 사용하였다.
유전자 증폭을 위한 주형(template)으로 Mycobacterium Tuberculosis H37Rv 의 genomic DNA를 사용하였고, i-pfu 중합효소(polymerase)를 이용하여 중합효소 연쇄 반응(polymerase chain reaction; PCR) 과정을 통해 증폭하였다. 중합효소 연쇄 반응의 각 단계는 다음과 같다. 1) 주형의 이중 가닥 DNA을 풀어주는 단계로 98℃에서 20초 incubation, 2) 주형과 프라이머가 결합하는 단계로 55℃에서 20초 incubation, 3) 새로운 가닥을 합성해 나가는 단계로 72℃에서 30초 incubation하였고, 이와 같은 단계를 20번 반복하였다.
증폭된 CFP10 유전자는 제한효소와의 반응 및 DNA ligase 통해 (His)6-tag이 포함된 pET32a 벡터(vector)에 클로닝 하였고, 상기 벡터를 이용하여 BL21(DE3) E. coli 세포에 형질전환 하였다.
실시예 2. CFP10 단백질의 발현
CFP10 유전자가 형질 전환된 BL21(DE3) 세포는 LB(Luria Bertani) 배지에서 배양하였으며, UV 600nm에서 OD(optical density)가 0.563에 도달할 때까지 37℃에서 배양하였다. 그 후, 단백질의 발현을 유도하기 위해 최종 농도가 20mM이 되도록 IPTG(isopropyl-thio-b-D-galactopyranoside)를 첨가한 후, 37℃에서 4시간 배양하였다. 단백질의 발현은 SDS PAGE로 확인하였고, 세포는 원심분리기를 이용하여 배지와 분리시킨 후, PBS(10mM sodium phosphate, 150mM NaCl, pH 8.0) buffer로 한번 씻어 주었다.
실시예 3. CFP10 단백질의 정제
박테리아 세포 BL21(DE3)에서 발현된 CFP10 단백질을 고순도로 정제하기 위해 세포 용균 버퍼(lysis buffer)(20mM Tris, 500mM NaCl, 0.5mM β-mercaptoethanol, 5% glycerol, pH 8.0)에 세포를 녹인 후, 초음파 분쇄기(sonicator)를 이용하여 15분 동안 초음파 분쇄(sonication)함으로써 세포를 파괴하였다. 수용액상의 단백질과 세포를 분리하기 위해 원심분리기를 이용하여 18,000rpm 에서 40분 동안 분리하였다.
또한, 고순도의 단백질을 얻기 위해 Ni-NTA(Ni-Nitrilotriacetic acid)와 (His)6-tag 아미노산이 결합하는 특성을 이용하였다. 구체적으로, 도 1에 나타낸 바와 같이, FPLC(Fast protein liquid chromatography)에 Ni-NTA 컬럼을 연결하고, 수용액상의 CFP10를 컬럼에 흘려줌으로서 결합시켰다. Ni-NTA 컬럼에 결합된 단백질의 (His)6-tag은 이미다졸(immidazole)의 화합물과 경쟁적으로 결합하기 때문에 표적 단백질을 컬럼에서 분리시키기 위해 elution buffer(20 mM Tris, 500 mM NaCl, 0.5 mM β-mercaptoethanol, 5% glycerol, 300 mM immidazole, pH 8.0)의 농도를 순차적으로 흘려줌으로서 CFP10를 고순도로 분리하였다.
나아가, 상기 분리된 단백질에서 더욱 고순도의 단백질을 얻기 위해서 추가적인 정제를 실시하였는데, 단백질의 pI값에 따라 분리하는 ion exchange 컬럼인 MonoQ 컬럼을 FPLC에 연결한 후 단백질 수용액을 흘려주었다. CFP10는 컬럼에 결합 후, elution buffer(50mM Tris-HCl, 1M NaCl, 0.5mM β-MercaptoEthanol, 5% Glycerol, pH 8.00)의 농도를 순차적으로 흘려줌으로서 한 번 더 분리하여, 순도를 높였다. 그 결과, 도 1에 나타낸 바와 같이, 고순도의 재조합 CFP10 단백질을 관찰할 수 있었다.
실시예 4. SELEX을 이용한 CFP10 단백질에 대한 압타머 탐색
4-1. ssDNA(single strand DNA)라이브러리의 제조
양 말단에 PCR 증폭 및 클로닝을 위한 프라이머의 결합서열을 갖고, 가운데 40개의 무작위 DNA염기서열을 포함하는 90개의 서열을 가지는 합성된 라이브러리(5'-CACCTAATACGACTCACTATAGCGGATCCGA-N40-CTGGCTCGAACAAGCTTGC-3'(서열번호 3))를 설계하였다. 또한, PCR 증폭 및 ssDNA 생성을 위하여 Forward프라이머(5'-CAC CTA ATA CGA CTC ACT ATA GCG GA-3'(서열번호 4))와 Reverse 프라이머(5'-GCA AGC TTG TTC GAG CCA G-3'(서열번호 5)) 및 바이오틴이 결합된 Reverse 프라이머(5'-Biotin-GCA AGC TTG TTC GAG CCA G-3')을 사용하였다. 여기서 사용된 모든 올리고 뉴클레어티드는 바이오닉스 사(한국)에서 합성 및 PAGE 정제하였다.
4-2. CFP10의 Ni-NTA 자성 비드에 고정화
정제된 CFP10는 표면에 코발트로 코팅되어 있어 단백질의 His-tag과 결합하는 자성 비드(magnetic bead)인 Dynalbead (invitrogen, 노르웨이)를 이용하여 bead에 고정하였다.
구체적으로 단백질 결합 버퍼 (20mM Tris, 50mM NaCl, 5mM KCl, 5mM MgCl2, 0.01% tween 20, pH 8.0) 100uL에 녹아 있는 단백질 1500pmole과 20ul의 bead를 외부 자석을 이용하여 결합버퍼로 세척 후, 한 시간 동안 실온에서 반응하여 bead에 고정화 하였다.
4-3. CFP10에 특이적인 압타머 선별
CFP10에 특이적인 압타머를 선별하기 위해 자성을 이용한 특이적 분리 방법을 수행하였다.
구체적으로, 먼저 ssDNA의 가장 안정한 구조형성을 위해, 100uL의 결합 버퍼에 녹아 있는 ssDNA 라이브러리(100pmole)를 90℃에서 3분 동안 배양 후, 4℃에서 30분 전 배양하였다. 그 후, 앞서 magnetic bead에 고정화된 CFP10 단백질과 함께 약하게 흔들어주면서 1시간 동안 반응하였다. 그 다음, bead에 결합된 CFP10 단백질과 결합하지 않는 ssDNA를 제거하기 위해 결합 버퍼로 bead를 두 번 세척하였다.
그 후, Magnetic bead에서 단백질과 결합한 ssDNA를 분리하기 위해 용출 버퍼(20 mM Tris, 50 mM NaCl, 5 mM KCl, 5 mM MgCl2, 0.01% tween 20, 300 mM immidazole, pH 8.0)를 이용해 단백질 및 결합 ssDNA를 용출하였다. 용출된 ssDNA는 에탄올을 이용해 침전시킨 후, 60 uL의 증류수에 용해한 다음 Forward 프라이머 및 바이오틴이 결합된 Reverse 프라이머를 이용하여 i-pfu polymerase(인트론 바이오테크놀로지, 한국)를 이용하여 PCR에 의해 증폭시켰다. 다음 선별 과정을 위한 ssDNA를 생성하기 위해, 바이오틴이 결합된 PCR 산물을 바이오틴과 결합하는 스트렙타아비딘(streptavidin)이 코팅된 자성 비드와 함께 커플링 버퍼(5mM Tris-HCl, 0.5mM EDTA, 1M NaCl, 0.0025% tween 20, pH 7.5)조건에서 1시간 배양하였다. 배양 후 ssDNA만을 분리하기 위해 100ul의 200mM NaOH와 5분 동안 배양하였고, 외부 자석을 이용해 선별된 ssDNA만을 얻을 수 있었다. 또한, 첫 번째 선별된 ssDNA를 다음 선별에 사용하여 선별을 반복하였다. 이때 ssDNA의 양 및 CFP10의 농도는 엄격한 선별을 위해 보다 감소시키면서 진행하였으며, 반복되는 선별에서 용출된 ssDNA를 UV 분광광도계(UV spectrometer, Biochrom Libra S22 spectromether)로 농도를 측정하여 남아 있는 ssDNA의 CFP10와의 결합 정도를 확인하며 선별 과정을 진행하였다. 상기 결합 정도(%)는 도 2에 나타낸 바와 같다.
4-4. 압타머 서열분석
17번째의 반복 선별된 ssDNA는 변형되지 않은 Forward 프라이머와 Reverse 프라이머를 이용하여 PCR 과정을 통해 증폭하였고, pENTR/TOPO 벡터(TOPO TA Cloning kit, Invitrogen, 미국)에 클로닝한 후, E. coli TOP10 세포(Invitrogen, 미국)에 형질전환 하였다. ssDNA가 삽입된 클론을 miniprep 키트(MACHEREY-NAGEL, 독일)를 이용하여 정제한 후, 염기서열을 분석(COSMO Genetech, 한국)하였다. 그 결과, 하기 표 1과 같은 CG6 Aptamer 서열(서열번호 6)을 분석할 수 있었다.
Aptamer Sequences (5' to 3') Length (bases)
CG6 5'CAC CTA ATA CGA CTC ACT ATA GCG GAT CCG ACC TAG GTT CAG AAG GCT TTC TAT TTT CCC GGT GCC TCG CAC TGG CTC GAA CAA GCT TGC3' 90
실시예 5. 형광 측정을 이용한 단백질과 압타머 간의 결합력 측정
400pmole의 CFP10를 10uL 자성 비드(megnetic bead)와 혼합한 후, 100uL의 결합 버퍼(20mM Tris, 50mM NaCl, 5mM KCl, 5mM MgCl2, pH 8.0)에서 1시간 동안 배양하였다. 결합하지 않은 CFP10를 분리하기 위해 결합 버퍼로 2번 세척하였다. 그 후 다양한 농도의 Cy3으로 표지된 압타머와 1시간 동안 배양하고, 결합하지 않은 압타머는 세척을 통해 제거하였다. CFP10가 고정된 자성 비드에 결합된 Cy3이 표지된 ssDNA 앱타머의 양은 자석을 이용하여 CFP10에 결합된 Cy3가 표지된 ssDNA만을 분리하여 형광측정(1420 Victor multilabel counter, PerkinElmer, USA)을 통해 측정하였다. 그 결과, 도 3 및 하기 표 2에 나타낸 바와 같이, CG6 염기서열이 갖는 DNA 압타머의 kd값을 측정 할 수 있었다.
압타머 Kd (nM)
CG6 92.8 ± 26.513
실시예 6. EMSA를 이용한 CFP10 단백질에 대한 결합 유무 측정
상기 실시예 4의 SELEX(Systematic Evolution of Ligands by Exponential enrichment) 기법을 통해 선별된 CG6 압타머가 실제 CFP10단백질에 결합하는지 측정하기 위하여 본 발명자들은 EMSA(Electrophoric Mobility Shift Assay) 방법을 통해 결합의 유무를 확인하였다. 재조합 CFP10 단백질 5uM과 압타머 CG6, CG2 1uM 을 1시간 동안 상온에서 20uL 의 결합버퍼에서 배양한 후, 6% acrylamide gel에 running하였다. sybr green과 coomassie blue 염색 결과, 도 4에 나타낸 바와 같이, 개발된 CG6 압타머는 CG2 압타머에 비해 CFP10에 더 잘 결합하는 것을 확인할 수 있었다.
실시예 7. 검출 조건 최적화 및 바이오센서 제작
상기 실시예 4에서 발굴한 DNA 압타머를 가지고 CFP10를 검출하기 위하여, EIS(Electrochemical Impedance Spectroscopy) 기술을 이용하여 검출 감도가 뛰어난 바이오센서를 설계하였다. 도 5는 본 발명의 DNA 압타머를 이용한 CFP10 단백질 검출용 바이오센서에 대한 개략적인 모식도이다.
먼저, 금 전극에 금 나노입자를 흡착시킨 후 DNA 압타머를 전극에 결합시킴으로서, CFP10 검출용 바이오센서를 제조였는데, 이처럼 금 전극에 금 나노입자를 도포하게 되면 표면적이 넓어져 DNA 압타머를 더 많이 전극에 결합시킬 수 있었다. 이후 CFP10가 포함된 시료를 넣고 압타머와 CFP10이 결합하게 되면, CFP10 단백질이 전자의 흐름을 막게 되어 임피던스가 증가하는 현상을 관찰할 수 있었으며, 이 때 임피던스가 증가한 값과 결합한 CFP10 단백질 양과의 상관관계로 인해 정량분석이 가능하였다.
그 다음, 전기화학을 기반으로, 선택된 CG6 압타머를 이용하여 재조합된 CFP10의 검출하였다. 그 결과, 도 6a 및 도 6b에 나타낸 바와 같이, Nyquist 도식을 보면, CFP10의 농도가 높아질수록 (10fM~10nM) 임피던스 값이 증가하는 것을 확인할 수 있었다(도 6a 참조). 상기 Nyquist 도식에서 구한 임피던스 값을 y축으로 CFP10 농도의 Log 값을 x축으로 하여 그래프를 얻을 수 있었는데, 이에 상기 제작된 바이오센서를 통하여 CFP10의 검출이 정량적으로 이루어지며, 검출한계는 0.97fM임을 확인하였다(도 6b 참조).
실시예 8. CFP10 검출 압타머의 결합특이성 확인
DNA 압타머가 바이오센서로 사용되기 위해서는, 표적 CFP10 외에 혈액 안의 다른 여러 단백질과 반응을 하지 않는 결합특이성이 중요한바, DNA 압타머가 선택적으로 결합하는지 여부를 확인하기 위하여, 여러 단백질 시료에 대하여 결합특이성을 확인하였다. 이 때 PBS에 각 단백질의 농도가 10pM이 되도록 혼합하여 검출하였다.
그 결과, 도 7에 나타낸 바와 같이, CFP10 단백질에 대해 특이성이 뛰어난 것을 확인하였다. 특히, CFP10는 결핵균이 숙주 내에서 과발현 하는 것으로 알려져 있으며 또한, ESAT6와 복합체를 형성하여 작용하는 것으로 알려진 결핵균 특이 단백질임에도 불구하고, 본 발명에서 개발된 DNA 압타머와 결합하지 않는 것으로 확인되었다. 이는 본 발명의 DNA 압타머가 높은 결합특이성을 가지고 CFP10와 반응한다는 것을 의미한다.
나아가, 임상적 시료에서도 이를 적용가능한지 여부를 확인하기 위하여, 정상인과 결핵 환자의 혈청을 CG6 압타머가 고정된 전극 위에 각각 10ng/ml로 처리한 결과, 도 8에 나타낸바와 같이, 정상인에 비해 결핵환자의 경우 더 높은 임피던스 값을 보이는 것을 확인할 수 있었다.
상기로부터, 본 발명에서 개발된 DNA 압타머 CG6가 CFP10에 매우 높은 결합특이성을 가지고 있을 뿐 아니라, 복잡한 생물학적 시료에서도 바이오센서로 사용될 수 있음을 의미한다.
참고로, 본 발명의 서열목록 리스트는 하기 표3과 같다.
서열목록 명칭 서열
서열번호 1 CFP10 Forward primer cccggatcca tggcagagat gaagaccg
서열번호 2 CFP10 Reverse primer cccctcgagt cagaagccca tttgcgagga cag
서열번호 3 ssDNA library cacctaatac gactcactat agcggatccg anctggctcg aacaagcttg c
서열번호 4 Forward primer cacctaatac gactcactat agcgga
서열번호 5 Reverse primer gcaagcttgt tcgagccag
서열번호 6 CG6 Aptamer cacctaatac gactcactat agcggatccg acctaggttc agaaggcttt ctattttccc ggtgcctcgc actggctcga acaagcttgc
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명의 DNA 압타머는 결핵균에서 발현하는 CFP10를 표적으로 하여, 표적에 대한 높은 친화력과 표적 외의 물질에 대한 낮은 결합력을 나타내는바, 결핵 진단에 이용되는 경우 위음성 반응 및 위양성 반응을 배제하여 보다 정확한 진단 결과를 얻을 수 있는 장점이 있다. 이에, 본 발명의 DNA 압타머와 이를 이용한 결핵 진단용 조성물, 결핵 진단용 바이오센서, 및 결핵 진단방법 등은 결핵 진단에 있어 높은 신뢰도의 결과를 제공할 수 있는바, 기존의 항체를 이용한 ELISA 방법 및 기존의 압타머를 이용한 결핵 진단 방법을 대체하여 결핵 진단에 널리 이용될 것으로 기대된다.

Claims (10)

  1. CFP10(Culture Filtrate Protein 10 kDa)에 특이적으로 결합하는 DNA 압타머 (DNA Aptamer)로서, 서열번호 6의 염기서열로 이루어지는 것을 특징으로 하는, DNA 압타머.
  2. 제1항에 있어서,
    상기 CFP10는 결핵균 H37Rv에서 발현하는 것을 특징으로 하는, DNA 압타머.
  3. 제1항의 DNA 압타머를 포함하는, 결핵 진단용 조성물.
  4. CFP10(Culture Filtrate Protein 10 kDa) 특이적 DNA 압타머; 및 상기 DNA 압타머가 고정되어 있는 기판을 포함하되, 상기 DNA 압타머는 서열번호 6의 염기서열로 이루어지는 것을 특징으로 하는, 결핵 진단용 바이오센서.
  5. 제4항에 있어서,
    상기 기판은 금속 전극층 및 금속 나노입자층로 이루어지는 것을 특징으로 하는, 결핵 진단용 바이오센서.
  6. 제5항에 있어서,
    상기 금속은 금(Au)인 것을 특징으로 하는, 결핵 진단용 바이오센서.
  7. (1) 피검체 시료를 제4항의 바이오센서에 처리하는 단계; 및
    (2) 상기 바이오센서에 결합된 CFP10(Culture Filtrate Protein 10 kDa)의 수준(level)을 측정하는 단계를 포함하는, 결핵 진단을 위한 정보제공 방법.
  8. 제1항 또는 제2항의 DNA 압타머와 피검체 시료를 접촉시키는 단계를 포함하는, 결핵 진단방법.
  9. 제4항의 바이오센서에 피검체 시료를 처리하는 단계; 및 상기 바이오센서에 결합된 CFP10(Culture Filtrate Protein 10 kDa)의 수준(level)을 측정하는 단계;를 포함하는, 결핵 진단방법.
  10. CFP10(Culture Filtrate Protein 10 kDa)에 특이적으로 결합하고, 서열번호 6의 염기서열로 이루어진 DNA 압타머 (DNA Aptamer)의 결핵 진단용도.
PCT/KR2018/011065 2017-09-25 2018-09-19 Cfp10에 특이적으로 결합하는 dna 압타머 및 이의 용도 WO2019059643A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/649,741 US11028396B2 (en) 2017-09-25 2018-09-19 DNA aptamer specifically binding to CFP10, and use thereof
CN201880062221.8A CN111212910B (zh) 2017-09-25 2018-09-19 与cfp10特异性结合的dna适体及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170123383A KR101923196B1 (ko) 2017-09-25 2017-09-25 Cfp10에 특이적으로 결합하는 dna 압타머 및 이의 용도
KR10-2017-0123383 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019059643A1 true WO2019059643A1 (ko) 2019-03-28

Family

ID=64561587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011065 WO2019059643A1 (ko) 2017-09-25 2018-09-19 Cfp10에 특이적으로 결합하는 dna 압타머 및 이의 용도

Country Status (4)

Country Link
US (1) US11028396B2 (ko)
KR (1) KR101923196B1 (ko)
CN (1) CN111212910B (ko)
WO (1) WO2019059643A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102016668B1 (ko) * 2018-12-19 2019-08-30 주식회사 엠디헬스케어 치쿤군야 바이러스 e2에 특이적으로 결합하는 dna 압타머 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719438A (zh) * 2012-07-12 2012-10-10 章晓联 一种能特异结合结核菌抗原的核酸适配子及其应用
JP6190355B2 (ja) * 2011-03-31 2017-08-30 サピエント センサーズ リミテッド アプタマーコーティングされた測定電極及び基準電極並びにこれらを使用してバイオマーカーを検出する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014010696A2 (pt) * 2011-11-02 2017-04-25 Univ Cape Town método para identificar uma molécula de analito em uma amostra biológica, sensor para capturar um analito de interesse de uma amostra biológica, e, detector
WO2013087917A1 (en) * 2011-12-15 2013-06-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for diagnosing latent tuberculosis infection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6190355B2 (ja) * 2011-03-31 2017-08-30 サピエント センサーズ リミテッド アプタマーコーティングされた測定電極及び基準電極並びにこれらを使用してバイオマーカーを検出する方法
CN102719438A (zh) * 2012-07-12 2012-10-10 章晓联 一种能特异结合结核菌抗原的核酸适配子及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ROTHERHAM, L. S. ET AL.: "Selection and Application of ssDNA Aptamers to Detect Active TB from Sputum Samples", PLOS ONE, vol. 7, no. 10, 4 October 2012 (2012-10-04), pages 1 - 11, XP055049779 *
RUSSELL, T. M. ET AL.: "Potential of High-affinity, Slow Off-rate Modified Aptamer (SOMAmer) Reagents for Mycobacterium Tuberculosis Proteins as Tools for Infection Models and Diagnostic Applications", JOURNAL OF CLINICAL MICROBIOLOGY, vol. 55, no. 10, 9 August 2017 (2017-08-09) - October 2017 (2017-10-01), pages 3072 - 3088, XP055584033 *
TANG, X.-L. ET AL.: "CFP10 and ESAT6 Aptamers as Effective Mycobacterial Antigen Diagnostic Reagents", JOURNAL OF INFECTION, vol. 69, no. 6, 23 June 2014 (2014-06-23), pages 569 - 580, XP055584029, ISSN: 0163-4453, DOI: 10.1016/j.jinf.2014.05.015 *

Also Published As

Publication number Publication date
KR101923196B1 (ko) 2018-11-28
CN111212910B (zh) 2023-11-24
CN111212910A (zh) 2020-05-29
US11028396B2 (en) 2021-06-08
US20200325475A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
LU86238A1 (fr) Methode pour l'identification d'acides nucleiques
WO2020130624A1 (ko) 치쿤군야 바이러스 e2에 특이적으로 결합하는 dna 압타머 및 이의 용도
WO2019059644A1 (ko) Esat6에 특이적으로 결합하는 dna 압타머 및 이의 용도
WO2019059645A1 (ko) Tb7.7에 특이적으로 결합하는 dna 압타머 및 이의 용도
WO2020130627A1 (ko) 황열 바이러스 ediii에 특이적으로 결합하는 dna 압타머 및 이의 용도
KR101805250B1 (ko) 한국 결핵균주 항원 특이적 면역반응을 이용한 결핵진단 방법 및 키트
WO2013075608A1 (zh) 一种嵌合重组抗原及其用途
WO2021210905A1 (ko) 암의 예후 예측용 조성물
WO2019059643A1 (ko) Cfp10에 특이적으로 결합하는 dna 압타머 및 이의 용도
JP5124601B2 (ja) オキサ型β−ラクタマーゼ産生菌の検出方法、同定方法及びキット
WO2018048194A1 (ko) dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법
KR101094974B1 (ko) 크론씨 병의 혈청학적 진단을 위한 신규한 바이오마커
WO2020027617A1 (ko) 쯔쯔가무시균 유래 외막 소포체를 이용한 쯔쯔가무시병의 진단방법
RU2636457C2 (ru) ОЛИГОНУКЛЕОТИДНЫЙ БИОЧИП ДЛЯ ИДЕНТИФИКАЦИИ ГЕНЕТИЧЕСКИХ ДЕТЕРМИНАНТ РЕЗИСТЕНТНОСТИ Neisseria gonorrhoeae К АНТИМИКРОБНЫМ ПРЕПАРАТАМ, НАБОР ОЛИГОНУКЛЕОТИДОВ, ИСПОЛЬЗУЕМЫХ ДЛЯ ИММОБИЛИЗАЦИИ НА БИОЧИПЕ
KR101140405B1 (ko) M. abscessus 감염 진단용 마커의 스크리닝 방법 및 발굴된 단백질 항원
KR101105168B1 (ko) 크론씨 병의 혈청학적 진단을 위한 신규한 바이오마커
AU2020203180B2 (en) Biomarkers for detection of burkholderia pseudomallei
JP2010540921A (ja) ヒトgstt1に対する抗体(抗−hgstt1)の検出のための免疫学的分析方法
CN110615845B (zh) 一种兼有IgG结合活性及生物素结合活性的双功能蛋白及其免疫PCR试剂盒
WO2021066526A1 (ko) 중간엽줄기세포의 전신홍반루푸스 치료효과 예측용 바이오 마커 조성물
KR101105156B1 (ko) 크론씨 병의 혈청학적 진단을 위한 신규한 바이오마커
KR101105163B1 (ko) 크론씨 병의 혈청학적 진단을 위한 신규한 바이오마커
JP2004154074A (ja) マイコバクテリウム・ツベルクローシスの分析方法
JP2023551767A (ja) 結核、非結核抗酸菌感染疾患、及び潜在性結核診断用バイオマーカー及びその用途
KR100657866B1 (ko) 네스티드 중합효소 연쇄반응을 이용한 홍반열 리케차 균의검출방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857830

Country of ref document: EP

Kind code of ref document: A1