WO2014144288A1 - Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing - Google Patents

Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing Download PDF

Info

Publication number
WO2014144288A1
WO2014144288A1 PCT/US2014/028630 US2014028630W WO2014144288A1 WO 2014144288 A1 WO2014144288 A1 WO 2014144288A1 US 2014028630 W US2014028630 W US 2014028630W WO 2014144288 A1 WO2014144288 A1 WO 2014144288A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
rna
grna
cas9
sites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2014/028630
Other languages
English (en)
French (fr)
Inventor
J. Keith Joung
Shengdar TSAI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51537665&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014144288(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR1020217002429A priority Critical patent/KR102271292B1/ko
Priority to EP14764159.1A priority patent/EP2971041B1/en
Priority to EP18208105.9A priority patent/EP3467125B1/en
Priority to KR1020157029177A priority patent/KR102210322B1/ko
Priority to CN201480027950.1A priority patent/CN105247066B/zh
Application filed by General Hospital Corp filed Critical General Hospital Corp
Priority to ES14764159T priority patent/ES2713503T3/es
Priority to AU2014227653A priority patent/AU2014227653B2/en
Priority to JP2016502853A priority patent/JP6622183B2/ja
Priority to CA2907198A priority patent/CA2907198C/en
Priority to PCT/US2014/035162 priority patent/WO2014204578A1/en
Priority to US14/900,444 priority patent/US10011850B2/en
Priority to AU2014370416A priority patent/AU2014370416B2/en
Priority to CN201480076396.6A priority patent/CN106103706B/zh
Priority to CA2935032A priority patent/CA2935032C/en
Priority to US15/107,550 priority patent/US10526589B2/en
Priority to KR1020167020111A priority patent/KR20160102056A/ko
Priority to CN202110920229.7A priority patent/CN113684205B/zh
Priority to EP21191144.1A priority patent/EP3985124A1/en
Publication of WO2014144288A1 publication Critical patent/WO2014144288A1/en
Priority to EP14875819.6A priority patent/EP3090044B1/en
Priority to JP2016542968A priority patent/JP6721508B2/ja
Anticipated expiration legal-status Critical
Priority to AU2017204909A priority patent/AU2017204909B2/en
Priority to US16/003,973 priority patent/US10544433B2/en
Priority to AU2019204675A priority patent/AU2019204675B2/en
Priority to JP2019218086A priority patent/JP7005580B2/ja
Priority to US16/735,146 priority patent/US20200165587A1/en
Priority to US16/751,578 priority patent/US11098326B2/en
Priority to AU2021203309A priority patent/AU2021203309B2/en
Priority to AU2021203370A priority patent/AU2021203370B2/en
Priority to AU2023258349A priority patent/AU2023258349A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1031Mutagenizing nucleic acids mutagenesis by gene assembly, e.g. assembly by oligonucleotide extension PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases [RNase]; Deoxyribonucleases [DNase]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/21Endodeoxyribonucleases producing 5'-phosphomonoesters (3.1.21)
    • C12Y301/21004Type II site-specific deoxyribonuclease (3.1.21.4)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/00033Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/00033Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/11Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors (1.14.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)

Definitions

  • RNA-guided Fokl Nucleases RNNs
  • RNA-guided genome editing e.g., editing using CRISPR/Cas9 systems
  • FNNs RNA-guided Fokl Nucleases
  • FokI-dCas9 fusion proteins e.g., FokI-dCas9 fusion proteins
  • CRISPR clustered, regularly interspaced, short palindromic repeats
  • Cas CRISPR-associated systems
  • the Cas9 nuclease from S. pyogenes can be guided via base pair complementarity between the first 20 nucleotides of an engineered gRNA and the complementary strand of a target genomic DNA sequence of interest that lies next to a protospacer adjacent motif (PAM), e.g., a PAM matching the sequence NGG or NAG (Shen et al, Cell Res (2013); Dicarlo et al, Nucleic Acids Res (2013); Jiang et al, Nat Biotechnol 31 , 233-239 (2013); Jinek et al, Elife 2, e00471 (2013); Hwang et al, Nat Biotechnol 31, 227-229 (2013); Cong et al, Science 339, 819-823 (2013); Mali et al, Science 339, 823-826 (2013c); Cho et al, Nat
  • CRISPR-Cas nucleases can tolerate up to five mismatches and still cleave; it is hard to predict the effects of any given single or combination of mismatches on activity. Taken together, these nucleases can show significant off-target effects but it can be challenging to predict these sites. Described herein are methods for increasing the specificity of genome editing using the
  • RNA-guided Fokl Nucleases e.g., Fokl- Cas9 or FokI-dCas9-based fusion proteins.
  • the invention provides FokI-dCas9 fusion proteins, comprising a Fokl catalytic domain sequence fused to the terminus, e.g., the N terminus, of dCas9, optionally with an intervening linker, e.g., a linker of from 2-30 amino acids, e.g., 4-12 amino acids, e.g., Gly 4 Ser.
  • the Fokl catalytic domain comprises amino acids 388-583 or 408-583 of SEQ ID NO:4.
  • the dCas9 comprises mutations at the dCas9 comprises mutations at D10, E762, H983, or D986; and at H840 or N863; e.g., at: (i) DIOA or DION; and (ii) H840A, H840Y or H840N.
  • the invention provides nucleic acids encoding these fusion proteins, vector comprising the nucleic acids, and host cells harboring or expressing the nucleic acids, vectors, or fusion proteins.
  • the invention provides methods for inducing a sequence- specific break in a double-stranded DNA molecule, e.g., in a genomic sequence in a cell, the method comprising expressing in the cell, or contacting the cell with, the FokI-dCas9 fusion protein described herein, and:
  • each of the two single guide R As include sequences that are each complementary to one strand of the target sequence such that using both guide RNAs results in targeting both strands (i.e., one single guide RNA targets a first strand, and the other guide RNA targets the complementary strand), and Fokl cuts each strand resulting in a pair of nicks on opposite DNA strands, thereby creating a double-stranded break, or
  • each of the two crRNAs include sequences that are complementary to one strand of the target sequence such that using both crRNAs results in targeting both strands (i.e., one crRNA targets a first strand, and the other crRNA targets the complementary strand), and Fokl cuts each strand resulting in a pair of nicks on opposite DNA strands, thereby creating a double- stranded break.
  • the invention provides methods for increasing specificity of RNA-guided genome editing in a cell, the method comprising contacting the cell with an RNA-guided Fokl Nuclease (RFN) fusion protein described herein.
  • RFN RNA-guided Fokl Nuclease
  • the method may further comprise expressing in the cell, or contacting the cell with, (a) two single guide RNAs, wherein each of the two single guide RNAs include sequences that are each complementary to one strand of the target sequence such that using both guide RNAs results in targeting both strands (i.e., one single guide RNA targets a first strand, and the other guide RNA targets the complementary strand), and Fokl cuts each strand resulting in a pair of nicks on opposite DNA strands, thereby creating a double-stranded break, or
  • each of the two crRNAs include sequences that are complementary to one strand of the target sequence such that using both crRNAs results in targeting both strands (i.e., one crRNA targets a first strand, and the other crRNA targets the complementary strand), and Fokl cuts each strand resulting in a pair of nicks on opposite DNA strands, thereby creating a double- stranded break.
  • the two target genomic sequences i.e., the sequences to which the target complementarity regions of the crR A or single guide R As are complementary
  • an indel mutation is induced between the two target sequences.
  • the specificity of RNA-guided genome editing in a cell is increased.
  • Figure 1 Schematic illustrating a gR A/Cas9 nuclease complex bound to its target DNA site. Scissors indicate approximate cleavage points of the Cas9 nuclease on the genomic DNA target site. Note the numbering of nucleotides on the guide RNA proceeds in an inverse fashion from 5' to 3'.
  • FIG. 2B Schematic overview of the EGFP disruption assay. Repair of targeted Cas9-mediated double-stranded breaks in a single integrated EGFP-PEST reporter gene by error-prone NHEJ-mediated repair leads to frame-shift mutations that disrupt the coding sequence and associated loss of fluorescence in cells.
  • Figures 2C-F Activities of RGNs harboring sgRNAs bearing (C) single mismatches, (D) adjacent double mismatches, (E) variably spaced double mismatches, and (F) increasing numbers of adjacent mismatches assayed on three different target sites in the EGFP reporter gene sequence. Mean activities of replicates (see Online Methods) are shown, normalized to the activity of a perfectly matched gRNA. Error bars indicate standard errors of the mean. Positions mismatched in each gRNA are highlighted in grey in the grid below. Sequences of the three EGFP target sites were as follows:
  • EGFP Site 1 GGGCACGGGCAGCTTGCCGGTGG (SEQ ID NO : 1 )
  • EGFP Site 2 GATGCCGTTCTTCTGCTTGTCGG (SEQ ID NO:2)
  • EGFP Site 3 GGTGGTGCAGATGAACTTCAGGG (SEQ ID NO:3)
  • Figure 2G Mismatches at the 5' end of the gRNA make CRISPR/Cas more sensitive more 3' mismatches.
  • the gRNAs Watson-Crick base pair between the RNA&DNA with the exception of positions indicated with an "m" which are mismatched using the Watson-Crick transversion (i.e. EGFP Site#2 M18-19 is mismatched by changing the gRNA to its Watson-Crick partner at positions 18 & 19.
  • positions near the 5 ' of the gRNA are generally very well tolerated, matches in these positions are important for nuclease activity when other residues are mismatched.
  • Figure 2H Efficiency of Cas9 nuclease activities directed by gRNAs bearing variable length complementarity regions ranging from 15 to 25 nts in a human cell- based U20S EGFP disruption assay. Expression of a gRNA from the U6 promoter requires the presence of a 5 ' G and therefore it was only possible to evaluate gRNAs harboring certain lengths of complementarity to the target DNA site (15, 17, 19, 20, 21, 23, and 25 nts).
  • Figure 3B Efficiencies of targeted indel mutations introduced at seven different human endogenous gene targets by matched standard and tru-RGNs.
  • Figure 3C DNA sequences of indel mutations induced by RGNs using a tru- gRNA or a matched full-length gRNA targeted to the EMXl site.
  • the portion of the target DNA site that interacts with the gRNA complementarity region is highlighted in grey with the first base of the PAM sequence shown in lowercase. Deletions are indicated by dashes highlighted in grey and insertions by italicized letters highlighted in grey. The net number of bases deleted or inserted and the number of times each sequence was isolated are shown to the right.
  • FIG. 3E U20S.EGFP cells were transfected with variable amounts of full- length gRNA expression plasmids (top) or tru-gRNA expression plasmids (bottom) together with a fixed amount of Cas9 expression plasmid and then assayed for percentage of cells with decreased EGFP expression. Mean values from duplicate experiments are shown with standard errors of the mean. Note that the data obtained with tru-gRNA matches closely with data from experiments performed with full- length gRNA expression plasmids instead of tru-gRNA plasmids for these three EGFP target sites.
  • Figure 3F U20S.EGFP cells were transfected with variable amount of Cas9 expression plasmid together with variable amounts of full-length gRNA expression plasmids (top) or tru-gRNA expression plasmids (bottom) (amounts determined for each tru-gRNA from the experiments of Figure 3E). Mean values from duplicate experiments are shown with standard errors of the mean. Note that the data obtained with tru-gRNA matches closely with data from experiments performed with full- length gRNA expression plasmids instead of tru-gRNA plasmids for these three EGFP target sites. The results of these titrations determined the concentrations of plasmids used in the EGFP disruption assays performed in Examples 1 and 2.
  • Figures 4A-C RNA-guided Fokl nucleases and a CRISPR/Cas Subtype Ypest protein 4 (Csy4)-based multiplex gRNA expression system.
  • FIG. 1 Schematic overview of a Csy4-based multiplex gRNA expression system.
  • Two gRNAs (with any 5 ' end nucleotide) are co-expressed in a single transcript from a U6 promoter with each gRNA flanked by Csy4 recognition sites.
  • Csy4 cleaves and releases gRNAs from the transcript.
  • the Csy4 recognition site remains at the 3 ' end of the gRNA with a Csy4 nuclease bound to that site.
  • Figures 5A-F Design and optimization of RNA-guided Fokl nucleases.
  • FIGS 6A-D Dimerization of FokI-dCas9 RFNs is required for efficient genome editing activity.
  • MLHl mutL homo log 1
  • FIGS 7A-B Mutagenic activities of a Cas9 nickase or FokI-dCas9 co- expressed with a single gRNA.
  • Indel mutation frequencies were determined by deep sequencing. Each indel frequency value reported was determined from a single deep sequencing library prepared from genomic DNA pooled from three independent transfection
  • VEGFA Vascular Endothelial Growth Factor A
  • DDB2 Damage- Specific DNA Binding Protein 2
  • FANCF Fanconi Anemia, Complementation Group F
  • FES Feline Sarcoma Oncogene
  • RUNX Runt-Related Transcription Factor 1.
  • Figures 8A-C Single Cas9 nickases can introduce point mutations with high efficiencies into their target sites.
  • RGNs CRISPR RNA-guided nucleases
  • T7EI assay (which, as performed in our laboratory, has a reliable detection limit of ⁇ 2 to 5% mutation frequency). Because these mutation rates were very high, it was possible to avoid using deep sequencing methods previously required to detect much lower frequency ZFN- and TALEN-induced off-target alterations (Pattanayak et al., Nat Methods 8, 765-770 (2011); Perez et al, Nat Biotechnol 26, 808-816 (2008);
  • off-target sites were seen for a number of RGNs, identification of these sites was neither comprehensive nor genome -wide in scale. For the six RGNs studied, only a very small subset of the much larger total number of potential off-target sequences in the human genome was examined. Although examining such large numbers of loci for off-target mutations by T7EI assay is neither a practical nor a cost-effective strategy, the use of high-throughput sequencing in future studies might enable the interrogation of larger numbers of candidate off-target sites and provide a more sensitive method for detecting bona fide off-target mutations. For example, such an approach might enable the unveiling of additional off-target sites for the two RGNs for which we failed to uncover any off-target mutations.
  • a number of strategies can be used to minimize the frequencies of genomic off-target mutations.
  • the specific choice of RGN target site can be optimized; given that off-target sites that differ at up to five positions from the intended target site can be efficiently mutated by RGNs, choosing target sites with minimal numbers of off-target sites as judged by mismatch counting seems unlikely to be effective; thousands of potential off-target sites that differ by four or five positions within the 20 bp RNA:DNA complementarity region will typically exist for any given RGN targeted to a sequence in the human genome. It is also possible that the nucleotide content of the gRNA complementarity region might influence the range of potential off-target effects.
  • RNA:DNA hybrids For example, high GC-content has been shown to stabilize RNA:DNA hybrids (Sugimoto et al, Biochemistry 34, 1121 1-11216 (1995)) and therefore might also be expected to make gRNA/genomic DNA hybridization more stable and more tolerant to mismatches. Additional experiments with larger numbers of gRNAs will be needed to assess if and how these two parameters (numbers of mismatched sites in the genome and stability of the RNA:DNA hybrid) influence the genome-wide specificities of RGNs. However, it is important to note that even if such predictive parameters can be defined, the effect of implementing such guidelines would be to further restrict the targeting range of RGNs.
  • RGN-induced off-target effects might be to reduce the concentrations of gRNA and Cas9 nuclease expressed in the cell. This idea was tested using the RGNs for VEGFA target sites 2 and 3 in
  • CRISPR-Cas RNA-guided nucleases based on the S.
  • pyogenes Cas9 protein can have significant off-target mutagenic effects that are comparable to or higher than the intended on-target activity (Example 1). Such off-target effects can be problematic for research and in particular for potential therapeutic applications. Therefore, methods for improving the specificity of
  • RGNs RNA guided nucleases
  • Cas9 RGNs can induce high-frequency indel mutations at off-target sites in human cells (see also Cradick et al., 2013; Fu et al., 2013; Hsu et al., 2013; Pattanayak et al, 2013). These undesired alterations can occur at genomic sequences that differ by as many as five mismatches from the intended on- target site (see Example 1).
  • RNA-guided nucleases are to be used for research and therapeutic applications.
  • Dimerization is an attractive potential strategy for improving the specificity of Cas9 nucleases. This is distinct from a paired Cas9 nickase approach, which is not a true dimeric system. Paired nickases work by co-localizing two Cas9 nickases on a segment of DNA, thereby inducing high efficiency genome editing via an undefined mechanism. Because dimerization is not required for enzymatic activity, single Cas9 nickases can also induce indels with high efficiencies at certain sites (via an unknown mechanism) and can therefore potentially cause unwanted off-target mutations in the genome.
  • one strategy to improve the specificity of RGNs is fusing a Fokl endonuclease domain to a catalytically inactive form of Cas9 bearing the D10A and H840A mutations (also known as dCas9).
  • Fokl nuclease domain functions as a dimer and therefore two subunits must be recruited to the same local piece of DNA in order to induce a double-stranded break.
  • Figure 9A and Example 2 two FokI-dCas9 fusions are recruited in an appropriate configuration using two different gRNAs to yield a double-stranded break.
  • the Fokl- dCas9 fusions would bind to a site that is twice as long as that of a single RGN and therefore this system would be expected to be more specific.
  • FokI-dCas9 fusion proteins wherein the Fokl sequence is fused to dCas9 (preferably to the amino-terminal end of dCas9, but also optionally to the carboxy terminus), optionally with an intervening linker, e.g., a linker of from 2-30 amino acids, e.g., 4-12 amino acids, e.g., Gly 4 Ser (SEQ ID NO:23) or (Gly 4 Ser) 3 .
  • the fusion proteins include a linker between the dCas9 and the Fokl domains.
  • Linkers that can be used in these fusion proteins (or between fusion proteins in a concatenated structure) can include any sequence that does not interfere with the function of the fusion proteins.
  • the linkers are short, e.g., 2-20 amino acids, and are typically flexible (i.e., comprising amino acids with a high degree of freedom such as glycine, alanine, and serine).
  • the linker comprises one or more units consisting of GGGS (SEQ ID NO:22) or GGGGS (SEQ ID NO:23), e.g., two, three, four, or more repeats of the GGGS (SEQ ID NO:22) or GGGGS (SEQ ID NO:23) unit.
  • linker sequences can also be used.
  • a RNA-guided Fokl nuclease platform in which dimerization, rather than just co-localization, is required for efficient genome editing activity. These nucleases can robustly mediate highly efficient genome editing in human cells and can reduce off-target mutations to undetectable levels as judged by sensitive deep sequencing methods. Also described is an efficient system for expressing pairs of gRNAs with any 5 ' end nucleotide, a method that confers a wider targeting range on the RFN platform. Finally, monomeric Cas9 nickases generally introduce more undesirable indels and point mutations than the nucleases described herein in the presence of a single gRNA.
  • RNA-guided Fokl Nuclease (RFN) platform for performing robust and highly specific genome editing in human cells.
  • RFNs require two gRNAs for activity and function as dimers.
  • the engineering of an active RFN required fusion of the Fokl nuclease domain to the amino-terminal end of the dCas9 protein, an architecture different from ZFNs and TALENs in which the Fokl domain is fused to the carboxy-terminal end of engineered zinc finger or transcription activator-like effector repeat arrays.
  • RFNs also require that the half-sites bound by each Fok-dCas9/gRNA complex have a particular relative orientation (PAMs out) with a relatively restricted intervening spacer length of 14 to 17 bps (although activity may be possible at additional spacings but with less consistent success).
  • PAMs out relative orientation
  • RFNs The dimeric nature of RFNs provides important specificity advantages relative to standard monomeric Cas9 nucleases. In an ideal dimeric system, little to no activity will be observed with monomers on half-sites.
  • the present data demonstrate that FokI-dCas9 directed by a single gRNA induces very little or no mutagenesis at RFN half-sites. 12 single gRNAs (for six RFN target sites) were tested with co- expressed FokI-dCas9 and indels were observed at very low frequencies (range of 0.0045% to 0.47%), in some cases at levels as low as background rates observed in control cells in which there was no expression of gRNA or nuclease.
  • Fokl nuclease domain functions as a dimer
  • any indels observed with a single gR A are likely due to recruitment of a FokI-dCas9 dimer to the DNA.
  • FokI-dCas9 dimer Regardless of mechanism, given that only very low level mutagenesis was observed when FokI-dCas9 was tested with single gRNAs at 12 on-target half-sites, it is very unlikely that any mutagenesis will be induced at partially mismatched, off-target half- sites. Indeed, an RFN targeted to VEGFA did not induce detectable mutations at known off-target sites of one of the gRNAs as judged by deep sequencing.
  • RFNs are a true dimeric system, they possess a number of important advantages over paired nickase technology, which depends on co-localization but does not require dimerization.
  • paired Cas9 nickases show greater promiscuity in the orientation and spacing of target half-sites than dimeric RFNs and therefore have a greater potential range of sites at which off-target mutations might be induced.
  • Paired nickase half-sites can be oriented with their PAMs in or PAMs out and with spacer sequences ranging in length from 0 to 1000 bps (Ran et al, Cell 154, 1380-1389 (2013); Mali et al, Nat Biotechnol 31, 833-838 (2013); Cho et al, Genome Res (2013)).
  • This promiscuity exists because the genome editing activities of Cas9 nickases do not depend on dimerization of the enzyme but rather just co- localization of the two nicks.
  • RFNs are much more stringent in their specificities— half-sites must have their PAMs out and must be spaced apart by 14 to 17 bps, due to the requirement for two appropriately positioned Fokl cleavage domains for efficient cleavage.
  • Fokl is a type lis restriction endonuclease that includes a DNA recognition domain and a catalytic (endonuclease) domain.
  • the fusion proteins described herein can include all of Fokl or just the catalytic endonuclease domain, e.g., amino acids 388-583 or 408-583 of GenBank Acc. No. AAA24927.1, e.g., as described in Li et al, Nucleic Acids Res. 39(1): 359-372 (2011); Cathomen and Joung, Mol. Ther. 16: 1200-1207 (2008), or a mutated form of Fokl as described in Miller et al. Nat
  • An exemplary nucleic acid sequence encoding Fokl is as follows:
  • the Fokl nuclease used herein is at least about 50% identical SEQ ID NO:4, e.g., to amino acids 388-583 or 408-583 of SEQ ID NO:4. These variant nucleases must retain the ability to cleave DNA.
  • the nucleotide sequences are about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100% identical to amino acids 388-583 or 408-583 of SEQ ID NO:4. In some embodiments, any differences from amino acids 388-583 or 408-583 of SEQ ID NO:4 are in non-conserved regions.
  • the sequences are aligned for optimal comparison purposes (gaps are introduced in one or both of a first and a second amino acid or nucleic acid sequence as required for optimal alignment, and non-homologous sequences can be disregarded for comparison purposes).
  • the length of a reference sequence aligned for comparison purposes is at least 50%> (in some embodiments, about 50%, 55%, 60%, 65%, 70%, 75%, 85%, 90%, 95%, or 100% of the length of the reference sequence is aligned).
  • the nucleotides or residues at corresponding positions are then compared. When a position in the first sequence is occupied by the same nucleotide or residue as the corresponding position in the second sequence, then the molecules are identical at that position.
  • the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
  • the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
  • the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG software package, using a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
  • a number of bacteria express Cas9 protein variants.
  • Streptococcus pyogenes is presently the most commonly used; some of the other Cas9 proteins have high levels of sequence identity with the S. pyogenes Cas9 and use the same guide R As. Others are more diverse, use different gR As, and recognize different PAM sequences as well (the 2-5 nucleotide sequence specified by the protein which is adjacent to the sequence specified by the RNA). Chylinski et al. classified Cas9 proteins from a large group of bacteria (RNA Biology 10:5, 1-12; 2013), and a large number of Cas9 proteins are listed in supplementary figure 1 and supplementary table 1 thereof, which are incorporated by reference herein. Additional Cas9 proteins are described in Esvelt et al., Nat Methods.
  • Cas9 molecules of a variety of species can be used in the methods and compositions described herein. While the S. pyogenes and S. thermophilus Cas9 molecules are the subject of much of the disclosure herein, Cas9 molecules of, derived from, or based on the Cas9 proteins of other species listed herein can be used as well. In other words, while the much of the description herein uses S. pyogenes and S. thermophilus Cas9 molecules, Cas9 molecules from the other species can replace them. Such species include those set forth in the following table, which was created based on supplementary figure 1 of Chylinski et al, 2013.
  • the constructs and methods described herein can include the use of any of those Cas9 proteins, and their corresponding guide RNAs or other guide RNAs that are compatible.
  • the Cas9 from Streptococcus thermophilus LMD-9 CRISPR1 system has also been shown to function in human cells in Cong et al (Science 339, 819 (2013)).
  • Cas9 orthologs from N. meningitides are described in Hou et al, Proc Natl Acad Sci U S A. 2013 Sep 24;110(39): 15644-9 and Esvelt et al, Nat Methods. 2013 Nov;10(l 1): 1116-21. Additionally, Jinek et al. showed in vitro that Cas9 orthologs from S. thermophilus and L.
  • innocua (but not from N. meningitidis or C. jejuni, which likely use a different guide RNA), can be guided by a dual S. pyogenes gRNA to cleave target plasmid DNA, albeit with slightly decreased efficiency.
  • the present system utilizes the Cas9 protein from S. pyogenes, either as encoded in bacteria or codon-optimized for expression in mammalian cells, containing mutations at D10, E762, H983, or D986 and H840 or N863, e.g., D10A/D10N and H840A/H840N/H840Y, to render the nuclease portion of the protein catalytically inactive; substitutions at these positions could be alanine (as they are in Nishimasu al, Cell 156, 935-949 (2014)) or they could be other residues, e.g., glutamine, asparagine, tyrosine, serine, or aspartate, e.g.,, E762Q, H983N, H983Y, D986N, N863D, N863S, or N863H ( Figure 1C).
  • S. pyogenes either as encoded in bacteria or codon-optimized for expression in
  • sequence of the catalytically inactive S. pyogenes Cas9 that can be used in the methods and compositions described herein is as follows; the exemplary mutations of D10A and H840A are in bold and underlined. 10 20 30 40 50 60
  • PAAFKYFDTT IDRKRYTSTK EVLDATLIHQ SITGLYETRI DLSQLGGD SEQ ID NO: 5
  • the Cas9 nuclease used herein is at least about 50% identical to the sequence of S. pyogenes Cas9, i.e., at least 50% identical to SEQ ID NO:5.
  • the nucleotide sequences are about 50%>, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100% identical to SEQ ID NO:5.
  • any differences from SEQ ID NO:5 are in non-conserved regions, as identified by sequence alignment of sequences set forth in Chylinski et al, RNA Biology 10:5, 1-12; 2013 (e.g., in supplementary figure 1 and supplementary table 1 thereof); Esvelt et al, Nat Methods. 2013 Nov; 10(11): 1116-21 and Fonfara et al, Nucl. Acids Res. (2014) 42 (4): 2577-2590. [Epub ahead of print 2013 Nov 22] doi: 10.1093/nar/gktl074. Identity is determined as set forth above.
  • gRNAs Guide RNAs
  • RNAs generally speaking come in two different systems: System 1, which uses separate crRNA and tracrRNAs that function together to guide cleavage by Cas9, and System 2, which uses a chimeric crRNA-tracrRNA hybrid that combines the two separate guide RNAs in a single system (referred to as a single guide RNA or sgRNA, see also Jinek et al., Science 2012; 337:816-821).
  • the tracrRNA can be variably truncated and a range of lengths has been shown to function in both the separate system (system 1) and the chimeric gRNA system (system 2).
  • tracrRNA may be truncated from its 3' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • the tracrRNA molecule may be truncated from its 5' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • the tracrRNA molecule may be truncated from both the 5' and 3' end, e.g., by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nts on the 5' end and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts on the 3' end.
  • vectors e.g., plasmids
  • plasmids encoding more than one gRNA are used, e.g., plasmids encoding, 2, 3, 4, 5, or more gRNAs directed to different sites in the same region of the target gene.
  • Cas9 nuclease can be guided to specific 17-20 nt genomic targets bearing an additional proximal protospacer adjacent motif (PAM), e.g., of sequence NGG, using a guide RNA, e.g., a single gRNA or a tracrRNA/crRNA, bearing 17-20 nts at its 5' end that are complementary to the complementary strand of the genomic DNA target site.
  • PAM proximal protospacer adjacent motif
  • the present methods can include the use of a single guide RNA comprising a crRNA fused to a normally trans-encoded tracrRNA, e.g., a single Cas9 guide RNA as described in Mali et al, Science 2013 Feb 15; 339(6121):823-6, with a sequence at the 5' end that is complementary to the target sequence, e.g., of 25-17, optionally 20 or fewer nucleotides (nts), e.g., 20, 19, 18, or 17 nts, preferably 17 or 18 nts, of the complementary strand to a target sequence immediately 5 Of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG
  • the single Cas9 guide RNA consists of the sequence:
  • X17-20 is the nucleotide sequence complementary to 17-20 consecutive nucleotides of the target sequence.
  • DNAs encoding the single guide RNAs have been described previously in the literature (Jinek et al, Science. 337(6096):816-21 (2012) and Jinek et al, Elife. 2:e00471 (2013)).
  • the guide RNAs can include X N which can be any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9.
  • the guide RNA includes one or more Adenine (A) or Uracil (U) nucleotides on the 3 ' end.
  • the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUU, UUUUUU, UUUUUU, UUUUUU, UUUUUUUUUU, UUUUUUUUUUU) at the 3' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.
  • gRNA e.g., the crRNA and tracrRNA found in naturally occurring systems.
  • a single tracrRNA would be used in conjunction with multiple different crRNAs expressed using the present system, e.g., the following:
  • the methods include contacting the cell with a tracrRNA comprising or consisting of the sequence
  • the tracrRNA molecule may be truncated from its 3' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • the tracrR A molecule may be truncated from its 5 ' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • the tracrRNA molecule may be truncated from both the 5' and 3' end, e.g., by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nts on the 5' end and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts on the 3' end.
  • Exemplary tracrRNA sequences in addition to SEQ ID NO: 8 include the following:
  • GGCACCGAGUCGGUGC SEQ ID NO: 18 or an active portion thereof.
  • tracrRNA (SEQ ID NO: 14) is used as a crRNA, the following tracrRNA is used:
  • tracrRNA is used as a crRNA, the following tracrRNA is used:
  • the gRNA is targeted to a site that is at least three or more mismatches different from any sequence in the rest of the genome in order to minimize off-target effects.
  • RNA oligonucleotides such as locked nucleic acids (LNAs) have been demonstrated to increase the specificity of RNA-DNA hybridization by locking the modified oligonucleotides in a more favorable (stable) conformation.
  • LNAs locked nucleic acids
  • 2'-0-methyl RNA is a modified base where there is an additional covalent linkage between the 2' oxygen and 4' carbon which when incorporated into oligonucleotides can improve overall thermal stability and selectivity (Formula I).
  • the tru-gRNAs disclosed herein may comprise one or more modified RNA oligonucleotides.
  • the truncated guide RNAs molecules described herein can have one, some or all of the 17-18 or 17-19 nts 5 ' region of the guideRNA complementary to the target sequence are modified, e.g., locked (2'-0-4'-C methylene bridge), 5'-methylcytidine, 2'-0-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain (peptide nucleic acid), e.g., a synthetic ribonucleic acid.
  • a polyamide chain peptide nucleic acid
  • one, some or all of the nucleotides of the tru-gRNA sequence may be modified, e.g., locked (2'-0-4'-C methylene bridge), 5'- methylcytidine, 2'-0-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain (peptide nucleic acid), e.g., a synthetic ribonucleic acid.
  • the single guide RNAs and/or crRNAs and/or tracrRNAs can include one or more Adenine (A) or Uracil (U) nucleotides on the 3 ' end.
  • A Adenine
  • U Uracil
  • RNA-DNA heteroduplexes can form a more promiscuous range of structures than their DNA-DNA counterparts.
  • DNA-DNA duplexes are more sensitive to mismatches, suggesting that a DNA- guided nuclease may not bind as readily to off-target sequences, making them comparatively more specific than RNA-guided nucleases.
  • the guide RNAs usable in the methods described herein can be hybrids, i.e., wherein one or more deoxyribonucleotides, e.g., a short DNA oligonucleotide, replaces all or part of the gRNA, e.g., all or part of the complementarity region of a gRNA.
  • This DNA-based molecule could replace either all or part of the gRNA in a single gRNA system or alternatively might replace all of part of the crRNA and/or tracrRNA in a dual crRNA/tracrRNA system.
  • complementarity region should more reliably target the intended genomic DNA sequences due to the general intolerance of DNA-DNA duplexes to mismatching compared to R A-DNA duplexes.
  • Methods for making such duplexes are known in the art, See, e.g., Barker et al, BMC Genomics. 2005 Apr 22;6:57; and Sugimoto et al, Biochemistry. 2000 Sep 19;39(37): 11270-81.
  • one or both can be synthetic and include one or more modified (e.g., locked) nucleotides or deoxyribonucleotides .
  • complexes of Cas9 with these synthetic gR could be used to improve the genome-wide specificity of the CRISPR/Cas9 nuclease system.
  • the methods described can include expressing in a cell, or contacting the cell with, a Cas9 gRNA plus a fusion protein as described herein.
  • the nucleic acid encoding the guide RNA can be cloned into an intermediate vector for transformation into prokaryotic or eukaryotic cells for replication and/or expression.
  • Intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors, or insect vectors, for storage or manipulation of the nucleic acid encoding the fusion proteins for production of the fusion proteins.
  • the nucleic acid encoding the fusion proteins can also be cloned into an expression vector, for administration to a plant cell, animal cell, preferably a mammalian cell or a human cell, fungal cell, bacterial cell, or protozoan cell.
  • a sequence encoding a fusion protein is typically subcloned into an expression vector that contains a promoter to direct transcription.
  • Suitable bacterial and eukaryotic promoters are well known in the art and described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual (3d ed. 2001); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al, eds., 2010).
  • Bacterial expression systems for expressing the engineered protein are available in, e.g., E. coli, Bacillus sp., and Salmonella (Palva et al, 1983, Gene 22:229-235).
  • Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available.
  • the promoter used to direct expression of a nucleic acid depends on the particular application. For example, a strong constitutive promoter is typically used for expression and purification of fusion proteins.
  • a constitutive or an inducible promoter can be used, depending on the particular use of the guide RNA.
  • a preferred promoter for administration of the guide RNA can be a weak promoter, such as HSV TK or a promoter having similar activity.
  • the promoter can also include elements that are responsive to transactivation, e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, 1992, Proc. Natl. Acad. Sci. USA, 89:5547; Oligino et al, 1998, Gene Ther., 5:491-496; Wang et al, 1997, Gene Ther., 4:432-441; Neering et al, 1996, Blood, 88: 1147-55; and Rendahl et al, 1998, Nat. BiotechnoL, 16:757-761).
  • elements that are responsive to transactivation e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system (see, e
  • the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the nucleic acid in host cells, either prokaryotic or eukaryotic.
  • Atypical expression cassette thus contains a promoter operably linked, e.g., to the nucleic acid sequence encoding the gRNA, and any signals required, e.g., for efficient polyadenylation of the transcript, transcriptional termination, ribosome binding sites, or translation termination.
  • Additional elements of the cassette may include, e.g., enhancers, and heterologous spliced intronic signals.
  • the particular expression vector used to transport the genetic information into the cell is selected with regard to the intended use of the gRNA, e.g., expression in plants, animals, bacteria, fungus, protozoa, etc.
  • Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and commercially available tag-fusion expression systems such as GST and LacZ.
  • Expression vectors containing regulatory elements from eukaryotic viruses are often used in eukaryotic expression vectors, e.g., SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus.
  • eukaryotic vectors include pMSG, pAV009/A+, pMTO10/A+, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the SV40 early promoter, SV40 late promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.
  • the vectors for expressing the guide RNAs can include RNA Pol III promoters to drive expression of the guide RNAs, e.g., the HI, U6 or 7SK promoters. These human promoters allow for expression of gRNAs in mammalian cells following plasmid transfection. Alternatively, a T7 promoter may be used, e.g., for in vitro transcription, and the RNA can be transcribed in vitro and purified. Vectors suitable for the expression of short RNAs, e.g., siRNAs, shRNAs, or other small RNAs, can be used. With the Cys4-based multiplex system described in Figure 4B, multiple gRNAs can be expressed in a single transcript (driven by a RNA Pol II or Pol III promoter) and then cleaved out from that larger transcript.
  • RNA Pol III promoters to drive expression of the guide RNAs.
  • Some expression systems have markers for selection of stably transfected cell lines such as thymidine kinase, hygromycin B phosphotransferase, and dihydrofolate reductase.
  • High yield expression systems are also suitable, such as using a baculovirus vector in insect cells, with the gRNA encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.
  • the elements that are typically included in expression vectors also include a replicon that functions in E. coli, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of recombinant sequences.
  • Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of protein, which are then purified using standard techniques (see, e.g., Colley et al, 1989, J. Biol. Chem., 264: 17619-22; Guide to Protein Purification, in Methods in Enzymology, vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, 1977, J. Bacteriol. 132:349-351; Clark-Curtiss & Curtiss, Methods in Enzymology 101 :347-362 (Wu et al, eds, 1983).
  • Any of the known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, nucleofection, liposomes,
  • microinjection naked DNA, plasmid vectors, viral vectors, both episomal and integrative, and any of the other well-known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the gRNA.
  • the present invention includes the vectors and cells comprising the vectors.
  • RGNs CRISPR RNA-guided nucleases
  • Example 1 The following materials and methods were used in Example 1.
  • DNA oligonucleotides harboring variable 20 nt sequences for Cas9 targeting were annealed to generate short double-strand DNA fragments with 4 bp overhangs compatible with ligation into BsmBI-digested plasmid pMLM3636. Cloning of these annealed oligonucleotides generates plasmids encoding a chimeric +103 single-chain guide RNA with 20 variable 5 ' nucleotides under expression of a U6 promoter
  • pMLM3636 and the expression plasmid pJDS246 (encoding a codon optimized version of Cas9) used in this study are both available through the non-profit plasmid distribution service Addgene (addgene.org/crispr-cas).
  • U20S.EGFP cells harboring a single integrated copy of an EGFP-PEST fusion gene were cultured as previously described (Reyon et al, Nat Biotech 30, 460- 465 (2012)).
  • 200,000 cells were Nucleofected with the indicated amounts of gRNA expression plasmid and pJDS246 together with 30 ng of a Td- tomato-encoding plasmid using the SE Cell Line 4D-NucleofectorTM X Kit (Lonza) according to the manufacturer's protocol. Cells were analyzed 2 days post- transfection using a BD LSRII flow cytometer. Transfections for optimizing gR A/Cas9 plasmid concentration were performed in triplicate and all other transfections were performed in duplicate.
  • PCR reactions were performed using Phusion Hot Start II high-fidelity DNA polymerase (NEB). Most loci amplified successfully using touchdown PCR (98 °C, 10 s; 72-62 °C, -1 °C/cycle, 15 s; 72 °C, 30 s]10 cycles, [98 °C, 10 s; 62 °C, 15 s; 72 °C, 30 s]25 cycles). PCR for the remaining targets were performed with 35 cycles at a constant annealing temperature of 68 °C or 72 °C and 3% DMSO or 1M betaine, if necessary. PCR products were analyzed on a QIAXCEL capillary electrophoresis system to verify both size and purity. Validated products were treated with ExoSap-IT (Affymetrix) and sequenced by the Sanger method (MGH DNA Sequencing Core) to verify each target site.
  • NEB Phusion Hot Start II high-fidelity DNA polymerase
  • Lipofectamine LTX reagent according to the manufacturer's instructions (Life Technologies). Genomic DNA was harvested from transfected U20S.EGFP,
  • HEK293, or K562 cells using the QIAamp DNA Blood Mini Kit (QIAGEN), according to the manufacturer's instructions.
  • QIAGEN QIAamp DNA Blood Mini Kit
  • PCR was then performed using these genomic DNAs as templates as described above and purified using Ampure XP beads (Agencourt) according to the manufacturer's instructions. T7EI assays were performed as previously described (Reyon et al, 2012, supra).
  • EGFP enhanced green fluorescent protein
  • the activities of nucleases targeted to a single integrated EGFP reporter gene can be quantified by assessing loss of fiuorescence signal in human U20S.EGFP cells caused by inactivating frameshift insertion/deletion (indel) mutations introduced by error prone non-homologous end-joining (NHEJ) repair of nuclease-induced double- stranded breaks (DSBs) (Fig. 2B).
  • sgRNAs three -100 nt single gRNAs targeted to different sequences within EGFP were used, as follows:
  • EGFP Site 1 GGGCACGGGCAGCTTGCCGGTGG (SEQ ID NO : 1 )
  • EGFP Site 2 GATGCCGTTCTTCTGCTTGTCGG (SEQ ID NO:2)
  • Each of these sgRNAs can efficiently direct Cas9-mediated disruption of EGFP expression (see Example le and 2a, and FIGs. 3E (top) and 3F (top)).
  • variant sgRNAs were generated for each of the three target sites harboring Watson-Crick transversion mismatches at positions 1 through 19 (numbered 1 to 20 in the 3' to 5' direction; see Fig. 1) and the abilities of these various sgR As to direct Cas9-mediated EGFP disruption in human cells tested (variant sgRNAs bearing a substitution at position 20 were not generated because this nucleotide is part of the U6 promoter sequence and therefore must remain a guanine to avoid affecting expression.)
  • target site #1 was particularly sensitive to a mismatch at position 2 whereas target site #3 was most sensitive to mismatches at positions 1 and 8.
  • variant sgRNAs were constructed bearing increasing numbers of mismatched positions ranging from positions 19 to 15 in the 5' end of the gRNA targeting region (where single and double mismatches appeared to be better tolerated).
  • sgRNAs that target three different sites in the VEGFA gene, one in the EMX1 gene, one in the RNF2 gene, and one in the FANCF gene were used. These six sgRNAs efficiently directed Cas9-mediated indels at their respective endogenous loci in human U20S.EGFP cells as detected by T7
  • T7EI Endonuclease I assay
  • U20S.EGFP cells The loci assessed included all genomic sites that differ by one or two nucleotides as well as subsets of genomic sites that differ by three to six nucleotides and with a bias toward those that had one or more of these mismatches in the 5' half of the gRNA targeting sequence.
  • T7EI assay four off-target sites (out of 53 candidate sites examined) for VEGFA site 1, twelve (out of 46 examined) for VEGFA site 2, seven (out of 64 examined) for VEGFA site 3 and one (out of 46 examined) for the EMX1 site were readily identified. No off-target mutations were detected among the 43 and 50 potential sites examined for the RNF2 or FANCF genes, respectively.
  • the rates of mutation at verified off-target sites were very high, ranging from 5.6% to 125% (mean of 40%) of the rate observed at the intended target site.
  • These bona fide off-targets included sequences with mismatches in the 3' end of the target site and with as many as a total of five mismatches, with most off-target sites occurring within protein coding genes.
  • DNA sequencing of a subset of off-target sites provided additional molecular confirmation that indel mutations occur at the expected RGN cleavage site (Figs. 8A-C).
  • NHEJ-mediated indel mutations at their intended on-target site in these two additional human cell lines (as assessed by T7EI assay), albeit with somewhat lower mutation frequencies than those observed in U20S.EGFP cells.
  • Assessment of the 24 off-target sites for these four RGNs originally identified in U20S.EGFP cells revealed that many were again mutated in HEK293 and K562 cells with frequencies similar to those at their corresponding on-target site.
  • DNA sequencing of a subset of these off-target sites from HEK293 cells provided additional molecular evidence that alterations are occurring at the expected genomic loci.
  • Single guide RNAs were generated for three different sequences (EGFP SITES 1-3, shown above) located upstream of EGFP nucleotide 502, a position at which the introduction of frameshift mutations via non-homologous end- joining can robustly disrupt expression of EGFP (Maeder, M.L. et al, Mol Cell 31, 294-301 (2008); Reyon, D. et al, Nat Biotech 30, 460-465 (2012)).
  • gRNA-expressing plasmid amounts (12.5 to 250 ng) was initially trans fected together with 750 ng of a plasmid expressing a codon-optimized version of the Cas9 nuclease into our U20S.EGFP reporter cells bearing a single copy, constitutively expressed EGFP-PEST reporter gene. All three RGNs efficiently disrupted EGFP expression at the highest concentration of gRNA plasmid (250 ng) (Fig. 3E (top)).
  • RGNs for target sites #1 and #3 exhibited equivalent levels of disruption when lower amounts of gRNA-expressing plasmid were transfected whereas RGN activity at target site #2 dropped immediately when the amount of gRNA-expressing plasmid transfected was decreased (Fig. 3E (top)).
  • the amount of Cas9-encoding plasmid (range from 50 ng to 750 ng) transfected into our U20S.EGFP reporter cells was titrated EGFP disruption assayed. As shown in Fig. 3F (top), target site #1 tolerated a three-fold decrease in the amount of Cas9-encoding plasmid transfected without substantial loss of EGFP disruption activity. However, the activities of RGNs targeting target sites #2 and #3 decreased immediately with a three-fold reduction in the amount of Cas9 plasmid transfected (Fig. 3F (top)).
  • Off-target sites for each of the six RGNs targeted to the VEGFA, RNF2, FANCF, and EMX1 genes and the three RGNs targeted to EGFP Target Sites #1, #2 and #3 were identified in human genome sequence build GRCh37. Mismatches were only allowed for the 20 nt region to which the gRNA anneals and not to the PAM sequence.
  • Example 2 Using pairs of guideRNAs with FokI-dCas9 fusion proteins
  • Monomeric CRISPR-Cas9 nucleases are widely used for targeted genome editing but can induce unwanted off-target mutations with high frequencies.
  • This example describes new dimeric RNA-guided Fokl Nucleases (RFNs) that recognize an extended, double-length sequence and that strictly depend on two single guide RNAs (gRNAs) for cleavage activity. RFNs can robustly edit DNA sequences in endogenous human genes with high efficiencies. Additionally, a method for expressing gRNAs bearing any 5 ' end nucleotide is described, a critical advance that gives dimeric RFNs a useful targeting range.
  • RFNs RNA-guided Fokl Nucleases
  • monomeric Cas9 nickases In direct comparisons, monomeric Cas9 nickases generally induce unwanted indels and unexpected focal point mutations with higher frequencies than RFNs directed by a matched single gRNA.
  • RFNs combine the ease of CRISPR RNA-based targeting with the specificity enhancements of dimerization and provide an important new platform for research and therapeutic applications that require highly precise genome editing.
  • Plasmids encoding single or multiplex gRNAs were assembled in a single-step ligation of annealed target site oligosduplexes (Integrated DNA Technologies) and a constant region oligoduplex (for multiplex gRNAs) with BsmBI-digested Csy4- flanked gRNA backbone (pSQT1313; Addgene).
  • Multiplex gRNA encoding plasmids were constructed by ligating: 1) annealed oligos encoding the first target site, 2) phosphorylated annealed oligos encoding crRNA, tracrRNA, and Csy4-binding site, and 3) annealed oligos encoding the second target site, into a U6-Csy4site-gRNA plasmid backbone digested with BsmBI Type lis restriction enzyme.
  • Csy4 RNA binding sites were attached to the 3' and 5' ends of a gRNA sequence and expressed with Cas9 in cells.
  • the Csy4 RNA binding site sequence ' GUUC ACUGCCGUAUAGGC AGCUAAGAAA' was fused to the 5' and 3' end of the standard gRNA sequence.
  • This sequence is a multiplex gRNA sequence flanked by Csy4 sites (underlined). Functionally, encoding these in multiplex on one transcript should have the same result as encoding them separately. Although all pairs of Csy4-flanked sgRNAs were expressed in a multiplex context in the experiments described herein, the sgRNAs can be encoded in multiplex sgRNAs separated by Csy4 sites encoded on one transcript as well as individual sgRNAs that have an additional Csy4 sequence.
  • the first N20 sequence represents the sequence complementary to one strand of the target genomic sequence
  • the second N20 sequence represents the sequence complementary to the other strand of the target genomic sequence.
  • a plasmid encoding the Csy4 recognition site containing gR A was co- transfected with plasmid encoding Cas9 and Csy4 proteins separated by a '2A' peptide linkage.
  • the results showed that gR As with Csy4 sites fused to the 5' and 3 ' ends remained capable of directing Cas9-mediated cleavage in human cells using the U20S-EGFP disruption assay previously described.
  • Csy4 R A binding sites can be attached to 3 ' end of a gRNA sequence and complexes of these Csy4 site- containing gRNAs with Cas9 remain functional in the cell.
  • the sequences of the FokI-dCas9 fusions are shown below, and include a GGGGS (SEQ ID NO:23) linker (underlined) between the Fokl and dCas9 and a nuclear localization sequence.
  • FokI-dCas9 amino acid sequence (FokI-G4S-dCas9-nls-3XFLAG) MQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNSTQDRILEMKVMEFFMKVYGYR GKHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQADEMQRYVEENQTRN KHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLI GGEMIKAGTLTLEEVRRKFNNGEINFGGGGSDKKYS IGLAIGTNSVGWAVITDEYKV PSKKFKVLGN DRHS IKKNLIGALLFDSGE AEATRLKRTARRRYTRRKNRICYLQE IFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFG IVDEVAYHEKYP IYHLRKK LVDS DKADLRLIYLALAHMI
  • FokI-dCas9 nucleotide sequence (FokI-G4S-dCas9-nls-3XFLAG)
  • U20S.EGFP cells were cultured in the presence of 400 ⁇ g/ml of G418.
  • U20S cells and U20S.EGFP cells were transfected using the DN-100 program of a Lonza 4D-Nucleofector according to the manufacturer's instructions.
  • 750 ng of pCAG-Csy4-FokI-dCas9-nls nuclease plasmid and 250 ng of gRNA encoding plasmids were transfected together with 50 ng tdTomato expression plasmid (Clontech) as a transfection control.
  • tdTomato expression plasmid (Clontech)
  • U20S.EGFP cells 975 ng of human codon optimized pCAG-Csy4-T2A-nls-hFokI- dCas9-nls (SQT1601) or pCAG-Cas9-D10A nickase (NW3) were transfected along with 325 ng of gRNA vector and 10 ng of Td tomato expression plasmid and analyzed 3 days after transfection.
  • HEK293 cells were transfected with 750 ng of nuclease plasmid, 250 ng of gRNA expression plasmid and 10 ng of Td tomato, using
  • the EGFP disruption assay was performed as previously described (see Example 1 and Reyon et al, Nat Biotech 30, 460-465 (2012)) using U20S.EGFP reporter cells. Cells were assayed for EGFP and tdTomato expression using an BD Biosciences LSR II or Fortessa FACS analyzer.
  • T7E1 assays were performed as previously described (Reyon et al, Nat Biotech 30, 460-465 (2012)). Briefly, genomic DNA was isolated 72 hours post transfection using the Agencourt DNAdvance Genomic DNA Isolation kit (Beckman Coulter Genomics) according to the manufacturer's instructions with a Sciclone G3 liquid-handling workstation (Caliper). PCR reactions to amplify genomic loci were performed using Phusion Hot- start Flex DNA polymerase (New England Biolabs).
  • Samples were amplified using a two-step protocol (98 °C, 30 sec; (98 °C, 7 sec; 72 °C, 30 sec) x 35; 72 °C, 5 min) or a touchdown PCR protocol ((98 °C, 10 s; 72-62 °C, -1 °C/cycle, 15 s; 72 °C, 30 s) 10 cycles, (98 °C, 10 s; 62 °C, 15 s; 72 °C, 30 s) 25 cycles).
  • 200 ng of purified PCR amplicons were denatured, hybridized, and treated with T7 Endonuclease I (New England Biolabs). Mutation frequency was quantified using a Qiaxcel capillary electrophoresis instrument (Qiagen) as previously described (Reyon et al, Nat Biotech 30, 460-465 (2012)).
  • Short 200-350 bp PCR products were amplified using Phusion Hot- start FLEX DNA polymerase. PCR products were purified using Ampure XP beads (Beckman Coulter Genomics) according to manufacturer's instructions. Dual-indexed TruSeq Illumina deep sequencing libraries were prepared using a high-throughput library preparation system (Kapa Biosystems) on a Sciclone G3 liquid-handling workstation. Final adapter-ligated libraries were quantified using a Qiaxcel capillary electrophoresis instrument (Qiagen). 150 bp paired end sequencing was performed on an Illumina MiSeq Sequencer by the Dana-Farber Cancer Institute Molecular Biology Core.
  • MiSeq paired-end reads were mapped to human genome reference GChr37 using bwa. Reads with an average quality score >30 were analyzed for insertion or deletion mutations that overlapped the intended target or candidate off-target nuclease binding site. Mutation analyses were conducted using the Genome Analysis Toolkit (GATK) and Python.
  • GATK Genome Analysis Toolkit
  • a target-site matching algorithm was implemented that looks for matches with less than a specified number of mismatches in a sliding window across the human genome.
  • Example 2a Rationale for designing dimeric RNA-guided nucleases
  • Example 2b Multiplex expression of gRNAs without 5 '-end nucleotide limitations
  • the targeting range for a dimeric RNA-guided nuclease would be low using existing gRNA expression methods.
  • Two sequence requirements typically restrict the targeting range of a dCas9 monomer: the requirement for a PAM sequence of 5'- NGG that is specified by the dCas9 and a requirement for a G nucleotide at the 5' end of the gRNA imposed by the use of a U6 promoter in most expression vectors. If, however, the requirement for the 5 ' G in the gRNA could be relieved, then the targeting range would improve by 16-fold.
  • a plasmid was constructed from which two gRNAs, each flanked by cleavage sites for the Csy4 ribonuclease (Haurwitz et al, Science 329, 1355-1358 (2010)), can be expressed within a single RNA transcribed from a U6 promoter (Fig. 4B). Csy4 would be expected to process this transcript thereby releasing the two gRNAs.
  • each processed gRNA should retain a Csy4 recognition site on its 3' end with a Csy4 protein bound to that site (Fig. 4B).
  • gRNAs with any 5' nucleotide. This system was tested by using it to express two gRNAs targeted to sites within the EGFP reporter gene.
  • Example 2c Construction and optimization of dimeric RNA-guided nucleases Two different hybrid proteins harboring the Fokl nuclease domain and the dCas9 protein were constructed: one in which the Fokl nuclease domain is fused to the carboxy-terminus of dCas9 (dCas9-FokI) and the other in which it is fused to the amino-terminus (FokI-dCas9) (Fig. 5A).
  • the dCas9-FokI protein is analogous in architecture to ZFNs and TALENs (Fig. 5A).
  • the dCas9-FokI protein did not show detectable EGFP disruption activity when co-expressed with any of the 60 gRNA pairs in human U20S.EGFP cells (Fig. 5E).
  • screening of the FokI-dCas9 protein with the same 60 gRNA pairs did reveal EGFP disruption activity on target sites composed of half-sites in the PAM out orientation and with spacer lengths of 13 to 17 bps and of 26 bps (approximately one turn of the DNA helix more than the 13-17 bp spacer lengths) (Fig. 5B).
  • FokI-dCas9 can be directed by two appropriately positioned gRNAs to efficiently cleave a full-length target site of interest.
  • the complex of two FokI-dCas9 fusions and two gRNAs are referred to herein as RNA-guided Fokl Nucleases (RFNs).
  • gRNA pairs were designed for 12 different target sites in nine different human genes (Table 2). Eleven of the 12 RFNs tested introduced indels with high efficiencies (range of 3 to 40%) at their intended target sites in human U20S.EGFP cells as judged by T7EI assay (Table 2). Similar results were obtained with these same 12 RFN pairs in HEK293 cells (Table 2). Sanger sequencing of successfully targeted alleles from U20S.EGFP cells revealed the introduction of a range of indels (primarily deletions) at the expected cleavage site (Fig. 5F). The high success rate and high efficiencies of modifications observed in two different human cell lines demonstrate the robustness of RFNs for modifying endogenous human genes.
  • Example 2d RFNs possess extended specificities for their cleavage sites To test whether RFNs possess enhanced recognition specificities associated with dimerization, whether these nucleases strictly depend upon the presence of both gRNAs in a pair was examined. In an ideal dimeric system, single gRNAs should not be able to efficiently direct FokI-dCas9-induced indels. To perform an initial test, two pairs of gRNAs directed to two target sites in EGFP were used that had been shown to efficiently direct FokI-dCas9-induced indels to their target sites (EGFP sites 47 and 81) in human U20S.EGFP cells (Fig. 5C).
  • Example 2e Monomeric Cas9 nickases induce higher rates of mutagenesis than single gRNA/FokI-dCas9 complexes
  • FokI-dCas9 and Cas9 nickase were compared in the presence of a single gRNA at six dimeric human gene target sites (a total of 12 half-sites; Table 4). These particular sites were chosen because monomeric Cas9 nickases directed by just one and/or the other gRNA in a pair could induce indel mutations at these targets.
  • Table 4 the activities of FokI-dCas9 or Cas9 nickase were assessed in the presence of both or only one or the other gRNAs.
  • Example 2f Dimeric RFNs possess a high degree of specificity
  • Dimeric RFNs directed by two gRNAs are not expected to induce appreciable off-target mutations in human cells.
  • RFNs directed by a pair of gRNAs to cleave a full-length sequence composed of two half-sites, would be expected to specify up to 44 bps of DNA in the target site. A sequence of this length will, by chance, almost always be unique (except in certain circumstances where the target might lie in duplicated genome sequence).
  • the most closely matched sites in the genome to this full-length site should, in most cases, possess a large number of mismatches, which in turn would be expected to minimize or abolish cleavage activity by an RFN dimer.
  • VEGFA-2 1 4 9 99 447 1675 5608 18599
  • VEGFA-3 1 20 120 623 2783 References

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Prostheses (AREA)
  • Lubricants (AREA)
PCT/US2014/028630 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing Ceased WO2014144288A1 (en)

Priority Applications (29)

Application Number Priority Date Filing Date Title
CA2907198A CA2907198C (en) 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
EP14764159.1A EP2971041B1 (en) 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
EP18208105.9A EP3467125B1 (en) 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
KR1020157029177A KR102210322B1 (ko) 2013-03-15 2014-03-14 Rna-안내 게놈 편집의 특이성을 증가시키기 위한 rna-안내 foki 뉴클레아제(rfn)의 용도
CN201480027950.1A CN105247066B (zh) 2013-03-15 2014-03-14 使用RNA引导的FokI核酸酶(RFN)提高RNA引导的基因组编辑的特异性
KR1020217002429A KR102271292B1 (ko) 2013-03-15 2014-03-14 Rna-안내 게놈 편집의 특이성을 증가시키기 위한 rna-안내 foki 뉴클레아제(rfn)의 용도
ES14764159T ES2713503T3 (es) 2013-03-15 2014-03-14 Uso de nucleasas FOKI guiadas por ARN (RFN) para aumentar la especificidad para la edición del genoma guiada por ARN
AU2014227653A AU2014227653B2 (en) 2013-03-15 2014-03-14 Using RNA-guided foki nucleases (RFNs) to increase specificity for RNA-guided genome editing
JP2016502853A JP6622183B2 (ja) 2013-03-15 2014-03-14 RNA誘導型FokIヌクレアーゼ(RFN)を用いたRNA誘導型ゲノム編集の特異性の増大
PCT/US2014/035162 WO2014204578A1 (en) 2013-06-21 2014-04-23 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
US14/900,444 US10011850B2 (en) 2013-06-21 2014-04-23 Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
EP14875819.6A EP3090044B1 (en) 2013-12-26 2014-09-18 Multiplex guide rnas
US15/107,550 US10526589B2 (en) 2013-03-15 2014-09-18 Multiplex guide RNAs
JP2016542968A JP6721508B2 (ja) 2013-12-26 2014-09-18 多重ガイドrna
CA2935032A CA2935032C (en) 2013-12-26 2014-09-18 Multiplex guide rnas
AU2014370416A AU2014370416B2 (en) 2013-12-26 2014-09-18 Multiplex guide RNAs
KR1020167020111A KR20160102056A (ko) 2013-12-26 2014-09-18 멀티플렉스 가이드 rna
CN202110920229.7A CN113684205B (zh) 2013-12-26 2014-09-18 多重引导rna
EP21191144.1A EP3985124A1 (en) 2013-12-26 2014-09-18 Multiplex guide rnas
CN201480076396.6A CN106103706B (zh) 2013-12-26 2014-09-18 多重引导rna
AU2017204909A AU2017204909B2 (en) 2013-03-15 2017-07-17 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
US16/003,973 US10544433B2 (en) 2013-03-15 2018-06-08 Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
AU2019204675A AU2019204675B2 (en) 2013-03-15 2019-07-01 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
JP2019218086A JP7005580B2 (ja) 2013-12-26 2019-12-02 多重ガイドrna
US16/735,146 US20200165587A1 (en) 2013-12-26 2020-01-06 Multiplex Guide RNAS
US16/751,578 US11098326B2 (en) 2013-03-15 2020-01-24 Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
AU2021203309A AU2021203309B2 (en) 2013-12-26 2021-05-23 Multiplex guide RNAs
AU2021203370A AU2021203370B2 (en) 2013-03-15 2021-05-25 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
AU2023258349A AU2023258349A1 (en) 2013-12-26 2023-10-31 Multiplex guide RNAs

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201361799647P 2013-03-15 2013-03-15
US61/799,647 2013-03-15
US201361838178P 2013-06-21 2013-06-21
US201361838148P 2013-06-21 2013-06-21
US61/838,148 2013-06-21
US61/838,178 2013-06-21
US201361921007P 2013-12-26 2013-12-26
US61/921,007 2013-12-26

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2014/035162 Continuation WO2014204578A1 (en) 2013-03-15 2014-04-23 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
US15/415,431 Continuation US10138476B2 (en) 2013-03-15 2017-01-25 Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing

Related Child Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2014/029304 Continuation WO2014144761A2 (en) 2013-03-15 2014-03-14 Increasing specificity for rna-guided genome editing
PCT/US2014/029068 Continuation WO2014144592A2 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
US14/900,444 Continuation-In-Part US10011850B2 (en) 2013-06-21 2014-04-23 Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
PCT/US2014/035162 Continuation-In-Part WO2014204578A1 (en) 2013-03-15 2014-04-23 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing

Publications (1)

Publication Number Publication Date
WO2014144288A1 true WO2014144288A1 (en) 2014-09-18

Family

ID=51537665

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2014/027335 Ceased WO2014152432A2 (en) 2013-03-15 2014-03-14 Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
PCT/US2014/029304 Ceased WO2014144761A2 (en) 2013-03-15 2014-03-14 Increasing specificity for rna-guided genome editing
PCT/US2014/029068 Ceased WO2014144592A2 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
PCT/US2014/028630 Ceased WO2014144288A1 (en) 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/US2014/027335 Ceased WO2014152432A2 (en) 2013-03-15 2014-03-14 Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
PCT/US2014/029304 Ceased WO2014144761A2 (en) 2013-03-15 2014-03-14 Increasing specificity for rna-guided genome editing
PCT/US2014/029068 Ceased WO2014144592A2 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing

Country Status (12)

Country Link
US (17) US9885033B2 (OSRAM)
EP (10) EP2971041B1 (OSRAM)
JP (11) JP6657069B2 (OSRAM)
KR (8) KR102210319B1 (OSRAM)
CN (6) CN112301024A (OSRAM)
AU (10) AU2014239665B2 (OSRAM)
BR (1) BR112015023489B1 (OSRAM)
CA (4) CA3161835A1 (OSRAM)
ES (1) ES2713503T3 (OSRAM)
IL (2) IL289396B2 (OSRAM)
WO (4) WO2014152432A2 (OSRAM)
ZA (1) ZA201506814B (OSRAM)

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104531633A (zh) * 2014-11-18 2015-04-22 李云英 Cas9-scForkI融合蛋白及其应用
WO2015035162A3 (en) * 2013-09-06 2015-06-04 President And Fellows Of Harvard College Cas9 variants and uses thereof
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
WO2016057961A1 (en) * 2014-10-10 2016-04-14 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
US9322006B2 (en) 2011-07-22 2016-04-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9567603B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
WO2017059313A1 (en) 2015-09-30 2017-04-06 The General Hospital Corporation Comprehensive in vitro reporting of cleavage events by sequencing (circle-seq)
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
WO2017209809A1 (en) * 2016-06-02 2017-12-07 Sigma-Aldrich Co. Llc Using programmable dna binding proteins to enhance targeted genome modification
EP3167071A4 (en) * 2014-07-09 2018-01-17 Gen9, Inc. Compositions and methods for site-directed dna nicking and cleaving
JP2018506987A (ja) * 2015-03-03 2018-03-15 ザ ジェネラル ホスピタル コーポレイション 変更PAM特異性を有する遺伝子操作CRISPR−Cas9ヌクレアーゼ
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
WO2018071892A1 (en) 2016-10-14 2018-04-19 Joung J Keith Epigenetically regulated site-specific nucleases
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
WO2018129129A1 (en) * 2017-01-05 2018-07-12 Rutgers, The State University Of New Jersey Targeted gene editing platform independent of dna double strand break and uses thereof
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10081807B2 (en) 2012-04-24 2018-09-25 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10202608B2 (en) 2006-08-31 2019-02-12 Gen9, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
EP3473720A1 (en) * 2013-08-22 2019-04-24 Pioneer Hi-Bred International, Inc. Genome modification using guide polynucleotide/cas endonuclease systems and methods of use
US10308931B2 (en) 2012-03-21 2019-06-04 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
US10337001B2 (en) 2014-12-03 2019-07-02 Agilent Technologies, Inc. Guide RNA with chemical modifications
US10428319B2 (en) 2017-06-09 2019-10-01 Editas Medicine, Inc. Engineered Cas9 nucleases
US10457935B2 (en) 2010-11-12 2019-10-29 Gen9, Inc. Protein arrays and methods of using and making the same
US10526589B2 (en) 2013-03-15 2020-01-07 The General Hospital Corporation Multiplex guide RNAs
EP3502261A4 (en) * 2016-08-19 2020-07-15 Toolgen Incorporated ARTIFICIALLY MODIFIED ANGIOGENESIS REGULATION SYSTEM
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US20210040460A1 (en) 2012-04-27 2021-02-11 Duke University Genetic correction of mutated genes
EP3812472A1 (en) 2019-10-21 2021-04-28 Albert-Ludwigs-Universität Freiburg A truly unbiased in vitro assay to profile off-target activity of one or more target-specific programmable nucleases in cells (abnoba-seq)
US11028388B2 (en) 2014-03-05 2021-06-08 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa
US11072789B2 (en) 2012-06-25 2021-07-27 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
US11084014B2 (en) 2010-11-12 2021-08-10 Gen9, Inc. Methods and devices for nucleic acids synthesis
US11111521B2 (en) 2011-12-22 2021-09-07 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
EP3728589A4 (en) * 2017-12-22 2021-11-03 G+Flas Life Sciences CHEMICAL GENOMIC ENGINEERING MOLECULES AND PROCESSES
US11180793B2 (en) 2015-04-24 2021-11-23 Editas Medicine, Inc. Evaluation of Cas9 molecule/guide RNA molecule complexes
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US11242525B2 (en) 2014-03-26 2022-02-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating sickle cell disease
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11286468B2 (en) 2017-08-23 2022-03-29 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11299767B2 (en) 2013-03-12 2022-04-12 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11306309B2 (en) 2015-04-06 2022-04-19 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
EP4017976A1 (en) * 2019-08-20 2022-06-29 Kemijski Institut Coiled-coil mediated tethering of crispr/cas and exonucleases for enhanced genome editing
US11390884B2 (en) 2015-05-11 2022-07-19 Editas Medicine, Inc. Optimized CRISPR/cas9 systems and methods for gene editing in stem cells
US11421251B2 (en) 2015-10-13 2022-08-23 Duke University Genome engineering with type I CRISPR systems in eukaryotic cells
US11427817B2 (en) 2015-08-25 2022-08-30 Duke University Compositions and methods of improving specificity in genomic engineering using RNA-guided endonucleases
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11466271B2 (en) 2017-02-06 2022-10-11 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
US11479793B2 (en) 2015-07-15 2022-10-25 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
EP4095243A1 (en) 2021-05-25 2022-11-30 European Molecular Biology Laboratory System for hybridization-based precision genome cleavage and editing, and uses thereof
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542554B2 (en) 2015-11-03 2023-01-03 President And Fellows Of Harvard College Method and apparatus for volumetric imaging
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11566263B2 (en) 2016-08-02 2023-01-31 Editas Medicine, Inc. Compositions and methods for treating CEP290 associated disease
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
US11702662B2 (en) 2011-08-26 2023-07-18 Gen9, Inc. Compositions and methods for high fidelity assembly of nucleic acids
US11713485B2 (en) 2016-04-25 2023-08-01 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11851690B2 (en) 2017-03-14 2023-12-26 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
US11884915B2 (en) 2021-09-10 2024-01-30 Agilent Technologies, Inc. Guide RNAs with chemical modification for prime editing
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11911415B2 (en) 2015-06-09 2024-02-27 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for improving transplantation
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11920128B2 (en) 2013-09-18 2024-03-05 Kymab Limited Methods, cells and organisms
US11963982B2 (en) 2017-05-10 2024-04-23 Editas Medicine, Inc. CRISPR/RNA-guided nuclease systems and methods
WO2024084025A1 (en) 2022-10-21 2024-04-25 Keygene N.V. Rna transfection in plant cells with modified rna
US11981917B2 (en) 2013-06-04 2024-05-14 President And Fellows Of Harvard College RNA-guided transcriptional regulation
WO2024121354A1 (en) 2022-12-08 2024-06-13 Keygene N.V. Duplex sequencing with covalently closed dna ends
US12031132B2 (en) 2018-03-14 2024-07-09 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US12098425B2 (en) 2018-10-10 2024-09-24 Readcoor, Llc Three-dimensional spatial molecular indexing
US12110545B2 (en) 2017-01-06 2024-10-08 Editas Medicine, Inc. Methods of assessing nuclease cleavage
WO2024209000A1 (en) 2023-04-04 2024-10-10 Keygene N.V. Linkers for duplex sequencing
US12152241B2 (en) 2014-06-25 2024-11-26 The General Hospital Corporation Targeting human satellite II (HSATII)
US12157760B2 (en) 2018-05-23 2024-12-03 The Broad Institute, Inc. Base editors and uses thereof
US12203136B2 (en) 2020-08-17 2025-01-21 Readcoor, Llc Methods and systems for spatial mapping of genetic variants
US12215366B2 (en) 2015-02-09 2025-02-04 Duke University Compositions and methods for epigenome editing
US12214056B2 (en) 2016-07-19 2025-02-04 Duke University Therapeutic applications of CPF1-based genome editing
US12215345B2 (en) 2013-03-19 2025-02-04 Duke University Compositions and methods for the induction and tuning of gene expression
US12264341B2 (en) 2020-01-24 2025-04-01 The General Hospital Corporation CRISPR-Cas enzymes with enhanced on-target activity
US12281338B2 (en) 2018-10-29 2025-04-22 The Broad Institute, Inc. Nucleobase editors comprising GeoCas9 and uses thereof
US12286727B2 (en) 2016-12-19 2025-04-29 Editas Medicine, Inc. Assessing nuclease cleavage
US12312613B2 (en) 2020-01-24 2025-05-27 The General Hospital Corporation Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants
US12331347B2 (en) 2014-07-11 2025-06-17 President And Fellows Of Harvard College Methods for high-throughput labelling and detection of biological features in situ using microscopy
US12338436B2 (en) 2018-06-29 2025-06-24 Editas Medicine, Inc. Synthetic guide molecules, compositions and methods relating thereto
US12351837B2 (en) 2019-01-23 2025-07-08 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof
US12390514B2 (en) 2017-03-09 2025-08-19 President And Fellows Of Harvard College Cancer vaccine
US12406749B2 (en) 2017-12-15 2025-09-02 The Broad Institute, Inc. Systems and methods for predicting repair outcomes in genetic engineering
US12428631B2 (en) 2016-04-13 2025-09-30 Duke University CRISPR/Cas9-based repressors for silencing gene targets in vivo and methods of use
US12435330B2 (en) 2019-10-10 2025-10-07 The Broad Institute, Inc. Methods and compositions for prime editing RNA
US12460231B2 (en) 2014-04-02 2025-11-04 Editas Medicine, Inc. Crispr/CAS-related methods and compositions for treating primary open angle glaucoma
US12467086B2 (en) 2011-10-14 2025-11-11 President And Fellows Of Harvard College Sequencing by structure assembly
US12473543B2 (en) 2019-04-17 2025-11-18 The Broad Institute, Inc. Adenine base editors with reduced off-target effects
US12509680B2 (en) 2023-05-31 2025-12-30 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences

Families Citing this family (327)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2625292B1 (en) 2010-10-07 2018-12-05 The General Hospital Corporation Biomarkers of cancer
US10030245B2 (en) 2011-03-23 2018-07-24 E I Du Pont De Nemours And Company Methods for producing a complex transgenic trait locus
CA2841710C (en) 2011-07-15 2021-03-16 The General Hospital Corporation Methods of transcription activator like effector assembly
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
WO2013139861A1 (en) 2012-03-20 2013-09-26 Luc Montagnier Methods and pharmaceutical compositions of the treatment of autistic syndrome disorders
SI3401400T1 (sl) 2012-05-25 2019-10-30 Univ California Postopki in sestavki za RNA usmerjeno modifikacijo tarčne DNA in za RNA usmerjeno modulacijo prepisovanja
US9890364B2 (en) 2012-05-29 2018-02-13 The General Hospital Corporation TAL-Tet1 fusion proteins and methods of use thereof
EP3789405A1 (en) * 2012-10-12 2021-03-10 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins
EP3138911B1 (en) 2012-12-06 2018-12-05 Sigma Aldrich Co. LLC Crispr-based genome modification and regulation
BR112015013784A2 (pt) 2012-12-12 2017-07-11 Massachusetts Inst Technology aplicação, manipulação e otimização de sistemas, métodos e composições para manipulação de sequência e aplicações terapêuticas
ES2701749T3 (es) 2012-12-12 2019-02-25 Broad Inst Inc Métodos, modelos, sistemas y aparatos para identificar secuencias diana para enzimas Cas o sistemas CRISPR-Cas para secuencias diana y transmitir resultados de los mismos
WO2014093701A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
EP3919505B1 (en) 2013-01-16 2023-08-30 Emory University Uses of cas9-nucleic acid complexes
EP2954042B1 (en) 2013-02-07 2017-12-06 The General Hospital Corporation Tale transcriptional activators
US20140315985A1 (en) 2013-03-14 2014-10-23 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
JP2016522679A (ja) * 2013-04-04 2016-08-04 プレジデント アンド フェローズ オブ ハーバード カレッジ CRISPR/Cas系を用いたゲノム編集の治療的使用
US20140356956A1 (en) * 2013-06-04 2014-12-04 President And Fellows Of Harvard College RNA-Guided Transcriptional Regulation
KR20230136697A (ko) * 2013-06-05 2023-09-26 듀크 유니버시티 Rna-가이드 유전자 편집 및 유전자 조절
JP6625971B2 (ja) 2013-06-17 2019-12-25 ザ・ブロード・インスティテュート・インコーポレイテッド 配列操作のためのタンデムガイド系、方法および組成物の送達、エンジニアリングおよび最適化
EP3011033B1 (en) 2013-06-17 2020-02-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
EP3011030B1 (en) 2013-06-17 2023-11-08 The Broad Institute, Inc. Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation
DK3011031T3 (da) 2013-06-17 2020-12-21 Broad Inst Inc Fremføring og anvendelse af crispr-cas-systemerne, vektorer og sammensætninger til levermålretning og -terapi
KR20250012194A (ko) 2013-06-17 2025-01-23 더 브로드 인스티튜트, 인코퍼레이티드 바이러스 구성성분을 사용하여 장애 및 질환을 표적화하기 위한 crispr-cas 시스템 및 조성물의 전달, 용도 및 치료 적용
JP2016528890A (ja) 2013-07-09 2016-09-23 プレジデント アンド フェローズ オブ ハーバード カレッジ CRISPR/Cas系を用いるゲノム編集の治療用の使用
WO2015021426A1 (en) * 2013-08-09 2015-02-12 Sage Labs, Inc. A crispr/cas system-based novel fusion protein and its application in genome editing
US10584358B2 (en) 2013-10-30 2020-03-10 North Carolina State University Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri
WO2015089364A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crystal structure of a crispr-cas system, and uses thereof
WO2015089486A2 (en) * 2013-12-12 2015-06-18 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
US9994831B2 (en) * 2013-12-12 2018-06-12 The Regents Of The University Of California Methods and compositions for modifying a single stranded target nucleic acid
KR20160089530A (ko) 2013-12-12 2016-07-27 더 브로드 인스티튜트, 인코퍼레이티드 Hbv 및 바이러스 질병 및 질환을 위한 crispr­cas 시스템 및 조성물의 전달,용도 및 치료적 적용
WO2015089351A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders
WO2015089473A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation
IL289736B2 (en) 2013-12-12 2025-09-01 Massachusetts Inst Technology Administration, use and therapeutic applications of CRISPR–Cas gene editing systems and gene editing preparations
AU2014370416B2 (en) 2013-12-26 2021-03-11 The General Hospital Corporation Multiplex guide RNAs
US10787654B2 (en) 2014-01-24 2020-09-29 North Carolina State University Methods and compositions for sequence guiding Cas9 targeting
PT3105328T (pt) 2014-02-11 2020-07-06 Univ Colorado Regents Engenharia de genomas multiplexada possibilitada por crispr
JP2017512481A (ja) 2014-04-08 2017-05-25 ノースカロライナ ステート ユニバーシティーNorth Carolina State University Crispr関連遺伝子を用いた、rna依存性の転写抑制のための方法および組成物
AU2015266770A1 (en) 2014-05-30 2016-12-08 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods of delivering treatments for latent viral infections
ES2888976T3 (es) 2014-06-23 2022-01-10 Massachusetts Gen Hospital Identificación no sesgada pangenómica de DSBs evaluada por secuenciación (GUIDE-Seq.)
US20150376587A1 (en) * 2014-06-25 2015-12-31 Caribou Biosciences, Inc. RNA Modification to Engineer Cas9 Activity
CN106687594A (zh) 2014-07-11 2017-05-17 纳幕尔杜邦公司 用于产生对草甘膦除草剂具有抗性的植物的组合物和方法
WO2016022866A1 (en) 2014-08-07 2016-02-11 Agilent Technologies, Inc. Cis-blocked guide rna
EP3633032A3 (en) 2014-08-28 2020-07-29 North Carolina State University Novel cas9 proteins and guiding features for dna targeting and genome editing
WO2016040030A1 (en) 2014-09-12 2016-03-17 E. I. Du Pont De Nemours And Company Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use
WO2016049258A2 (en) * 2014-09-25 2016-03-31 The Broad Institute Inc. Functional screening with optimized functional crispr-cas systems
US20170233762A1 (en) * 2014-09-29 2017-08-17 The Regents Of The University Of California Scaffold rnas
GB201418965D0 (OSRAM) 2014-10-24 2014-12-10 Ospedale San Raffaele And Fond Telethon
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
EP3215623A4 (en) 2014-11-06 2018-09-26 President and Fellows of Harvard College Cells lacking b2m surface expression and methods for allogeneic administration of such cells
KR101828933B1 (ko) * 2014-11-14 2018-02-14 기초과학연구원 유전체에서 유전자 가위의 비표적 위치를 검출하는 방법
US11352666B2 (en) 2014-11-14 2022-06-07 Institute For Basic Science Method for detecting off-target sites of programmable nucleases in a genome
EP3222728B1 (en) * 2014-11-19 2021-07-14 Institute for Basic Science Method for regulating gene expression using cas9 protein expressed from two vectors
WO2016090385A1 (en) * 2014-12-05 2016-06-09 Applied Stemcell, Inc. Site-directed crispr/recombinase compositions and methods of integrating transgenes
US9888673B2 (en) 2014-12-10 2018-02-13 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
EP3985115A1 (en) 2014-12-12 2022-04-20 The Broad Institute, Inc. Protected guide rnas (pgrnas)
EP3230452B1 (en) * 2014-12-12 2025-06-11 The Broad Institute, Inc. Dead guides for crispr transcription factors
US20180179523A1 (en) * 2014-12-18 2018-06-28 Integrated Dna Technologies, Inc. Crispr-based compositions and methods of use
CN119320775A (zh) * 2014-12-18 2025-01-17 综合基因技术公司 基于crispr的组合物和使用方法
US10190106B2 (en) * 2014-12-22 2019-01-29 Univesity Of Massachusetts Cas9-DNA targeting unit chimeras
EP3702456A1 (en) 2014-12-24 2020-09-02 The Broad Institute, Inc. Crispr having or associated with destabilization domains
WO2016114972A1 (en) 2015-01-12 2016-07-21 The Regents Of The University Of California Heterodimeric cas9 and methods of use thereof
US11180792B2 (en) 2015-01-28 2021-11-23 The Regents Of The University Of California Methods and compositions for labeling a single-stranded target nucleic acid
SG10201804715WA (en) 2015-01-28 2018-07-30 Pioneer Hi Bred Int Crispr hybrid dna/rna polynucleotides and methods of use
HK1248274A1 (zh) * 2015-02-18 2018-10-12 衣阿华州立大学研究基金公司 修饰nf-yc4启动子的转录抑制子结合位点以增加蛋白质含量和抗应力
US10450576B2 (en) 2015-03-27 2019-10-22 E I Du Pont De Nemours And Company Soybean U6 small nuclear RNA gene promoters and their use in constitutive expression of small RNA genes in plants
EP3294342A4 (en) 2015-05-08 2018-11-07 President and Fellows of Harvard College Universal donor stem cells and related methods
US10117911B2 (en) 2015-05-29 2018-11-06 Agenovir Corporation Compositions and methods to treat herpes simplex virus infections
GB2543873A (en) 2015-05-29 2017-05-03 Agenovir Corp Compositions and methods for cell targeted HPV treatment
EP3303607A4 (en) 2015-05-29 2018-10-10 North Carolina State University Methods for screening bacteria, archaea, algae, and yeast using crispr nucleic acids
WO2016196655A1 (en) 2015-06-03 2016-12-08 The Regents Of The University Of California Cas9 variants and methods of use thereof
EP3302525A2 (en) 2015-06-05 2018-04-11 Novartis AG Methods and compositions for diagnosing, treating, and monitoring treatment of shank3 deficiency associated disorders
ES2802524T3 (es) * 2015-06-10 2021-01-20 Firmenich & Cie Líneas celulares para el cribado de receptores de aroma y olor
US20160362705A1 (en) 2015-06-12 2016-12-15 Lonza Walkersville, Inc. Methods for Nuclear Reprogramming Using Synthetic Transcription Factors
DK3307872T3 (da) 2015-06-15 2023-10-23 Univ North Carolina State Fremgangsmåder og sammensætninger til effektiv indgivelse af nukleinsyrer og rna-baserede antimikrober
WO2016205759A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
TWI813532B (zh) 2015-06-18 2023-09-01 美商博得學院股份有限公司 降低脱靶效應的crispr酶突變
WO2017004279A2 (en) * 2015-06-29 2017-01-05 Massachusetts Institute Of Technology Compositions comprising nucleic acids and methods of using the same
EP3313989B1 (en) * 2015-06-29 2024-12-25 Ionis Pharmaceuticals, Inc. Modified crispr rna and modified single crispr rna and uses thereof
WO2017015637A1 (en) 2015-07-22 2017-01-26 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
WO2017023803A1 (en) 2015-07-31 2017-02-09 Regents Of The University Of Minnesota Modified cells and methods of therapy
US20180230450A1 (en) * 2015-08-03 2018-08-16 President And Fellows Of Harvard College Cas9 Genome Editing and Transcriptional Regulation
WO2017024047A1 (en) * 2015-08-03 2017-02-09 Emendobio Inc. Compositions and methods for increasing nuclease induced recombination rate in cells
CN107922949A (zh) * 2015-08-31 2018-04-17 安捷伦科技有限公司 用于通过同源重组的基于crispr/cas的基因组编辑的化合物和方法
WO2017044776A1 (en) * 2015-09-10 2017-03-16 Texas Tech University System Single-guide rna (sgrna) with improved knockout efficiency
CN108350453A (zh) 2015-09-11 2018-07-31 通用医疗公司 核酸酶dsb的完全查询和测序(find-seq)
US11286480B2 (en) 2015-09-28 2022-03-29 North Carolina State University Methods and compositions for sequence specific antimicrobials
MX390738B (es) 2015-10-06 2025-03-21 Inst Basic Science Metodo para producir plantas de genoma modificado a partir de protoplastos de planta a alta eficiencia.
US9677090B2 (en) 2015-10-23 2017-06-13 Caribou Biosciences, Inc. Engineered nucleic-acid targeting nucleic acids
WO2017081288A1 (en) 2015-11-11 2017-05-18 Lonza Ltd Crispr-associated (cas) proteins with reduced immunogenicity
WO2017087979A1 (en) 2015-11-20 2017-05-26 Washington University Preparative electrophoretic method for targeted purification of genomic dna fragments
WO2017090724A1 (ja) * 2015-11-25 2017-06-01 国立大学法人 群馬大学 Dnaメチル化編集用キットおよびdnaメチル化編集方法
AU2016362282B2 (en) 2015-11-30 2023-03-16 Duke University Therapeutic targets for the correction of the human dystrophin gene by gene editing and methods of use
US11345931B2 (en) 2015-12-14 2022-05-31 President And Fellows Of Harvard College Cas discrimination using tuned guide RNA
WO2017112620A1 (en) 2015-12-22 2017-06-29 North Carolina State University Methods and compositions for delivery of crispr based antimicrobials
NZ783532A (en) * 2015-12-28 2025-09-26 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
EP3901258A1 (en) 2016-01-11 2021-10-27 The Board of Trustees of the Leland Stanford Junior University Chimeric proteins and methods of immunotherapy
NZ743983A (en) 2016-01-11 2025-08-29 Univ Leland Stanford Junior Chimeric proteins and methods of regulating gene expression
WO2017136794A1 (en) 2016-02-03 2017-08-10 Massachusetts Institute Of Technology Structure-guided chemical modification of guide rna and its applications
CN109072205A (zh) 2016-02-10 2018-12-21 密歇根大学董事会 核酸的检测
EP3417061B1 (en) 2016-02-18 2022-10-26 The Regents of the University of California Methods and compositions for gene editing in stem cells
US10538750B2 (en) 2016-02-29 2020-01-21 Agilent Technologies, Inc. Methods and compositions for blocking off-target nucleic acids from cleavage by CRISPR proteins
MX381136B (es) * 2016-03-15 2025-03-12 Rnaissance Ag Llc Métodos y composiciones para incrementar la producción de arn bicatenario.
EP3429567B1 (en) 2016-03-16 2024-01-10 The J. David Gladstone Institutes Methods and compositions for treating obesity and/or diabetes and for identifying candidate treatment agents
EP3219799A1 (en) 2016-03-17 2017-09-20 IMBA-Institut für Molekulare Biotechnologie GmbH Conditional crispr sgrna expression
CN106701765A (zh) * 2016-04-11 2017-05-24 广东赤萌医疗科技有限公司 用于hiv感染治疗的多核苷酸及其制备药物应用
CN107326046A (zh) * 2016-04-28 2017-11-07 上海邦耀生物科技有限公司 一种提高外源基因同源重组效率的方法
MX2018014172A (es) 2016-05-20 2019-08-22 Regeneron Pharma Métodos para romper la tolerancia inmunológica usando múltiples arn guías.
WO2017208247A1 (en) * 2016-06-02 2017-12-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Assay for the removal of methyl-cytosine residues from dna
CN109312386B (zh) * 2016-06-15 2022-10-25 株式会社图尔金 使用中靶靶标和脱靶靶标的多重靶标系统筛选靶特异性核酸酶的方法及其用途
WO2017223538A1 (en) 2016-06-24 2017-12-28 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
EP3474849B1 (en) 2016-06-27 2025-05-21 The Broad Institute, Inc. Compositions and methods for detecting and treating diabetes
US11359234B2 (en) 2016-07-01 2022-06-14 Microsoft Technology Licensing, Llc Barcoding sequences for identification of gene expression
EP3478852B1 (en) * 2016-07-01 2020-08-12 Microsoft Technology Licensing, LLC Storage through iterative dna editing
US20180004537A1 (en) 2016-07-01 2018-01-04 Microsoft Technology Licensing, Llc Molecular State Machines
US20230151341A1 (en) * 2016-07-13 2023-05-18 Qihan Chen Method for specifically editing genomic dna and application thereof
EP4219462A1 (en) 2016-07-13 2023-08-02 Vertex Pharmaceuticals Incorporated Methods, compositions and kits for increasing genome editing efficiency
CN109790527A (zh) * 2016-07-26 2019-05-21 通用医疗公司 普氏菌属和弗朗西斯氏菌属的CRISPR1(Cpf1)的变体
US11123409B2 (en) * 2016-07-28 2021-09-21 Institute For Basic Science Method of treating or preventing eye disease using Cas9 protein and guide RNA
US10548302B2 (en) 2016-07-29 2020-02-04 Regeneron Pharmaceuticals, Inc. Fibrillin-1 mutations for modeling neonatal progeroid syndrome with congenital lipodystrophy
WO2018030457A1 (ja) 2016-08-10 2018-02-15 武田薬品工業株式会社 真核細胞のゲノムの標的部位を改変する方法及び標的部位における検出対象核酸配列の存在又は非存在を検出する方法
EP3500675A4 (en) * 2016-08-19 2020-01-29 Whitehead Institute for Biomedical Research Methods of editing dna methylation
IL264792B2 (en) 2016-08-24 2023-10-01 Sangamo Therapeutics Inc Engineered target-specific zinc-finger nucleases
AU2017315406B2 (en) 2016-08-24 2021-04-01 Sangamo Therapeutics, Inc. Regulation of gene expression using engineered nucleases
WO2018048194A1 (ko) * 2016-09-07 2018-03-15 울산대학교 산학협력단 dCas9 단백질 및 표적 핵산 서열에 결합하는 gRNA를 이용한 핵산 검출의 민감도 및 특이도 향상용 조성물 및 방법
CA3035910A1 (en) * 2016-09-07 2018-03-15 Flagship Pioneering, Inc. Methods and compositions for modulating gene expression
CN110023494A (zh) 2016-09-30 2019-07-16 加利福尼亚大学董事会 Rna指导的核酸修饰酶及其使用方法
CN107880132B (zh) * 2016-09-30 2022-06-17 北京大学 一种融合蛋白及使用其进行同源重组的方法
US10669539B2 (en) 2016-10-06 2020-06-02 Pioneer Biolabs, Llc Methods and compositions for generating CRISPR guide RNA libraries
US11242542B2 (en) 2016-10-07 2022-02-08 Integrated Dna Technologies, Inc. S. pyogenes Cas9 mutant genes and polypeptides encoded by same
KR20230164759A (ko) 2016-10-07 2023-12-04 인티그레이티드 디엔에이 테크놀로지스 아이엔씨. S. 피오게네스 cas9 돌연변이 유전자 및 이에 의해 암호화되는 폴리펩티드
CA3041068A1 (en) 2016-10-18 2018-04-26 Regents Of The University Of Minnesota Tumor infiltrating lymphocytes and methods of therapy
US20180245065A1 (en) 2016-11-01 2018-08-30 Novartis Ag Methods and compositions for enhancing gene editing
US20180282722A1 (en) * 2016-11-21 2018-10-04 Massachusetts Institute Of Technology Chimeric DNA:RNA Guide for High Accuracy Cas9 Genome Editing
JP2019535287A (ja) 2016-11-22 2019-12-12 インテグレイテツド・デイー・エヌ・エイ・テクノロジーズ・インコーポレイテツド Crispr/cpf1システム及び方法
TWI835719B (zh) * 2016-12-08 2024-03-21 美商英特利亞醫療公司 經修飾之嚮導rna
US20200149039A1 (en) 2016-12-12 2020-05-14 Whitehead Institute For Biomedical Research Regulation of transcription through ctcf loop anchors
US11293022B2 (en) 2016-12-12 2022-04-05 Integrated Dna Technologies, Inc. Genome editing enhancement
CA3045131A1 (en) 2016-12-14 2018-06-21 Ligandal, Inc. Methods and compositions for nucleic acid and protein payload delivery
KR102551664B1 (ko) * 2016-12-22 2023-07-05 인텔리아 테라퓨틱스, 인크. 알파-1 항트립신 결핍을 치료하기 위한 조성물 및 방법
EP3562942A4 (en) * 2016-12-28 2020-12-09 Ionis Pharmaceuticals, Inc. MODIFIED CRISPR-RNA AND ITS USES
ES2949801T3 (es) 2017-01-09 2023-10-03 Whitehead Inst Biomedical Res Métodos para alterar la expresión génica mediante la perturbación de multímeros de factores de transcripción que estructuran bucles reguladores
EP3572525A4 (en) * 2017-01-17 2020-09-30 Institute for Basic Science PROCEDURE FOR IDENTIFYING AN OFF-TARGET BASIC EDITING SITE BY BREAKING A SINGLE DNA STRAND
RU2019126483A (ru) 2017-01-23 2021-02-24 Ридженерон Фармасьютикалз, Инк. Варианты 17-бета-гидроксистероиддегидрогеназы 13 (hsd17b13) и их применение
JP2020507312A (ja) * 2017-02-10 2020-03-12 ザイマージェン インコーポレイテッド 複数の宿主用の複数のdnaコンストラクトのアセンブリ及び編集のためのモジュラーユニバーサルプラスミド設計戦略
EP3655533A1 (en) 2017-02-24 2020-05-27 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin Method for re-expression of different hypermethylated genes involved in fibrosis, like hypermethylated rasal,1 and use thereof in treatment of fibrosis as well as kit of parts for re-expression of hypermethylated genes including rasal1 in a subject
CN110730826A (zh) 2017-03-08 2020-01-24 密歇根大学董事会 分析物检测
CN108660161B (zh) * 2017-03-31 2023-05-09 中国科学院脑科学与智能技术卓越创新中心 基于CRISPR/Cas9技术的制备无嵌合基因敲除动物的方法
CN110506203A (zh) * 2017-04-07 2019-11-26 塞奇科学股份有限公司 用于通过使用集成电泳dna纯化来检测遗传结构变异的系统和方法
JP7379160B2 (ja) 2017-04-21 2023-11-14 ザ ジェネラル ホスピタル コーポレイション CRISPR-Cpf1を使用する誘導性で調整可能な多重ヒト遺伝子制御
CN110799525A (zh) 2017-04-21 2020-02-14 通用医疗公司 具有改变的PAM特异性的CPF1(CAS12a)的变体
JP7324713B2 (ja) 2017-05-25 2023-08-10 ザ ジェネラル ホスピタル コーポレイション 改善された精度および特異性を有する塩基エディター
CN108977442B (zh) * 2017-06-05 2023-01-06 广州市锐博生物科技有限公司 用于dna编辑的系统及其应用
CN110997906B (zh) 2017-06-05 2024-05-07 雷杰纳荣制药公司 B4galt1变体及其用途
US10907150B2 (en) 2017-06-14 2021-02-02 Wisconsin Alumni Research Foundation Modified guide RNAs, CRISPR-ribonucleotprotein complexes and methods of use
US20200362355A1 (en) 2017-06-15 2020-11-19 The Regents Of The University Of California Targeted non-viral dna insertions
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
JP2020530307A (ja) 2017-06-30 2020-10-22 インティマ・バイオサイエンス,インコーポレーテッド 遺伝子治療のためのアデノ随伴ウイルスベクター
WO2019003193A1 (en) 2017-06-30 2019-01-03 Novartis Ag METHODS FOR TREATING DISEASES USING GENE EDITING SYSTEMS
KR102523217B1 (ko) * 2017-07-11 2023-04-20 시그마-알드리치 컴퍼니., 엘엘씨 표적된 게놈 변형을 개선하기 위한 뉴클레오솜 상호작용 단백질 도메인 사용
WO2019028032A1 (en) 2017-07-31 2019-02-07 Regeneron Pharmaceuticals, Inc. EMBRYONIC STEM CELLS OF TRANSGENIC MOUSE CASES AND MICE AND USES THEREOF
JP2020533957A (ja) * 2017-07-31 2020-11-26 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Crisprリポーター非ヒト動物およびその使用
WO2019028029A1 (en) 2017-07-31 2019-02-07 Regeneron Pharmaceuticals, Inc. EVALUATION OF CRISPR / CAS INDUCED RECOMBINATION WITH IN VIVO EXOGENIC DONOR NUCLEIC ACID
CN111278848B (zh) 2017-08-04 2023-06-27 北京大学 特异性识别甲基化修饰dna碱基的tale rvd及其应用
CN111278983A (zh) 2017-08-08 2020-06-12 北京大学 基因敲除方法
EP3585162B1 (en) 2017-09-29 2023-08-30 Regeneron Pharmaceuticals, Inc. Rodents comprising a humanized ttr locus and methods of use
EP3694993A4 (en) 2017-10-11 2021-10-13 The General Hospital Corporation SITE-SPECIFIC AND PARASITIC GENOMIC DESAMINATION DETECTION METHODS INDUCED BY BASIC EDITING TECHNOLOGIES
CN107602707B (zh) * 2017-10-17 2021-04-23 湖北大学 一种特异性调节枯草芽孢杆菌外源基因表达的dcas9-ω融合蛋白及其应用
IL274179B2 (en) 2017-10-27 2024-02-01 Univ California Targeted replacement of endogenous T cell receptors
KR20200075000A (ko) * 2017-11-01 2020-06-25 에디타스 메디신, 인코포레이티드 면역요법을 위한 t 세포 내 tgfbr2의 crispr-cas9 편집 방법, 조성물 및 성분
WO2019087113A1 (en) 2017-11-01 2019-05-09 Novartis Ag Synthetic rnas and methods of use
JP7423520B2 (ja) * 2017-11-16 2024-01-29 アストラゼネカ・アクチエボラーグ Cas9ベースノックイン方針の効力を改善するための組成物及び方法
CN109504711A (zh) * 2018-02-14 2019-03-22 复旦大学 基于CRISPR/cas9和过氧化物酶APEX2系统识别分析特异性基因组位点相互作用DNA的方法
WO2019161340A1 (en) 2018-02-19 2019-08-22 Yale University Phosphopeptide-encoding oligonucleotide libraries and methods for detecting phosphorylation-dependent molecular interactions
US12084676B2 (en) 2018-02-23 2024-09-10 Pioneer Hi-Bred International, Inc. Cas9 orthologs
CN116349651A (zh) 2018-03-19 2023-06-30 瑞泽恩制药公司 使用crispr/cas系统对动物进行转录调制
WO2019195738A1 (en) 2018-04-06 2019-10-10 Children's Medical Center Corporation Compositions and methods for somatic cell reprogramming and modulating imprinting
WO2019204378A1 (en) 2018-04-17 2019-10-24 The General Hospital Corporation Sensitive in vitro assays for substrate preferences and sites of nucleic acid binding, modifying, and cleaving agents
CN117534769A (zh) 2018-04-19 2024-02-09 加利福尼亚大学董事会 用于基因编辑的组合物和方法
WO2019213430A1 (en) * 2018-05-03 2019-11-07 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for nicking target dna sequences
CN108588123A (zh) * 2018-05-07 2018-09-28 南京医科大学 CRISPR/Cas9载体组合在制备基因敲除猪的血液制品中的应用
JP7642531B2 (ja) 2018-05-11 2025-03-10 ビーム セラピューティクス インク. プログラム可能塩基エディターシステムを用いて病原性アミノ酸を置換する方法
KR20210045360A (ko) 2018-05-16 2021-04-26 신테고 코포레이션 가이드 rna 설계 및 사용을 위한 방법 및 시스템
EP3575396A1 (en) * 2018-06-01 2019-12-04 Algentech SAS Gene targeting
US12227776B2 (en) 2018-06-13 2025-02-18 Caribou Biosciences, Inc. Engineered cascade components and cascade complexes
CN110592141B (zh) * 2018-06-13 2023-07-07 中国科学院上海有机化学研究所 用于调控基因编辑效率的化合物及其应用
US10227576B1 (en) 2018-06-13 2019-03-12 Caribou Biosciences, Inc. Engineered cascade components and cascade complexes
CN112513270B (zh) 2018-07-13 2025-02-25 加利福尼亚大学董事会 基于逆转录转座子的递送媒介物及其使用方法
CN112703250A (zh) 2018-08-15 2021-04-23 齐默尔根公司 CRISPRi在高通量代谢工程中的应用
US12275964B2 (en) 2018-08-22 2025-04-15 The Regents Of The University Of California Variant type V CRISPR/Cas effector polypeptides and methods of use thereof
US11834686B2 (en) 2018-08-23 2023-12-05 Sangamo Therapeutics, Inc. Engineered target specific base editors
CN112654702B (zh) 2018-09-07 2025-05-13 阿斯利康(瑞典)有限公司 改进的核酸酶的组合物和方法
US12264330B2 (en) 2018-10-01 2025-04-01 North Carolina State University Recombinant type I CRISPR-Cas system and uses thereof for killing target cells
US12203123B2 (en) 2018-10-01 2025-01-21 North Carolina State University Recombinant type I CRISPR-Cas system and uses thereof for screening for variant cells
US12264313B2 (en) 2018-10-01 2025-04-01 North Carolina State University Recombinant type I CRISPR-Cas system and uses thereof for genome modification and alteration of expression
EP3861120A4 (en) 2018-10-01 2023-08-16 North Carolina State University Recombinant type i crispr-cas system
US11407995B1 (en) 2018-10-26 2022-08-09 Inari Agriculture Technology, Inc. RNA-guided nucleases and DNA binding proteins
US11434477B1 (en) 2018-11-02 2022-09-06 Inari Agriculture Technology, Inc. RNA-guided nucleases and DNA binding proteins
US11739320B2 (en) 2018-11-05 2023-08-29 Wisconsin Alumni Research Foundation Gene correction of Pompe disease and other autosomal recessive disorders via RNA-guided nucleases
EP3877517A4 (en) 2018-11-09 2022-09-07 Inari Agriculture, Inc. RNA-DRIVEN NUCLEASES AND DNA-BINDING PROTEINS
WO2020123887A2 (en) 2018-12-14 2020-06-18 Pioneer Hi-Bred International, Inc. Novel crispr-cas systems for genome editing
CN113423831B (zh) 2018-12-20 2023-03-10 瑞泽恩制药公司 核酸酶介导的重复扩增
WO2020148206A1 (en) 2019-01-14 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for generating and selecting a variant of a binding protein with increased binding affinity and/or specificity
WO2020163396A1 (en) 2019-02-04 2020-08-13 The General Hospital Corporation Adenine dna base editor variants with reduced off-target rna editing
WO2020163856A1 (en) 2019-02-10 2020-08-13 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Modified mitochondrion and methods of use thereof
CN113811607A (zh) 2019-03-07 2021-12-17 加利福尼亚大学董事会 CRISPR-Cas效应子多肽和其使用方法
US11781131B2 (en) 2019-03-18 2023-10-10 Regeneron Pharmaceuticals, Inc. CRISPR/Cas dropout screening platform to reveal genetic vulnerabilities associated with tau aggregation
WO2020190932A1 (en) 2019-03-18 2020-09-24 Regeneron Pharmaceuticals, Inc. Crispr/cas screening platform to identify genetic modifiers of tau seeding or aggregation
PH12021500032A1 (en) 2019-04-03 2022-05-02 Regeneron Pharma Methods and compositions for insertion of antibody coding sequences into a safe harbor locus
IL286917B (en) 2019-04-04 2022-09-01 Regeneron Pharma Methods for scarless introduction of targeted modifications into targeting vectors
CN117178959A (zh) 2019-04-04 2023-12-08 瑞泽恩制药公司 包括人源化凝血因子12基因座的非人动物
CN120041438A (zh) 2019-04-12 2025-05-27 阿斯利康(瑞典)有限公司 用于改进的基因编辑的组合物和方法
AU2020286382A1 (en) 2019-06-04 2021-11-04 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized TTR locus with a beta-slip mutation and methods of use
MX2021015122A (es) 2019-06-07 2022-04-06 Regeneron Pharma Animales no humanos que comprenden un locus de albumina humanizado.
ES3034102T3 (en) 2019-06-14 2025-08-13 Regeneron Pharma Models of tauopathy
CA3153980A1 (en) 2019-09-13 2021-03-18 Regeneron Pharmaceuticals, Inc. Transcription modulation in animals using crispr/cas systems delivered by lipid nanoparticles
JP2022548399A (ja) 2019-09-23 2022-11-18 オメガ セラピューティクス, インコーポレイテッド 肝細胞核因子4-アルファ(HNF4α)遺伝子発現をモジュレートするための組成物および方法
US11331333B2 (en) 2019-11-08 2022-05-17 Georg-August-Universität Göttingen Stiftung Öffentichen Rechts, Universitätsmadizin Treatment of aberrant fibroblast proliferation
IL292605B2 (en) 2019-11-08 2025-09-01 Regeneron Pharma CRISPR and AAV strategies for treating childhood X-linked retinoschisis
WO2021108363A1 (en) 2019-11-25 2021-06-03 Regeneron Pharmaceuticals, Inc. Crispr/cas-mediated upregulation of humanized ttr allele
US20230042198A1 (en) * 2019-11-25 2023-02-09 La Jolla Institute For Immunology Methods and Compositions for Modulationg Heterochromatin Dysfunction, Genomic Instability, and Associate Conditions
EP4073249A1 (en) 2019-12-11 2022-10-19 Intellia Therapeutics, Inc. Modified guide rnas for gene editing
CN111088357B (zh) * 2019-12-31 2022-09-20 深圳大学 针对escc的肿瘤标志物及其应用
AU2021219795A1 (en) 2020-02-12 2022-08-25 Massachusetts Eye And Ear Infirmary Haplotype-based treatment of RP1 associated retinal degenerations
CN115485385A (zh) 2020-03-04 2022-12-16 瑞泽恩制药公司 用于使肿瘤细胞对免疫疗法敏感的方法和组合物
US20230122226A1 (en) * 2020-03-05 2023-04-20 Board Of Regents Of The University Of Nebraska Crispr/cas9 system for multistrain hiv-1 treatment
EP4125348A1 (en) 2020-03-23 2023-02-08 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use
GB2632565B (en) * 2020-04-09 2025-06-04 Verve Therapeutics Inc Base editing of PCSK9 and methods of using same for treatment of disease
AU2021267334A1 (en) * 2020-05-04 2022-12-22 Bluerock Therapeutics Lp Selection by essential-gene knock-in
EP4146797A1 (en) 2020-05-06 2023-03-15 Orchard Therapeutics (Europe) Limited Treatment for neurodegenerative diseases
JP2023526007A (ja) 2020-05-13 2023-06-20 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル β-ヘモグロビン異常症の処置のための塩基編集アプローチ
WO2021246165A1 (ja) * 2020-06-03 2021-12-09 国立大学法人広島大学 Oasis遺伝子の脱メチル化のための核酸及びそれを用いた脱メチル化方法
GB2612466A (en) * 2020-06-05 2023-05-03 Univ California Compositions and methods for epigenome editing
US20230235315A1 (en) 2020-07-10 2023-07-27 Horizon Discovery Limited Method for producing genetically modified cells
KR20230051223A (ko) 2020-08-11 2023-04-17 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. Wwox 연관 질병의 치료 방법
KR102674574B1 (ko) * 2020-09-02 2024-06-13 한국과학기술연구원 Cas9을 위한 신규 tracrRNA 시스템
KR20230082676A (ko) 2020-10-13 2023-06-08 쌍트르 나시오날 드 라 르쉐르쉐 싸이엉띠피끄(쎄.엔.에르.에스.) 표적-항균-플라스미드 조합 접합 및 crispr/cas 시스템 및 그의 용도
CN112430622A (zh) * 2020-10-26 2021-03-02 扬州大学 一种FokI和dCpf1融合蛋白表达载体及其介导的定点基因编辑方法
RU2762831C1 (ru) * 2020-10-26 2021-12-23 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии" (ФГБНУ ВНИИСБ) Молекула рнк-проводника для геномного редактирования протомоторной области гена vrn-a1 однодольных зерновых с применением системы crispr/cas9
WO2022120022A1 (en) 2020-12-02 2022-06-09 Regeneron Pharmaceuticals, Inc. Crispr sam biosensor cell lines and methods of use thereof
KR20220082186A (ko) 2020-12-10 2022-06-17 한세준 유,무선 충전이 가능한 보조배터리형 uv-led살균기
CA3207144A1 (en) 2021-01-05 2022-07-14 Horizon Discovery Limited Method for producing genetically modified cells
US12171813B2 (en) 2021-02-05 2024-12-24 Christiana Care Gene Editing Institute, Inc. Methods of and compositions for reducing gene expression and/or activity
US20240052372A1 (en) 2021-02-25 2024-02-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Allele-specific genome editing of the nr2e3 mutation g56r
KR102882704B1 (ko) 2021-03-03 2025-11-12 중앙대학교 산학협력단 CRISPR/Cas9 시스템을 이용한 유전체 단일염기 편집 방법 및 이의 용도
CN113846019B (zh) * 2021-03-05 2023-08-01 海南师范大学 一种海洋微拟球藻靶向表观基因组遗传调控方法
WO2022248645A1 (en) 2021-05-27 2022-12-01 Astrazeneca Ab Cas9 effector proteins with enhanced stability
EP4352225A1 (en) 2021-06-10 2024-04-17 Intellia Therapeutics, Inc. Modified guide rnas comprising an internal linker for gene editing
EP4377459A2 (en) 2021-07-30 2024-06-05 Tune Therapeutics, Inc. Compositions and methods for modulating expression of frataxin (fxn)
WO2023010135A1 (en) 2021-07-30 2023-02-02 Tune Therapeutics, Inc. Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2)
CA3229450A1 (en) 2021-08-20 2023-02-23 Wisconsin Alumni Research Foundation Nonviral generation of genome edited chimeric antigen receptor t cells
WO2023056291A1 (en) 2021-09-28 2023-04-06 Acrigen Biosciences Compositions and methods for nucleic acid modifications
WO2023052366A1 (en) 2021-09-28 2023-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Base editing approaches for the treatment of beta-hemoglobinopathies
EP4408996A2 (en) 2021-09-30 2024-08-07 Astrazeneca AB Use of inhibitors to increase efficiency of crispr/cas insertions
EP4416292A2 (en) 2021-10-14 2024-08-21 Arsenal Biosciences, Inc. Immune cells having co-expressed shrnas and logic gate systems
WO2023069987A1 (en) 2021-10-20 2023-04-27 University Of Rochester Rejuvenation treatment of age-related white matter loss cross reference to related application
CN118251491A (zh) 2021-10-28 2024-06-25 瑞泽恩制药公司 用于敲除C5的CRISPR/Cas相关方法及组合物
WO2023081689A2 (en) 2021-11-03 2023-05-11 Intellia Therapeutics, Inc. Polynucleotides, compositions, and methods for genome editing
CA3237482A1 (en) 2021-11-03 2023-05-11 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Precise genome editing using retrons
WO2023099591A1 (en) 2021-12-01 2023-06-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for increasing fetal hemoglobin content by editing the +55-kb region of the erythroid-specific bcl11a enhancer
CN118632622A (zh) 2021-12-08 2024-09-10 瑞泽恩制药公司 突变型肌纤蛋白疾病模型及其用途
US20230279442A1 (en) 2021-12-15 2023-09-07 Versitech Limited Engineered cas9-nucleases and method of use thereof
CA3247927A1 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems and methods for programming T-lymphocyte phenotypes by targeted gene repression
CA3247928A1 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems and methods for programming T-lymphocyte phenotypes by targeted gene repression
WO2023141487A1 (en) * 2022-01-20 2023-07-27 Inari Agriculture Technology, Inc. Improved soybean explant preparation and transformation
WO2023141602A2 (en) 2022-01-21 2023-07-27 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
US20250161492A1 (en) 2022-01-25 2025-05-22 Institut National de la Santé et de la Recherche Médicale Base editing approaches for the treatment of beta-thalassemia
EP4473103A2 (en) 2022-02-02 2024-12-11 Regeneron Pharmaceuticals, Inc. Anti-tfr:gaa and anti-cd63:gaa insertions for treatment of pompe disease
WO2023152351A1 (en) 2022-02-14 2023-08-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Treatment of liver cancers by disrupting the beta-catenin/tcf-4 binding site located upstream of meg3 in the dlk1/dio3 locus
JP2025514304A (ja) 2022-04-29 2025-05-02 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 遺伝子治療法のための組織特異的遺伝子外セーフハーバーの同定
CA3256953A1 (en) 2022-05-09 2023-11-16 Regeneron Pharmaceuticals, Inc. VECTORS AND METHODS FOR IN VIVO ANTIBODY PRODUCTION
WO2023217888A1 (en) 2022-05-10 2023-11-16 Institut National de la Santé et de la Recherche Médicale Base editing approaches for correcting the cd39 (cag>tag) mutation in patients suffering from βeta-thalassemia
WO2023235725A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr-based therapeutics for c9orf72 repeat expansion disease
JP2025521154A (ja) 2022-05-31 2025-07-08 リジェネロン・ファーマシューティカルズ・インコーポレイテッド C9orf72反復伸長疾患のためのcrispr干渉療法
CN119731321A (zh) 2022-06-24 2025-03-28 图恩疗法股份有限公司 通过靶向基因阻遏减少低密度脂蛋白的组合物、系统和方法
EP4554967A2 (en) 2022-07-12 2025-05-21 Tune Therapeutics, Inc. Compositions, systems, and methods for targeted transcriptional activation
CN120344660A (zh) 2022-07-18 2025-07-18 雷纳嘉德医疗管理公司 基因编辑组分、系统和使用方法
WO2024018056A1 (en) 2022-07-22 2024-01-25 Institut National de la Santé et de la Recherche Médicale Base editing approaches for correcting the ivs2-1 (g>a) mutation in patients suffering from βeta-thalassemia
CN120659627A (zh) 2022-07-29 2025-09-16 瑞泽恩制药公司 用于转铁蛋白受体(tfr)介导的脑和肌肉递送的组合物和方法
JP2025527567A (ja) 2022-08-19 2025-08-22 チューン セラピューティクス インコーポレイテッド ターゲティングされた遺伝子抑制によるb型肝炎ウイルスの調節のための組成物、システム、および方法
WO2024044723A1 (en) 2022-08-25 2024-02-29 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
WO2024047247A1 (en) 2022-09-02 2024-03-07 Institut National de la Santé et de la Recherche Médicale Base editing approaches for the treatment of amyotrophic lateral sclerosis
CA3268005A1 (en) 2022-09-19 2024-03-28 Tune Therapeutics, Inc. Compositions, systems and methods of T lymphocyte function modulation
CN120265314A (zh) 2022-09-28 2025-07-04 瑞泽恩制药公司 抗体抗性修饰受体以增强基于细胞的疗法
US20240182561A1 (en) 2022-11-04 2024-06-06 Regeneron Pharmaceuticals, Inc. Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle
JP2025538220A (ja) 2022-11-14 2025-11-26 リジェネロン・ファーマシューティカルズ・インコーポレイテッド アストロサイトへの線維芽細胞増殖因子受容体3媒介送達のための組成物および方法
CN115820603B (zh) * 2022-11-15 2024-07-05 吉林大学 一种基于dCasRx-NSUN6单基因特异性M5C修饰编辑方法
WO2024131940A1 (zh) * 2022-12-23 2024-06-27 益杰立科(上海)生物科技有限公司 融合物及其用途
WO2024163678A2 (en) 2023-02-01 2024-08-08 Tune Therapeutics, Inc. Fusion proteins and systems for targeted activation of frataxin (fxn) and related methods
WO2024163683A2 (en) 2023-02-01 2024-08-08 Tune Therapeutics, Inc. Systems, compositions, and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) and x-inactive specific transcript (xist)
WO2024165484A1 (en) 2023-02-06 2024-08-15 Institut National de la Santé et de la Recherche Médicale Enrichment of genetically modified hematopoietic stem cells through multiplex base editing
CN116376975B (zh) * 2023-02-27 2024-05-14 中国科学院脑科学与智能技术卓越创新中心 激活异染色质基因的方法及应用
WO2024186890A1 (en) 2023-03-06 2024-09-12 Intellia Therapeutics, Inc. Compositions and methods for hepatitis b virus (hbv) genome editing
CN118684781A (zh) * 2023-03-21 2024-09-24 深圳赫兹生命科学技术有限公司 GnRH-VLP重组去势疫苗及其制备方法
WO2024201368A1 (en) 2023-03-29 2024-10-03 Astrazeneca Ab Use of inhibitors to increase efficiency of crispr/cas insertions
AU2024270764A1 (en) 2023-05-15 2025-12-04 Nchroma Bio, Inc. Compositions and methods for epigenetic regulation of hbv gene expression
US20250002946A1 (en) 2023-06-30 2025-01-02 Regeneron Pharmaceuticals, Inc. Methods And Compositions For Increasing Homology-Directed Repair
WO2025017030A1 (en) 2023-07-17 2025-01-23 Institut National de la Santé et de la Recherche Médicale Prime editing of the -200 region in the hbg1 and/or hbg2 promoter for increasing fetal hemoglobin content in a eukaryotic cell
WO2025017033A1 (en) 2023-07-17 2025-01-23 Institut National de la Santé et de la Recherche Médicale Prime editing of the -115 region in the hbg1 and/or hbg2 promoter for increasing fetal hemoglobin content in a eukaryotic cell
KR20250016657A (ko) * 2023-07-21 2025-02-04 한국화학연구원 dxCas9 및 CRP 유도체를 포함하는, 표적 유전자 발현 조절 시스템 및 이의 제조방법
WO2025029654A2 (en) 2023-07-28 2025-02-06 Regeneron Pharmaceuticals, Inc. Use of bgh-sv40l tandem polya to enhance transgene expression during unidirectional gene insertion
WO2025029657A2 (en) 2023-07-28 2025-02-06 Regeneron Pharmaceuticals, Inc. Anti-tfr:gaa and anti-cd63:gaa insertion for treatment of pompe disease
US20250049896A1 (en) 2023-07-28 2025-02-13 Regeneron Pharmaceuticals, Inc. Anti-tfr:acid sphingomyelinase for treatment of acid sphingomyelinase deficiency
WO2025029835A1 (en) 2023-07-31 2025-02-06 Tune Therapeutics, Inc. Compositions and methods for modulating il-2 gene expression
WO2025029840A1 (en) 2023-07-31 2025-02-06 Tune Therapeutics, Inc. Compositions and methods for multiplexed activation and repression of t cell gene expression
WO2025038494A1 (en) 2023-08-11 2025-02-20 Tune Therapeutics, Inc. Compositions, systems, and methods for lymphoid cell differentiation using targeted gene activation
TW202515994A (zh) 2023-08-14 2025-04-16 美商英特利亞醫療公司 用於對cd70進行基因修飾之組合物及方法
TW202521564A (zh) 2023-08-14 2025-06-01 美商英特利亞醫療公司 用於基於細胞之療法的cd70 car-t組合物及方法
WO2025038637A1 (en) 2023-08-14 2025-02-20 Intellia Therapeutics, Inc. Compositions and methods for genetically modifying transforming growth factor beta receptor type 2 (tgfβr2)
TW202515992A (zh) 2023-08-14 2025-04-16 美商英特利亞醫療公司 用於對轉形生長因子β受體2型(TGFβR2)進行基因修飾之組合物及方法
WO2025049524A1 (en) 2023-08-28 2025-03-06 Regeneron Pharmaceuticals, Inc. Cxcr4 antibody-resistant modified receptors
WO2025049959A2 (en) 2023-09-01 2025-03-06 Renagade Therapeutics Management Inc. Gene editing systems, compositions, and methods for treatment of vexas syndrome
WO2025059073A1 (en) 2023-09-11 2025-03-20 Tune Therapeutics, Inc. Epigenetic editing methods and systems for differentiating stem cells
WO2025064408A1 (en) 2023-09-18 2025-03-27 The Broad Institute, Inc. Compositions and methods for treating cardiovascular disease
WO2025081042A1 (en) 2023-10-12 2025-04-17 Renagade Therapeutics Management Inc. Nickase-retron template-based precision editing system and methods of use
WO2025090427A1 (en) 2023-10-23 2025-05-01 University Of Rochester Glial-targeted relief of hyperexcitability in neurodegenerative diseases
WO2025096638A2 (en) 2023-10-30 2025-05-08 Turnstone Biologics Corp. Genetically modified tumor infilitrating lymphocytes and methods of producing and using the same
WO2025117544A1 (en) 2023-11-29 2025-06-05 The Broad Institute, Inc. Engineered omega guide molecule and iscb compositions, systems, and methods of use thereof
WO2025155753A2 (en) 2024-01-17 2025-07-24 Renagade Therapeutics Management Inc. Improved gene editing system, guides, and methods
WO2025174765A1 (en) 2024-02-12 2025-08-21 Renagade Therapeutics Management Inc. Lipid nanoparticles comprising coding rna molecules for use in gene editing and as vaccines and therapeutic agents
WO2025184567A1 (en) 2024-03-01 2025-09-04 Regeneron Pharmaceuticals, Inc. Methods and compositions for re-dosing aav using anti-cd40 antagonistic antibody to suppress host anti-aav antibody response
WO2025202473A1 (en) 2024-03-28 2025-10-02 Revvity Discovery Limited A nucleic acid deaminase, a base editor and uses thereof
WO2025235388A1 (en) 2024-05-06 2025-11-13 Regeneron Pharmaceuticals, Inc. Transgene genomic identification by nuclease-mediated long read sequencing
WO2025240946A1 (en) 2024-05-17 2025-11-20 Intellia Therapeutics, Inc. Lipid nanoparticles and lipid nanoparticle compositions
WO2025250454A1 (en) 2024-05-28 2025-12-04 University Of Rochester Adeno-associated viruses evolved to specifically target human glial progenitor cells in vivo
WO2025255308A1 (en) 2024-06-07 2025-12-11 Intellia Therapeutics, Inc. Cd8 co-receptor chimeric polypeptides in tcr cell therapy
WO2025260068A1 (en) 2024-06-14 2025-12-18 Tune Therapeutics, Inc. Lipid nanoparticle formulation for delivery of nucleic acids to cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055793A1 (en) * 2005-07-25 2010-03-04 Johns Hopkins University Site-specific modification of the human genome using custom-designed zinc finger nucleases
WO2012093833A2 (en) 2011-01-03 2012-07-12 Toolgen Incorporation Genome engineering via designed tal effector nucleases
WO2015035162A2 (en) 2013-09-06 2015-03-12 President And Fellows Of Harvard College Cas9 variants and uses thereof

Family Cites Families (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603044A (en) 1983-01-06 1986-07-29 Technology Unlimited, Inc. Hepatocyte Directed Vesicle delivery system
US4957773A (en) 1989-02-13 1990-09-18 Syracuse University Deposition of boron-containing films from decaborane
US5436150A (en) * 1992-04-03 1995-07-25 The Johns Hopkins University Functional domains in flavobacterium okeanokoities (foki) restriction endonuclease
JP4118327B2 (ja) 1994-08-20 2008-07-16 ゲンダック・リミテッド Dna認識のための結合タンパク質におけるまたはそれに関連する改良
US20030017149A1 (en) 1996-10-10 2003-01-23 Hoeffler James P. Single chain monoclonal antibody fusion reagents that regulate transcription in vivo
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US20020164575A1 (en) 1999-09-14 2002-11-07 Sangamo Biosciences, Inc., A Delaware Corporation Gene identification
DE60023936T2 (de) 1999-12-06 2006-05-24 Sangamo Biosciences Inc., Richmond Methoden zur verwendung von randomisierten zinkfingerprotein-bibliotheken zur identifizierung von genfunktionen
ATE353361T1 (de) 2000-04-28 2007-02-15 Sangamo Biosciences Inc Gezielten modifikation der chromatinstruktur
AU2001257331A1 (en) 2000-04-28 2001-11-12 Sangamo Biosciences, Inc. Methods for designing exogenous regulatory molecules
US20030198627A1 (en) 2001-09-01 2003-10-23 Gert-Jan Arts siRNA knockout assay method and constructs
WO2003072788A1 (en) 2002-02-21 2003-09-04 The Wistar Institute Of Anatomy And Biology Methods and compositions for reversibly controlling expression of target genes in cells
JP2006513694A (ja) * 2002-06-11 2006-04-27 ザ スクリップス リサーチ インスティテュート 人工転写因子
WO2004099366A2 (en) 2002-10-23 2004-11-18 The General Hospital Corporation Context sensitive parallel optimization of zinc finger dna binding domains
US7021555B2 (en) 2004-01-06 2006-04-04 Zoo Med Laboratories, Inc. Spraying/misting for plants and animals
US7919277B2 (en) 2004-04-28 2011-04-05 Danisco A/S Detection and typing of bacterial strains
SI2351772T1 (sl) 2005-02-18 2016-11-30 Glaxosmithkline Biologicals Sa Proteini in nukleinske kisline iz Escherichia coli povezane z meningitisom/sepso
WO2007014275A2 (en) 2005-07-26 2007-02-01 Sangamo Biosciences, Inc. Targeted integration and expression of exogenous nucleic acid sequences
DK2341149T3 (en) 2005-08-26 2017-02-27 Dupont Nutrition Biosci Aps Use of CRISPR-associated genes (Cas)
JP2009520463A (ja) 2005-11-28 2009-05-28 ザ スクリプス リサーチ インスティテュート Tnnのための亜鉛フィンガー結合ドメイン
EP2426220B1 (en) 2006-05-19 2016-06-22 DuPont Nutrition Biosciences ApS Tagged microorganisms and methods of tagging
JP5266210B2 (ja) 2006-05-25 2013-08-21 サンガモ バイオサイエンシズ インコーポレイテッド 改変開裂ハーフドメイン
EP2034848B1 (en) 2006-06-16 2016-10-19 DuPont Nutrition Biosciences ApS Streptococcus thermophilus bacterium
US9201063B2 (en) 2006-11-16 2015-12-01 General Electric Company Sequential analysis of biological samples
WO2008093152A1 (en) * 2007-02-01 2008-08-07 Cellectis Obligate heterodimer meganucleases and uses thereof
RU2531343C2 (ru) 2007-03-02 2014-10-20 ДюПон Ньютришн Байосайенсиз АпС, Способ генерирования заквасочной культуры, заквасочная культура и способ ферментации с ее использованием
WO2008118394A1 (en) 2007-03-23 2008-10-02 New York University Methods of affecting nitrogen assimilation in plants
US8252535B2 (en) 2007-04-10 2012-08-28 Qiagen Gmbh RNA interference tags
WO2008151032A2 (en) 2007-05-31 2008-12-11 Washington University In St. Louis Arrays and methods comprising m. smithii gene products
BRPI0817299A8 (pt) 2007-09-25 2019-01-29 Pastoral Greenhouse Gas Res Limited vacinas e componentes de vacina para inibição de células microbianas
FR2925918A1 (fr) 2007-12-28 2009-07-03 Pasteur Institut Typage et sous-typage moleculaire de salmonella par identification des sequences nucleotidiques variables des loci crispr
FR2930264B1 (fr) 2008-04-18 2013-02-22 Gervais Danone Sa Nouvelle souche de lactobacillus paracasei subsp. paracasei dotee de proprietes antimicrobiennes et immunomodulatrices.
JP2010017179A (ja) 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Dnaを定量又は検出する方法
JP2010017178A (ja) 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Dnaを定量又は検出する方法
WO2010011961A2 (en) 2008-07-25 2010-01-28 University Of Georgia Research Foundation, Inc. Prokaryotic rnai-like system and methods of use
JP2010048566A (ja) 2008-08-19 2010-03-04 Sumitomo Chemical Co Ltd Dnaを定量又は検出する方法
JP2010068800A (ja) 2008-08-19 2010-04-02 Sumitomo Chemical Co Ltd Dnaを定量又は検出する方法
US20100076057A1 (en) 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
WO2010037001A2 (en) 2008-09-26 2010-04-01 Immune Disease Institute, Inc. Selective oxidation of 5-methylcytosine by tet-family proteins
NZ592994A (en) 2008-10-21 2012-12-21 Animal Health Trust Diagnostic test for Streptococcus equi comprising assessing the presence or absence of the S. equi eqbE gene
WO2010046493A2 (en) 2008-10-23 2010-04-29 Université de Lausanne Gene transfer vectors comprising at least one isolated dna molecule having insulator and or boundary properties and methods to identify the same
US9404098B2 (en) 2008-11-06 2016-08-02 University Of Georgia Research Foundation, Inc. Method for cleaving a target RNA using a Cas6 polypeptide
MX337838B (es) * 2008-11-07 2016-03-22 Dupont Nutrition Biosci Aps Secuencias de repetidos palindromicos cortos regularmente intercalados agrupados de bifidobacterias.
RU2570557C2 (ru) 2008-11-11 2015-12-10 Алиментари Хелс Лимитед ПРОБИОТИЧЕСКАЯ БИФИДОБАКТЕРИЯ Bifidobacterium Longum
GB2466177A (en) 2008-12-03 2010-06-16 Arab Science & Technology Found Bacteriophage selection and breeding
WO2010066907A1 (en) 2008-12-12 2010-06-17 Danisco A/S Genetic cluster of strains of streptococcus thermophilus having unique rheological properties for dairy fermentation
KR20100093626A (ko) 2009-02-17 2010-08-26 서강대학교산학협력단 슈도모나스 애루지노사에 대한 파아지 치료
WO2010113037A1 (en) 2009-04-03 2010-10-07 Centre National De La Recherche Scientifique Gene transfer vectors comprising genetic insulator elements and methods to identify genetic insulator elements
US8501405B2 (en) 2009-04-27 2013-08-06 Pacific Biosciences Of California, Inc. Real-time sequencing methods and systems
WO2010144151A2 (en) 2009-06-12 2010-12-16 Pacific Biosciences Of California, Inc. Single-molecule real-time analysis of protein synthesis
US20120178647A1 (en) 2009-08-03 2012-07-12 The General Hospital Corporation Engineering of zinc finger arrays by context-dependent assembly
CA2773879A1 (en) 2009-09-25 2011-03-31 Basf Plant Science Company Gmbh Plants having enhanced yield-related traits and a method for making the same
US9677125B2 (en) 2009-10-21 2017-06-13 General Electric Company Detection of plurality of targets in biological samples
US20110269119A1 (en) 2009-10-30 2011-11-03 Synthetic Genomics, Inc. Encoding text into nucleic acid sequences
CA2788560A1 (en) 2010-02-08 2011-08-11 Sangamo Biosciences, Inc. Engineered cleavage half-domains
WO2011101696A1 (en) * 2010-02-18 2011-08-25 Cellectis Improved meganuclease recombination system
US20120027786A1 (en) 2010-02-23 2012-02-02 Massachusetts Institute Of Technology Genetically programmable pathogen sense and destroy
US10087431B2 (en) 2010-03-10 2018-10-02 The Regents Of The University Of California Methods of generating nucleic acid fragments
US10645934B2 (en) 2010-03-12 2020-05-12 Brookhaven Science Associates/Brookhaven National Laboratory Enterobacter sp-638 and methods of use thereof
CN103038338B (zh) 2010-05-10 2017-03-08 加利福尼亚大学董事会 核糖核酸内切酶组合物及其使用方法
EP2580331A4 (en) 2010-06-14 2013-11-27 Univ Iowa State Res Found Inc NUCLEASE ACTIVITY OF THE TAL EFFECTOR AND FUSION PROTEIN FOKI
WO2012047726A1 (en) 2010-09-29 2012-04-12 The Broad Institute, Inc. Methods for chromatin immuno-precipitations
EA201390586A1 (ru) 2010-10-20 2014-11-28 ДюПон НЬЮТРИШН БАЙОСАЙЕНСИЗ АпС Последовательности crispr-cas lactococcus
SG189482A1 (en) 2010-10-27 2013-05-31 Cellectis Method for increasing the efficiency of double-strand break-induced mutagenesis
US20120214160A1 (en) 2011-01-14 2012-08-23 Life Technologies Corporation Methods, compositions, and kits for detecting rare cells
WO2012164565A1 (en) 2011-06-01 2012-12-06 Yeda Research And Development Co. Ltd. Compositions and methods for downregulating prokaryotic genes
DK2543255T4 (da) 2011-07-04 2023-03-20 Dsm Ip Assets Bv Antilisteriel blandet kultur og fremgangsmåde til fremstilling af ost
CA2841710C (en) 2011-07-15 2021-03-16 The General Hospital Corporation Methods of transcription activator like effector assembly
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
SG10201606959PA (en) 2012-02-24 2016-09-29 Hutchinson Fred Cancer Res Compositions and methods for the treatment of hemoglobinopathies
MX374399B (es) 2012-02-29 2025-03-06 Sangamo Biosciences Inc Composiciones y sus usos para tratar y prevenir la enfermedad de huntington.
WO2013141680A1 (en) 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
JP6352250B2 (ja) 2012-05-02 2018-07-04 ダウ アグロサイエンシィズ エルエルシー リンゴ酸デヒドロゲナーゼの標的改変
CA2871524C (en) 2012-05-07 2021-07-27 Sangamo Biosciences, Inc. Methods and compositions for nuclease-mediated targeted integration of transgenes
US11120889B2 (en) 2012-05-09 2021-09-14 Georgia Tech Research Corporation Method for synthesizing a nuclease with reduced off-site cleavage
SI3401400T1 (sl) 2012-05-25 2019-10-30 Univ California Postopki in sestavki za RNA usmerjeno modifikacijo tarčne DNA in za RNA usmerjeno modulacijo prepisovanja
US9102936B2 (en) 2012-06-11 2015-08-11 Agilent Technologies, Inc. Method of adaptor-dimer subtraction using a CRISPR CAS6 protein
EP2674501A1 (en) 2012-06-14 2013-12-18 Agence nationale de sécurité sanitaire de l'alimentation,de l'environnement et du travail Method for detecting and identifying enterohemorrhagic Escherichia coli
US10025647B2 (en) * 2012-06-30 2018-07-17 Intel Corporation Memory poisoning with hints
US10883119B2 (en) 2012-07-11 2021-01-05 Sangamo Therapeutics, Inc. Methods and compositions for delivery of biologics
CN105188767A (zh) 2012-07-25 2015-12-23 布罗德研究所有限公司 可诱导的dna结合蛋白和基因组干扰工具及其应用
HK1217732A1 (zh) 2012-09-07 2017-01-20 美国陶氏益农公司 Fad3性能基因座及相應的能夠誘導靶向斷裂的靶位點特異性結合蛋白
AU2013329308B2 (en) 2012-10-09 2018-11-01 Liposcience, Inc. NMR quantification of branched chain amino acids
EP3789405A1 (en) * 2012-10-12 2021-03-10 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins
WO2014071235A1 (en) 2012-11-01 2014-05-08 Massachusetts Institute Of Technology Genetic device for the controlled destruction of dna
EP3138911B1 (en) * 2012-12-06 2018-12-05 Sigma Aldrich Co. LLC Crispr-based genome modification and regulation
US20140310830A1 (en) 2012-12-12 2014-10-16 Feng Zhang CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes
ES2701749T3 (es) 2012-12-12 2019-02-25 Broad Inst Inc Métodos, modelos, sistemas y aparatos para identificar secuencias diana para enzimas Cas o sistemas CRISPR-Cas para secuencias diana y transmitir resultados de los mismos
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
BR112015013784A2 (pt) 2012-12-12 2017-07-11 Massachusetts Inst Technology aplicação, manipulação e otimização de sistemas, métodos e composições para manipulação de sequência e aplicações terapêuticas
EP3064585B1 (en) 2012-12-12 2020-02-05 The Broad Institute, Inc. Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation
CN105658796B (zh) 2012-12-12 2021-10-26 布罗德研究所有限公司 用于序列操纵的crispr-cas组分系统、方法以及组合物
CN113355357B (zh) 2012-12-12 2024-12-03 布罗德研究所有限公司 对用于序列操纵的改进的系统、方法和酶组合物进行的工程化和优化
ES2536353T3 (es) 2012-12-12 2015-05-22 The Broad Institute, Inc. Ingeniería de sistemas, métodos y composiciones de guía optimizadas para manipulación de secuencias
WO2014093701A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
EP2931898B1 (en) 2012-12-12 2016-03-09 The Broad Institute, Inc. Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains
CN105074061B (zh) 2012-12-13 2021-03-09 美国陶氏益农公司 位点特异性核酸酶活性的dna检测方法
DK3553174T3 (da) * 2012-12-17 2025-08-04 Harvard College Rna-guided modificering af humant genom
AR094098A1 (es) * 2012-12-19 2015-07-08 Dow Agrosciences Llc Transformacion de soja mejorada para una produccion eficaz de eventos transgenicos de alto rendimiento
NZ629569A (en) 2013-01-14 2018-07-27 Recombinetics Inc Hornless livestock
US20140212869A1 (en) 2013-01-25 2014-07-31 Agilent Technologies, Inc. Nucleic Acid Proximity Assay Involving the Formation of a Three-way junction
CN103233028B (zh) 2013-01-25 2015-05-13 南京徇齐生物技术有限公司 一种无物种限制无生物安全性问题的真核生物基因打靶方法及螺旋结构dna序列
US10660943B2 (en) 2013-02-07 2020-05-26 The Rockefeller University Sequence specific antimicrobials
EP2954042B1 (en) 2013-02-07 2017-12-06 The General Hospital Corporation Tale transcriptional activators
WO2014127287A1 (en) * 2013-02-14 2014-08-21 Massachusetts Institute Of Technology Method for in vivo tergated mutagenesis
EP2958996B1 (en) 2013-02-25 2019-10-16 Sangamo Therapeutics, Inc. Methods and compositions for enhancing nuclease-mediated gene disruption
EP2922393B2 (en) 2013-02-27 2022-12-28 Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Gene editing in the oocyte by cas9 nucleases
EP2964779B1 (en) 2013-03-08 2018-08-29 Oxford Nanopore Technologies Limited Use of spacer elements in a nucleic acid to control movement of a helicase
US10612043B2 (en) 2013-03-09 2020-04-07 Agilent Technologies, Inc. Methods of in vivo engineering of large sequences using multiple CRISPR/cas selections of recombineering events
US20140315985A1 (en) 2013-03-14 2014-10-23 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US11332719B2 (en) 2013-03-15 2022-05-17 The Broad Institute, Inc. Recombinant virus and preparations thereof
WO2014144155A1 (en) 2013-03-15 2014-09-18 Regents Of The University Of Minnesota Engineering plant genomes using crispr/cas systems
US20140273230A1 (en) 2013-03-15 2014-09-18 Sigma-Aldrich Co., Llc Crispr-based genome modification and regulation
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US9885033B2 (en) 2013-03-15 2018-02-06 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US20140349400A1 (en) 2013-03-15 2014-11-27 Massachusetts Institute Of Technology Programmable Modification of DNA
UA121197C2 (uk) 2013-04-05 2020-04-27 Доу Агросайенсіс Ллс Нуклеаза "цинкові пальці" для модифікацїї гена ahas та спосіб її використання
US20150056629A1 (en) 2013-04-14 2015-02-26 Katriona Guthrie-Honea Compositions, systems, and methods for detecting a DNA sequence
SG10201808935WA (en) 2013-04-16 2018-11-29 Regeneron Pharma Targeted modification of rat genome
CN103224947B (zh) 2013-04-28 2015-06-10 陕西师范大学 一种基因打靶系统
JP2016518142A (ja) 2013-05-10 2016-06-23 サンガモ バイオサイエンシーズ, インコーポレイテッド ヌクレアーゼ媒介ゲノム遺伝子操作のための送達方法および組成物
US11414695B2 (en) 2013-05-29 2022-08-16 Agilent Technologies, Inc. Nucleic acid enrichment using Cas9
US20150067922A1 (en) 2013-05-30 2015-03-05 The Penn State Research Foundation Gene targeting and genetic modification of plants via rna-guided genome editing
US20150315252A1 (en) 2013-06-11 2015-11-05 Clontech Laboratories, Inc. Protein enriched microvesicles and methods of making and using the same
JP6625971B2 (ja) 2013-06-17 2019-12-25 ザ・ブロード・インスティテュート・インコーポレイテッド 配列操作のためのタンデムガイド系、方法および組成物の送達、エンジニアリングおよび最適化
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
CN103343120B (zh) 2013-07-04 2015-03-04 中国科学院遗传与发育生物学研究所 一种小麦基因组定点改造方法
JP6482546B2 (ja) 2013-07-19 2019-03-13 ラリクス・バイオサイエンス・リミテッド・ライアビリティ・カンパニーLarix Bioscience, Llc 二重対立遺伝子ノックアウトを生成するための方法および組成物
WO2015021426A1 (en) 2013-08-09 2015-02-12 Sage Labs, Inc. A crispr/cas system-based novel fusion protein and its application in genome editing
KR102829712B1 (ko) 2013-08-29 2025-07-10 템플 유니버시티-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 Hiv 감염증의 rna-유도 치료를 위한 방법 및 조성물
EP3041931B1 (en) 2013-09-04 2020-06-10 Csir Site-specific nuclease single-cell assay targeting gene regulatory elements to silence gene expression
US9074199B1 (en) 2013-11-19 2015-07-07 President And Fellows Of Harvard College Mutant Cas9 proteins
JP6174811B2 (ja) 2013-12-11 2017-08-02 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. ゲノムの標的改変のための方法及び組成物
WO2015089364A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crystal structure of a crispr-cas system, and uses thereof
JP2017501149A (ja) 2013-12-12 2017-01-12 ザ・ブロード・インスティテュート・インコーポレイテッド 粒子送達構成成分を用いた障害及び疾患の標的化のためのcrispr−cas系及び組成物の送達、使用及び治療適用
US20150191744A1 (en) 2013-12-17 2015-07-09 University Of Massachusetts Cas9 effector-mediated regulation of transcription, differentiation and gene editing/labeling
AU2014370416B2 (en) 2013-12-26 2021-03-11 The General Hospital Corporation Multiplex guide RNAs
EP3105327A4 (en) 2014-02-12 2017-10-18 Thomas Jefferson University Compositions and methods of using microrna inhibitors
WO2015138510A1 (en) 2014-03-10 2015-09-17 Editas Medicine., Inc. Crispr/cas-related methods and compositions for treating leber's congenital amaurosis 10 (lca10)
EP3117004A4 (en) 2014-03-14 2017-12-06 University of Washington Genomic insulator elements and uses thereof
US10323073B2 (en) 2014-03-20 2019-06-18 UNIVERSITé LAVAL CRISPR-based methods and products for increasing frataxin levels and uses thereof
CN106170550A (zh) 2014-04-03 2016-11-30 麻省理工学院 用于产生导引rna的方法和组合物
EP4464338A3 (en) 2014-11-07 2025-02-12 Editas Medicine, Inc. Systems for improving crispr/cas-mediated genome-editing
MA41349A (fr) 2015-01-14 2017-11-21 Univ Temple Éradication de l'herpès simplex de type i et d'autres virus de l'herpès associés guidée par arn
SG10201804715WA (en) 2015-01-28 2018-07-30 Pioneer Hi Bred Int Crispr hybrid dna/rna polynucleotides and methods of use
US20190388469A1 (en) 2015-01-30 2019-12-26 The Regents Of The University Of California Protein delivery in primary hematopoietic cells
WO2016130600A2 (en) 2015-02-09 2016-08-18 Duke University Compositions and methods for epigenome editing
WO2016141224A1 (en) 2015-03-03 2016-09-09 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
WO2016191684A1 (en) 2015-05-28 2016-12-01 Finer Mitchell H Genome editing vectors
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
WO2016205759A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
EP3337908A4 (en) 2015-08-18 2019-01-23 The Broad Institute, Inc. METHOD AND COMPOSITIONS FOR CHANGING THE FUNCTION AND STRUCTURE OF CHROMATIN GRINDING AND / OR DOMAINS
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
KR102668608B1 (ko) 2015-08-28 2024-05-24 더 제너럴 하스피탈 코포레이션 조작된 crispr-cas9 뉴클레아제
CN110290813A (zh) 2016-10-14 2019-09-27 通用医疗公司 表观遗传学调控的位点特异性核酸酶
EP3579858A4 (en) 2017-02-07 2020-12-23 The Regents of The University of California GENE THERAPY AGAINST HAPLOINSUFFICIENCY
JP7379160B2 (ja) 2017-04-21 2023-11-14 ザ ジェネラル ホスピタル コーポレイション CRISPR-Cpf1を使用する誘導性で調整可能な多重ヒト遺伝子制御
US11041155B2 (en) 2018-05-17 2021-06-22 The General Hospital Corporation CCCTC-binding factor variants
CA3163087A1 (en) 2019-11-27 2021-06-03 The General Hospital Corporation System and method for activating gene expression
WO2021243289A1 (en) 2020-05-29 2021-12-02 The General Hospital Corporation Systems and methods for stable and heritable alteration by precision editing (shape)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100055793A1 (en) * 2005-07-25 2010-03-04 Johns Hopkins University Site-specific modification of the human genome using custom-designed zinc finger nucleases
WO2012093833A2 (en) 2011-01-03 2012-07-12 Toolgen Incorporation Genome engineering via designed tal effector nucleases
WO2015035162A2 (en) 2013-09-06 2015-03-12 President And Fellows Of Harvard College Cas9 variants and uses thereof

Non-Patent Citations (110)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 2010
"GenBank", Database accession no. AAA24927.1
"Guide to Protein Purification", vol. 182, 1990, article "Methods in Enzymology"
BARKER ET AL., BMC GENOMICS, vol. 6, 22 April 2005 (2005-04-22), pages 57
BITINAITE ET AL., PROC. NATL. ACAD. SCI. USA, vol. 95, 1998, pages 10570 - 10575
CATHOMEN; JOUNG, MOL. THER., vol. 16, 2008, pages 1200 - 1207
CHENG, A.W.; WANG, H.; YANG, H.; SHI, L.; KATZ, Y.; THEUNISSEN, T.W.; RANGARAJAN, S.; SHIVALILA, C.S.; DADON, D.B.; JAENISCH, R.: "Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system", CELL RES, vol. 23, 2013, pages 1163 - 1171
CHO ET AL., GENOME RES, 2013
CHO ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 230 - 232
CHO, S.W.; KIM, S.; KIM, J.M.; KIM, J.S.: "Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease", NAT BIOTECHNOL, vol. 31, 2013, pages 230 - 232
CHYLINSKI ET AL., RNA BIOLOGY, vol. 10, no. 5, 2013, pages 1 - 12
CHYLINSKI ET AL.: "classified Cas9 proteins from a large group of bacteria", RNA BIOLOGY, vol. 10, no. 5, 2013, pages 1 - 12
CLARK-CURTISS; CURTISS ET AL.: "Methods in Enzymology", vol. 101, 1983, pages: 347 - 362
COLLEY ET AL., J. BIOL. CHEM., vol. 264, 1989, pages 17619 - 22
CONG ET AL., SCIENCE, vol. 339, 2013, pages 819
CONG ET AL., SCIENCE, vol. 339, 2013, pages 819 - 823
CONG ET AL., SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 819 - 23
CONG, L. ET AL.: "Multiplex genome engineering using CRISPR/Cas systems", SCIENCE, vol. 339, 2013, pages 819 - 823, XP055400719, DOI: doi:10.1126/science.1231143
CRADICK, T.J.; FINE, E.J.; ANTICO, C.J.; BAO, G.: "CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity", NUCLEIC ACIDS RES., 2013
DICARLO ET AL., NUCLEIC ACIDS RES, 2013
DICARLO, J.E. ET AL.: "Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems", NUCLEIC ACIDS RES, 2013
DING, Q.; REGAN, S.N.; XIA, Y.; OOSTROM, L.A.; COWAN, C.A.; MUSUNURU, K.: "Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs", CELL STEM CELL, vol. 12, 2013, pages 393 - 394, XP055247447, DOI: doi:10.1016/j.stem.2013.03.006
ESVELT ET AL., NAT METHODS, vol. 10, no. 11, November 2013 (2013-11-01), pages 1116 - 21
ESVELT ET AL., NAT METHODS, vol. 10, no. l 1, November 2013 (2013-11-01), pages 1116 - 21
ESVELT ET AL., NAT METHODS., vol. 10, no. 11, November 2013 (2013-11-01), pages 1116 - 21
FISHER, S.; BARRY, A.; ABREU, J.; MINIE, B.; NOLAN, J.; DELOREY, T.M.; YOUNG, G.; FENNELL, T.J.; ALLEN, A.; AMBROGIO, L. ET AL.: "A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries", GENOME BIOL, vol. 12, 2011, XP021091778, DOI: doi:10.1186/gb-2011-12-1-r1
FONFARA ET AL., NUCL. ACIDS RES., vol. 42, no. 4, 2014, pages 2577 - 2590
FONFARA ET AL.: "Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems", NUCLEIC ACIDS RES., 22 November 2013 (2013-11-22)
FRIEDLAND, A.E.; TZUR, Y.B.; ESVELT, K.M.; COLAIACOVO, M.P.; CHURCH, G.M.; CALARCO, J.A.: "Heritable genome editing in C. elegans via a CRISPR-Cas9 system", NAT METHODS, vol. 10, 2013, pages 741 - 743, XP055429694, DOI: doi:10.1038/nmeth.2532
FU ET AL.: "Methods in Enzymology", vol. 546, ELSEVIER, pages: 21 - 45
FU, Y.; FODEN, J.A.; KHAYTER, C.; MAEDER, M.L.; REYON, D.; JOUNG, J.K.; SANDER, J.D.: "High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells", NAT BIOTECHNOL, vol. 31, 2013, pages 822 - 826, XP055153951, DOI: doi:10.1038/nbt.2623
GABRIEL ET AL., NAT BIOTECHNOL, vol. 29, 2011, pages 816 - 823
GABRIEL, R. ET AL.: "An unbiased genome-wide analysis of zinc-finger nuclease specificity", NAT BIOTECHNOL, vol. 29, 2011, pages 816 - 823, XP055073828, DOI: doi:10.1038/nbt.1948
GILBERT, L.A.; LARSON, M.H.; MORSUT, L.; LIU, Z.; BRAR, G.A.; TORRES, S.E.; STERN-GINOSSAR, N.; BRANDMAN, O.; WHITEHEAD, E.H.; DOU: "CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes", CELL, vol. 154, 2013, pages 442 - 451, XP055115843, DOI: doi:10.1016/j.cell.2013.06.044
GOSSEN; BUJARD, PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 5547
GRATZ ET AL., GENETICS, vol. 194, no. 4, 2013, pages 1029 - 35
GRATZ, S.J. ET AL.: "Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease", GENETICS, 2013
GUILINGER ET AL.: "Fusion of catalytically inactive Cas9 to Fokl nuclease improves the specificity of genome modification.", NAT BIOTECHNOL, vol. 32, no. 6, 25 April 2014 (2014-04-25), pages 577 - 582, XP055157221 *
HAURWITZ ET AL., SCIENCE, vol. 329, 2010, pages 1355 - 1358
HOCKEMEYER ET AL., NAT BIOTECHNOL, vol. 29, 2011, pages 731 - 734
HOCKEMEYER, D. ET AL.: "Genetic engineering of human pluripotent cells using TALE nucleases", NAT BIOTECHNOL, vol. 29, 2011, pages 731 - 734, XP055018244, DOI: doi:10.1038/nbt.1927
HORVATH ET AL., SCIENCE, vol. 327, 2010, pages 167 - 170
HORVATH, P.; BARRANGOU, R.: "CRISPR/Cas, the immune system of bacteria and archaea", SCIENCE, vol. 327, 2010, pages 167 - 170, XP055016971, DOI: doi:10.1126/science.1179555
HOU ET AL., PROC NATL ACAD SCI USA, vol. 110, no. 39, 24 September 2013 (2013-09-24), pages 15644 - 9
HSU, P.D.; SCOTT, D.A.; WEINSTEIN, J.A.; RAN, F.A.; KONERMANN, S.; AGARWALA, V.; LI, Y.; FINE, E.J.; WU, X.; SHALEM, O. ET AL.: "DNA targeting specificity of RNA-guided Cas9 nucleases", NAT BIOTECHNOL, vol. 31, 2013, pages 827 - 832, XP055219426, DOI: doi:10.1038/nbt.2647
HWANG ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 227 - 229
HWANG, W.Y. ET AL.: "Efficient genome editing in zebrafish using a CRISPR-Cas system", NAT BIOTECHNOL, vol. 31, 2013, pages 227 - 229, XP055086625, DOI: doi:10.1038/nbt.2501
HWANG, W.Y.; FU, Y.; REYON, D.; MAEDER, M.L.; KAINI, P.; SANDER, J.D.; JOUNG, J.K.; PETERSON, R.T.; YEH, J.R.: "Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System", PLOS ONE, vol. 8, 2013, pages e68708, XP055196397, DOI: doi:10.1371/journal.pone.0068708
HWANG; FU ET AL., NAT BIOTECHNOL., vol. 31, no. 3, March 2013 (2013-03-01), pages 227 - 9
JIANG ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 233 - 239
JIANG, W.; BIKARD, D.; COX, D.; ZHANG, F.; MARRAFFINI, L.A.: "RNA-guided editing of bacterial genomes using CRISPR-Cas systems", NAT BIOTECHNOL, vol. 31, 2013, pages 233 - 239, XP055249123, DOI: doi:10.1038/nbt.2508
JINEK ET AL., ELIFE, vol. 2, 2013, pages e00471
JINEK ET AL., SCIENCE, vol. 337, 2012, pages 816 - 821
JINEK ET AL., SCIENCE, vol. 337, no. 6096, 2012, pages 816 - 21
JINEK ET AL.: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.", SCIENCE, vol. 337, no. 6096, 17 August 2012 (2012-08-17), pages 816 - 821, XP055229606 *
JINEK, M. ET AL.: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity", SCIENCE, vol. 337, 2012, pages 816 - 821, XP055299674, DOI: doi:10.1126/science.1225829
JINEK, M. ET AL.: "RNA-programmed genome editing in human cells", ELIFE, vol. 2, 2013, pages e00471, XP002699851, DOI: doi:10.7554/eLife.00471
KRIEGLER: "Gene Transfer and Expression: A Laboratory Manual", 1990
LI ET AL., NUCLEIC ACIDS RES., vol. 39, no. 1, 2011, pages 359 - 372
LI, D.; QIU, Z.; SHAO, Y.; CHEN, Y.; GUAN, Y.; LIU, M.; LI, Y.; GAO, N.; WANG, L.; LU, X. ET AL.: "Heritable gene targeting in the mouse and rat using a CRISPR-Cas system", NAT BIOTECHNOL, vol. 31, 2013, pages 681 - 683, XP055372215, DOI: doi:10.1038/nbt.2661
LI, W.; TENG, F.; LI, T.; ZHOU, Q.: "Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems", NAT BIOTECHNOL, vol. 31, 2013, pages 684 - 686, XP055324100, DOI: doi:10.1038/nbt.2652
MAEDER, M.L. ET AL., MOL CELL, vol. 31, 2008, pages 294 - 301
MAEDER, M.L.; LINDER, S.J.; CASCIO, V.M.; FU, Y.; HO, Q.H.; JOUNG, J.K.: "CRISPR RNA-guided activation of endogenous human genes", NAT METHODS, vol. 10, 2013, pages 977 - 979, XP055291599, DOI: doi:10.1038/nmeth.2598
MALI ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 833 - 838
MALI ET AL., SCIENCE, vol. 339, 2013, pages 823 - 826
MALI ET AL., SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 823 - 6
MALI, P. ET AL.: "RNA-guided human genome engineering via Cas9", SCIENCE, vol. 339, 2013, pages 823 - 826
MALI, P.; AACH, J.; STRANGES, P.B.; ESVELT, K.M.; MOOSBURNER, M.; KOSURI, S.; YANG, L.; CHURCH, G.M.: "CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering", NAT BIOTECHNOL, vol. 31, 2013, pages 833 - 838, XP055294730, DOI: doi:10.1038/nbt.2675
MALI, P.; ESVELT, K.M.; CHURCH, G.M.: "Cas9 as a versatile tool for engineering biology", NAT METHODS, vol. 10, 2013, pages 957 - 963, XP002718606, DOI: doi:10.1038/nmeth.2649
MILLER ET AL., NAT BIOTECHNOL, vol. 25, 2007, pages 778 - 785
MORRISON, J. BACTERIOL., vol. 132, 1977, pages 349 - 351
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 444 - 453
NEERING ET AL., BLOOD, vol. 88, 1996, pages 1147 - 55
NISHIMASU, CELL, vol. 156, 2014, pages 935 - 949
OLIGINO ET AL., GENE THER., vol. 5, 1998, pages 491 - 496
PALVA ET AL., GENE, vol. 22, 1983, pages 229 - 235
PATTANAYAK ET AL., NAT METHODS, vol. 8, 2011, pages 765 - 770
PATTANAYAK, V.; LIN, S.; GUILINGER, J.P.; MA, E.; DOUDNA, J.A.; LIU, D.R.: "High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity", NAT BIOTECHNOL, vol. 31, 2013, pages 839 - 843, XP055148795, DOI: doi:10.1038/nbt.2673
PATTANAYAK, V.; RAMIREZ, C.L.; JOUNG, J.K.; LIU, D.R.: "Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection", NAT METHODS, vol. 8, 2011, pages 765 - 770, XP055073829, DOI: doi:10.1038/nmeth.1670
PEREZ ET AL., NAT BIOTECHNOL, vol. 26, 2008, pages 808 - 816
PEREZ, E.E. ET AL.: "Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases", NAT BIOTECHNOL, vol. 26, 2008, pages 808 - 816, XP055024363, DOI: doi:10.1038/nbt1410
PEREZ-PINERA, P.; KOCAK, D.D.; VOCKLEY, C.M.; ADLER, A.F.; KABADI, A.M.; POLSTEIN, L.R.; THAKORE, P.I.; GLASS, K.A.; OUSTEROUT, D.: "RNA-guided gene activation by CRISPR-Cas9-based transcription factors", NAT METHODS, vol. 10, 2013, pages 973 - 976, XP055181249, DOI: doi:10.1038/nmeth.2600
QI ET AL.: "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.", CELL, vol. 152, no. 5, 28 February 2013 (2013-02-28), pages 1173 - 1183, XP055068548 *
QI, L.S.; LARSON, M.H.; GILBERT, L.A.; DOUDNA, J.A.; WEISSMAN, J.S.; ARKIN, A.P.; LIM, W.A.: "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression", CELL, vol. 152, 2013, pages 1173 - 1183, XP055346792, DOI: doi:10.1016/j.cell.2013.02.022
RAN ET AL., CELL, vol. 154, 2013, pages 1380 - 1389
RAN, F.A.; HSU, P.D.; LIN, C.Y.; GOOTENBERG, J.S.; KONERMANN, S.; TREVINO, A.E.; SCOTT, D.A.; INOUE, A.; MATOBA, S.; ZHANG, Y. ET: "Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity", CELL, vol. 154, 2013, pages 1380 - 1389, XP055299681, DOI: doi:10.1016/j.cell.2013.08.021
RENDAHL ET AL., NAT. BIOTECHNOL., vol. 16, 1998, pages 757 - 761
REYON ET AL., NAT BIOTECH, vol. 30, 2012, pages 460 - 465
REYON, D. ET AL., NAT BIOTECH, vol. 30, 2012, pages 460 - 465
REYON, D. ET AL.: "FLASH assembly of TALENs for high-throughput genome editing", NAT BIOTECH, vol. 30, 2012, pages 460 - 465, XP055171172, DOI: doi:10.1038/nbt.2170
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 2001
SANDER, J.D.; MAEDER, M.L.; REYON, D.; VOYTAS, D.F.; JOUNG, J.K.; DOBBS, D.: "ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool", NUCLEIC ACIDS RES, vol. 38, 2010, pages W462 - 468, XP055247371, DOI: doi:10.1093/nar/gkq319
SANDER, J.D.; RAMIREZ, C.L.; LINDER, S.J.; PATTANAYAK, V.; SHORESH, N.; KU, M.; FODEN, J.A.; REYON, D.; BERNSTEIN, B.E.; LIU, D.R.: "In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites", NUCLEIC ACIDS RES., 2013
SANDER, J.D.; ZABACK, P.; JOUNG, J.K.; VOYTAS, D.F.; DOBBS, D.: "Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool", NUCLEIC ACIDS RES, vol. 35, 2007, pages W599 - 605, XP002543579, DOI: doi:10.1093/nar/gkm349
SHEN ET AL., CELL RES, 2013
SHEN, B. ET AL.: "Generation of gene-modified mice via Cas9/RNA-mediated gene targeting", CELL RES, 2013
STERNBERG ET AL., RNA, vol. 18, 2012, pages 661 - 672
SUGIMOTO ET AL., BIOCHEMISTRY, vol. 34, 1995, pages 11211 - 11216
SUGIMOTO ET AL., BIOCHEMISTRY, vol. 39, no. 37, 19 September 2000 (2000-09-19), pages 11270 - 81
SUGIMOTO, N. ET AL.: "Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes", BIOCHEMISTRY, vol. 34, 1995, pages 11211 - 11216, XP002250298, DOI: doi:10.1021/bi00035a029
SZCZEPEK ET AL., NAT BIOTECHNOL, vol. 25, 2007, pages 786 - 793
TERNS ET AL., CURR OPIN MICROBIOL, vol. 14, 2011, pages 321 - 327
TERNS, M.P.; TERNS, R.M.: "CRISPR-based adaptive immune systems", CURR OPIN MICROBIOL, vol. 14, 2011, pages 321 - 327, XP055097823, DOI: doi:10.1016/j.mib.2011.03.005
TSA I ET AL.: "Dimeric CRISPR RNA-guided Fokl nucleases for highly specific genome editing.", NAT BIOTECHNOL., vol. 32, no. 6, 25 April 2014 (2014-04-25), pages 569 - 576, XP055178523 *
WANG ET AL., CELL, vol. 153, 2013, pages 910 - 918
WANG ET AL., GENE THER., vol. 4, 1997, pages 432 - 441
WANG, H. ET AL.: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering", CELL, vol. 153, 2013, pages 910 - 918, XP028538358, DOI: doi:10.1016/j.cell.2013.04.025
WIEDENHEFT ET AL., NATURE, vol. 482, 2012, pages 331 - 338
WIEDENHEFT, B.; STERNBERG, S.H.; DOUDNA, J.A.: "RNA-guided genetic silencing systems in bacteria and archaea", NATURE, vol. 482, 2012, pages 331 - 338, XP002723433, DOI: doi:10.1038/nature10886
YANG, L.; GUELL, M.; BYRNE, S.; YANG, J.L.; DE LOS ANGELES, A.; MALI, P.; AACH, J.; KIM-KISELAK, C.; BRIGGS, A.W.; RIOS, X. ET AL.: "Optimization of scarless human stem cell genome editing", NUCLEIC ACIDS RES, vol. 41, 2013, pages 9049 - 9061, XP055113989, DOI: doi:10.1093/nar/gkt555

Cited By (232)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202608B2 (en) 2006-08-31 2019-02-12 Gen9, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
US10457935B2 (en) 2010-11-12 2019-10-29 Gen9, Inc. Protein arrays and methods of using and making the same
US11845054B2 (en) 2010-11-12 2023-12-19 Gen9, Inc. Methods and devices for nucleic acids synthesis
US10982208B2 (en) 2010-11-12 2021-04-20 Gen9, Inc. Protein arrays and methods of using and making the same
US11084014B2 (en) 2010-11-12 2021-08-10 Gen9, Inc. Methods and devices for nucleic acids synthesis
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9322006B2 (en) 2011-07-22 2016-04-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11702662B2 (en) 2011-08-26 2023-07-18 Gen9, Inc. Compositions and methods for high fidelity assembly of nucleic acids
US12467086B2 (en) 2011-10-14 2025-11-11 President And Fellows Of Harvard College Sequencing by structure assembly
US11111521B2 (en) 2011-12-22 2021-09-07 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11639518B2 (en) 2011-12-22 2023-05-02 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11976318B2 (en) 2011-12-22 2024-05-07 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11293051B2 (en) 2011-12-22 2022-04-05 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11293052B2 (en) 2011-12-22 2022-04-05 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11549136B2 (en) 2011-12-22 2023-01-10 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11566276B2 (en) 2011-12-22 2023-01-31 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11566277B2 (en) 2011-12-22 2023-01-31 President And Fellows Of Harvard College Compositions and methods for analyte detection
US10308931B2 (en) 2012-03-21 2019-06-04 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
US10927369B2 (en) 2012-04-24 2021-02-23 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US10081807B2 (en) 2012-04-24 2018-09-25 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US11976307B2 (en) 2012-04-27 2024-05-07 Duke University Genetic correction of mutated genes
US20210040460A1 (en) 2012-04-27 2021-02-11 Duke University Genetic correction of mutated genes
US12241057B2 (en) 2012-06-25 2025-03-04 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
US11072789B2 (en) 2012-06-25 2021-07-27 Gen9, Inc. Methods for nucleic acid assembly and high throughput sequencing
US11299767B2 (en) 2013-03-12 2022-04-12 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
US12264358B2 (en) 2013-03-12 2025-04-01 President And Fellows Of Harvard College Method of selectively sequencing amplicons in a biological sample
US10138476B2 (en) 2013-03-15 2018-11-27 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US10844403B2 (en) 2013-03-15 2020-11-24 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US10526589B2 (en) 2013-03-15 2020-01-07 The General Hospital Corporation Multiplex guide RNAs
US11168338B2 (en) 2013-03-15 2021-11-09 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US10544433B2 (en) 2013-03-15 2020-01-28 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US11098326B2 (en) 2013-03-15 2021-08-24 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US10415059B2 (en) 2013-03-15 2019-09-17 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US12065668B2 (en) 2013-03-15 2024-08-20 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US9567603B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US10119133B2 (en) 2013-03-15 2018-11-06 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US11634731B2 (en) 2013-03-15 2023-04-25 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US10378027B2 (en) 2013-03-15 2019-08-13 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US11920152B2 (en) 2013-03-15 2024-03-05 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US9885033B2 (en) 2013-03-15 2018-02-06 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US9567604B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US12215345B2 (en) 2013-03-19 2025-02-04 Duke University Compositions and methods for the induction and tuning of gene expression
US11981917B2 (en) 2013-06-04 2024-05-14 President And Fellows Of Harvard College RNA-guided transcriptional regulation
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US12378566B2 (en) 2013-08-22 2025-08-05 Pioneer Hi-Bred International, Inc. Plant genome modification using guide RNA/Cas endonuclease systems and methods of use
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
EP3473720A1 (en) * 2013-08-22 2019-04-24 Pioneer Hi-Bred International, Inc. Genome modification using guide polynucleotide/cas endonuclease systems and methods of use
US12428645B2 (en) 2013-08-22 2025-09-30 Pioneer Hi-Bred International, Inc. Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
AU2021201257B2 (en) * 2013-09-06 2023-02-16 President And Fellows Of Harvard College Cas9 variants and uses thereof
US12473573B2 (en) 2013-09-06 2025-11-18 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
WO2015035162A3 (en) * 2013-09-06 2015-06-04 President And Fellows Of Harvard College Cas9 variants and uses thereof
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
JP2016537008A (ja) * 2013-09-06 2016-12-01 プレジデント アンド フェローズ オブ ハーバード カレッジ Cas9バリアントおよびその使用
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11920128B2 (en) 2013-09-18 2024-03-05 Kymab Limited Methods, cells and organisms
US10190137B2 (en) 2013-11-07 2019-01-29 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US11390887B2 (en) 2013-11-07 2022-07-19 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US10640788B2 (en) 2013-11-07 2020-05-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAs
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
JP2020164529A (ja) * 2013-12-12 2020-10-08 プレジデント アンド フェローズ オブ ハーバード カレッジ 遺伝子編集用のcas多様体
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
JP2017500035A (ja) * 2013-12-12 2017-01-05 プレジデント アンド フェローズ オブ ハーバード カレッジ 遺伝子編集用のcas多様体
US12215365B2 (en) 2013-12-12 2025-02-04 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11028388B2 (en) 2014-03-05 2021-06-08 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa
US10253312B2 (en) 2014-03-10 2019-04-09 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating Leber's Congenital Amaurosis 10 (LCA10)
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
US11268086B2 (en) 2014-03-10 2022-03-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating Leber's Congenital Amaurosis 10 (LCA10)
US12234449B2 (en) 2014-03-10 2025-02-25 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Leber's congenital amaurosis 10 (LCA10)
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11242525B2 (en) 2014-03-26 2022-02-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating sickle cell disease
US12460231B2 (en) 2014-04-02 2025-11-04 Editas Medicine, Inc. Crispr/CAS-related methods and compositions for treating primary open angle glaucoma
US12152241B2 (en) 2014-06-25 2024-11-26 The General Hospital Corporation Targeting human satellite II (HSATII)
EP3167071A4 (en) * 2014-07-09 2018-01-17 Gen9, Inc. Compositions and methods for site-directed dna nicking and cleaving
US12331347B2 (en) 2014-07-11 2025-06-17 President And Fellows Of Harvard College Methods for high-throughput labelling and detection of biological features in situ using microscopy
US12398406B2 (en) 2014-07-30 2025-08-26 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
AU2022201038B2 (en) * 2014-10-10 2024-10-31 Editas Medicine,Inc. Compositions and methods for promoting homology directed repair
US12201699B2 (en) 2014-10-10 2025-01-21 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
AU2015330699B2 (en) * 2014-10-10 2021-12-02 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
WO2016057961A1 (en) * 2014-10-10 2016-04-14 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
CN104531633A (zh) * 2014-11-18 2015-04-22 李云英 Cas9-scForkI融合蛋白及其应用
US10900034B2 (en) 2014-12-03 2021-01-26 Agilent Technologies, Inc. Guide RNA with chemical modifications
US10337001B2 (en) 2014-12-03 2019-07-02 Agilent Technologies, Inc. Guide RNA with chemical modifications
US12215366B2 (en) 2015-02-09 2025-02-04 Duke University Compositions and methods for epigenome editing
JP2018506987A (ja) * 2015-03-03 2018-03-15 ザ ジェネラル ホスピタル コーポレイション 変更PAM特異性を有する遺伝子操作CRISPR−Cas9ヌクレアーゼ
US11859220B2 (en) 2015-03-03 2024-01-02 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11220678B2 (en) 2015-03-03 2022-01-11 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US12180520B2 (en) 2015-03-03 2024-12-31 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US10767168B2 (en) 2015-03-03 2020-09-08 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US10808233B2 (en) 2015-03-03 2020-10-20 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11306309B2 (en) 2015-04-06 2022-04-19 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation
US11535846B2 (en) 2015-04-06 2022-12-27 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAS for CRISPR/Cas-mediated gene regulation
US11851652B2 (en) 2015-04-06 2023-12-26 The Board Of Trustees Of The Leland Stanford Junior Compositions comprising chemically modified guide RNAs for CRISPR/Cas-mediated editing of HBB
US11180793B2 (en) 2015-04-24 2021-11-23 Editas Medicine, Inc. Evaluation of Cas9 molecule/guide RNA molecule complexes
US11390884B2 (en) 2015-05-11 2022-07-19 Editas Medicine, Inc. Optimized CRISPR/cas9 systems and methods for gene editing in stem cells
US11911415B2 (en) 2015-06-09 2024-02-27 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for improving transplantation
US12188043B2 (en) 2015-07-15 2025-01-07 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
US11479793B2 (en) 2015-07-15 2022-10-25 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
US11427817B2 (en) 2015-08-25 2022-08-30 Duke University Compositions and methods of improving specificity in genomic engineering using RNA-guided endonucleases
US11060078B2 (en) 2015-08-28 2021-07-13 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US10633642B2 (en) 2015-08-28 2020-04-28 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US10526591B2 (en) 2015-08-28 2020-01-07 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
EP4036236A1 (en) 2015-08-28 2022-08-03 The General Hospital Corporation Engineered crispr-cas9 nucleases
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
US10093910B2 (en) 2015-08-28 2018-10-09 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
WO2017059313A1 (en) 2015-09-30 2017-04-06 The General Hospital Corporation Comprehensive in vitro reporting of cleavage events by sequencing (circle-seq)
US11421251B2 (en) 2015-10-13 2022-08-23 Duke University Genome engineering with type I CRISPR systems in eukaryotic cells
US12344869B2 (en) 2015-10-23 2025-07-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11542554B2 (en) 2015-11-03 2023-01-03 President And Fellows Of Harvard College Method and apparatus for volumetric imaging
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
US12049651B2 (en) 2016-04-13 2024-07-30 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US12428631B2 (en) 2016-04-13 2025-09-30 Duke University CRISPR/Cas9-based repressors for silencing gene targets in vivo and methods of use
US11713485B2 (en) 2016-04-25 2023-08-01 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
WO2017209809A1 (en) * 2016-06-02 2017-12-07 Sigma-Aldrich Co. Llc Using programmable dna binding proteins to enhance targeted genome modification
US12084675B2 (en) 2016-06-02 2024-09-10 Sigma-Aldrich Co. Llc Using programmable DNA binding proteins to enhance targeted genome modification
JP2023065365A (ja) * 2016-06-02 2023-05-12 シグマ-アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー 標的ゲノム修飾を増強するためのプログラム可能なdna結合タンパク質の使用
JP7535142B2 (ja) 2016-06-02 2024-08-15 シグマ-アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー 標的ゲノム修飾を増強するためのプログラム可能なdna結合タンパク質の使用
US10266851B2 (en) 2016-06-02 2019-04-23 Sigma-Aldrich Co. Llc Using programmable DNA binding proteins to enhance targeted genome modification
JP2019517795A (ja) * 2016-06-02 2019-06-27 シグマ−アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニーSigma−Aldrich Co., LLC 標的ゲノム修飾を増強するためのプログラム可能なdna結合タンパク質の使用
US12275952B2 (en) 2016-06-02 2025-04-15 Sigma-Aldrich Co. Llc Using programmable DNA binding proteins to enhance targeted genome modification
JP7220737B2 (ja) 2016-06-02 2023-02-10 シグマ-アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニー 標的ゲノム修飾を増強するためのプログラム可能なdna結合タンパク質の使用
AU2021200636B2 (en) * 2016-06-02 2023-03-02 Sigma-Aldrich Co. Llc Using programmable dna binding proteins to enhance targeted genome modification
JP2021121193A (ja) * 2016-06-02 2021-08-26 シグマ−アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニーSigma−Aldrich Co. LLC 標的ゲノム修飾を増強するためのプログラム可能なdna結合タンパク質の使用
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US12214056B2 (en) 2016-07-19 2025-02-04 Duke University Therapeutic applications of CPF1-based genome editing
US11566263B2 (en) 2016-08-02 2023-01-31 Editas Medicine, Inc. Compositions and methods for treating CEP290 associated disease
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
EP4012032A1 (en) * 2016-08-19 2022-06-15 Toolgen Incorporated Artificially engineered angiogenesis regulatory system
US11999952B2 (en) 2016-08-19 2024-06-04 Toolgen Incorporated Artificially-manipulated neovascularization regulatory system
EP3502261A4 (en) * 2016-08-19 2020-07-15 Toolgen Incorporated ARTIFICIALLY MODIFIED ANGIOGENESIS REGULATION SYSTEM
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
WO2018071892A1 (en) 2016-10-14 2018-04-19 Joung J Keith Epigenetically regulated site-specific nucleases
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US12286727B2 (en) 2016-12-19 2025-04-29 Editas Medicine, Inc. Assessing nuclease cleavage
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US12065666B2 (en) 2017-01-05 2024-08-20 Rutgers, The State University Of New Jersey Targeted gene editing platform independent of DNA double strand break and uses thereof
WO2018129129A1 (en) * 2017-01-05 2018-07-12 Rutgers, The State University Of New Jersey Targeted gene editing platform independent of dna double strand break and uses thereof
US12110545B2 (en) 2017-01-06 2024-10-08 Editas Medicine, Inc. Methods of assessing nuclease cleavage
US11466271B2 (en) 2017-02-06 2022-10-11 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US12390514B2 (en) 2017-03-09 2025-08-19 President And Fellows Of Harvard College Cancer vaccine
US12435331B2 (en) 2017-03-10 2025-10-07 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11851690B2 (en) 2017-03-14 2023-12-26 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
US11963982B2 (en) 2017-05-10 2024-04-23 Editas Medicine, Inc. CRISPR/RNA-guided nuclease systems and methods
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US12297466B2 (en) 2017-06-09 2025-05-13 Editas Medicine, Inc. Engineered Cas9 nucleases
US11098297B2 (en) 2017-06-09 2021-08-24 Editas Medicine, Inc. Engineered Cas9 nucleases
US10428319B2 (en) 2017-06-09 2019-10-01 Editas Medicine, Inc. Engineered Cas9 nucleases
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US12359218B2 (en) 2017-07-28 2025-07-15 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US12241096B2 (en) 2017-08-23 2025-03-04 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11624058B2 (en) 2017-08-23 2023-04-11 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11286468B2 (en) 2017-08-23 2022-03-29 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US12406749B2 (en) 2017-12-15 2025-09-02 The Broad Institute, Inc. Systems and methods for predicting repair outcomes in genetic engineering
EP3728589A4 (en) * 2017-12-22 2021-11-03 G+Flas Life Sciences CHEMICAL GENOMIC ENGINEERING MOLECULES AND PROCESSES
US11293019B2 (en) 2017-12-22 2022-04-05 Gflas Life Sciences, Inc. Chimeric genome engineering molecules and methods
US12031132B2 (en) 2018-03-14 2024-07-09 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US12157760B2 (en) 2018-05-23 2024-12-03 The Broad Institute, Inc. Base editors and uses thereof
US12338436B2 (en) 2018-06-29 2025-06-24 Editas Medicine, Inc. Synthetic guide molecules, compositions and methods relating thereto
US12098425B2 (en) 2018-10-10 2024-09-24 Readcoor, Llc Three-dimensional spatial molecular indexing
US12281338B2 (en) 2018-10-29 2025-04-22 The Broad Institute, Inc. Nucleobase editors comprising GeoCas9 and uses thereof
US12351837B2 (en) 2019-01-23 2025-07-08 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12281303B2 (en) 2019-03-19 2025-04-22 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12473543B2 (en) 2019-04-17 2025-11-18 The Broad Institute, Inc. Adenine base editors with reduced off-target effects
EP4017976B1 (en) * 2019-08-20 2025-07-02 Kemijski Institut Coiled-coil mediated tethering of crispr/cas and exonucleases for enhanced genome editing
EP4017976A1 (en) * 2019-08-20 2022-06-29 Kemijski Institut Coiled-coil mediated tethering of crispr/cas and exonucleases for enhanced genome editing
US12435330B2 (en) 2019-10-10 2025-10-07 The Broad Institute, Inc. Methods and compositions for prime editing RNA
WO2021078645A1 (en) 2019-10-21 2021-04-29 Albert-Ludwigs-Universität Freiburg A truly unbiased in vitro assay to profile off-target activity of one or more target-specific programmable nucleases in cells (abnoba-seq)
EP3812472A1 (en) 2019-10-21 2021-04-28 Albert-Ludwigs-Universität Freiburg A truly unbiased in vitro assay to profile off-target activity of one or more target-specific programmable nucleases in cells (abnoba-seq)
US12312613B2 (en) 2020-01-24 2025-05-27 The General Hospital Corporation Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants
US12264341B2 (en) 2020-01-24 2025-04-01 The General Hospital Corporation CRISPR-Cas enzymes with enhanced on-target activity
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12203136B2 (en) 2020-08-17 2025-01-21 Readcoor, Llc Methods and systems for spatial mapping of genetic variants
WO2022248477A1 (en) 2021-05-25 2022-12-01 European Molecular Biology Laboratory System for hybridization-based precision genome cleavage and editing, and uses thereof
EP4095243A1 (en) 2021-05-25 2022-11-30 European Molecular Biology Laboratory System for hybridization-based precision genome cleavage and editing, and uses thereof
US11884915B2 (en) 2021-09-10 2024-01-30 Agilent Technologies, Inc. Guide RNAs with chemical modification for prime editing
WO2024084025A1 (en) 2022-10-21 2024-04-25 Keygene N.V. Rna transfection in plant cells with modified rna
WO2024121354A1 (en) 2022-12-08 2024-06-13 Keygene N.V. Duplex sequencing with covalently closed dna ends
WO2024209000A1 (en) 2023-04-04 2024-10-10 Keygene N.V. Linkers for duplex sequencing
US12509680B2 (en) 2023-05-31 2025-12-30 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences

Also Published As

Publication number Publication date
IL289396A (en) 2022-02-01
ES2713503T3 (es) 2019-05-22
AU2020207840A1 (en) 2020-08-13
EP3467125A1 (en) 2019-04-10
US20200224222A1 (en) 2020-07-16
US10378027B2 (en) 2019-08-13
US11098326B2 (en) 2021-08-24
EP2970986A4 (en) 2016-09-07
IL289396B2 (en) 2023-12-01
AU2020207840B2 (en) 2022-07-21
CN110540991A (zh) 2019-12-06
WO2014144592A3 (en) 2014-12-31
JP6622183B2 (ja) 2019-12-18
EP2971125A4 (en) 2016-08-24
AU2022252788B2 (en) 2025-02-20
AU2020201465B2 (en) 2022-05-12
EP3988667A1 (en) 2022-04-27
JP6657069B2 (ja) 2020-03-04
EP3744842A1 (en) 2020-12-02
US9567603B2 (en) 2017-02-14
JP2020031637A (ja) 2020-03-05
AU2014228981B2 (en) 2019-11-28
US11168338B2 (en) 2021-11-09
KR102874079B1 (ko) 2025-10-22
JP2020039350A (ja) 2020-03-19
EP3741868A1 (en) 2020-11-25
US20180340189A1 (en) 2018-11-29
EP2971125B1 (en) 2020-05-06
KR102210323B1 (ko) 2021-02-01
US11920152B2 (en) 2024-03-05
CN105408497A (zh) 2016-03-16
EP2970208A2 (en) 2016-01-20
AU2014227653A2 (en) 2015-11-12
US20140295557A1 (en) 2014-10-02
US9885033B2 (en) 2018-02-06
AU2014239665A1 (en) 2015-10-01
WO2014144761A3 (en) 2015-10-29
EP4428141A3 (en) 2024-12-18
JP2016517276A (ja) 2016-06-16
US20200071730A1 (en) 2020-03-05
US10138476B2 (en) 2018-11-27
KR20210013303A (ko) 2021-02-03
US11634731B2 (en) 2023-04-25
AU2019204675A1 (en) 2019-07-18
WO2014152432A2 (en) 2014-09-25
EP2970986B1 (en) 2020-05-06
EP2971041A4 (en) 2016-09-07
ZA201506814B (en) 2018-11-28
CN113563476A (zh) 2021-10-29
JP2023061983A (ja) 2023-05-02
BR112015023489B1 (pt) 2022-06-07
US10844403B2 (en) 2020-11-24
EP4428141A2 (en) 2024-09-11
AU2017204909B2 (en) 2019-04-04
KR102405549B1 (ko) 2022-06-08
KR20150132395A (ko) 2015-11-25
JP7126588B2 (ja) 2022-08-26
AU2022209254B2 (en) 2025-01-23
US20210130850A1 (en) 2021-05-06
US20170152508A1 (en) 2017-06-01
AU2022209254A1 (en) 2022-08-18
US20190376090A1 (en) 2019-12-12
CA2906724A1 (en) 2014-09-18
CA2906553C (en) 2022-08-02
KR20150131250A (ko) 2015-11-24
JP6980380B2 (ja) 2021-12-15
JP6878554B2 (ja) 2021-05-26
EP3741868B1 (en) 2024-05-22
US10415059B2 (en) 2019-09-17
CN105247066B (zh) 2020-10-20
KR20210013304A (ko) 2021-02-03
CN110540991B (zh) 2023-10-24
US20230407341A1 (en) 2023-12-21
JP6960438B2 (ja) 2021-11-05
JP2020120661A (ja) 2020-08-13
CN112301024A (zh) 2021-02-02
WO2014144761A2 (en) 2014-09-18
CN105408497B (zh) 2019-09-13
US9567604B2 (en) 2017-02-14
BR112015023489A2 (pt) 2017-10-10
AU2019204675B2 (en) 2021-03-11
US20220090145A1 (en) 2022-03-24
AU2014239665B2 (en) 2020-04-30
AU2014227653B2 (en) 2017-04-20
EP2970208A4 (en) 2016-11-30
US20160010076A1 (en) 2016-01-14
JP2016512264A (ja) 2016-04-25
WO2014152432A3 (en) 2015-10-29
CA2906553A1 (en) 2014-09-25
EP2971041A1 (en) 2016-01-20
US10119133B2 (en) 2018-11-06
KR20210013302A (ko) 2021-02-03
CN105247066A (zh) 2016-01-13
IL289396B1 (en) 2023-08-01
AU2017204909A1 (en) 2017-08-31
CA2907198C (en) 2019-12-10
KR20220080012A (ko) 2022-06-14
KR102271291B1 (ko) 2021-07-02
AU2021203370A1 (en) 2021-06-24
EP3467125B1 (en) 2023-08-30
US20160024523A1 (en) 2016-01-28
EP2971125A2 (en) 2016-01-20
EP2971125B2 (en) 2023-11-22
KR20150131251A (ko) 2015-11-24
CA2907198A1 (en) 2014-09-18
US10544433B2 (en) 2020-01-28
KR102210322B1 (ko) 2021-02-01
EP2971041B1 (en) 2018-11-28
AU2021203370B2 (en) 2023-07-27
CA3161835A1 (en) 2014-09-25
US20180208921A1 (en) 2018-07-26
US20140295556A1 (en) 2014-10-02
KR102210319B1 (ko) 2021-02-01
KR20230157540A (ko) 2023-11-16
JP2024012446A (ja) 2024-01-30
JP2021118726A (ja) 2021-08-12
IL241671B (en) 2022-03-01
KR102271292B1 (ko) 2021-07-02
US20240240207A1 (en) 2024-07-18
US20250034597A1 (en) 2025-01-30
JP7379572B2 (ja) 2023-11-14
KR102602047B1 (ko) 2023-11-15
US20160024524A1 (en) 2016-01-28
JP2022106710A (ja) 2022-07-20
AU2014227653A1 (en) 2015-10-01
AU2014228981A1 (en) 2015-10-01
AU2022252788A1 (en) 2022-11-03
EP2970986A2 (en) 2016-01-20
JP7053706B2 (ja) 2022-04-12
JP2016512691A (ja) 2016-05-09
AU2020201465A1 (en) 2020-03-19
US12065668B2 (en) 2024-08-20
JP2021192624A (ja) 2021-12-23
CN105408483A (zh) 2016-03-16
US20170327805A1 (en) 2017-11-16
EP3865586A1 (en) 2021-08-18
WO2014144592A2 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
US11098326B2 (en) Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US10011850B2 (en) Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2907198

Country of ref document: CA

Ref document number: 2016502853

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014227653

Country of ref document: AU

Date of ref document: 20140314

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157029177

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014764159

Country of ref document: EP