WO2014050896A1 - プリプレグ及びその製造方法 - Google Patents

プリプレグ及びその製造方法 Download PDF

Info

Publication number
WO2014050896A1
WO2014050896A1 PCT/JP2013/075922 JP2013075922W WO2014050896A1 WO 2014050896 A1 WO2014050896 A1 WO 2014050896A1 JP 2013075922 W JP2013075922 W JP 2013075922W WO 2014050896 A1 WO2014050896 A1 WO 2014050896A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
prepreg
resin composition
conductive particles
mass
Prior art date
Application number
PCT/JP2013/075922
Other languages
English (en)
French (fr)
Inventor
貴也 鈴木
坂元 肇
石渡 豊明
梅元 禎孝
Original Assignee
東邦テナックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50388291&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014050896(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東邦テナックス株式会社 filed Critical 東邦テナックス株式会社
Priority to CN201380050176.1A priority Critical patent/CN105164192B/zh
Priority to JP2014527397A priority patent/JP5603528B2/ja
Priority to ES13841025T priority patent/ES2732361T3/es
Priority to EP13841025.3A priority patent/EP2902435B1/en
Priority to US14/431,079 priority patent/US10927226B2/en
Publication of WO2014050896A1 publication Critical patent/WO2014050896A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • B29K2105/089Prepregs fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer

Definitions

  • the present invention relates to a prepreg capable of producing a fiber-reinforced composite material excellent in impact resistance and conductivity and a method for producing the same.
  • CFRP Carbon fiber reinforced composite material
  • thermosetting resin or a thermoplastic resin As the resin constituting the prepreg, a thermosetting resin or a thermoplastic resin is used.
  • a prepreg using a thermosetting resin is widely used because of its high degree of molding freedom due to its tackiness and drapeability. Since thermosetting resins generally have low toughness, when a thermosetting resin is used as the resin constituting the prepreg, there is a problem that CFRP produced using this prepreg has low impact resistance. Therefore, a method for improving the impact resistance has been studied.
  • Patent Documents 1 to 3 disclose prepregs in which thermoplastic resin fine particles are localized on the prepreg surface. These prepregs have low initial tackiness because the particle-shaped thermoplastic resin is localized on the surface. Further, since the curing reaction with the curing agent present in the surface layer proceeds, the storage stability is poor, and the tackiness and draping properties deteriorate with time. Furthermore, a fiber reinforced composite material (hereinafter abbreviated as “FRP”) produced using such a prepreg having undergone a curing reaction has many defects such as voids and has extremely low mechanical properties.
  • FRP fiber reinforced composite material
  • Patent Document 4 discloses a prepreg in which a particulate, fibrous, or sheet-like thermoplastic resin is distributed in the vicinity of one or both surface layers.
  • a particulate or fibrous thermoplastic resin is used, for the same reason as described in Patent Documents 1 to 3, the tackiness of the prepreg is low and the mechanical properties of the resulting FRP are also low. Further, when a sheet-like thermoplastic resin is used, the tackiness and draping properties of the prepreg are lost.
  • defects derived from thermoplastic resins such as low solvent resistance are remarkably reflected in FRP.
  • FRP that exhibits conductivity is required for protection from lightning, electrostatic dissipation (ESI), and electromagnetic interference (EMI). Lightning strikes on the FRP may cause a catastrophic failure of the component by penetrating a hole through the FRP comprising a plurality of ply laminates.
  • CFRP using carbon fiber as a reinforcing fiber is known to have a certain degree of conductivity because graphite constituting the carbon fiber has conductivity.
  • its conductivity is insufficient to protect CFRP from the destructive effects of lightning strikes. This is because the discharge due to lightning strikes the CFRP resin layer, evaporates the resin therein, causes an overall delamination, and may penetrate the CFRP.
  • the CFRP resin layer works as an electrical insulator, the conductivity in the thickness direction of the CFRP (that is, the direction perpendicular to the fiber direction) is low.
  • the conductivity in the thickness direction of the CFRP that is, the direction perpendicular to the fiber direction
  • the conductivity in the thickness direction of the CFRP is low.
  • the conductivity in the thickness direction of the CFRP further decreases. Therefore, it is difficult to achieve both excellent impact resistance and conductivity in CFRP.
  • a method for improving the electrical conductivity between the reinforcing fiber layers a method of blending metal particles into a CFRP matrix resin (for example, Patent Document 5) and a method of blending carbon particles (for example, Patent Document 6) can be considered.
  • the CFRP obtained by these methods does not have sufficient impact resistance.
  • Japanese Patent Laid-Open No. 7-41575 JP 7-41576 A Japanese Patent Laid-Open No. 7-41577 JP-A-8-259713 JP-A-6-344519 Japanese Patent Laid-Open No. 8-34864
  • An object of the present invention is to provide a prepreg for manufacturing FRP having high impact resistance, interlayer toughness, and conductivity in the thickness direction, and a method for manufacturing the same.
  • the present inventors produced a prepreg using a resin composition (I) containing at least a thermoplastic resin and a resin composition (II) containing at least conductive particles. That is, a primary prepreg was produced by impregnating the resin composition (I) into a reinforcing fiber layer made of reinforcing fibers. Then, the resin composition (II) was stacked and integrated on the surface of the primary prepreg.
  • the FRP produced using the prepreg obtained in this way has been found to have high impact resistance and interlayer toughness and excellent conductivity in the thickness direction, and the present invention has been completed.
  • a primary prepreg comprising reinforcing fibers and a resin composition (I) impregnated in a reinforcing fiber layer formed by the reinforcing fibers; A surface layer made of the resin composition (II) formed on one side or both sides of the primary prepreg; A prepreg consisting of The resin composition (I) is an epoxy resin composition [B] containing at least an epoxy resin and a thermoplastic resin, The resin composition (II) is a prepreg that is an epoxy resin composition [A] containing at least an epoxy resin and conductive particles.
  • the resin composition (I) impregnated in the primary prepreg contains a thermoplastic resin and has a high viscosity. Therefore, the conductive particles existing in the surface layer are difficult to move into the reinforcing fiber layer and are dispersed in the surface layer of the prepreg.
  • the prepreg of the present invention preferably includes the following configuration.
  • thermoplastic resin contained in the epoxy resin composition [B] is an epoxy resin-soluble thermoplastic resin.
  • thermoplastic resin contained in the epoxy resin composition [B] is an epoxy resin-soluble thermoplastic resin or an epoxy resin-insoluble thermoplastic resin.
  • epoxy resin-soluble thermoplastic resin is at least one selected from polyethersulfone, polyetherimide, polycarbonate, and polysulfone.
  • the epoxy resin composition [B] is an epoxy resin composition that does not contain an epoxy resin curing agent, The prepreg according to [1], wherein the epoxy resin composition [A] is an epoxy resin composition containing an epoxy resin curing agent.
  • carbon particles are at least one selected from carbon black, carbon nanotubes, carbon nanofibers, expanded graphite, scaly graphite, graphite powder, graphite particles, graphene sheets, and carbon milled fibers.
  • a primary prepreg is obtained by impregnating the resin composition (I) in the reinforcing fiber layer, Next, the resin fat composition (II) sheet is stacked on one side or both sides of the primary prepreg, and the primary prepreg and the resin composition (II) sheet are integrated by thermocompression bonding.
  • a carbon fiber reinforced composite material having both excellent conductivity and impact resistance can be obtained.
  • the conductive particles contained in the surface layer resin composition do not sink into the inner layer, and the conductive particles remain in the surface layer of the prepreg.
  • the conductive particles act as a conductive bridge between the reinforcing fiber layer and the adjacent reinforcing fiber layer, and maintain electrical conductivity between the reinforcing fiber layers. This action increases the conductivity of the FRP in the thickness direction.
  • FIG. 1 is a schematic cross-sectional view showing an example of the prepreg of the present invention.
  • 2 (a) to 2 (c) are conceptual diagrams showing an example of a process in which the prepreg of the present invention is manufactured.
  • FIG. 3 is a conceptual diagram showing an example of a process for producing the prepreg of the present invention.
  • FIG. 4 is a partially enlarged view showing an example of the prepreg of the present invention.
  • FIG. 5 is a partially enlarged view showing an example of a composite material manufactured by laminating and thermoforming the prepreg of the present invention.
  • FIG. 6 is a drawing-substituting photograph of a cross-section of a cured resin product prepared by kneading an epoxy resin, a curing agent, and a reactive oligomer having an amine terminal group.
  • the prepreg of the present invention (hereinafter also referred to as “present prepreg”) is a primary prepreg comprising a reinforcing fiber and a resin composition (I) impregnated in a reinforcing fiber layer formed by the reinforcing fiber ( Inner layer), A surface layer made of the resin composition (II) formed on one side or both sides of the primary prepreg is integrated.
  • FIG. 1 is a schematic sectional view showing an example of the present prepreg.
  • 100 is the present prepreg and 10 is the primary prepreg.
  • the primary prepreg 10 includes a reinforcing fiber layer made of carbon fibers 11 and a resin composition (I) 13 impregnated in the reinforcing fiber layer.
  • a surface layer 15 made of the resin composition (II) is formed integrally with the primary prepreg 10 on the surface of the primary prepreg 10.
  • the primary prepreg is composed of a reinforcing fiber layer at the center of the prepreg cross section and a resin composition (I) impregnated in the reinforcing fiber layer.
  • 2 (a) to 2 (c) are explanatory views sequentially showing the process of manufacturing the prepreg of the present invention (described later).
  • the primary prepreg is represented as a primary prepreg 10 in FIGS. 2 (b) and 2 (c).
  • Reinforcing fibers constituting the reinforcing fiber layer of the prepreg include carbon fibers, glass fibers, aramid fibers, silicon carbide fibers, polyester fibers, ceramic fibers, alumina fibers, boron fibers, metal fibers, and mineral fibers. And rock fibers and slug fibers.
  • these reinforcing fibers carbon fibers, glass fibers, and aramid fibers are preferable, and carbon fibers that have good specific strength and specific elastic modulus and can obtain a lightweight and high-strength FRP are more preferable.
  • the carbon fibers polyacrylonitrile (PAN) -based carbon fibers having excellent tensile strength are particularly preferable.
  • the conductive particles contained in the resin composition are dispersed in the reinforcing fiber layer, so that a composite material having conductivity is produced. Can do.
  • the reinforcing fiber having conductivity is used, the volume resistivity of the obtained FRP can be greatly reduced. Therefore, it is preferable to use conductive reinforcing fibers.
  • a reinforcing fiber having no conductivity such as glass fiber or aramid fiber, it is preferable to impart conductivity to the reinforcing fiber by a method such as metal plating on the surface of the reinforcing fiber.
  • its tensile elastic modulus is preferably 170 to 600 GPa, particularly preferably 220 to 450 GPa.
  • the tensile strength is preferably 3920 MPa (400 kgf / mm 2 ) or more.
  • the reinforcing fiber is preferably used in the form of a sheet.
  • Reinforced fiber sheets are made of sheet-like materials in which a large number of reinforcing fibers are aligned in one direction, bi-directional woven fabrics such as plain weave and twill, multiaxial woven fabrics, non-woven fabrics, mats, knits, braids, and reinforcing fibers. Paper is exemplified.
  • the thickness of the sheet is preferably 0.01 to 3 mm, more preferably 0.1 to 1.5 mm.
  • the basis weight of the sheet is preferably 70 ⁇ 400g / m 2, more preferably 100 ⁇ 300g / m 2.
  • These reinforcing fiber sheets may contain a known sizing agent.
  • the distance between the single fibers of the reinforcing fiber sheet is preferably less than 10 ⁇ m.
  • the resin composition (I) forming the inner layer is composed of an epoxy resin composition [B] containing an epoxy resin and a thermoplastic resin as essential components, Resin composition (II) which forms a surface layer consists of epoxy resin composition [A] which has an epoxy resin and electroconductive particle as an essential component.
  • the prepreg of the present invention has a high viscosity because the resin composition (I) impregnated in the primary prepreg contains a thermoplastic resin. Therefore, the conductive particles in the surface layer hardly move to the inner layer, and the conductive particles remain in the surface layer of the prepreg.
  • the thickness of the surface layer is preferably 2 to 30 ⁇ m, more preferably 5 to 20 ⁇ m. When it is less than 2 ⁇ m, the tackiness of the obtained prepreg is lowered. When it exceeds 30 ⁇ m, the handleability of the obtained prepreg and the molding accuracy of FRP tend to be lowered.
  • the thickness of the primary prepreg is preferably 0.01 to 4.0 mm, more preferably 0.1 to 2.0 mm.
  • the mass ratio of the epoxy resin contained in the epoxy resin composition [B] and the epoxy resin contained in the epoxy resin composition [A] is preferably 9: 1 to 1: 1, and preferably 5: 1 to 1. : 1 is more preferable.
  • the content of the prepreg reinforcing fiber is preferably 40 to 80% by mass, particularly preferably 50 to 70% by mass, based on 100% by mass of the total mass of the prepreg.
  • the content of the reinforcing fiber is less than 40% by mass, the strength and the like of the FRP produced using this prepreg is insufficient.
  • the reinforcing fiber content exceeds 80% by mass, the amount of resin impregnated in the reinforcing fiber layer of the prepreg is insufficient. As a result, voids and the like are generated in the FRP produced using this prepreg.
  • Epoxy resin composition [B] is a resin composition containing at least an epoxy resin and a thermoplastic resin. Hereinafter, each component of the epoxy resin composition [B] will be described.
  • Epoxy resin The epoxy resin blended in the epoxy resin composition [B] is a conventionally known epoxy resin. Among these, it is preferable to use an epoxy resin having an aromatic group in the molecule, and it is more preferable to use a bifunctional or trifunctional or higher functional epoxy resin having either a glycidylamine structure or a glycidyl ether structure. Moreover, an alicyclic epoxy resin can also be used suitably.
  • Examples of the epoxy resin having a glycidylamine structure include N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, N, N, O-triglycidyl-p-aminophenol, and N, N, O-triglycidyl-m-. Examples include various isomers of aminophenol, N, N, O-triglycidyl-3-methyl-4-aminophenol, and triglycidylaminocresol.
  • Examples of the epoxy resin having a glycidyl ether structure include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin.
  • These epoxy resins may have a non-reactive substituent in the aromatic ring structure or the like, if necessary.
  • the non-reactive substituent include alkyl groups such as methyl group, ethyl group and isopropyl group, aromatic groups such as phenyl group, alkoxyl groups, aralkyl groups, and halogen groups such as chlorine and bromine.
  • the epoxy resin is crosslinked by a curing reaction with a curing agent to form a network structure. It is preferable that a trifunctional epoxy resin is blended in the epoxy resin composition [B]. When a trifunctional epoxy resin is blended, the cured epoxy resin has a high crosslinking density, and the physical properties of FRP are excellent.
  • the content of the trifunctional epoxy resin is preferably 10% by mass or more, more preferably 20 to 75% by mass, based on the amount of the epoxy resin blended in the epoxy resin composition [B]. .
  • the trifunctionality of the total amount of epoxy resins blended in the epoxy resin compositions [A] and [B], that is, the total epoxy resin amount is preferably contained in an amount of 30% by mass or more, and more preferably 30 to 70% by mass.
  • the content of the trifunctional epoxy resin exceeds 70% by mass, the handleability of the obtained prepreg may be deteriorated.
  • trifunctional epoxy resin examples include N, N, O-triglycidyl-p-aminophenol and N, N, O-triglycidyl-m-aminophenol.
  • epoxy resins may be used alone or in combination of two or more.
  • a B-stage epoxy resin that has been pre-reacted with a curing agent or the like can be used as the epoxy resin.
  • the epoxy resin composition [B] contains a thermoplastic resin.
  • the thermoplastic resin imparts an appropriate viscosity to the epoxy resin composition [B], and causes conductive particles contained in the epoxy resin composition [A] described later to remain near the surface of the prepreg.
  • the thermoplastic resin contained in the epoxy resin composition [B] also has an effect of improving the impact resistance of the finally obtained FRP.
  • the amount of the thermoplastic resin contained in the epoxy resin composition [B] varies depending on the type of the epoxy resin used in the epoxy resin composition [B] so that the viscosity of the epoxy resin composition [B] becomes an appropriate value. May be adjusted as appropriate.
  • the thermoplastic resin is preferably blended in an amount of 5 to 90 parts by mass and preferably in an amount of 5 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [B]. Is more preferable. When the amount is less than 5 parts by mass, the resulting prepreg and FRP may have insufficient impact resistance. Moreover, when there are too many compounding quantities of a thermoplastic resin, a viscosity becomes remarkably high and the handleability of a prepreg may deteriorate remarkably.
  • the epoxy resin composition [B] preferably has a minimum viscosity of 10 poise or more, more preferably 10 to 3000 poise, further preferably 10 to 500 poise, and further preferably 10 to 450 poise. 50 to 400 poise is particularly preferable.
  • the minimum viscosity of the epoxy resin composition [B] is 10 poise or more, the effect of keeping the conductive particles contained in the epoxy resin composition [A] near the surface of the prepreg is high. As a result, the conductivity in the thickness direction of the FRP obtained by curing the prepreg tends to be higher.
  • the viscosity of the epoxy resin composition [B] When the minimum viscosity of the epoxy resin composition [B] is too high, the viscosity of the resin composition becomes too high, and the handleability deteriorates, for example, the resin impregnation property of the prepreg deteriorates. Further, the viscosity at a temperature of 80 ° C. is preferably 50 to 2000 poise. The viscosity is a viscosity obtained from a temperature-viscosity curve measured using a rheometer. The viscosity of the epoxy resin composition [B] can be adjusted by the addition amount of a thermoplastic resin, particularly an epoxy resin-soluble thermoplastic resin described later.
  • thermoplastic resin examples include an epoxy resin-soluble thermoplastic resin and an epoxy resin-insoluble thermoplastic resin.
  • Epoxy resin-soluble thermoplastic resin The epoxy resin composition [B] contains an epoxy resin-soluble thermoplastic resin. This epoxy resin-soluble thermoplastic resin adjusts the viscosity of the epoxy resin composition [B] and improves the impact resistance of the obtained FRP.
  • the epoxy resin-soluble thermoplastic resin is a thermoplastic resin that can be partially or wholly dissolved in the epoxy resin by heating or the like.
  • the epoxy resin-insoluble thermoplastic resin refers to a thermoplastic resin that does not substantially dissolve in the epoxy resin at a temperature at which FRP is molded or at a temperature lower than that. That is, it refers to a thermoplastic resin whose size does not change when resin particles are put into an epoxy resin and stirred at the temperature at which FRP is molded. In general, the temperature for molding FRP is 100 to 190 ° C.
  • the epoxy resin-soluble thermoplastic resin When the epoxy resin-soluble thermoplastic resin is not completely dissolved, it is dissolved in the epoxy resin by being heated in the curing process of the epoxy resin composition [B], and the viscosity of the epoxy resin composition [B] is increased. be able to. Thereby, it is possible to prevent the flow of the epoxy resin composition [B] (a phenomenon in which the resin composition flows out from the prepreg) due to a decrease in viscosity in the curing process.
  • the epoxy resin-soluble thermoplastic resin is preferably a resin that dissolves in an epoxy resin at 190 ° C. in an amount of 80% by mass or more.
  • the epoxy resin-soluble thermoplastic resin include polyethersulfone, polysulfone, polyetherimide, and polycarbonate. These may be used alone or in combination of two or more.
  • the epoxy resin-soluble thermoplastic resin contained in the epoxy resin composition [B] is particularly preferably polyethersulfone or polysulfone having a weight average molecular weight (Mw) in the range of 8000 to 40,000. When the weight average molecular weight (Mw) is less than 8000, the impact resistance of the obtained FRP becomes insufficient, and when it is more than 40000, the viscosity is remarkably increased and the handling property may be remarkably deteriorated.
  • the molecular weight distribution of the epoxy resin-soluble thermoplastic resin is preferably uniform.
  • the polydispersity (Mw / Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), is preferably in the range of 1 to 10, and preferably in the range of 1.1 to 5. More preferred.
  • the epoxy resin-soluble thermoplastic resin preferably has a reactive group having reactivity with the epoxy resin or a functional group that forms a hydrogen bond.
  • Such an epoxy resin-soluble thermoplastic resin can improve the dissolution stability during the curing process of the epoxy resin.
  • toughness, chemical resistance, heat resistance, and moist heat resistance can be imparted to the FRP obtained after curing.
  • a hydroxyl group, a carboxylic acid group, an imino group, an amino group and the like are preferable.
  • Use of a hydroxyl-terminated polyethersulfone is more preferred because the resulting FRP is particularly excellent in impact resistance, fracture toughness and solvent resistance.
  • the content of the epoxy resin-soluble thermoplastic resin contained in the epoxy resin composition [B] is appropriately adjusted according to the viscosity of the primary prepreg.
  • the amount is preferably 5 to 90 parts by weight, more preferably 5 to 50 parts by weight, with respect to 100 parts by weight of the epoxy resin contained in the epoxy resin composition [B]. Part by mass is more preferable. If the amount is less than 5 parts by mass, the resulting FRP may have insufficient impact resistance.
  • the content of the epoxy resin-soluble thermoplastic resin is high, the viscosity is remarkably increased, and the prepreg handling property may be remarkably deteriorated.
  • the content of the epoxy resin-soluble thermoplastic resin is preferably 5 to 90 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition [A] and the epoxy resin composition [B]. Part by mass is more preferable, and 15 to 35 parts by mass is even more preferable. If the amount is less than 5 parts by mass, the resulting FRP may have insufficient impact resistance. When the content of the epoxy resin-soluble thermoplastic resin is high, the viscosity is remarkably increased, and the prepreg handling property may be remarkably deteriorated.
  • the epoxy resin-soluble thermoplastic resin preferably contains a reactive aromatic oligomer having an amine end group (hereinafter also simply referred to as “aromatic oligomer”).
  • the epoxy resin composition has a high molecular weight due to a curing reaction between the epoxy resin and the curing agent during heat curing.
  • the aromatic oligomer dissolved in the epoxy resin composition causes reaction-induced phase separation.
  • a two-phase structure of a resin in which the cured epoxy resin and the aromatic oligomer are co-continuous is formed in the matrix resin.
  • the aromatic oligomer since the aromatic oligomer has an amine terminal group, a reaction with an epoxy resin also occurs. Since the phases in this co-continuous two-phase structure are firmly bonded to each other, the solvent resistance is also improved.
  • FIG. 6 is a drawing-substituting photograph of a cross-section of a cured product of a resin composition prepared by kneading an epoxy resin, a curing agent, and a reactive oligomer having an amine terminal group.
  • This resin composition comprises: (a) component: epoxy resin 100 parts by mass (MY0600), (b) component: curing agent 50 parts by mass (3,3-DDS), (c) component: reactivity having amine end groups It consists of 60 parts by mass of oligomer (DAMS VW-30500RP).
  • This co-continuous structure absorbs external impact on FRP and suppresses crack propagation.
  • FRP produced using a prepreg containing a reactive aromatic oligomer having an amine end group has high impact resistance and fracture toughness.
  • a known polysulfone having an amine end group and a polyether sulfone having an amine end group can be used.
  • the amine end group is preferably a primary amine (—NH 2 ) end group.
  • the aromatic oligomer blended in the epoxy resin composition [B] preferably has a weight average molecular weight of 8000 to 40,000.
  • the weight average molecular weight is less than 8000, the effect of improving the toughness of the matrix resin is low.
  • the weight average molecular weight exceeds 40000, the viscosity of the resin composition becomes too high, and processing problems such as difficulty in impregnating the resin composition in the reinforcing fiber layer tend to occur.
  • the amount of the aromatic oligomer in the epoxy resin composition [B] is 100 mass of epoxy resin contained in the epoxy resin composition [B].
  • the amount is preferably 30 to 90 parts by mass, more preferably 40 to 80 parts by mass, and particularly preferably 45 to 65 parts by mass with respect to parts.
  • the co-continuous two-phase structure formed from the aromatic oligomer can efficiently absorb the impact received by the FRP. Therefore, the impact resistance of the obtained FRP is increased.
  • the viscosity of epoxy resin composition [B] will not become high too much, and the handleability in the manufacturing process of epoxy resin composition [B] and the manufacturing process of a prepreg will not be adversely affected.
  • FRP in which a co-continuous two-phase structure formed from the predetermined amount of aromatic oligomer is uniformly formed in the matrix resin suppresses crack propagation against impact. Therefore, the impact resistance of the obtained FRP is increased.
  • the content of the epoxy resin-soluble thermoplastic resin contained in the epoxy resin composition [B] is the workability of the primary prepreg. From the viewpoint, 5 to 50 parts by mass is preferable and 10 to 40 parts by mass is more preferable with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [B].
  • the form of the epoxy resin-soluble thermoplastic resin is not particularly limited, but is preferably particulate.
  • the particulate epoxy resin-soluble thermoplastic resin can be uniformly blended in the resin composition. Moreover, the moldability of the obtained prepreg is high.
  • the average particle size of the epoxy resin-soluble thermoplastic resin is preferably 1 to 50 ⁇ m, and particularly preferably 3 to 30 ⁇ m. When it is less than 1 ⁇ m, the viscosity of the epoxy resin composition is remarkably increased. Therefore, it may be difficult to add a sufficient amount of the epoxy resin-soluble thermoplastic resin to the epoxy resin composition. When exceeding 50 micrometers, when processing an epoxy resin composition into a sheet form, it may become difficult to obtain a sheet of uniform thickness. Moreover, since the melt
  • Epoxy resin insoluble thermoplastic resin may contain an epoxy resin insoluble thermoplastic resin in addition to the epoxy resin soluble thermoplastic resin.
  • the epoxy resin composition [B] preferably contains both an epoxy resin-soluble thermoplastic resin and an epoxy resin-insoluble thermoplastic resin.
  • the dispersed particles are also referred to as “interlayer particles”.
  • the interlayer particles suppress the propagation of the impact received by the FRP. As a result, the impact resistance of the obtained FRP is improved.
  • epoxy resin insoluble thermoplastic resins include polyamide, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyester, polyamideimide, polyimide, polyetherketone, polyetheretherketone, polyethylene naphthalate, polyethernitrile, and polybenzimidazole. .
  • polyamide, polyamideimide, and polyimide are preferable because of high toughness and heat resistance.
  • Polyamide and polyimide are particularly excellent in improving toughness against FRP. These may be used alone or in combination of two or more. Moreover, these copolymers can also be used.
  • amorphous polyimide nylon 6 (registered trademark) (polyamide obtained by ring-opening polycondensation reaction of caprolactam), nylon 12 (polyamide obtained by ring-opening polycondensation reaction of lauryl lactam), amorphous nylon
  • a polyamide such as (also called transparent nylon, which does not cause crystallization of the polymer or has a very low crystallization rate of the polymer)
  • the heat resistance of the obtained FRP can be particularly improved.
  • the content of the epoxy resin-insoluble thermoplastic resin in the epoxy resin composition [B] is appropriately adjusted according to the viscosity of the epoxy resin composition [B].
  • the amount is preferably 5 to 60 parts by mass, more preferably 15 to 40 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [B]. .
  • the amount is less than 5 parts by mass, the resulting FRP may have insufficient impact resistance.
  • it exceeds 60 mass parts the impregnation property of epoxy resin composition [B], the drape property of the prepreg obtained, etc. may be reduced.
  • the content of the epoxy resin-insoluble thermoplastic resin with respect to 100 parts by mass of the total epoxy resins contained in the epoxy resin compositions [A] and [B] is preferably 10 to 45 parts by mass, and more preferably 20 to 45 parts by mass. .
  • the amount is less than 10 parts by mass, the resulting FRP may have insufficient impact resistance.
  • it exceeds 45 mass parts the impregnation property of epoxy resin composition [B], the drape property of a prepreg, etc. may be reduced.
  • the preferable average particle diameter and form of the epoxy resin-insoluble thermoplastic resin are the same as those of the epoxy resin-soluble thermoplastic resin.
  • (C) Hardener The hardener which hardens an epoxy resin is mix
  • blended with epoxy resin composition [A] and / or [B] the well-known hardening
  • dicyandiamide, various isomers of an aromatic amine-based curing agent, and aminobenzoic acid esters are exemplified. Dicyandiamide is preferable because of excellent storage stability of the prepreg.
  • aromatic diamine compounds such as 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, and 4,4′-diaminodiphenylmethane and derivatives having non-reactive substituents have high heat resistance. This is particularly preferable from the viewpoint of providing a cured product.
  • a non-reactive substituent is as having demonstrated in said (a) epoxy resin.
  • trimethylene glycol di-p-aminobenzoate and neopentyl glycol di-p-aminobenzoate are preferably used.
  • FRP cured with these curing agents has lower heat resistance but higher tensile elongation than FRP cured with various isomers of diaminodiphenylsulfone. Therefore, the curing agent is appropriately selected according to the use of FRP.
  • the total amount of the curing agent blended in the epoxy resin compositions [A] and [B] is an amount suitable for curing all the epoxy resins blended in the epoxy resin compositions [A] and [B]. .
  • This amount is appropriately adjusted according to the type of epoxy resin and curing agent. From the viewpoint of storage stability, the amount is preferably 30 to 100 parts by mass, more preferably 30 to 70 parts by mass with respect to 100 parts by mass of the total epoxy resin.
  • the amount of the curing agent blended in the other is an amount suitable for curing the entire epoxy resin.
  • the amount is preferably 25 to 55 parts by mass with respect to 100 parts by mass of the total epoxy resin.
  • the epoxy resin composition [B] may contain conductive particles as necessary.
  • the conductive particles the same conductive particles as described later can be used.
  • the conductive particles contained in the epoxy resin composition [B] are preferably 0.2 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [B]. Part is more preferable, and 5 to 15 parts by weight is particularly preferable.
  • the amount is less than 0.2 parts by mass, it is difficult to improve the conductivity in the thickness direction of the obtained FRP.
  • it exceeds 20 mass parts the viscosity of a resin composition becomes remarkably high and a handleability may deteriorate.
  • the epoxy resin composition [B] preferably contains conductive particles having an average particle diameter of 10 to 200 ⁇ m by a laser diffraction method in order to improve the conductivity of the FRP obtained by curing, and has a conductivity of 50 to 200 ⁇ m. It is more preferable to contain conductive particles. Moreover, it is preferable that the average particle diameter contains the electroconductive particle of 5 micrometers or less. In particular, it is preferable to contain two different kinds of conductive particles composed of conductive particles having an average particle diameter of 10 to 200 ⁇ m and conductive particles having an average particle diameter of 5 ⁇ m or less.
  • the conductive particles improve the conductivity in the thickness direction by connecting the reinforcing fiber layers in the thickness direction and acting as a conductive bridge in the thickness direction of the FRP.
  • the shape of the conductive particles may be spherical particles, non-spherical particles, or porous particles, but spherical particles are preferable from the viewpoint of imparting uniform conductivity.
  • the particle diameter of the conductive particles is 10 ⁇ m or more, the particle diameter is larger than the distance between the single fibers of the reinforcing fiber layer, so that it is difficult to enter the reinforcing fiber layer. Therefore, when the reinforcing fiber layer is impregnated with the epoxy resin composition [B], the conductive particles remain on the surface of the reinforcing fiber layer and are easily exposed. As a result, the conductive particles electrically connect the reinforcing fiber layers of each prepreg. That is, the conductive particles tend to stay in the FRP resin layer (between the reinforcing fiber layer and the reinforcing fiber layer), and it is easy to improve the conductivity by forming a conductive bridge that connects the adjacent reinforcing fiber layers in the thickness direction.
  • the particle diameter of the conductive particles is larger than 200 ⁇ m, it may be difficult to produce a sheet having a uniform thickness when the obtained resin composition is processed into a sheet shape described later.
  • conductive particles having an average particle diameter of 5 ⁇ m or less because the conductive particles are dispersed in both the reinforcing fiber layer and the resin layer, and the conductivity of the resulting FRP can be further improved.
  • the average particle diameter is preferably 1 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the epoxy resin composition [B] can contain other components as long as the objects and effects of the present invention are not impaired.
  • Other components include tertiary amines, amine compounds such as imidazole, phosphines, phosphorus compounds such as phosphonium, curing accelerators such as N, N-dimethylurea derivatives, reactive diluents, fillers, oxidation Various additives such as inhibitor; flame retardant; pigment; These compounding amounts are known.
  • Epoxy resin composition [A] is a resin composition containing at least an epoxy resin and conductive particles. Hereinafter, each component of the epoxy resin composition [A] will be described.
  • Epoxy resin As an epoxy resin mix
  • the epoxy resin blended in the epoxy resin composition [A] is preferably the same epoxy resin as the epoxy resin blended in the epoxy resin composition [B].
  • Electroconductive particle In order to provide electroconductivity to FRP obtained by hardening
  • the conductive particles act as a conductive bridge in the thickness direction, thereby connecting adjacent reinforcing fiber layers and increasing the conductivity in the thickness direction. At this time, it is desirable that the majority of the conductive particles are in the surface layer of the FRP.
  • the conductive particles used in the present invention may be particles that behave as an electrically good conductor, and are not limited to those composed only of a conductor.
  • the particles Preferably, the particles have a volume resistivity of 10 to 10 ⁇ 9 ⁇ cm, more preferably 1 to 10 ⁇ 9 ⁇ cm, and particularly preferably 10 ⁇ 1 to 10 ⁇ 9 ⁇ cm. If the volume resistivity is too high, sufficient conductivity may not be obtained in FRP.
  • conductive polymer particles such as polyacetylene particles, polyaniline particles, polypyrrole particles, polythiophene particles, polyisothianaphthene particles and polyethylenedioxythiophene particles; carbon particles; carbon fiber particles; metal particles; Examples thereof include particles in which a core material made of an inorganic material or an organic material is coated with a conductive material.
  • carbon particles; metal particles; and particles in which a core material made of an inorganic material or an organic material is coated with a conductive material are preferable because of high conductivity and stability.
  • Examples of carbon particles include carbon nanofibers including carbon black, expanded graphite, flake graphite, graphite powder, graphite particles, graphene sheets, carbon milled fibers, carbon nanotubes, and vapor grown carbon fibers (VGCF: registered trademark). Is done. Among these, carbon black and carbon milled fiber are preferable because they exhibit high conductivity and are inexpensive. Examples of carbon black include furnace black, acetylene black, thermal black, channel black, and ketjen black (registered trademark). Examples of the carbon milled fiber include PAN-based carbon fiber, pitch-based carbon fiber, and phenol-based carbon fiber milled fiber. Among these, milled fibers of pitch-based carbon fibers are preferable. The carbon content of the carbon milled fiber is preferably 94% by mass or more. When the carbon content is less than 94% by mass, the conductivity of the obtained FRP tends to decrease.
  • a metal particle When using a carbon fiber as a reinforced fiber, in order to prevent corrosion by a potential difference with a carbon fiber, platinum, gold, silver, copper, tin, nickel, titanium, cobalt, zinc, iron , Chromium and aluminum particles; alloy particles containing these metals as main components; tin oxide, indium oxide, and indium tin oxide (ITO). Of these, platinum, gold, silver, copper, tin, nickel, titanium particles, and alloy particles mainly composed of these metals are more preferable because they exhibit high conductivity and stability. Copper and nickel particles are particularly preferred.
  • a coating method by metal plating or mechanochemical bonding is preferable.
  • Examples of the metal plating method include wet plating and dry plating.
  • Examples of the wet plating include electroless plating, displacement plating, and electrolytic plating. Among these, electroless plating is preferable because a plating film can be formed on a core material made of a nonconductor.
  • Examples of the dry plating include vacuum deposition, plasma CVD (Chemical Vapor Deposition), photo CVD, ion plating, and sputtering. Among these, sputtering is preferable because high adhesion can be obtained at a low temperature.
  • Mechanochemical bonding is a method for producing composite fine particles in which mechanical energy is applied to a core material and a coating material to firmly bond them at the interface at the molecular level.
  • the coating material include metal particles, carbon nanomaterials, and vapor grown carbon fiber (VGCF). These conductive particles may be used alone or in combination of two or more.
  • the blending amount of the conductive particles is preferably 0.2 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [A]. ⁇ 15 parts by weight is particularly preferred.
  • the amount is less than 0.2 parts by mass, it is difficult to improve the conductivity in the thickness direction of the obtained FRP. Moreover, when it exceeds 20 mass parts, the viscosity of a resin composition becomes remarkably high and a handleability may deteriorate.
  • the average particle diameter of the conductive particles is preferably 0.01 to 200 ⁇ m, more preferably 0.01 to 100 ⁇ m, and still more preferably 0.01 to 50 ⁇ m.
  • the average particle diameter in the present invention refers to a value of 50% particle diameter of the particle size distribution measured using a laser diffraction scattering method (D 50).
  • the shape of the conductive particles is not particularly limited, and may be spherical particles, non-spherical particles, or porous particles. From the viewpoint of forming a conductive bridge between the reinforcing fiber layers, it is preferable to have a large aspect ratio.
  • the aspect ratio is preferably 5 or more on average, and more preferably 10 to 100.
  • the aspect ratio refers to the ratio of the longest dimension to the shortest dimension of the three-dimensional body. As will be described later, the aspect ratio is calculated from the particle diameter measured by an optical microscope or a scanning electron microscope.
  • (H) Curing Agent A curing agent that cures the epoxy resin is blended into the epoxy resin composition [A] and / or [B] as necessary.
  • the epoxy resin composition [A] does not contain a curing agent, the obtained prepreg has little tackiness with time and is excellent in storage stability.
  • the obtained prepreg has little tackiness with time and is excellent in storage stability.
  • the obtained prepreg has little tackiness with time and is excellent in storage stability.
  • curing agent it is as having demonstrated above (c).
  • the epoxy resin composition [A] may contain a thermoplastic resin in order to adjust the viscosity of the resin composition or to improve the impact resistance of the resulting FRP. .
  • a thermoplastic resin in order to adjust the viscosity of the resin composition or to improve the impact resistance of the resulting FRP.
  • thermoplastic resin blended in the epoxy resin composition [A] may be the same as or different from the thermoplastic resin blended in the epoxy resin composition [B]. .
  • thermoplastic resin the same thermoplastic resin as described in the above (b) can be used.
  • the amount of the thermoplastic resin contained in the epoxy resin composition [A] may be 5 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [A].
  • the amount is preferably 15 to 40 parts by mass. If the amount is less than 5 parts by mass, the resulting FRP may have insufficient impact resistance. When it exceeds 50 mass parts, a viscosity may become remarkably high and a handleability may deteriorate remarkably.
  • the viscosity of the epoxy resin composition [A] is preferably 100 to 5000 poise, and the viscosity at 80 ° C. obtained from a temperature-viscosity curve measured using a rheometer is 100 to 4000 poise. More preferably, it is more preferably 100 to 3000 poise, and particularly preferably 200 to 2000 poise. When it is 100 poise or more, the epoxy resin composition [A] is imparted with an appropriate cohesive force, and the resulting prepreg can be provided with tackiness.
  • the conductive particles contained in the epoxy resin composition [B] are prevented from being detached from the prepreg, and the effect of retaining the conductive particles in the vicinity of the surface of the prepreg is increased, and the FRP obtained by curing the prepreg There is a tendency that the conductivity in the thickness direction becomes higher. If the viscosity of the epoxy resin composition [A] is too high, the handling property of the prepreg tends to deteriorate. Moreover, it is preferable that the minimum resin viscosity of an epoxy resin composition [A] is 4000 poise or less.
  • the epoxy resin composition [A] can contain other components as long as the objects and effects of the present invention are not impaired. Other components are as described in (e) above.
  • the epoxy resin composition [B] further comprises an electrically conductive particle having an average particle diameter of 10 to 200 ⁇ m, more preferably 50 to 200 ⁇ m by a laser diffraction method.
  • the prepreg which is a thing [B] is mentioned.
  • Such a prepreg includes conductive particles in which the resin composition (I) impregnated in the primary prepreg is coarse.
  • the coarse conductive particles remain on the surface of the reinforcing fiber layer, so that the conductive particles are localized on the surface layer of the prepreg.
  • “coarse” means that the distance is larger than this distance on the basis of the distance between the single fibers constituting the reinforcing fiber.
  • Conductive particles having an average particle diameter of 10 to 200 ⁇ m by laser diffraction method have a larger particle diameter than the distance between single fibers of the reinforcing fiber layer, and thus are difficult to enter the reinforcing fiber layer. Therefore, when the epoxy resin composition [B] is impregnated in the reinforcing fiber layer, the conductive particles remain on the surface of the reinforcing fiber layer and are exposed. Furthermore, in this invention, the surface layer which consists of an epoxy resin composition [A] is integrated with the at least one surface of this primary prepreg. Therefore, in the present invention, the conductive particles are localized from the surface of the prepreg to the reinforcing fiber layer.
  • the epoxy resin composition [A] is preferably composed of an epoxy resin composition [A] containing a thermoplastic resin.
  • FIG. 4 is a partially enlarged view of a prepreg using an epoxy resin composition [B] containing conductive particles having an average particle diameter of 10 to 200 ⁇ m by a laser diffraction method.
  • An epoxy resin composition having a thickness of 2 to 40 ⁇ m, preferably 5 to 30 ⁇ m, on at least one side (both sides in the figure) of the primary prepreg 6 having a thickness of 0.01 to 4 mm, preferably 0.1 to 2.0 mm
  • Surface layers 4a and 4b made of the object [A] are formed.
  • FIG. 5 shows a conceptual diagram of an FRP manufactured by laminating and thermoforming the prepreg of the present invention.
  • the conductive particles 34 are present in the resin layer 40 that exists between the reinforcing fiber layer 36 and the reinforcing fiber layer 38 that are adjacent to each other.
  • the reinforcing fiber layers 36 and 38 are connected to function as a conductive bridge in the thickness direction Z, and the conductivity in the thickness direction Z is improved.
  • the particle diameter of the conductive particles is larger than 10 ⁇ m, the conductive particles are not easily embedded in the resin layer, and a conductive path between adjacent reinforcing fiber layers is sufficiently formed, and sufficient conductivity is obtained in the obtained FRP. .
  • the viscosity of the epoxy resin composition [A] is preferably 100 to 1000 poise, more preferably at 80 ° C. obtained from a temperature-viscosity curve measured using a rheometer. Is 200 to 800 poise.
  • the epoxy resin composition [A] is imparted with an appropriate cohesive force, and the resulting prepreg can have tackiness.
  • the conductive particles contained in the epoxy resin composition [B] are prevented from being detached from the prepreg, and the effect of retaining the conductive particles in the vicinity of the surface of the prepreg is increased, and the FRP obtained by curing the prepreg There is a tendency that the conductivity in the thickness direction becomes higher. When it exceeds 1000 poise, the viscosity of the resin composition becomes too high, and the handling property of the prepreg tends to deteriorate.
  • the viscosity of the epoxy resin composition [A] is appropriately adjusted depending on the content of the thermoplastic resin in the epoxy resin composition [A].
  • the blending amount of the thermoplastic resin contained in the epoxy resin composition [A] is preferably 5 to 50 parts by mass, and 15 to 40 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [A]. Is more preferable. If it is 5 mass parts or more, sufficient viscosity can be given to epoxy resin composition [A], and the impact resistance of FRP obtained can be improved. When it exceeds 50 mass parts, a viscosity may become remarkably high and a handleability may deteriorate remarkably.
  • the average particle size of the conductive particles contained in the epoxy resin composition [A] is: 0.01 to 30 ⁇ m is preferable, 0.01 to 15 ⁇ m is more preferable, and 0.01 to 8 ⁇ m is particularly preferable.
  • the average particle diameter of the conductive particles is 0.01 to 8 ⁇ m, a part of the conductive particles is appropriately dispersed in the reinforcing fiber layer when the FRP is molded. Is easy to improve.
  • the resin composition (I) is composed of an epoxy resin composition [B] substantially free of an epoxy resin curing agent
  • the resin composition ( II) is a prepreg composed of an epoxy resin composition [A] containing an epoxy resin curing agent.
  • This prepreg has a high viscosity because the resin composition (II) forming the surface layer contains a curing agent. Therefore, the conductive particles in the surface layer are difficult to move to the inner layer and remain in the surface layer of the prepreg.
  • the prepreg of this embodiment exhibits excellent drape and tack properties over a long period of time because the curing agent is not substantially present in the inner layer of the prepreg. As a result, structural defects such as voids are unlikely to occur in the FRP produced by stacking a plurality of the prepregs after long-term storage.
  • the epoxy resin composition [A] has a high viscosity because it contains many curing agents, and the conductive particles contained in the epoxy resin composition [A] remain in the inner layer of the prepreg even during long-term storage. Difficult to settle. Therefore, the conductive particles remain on the surface layer of the prepreg.
  • the conductive particles remaining in the surface layer of the prepreg move from the surface layer of the prepreg toward the reinforcing fiber layer in the primary prepreg due to the flow of the resin in the curing process. Therefore, in the FRP obtained using the prepreg of the present invention, conductive particles are dispersed throughout the thickness direction from the surface layer of the FRP to the reinforcing fiber layer, and conductive between adjacent reinforcing fiber layers and reinforcing fiber layers. By forming the path, the conductivity becomes high. In addition, the electrical conductivity of the surface direction of FRP is ensured from the reinforcing fiber when the reinforcing fiber is conductive.
  • the mass ratio of the epoxy resin contained in the resin composition [B] used in the primary prepreg and the epoxy resin contained in the resin composition [A] used in the surface layer is 1: It is preferably 1 to 5: 1.
  • the epoxy resin composition [A] contains more curing agent than the normal resin composition and has a higher viscosity
  • the conductive particles contained in the epoxy resin composition [A] are prepregs. Difficult to settle in the inner layer.
  • the epoxy resin composition [A] preferably contains a thermoplastic resin for the purpose of adjusting the viscosity of the resin and improving the impact resistance of the resulting FRP. What is necessary is just to adjust suitably content of the thermoplastic resin contained in an epoxy resin composition [A] according to the characteristic of the kind of epoxy resin to be used, and the required prepreg or FRP.
  • a polyfunctional novolac type epoxy resin is added to the epoxy resin composition [A] and the epoxy resin composition [B] in a total amount of epoxy resin, that is, 15% by mass or more based on the total epoxy resin amount.
  • the content is preferably 30 to 50% by mass, even when the thermoplastic resin is less than 5 parts by mass or not blended with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [A], A prepreg with good handleability and FRP with high impact resistance can be obtained.
  • the epoxy resin composition [A] preferably has a minimum viscosity of 1000 to 4000 poise, more preferably a minimum resin viscosity of 1000 to 3000 poise.
  • the effect of retaining the conductive particles contained in the epoxy resin composition [A] in the vicinity of the surface of the prepreg is high, and the conductivity in the thickness direction of the FRP obtained by curing the prepreg tends to be higher. There is.
  • it exceeds 4000 poise the viscosity of the resin composition becomes too high, and the drapability and tackiness of the prepreg are deteriorated, which is not preferable.
  • the epoxy resin composition [A] contains conductive particles.
  • the conductive particles act as a conductive bridge in the thickness direction of the surface layer formed by curing the epoxy resin composition [A], thereby increasing the thickness of the reinforcing fiber layers. Connect in the direction, improve the conductivity in the thickness direction. At this time, it is desirable that the majority of the conductive particles are in the surface layer of the FRP. Also in this embodiment, the conductive particles contained in the epoxy resin composition [A] are more dispersed in the surface layer than in the inner layer of the prepreg.
  • the conductive particles are more easily dispersed in the resin layer corresponding to the surface layer of the prepreg than in the reinforcing fiber layer corresponding to the inner layer of the prepreg.
  • the conductive particles contained in the epoxy resin composition [A] preferably have an average particle diameter of less than 10 ⁇ m.
  • the average particle diameter of the conductive particles is more preferably 0.01 ⁇ m or more.
  • the epoxy resin composition [B] does not contain a curing agent. Therefore, the amount of the curing agent contained in the epoxy resin composition [A] is sufficient to cure all the epoxy resins blended in the epoxy resin composition [A] and the epoxy resin composition [B]. It is preferable to adjust the amount of the resin according to the type of epoxy resin and curing agent used. For example, when an aromatic diamine compound is used as a curing agent, it is 50 to 180 parts by mass with respect to 100 parts by mass of the total amount of epoxy resins contained in the epoxy resin composition [A] and the epoxy resin composition [B]. preferable.
  • the amount of the curing agent contained in the epoxy resin composition [A] is 80 to 170 masses with respect to 100 mass parts of the epoxy resin used in the epoxy resin composition [A] from the viewpoint of storage stability. Part is preferable, and 100 to 160 parts by mass is more preferable.
  • the epoxy resin composition [A] contains a curing agent in an amount suitable for curing all the epoxy resins contained in the prepreg. Therefore, the epoxy resin composition [A] contains a larger amount of an epoxy resin curing agent than that contained in a normal epoxy resin composition.
  • the epoxy resin composition [A] does not receive an excessive thermal history that promotes the reaction during prepreg production, the curing of the resin composition due to the crosslinking reaction of the epoxy resin can be suppressed.
  • curing agent of an epoxy resin is localized in a prepreg, hardening reaction does not advance in the epoxy resin composition [B] which does not contain a hardening
  • the resin composition (I) is a prepreg composed of an epoxy resin composition [B] containing conductive particles having an average particle diameter of 500 nm or less by a laser diffraction method.
  • the thermoplastic resin contained in the epoxy resin composition [B] is preferably an epoxy resin-soluble thermoplastic resin having a weight average molecular weight of 8000 to 40,000.
  • conductive particles are dispersed in the surface layer of the prepreg, and fine conductive particles having an average particle diameter of 500 nm or less are dispersed in the inner layer of the prepreg.
  • the resin composition (I) forming the inner layer in the present invention has a high viscosity because it contains an epoxy resin-soluble thermoplastic resin. Therefore, the conductive particles in the surface layer and the inner layer are difficult to move with respect to each other. Since the FRP produced using this prepreg has a conductive bridge formed of conductive particles, it has both high conductivity and impact resistance in the thickness direction.
  • the epoxy resin composition [B] preferably contains an epoxy resin-soluble thermoplastic resin having a weight average molecular weight of 8000 to 40,000.
  • This epoxy resin-soluble thermoplastic resin adjusts the viscosity of the epoxy resin composition [B] and improves the impact resistance of the resulting FRP.
  • the amount of the epoxy resin-soluble thermoplastic resin having a weight average molecular weight of 8000 to 40,000 contained in the epoxy resin composition [B] is preferably such that the minimum viscosity of the epoxy resin composition [B] is 50 to 3000 poise.
  • the epoxy resin composition [B] containing an epoxy resin-soluble thermoplastic resin having a weight average molecular weight of 8000 to 40,000 has an appropriate viscosity, it can be sufficiently impregnated in the reinforcing fiber layer.
  • the epoxy resin composition [A] disposed on the surface layer of the primary prepreg is prevented from sinking into the reinforcing fiber layer. Therefore, the fine conductive fine particles contained in the epoxy resin composition [B] are dispersed in the reinforcing fiber layer and hardly diffuse into the surface layer.
  • the prepreg of the present embodiment has excellent electrical conductivity in the thickness direction, and also has excellent electrical conductivity in the thickness direction even in an FRP obtained by laminating and curing the prepreg.
  • the epoxy resin composition [B] is blended with conductive particles having an average particle diameter of 500 nm or less (hereinafter also referred to as “conductive fine particles”) by a laser diffraction method. Moreover, it is preferable that the epoxy resin composition [A] is blended with conductive particles having an average particle diameter of 500 nm or less by a laser diffraction method.
  • the conductive fine particles are uniformly dispersed in the resin layer and the reinforcing fiber layer and function as a conductive bridge. As a result, the conductivity in the thickness direction of the FRP is improved.
  • the average particle size of the conductive fine particles is more preferably 200 nm or less, and particularly preferably 100 nm or less.
  • the lower limit of the average particle diameter is not particularly limited, but is generally 1 nm or more.
  • the blending amount of the conductive fine particles is 0.2 to 20 parts by mass, and 0.7 to 15 parts by mass with respect to 100 parts by mass of the epoxy resin contained in each of the epoxy resin compositions [A] and [B]. Part is preferred.
  • the amount is less than 0.2 parts by mass, it is difficult to improve the conductivity in the thickness direction of the obtained FRP. Moreover, when it exceeds 20 mass parts, the viscosity of a resin composition becomes remarkably high and a handleability may deteriorate.
  • the epoxy resin composition [A] and / or [B] has an average particle diameter of 5 to 5 by laser diffraction in order to impart conductivity to the FRP obtained by laminating and curing the prepreg. It is preferable that 250 ⁇ m conductive particles (hereinafter also referred to as “conductive coarse particles”) are blended. In the FRP obtained by laminating and curing the prepreg, the conductive coarse particles are localized in the interlayer portion between the reinforced fiber layers of the laminated prepreg, and serve to electrically connect the reinforced fiber layers of each prepreg. Have. As a result, the conductivity in the thickness direction of the FRP is improved.
  • the average particle diameter of the conductive coarse particles is more preferably 7 to 200 ⁇ m.
  • the shape of the conductive coarse particles is not particularly limited, and may be spherical particles, non-spherical particles, or porous particles. From the viewpoint of forming a conductive bridge between the reinforcing fiber layers, it is preferable to have a large aspect ratio.
  • the aspect ratio is preferably 5 or more on average, and more preferably 10 to 100.
  • the blending amount of the conductive coarse particles is preferably 0.2 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin contained in each of the epoxy resin compositions [A] and [B]. ⁇ 10 parts by mass are preferred.
  • the amount is less than 0.2 parts by mass, it is difficult to improve the conductivity in the thickness direction of the obtained FRP. Moreover, when it exceeds 20 mass parts, the viscosity of a resin composition becomes remarkably high and a handleability may deteriorate.
  • the preferred viscosity of the epoxy resin composition [A] is such that the viscosity at 80 ° C. obtained from a temperature-viscosity curve measured using a rheometer is 100 to 5000 poise, more preferably at 80 ° C.
  • the viscosity is 200-2000 poise.
  • the epoxy resin composition [A] is imparted with an appropriate cohesive force and can impart tackiness to the resulting prepreg.
  • the conductivity in the thickness direction of the FRP obtained by curing the prepreg tends to be higher.
  • it exceeds 5000 poise the viscosity of the resin composition becomes too high, and the prepreg handling property tends to deteriorate.
  • the blending amount of the thermoplastic resin contained in the epoxy resin composition [A] is included in the epoxy resin composition [A].
  • the amount is preferably 5 to 50 parts by mass, more preferably 15 to 40 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the average particle size of the conductive fine particles blended in the epoxy resin composition [A] is preferably 500 nm or less, more preferably 20 to 300 nm, and particularly preferably 20 to 100 nm. As the average particle diameter of the conductive fine particles is smaller, a part of the conductive fine particles is appropriately dispersed in the reinforcing fiber layer at the time of molding, so that the conductivity of the obtained FRP is easily improved.
  • the prepreg of this invention heat-presses the primary prepreg impregnated with the epoxy resin composition [B] and the sheet of the epoxy resin composition [A] to be the surface layer. Are integrated and manufactured.
  • FIG. 2 (a) to 2 (c) are explanatory views sequentially showing processes of manufacturing the prepreg of the present invention.
  • resin [B] sheets 13a and 13b made of an epoxy resin composition [B] are respectively laminated on both sides in the thickness direction of a reinforcing fiber layer 12 made of reinforcing fibers 11 (FIG. 2A).
  • the reinforcing fiber layer 12 and the resin [B] sheets 13a and 13b are hot-pressed using a heat roller or the like. By this hot pressing, the reinforcing resin layer 12 is impregnated with the epoxy resin composition [B] to obtain the primary prepreg 10 (FIG. 2B).
  • resin [A] sheets 15a and 15b made of the epoxy resin composition [A] are respectively laminated on both surfaces of the primary prepreg 10 in the thickness direction (FIG. 2C).
  • the primary prepreg 10 and the resin [A] sheets 15a and 15b are hot-pressed using a heat roller or the like. By this hot pressing, the primary prepreg 10 and the resin [A] sheets 15a and 15b are integrated to obtain the prepreg 100 of the present invention (FIG. 1).
  • FIG. 3 is a conceptual diagram showing an example of a process for producing the prepreg of the present invention.
  • reference numeral 21 denotes a reinforcing fiber layer in which fibers such as carbon fibers are aligned in one direction and runs in the direction of arrow A.
  • resin [B] sheets 13a and 13b with release papers 14a and 14b respectively supplied from sheet rolls 23a and 23b are laminated.
  • the reinforcing fiber layer 21 and the resin [B] sheets 13a and 13b are hot-pressed using heat rollers 27a and 27b via release papers 14a and 14b.
  • the resin composition of the resin [B] sheets 13 a and 13 b is impregnated into the reinforcing fiber layer 21 to form the primary prepreg 10.
  • the release papers 14 a and 14 b laminated on both surfaces of the primary prepreg 10 are respectively wound around rollers 24 a and 24 b and removed from the primary prepreg 10.
  • the resin [A] sheets 15a and 15b with release paper supplied from the sheet rolls 25a and 25b, respectively, are laminated on both surfaces of the primary prepreg 10 from which the release paper has been removed.
  • the primary prepreg 10 and the resin [A] sheets 15a and 15b are hot-pressed using heat rollers 29a and 29b via release paper.
  • the prepreg 100 of the present invention is formed.
  • the prepreg 100 having release paper attached to both sides thereof is wound around a roller 101.
  • the primary prepreg is produced by impregnating the epoxy resin composition [B] in the reinforcing fiber layer.
  • the impregnation method include a dry method in which a reinforcing fiber layer is impregnated with a resin composition whose viscosity is reduced by heating. This dry method is preferable because the organic solvent does not remain compared to a wet method in which the resin composition is dissolved in an organic solvent and impregnated in the reinforcing fiber layer and then the organic solvent is removed.
  • a method for producing a prepreg by a dry method will be described.
  • the epoxy resin composition [B] can be produced by kneading the above-mentioned essential components and optional components.
  • the kneading temperature is appropriately adjusted in consideration of the viscosity, thermal characteristics, curing temperature, etc. of the resin to be blended, but is not higher than the curing start temperature and is preferably 50 to 120 ° C. Kneading may be performed in one stage or in multiple stages.
  • the mixing order of each component of epoxy resin composition [B] is not limited. When an epoxy resin-soluble thermoplastic resin is used, the entire amount or a part thereof can be dissolved in the epoxy resin in advance and kneaded.
  • a kneading machine apparatus conventionally known ones such as a roll mill, a planetary mixer, a kneader, an extruder, and a Banbury mixer can be used.
  • Impregnation of epoxy resin composition [B] The method of impregnating the epoxy resin composition [B] into the reinforcing fiber layer is not particularly limited. A particularly preferred impregnation method is described below.
  • a resin sheet (also referred to as “resin [B] sheet”) made of the epoxy resin composition [B] is produced.
  • the resin sheet can be produced by a known method. For example, it can be produced by casting and casting on a support such as release paper or release sheet using a die coater, applicator, reverse roll coater, comma coater, knife coater, or the like.
  • the resin temperature during sheeting is appropriately set according to the composition and viscosity of the resin.
  • the processing temperature for forming the epoxy resin composition [B] into a sheet is usually preferably from 70 to 160 ° C, more preferably from 75 to 140 ° C.
  • the epoxy resin composition [B] has a high viscosity, so that it is difficult to impregnate the reinforcing resin layer with the epoxy resin composition [B].
  • it exceeds 160 degreeC an epoxy resin composition [B] becomes easy to harden
  • it is performed in as short a time as possible. Thereby, hardening of epoxy resin composition [B] can be prevented substantially.
  • the thickness of the resin [B] sheet is preferably 2 to 500 ⁇ m, and more preferably 5 to 100 ⁇ m.
  • the reinforcing fiber layer is impregnated with the sheet-like epoxy resin composition [B] obtained above.
  • the resin [B] sheet is laminated on one side or both sides of the reinforcing fiber layer, and this laminate is heated and pressurized. By performing the heat treatment under pressure, the viscosity of the epoxy resin composition [B] decreases, and the voids of the reinforcing fiber layer are impregnated.
  • the heating temperature for the impregnation treatment can be appropriately adjusted in consideration of the viscosity, curing temperature, etc. of the epoxy resin composition [B].
  • the temperature is preferably 70 to 160 ° C, more preferably 90 to 140 ° C.
  • the impregnation temperature is less than 70 ° C., since the viscosity of the epoxy resin composition [B] is high, it is difficult to impregnate the reinforcing fiber layer with the epoxy resin composition [B].
  • the impregnation temperature exceeds 160 ° C., the epoxy resin composition [B] is easily cured. As a result, the drapability of the resulting prepreg is likely to deteriorate.
  • the impregnation time is preferably 10 to 300 seconds.
  • the pressurizing conditions for the impregnation treatment are appropriately adjusted according to the composition and viscosity of the epoxy resin composition [B], but preferably the linear pressure is 9.8 to 245 N / cm (1 to 25 kg / cm), More preferably, it is 19.6 to 147 N / cm (2 to 15 kg / cm).
  • the linear pressure is less than 9.8 N / cm, it is difficult to sufficiently impregnate the reinforcing resin layer with the epoxy resin composition [B].
  • it exceeds 245 N / cm it is easy to damage the reinforcing fiber.
  • the impregnation treatment can be performed by a conventionally known method using a heat roller or the like.
  • the impregnation treatment may be performed once or a plurality of times. In this way, a primary prepreg in which the epoxy resin composition [B] is impregnated in the reinforcing fiber layer is produced.
  • the epoxy resin composition [A] can be produced by kneading the above-mentioned essential components and optional components.
  • the method for producing the epoxy resin composition [A] can be produced in the same manner as the epoxy resin composition [B] described in (3-1-1) above.
  • the obtained epoxy resin composition [A] is processed into a sheet shape for lamination on the surface of the sheet-shaped primary prepreg.
  • the same method as the resin [B] sheet described in the above (3-1-2) can be used.
  • the thickness of the resin [A] sheet is preferably 2 to 30 ⁇ m, particularly preferably 5 to 20 ⁇ m. When it is less than 2 ⁇ m, the tackiness of the obtained prepreg is lowered. When it exceeds 30 ⁇ m, the handleability of the obtained prepreg and the molding accuracy of FRP tend to be lowered.
  • the heating temperature can be appropriately adjusted in consideration of the viscosity and curing temperature of the epoxy resin composition [A], but is preferably 50 to 90 ° C, more preferably 60 to 80 ° C.
  • the temperature is lower than 50 ° C.
  • the viscosity of the epoxy resin composition [A] is high, and there is a risk of impairing the process stability during prepreg production.
  • epoxy resin composition [A] and the epoxy resin composition [B] which comprises a primary prepreg mix, and it becomes easy to advance hardening reaction.
  • tackiness and draping properties tend to decrease.
  • the pressurizing condition is appropriately adjusted according to the composition and viscosity of the epoxy resin composition [B], but is preferably a linear pressure of 0.98 to 98 N / cm (0.1 to 10 kg / cm), more It is preferably 4.9 to 58.8 N / cm (0.5 to 6 kg / cm).
  • the linear pressure is less than 0.98 N / cm, the primary prepreg and the resin [A] sheet are not sufficiently bonded.
  • the linear pressure exceeds 98 N / cm, the epoxy resin composition [A] sinks into the epoxy resin composition [B] impregnated in the primary prepreg. In this case, since the conductive particles contained in the epoxy resin composition [A] are likely to diffuse into the epoxy resin composition [B], the conductivity of the FRP obtained by molding the prepreg tends to decrease. There is.
  • the epoxy resin composition [A] is integrated with the surface of the primary prepreg to form the surface layer of the prepreg of the present invention.
  • the conductive particles of the epoxy resin composition [B] are localized outside the reinforcing fiber layer by hot pressing.
  • the production speed of the prepreg is not particularly limited, but considering productivity and economy, it is 0.1 m / min or more, preferably 1 m / min or more, and particularly preferably 5 m / min or more.
  • the present prepreg is not limited to the above manufacturing method, and for example, is manufactured by sequentially laminating a resin [B] sheet and a resin [A] sheet on one or both sides in the thickness direction of the reinforcing fiber layer, and hot-pressing in one step. You can also In this case, it is preferable to perform hot pressing at a low temperature (50 to 90 ° C.) so that the curing agent contained in the epoxy resin composition [A] and / or [B] does not diffuse.
  • a low temperature 50 to 90 ° C.
  • the present prepreg may be blended with a stabilizer, a release agent, a filler, a colorant and the like as long as the effects of the present invention are not hindered.
  • the present prepreg can be made into an FRP by curing by a known method.
  • conventionally known methods for example, manual layup, automatic tape layup (ATL), automatic fiber placement, vacuum bagging, autoclave curing, curing other than autoclave, fluid-assisted processing , Pressure assisted process, match mold process, simple press cure, pressclave cure and methods using continuous band press.
  • FRP can be formed by laminating the present prepreg, pressurizing to 0.2 to 1.0 MPa in an autoclave, and heating at 150 to 204 ° C. for 1 to 8 hours.
  • the curing agent is diffused into the epoxy resin compositions [A] and [B] by heating. Thereby, both epoxy resin composition [A] and [B] harden
  • the conductive particles present in the surface layer of the prepreg are changed from the surface layer of the prepreg to the resin layer in the vicinity of the primary prepreg surface by the resin flow in the curing process, and then the reinforcing fibers inside the primary prepreg. Disperse with a concentration distribution that gradually decreases towards the layer. Therefore, the FRP obtained using the prepreg of the present invention has high conductivity because the conductive particles are present in the entire thickness direction from the surface of the FRP to the reinforcing fiber layer. In addition, the electrical conductivity in the surface direction of FRP is ensured by the reinforcing fiber when the reinforcing fiber is conductive.
  • the conductivity of FRP obtained using this prepreg is 3.5 k ⁇ ⁇ cm or less, preferably 0.3 k ⁇ ⁇ cm or less, in terms of volume resistivity according to the measurement method described later.
  • Araldite MY0510 (trade name): manufactured by Huntsman Advanced Materials, Inc., glycidylamine type epoxy resin (trifunctional group) (hereinafter abbreviated as “MY0510”)
  • Araldite MY0600 (trade name): manufactured by Huntsman Advanced Materials, Inc.
  • glycidylamine type epoxy resin (trifunctional group) (hereinafter abbreviated as “MY0600”)
  • Araldite MY0610 (trade name): glycidylamine type epoxy resin (trifunctional group) manufactured by Huntsman Advanced Materials, Inc.
  • MY0610 Araldite MY721 (trade name): manufactured by Huntsman Advanced Materials, Inc., glycidylamine type epoxy resin (four functional groups) (hereinafter abbreviated as “MY721”)
  • Araldite MY725 (trade name): manufactured by Huntsman Advanced Materials, Inc., glycidylamine type epoxy resin (four functional groups) (hereinafter abbreviated as “MY725”)
  • Sumiepoxy ELM100 (trade name): manufactured by Sumitomo Chemical Co., Ltd., glycidylamine type epoxy resin (trifunctional group) (hereinafter abbreviated as “ELM100”)
  • ELM100 glycidylamine type epoxy resin (trifunctional group)
  • Epicoat 154 (trade name): novolak type epoxy resin (multifunctional group) manufactured by Mitsubishi Chemical Corporation (hereinafter abbreviated as “jER154”)
  • Epicoat 604 (trade name): manufactured by Mitsubishi Chemical Corporation, glycidylamine
  • Virantage VW-10200RSFP (trade name): Polyethersulfone having an average particle size of 20 ⁇ m and a weight average molecular weight (Mw) of 45,000, manufactured by Solvay Specialty Polymers.
  • TR-55 polyamide particle with an average particle size of 20 ⁇ m manufactured by Ms Chemie Japan Co., Ltd.
  • TR-90 polyamide particle with an average particle size of 20 ⁇ m manufactured by Ms Chemie Japan Co., Ltd.
  • ORGASOL1002D NAT trade name: Polyamide particles with an average particle size of 20 ⁇ m manufactured by Arkema Co., Ltd.
  • MX nylon Polyamide particles with an average particle size of 20 ⁇ m manufactured by Mitsubishi Gas Chemical Company, Inc.
  • Aromatic amine curing agent (hereinafter abbreviated as “3,3′-DDS”) manufactured by Nippon Synthetic Processing Co., Ltd. ⁇ 4,4'-diaminodiphenylsulfone: Wakayama Seika Co., Ltd., aromatic amine curing agent (hereinafter abbreviated as "4,4'-DDS”)
  • the particle size distribution was measured using a laser diffraction / scattering type particle size analyzer (Microtrack method) MT3300 manufactured by Nikkiso Co., Ltd., and the 50% particle size (D 50 ) was defined as the average particle size. Unless otherwise specified, the average particle diameter in the present invention is a value measured by this method.
  • a double cantilever interlaminar fracture toughness test method (DCB method) is used, and after a 12.7 mm pre-crack (initial crack) is generated from the tip of the release sheet, a test to further develop the crack Went. The test was terminated when the crack growth length reached 127 mm from the tip of the pre-crack.
  • the crack propagation length was measured from both end faces of the test piece using a microscope, and GIc was calculated by measuring the load and crack opening displacement.
  • an ENF (end notched flexure test) test that applies a three-point bending load was performed.
  • the distance between fulcrums was 101.6 mm.
  • volume resistivity is the specific resistance of a given material.
  • the prepreg was cut and laminated to obtain a laminated body having a laminated structure [+ 45/0 / ⁇ 45 / 90] 2S .
  • molding was performed for 2 hours at 180 ° C. under a pressure of 0.59 MPa.
  • the obtained molded product is cut into a size of 40 mm wide ⁇ 40 mm long, and the surface of the molded product is polished until the carbon fiber is exposed using a sandpaper. Finally, a 2000th sandpaper is used. The surface was finished to obtain a test piece.
  • the obtained test piece was sandwiched between gold plated electrodes with a width of 50 mm and a length of 50 mm, a load of 0.06 MPa was applied to the test piece, and the resistance value in the Z direction was measured using a digital ohmmeter.
  • the volume resistivity was obtained from the formula.
  • the tackiness of the prepreg was measured by the following method using a tacking test apparatus TAC-II (RHESCA CO., LTD.). As a test method, the maximum was obtained when a prepreg was set on a test stage held at 27 ° C., an initial load of 100 gf was applied with a ⁇ 5 tack probe held at 27 ° C., and the test stage was pulled out at a test speed of 10 mm / sec. The load of was determined.
  • a tack probe test was performed on the prepreg immediately after production and the prepreg stored at a temperature of 26.7 ° C. and a humidity of 65% for 10 days.
  • the evaluation results were expressed by the following criteria ( ⁇ to ⁇ ).
  • X The load immediately after manufacture is 200 gf or more, and the tack retention after storage for 10 days is 0% or more and less than 25%.
  • the prepreg drapeability was evaluated by the following test in accordance with ASTM D1388.
  • the prepreg was cut in a 90 ° direction with respect to the 0 ° fiber direction, and the draping property (flexural rigidity, mg * cm) with respect to the inclination at an inclination angle of 41.5 ° was evaluated.
  • This evaluation was performed immediately after manufacturing the prepreg and after storage for a predetermined period at a temperature of 26.7 ° C. and a humidity of 65%.
  • the evaluation results were expressed by the following criteria ( ⁇ to ⁇ ).
  • Even after 20 days, the drapeability is the same as that immediately after production.
  • X After 10 days, the drapeability was lower than that immediately after the production, which was a problem level for use.
  • thermoplastic resin was dissolved in the epoxy resin at 120 ° C. using a stirrer at the ratio described in Table 1. Thereafter, the temperature was lowered to 80 ° C., conductive particles were added and mixed for 30 minutes to prepare an epoxy resin composition [A].
  • the epoxy resin composition [A] and the epoxy resin composition [B] are respectively coated on a release film using a film coater to obtain a resin [A] sheet and a resin [B] sheet having a basis weight shown in Table 1. It was.
  • the carbon fiber strands are supplied into a sheet form by supplying the carbon fiber strands between two sheets of the resin [B] and arranging them uniformly [weight per unit (190 g / m 2 )].
  • Weight per unit 190 g / m 2
  • the said primary prepreg was supplied between two resin [A] sheets, and it pressurized and heated at 70 degreeC using the roller, and wound up on the roll, and obtained the prepreg.
  • the resin content relative to the entire prepreg was 35% by mass.
  • Various performances of the obtained prepreg are shown in Table 1.
  • the FRP produced by laminating and curing the obtained prepreg is higher in volume resistivity and lower in conductivity than in Example 1 even in Comparative Example 2 in which twice the amount of conductive particles is added. Met. Moreover, in Comparative Examples 1 and 2, the impact resistance and toughness of FRP were also low.
  • the minimum viscosity of the resin composition impregnated in the primary prepreg was higher than that in Comparative Examples 1 and 2 due to the presence of the thermoplastic resin. Therefore, it was difficult for the conductive particles to sink into the inner layer of the prepreg. Therefore, in the FRP produced by laminating and curing the prepreg, many conductive particles remain in the FRP resin layer (derived from the prepreg surface layer and the primary prepreg resin layer), and each reinforcing fiber layer (laminated) Acted as a conductive bridge (from each reinforced fiber layer of the prepreg). Therefore, the obtained FRP has a low volume resistivity in the thickness direction and high conductivity. Moreover, in Examples 1 and 2, the impact resistance and toughness of FRP were also high.
  • Examples 3 to 5 A prepreg was produced in the same manner as in Example 1 except that the thermoplastic resin used in the epoxy resin composition [A] and the epoxy resin composition [B] was changed as described in Table 1. Various performances of the obtained prepreg are shown in Table 1.
  • Example 6 to 11 Using the stirrer, 10 parts by mass of an epoxy resin-soluble thermoplastic resin (Ultem 1000-1000) was dissolved at 120 ° C. in the proportions shown in Table 2. Thereafter, the temperature was lowered to 80 ° C., a curing agent, the remaining epoxy resin-soluble thermoplastic resin, and epoxy resin-insoluble thermoplastic resin (TR-55) were added and mixed for 30 minutes to prepare an epoxy resin composition [B]. .
  • the epoxy resin composition [A] was prepared in the same manner as in Example 1 except that the amount of conductive particles added was changed.
  • a prepreg was produced in the same manner as in Example 1, and the performance of the obtained prepreg is shown in Table 2.
  • the drapeability after storage for 10 days at a temperature of 26.7 ° C. and a humidity of 65% is the same as that immediately after production, and the tackiness is maintained at 50% or more. Excellent stability.
  • the obtained FRP had a low volume resistivity in the thickness direction and a high conductivity.
  • the obtained FRP had high impact resistance and toughness.
  • Example 12 At a ratio shown in Table 2, 10 parts by mass of an epoxy resin-soluble thermoplastic resin (Ultem 1000-1000) was dissolved in an epoxy resin at 120 ° C. using a stirrer. Thereafter, the temperature is lowered to 80 ° C., a curing agent, the remaining epoxy resin-soluble thermoplastic resin, epoxy resin-insoluble thermoplastic resin (TR-55), and conductive particles are added and mixed for 30 minutes, and the epoxy resin composition [B Was prepared.
  • the epoxy resin composition [A] was prepared in the same manner as in Example 1 except that the amount of conductive particles added was changed to the ratio shown in Table 2. Thereafter, a prepreg was produced in the same manner as in Example 1, and various performances of the obtained prepreg are shown in Table 2.
  • the insoluble thermoplastic resin (TR-55) was distributed between the reinforcing fiber layers of the FRP, and an insulating layer was formed on the resin layer of the FRP. Therefore, the obtained FRP has a high volume resistivity in the thickness direction and low conductivity.
  • Examples 6 to 11 by adding conductive particles to the surface layer of the prepreg, the conductive particles are dispersed between the reinforcing fiber layers (resin layers) of the FRP, and the conductive layers in the thickness direction between the reinforcing fiber layers are dispersed. Worked as a bridge. As a result, despite the presence of the insoluble thermoplastic resin (TR-55) in the resin layer, the obtained FRP had a low volume resistivity and a high conductivity.
  • TR-55 insoluble thermoplastic resin
  • Comparative Examples 4 and 5 in addition to the thermoplastic resin in the inner layer of the prepreg, a large amount of conductive particles, which are fine solid particles (each with respect to 100 parts by mass of the epoxy resin contained in the epoxy resin composition [B], respectively) 3 parts by mass and 6 parts by mass). Therefore, the epoxy resin composition [B] has a high viscosity, the handling property is deteriorated such that the resin impregnation property of the prepreg is deteriorated, and the GIc value of the obtained FRP is also reduced. Also, in Comparative Examples 4 and 5, compared to the case where the conductive particles are included in the epoxy resin composition [A] so that the ratio of the conductive particles in the entire matrix resin is the same (Examples 9 and 10). The obtained FRP had a high volume resistivity and low conductivity.
  • Example 12 conductive particles were added to both the epoxy resin compositions [A] and [B].
  • the conductivity of the obtained FRP is compared with the case (Example 9) in which conductive particles are added only to the epoxy resin composition [A] so that the amount of addition to the entire matrix resin is the same. Although it slightly decreased, it was sufficiently higher than Comparative Examples 4 and 5.
  • Example 13 and 14 A prepreg was produced in the same manner as in Example 6 except that the type of conductive particles was changed from carbon black to VGCF, and the addition amount was changed to the addition amount shown in Table 3, and various performances of the obtained prepreg were shown in Table 3. Indicated.
  • Example 15 and 16 A prepreg was produced in the same manner as in Example 6 except that the type of conductive particles was changed from carbon black to expanded graphite and the addition amount was changed to the addition amount shown in Table 4, and various performances of the obtained prepreg were shown in Table 4. It was shown to.
  • Example 17 and 18 A prepreg was produced in the same manner as in Example 6 except that the type of conductive particles was changed from carbon black to copper powder, and the addition amount was changed to the addition amount shown in Table 5, and various performances of the obtained prepreg were shown in Table 5. It was shown to.
  • Example 25 A prepreg was produced in the same manner as in Example 9 except that the epoxy resin insoluble thermoplastic resin of the epoxy resin composition [B] was changed from TR-55 to TR-90, and various performances of the obtained prepreg were shown. 7 shows.
  • Example 26 A prepreg produced in the same manner as in Example 9 except that the epoxy resin type of the epoxy resin composition [A] and the epoxy resin composition [B] was changed from MY0600 and MY721 to MY0610 and MY725, respectively. Table 7 shows the various performances.
  • Example 27 Example 12 except that the epoxy resin type of the epoxy resin composition [A] and the epoxy resin composition [B] was changed from MY0600 and MY721 to MY0610 and MY725, respectively, and the addition amount of the conductive fine particles was changed. Similarly, prepregs were produced, and various performances of the obtained prepregs are shown in Table 7.
  • a prepreg was produced in the same manner as in Example 1, and various performances of the obtained prepreg are shown in Table 7.
  • Examples 28 and 29 a curing agent was added to the epoxy resin composition [A], which is the surface layer of the prepreg, so that the drapeability and tackiness maintenance rate of the obtained prepreg was higher than those in Examples 6 to 11. Although the storage stability at room temperature was slightly reduced, the conductivity and impact resistance of FRP were sufficient.
  • Examples 30 and 31 7 parts by mass of an epoxy resin-soluble thermoplastic resin (Ultem 1000-1000) was dissolved at 120 ° C. in the epoxy resin using a stirrer at the ratio shown in Table 7. Thereafter, the temperature was lowered to 80 ° C., and the remaining epoxy resin-soluble thermoplastic resin and epoxy resin-insoluble thermoplastic resin were added and mixed for 30 minutes to prepare an epoxy resin composition [B]. Note that no curing agent was added to the epoxy resin composition [B]. All the epoxy resin-soluble thermoplastic resins were dissolved in the epoxy resin at 120 ° C. by using a stirrer at the ratio described in Table 7.
  • a prepreg was produced in the same manner as in Example 1, and various performances of the obtained prepreg are shown in Table 7.
  • the prepregs obtained in Examples 30 and 31 in which the curing agent was not added to the epoxy resin composition [B] conductive particles were dispersed on the prepreg surface as in Examples 1 and 2. Therefore, the conductivity of FRP produced by laminating and curing the obtained prepreg was sufficiently high, and the impact resistance and toughness were also high.
  • the prepregs obtained in Examples 30 and 31 are both excellent in drape and tack, and even after storage for 10 days at a temperature of 26.7 ° C. and a humidity of 65%, the drape does not change from that immediately after production. Was maintained at 50% or more, and the storage stability at room temperature was excellent.
  • the carbon fiber strands are uniformly arranged in one direction [weight per unit area (190 g / m 2 )], supplied, and pressurized and heated at 130 ° C. using a roller. Then, it was wound on a roll to obtain a prepreg.
  • the content of the resin composition with respect to the entire prepreg was 35% by mass.
  • Various performances of the obtained prepreg are shown in Table 8.
  • Comparative Examples 9 to 11 conductive particles are mixed in the entire prepreg. Therefore, the ratio of the conductive particles in the entire matrix resin is about the same, and the conductivity sinks in the reinforcing fiber layer as compared with the case where the conductive particles are included only in the surface layer of the prepreg (Examples 9 and 10). There is a lot of sex particles. Accordingly, the FRP produced by laminating and curing the prepreg has a reduced amount of conductive particles connecting the reinforcing fiber layers. Therefore, in Comparative Examples 9 to 11, the volume resistivity was higher than those in Examples 9 and 10 in which conductive particles were added only to the surface layer of the prepreg.
  • Examples 32 and 33 After dissolving the epoxy resin-soluble thermoplastic resin in the epoxy resin at 120 ° C. using a stirrer at the ratio described in Table 9, the temperature is lowered to 80 ° C., and the conductive particles are added and mixed for 30 minutes.
  • Composition [A] was prepared. In a ratio described in Table 9, 10 parts by mass of an epoxy resin-soluble thermoplastic resin was dissolved in an epoxy resin at 120 ° C. using a stirrer. Thereafter, the temperature was lowered to 80 ° C., and the remaining epoxy resin-soluble thermoplastic resin, conductive particles, curing agent, and epoxy resin-insoluble thermoplastic resin were added and mixed for 30 minutes to prepare an epoxy resin composition [B].
  • a prepreg was produced in the same manner as in Example 1, and various performances of the obtained prepreg are shown in Table 9.
  • conductive particles dispersed in the surface layer of the prepreg were present due to the presence of conductive particles having a large particle diameter on the surface of the primary prepreg.
  • distributed to the resin layer of FRP it worked as a conductive bridge between each reinforcing fiber layer of FRP, and the electroconductivity improved.
  • the carbon fiber strands are uniformly arranged [weight per unit (190 g / m 2 )] in one direction and supplied, and are pressurized and heated at 130 ° C. using a roller. Then, it was wound on a roll to obtain a prepreg.
  • the content rate of the resin composition with respect to the whole prepreg was 35 mass%. Table 10 shows various performances of the obtained prepreg.
  • Comparative Examples 12-15 since the conductive particles were added in a large amount of 10 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin in addition to the thermoplastic resin, the viscosity of the resin composition was increased. For this reason, handling properties deteriorated, such as resin impregnation of prepreg deteriorated. Moreover, the value of GIc of the obtained FRP was also low.
  • Examples 34 and 35 After dissolving the epoxy resin-soluble thermoplastic resin in the epoxy resin at 120 ° C. using the stirrer at the ratio shown in Table 11, the temperature is lowered to 80 ° C., and the curing agent and conductive particles are added and mixed for 30 minutes. An epoxy resin composition [A] was prepared. After the epoxy resin-soluble thermoplastic resin was dissolved in the epoxy resin at 120 ° C. using a stirrer at the ratio shown in Table 11, the temperature was lowered to 80 ° C., and the epoxy resin-insoluble thermoplastic resin was added and mixed for 30 minutes. An epoxy resin composition [B] was prepared.
  • Each of the epoxy resin composition [A] and the epoxy resin composition [B] is applied onto a release film using a film coater to obtain a resin [A] sheet and a resin [B] sheet having a basis weight shown in Table 11. It was.
  • the carbon fiber strands are formed into a sheet shape, and a roller was pressed and heated at 140 ° C. to obtain a primary prepreg.
  • the obtained primary prepreg was supplied between two sheets of the resin [A] sheet, pressurized and heated at 70 ° C. using a roller, and wound up on a roll to obtain a prepreg.
  • the content rate of the resin composition with respect to the whole prepreg was 35 mass%. Table 11 shows various performances of the obtained prepreg.
  • Examples 36-40 After the epoxy resin-soluble thermoplastic resin was dissolved in the epoxy resin at 120 ° C. using a stirrer at the ratio shown in Table 12, the temperature was lowered to 80 ° C., and the curing agent, epoxy resin-insoluble thermoplastic resin, conductive particles were removed. The mixture was added and mixed for 30 minutes to prepare an epoxy resin composition [A]. After the epoxy resin-soluble thermoplastic resin was dissolved in the epoxy resin at 120 ° C. using a stirrer at the ratio shown in Table 12, the temperature was lowered to 80 ° C., and the epoxy resin-insoluble thermoplastic resin and conductive particles were added. The mixture was mixed for 30 minutes to prepare an epoxy resin composition [B].
  • the carbon fiber strands are supplied into a sheet form by supplying the carbon fiber strands between two sheets of the resin [B] and arranging them uniformly [weight per unit (190 g / m 2 )].
  • Weight per unit 190 g / m 2
  • the said primary prepreg was supplied between two resin [A] sheets, and it pressurized and heated at 70 degreeC using the roller, and wound up on the roll, and obtained the prepreg.
  • the content rate of the resin composition with respect to the whole prepreg was 35 mass%.
  • Various performances of the obtained prepreg are shown in Table 12.
  • Examples 36-40 conductive particles were added to the epoxy resin composition [A] constituting the prepreg surface layer and the epoxy resin composition [B] constituting the prepreg inner layer.
  • dialead which is conductive particles having an average particle diameter of 10 ⁇ m or more
  • carbon black which is conductive particles having an average particle diameter of 5 ⁇ m or less
  • DIALEAD which is a conductive particle having an average particle diameter of 10 ⁇ m or more, hardly enters the reinforcing fiber layer and remained on the surface layer of the prepreg.
  • carbon black which is conductive particles having an average particle diameter of 5 ⁇ m or less, penetrates into the reinforcing fiber layer and diffuses.
  • conductive particles having a large particle size are dispersed between adjacent reinforcing fiber layers (interlayers) at the time of molding, while conductive particles having a small particle size are dispersed. Is also dispersed in the reinforcing fiber layer and the reinforcing fiber layer. As a result, the conductive particles acted as conductive bridges in the FRP reinforcing fiber layer and in the reinforcing fiber layer, respectively, and the conductivity in the thickness direction of the FRP could be further improved.
  • the inner layer of the prepreg contained no curing agent, the prepreg handling property and room temperature storage stability were good.
  • Example 41 Using a stirrer, 10 parts by mass of an epoxy resin-soluble thermoplastic resin (VW-10200RSFP) was dissolved at 120 ° C. using a stirrer, and the temperature was lowered to 80 ° C., followed by curing agent and remaining epoxy. A resin-soluble thermoplastic resin, an epoxy resin-insoluble thermoplastic resin, and conductive particles were added and mixed for 30 minutes to prepare an epoxy resin composition [A]. Using a stirrer, 10 parts by mass of an epoxy resin-soluble thermoplastic resin (VW-10200RSFP) was dissolved at 120 ° C.
  • a prepreg was produced in the same manner as in Example 36, and various performances of the obtained prepreg are shown in Table 12.
  • Example 41 since polyethersulfone having a weight average molecular weight (Mw) of 40000 or more was used as the epoxy resin-soluble thermoplastic resin, the obtained epoxy resin composition [A] and epoxy resin composition [B] The viscosity increased.
  • Mw weight average molecular weight
  • Examples 42-46 Same as Example 36, except that the types of conductive particles used in the epoxy resin compositions [A] and [B] were changed from carbon black to VGCF and dialed to GRANOC, and the ratios shown in Table 13 were used. Thus, a prepreg was obtained.
  • the prepregs obtained in Examples 36-41 had excellent conductivity.
  • the inner layer of the prepreg contained no curing agent, the prepreg handling property and room temperature storage stability were good.
  • Example 47 Conductive particles were added to the epoxy resin at 80 ° C. using a stirrer at the ratio shown in Table 14, and stirred for 30 minutes to prepare an epoxy resin composition [A]. At a ratio shown in Table 14, after the epoxy resin-soluble thermoplastic resin was dissolved in the epoxy resin at 120 ° C. using a stirrer, the temperature was lowered to 80 ° C., and the curing agent, conductive particles, and epoxy resin-insoluble thermoplastic resin were added. For 30 minutes to prepare an epoxy resin composition [B].
  • Each of the epoxy resin composition [A] and the epoxy resin composition [B] is applied onto a release sheet using a film coater, and the basis weight resin [A] sheet and resin [B] sheet shown in Table 14 are obtained. It was.
  • the carbon fiber strands are supplied into a sheet form by supplying the carbon fiber strands between two sheets of the resin [B] and arranging them uniformly [weight per unit (190 g / m 2 )].
  • Weight per unit 190 g / m 2
  • the said primary prepreg was supplied between two resin [A] sheets, and it pressurized and heated at 70 degreeC using the roller, and wound up on the roll, and obtained the prepreg.
  • the content rate of the resin composition with respect to the whole prepreg was 35 mass%.
  • Table 14 shows various performances of the obtained prepreg.
  • the epoxy resin composition [A] and the epoxy resin composition [B] are respectively coated on the release sheet using a film coater, and the basis weight resin [A] sheet and resin [B] sheet shown in Table 15 are obtained. It was.
  • the carbon fiber strands are supplied into a sheet form by supplying the carbon fiber strands between two sheets of the resin [B] and arranging them uniformly [weight per unit (190 g / m 2 )].
  • Weight per unit 190 g / m 2
  • the said primary prepreg was supplied between two resin [A] sheets, and it pressurized and heated at 70 degreeC using the roller, and wound up on the roll, and obtained the prepreg.
  • the content rate of the resin composition with respect to the whole prepreg was 35 mass%.
  • Table 15 shows various performances of the obtained prepreg.
  • the prepregs obtained in Examples 48-57 were excellent in prepreg handling because the surface layer did not contain a curing agent. Further, the conductive coarse particles are localized in the surface layer of the prepreg, and the conductive fine particles are dispersed in the surface layer and the reinforcing fiber layer. Thus, in the CFRP produced using the obtained prepreg, the conductive fine particles are dispersed in the CFRP reinforcing fiber layer, and the conductive coarse particles are localized between the reinforcing fiber layers. Therefore, the conductivity of CFRP was sufficiently high. Moreover, this prepreg was excellent in storage stability. CFRP produced from this prepreg had excellent mechanical properties and conductivity in the thickness direction.
  • Example 58 A prepreg was produced in the same manner as in Example 50 except that the conductive coarse particles were not blended in the epoxy resin composition [B]. Various performances of this prepreg are shown in Table 15.
  • Example 58 The prepreg obtained in Example 58 was excellent in storage stability. Moreover, although the mechanical properties of CFRP produced using this prepreg were excellent, the formation of conductive bridges was somewhat insufficient because there were no conductive coarse particles in the CFRP reinforcing fiber layer (resin layer). Therefore, although the conductivity of CFRP was lower than that of Example 4, it was a value that could sufficiently withstand practical use.
  • the prepreg obtained in Comparative Example 16 was excellent in storage stability. Moreover, although CFRP produced using this prepreg was excellent in mechanical properties, the conductivity was low because no conductive particles were added.
  • the prepreg obtained in Comparative Example 17 was excellent in storage stability. Moreover, although the CFRP produced using this prepreg had excellent mechanical properties, the conductivity was low because no conductive particles were added to the epoxy resin composition [A].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

 本発明により、 強化繊維と、前記強化繊維が形成する強化繊維層内に含浸された樹脂組成物(I)と、からなる1次プリプレグと、 前記1次プリプレグの片面又は両面に形成される樹脂組成物(II)からなる表面層と、 からなるプリプレグであって、 樹脂組成物(I)は、少なくともエポキシ樹脂と、熱可塑性樹脂とを含むエポキシ樹脂組成物[B]であり、 樹脂組成物(II)は、少なくともエポキシ樹脂と、導電性粒子とを含むエポキシ樹脂組成物[A]であるプリプレグが提供される。

Description

プリプレグ及びその製造方法
 本発明は、耐衝撃性及び導電性が優れる繊維強化複合材料を作製することができるプリプレグ及びその製造方法に関する。
 炭素繊維と樹脂とからなる炭素繊維強化複合材料(以下、「CFRP」と略記する)は、軽量、高強度、高弾性率等の特徴により、航空機、スポーツ・レジャー、一般産業に広く応用されている。このCFRPは、予め炭素繊維と樹脂とが一体化されているプリプレグを経由して製造されることが多い。
 プリプレグを構成する樹脂としては、熱硬化性樹脂又は熱可塑性樹脂が使用されている。特に、そのタック性、ドレープ性による成形自由度の高さから、熱硬化性樹脂を用いたプリプレグが広く使用されている。熱硬化性樹脂は、一般に低靱性であるため、プリプレグを構成する樹脂として熱硬化性樹脂を用いる場合、このプリプレグを用いて作製されるCFRPは耐衝撃性が低くなるという課題がある。そのため、耐衝撃性を改善する方法が検討されている。
 特許文献1~3には、プリプレグ表面に熱可塑性樹脂微粒子を局在化させたプリプレグが開示されている。これらのプリプレグは、表面に粒子形状の熱可塑性樹脂が局在化しているため、初期のタック性が低い。また、表面層に内在する硬化剤との硬化反応が進行するため、保存安定性が悪く、経時的にタック性やドレープ性が低下する。さらに、このような硬化反応の進行したプリプレグを用いて作製される繊維強化複合材料(以下、「FRP」と略記する)は、ボイド等の欠陥を多く内在し、機械物性が著しく低い。
 特許文献4には、粒子状、繊維状又はシート状の熱可塑性樹脂が、片面又は両面の表面層近傍に分布するプリプレグが開示されている。粒子状又は繊維状の熱可塑性樹脂を用いる場合、前述の特許文献1~3と同様の理由により、プリプレグのタック性が低く、得られるFRPの機械物性も低い。また、シート状の熱可塑性樹脂を用いる場合、プリプレグのタック性、ドレープ性が失われる。また、耐溶剤性が低い等、熱可塑性樹脂に由来する欠点がFRPに顕著に反映される。
 また、航空・宇宙分野などの用途では、落雷、静電散逸(ESI)、及び電磁妨害(EMI)からの保護のため、導電性を示すFRPが必要とされる。FRPへの落雷は、複数のプライのラミネートからなるFRPを貫通して穴を開け、構成部品の破局的故障をもたらす虞がある。
 炭素繊維を強化繊維とするCFRPは、炭素繊維を構成する黒鉛が導電性を有するので、ある程度の導電性を有することが知られている。しかし、その導電性は、落雷の破壊的な影響からCFRPを保護するには不十分である。落雷による放電は、CFRPの樹脂層間に入り、その中の樹脂を蒸発させ、全体的な層間剥離を引き起こし、CFRPを貫通する虞があるからである。
 また、CFRPの樹脂層は電気的絶縁体として働くので、CFRPの厚さ方向(即ち、繊維の方向に直角な方向)の導電性は低い。特に特許文献1~4のように、耐衝撃性を改善するために熱可塑性樹脂微粒子を樹脂層に局在化させたプリプレグにおいては、得られるCFRPの強化繊維層同士の接触を熱可塑性樹脂微粒子が阻害するため、CFRPの厚さ方向の導電性はさらに低下する。そのため、CFRPにおいて優れた耐衝撃性と導電性を両立させることは困難である。
 強化繊維層間の導電性を向上させる方法としては、CFRPのマトリックス樹脂に金属粒子を配合する方法(例えば、特許文献5)や、カーボン粒子を配合する方法(例えば、特許文献6)が考えられるが、これらの方法で得られるCFRPは耐衝撃性が十分ではない。
特開平7-41575号公報 特開平7-41576号公報 特開平7-41577号公報 特開平8-259713号公報 特開平6-344519号公報 特開平8-34864号公報
 本発明の目的は、高い耐衝撃性、層間靱性及び厚さ方向の導電性を有するFRP製造用のプリプレグ及びその製造方法を提供することにある。
 本発明者らは、少なくとも熱可塑性樹脂を含む樹脂組成物(I)と、少なくとも導電性粒子を含む樹脂組成物(II)とを用いてプリプレグを作製した。即ち、樹脂組成物(I)を、強化繊維から成る強化繊維層に含浸させることにより1次プリプレグを作製した。そして、この1次プリプレグの表面に、樹脂組成物(II)を積重して一体化させた。このようにして得られたプリプレグを用いて作製するFRPは、耐衝撃性や層間靱性が高く、優れた厚さ方向の導電性を有することを見出し、本発明を完成するに至った。
 上記目的を達成する本発明は、以下に記載のものである。
 〔1〕
 強化繊維と、前記強化繊維が形成する強化繊維層内に含浸された樹脂組成物(I)と、からなる1次プリプレグと、
 前記1次プリプレグの片面又は両面に形成される樹脂組成物(II)からなる表面層と、
からなるプリプレグであって、
 樹脂組成物(I)は、少なくともエポキシ樹脂と、熱可塑性樹脂とを含むエポキシ樹脂組成物[B]であり、
 樹脂組成物(II)は、少なくともエポキシ樹脂と、導電性粒子とを含むエポキシ樹脂組成物[A]であるプリプレグ。
 本発明において、1次プリプレグに含浸されている樹脂組成物(I)は、熱可塑性樹脂を含んでおり粘度が高い。そのため、表面層に存在する導電粒子は強化繊維層内に移動し難く、プリプレグの表面層に分散する。本発明のプリプレグは以下の構成を含んでいることが好ましい。
 〔2〕
 エポキシ樹脂組成物[A]の導電性粒子の含有量が、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂100質量部に対して0.2~20質量部である〔1〕に記載のプリプレグ。
 〔3〕
 エポキシ樹脂組成物[A]に含まれる導電性粒子が、レーザー回折法による平均粒子径10μm未満の導電性粒子である〔1〕に記載のプリプレグ。
 〔4〕
 エポキシ樹脂組成物[A]に含まれるエポキシ樹脂とエポキシ樹脂組成物[B]に含まれるエポキシ樹脂との質量比が、1:1~1:9である〔1〕に記載のプリプレグ。
 〔5〕
 エポキシ樹脂組成物[B]に含まれる熱可塑性樹脂が、エポキシ樹脂可溶性熱可塑性樹脂である〔1〕に記載のプリプレグ。
 〔6〕
 エポキシ樹脂組成物[B]に含まれる熱可塑性樹脂が、エポキシ樹脂可溶性熱可塑性樹脂及びエポキシ樹脂不溶性熱可塑性樹脂である〔1〕に記載のプリプレグ。
 〔7〕
 前記エポキシ樹脂可溶性熱可塑性樹脂が、ポリエーテルスルホン、ポリエーテルイミド、ポリカーボネート、ポリスルホンから選択される少なくとも1種である〔5〕又は〔6〕に記載のプリプレグ。
 〔8〕
 前記エポキシ樹脂不溶性熱可塑性樹脂が、非晶性ナイロン、ナイロン6、ナイロン12、非晶性ポリイミドから選択される少なくとも1種である〔6〕に記載のプリプレグ。
 〔9〕
 前記エポキシ樹脂可溶性熱可塑性樹脂の重量平均分子量(Mw)が、8000~40000である〔5〕又は〔6〕に記載のプリプレグ。
 〔10〕
 エポキシ樹脂組成物[B]が、エポキシ樹脂組成物[B]に含まれるエポキシ樹脂100質量部に対して0.2~20質量部の導電性粒子を更に含む〔1〕に記載のプリプレグ。
 〔11〕
 エポキシ樹脂組成物[B]に含まれる導電性粒子が、レーザー回折法による平均粒子径が10~200μmの導電性粒子である〔10〕に記載のプリプレグ。
 〔12〕
 エポキシ樹脂組成物[A]及びエポキシ樹脂組成物[B]の少なくとも一方がエポキシ樹脂の硬化剤を含む〔1〕に記載のプリプレグ。
 〔13〕
 エポキシ樹脂組成物[B]が、エポキシ樹脂の硬化剤を含まないエポキシ樹脂組成物であり、
 エポキシ樹脂組成物[A]が、エポキシ樹脂の硬化剤を含むエポキシ樹脂組成物である〔1〕に記載のプリプレグ。
 〔14〕
 前記導電性粒子が、カーボン粒子、金属粒子、被覆導電性粒子、及び炭素繊維粒子から選択される少なくとも1種である〔1〕に記載のプリプレグ。
 〔15〕
 前記カーボン粒子が、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、膨張黒鉛、鱗片状黒鉛、黒鉛粉末、黒鉛粒子、グラフェンシート、カーボンミルドファイバーから選択される少なくとも1種である〔14〕に記載のプリプレグ。
 〔16〕
 前記強化繊維が炭素繊維である〔1〕に記載のプリプレグ。
 〔17〕
 強化繊維層内に樹脂組成物(I)を含浸させることにより1次プリプレグを得、
次いで、前記1次プリプレグの片面又は両面に、樹脂脂組成物(II)のシートを積重して、前記1次プリプレグと樹脂組成物(II)のシートとを熱圧着することにより一体化させることを特徴とする〔1〕に記載のプリプレグの製造方法。
 本発明によれば、プリプレグの表面近傍に導電性粒子が分布することにより、優れた導電性と耐衝撃性とを兼ね備えた炭素繊維強化複合材料を得ることができる。本発明のプリプレグは、表層の樹脂組成物に含まれる導電性粒子が、内層に沈み込まずに導電性粒子がプリプレグの表面層に留まる。その結果、得られるFRPにおいて、導電性粒子は強化繊維層と隣接する強化繊維層との間の導電ブリッジとして働き、強化繊維層間の電気的導通性を保つ。この作用により、FRPの厚さ方向の導電性が高くなる。
 そのため、電磁遮蔽、静電気保護、電流リターン、及び導電性の改善が必要な多くの用途に適用できる。特に、航空宇宙部品の製造用に適している。その他、風力タービン、建物、船舶、列車、自動車及びその他の分野において、落雷やその他の電磁気的な諸問題を解決するために使用することができる。
図1は、本発明のプリプレグの一例を示す概略断面図である。 図2(a)~(c)は、本発明のプリプレグが製造される過程の一例を示す概念図である。 図3は、本発明のプリプレグを製造する工程の一例を示す概念図である。 図4は、本発明のプリプレグの一例を示す部分拡大図である。 図5は、本発明のプリプレグを積層して加熱成形することにより製造した複合材料の一例を示す部分拡大図である。 図6は、エポキシ樹脂、硬化剤、アミン末端基を有する反応性オリゴマーを混練して作製した樹脂硬化物の断面の図面代用写真である。
 以下、本発明のプリプレグの詳細について説明する。
 1. プリプレグの構造
 本発明のプリプレグ(以下、「本プリプレグ」ともいう)は、強化繊維と、該強化繊維が形成する強化繊維層内に含浸された樹脂組成物(I)とからなる1次プリプレグ(内層)と、
 該1次プリプレグの片面又は両面に形成される樹脂組成物(II)からなる表面層と、が一体化されている。
 図1は、本プリプレグの一例を示す概略断面図である。図1中、100は本プリプレグであり、10は1次プリプレグである。1次プリプレグ10は、炭素繊維11からなる強化繊維層と、この強化繊維層内に含浸している樹脂組成物(I)13とから構成されている。1次プリプレグ10の表面には、樹脂組成物(II)からなる表面層15が1次プリプレグ10と一体となって形成されている。
 本発明において1次プリプレグは、プリプレグ断面における中央部の強化繊維層と、該強化繊維層内に含浸された樹脂組成物(I)とからなる。図2(a)~(c)は、本発明のプリプレグが製造される過程を順次示す説明図である(後述)。1次プリプレグは、図2(b)及び図2(c)中、1次プリプレグ10として表される。
 (1) 強化繊維層
 本プリプレグの強化繊維層を構成する強化繊維としては、炭素繊維、ガラス繊維、アラミド繊維、炭化ケイ素繊維、ポリエステル繊維、セラミック繊維、アルミナ繊維、ボロン繊維、金属繊維、鉱物繊維、岩石繊維及びスラッグ繊維が例示される。これらの強化繊維の中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましく、比強度、比弾性率が良好で軽量かつ高強度のFRPが得られる炭素繊維がより好ましい。炭素繊維の中でも、引張強度に優れるポリアクリロニトリル(PAN)系炭素繊維が特に好ましい。
 本発明においては、強化繊維として導電性を有さない強化繊維を用いても、樹脂組成物に含まれる導電性粒子が強化繊維層内に分散するため、導電性を有する複合材料を作製することができる。導電性を有する強化繊維を用いると、得られるFRPの体積抵抗率を大きく低下させることができる。そのため、導電性を有する強化繊維を用いることが好ましい。ガラス繊維やアラミド繊維などの導電性を有さない強化繊維を用いる場合には、強化繊維の表面を金属メッキ処理する等の方法により強化繊維に導電性を付与することが好ましい。
 強化繊維に炭素繊維を用いる場合、その引張弾性率は、170~600GPaであることが好ましく、220~450GPaであることが特に好ましい。また、引張強度は3920MPa(400kgf/mm)以上であることが好ましい。このような炭素繊維を用いることにより、CFRPの機械的性能を向上できる。
 強化繊維はシート状に形成して用いることが好ましい。強化繊維のシートとしては、多数本の強化繊維を一方向に引き揃えたシート状物や、平織や綾織などの二方向織物、多軸織物、不織布、マット、ニット、組紐、強化繊維を抄紙した紙が例示される。シートの厚さは、0.01~3mmが好ましく、0.1~1.5mmがより好ましい。また、シートの目付は、70~400g/mが好ましく、100~300g/mがより好ましい。これらの強化繊維のシートは、公知のサイズ剤を含んでいても良い。強化繊維のシートの単繊維間の距離は、10μm未満であることが好ましい。
 (2) 樹脂組成物(I)及び樹脂組成物(II)
 本発明のプリプレグは、内層を形成する樹脂組成物(I)が、エポキシ樹脂と、熱可塑性樹脂と、を必須成分とするエポキシ樹脂組成物[B]からなり、
 表面層を形成する樹脂組成物(II)が、エポキシ樹脂と、導電性粒子と、を必須成分とするエポキシ樹脂組成物[A]からなる。
 本発明のプリプレグは、1次プリプレグに含浸されている樹脂組成物(I)が、熱可塑性樹脂を含んでいるため粘度が高い。そのため、表面層の導電粒子は内層に移動し難く、導電性粒子がプリプレグの表面層に留まっている。
 表面層の厚さは、2~30μmが好ましく、5~20μmがより好ましい。2μm未満の場合は、得られるプリプレグのタック性が低下する。30μmを超える場合は、得られるプリプレグの取扱性やFRPの成形精度が低下しやすい。
 また、1次プリプレグの厚さは、0.01~4.0mmが好ましく、0.1~2.0mmがより好ましい。
 エポキシ樹脂組成物[B]に含まれるエポキシ樹脂と、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂との質量比は、9:1~1:1であることが好ましく、5:1~1:1であることがより好ましい。
 プリプレグの強化繊維の含有量は、プリプレグ全質量を100質量%として40~80質量%であることが好ましく、50~70質量%であることが特に好ましい。強化繊維の含有量が40質量%未満の場合は、このプリプレグを用いて作製されるFRPの強度等が不足する。強化繊維の含有量が80質量%を超える場合は、プリプレグの強化繊維層内に含浸される樹脂量が不足する。その結果、このプリプレグを用いて作製されるFRPにボイド等を発生させる。
 (1) エポキシ樹脂組成物[B]
 エポキシ樹脂組成物[B]は、エポキシ樹脂と熱可塑性樹脂とを少なくとも含む樹脂組成物である。以下、エポキシ樹脂組成物[B]の各成分について説明する。
 (a) エポキシ樹脂
 エポキシ樹脂組成物[B]に配合されるエポキシ樹脂は、従来公知のエポキシ樹脂である。その中でも、分子内に芳香族基を有するエポキシ樹脂を用いることが好ましく、グリシジルアミン構造、グリシジルエーテル構造の何れかを有する二官能又は三官能以上のエポキシ樹脂を用いることがより好ましい。また、脂環族エポキシ樹脂も好適に用いることができる。
 グリシジルアミン構造を有するエポキシ樹脂としては、N,N,N’,N’-テトラグリシジルジアミノジフェニルメタン、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-3-メチル-4-アミノフェノール、トリグリシジルアミノクレゾールの各種異性体が例示される。
 グリシジルエーテル構造を有するエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が例示される。
 これらのエポキシ樹脂は、必要に応じて、芳香族環構造などに非反応性置換基を有していても良い。非反応性置換基としては、メチル基、エチル基、イソプロピル基などのアルキル基、フェニル基などの芳香族基、アルコキシル基、アラルキル基、塩素や臭素などのハロゲン基が例示される。
 エポキシ樹脂は、硬化剤との硬化反応により架橋して網目構造を形成する。エポキシ樹脂組成物[B]には、三官能のエポキシ樹脂が配合されることが好ましい。三官能のエポキシ樹脂が配合されると、硬化後のエポキシ樹脂が高架橋密度となり、FRPの物性が優れる。エポキシ樹脂組成物[B]に配合されているエポキシ樹脂量に対して、三官能のエポキシ樹脂を10質量%以上含有していることが好ましく、20~75質量%含有していることがより好ましい。
 プリプレグの硬化後に優れたFRPの物性を発現させるためには、エポキシ樹脂組成物[A]及び[B]に配合されているエポキシ樹脂の総量、即ち、全エポキシ樹脂量に対して、三官能のエポキシ樹脂を30質量%以上含有していることが好ましく、30~70質量%含有していることがより好ましい。三官能のエポキシ樹脂の含有量が70質量%を超えると、得られるプリプレグの取扱性が低下する場合がある。
 三官能のエポキシ樹脂としては、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-m-アミノフェノールが例示される。
 これらのエポキシ樹脂は単独で用いても良いし、2種以上を併用しても良い。また、エポキシ樹脂としては、例えば、予め硬化剤などと予備反応させた、Bステージのエポキシ樹脂を用いることもできる。
 (b) 熱可塑性樹脂
 本発明において、エポキシ樹脂組成物[B]は、熱可塑性樹脂を含有している。熱可塑性樹脂は、エポキシ樹脂組成物[B]に適切な粘度を与え、後述のエポキシ樹脂組成物[A]に含まれる導電性粒子をプリプレグの表面近傍に留まらせる。また、エポキシ樹脂組成物[B]に含まれる熱可塑性樹脂には、最終的に得られるFRPの耐衝撃性を向上させる効果もある。
 エポキシ樹脂組成物[B]含まれる熱可塑性樹脂の量は、エポキシ樹脂組成物[B]に用いるエポキシ樹脂の種類に応じて異なり、エポキシ樹脂組成物[B]の粘度が適切な値になるように適宜調節すればよい。エポキシ樹脂組成物[B]に含まれるエポキシ樹脂100質量部に対して、熱可塑性樹脂は5~90質量部となるように配合することが好ましく、5~60質量部となるように配合することがより好ましい。5質量部未満の場合は、得られるプリプレグ及びFRPの耐衝撃性が不十分となる場合がある。また、熱可塑性樹脂の配合量が多すぎる場合、粘度が著しく高くなり、プリプレグの取扱性が著しく悪化する場合がある。
 エポキシ樹脂組成物[B]は、その最低粘度が10Poise以上であることが好ましく、10~3000Poiseであることがより好ましく、10~500Poiseであることがさらに好ましく、10~450Poiseであることがさらに好ましく、50~400Poiseであることが特に好ましい。エポキシ樹脂組成物[B]の最低粘度が10Poise以上あると、エポキシ樹脂組成物[A]に含まれる導電性粒子をプリプレグの表面近傍に留まらせる効果が高い。その結果、プリプレグを硬化して得られるFRPの厚さ方向の導電性がより高くなる傾向がある。エポキシ樹脂組成物[B]の最低粘度が高すぎる場合は、樹脂組成物の粘度が高くなり過ぎ、プリプレグの樹脂含浸性が低下するなど取扱性が悪化するので好ましくない。また、温度80℃での粘度が50~2000Poiseであることが好ましい。なお、粘度は、レオメーターを用いて測定される温度-粘度曲線から得られる粘度をいう。エポキシ樹脂組成物[B]の粘度は、熱可塑性樹脂、特に後述するエポキシ樹脂可溶性熱可塑性樹脂の添加量により調整することができる。
 熱可塑性樹脂としては、エポキシ樹脂可溶性熱可塑性樹脂とエポキシ樹脂不溶性熱可塑性樹脂とが挙げられる。
 (b-1) エポキシ樹脂可溶性熱可塑性樹脂
 エポキシ樹脂組成物[B]は、エポキシ樹脂可溶性熱可塑性樹脂を含有する。このエポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂組成物[B]の粘度を調整するとともに、得られるFRPの耐衝撃性を向上させる。
 エポキシ樹脂可溶性熱可塑性樹脂とは、エポキシ樹脂に一部又は全部が加熱等により溶解し得る熱可塑性樹脂である。一方、エポキシ樹脂不溶性熱可塑性樹脂とは、FRPを成形する温度又はそれ以下の温度において、エポキシ樹脂に実質的に溶解しない熱可塑性樹脂をいう。即ち、FRPを成形する温度において、樹脂粒子をエポキシ樹脂中に投入して攪拌した際に、粒子の大きさが変化しない熱可塑性樹脂をいう。なお、一般的に、FRPを成形する温度は100~190℃である。
 エポキシ樹脂可溶性熱可塑性樹脂が完全に溶解していない場合は、エポキシ樹脂組成物[B]の硬化過程で加熱されることによりエポキシ樹脂に溶解し、エポキシ樹脂組成物[B]の粘度を増加させることができる。これにより、硬化過程における粘度低下に起因するエポキシ樹脂組成物[B]のフロー(プリプレグ内から樹脂組成物が流出する現象)を防止することができる。
 エポキシ樹脂可溶性熱可塑性樹脂は、190℃でエポキシ樹脂に80質量%以上溶解する樹脂が好ましい。
 エポキシ樹脂可溶性熱可塑性樹脂の具体的例としては、ポリエーテルスルホン、ポリスルホン、ポリエーテルイミド、ポリカーボネート等が挙げられる。これらは、単独で用いても、2種以上を併用しても良い。エポキシ樹脂組成物[B]に含まれるエポキシ樹脂可溶性熱可塑性樹脂は、重量平均分子量(Mw)が8000~40000の範囲のポリエーテルスルホン、ポリスルホンが特に好ましい。重量平均分子量(Mw)が8000よりも小さいと、得られるFRPの耐衝撃性が不十分となり、また40000よりも大きいと粘度が著しく高くなり取扱性が著しく悪化する場合がある。エポキシ樹脂可溶性熱可塑性樹脂の分子量分布は均一であることが好ましい。特に、重量平均分子量(Mw)と数平均分子量(Mn)の比である多分散度(Mw/Mn)が1~10の範囲であることが好ましく、1.1~5の範囲であることがより好ましい。
 エポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂と反応性を有する反応基又は水素結合を形成する官能基を有していることが好ましい。このようなエポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂の硬化過程中における溶解安定性を向上させることができる。また、硬化後に得られるFRPに靭性、耐薬品性、耐熱性及び耐湿熱性を付与することができる。
 エポキシ樹脂との反応性を有する反応基としては、水酸基、カルボン酸基、イミノ基、アミノ基などが好ましい。水酸基末端のポリエーテルスルホンを用いると、得られるFRPの耐衝撃性、破壊靭性及び耐溶剤性が特に優れるためより好ましい。
 エポキシ樹脂組成物[B]に含まれるエポキシ樹脂可溶性熱可塑性樹脂の含有量は、1次プリプレグの粘度に応じて適宜調整される。1次プリプレグの加工性の観点から、エポキシ樹脂組成物[B]に含有されるエポキシ樹脂100質量部に対して、5~90質量部が好ましく、5~50質量部がより好ましく、10~40質量部がさらに好ましい。5質量部未満の場合は、得られるFRPの耐衝撃性が不十分となる場合がある。エポキシ樹脂可溶性熱可塑性樹脂の含有量が高くなると、粘度が著しく高くなり、プリプレグの取扱性が著しく悪化する場合がある。
 また、エポキシ樹脂組成物[A]とエポキシ樹脂組成物[B]とに含まれる全エポキシ樹脂100質量部に対するエポキシ樹脂可溶性熱可塑性樹脂の含有量は、5~90質量部が好ましく、5~40質量部がより好ましく、15~35質量部がさらに好ましい。5質量部未満の場合は、得られるFRPの耐衝撃性が不十分となる場合がある。エポキシ樹脂可溶性熱可塑性樹脂の含有量が高くなると、粘度が著しく高くなり、プリプレグの取扱性が著しく悪化する場合がある。
 エポキシ樹脂可溶性熱可塑性樹脂には、アミン末端基を有する反応性芳香族オリゴマー(以下、単に「芳香族オリゴマー」ともいう)を含むことが好ましい。
 エポキシ樹脂組成物は、加熱硬化時にエポキシ樹脂と硬化剤との硬化反応により高分子量化する。高分子量化により二相域が拡大することによって、エポキシ樹脂組成物に溶解していた芳香族オリゴマーは、反応誘起型の相分離を引き起こす。この相分離により、硬化後のエポキシ樹脂と、芳香族オリゴマーと、が共連続となる樹脂の二相構造をマトリックス樹脂内に形成する。また、芳香族オリゴマーはアミン末端基を有していることから、エポキシ樹脂との反応も生じる。この共連続の二相構造における各相は互いに強固に結合しているため、耐溶剤性も向上している。
 図6は、エポキシ樹脂、硬化剤、アミン末端基を有する反応性オリゴマーを混練して作製した樹脂組成物の硬化物断面の図面代用写真である。この樹脂組成物は、(a)成分:エポキシ樹脂 100質量部(MY0600)、(b)成分:硬化剤 50質量部(3,3-DDS)、(c)成分:アミン末端基を有する反応性オリゴマー 60質量部(DAMS VW-30500RP)、から成る。
 この共連続の構造は、FRPに対する外部からの衝撃を吸収してクラック伝播を抑制する。その結果、アミン末端基を有する反応性芳香族オリゴマーを含むプリプレグを用いて作製されるFRPは、高い耐衝撃性及び破壊靭性を有する。
 この芳香族オリゴマーとしては、公知のアミン末端基を有するポリスルホン、アミン末端基を有するポリエーテルスルホンを用いることができる。アミン末端基は第一級アミン(-NH)末端基であることが好ましい。
 エポキシ樹脂組成物[B]に配合される芳香族オリゴマーは、重量平均分子量が8000~40000であることが好ましい。重量平均分子量が8000未満である場合、マトリクス樹脂の靱性向上効果が低い。また、重量平均分子量が40000を超える場合、樹脂組成物の粘度が高くなり過ぎて、強化繊維層内に樹脂組成物が含浸しにくくなる等の加工上の問題点が発生しやすくなる。
 芳香族オリゴマーとしては、「Virantage DAMS VW-30500 RP(登録商標)」(Solvay Specialty Polymers社製)のような市販品を好ましく用いることができる。
 共連続となる樹脂の二相構造をマトリックス樹脂内に形成するためには、エポキシ樹脂組成物[B]における芳香族オリゴマーの配合量は、エポキシ樹脂組成物[B]に含まれるエポキシ樹脂100質量部に対して、30~90質量部であることが好ましく、40~80質量部であることがより好ましく、45~65質量部であることが特に好ましい。30質量部以上である場合、芳香族オリゴマーから形成される共連続の二相構造は、FRPが受ける衝撃を効率的に吸収することができる。そのため、得られるFRPの耐衝撃性が高くなる。90質量部以下であれば、エポキシ樹脂組成物[B]の粘度が高くなり過ぎず、エポキシ樹脂組成物[B]の製造工程やプリプレグの製造工程における取扱性にも悪影響がない。上記所定量の芳香族オリゴマーから形成される共連続の二相構造がマトリクス樹脂中に均一に形成されているFRPは、衝撃に対するクラック伝播が抑制される。そのため、得られるFRPの耐衝撃性が高くなる。なお、共連続となる樹脂の二相構造をマトリックス樹脂内に形成させない場合には、エポキシ樹脂組成物[B]に含まれるエポキシ樹脂可溶性熱可塑性樹脂の含有量は、1次プリプレグの加工性の観点から、エポキシ樹脂組成物[B]に含有されるエポキシ樹脂100質量部に対して、5~50質量部が好ましく、10~40質量部がより好ましい。
 エポキシ樹脂可溶性熱可塑性樹脂の形態は、特に限定されないが、粒子状であることが好ましい。粒子状のエポキシ樹脂可溶性熱可塑性樹脂は、樹脂組成物中に均一に配合することができる。また、得られるプリプレグの成形性が高い。
 エポキシ樹脂可溶性熱可塑性樹脂の平均粒子径は、1~50μmであることが好ましく、3~30μmであることが特に好ましい。1μm未満である場合、エポキシ樹脂組成物の粘度が著しく増粘する。そのため、エポキシ樹脂組成物に十分な量のエポキシ樹脂可溶性熱可塑性樹脂を添加することが困難となる場合がある。50μmを超える場合、エポキシ樹脂組成物をシート状に加工する際、均質な厚みのシートが得られ難くなる場合がある。また、エポキシ樹脂への溶解速度が遅くなり、得られるFRPが不均一となるため、好ましくない。
 (b-2) エポキシ樹脂不溶性熱可塑性樹脂
 エポキシ樹脂組成物[B]には、エポキシ樹脂可溶性熱可塑性樹脂の他に、エポキシ樹脂不溶性熱可塑性樹脂を含有していても良い。本発明において、エポキシ樹脂組成物[B]はエポキシ樹脂可溶性熱可塑性樹脂及びエポキシ樹脂不溶性熱可塑性樹脂の両者を含有していることが好ましい。
 エポキシ樹脂不溶性熱可塑性樹脂やエポキシ樹脂可溶性熱可塑性樹脂の一部(硬化後のマトリクス樹脂において溶解せずに残存したエポキシ樹脂可溶性熱可塑性樹脂)は、その粒子がFRPのマトリクス樹脂中に分散する状態となる(以下、この分散している粒子を「層間粒子」ともいう)。この層間粒子は、FRPが受ける衝撃の伝播を抑制する。その結果、得られるFRPの耐衝撃性が向上する。
 エポキシ樹脂不溶性熱可塑性樹脂としては、ポリアミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエチレンナフタレート、ポリエーテルニトリル、ポリベンズイミダゾールが例示される。これらの中でも、ポリアミド、ポリアミドイミド、ポリイミドは、靭性及び耐熱性が高いため好ましい。ポリアミドやポリイミドは、FRPに対する靭性向上効果が特に優れている。これらは、単独で用いてもよいし、2種以上を併用しても良い。また、これらの共重合体を用いることもできる。
 特に、非晶性ポリイミドや、ナイロン6(登録商標)(カプロラクタムの開環重縮合反応により得られるポリアミド)、ナイロン12(ラウリルラクタムの開環重縮合反応により得られるポリアミド)、非晶性のナイロン(透明ナイロンとも呼ばれ、ポリマーの結晶化が起こらないか、ポリマーの結晶化速度が極めて遅いナイロン)のようなポリアミドを使用することにより、得られるFRPの耐熱性を特に向上させることができる。
 エポキシ樹脂組成物[B]中のエポキシ樹脂不溶性熱可塑性樹脂の含有量は、エポキシ樹脂組成物[B]の粘度に応じて適宜調整される。プリプレグの加工性の観点から、エポキシ樹脂組成物[B]に含有されるエポキシ樹脂100質量部に対して、5~60質量部であることが好ましく、15~40質量部であることがより好ましい。5質量部未満の場合、得られるFRPの耐衝撃性が不十分になる場合がある。60質量部を超える場合、エポキシ樹脂組成物[B]の含浸性や、得られるプリプレグのドレープ性などを低下させる場合がある。
 また、エポキシ樹脂組成物[A]及び[B]に含まれる全エポキシ樹脂100質量部に対するエポキシ樹脂不溶性熱可塑性樹脂の含有量は、10~45質量部が好ましく、20~45質量部がより好ましい。10質量部未満の場合は、得られるFRPの耐衝撃性が不足する場合がある。45質量部を超える場合は、エポキシ樹脂組成物[B]の含浸性や、プリプレグのドレープ性などを低下させる場合がある。
 エポキシ樹脂不溶性熱可塑性樹脂の好ましい平均粒子径や形態は、エポキシ樹脂可溶性熱可塑性樹脂と同様である。
 (c) 硬化剤
 エポキシ樹脂を硬化させる硬化剤は、必要に応じて、エポキシ樹脂組成物[A]及び/又は[B]に配合される。エポキシ樹脂組成物[A]及び/又は[B]に配合される硬化剤としては、エポキシ樹脂組成物[A]及び[B]に配合されるエポキシ樹脂を硬化させる公知の硬化剤が用いられる。例えば、ジシアンジアミド、芳香族アミン系硬化剤の各種異性体、アミノ安息香酸エステル類が挙げられる。ジシアンジアミドは、プリプレグの保存安定性に優れるため好ましい。また、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン等の芳香族ジアミン化合物及びそれらの非反応性置換基を有する誘導体は、耐熱性の高い硬化物を与えるという観点から特に好ましい。非反応性置換基とは、上記(a)エポキシ樹脂において説明したとおりである。
 アミノ安息香酸エステル類としては、トリメチレングリコールジ-p-アミノベンゾエートやネオペンチルグリコールジ-p-アミノベンゾエートが好ましく用いられる。これらの硬化剤を用いて硬化させたFRPは、ジアミノジフェニルスルホンの各種異性体を用いて硬化させたFRPと比較して耐熱性は低いが、引張伸度が高い。そのため、FRPの用途に応じて硬化剤は適宜選択される。
 エポキシ樹脂組成物[A]及び[B]に配合される硬化剤の合計量は、エポキシ樹脂組成物[A]及び[B]に配合される全エポキシ樹脂を硬化させるのに適した量である。この量は、エポキシ樹脂及び硬化剤の種類に応じて適宜調整される。保存安定性の観点から、全エポキシ樹脂100質量部に対して、30~100質量部が好ましく、30~70質量部がより好ましい。また、エポキシ樹脂組成物[A]又は[B]の一方に硬化剤が含まれない場合、他方に配合される硬化剤の量は、全エポキシ樹脂を硬化させるのに適した量である。例えば、芳香族ジアミン化合物を硬化剤として用いる場合、全エポキシ樹脂100質量部に対して25~55質量部であることが好ましい。
 (d) 導電性粒子
 エポキシ樹脂組成物[B]は必要に応じて導電性粒子を含んでいても良い。この導電性粒子は、後述の導電性粒子と同じものを用いることができる。エポキシ樹脂組成物[B]に含まれる導電性粒子は、エポキシ樹脂組成物[B]に含まれるエポキシ樹脂100質量部に対して0.2~20質量部であることが好ましく、1~15質量部がより好ましく、5~15質量部が特に好ましい。0.2質量部未満の場合、得られるFRPの厚さ方向における導電性を向上させ難い。また、20質量部を超える場合、樹脂組成物の粘度が著しく高くなり、取扱性が悪化する場合がある。
 エポキシ樹脂組成物[B]は、硬化して得られるFRPの導電性を向上させるために、レーザー回折法による平均粒子径10~200μmの導電性粒子を含有することが好ましく、50~200μmの導電性粒子を含有することがより好ましい。また、平均粒子径が5μm以下の導電性粒子を含んでいることも好ましい。特に、平均粒子径が10~200μmである導電性粒子と平均粒子径が5μm以下の導電性粒子とからなる2種類の異なる導電性粒子を含有することが好ましい。
 導電性粒子は、プリプレグを硬化して得られるFRPにおいて、強化繊維層同士を厚さ方向で接続してFRPの厚さ方向における導電ブリッジとして働くことにより、厚さ方向の導電性を向上させる。
 導電性粒子の形状としては、球状粒子でも非球状粒子でも、また多孔質粒子でもよいが、導電性の均一付与という観点から、球状のものが好ましい。
 導電性粒子の粒子径が10μm以上であれば、その粒子径が強化繊維層の単繊維間の距離と比べて大きいため、強化繊維層内に入り込み難くなる。そのため、エポキシ樹脂組成物[B]を強化繊維層に含浸させると、導電性粒子が強化繊維層の表面に残存して露出しやすくなる。その結果、各プリプレグの強化繊維層同士を導電性粒子が電気的に接続する。即ち、導電性粒子がFRPの樹脂層(強化繊維層と強化繊維層との間)に留まりやすく、隣接する強化繊維層を厚さ方向につなぐ導電ブリッジを形成して導電性を向上させやすい。
 導電性粒子の粒子径が200μmよりも大きい場合は、得られる樹脂組成物を後述するシート状に加工する際、均質な厚みのシートを作製し難くなる場合がある。
 一方、平均粒子径が5μm以下の導電性粒子を用いると、導電性粒子が強化繊維層、樹脂層の両層に分散し、得られるFRPの導電性をさらに向上させやすくなるため好ましい。平均粒子径は、1μm以下であることが好ましく、0.5μm以下であることがより好ましい。
 (e) 他の成分
 エポキシ樹脂組成物[B]には、本発明の目的・効果を損なわない限り、他の成分を含有させることができる。他の成分としては、3級アミン、イミダゾール等のアミン化合物、ホスフィン類、ホスホニウム等のリン化合物、N,N-ジメチル尿素誘導体などの硬化促進剤;、反応性希釈剤;、充填剤;、酸化防止剤;、難燃剤;、顔料;等の各種添加剤が例示される。これらの配合量は公知である。
 (2) エポキシ樹脂組成物[A]
 エポキシ樹脂組成物[A]は、エポキシ樹脂と導電性粒子とを少なくとも含む樹脂組成物である。以下、エポキシ樹脂組成物[A]の各成分について説明する。
 (f) エポキシ樹脂
 エポキシ樹脂組成物[A]に配合されるエポキシ樹脂としては、エポキシ樹脂組成物[B]で説明した従来公知のエポキシ樹脂が挙げられる。1次プリプレグと良好に接着させるため、エポキシ樹脂組成物[A]に配合されるエポキシ樹脂は、エポキシ樹脂組成物[B]に配合されるエポキシ樹脂と同じエポキシ樹脂であることが好ましい。
 (g) 導電性粒子
 エポキシ樹脂組成物[A]には、プリプレグを硬化して得られるFRPに導電性を付与するために、導電性粒子が配合される。導電性粒子は、プリプレグを硬化して得られるFRPにおいて、厚さ方向の導電ブリッジとして働くことにより隣接する強化繊維層同士を接続し、厚さ方向の導電性を上昇させる。この時、大多数の導電性粒子がFRPの表面層内にあることが望ましい。
 本発明で用いる導電性粒子としては、電気的に良好な導体として振る舞う粒子であれば良く、導体のみからなるものに限定されない。好ましくは体積固有抵抗が10~10-9Ωcmであり、より好ましくは1~10-9Ωcmであり、特に好ましくは10-1~10-9Ωcmである粒子である。体積固有抵抗が高すぎると、FRPにおいて十分な導電性が得られない場合がある。
 導電性粒子としては、ポリアセチレン粒子、ポリアニリン粒子、ポリピロール粒子、ポリチオフェン粒子、ポリイソチアナフテン粒子及びポリエチレンジオキシチオフェン粒子等の導電性ポリマー粒子;、カーボン粒子;、炭素繊維粒子;、金属粒子;、無機材料又は有機材料から成るコア材を導電性物質で被覆した粒子が例示される。これらの中でも、高い導電性及び安定性を示すことから、カーボン粒子;、金属粒子;、無機材料又は有機材料から成るコア材を導電性物質で被覆した粒子が好ましい。
 カーボン粒子としては、カーボンブラック、膨張黒鉛、鱗片状黒鉛、黒鉛粉末、黒鉛粒子、グラフェンシート、カーボンミルドファイバー、カーボンナノチューブ、気相成長法炭素繊維(VGCF:登録商標)を含むカーボンナノファイバーが例示される。これらの中でも、高い導電性を示し、かつ安価であることから、カーボンブラック、カーボンミルドファイバーが好ましい。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、ケッチェンブラック(登録商標)が例示される。カーボンミルドファイバーとしては、PAN系炭素繊維、ピッチ系炭素繊維、フェノール系炭素繊維のミルドファイバーが例示される。これらの中でも、ピッチ系炭素繊維のミルドファイバーが好ましい。カーボンミルドファイバーの炭素含有率は94質量%以上が好ましい。炭素含有率が94質量%未満の場合は、得られるFRPの導電性が低下しやすい。
 金属粒子としては、特に限定されないが、強化繊維として炭素繊維を用いる場合、炭素繊維との電位差による腐食を防ぐことから、白金、金、銀、銅、錫、ニッケル、チタン、コバルト、亜鉛、鉄、クロム、アルミニウムの粒子;、これらの金属を主成分とする合金の粒子;、酸化錫、酸化インジウム、酸化インジウムスズ(ITO)が好ましい。これらの中でも、高い導電性及び安定性を示すことから、白金、金、銀、銅、錫、ニッケル、チタンの各粒子、及びこれらの金属を主成分とする合金の粒子がより好ましく、銀、銅、ニッケルの各粒子が特に好ましい。
 無機材料又は有機材料から成るコア材を導電性物質で被覆する方法としては、金属メッキやメカノケミカルボンディングによる被覆方法が好ましい。
 金属メッキによる被覆方法としては、湿式メッキ及び乾式メッキが挙げられる。湿式メッキとしては、無電解メッキ、置換メッキ及び電解メッキが例示される。これらの中でも、無電解メッキは、不導体から成るコア材にメッキ皮膜を形成できることから好ましい。乾式メッキとしては、真空蒸着、プラズマCVD(Chemical Vapor Deposition)、光CVD、イオンプレーティング、スパッタリングが例示される。これらの中でも、スパッタリングは、低温において高い密着性が得られることから好ましい。
 メカノケミカルボンディングは、コア材と被覆材とに機械的エネルギーを加えることによって、その界面においてこれらを分子レベルで強固に結合させる複合微粒子の作成方法である。被覆材としては、金属粒子、カーボンナノ材料、気相成長カーボンファイバー(VGCF)が例示される。これらの導電性粒子は単独で使用しても良いし、2種類以上を併用してもよい。
 導電性粒子の配合量は、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂100質量部に対して、0.2~20質量部であることが好ましく、1~15質量部がより好ましく、5~15質量部が特に好ましい。0.2質量部未満の場合、得られるFRPの厚さ方向における導電性を向上させ難い。また、20質量部を超える場合、樹脂組成物の粘度が著しく高くなり、取扱性が悪化する場合がある。
 導電性粒子の平均粒子径としては、0.01~200μmが好ましく、0.01~100μmがより好ましく、0.01~50μmがさらに好ましい。導電性粒子の平均粒子径が、0.01~200μmであると、導電性粒子の一部が成形時に強化繊維層内にも適度に分散するため、得られるFRPの導電性が向上しやすい。なお、本発明において平均粒子径は、レーザー回折・散乱法を用いて測定される粒度分布の50%粒子径(D50)の値をいう。
 導電性粒子の形状は特に限定されず、球状粒子でも非球状粒子でも、また多孔質粒子でもよい。強化繊維層間に導電ブリッジを形成する観点からは、大きなアスペクト比を有することが好ましい。アスペクト比は、平均で5以上であることが好ましく、10~100であることがより好ましい。
 本発明において、アスペクト比とは、三次元体の最短寸法に対する最長寸法の比を指す。アスペクト比は、後述するように、光学顕微鏡又は走査型電子顕微鏡により測定される粒子径から算出される。
 (h) 硬化剤
 エポキシ樹脂を硬化させる硬化剤は、必要に応じて、エポキシ樹脂組成物[A]及び/又は[B]に配合される。エポキシ樹脂組成物[A]に、硬化剤を含まない場合、得られるプリプレグはタック性の経時変化が少なく、保存安定性に優れる。その他、硬化剤については、上記(c)で説明したとおりである。
 (i) 熱可塑性樹脂
 エポキシ樹脂組成物[A]には、樹脂組成物の粘度を調整するため、若しくは、得られるFRPの耐衝撃性を向上させるために、熱可塑性樹脂を含有させても良い。特に、エポキシ樹脂可溶性熱可塑性樹脂を含有させることが好ましい。
 エポキシ樹脂組成物[A]に配合される熱可塑性樹脂は、エポキシ樹脂組成物[B]に配合される熱可塑性樹脂と同一のものであってもよいし、それぞれが異なるものであってもよい。熱可塑性樹脂については、上記(b)において説明した熱可塑性樹脂と同様のものを使用できる。
 エポキシ樹脂組成物[A]に含まれる熱可塑性樹脂の配合量は、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂100質量部に対して、5~50質量部となるように配合することが好ましく、15~40質量部がより好ましい。5質量部未満の場合は、得られるFRPの耐衝撃性が不十分となる場合がある。50質量部を超える場合、粘度が著しく高くなり取扱性が著しく悪化する場合がある。
 本発明のプリプレグにおいて、エポキシ樹脂組成物[A]の粘度は、レオメーターを用いて測定される温度-粘度曲線から得られる80℃での粘度が100~5000Poiseであることが好ましく、100~4000Poiseであることがより好ましく、100~3000Poiseであることがさらに好ましく、200~2000Poiseであることが特に好ましい。100Poise以上であると、エポキシ樹脂組成物[A]は適度な凝集力が付与され、得られるプリプレグにタック性を持たせることができる。また、エポキシ樹脂組成物[B]に含まれる導電性粒子がプリプレグから脱離することを防ぎ、導電性粒子をプリプレグの表面近傍に留まらせる効果が高くなり、プリプレグを硬化して得られるFRPの厚さ方向の導電性がより高くなる傾向がある。エポキシ樹脂組成物[A]の粘度が高すぎると、プリプレグの取扱性が悪化しやすい傾向がある。また、エポキシ樹脂組成物[A]の最低樹脂粘度は4000Poise以下であることが好ましい。
 (j) 他の成分
 エポキシ樹脂組成物[A]には、本発明の目的・効果を損なわない限り、他の成分を含有させることができる。他の成分については、上記(e)において説明したとおりである。
 以下、本発明のプリプレグのより好ましい実施形態について説明する。
 本発明のプリプレグのより好ましい実施形態として、エポキシ樹脂組成物[B]が、レーザー回折法による平均粒子径が10~200μm、より好ましくは50~200μmである導電性粒子をさらに含んだエポキシ樹脂組成物[B]であるプリプレグが挙げられる。かかるプリプレグは、1次プリプレグに含浸される樹脂組成物(I)が粗大な導電性粒子を含んでいる。樹脂組成物(I)を強化繊維層内に含浸する際に、粗大な導電性粒子は強化繊維層の表面に留まるため、導電性粒子がプリプレグの表面層に局在化する。ここで、「粗大な」とは、強化繊維を構成する単繊維間の距離を基準として、この距離よりも大きいことを示す。
 レーザー回折法による平均粒子径が10~200μmである導電性粒子は、その粒子径が強化繊維層の単繊維間の距離と比べて大きいため、強化繊維層内に入り込み難い。そのため、エポキシ樹脂組成物[B]を強化繊維層内に含浸させると、導電性粒子が強化繊維層の表面に残存し露出する。さらに、本発明では、この1次プリプレグの少なくとも一方の表面にエポキシ樹脂組成物[A]からなる表面層を一体化させる。そのため、本発明において導電性粒子は、プリプレグの表面から強化繊維層にかけて局在化する。
 本実施形態のプリプレグはエポキシ樹脂組成物[A]が、熱可塑性樹脂を含むエポキシ樹脂組成物[A]からなることが好ましい。
 図4は、レーザー回折法による平均粒子径が10~200μmである導電性粒子を含んだエポキシ樹脂組成物[B]を用いたプリプレグの部分拡大図である。厚さ0.01~4mm、好ましくは0.1~2.0mmの1次プリプレグ6の少なくとも片面(本図においては両面)には、厚さ2~40μm、好ましくは5~30μmのエポキシ樹脂組成物[A]からなる表面層4a、4bが形成されている。このプリプレグは、強化繊維層にエポキシ樹脂組成物[B]を含浸させる際に、粒子径の大きな導電性粒子が強化繊維層に濾過されて強化繊維層の表面に残留する。そのため、エポキシ樹脂組成物[B]に含まれていた導電性粒子9の少なくとも一部は表面層に分布する。なお、8は、強化繊維である。
 図5は、本発明のプリプレグを積層して加熱成形することにより製造されるFRPの概念図を示す。導電性粒子34は、複数のプリプレグを積層硬化して得られる繊維強化複合材料(FRP)32において、互いに隣接する強化繊維層36と強化繊維層38との層間に存在する樹脂層40に存在し、強化繊維層36、38間を接続して厚さ方向Zの導電ブリッジとして働き、厚さ方向Zの導電性を向上させている。
 導電性粒子の粒子径が10μmよりも大きければ、導電性粒子が樹脂層に埋没しにくく、隣接する強化繊維層間での導電パスが十分に形成され、得られるFRPにおいて十分な導電性が得られる。
 本実施形態のプリプレグにおいて、エポキシ樹脂組成物[A]の粘度は、レオメーターを用いて測定される温度-粘度曲線から得られる80℃での粘度が100~1000Poiseであることが好ましく、より好ましくは200~800Poiseである。100Poise以上あると、エポキシ樹脂組成物[A]は適度な凝集力が付与され、得られるプリプレグにタック性を持たせることができる。また、エポキシ樹脂組成物[B]に含まれる導電性粒子がプリプレグから脱離することを防ぎ、導電性粒子をプリプレグの表面近傍に留まらせる効果が高くなり、プリプレグを硬化して得られるFRPの厚さ方向の導電性がより高くなる傾向がある。1000Poiseを超える場合は、樹脂組成物の粘度が高くなり過ぎ、プリプレグの取扱性が悪化しやすい傾向がある。
 エポキシ樹脂組成物[A]の粘度は、エポキシ樹脂組成物[A]の熱可塑性樹脂の含有量により適宜調整される。エポキシ樹脂組成物[A]に含まれる熱可塑性樹脂の配合量は、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂100質量部に対して、5~50質量部が好ましく、15~40質量部がより好ましい。5質量部以上であれば、エポキシ樹脂組成物[A]に十分な粘度を与えることができ、また、得られるFRPの耐衝撃性を向上させることができる。50質量部を超える場合、粘度が著しく高くなり取扱性が著しく悪化する場合がある。
 レーザー回折法による平均粒子径が10~200μmである導電性粒子を含んだエポキシ樹脂組成物[B]を用いる場合、エポキシ樹脂組成物[A]に含まれる導電性粒子の平均粒子径としては、0.01~30μmが好ましく、0.01~15μmがより好ましく、0.01~8μmであることが特に好ましい。特に、導電性粒子の平均粒子径が、0.01~8μmであると、導電性粒子の一部が、FRPの成形時に強化繊維層内にも適度に分散するため、得られるFRPの導電性が向上しやすい。
 また、本発明のプリプレグのもう一つのより好ましい実施形態としては、樹脂組成物(I)が、エポキシ樹脂の硬化剤を実質的に含まないエポキシ樹脂組成物[B]からなり、樹脂組成物(II)が、エポキシ樹脂の硬化剤を含むエポキシ樹脂組成物[A]からなるプリプレグが挙げられる。このプリプレグは、表面層を形成する樹脂組成物(II)は、硬化剤を含んでいるため粘度が高い。そのため、表面層の導電粒子が内層に移動し難く、プリプレグの表面層に留まる。
 また、本実施形態のプリプレグは、プリプレグの内層に硬化剤が実質的に存在しないため、長期間に亘り、優れたドレープ性及びタック性を示す。その結果、該プリプレグを長期間保管後に複数積層して作製するFRPにボイドなどの構造欠陥が生じ難い。
 本実施形態のプリプレグにおいてエポキシ樹脂組成物[A]は、多くの硬化剤を含んでいるため粘度が高く、エポキシ樹脂組成物[A]に含まれる導電性粒子は長期保管中もプリプレグの内層に沈降しにくい。そのため、導電性粒子はプリプレグの表面層に留まる。
 FRPの製造過程において、プリプレグの表面層に留まっていた導電性粒子は、硬化過程における樹脂の流動により、プリプレグの表面層から1次プリプレグ内の強化繊維層に向かって移動する。そのため、本発明のプリプレグを用いて得られるFRPは、FRPの表面層から強化繊維層までの厚さ方向全体に導電性粒子が分散し、隣接する強化繊維層と強化繊維層との間で導電パスが形成されることにより導電性が高いものとなる。なお、FRPの面方向の導電性は、強化繊維が導電性の場合、強化繊維より確保されている。
 本実施形態のプリプレグにおいて、1次プリプレグに用いられる樹脂組成物[B]に含まれるエポキシ樹脂と、表面層に用いられる樹脂組成物[A]に含まれるエポキシ樹脂との質量比は、1:1~5:1であることが好ましい。
 本実施形態のプリプレグにおいて、エポキシ樹脂組成物[A]は硬化剤を通常の樹脂組成物よりも多く含んでおり粘度が高いため、エポキシ樹脂組成物[A]に含まれる導電性粒子はプリプレグの内層に沈降しにくい。
 この実施形態のプリプレグにおいて、エポキシ樹脂組成物[A]は、樹脂の粘度を調節し、得られるFRPの耐衝撃性を改善する目的で熱可塑性樹脂を含んでいることが好ましい。エポキシ樹脂組成物[A]に含まれる熱可塑性樹脂の含有量は、用いるエポキシ樹脂の種類や求められるプリプレグ又はFRPの特性に応じて適宜調節すればよい。例えば、多官能のノボラック型エポキシ樹脂を、エポキシ樹脂組成物[A]とエポキシ樹脂組成物[B]とに配合されているエポキシ樹脂の総量、即ち、全エポキシ樹脂量に対して15質量%以上、好ましくは30~50質量%含有している場合には、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂100質量部に対して、熱可塑性樹脂が5質量部未満又は無配合の場合でも、取扱性の良いプリプレグ及び耐衝撃性の高いFRPが得られる。
 本実施形態において、エポキシ樹脂組成物[A]の好ましい粘度は、その最低樹脂粘度が1000~4000Poiseであり、より好ましくは最低樹脂粘度が1000~3000Poiseである。1000Poise以上あると、エポキシ樹脂組成物[A]に含まれる導電性粒子をプリプレグの表面近傍に留まらせる効果が高く、プリプレグを硬化して得られるFRPの厚さ方向の導電性がより高くなる傾向がある。4000Poiseを超える場合は、樹脂組成物の粘度が高くなり過ぎ、プリプレグのドレープ性やタック性が悪化するなど取扱性が悪化するので好ましくない。
 本発明においてエポキシ樹脂組成物[A]は、導電性粒子を含有する。導電性粒子は、プリプレグを硬化して得られるFRPにおいて、エポキシ樹脂組成物[A]が硬化して形成される表面層の厚さ方向の導電ブリッジとして働くことにより、強化繊維層同士を厚さ方向に接続し、厚さ方向の導電性を向上させる。この時、大多数の導電性粒子がFRPの表面層内にあることが望ましい。本実施形態においてもエポキシ樹脂組成物[A]に含まれる導電性粒子は、プリプレグの内層よりも表面層に多く分散する。その結果、プリプレグを積層硬化して得られるFRPにおいても、プリプレグの内層に相当する強化繊維層よりも、プリプレグの表面層に相当する樹脂層に導電性粒子は分散しやすくなる。
 本実施形態において、エポキシ樹脂組成物[A]に含まれる導電性粒子としては、平均粒子径が10μm未満であることが好ましい。10μm未満であると、導電性粒子の一部が成形時に強化繊維層に適度に分散するため、得られるFRPの導電性が向上しやすい。導電性粒子の平均粒子径としては、0.01μm以上がより好ましい。
 本実施形態において、エポキシ樹脂組成物[B]は硬化剤を含まない。そのため、エポキシ樹脂組成物[A]に含まれる硬化剤の量は、エポキシ樹脂組成物[A]とエポキシ樹脂組成物[B]とに配合されている全エポキシ樹脂を硬化させるのに充分な量を、用いるエポキシ樹脂及び硬化剤の種類に応じて適宜調節して配合することが好ましい。例えば、芳香族ジアミン化合物を硬化剤として用いる場合、エポキシ樹脂組成物[A]とエポキシ樹脂組成物[B]に含まれるエポキシ樹脂の総量100質量部に対して50~180質量部であることが好ましい。また、エポキシ樹脂組成物[A]に含まれる硬化剤の量は、保存安定性の観点から、エポキシ樹脂組成物[A]に用いられているエポキシ樹脂100質量部に対して、80~170質量部が好ましく、100~160質量部がより好ましい。
 本実施形態において、エポキシ樹脂組成物[A]には、プリプレグに含まれるすべてのエポキシ樹脂を硬化させるのに適した量の硬化剤が含まれている。そのため、エポキシ樹脂組成物[A]は、通常のエポキシ樹脂組成物に含まれるよりも多量のエポキシ樹脂硬化剤が含まれている。しかし、エポキシ樹脂組成物[A]は、プリプレグ製造時に、反応を促進させるような過度の熱履歴を受けることが無いため、エポキシ樹脂の架橋反応による樹脂組成物の硬化を抑えることができる。また、プリプレグ中でエポキシ樹脂の硬化剤が局在化しているため、硬化剤が含まれないエポキシ樹脂組成物[B]中では硬化反応が進行しない。そのため、本発明のプリプレグは長期間に亘り、タック性やドレープ性が低下しない。
 本発明のプリプレグの更なる好ましい実施形態としては、樹脂組成物(I)が、レーザー回折法による平均粒子径が500nm以下の導電性粒子を含むエポキシ樹脂組成物[B]からなるプリプレグである。本実施形態において、エポキシ樹脂組成物[B]に含まれる熱可塑性樹脂は、重量平均分子量8000~40000のエポキシ樹脂可溶性熱可塑性樹脂であることが好ましい。
 本実施形態では、導電性粒子がプリプレグの表面層に分散するとともに、平均粒子径が500nm以下の微細な導電性粒子がプリプレグの内層に分散している。本発明において内層を形成する樹脂組成物(I)は、エポキシ樹脂可溶性熱可塑性樹脂を含んでいるため粘度が高い。そのため、表面層及び内層の導電粒子は互いに移動し難い。このプリプレグを用いて作製されたFRPは、導電性粒子により導電ブリッジが形成されているため、厚さ方向における高い導電性と耐衝撃性とを兼ね備える。
 本実施形態においてエポキシ樹脂組成物[B]は、重量平均分子量8000~40000のエポキシ樹脂可溶性熱可塑性樹脂を含有していることが好ましい。このエポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂組成物[B]の粘度を調整し、得られるFRPの耐衝撃性を向上させる。エポキシ樹脂組成物[B]に含まれる重量平均分子量8000~40000のエポキシ樹脂可溶性熱可塑性樹脂の量は、エポキシ樹脂組成物[B]の最低粘度が50~3000Poiseとなる量とすることが好ましい。
 重量平均分子量8000~40000のエポキシ樹脂可溶性熱可塑性樹脂を含有するエポキシ樹脂組成物[B]は適度な粘度を有するため、強化繊維層内に十分に含浸させることができる。一方、1次プリプレグの表面層に配置されるエポキシ樹脂組成物[A]が強化繊維層内に沈み込むことを防止する。したがって、エポキシ樹脂組成物[B]に含まれる微細な導電性微粒子は強化繊維層内で分散し、表面層に拡散し難くなる。
 一方、エポキシ樹脂組成物[A]に含まれる導電性粒子は、プリプレグの表面層に留まる。その結果、本実施形態のプリプレグは、プリプレグ自体が優れた厚さ方向の導電性を有するとともに、このプリプレグを積層して硬化させたFRPにおいても優れた厚さ方向の導電性を有する。
 本実施形態においてエポキシ樹脂組成物[B]は、レーザー回折法による平均粒子径が500nm以下の導電性粒子(以下、「導電性微細粒子」ともいう)が配合される。また、エポキシ樹脂組成物[A]にも、レーザー回折法による平均粒子径が500nm以下の導電性粒子が配合されていることが好ましい。導電性微細粒子は、プリプレグを硬化して得られるFRPにおいて、樹脂層及び強化繊維層において均一に分散して導電ブリッジとして働く。その結果、FRPの厚さ方向における導電性が向上する。導電性微細粒子の平均粒子径は、200nm以下であることがより好ましく、100nm以下であることが特に好ましい。平均粒子径の下限値は特に限定されないが、一般的には1nm以上である。
 導電性微細粒子の配合量は、エポキシ樹脂組成物[A]及び[B]にそれぞれ含まれるエポキシ樹脂100質量部に対して、それぞれ0.2~20質量部であり、0.7~15質量部が好ましい。0.2質量部未満の場合、得られるFRPの厚さ方向における導電性を向上させ難い。また、20質量部を超える場合、樹脂組成物の粘度が著しく高くなり、取扱性が悪化する場合がある。
 本実施形態においても、エポキシ樹脂組成物[A]及び/又は[B]には、プリプレグを積層硬化して得られるFRPに導電性を付与するために、レーザー回折法による平均粒子径が5~250μmの導電性粒子(以下、「導電性粗大粒子」ともいう)が配合されることが好ましい。導電性粗大粒子は、プリプレグを積層して硬化させたFRPにおいて、積層されたプリプレグの強化繊維層同士の層間部分に局在化して、各プリプレグの強化繊維層同士を電気的に接続する役割を有する。その結果、FRPの厚さ方向における導電性が向上する。導電性粗大粒子の平均粒子径は、7~200μmであることがより好ましい。
 導電性粗大粒子の形状は特に限定されず、球状粒子でも非球状粒子でも、また多孔質粒子でもよい。強化繊維層間に導電ブリッジを形成する観点からは、大きなアスペクト比を有することが好ましい。アスペクト比は、平均で5以上であることが好ましく、10~100であることがより好ましい。
 導電性粗大粒子の配合量は、エポキシ樹脂組成物[A]及び[B]にそれぞれ含まれるエポキシ樹脂100質量部に対して、それぞれ0.2~20質量部であることが好ましく、0.7~10質量部が好ましい。0.2質量部未満の場合、得られるFRPの厚さ方向における導電性を向上させ難い。また、20質量部を超える場合、樹脂組成物の粘度が著しく高くなり、取扱性が悪化する場合がある。
 本実施形態においてエポキシ樹脂組成物[A]の好ましい粘度は、レオメーターを用いて測定される温度-粘度曲線から得られる80℃での粘度が100~5000Poiseであり、より好ましくは80℃での粘度が200~2000Poiseである。100Poise以上である場合、エポキシ樹脂組成物[A]は適度な凝集力が付与され、得られるプリプレグにタック性を付与することができる。また、導電性粗大粒子がプリプレグから脱離することを防ぎ、導電性粗大粒子をプリプレグの表面近傍に局在化させて保持する効果が高くなる。その結果、プリプレグを硬化して得られるFRPの厚さ方向の導電性がより高くなる傾向がある。5000Poiseを超える場合は、樹脂組成物の粘度が高くなり過ぎ、プリプレグの取扱性が悪化しやすい傾向がある。
 エポキシ樹脂組成物[A]の80℃での粘度を100~5000Poiseとするためには、エポキシ樹脂組成物[A]に含まれる熱可塑性樹脂の配合量は、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂100質量部に対して、5~50質量部であることが好ましく、15~40質量部であることがより好ましい。
 エポキシ樹脂組成物[A]に配合される導電性微細粒子の平均粒子径は、500nm以下であることが好ましく、20~300nmがより好ましく、20~100nmが特に好ましい。導電性微細粒子の平均粒子径が小さいほど、導電性微細粒子の一部が成形時に強化繊維層に適度に分散するため、得られるFRPの導電性を向上させ易い。
 (3) プリプレグの製造方法
 本発明のプリプレグは、エポキシ樹脂組成物[B]を含浸させてなる1次プリプレグと、表面層となるエポキシ樹脂組成物[A]のシートと、を加熱加圧することにより一体化させて製造される。
 図2(a)~(c)は、本発明のプリプレグが製造される過程を順次示す説明図である。先ず、強化繊維11からなる強化繊維層12の厚さ方向両側に、エポキシ樹脂組成物[B]からなる樹脂[B]シート13a、13bがそれぞれ積層される(図2(a))。この強化繊維層12と樹脂[B]シート13a、13bとは、熱ローラー等を用いて熱プレスされる。この熱プレスにより、エポキシ樹脂組成物[B]が強化繊維層12に含浸され、1次プリプレグ10が得られる(図2(b))。その後、この1次プリプレグ10の厚さ方向の両面に、エポキシ樹脂組成物[A]からなる樹脂[A]シート15a、15bがそれぞれ積層される(図2(c))。この1次プリプレグ10と樹脂[A]シート15a、15bとは、熱ローラー等を用いて熱プレスされる。この熱プレスにより、1次プリプレグ10と樹脂[A]シート15a、15bとは一体化され、本発明のプリプレグ100(図1)が得られる。
 図3は、本発明のプリプレグを製造する工程の一例を示す概念図である。図3中、21は炭素繊維等の繊維が一方向に引き揃えられた強化繊維層であり、矢印A方向に走行している。この強化繊維層21の厚さ方向両側には、シートロール23a、23bからそれぞれ供給される離型紙14a、14b付きの樹脂[B]シート13a、13bがそれぞれ積層される。この強化繊維層21と樹脂[B]シート13a、13bとは、離型紙14a、14bを介して熱ローラー27a、27bを用いて熱プレスされる。この熱プレスにより、樹脂[B]シート13a、13bの樹脂組成物が強化繊維層21内に含浸され、1次プリプレグ10が形成される。その後、1次プリプレグ10の両面に積層されている離型紙14a、14bは、ローラー24a、24bにそれぞれ巻き取られて1次プリプレグ10から除去される。次いで、離型紙が除去された1次プリプレグ10の両面には、シートロール25a、25bからそれぞれ供給される離型紙付きの樹脂[A]シート15a、15bがそれぞれ積層される。この1次プリプレグ10と樹脂[A]シート15a、15bとは、離型紙を介して熱ローラー29a、29bを用いて熱プレスされる。この熱プレスにより、本発明のプリプレグ100が形成される。離型紙がその両面に付着しているこのプリプレグ100は、ローラー101に巻き取られる。
 (3-1) 1次プリプレグの製造
 1次プリプレグは、強化繊維層内にエポキシ樹脂組成物[B]を含浸させることにより製造される。含浸方法としては、加熱により粘度を低下させた樹脂組成物を強化繊維層内に含浸させる乾式法を挙げることができる。かかる乾式法は、樹脂組成物を有機溶媒に溶解させて強化繊維層内に含浸させた後に該有機溶媒を除去する湿式法と比べて、有機溶媒が残存しないため好ましい。以下、乾式法によりプリプレグを製造する方法について説明する。
 (3-1-1) エポキシ樹脂組成物[B]の製造
 エポキシ樹脂組成物[B]は、前述の必須成分及び任意成分を混練することにより製造することができる。混練温度は、配合する樹脂の粘度、熱特性、硬化温度等を考慮して適宜調節されるが、硬化開始温度以下であり、50~120℃であることが好ましい。混練は、1段で行ってもよいし、多段で行ってもよい。また、エポキシ樹脂組成物[B]の各成分の混合順序は限定されない。エポキシ樹脂可溶性熱可塑性樹脂を用いる場合は、その全量又は一部をエポキシ樹脂に予め溶解して混練することができる。また、粉体などの状態でエポキシ樹脂中に分散粒子として混合してもよい。混練機械装置には、ロールミル、プラネタリーミキサー、ニーダー、エクストルーダー、バンバリーミキサー等、従来公知のものを用いることができる。
 (3-1-2) エポキシ樹脂組成物[B]の含浸
 エポキシ樹脂組成物[B]を強化繊維層内に含浸させる方法は、特に制限がない。特に好ましい含浸方法を以下に記載する。
 先ず、エポキシ樹脂組成物[B]からなる樹脂シート(「樹脂[B]シート」ともいう)が作製される。樹脂シートは公知の方法で作製できる。例えば、ダイコーター、アプリケーター、リバースロールコーター、コンマコーター、ナイフコーターなどを用いて、離型紙や離型シートなどの支持体上に流延、キャストすることにより作製できる。シート化の際の樹脂温度は、その樹脂の組成や粘度に応じて適宜設定される。
 エポキシ樹脂組成物[B]のシート化の加工温度は、通常、70~160℃が好ましく、75~140℃がより好ましい。70℃未満である場合、エポキシ樹脂組成物[B]の粘度が高いため、エポキシ樹脂組成物[B]を強化繊維層内に含浸させにくくなる。160℃を超える場合、エポキシ樹脂組成物[B]が硬化しやすくなり、得られるプリプレグのドレープ性が悪化しやすい。エポキシ樹脂組成物[B]をシート化する場合は、可能な限り短時間に行う。これにより、エポキシ樹脂組成物[B]の硬化を実質的に防止できる。
 樹脂[B]シートの厚さは、2~500μmとすることが好ましく、5~100μmとすることがより好ましい。
 次に、上記で得られたシート状のエポキシ樹脂組成物[B]を強化繊維層内に含浸させる。樹脂[B]シートを強化繊維層の片面又は両面に積層し、この積層体を加熱加圧する。加圧下で加熱処理することにより、エポキシ樹脂組成物[B]は粘度が低下し、強化繊維層の空隙に含浸される。
 含浸処理の加熱温度は、エポキシ樹脂組成物[B]の粘度、硬化温度などを考慮し、適宜調節することが出来る。好ましくは70~160℃であり、90~140℃がより好ましい。含浸温度が70℃未満である場合、エポキシ樹脂組成物[B]の粘度が高いため、エポキシ樹脂組成物[B]を強化繊維層内に含浸させ難い。含浸温度が160℃を超える場合、エポキシ樹脂組成物[B]が硬化しやすい。その結果、得られるプリプレグのドレープ性が悪化しやすい。
 含浸処理の時間は、10~300秒が好ましい。
 含浸処理の加圧条件は、エポキシ樹脂組成物[B]の組成や粘度に応じて適宜調整されるが、好ましくは、線圧9.8~245N/cm(1~25kg/cm)であり、より好ましくは19.6~147N/cm(2~15kg/cm)である。線圧が9.8N/cm未満である場合、エポキシ樹脂組成物[B]を強化繊維層内に十分に含浸させるのが困難である。245N/cmを超える場合、強化繊維を損傷させやすい。
 含浸処理の方法は、熱ローラー等を用いる従来公知の方法により行うことができる。含浸処理は1回で行ってもよく、複数回行ってもよい。このようにして、エポキシ樹脂組成物[B]が強化繊維層内に含浸された1次プリプレグが製造される。
 (3-2)エポキシ樹脂組成物[A]の製造
 エポキシ樹脂組成物[A]は、前述の必須成分及び任意成分を混練することにより製造することができる。エポキシ樹脂組成物[A]の製造方法は、上記(3-1-1)で説明したエポキシ樹脂組成物[B]と同様に製造することができる。
 得られたエポキシ樹脂組成物[A]は、シート状の1次プリプレグの表面に積層するためにシート状に加工される。加工方法は、前記(3-1-2)で説明した樹脂[B]シートと同様の方法を用いることができる。
 樹脂[A]シートの厚さは、2~30μmが好ましく、5~20μmが特に好ましい。2μm未満の場合は、得られるプリプレグのタック性が低下する。30μmを超える場合は、得られるプリプレグの取扱性やFRPの成形精度が低下しやすい。
 (3-3)1次プリプレグと樹脂[A]シートの積層一体化
 1次プリプレグの少なくとも一方の表面に、樹脂[A]シートを積層し加熱加圧することにより、1次プリプレグと樹脂[A]シートとが一体化した本発明のプリプレグが得られる。
 加熱温度は、エポキシ樹脂組成物[A]の粘度、硬化温度などを考慮し、適宜調節することができるが、50~90℃が好ましく、60~80℃がより好ましい。50℃未満である場合、エポキシ樹脂組成物[A]の粘度が高く、プリプレグ製造時の工程安定性を損なう虞がある。90℃を超える場合、エポキシ樹脂組成物[A]と、1次プリプレグを構成するエポキシ樹脂組成物[B]とが混合して、硬化反応が進行しやすくなる。その結果、得られるプリプレグを長期間保存した場合、タック性、ドレープ性が低下しやすくなる。
 加圧条件は、エポキシ樹脂組成物[B]の組成や粘度に応じて適宜調整されるが、好ましくは、線圧0.98~98N/cm(0.1~10kg/cm)であり、より好ましくは4.9~58.8N/cm(0.5~6kg/cm)である。線圧が0.98N/cm未満である場合、1次プリプレグと樹脂[A]シートとが十分に接着されない。線圧が98N/cmを超える場合、エポキシ樹脂組成物[A]が、1次プリプレグに含浸されているエポキシ樹脂組成物[B]に沈み込む。この場合は、エポキシ樹脂組成物[A]に含有される導電性粒子が、エポキシ樹脂組成物[B]に拡散しやすくなるため、プリプレグを成形して得られるFRPの導電性が低下しやすい傾向がある。
 上記製造方法により、エポキシ樹脂組成物[A]は、1次プリプレグの表面に一体化し、本発明のプリプレグの表面層が形成される。
 エポキシ樹脂組成物[B]の導電性粒子は、熱プレスによって強化繊維層の外側に局在化する。
 プリプレグの生産速度は特に限定されないが、生産性や経済性などを考慮すると、0.1m/min以上であり、1m/min以上であることが好ましく、5m/min以上であることが特に好ましい。
 本プリプレグは、上記の製造方法に限らず、例えば、強化繊維層の厚さ方向片面又は両面に樹脂[B]シート、樹脂[A]シートを順次積層して、1段階で熱プレスして製造することもできる。この場合は、エポキシ樹脂組成物[A]及び/又は[B]内に含まれている硬化剤が拡散しないように低温(50~90℃)で熱プレスを行うことが好ましい。
 本プリプレグは、本発明の効果を妨げない範囲において安定剤や離型剤、フィラー、着色剤等が配合されていても良い。
 (4)本プリプレグの使用方法
 本プリプレグは公知の手法により硬化させることによりFRPを作製することができる。本プリプレグを用いてFRPを作製する方法としては、従来公知の方法、例えば、マニュアルレイアップ、自動テープレイアップ(ATL)、自動繊維配置、真空バギング、オートクレーブ硬化、オートクレーブ以外の硬化、流体援用加工、圧力支援プロセス、マッチモールドプロセス、単純プレス硬化、プレスクレーブ硬化及び連続バンドプレスを使用する方法が挙げられる。
 例えば、本プリプレグを積層して、オートクレーブ中で0.2~1.0MPaに加圧し、150~204℃で1~8時間加熱することによって、FRPを成形することができる。
 本プリプレグは、硬化反応させる際に、加熱することによって、硬化剤がエポキシ樹脂組成物[A]及び[B]中に拡散される。これにより、エポキシ樹脂組成物[A]及び[B]がともに硬化する。
 FRPの製造過程において、プリプレグの表面層に存在していた導電性粒子は、硬化過程での樹脂の流動によりプリプレグの表面層から1次プリプレグ表面近傍の樹脂層、次いで1次プリプレグ内部の強化繊維層に向かって徐々に減少する濃度分布をもって分散する。そのため、本発明のプリプレグを用いて得られるFRPは、FRPの表面から強化繊維層まで厚さ方向全体に導電性粒子が存在し、導電性が高いものとなる。なお、FRPの面方向の導電性は、強化繊維が導電性の場合、強化繊維により確保されている。
 本プリプレグを用いて得られるFRPの導電性は、後述の測定方法による体積抵抗率で3.5kΩ・cm以下であり、好ましくは0.3kΩ・cm以下である。
 以下、実施例によって本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。本実施例、比較例において使用する成分や試験方法は以下のとおりである。
 〔成分〕
 (強化繊維)
・テナックス(商品名) IMS 65 E 23 24K 830tex:東邦テナックス(株)社製、炭素繊維ストランド、引張強度:5800MPa(590kgf/mm)、引張弾性率:290GPa(30tf/mm
 (エポキシ樹脂)
・アラルダイトMY0510(商品名):ハンツマン・アドバンスト・マテリアルズ社製、グリシジルアミン型エポキシ樹脂(3官能基)(以下、「MY0510」と略記する)
・アラルダイトMY0600(商品名):ハンツマン・アドバンスト・マテリアルズ社製、グリシジルアミン型エポキシ樹脂 (3官能基) (以下、「MY0600」と略記する)
・アラルダイトMY0610(商品名):ハンツマン・アドバンスト・マテリアルズ社製、グリシジルアミン型エポキシ樹脂 (3官能基)  (以下、「MY0610」と略記する)
・アラルダイトMY721(商品名):ハンツマン・アドバンスト・マテリアルズ社製、グリシジルアミン型エポキシ樹脂 (4官能基) (以下、「MY721」と略記する)
・アラルダイトMY725(商品名):ハンツマン・アドバンスト・マテリアルズ社製、グリシジルアミン型エポキシ樹脂 (4官能基) (以下、「MY725」と略記する)
・スミエポキシELM100(商品名):住友化学工業(株)製、グリシジルアミン型エポキシ樹脂 (3官能基) (以下、「ELM100」と略記する)
・エピコート154(商品名):三菱化学(株)製、ノボラック型エポキシ樹脂 (多官能基) (以下、「jER154」と略記する)
・エピコート604(商品名):三菱化学(株)製、グリシジルアミン型エポキシ樹脂 (4官能基)(以下、「jER604」と略記する) 
・エピコート828(商品名):三菱化学(株)製、グリシジルエーテル型エポキシ樹脂 (2官能基) (以下、「jER828」と略記する) 
 (エポキシ樹脂可溶性熱可塑性樹脂)
・Virantage VW-10200RSFP(商品名):Solvay Specialty Polymers社製、平均粒子径20μm、重量平均分子量(Mw)45,000のポリエーテルスルホン
・Virantage VW-10700RSFP(商品名):Solvay Specialty Polymers社製、平均粒子径20μm、重量平均分子量(Mw)22,000のポリエーテルスルホン
・Virantage DAMS VW-30500 RP(商品名):Solvay Specialty Polymers社製、平均粒子径100μm、重量平均分子量(Mw)14,000のポリルスルホン
・Ultrason E2020P(商品名):BASF社製、平均粒子径20μmのポリエーテルスルホン
・Ultem1000-1000(商品名):SABICイノベーティブプラスチックス社製、平均粒子径20μmのポリエーテルイミド
・UDEL(商品名):ソルベイスペシャルティポリマーズ社製、平均粒子径20μmのポリスルホン
・PES-5003P(商品名):住友化学工業(株)製、平均粒子径20μmのポリエーテルスルホン
 (エポキシ樹脂不溶性熱可塑性樹脂)
・TR-55(商品名):エムスケミージャパン社製、平均粒子径20μmのポリアミド粒子
・TR-90(商品名):エムスケミージャパン社製、平均粒子径20μmのポリアミド粒子
・ORGASOL1002D NAT(商品名):アルケマ社製、平均粒子径20μmのポリアミド粒子
・MXナイロン(商品名):三菱ガス化学(株)社製、平均粒子径20μmのポリアミド粒子
 (硬化剤)
・3,3’-ジアミノジフェニルスルホン:日本合成加工社製、芳香族アミン系硬化剤(以下、「3,3’-DDS」と略記する)
・4,4’-ジアミノジフェニルスルホン :和歌山精化社製、芳香族アミン系硬化剤(以下、「4,4’-DDS」と略記する)
 (導電性粒子)
・EC1500(商品名):伊藤黒鉛(株)製、平均粒子径7μmの膨張黒鉛
・VGCF-H(商品名):昭和電工(株)製、アスペクト比40、粒子径150nm(カタログ値)の気相法炭素繊維
・#51-R(商品名):JX日鉱日石金属(株)製、平均粒子径20~35μm(カタログ値)の銅粉
・ケッチェンブラックEC300J(商品名):ライオン(株)製、導電性カーボンブラック、平均粒子径39.5nm(カタログ値)(以下、「カーボンブラック」と略記する)
・スーパーファイン銀粉(平均粒子径100nm):DOWAエレクトロニクス(株)製、粒子径はカタログ値(以下、「100nmAg」と略記する)
・銀ナノ粒子乾粉(平均粒子径20nm):DOWAエレクトロニクス(株)製、粒子径はカタログ値(以下、「20nmAg」と略記する)
・ダイアリード(商品名):三菱樹脂(株)製、アスペクト比18のピッチ系炭素繊維ミルドファイバー、平均粒子径200μm(カタログ値)
・GRANOC(商品名):日本グラファイトファイバー(株)製、粒子径100μm(カタログ値)、アスペクト比8のピッチ系炭素繊維ミルドファイバー
・EC1500(商品名):伊藤黒鉛(株)製、球状の膨張黒鉛、平均粒子径7μm(以下、「膨張黒鉛」と略記する)
・10%Agコート2L3(商品名):福田金属箔粉工業(株)製、平均粒子径31μm(カタログ値)、フレーク状銀コート銅粉(非球状)(以下、「銅粉」と略記する)
 〔平均粒子径〕
 日機装(株)製のレーザー回折・散乱式の粒度分析計(マイクロトラック法)MT3300を用いて粒度分布を測定し、その50%粒子径(D50)を平均粒子径とした。なお、特に記載する場合を除き、本発明における平均粒子径は、この方法により測定される値をいう。
 〔アスペクト比〕
 アスペクト比は、ニコン(株)製 共焦点顕微鏡 HD100を用いて、各粒子の最大粒子径(繊維状の場合は繊維長)、最小粒子径(繊維状の場合は繊維径)の測定(n=50)を実施し、その比(最大粒子径/最小粒子径)をアスペクト比とした。
 〔粘度〕
 レオメトリクス社製レオメーターARES-RDAを用い、直径25mmのパラレルプレートを用い、パラレルプレート間のエポキシ樹脂組成物の厚さを0.5mmとし、角速度10ラジアン/秒の条件で昇温速度2℃/分で180℃まで粘度測定を行い、温度-粘度曲線から粘度を測定した。
 〔衝撃後圧縮強度(CAI)〕
 得られたプリプレグを一辺が360mmの正方形にカット、積層し、積層構成[+45/0/-45/90]3Sの積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅101.6mm × 長さ152.4mmの寸法に切断し、衝撃後圧縮強度(CAI)試験の試験片を得た。この試験片を用いて、SACMA SRM 2R-94に従い、30.5Jの衝撃を与えて損傷させた後、圧縮強度(CAI)を測定した。試験片圧縮試験機のクロスヘッドスピードは1.27mm/分とし、n=5で測定を行った。
 〔層間破壊靭性モードI(GIc)〕
 得られたプリプレグを一辺が360mmの正方形にカットした後、積層し、0°方向に10層積層した積層体を2つ作製した。初期クラックを発生させるために、離型シートを2つの積層体の間に挟み、両者を組み合わせ、積層構成[0]20のプリプレグ積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物(FRP)を幅 12.7 mm × 長さ 304.8 mmの寸法に切断し、層間破壊靭性モードI(GIc)の試験片を得た。
 GIcの試験方法として、双片持ちはり層間破壊靱性試験法(DCB法)を用い、離型シートの先端から12.7mmの予亀裂(初期クラック)を発生させた後に、さらに亀裂を進展させる試験を行った。予亀裂の先端から、亀裂進展長さが127mmに到達した時点で試験を終了させた。試験片引張試験機のクロスヘッドスピードは12.7mm/分とし、n=5で測定を行った。
 亀裂進展長さは顕微鏡を用いて試験片の両端面から測定し、荷重、及び亀裂開口変位を計測することにより、GIc算出した。
 〔層間破壊靭性モードII(GIIc)〕
 得られたプリプレグを所定の寸法にカットした後、積層し、0°方向に10層積層した積層体を2つ作製した。初期クラックを形成させるために、離型シートを2つの積層体の間に挟み、両者を組み合わせ、積層構成[0]20のプリプレグ積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物(繊維強化複合材料)を幅 12.7 mm × 長さ 304.8 mmの寸法に切断し、層間破壊靭性モードII(GIIc)の試験片を得た。この試験片を用いて、GIIc試験を行った。
 GIIc試験方法として、3点曲げ荷重を負荷するENF(end notched flexure test)試験を行った。支点間距離は101.6mmとした。厚さ25μmのPTFEシートにより作製したシートの先端が、支点から38.1mmとなるように試験片を配置し、この試験片に2.54mm/分の速度で曲げの負荷を与えて初期クラックを形成させた。
 その後、クラックの先端が、支点から25.4mmの位置になるように試験片を配置し、12.7mm/分の速度で曲げの負荷を与えて試験を行った。同様に、3回の試験を実施し、それぞれの曲げ試験の荷重―ストロークから各回のGIIcを算出した後、それらの平均値を算出した。
 クラックの先端は顕微鏡を用いて、試験片の両端面から測定を行った。GIIc試験の測定は、n=5の試験片で測定を行った。
 〔Z方向体積抵抗率〕
 本発明において、FRPの導電性は、Z方向(厚さ方向)の体積抵抗率をデジタルオームメーター(ADEX社製 AX-114N)を用いて測定した。体積抵抗率とは、所与の材料の固有抵抗である。材料のZ方向体積抵抗率ρは、下式
  ρ= RA/L
    R:材料からの均一な試験片の電気抵抗(Ω)、
    L:試験片の厚さ(m)、
    A:試験片の横断面積(m
により計算した。
 本発明では、体積抵抗はZ方向にのみ(FRPの厚みを貫通して)測定する。計算においては厚みが常に考慮されるので、すべての場合において、この値は「体積」抵抗率となる。
 〔Z方向体積抵抗率測定用試料の作製方法〕
 プリプレグをカット、積層し、積層構成[+45/0/-45/90]2Sの積層体を得た。真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅40mm × 長さ40mmの寸法に切断し、サンドペーパーを用いて、成形物の表面を炭素繊維が露出するまで研磨を行い、最終的に、2000番のサンドペーパーを用いて表面仕上げを行い試験片を得た。得られた試験片を、幅50mm × 長さ50mmの金メッキを施した電極に挟み、試験片に0.06MPaの荷重をかけて、デジタルオームメーターを用いてZ方向の抵抗値を測定し、上式から体積抵抗率を求めた。
 〔吸水率〕
 プリプレグを100×100mmにカットし、質量(W1)を測定した。その後、デシケーター中でプリプレグを水中に沈めた。デシケーター内を、10kPa以下に減圧し、プリプレグ内部の空気と水を置換させた。プリプレグを水中から取り出し、表面の水を拭き取り、プリプレグの質量(W2)を測定した。これらの測定値から下記式
  吸水率(%)=[(W2-W1)/W1]×100
   W1:プリプレグの質量(g)
   W2:吸水後のプリプレグの質量(g)
を用いて吸水率を算出した。
 〔室温保存安定性〕
 プリプレグを温度26.7℃、湿度65%に10日間保存した後に、プリプレグをカットし、金型に積層することにより評価した。評価結果は以下の基準(○~×)で表した。
○:金型へ積層しても十分追従し、製造直後とほとんど変わらない取扱性。
△:プリプレグの硬化反応が進行し、タック・ドレープ性が低下しているが、金型へ積層しても、使用するには問題のないレベル。
×:プリプレグの硬化反応が進行し、タック・ドレープ性が著しく低下しており、金型へ積層することが困難な状況。
 〔タック性〕
 プリプレグのタック性は、タッキング試験装置 TAC-II(RHESCA CO., LTD.)を用いて以下の方法により測定した。試験方法として、27℃に保持された試験ステージにプリプレグをセットし、27℃に保持されたφ5のタックプローブで初期荷重100gfの荷重をかけて、10mm/secの試験速度で引き抜いた際の最大の荷重を求めた。
 製造直後のプリプレグと、温度26.7℃、湿度65%に10日間保存したプリプレグに、それぞれタックプローブ試験を実施した。評価結果は以下の基準(○~×)で表した。
○:製造直後の荷重が200gf以上で、10日間保存後のタック保持率が50%以上100%未満。
△:製造直後の荷重が200gf以上で、10日間保存後のタック保持率が25%以上50%未満。
×:製造直後の荷重が200gf以上で、10日間保存後のタック保持率が0%以上25%未満。
 〔ドレープ性〕
 プリプレグのドレープ性は、ASTM D1388に準拠して、以下の試験により評価した。プリプレグを0°繊維方向に対し90°方向にカットし、傾斜角度 41.5°の傾斜に対するドレープ性(flexural rigidity, mg*cm)を評価した。この評価は、プリプレグの製造直後と、温度26.7℃、湿度65%で所定の期間保存した後とに、それぞれ実施した。評価結果は以下の基準(○~×)で表した。
○:20日間経過後でも、ドレープ性は製造直後と変わらない。
△:10日間経過後でも、ドレープ性は製造直後と変わらない。(10日後からは、若干ドレープ性に低下が見られた。)
×:10日間経過後では、ドレープ性が製造直後よりも低下し、使用するには問題のあるレベルであった。
 〔実施例1、2〕
 表1に記載する割合で、攪拌機を用いてエポキシ樹脂に熱可塑性樹脂を120℃で溶解させた。その後、80℃まで降温し、導電性粒子を添加して30分間混合し、エポキシ樹脂組成物[A]を調製した。
 表1に記載する割合で、攪拌機を用いてエポキシ樹脂にUltem1000-1000 10質量部を120℃で溶解させた。その後、80℃まで降温し、残りの熱可塑性樹脂、硬化剤を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。
 エポキシ樹脂組成物[A]及びエポキシ樹脂組成物[B]を、それぞれフィルムコーターを用いて離型フィルム上に塗布し、表1に示す目付けの樹脂[A]シート及び樹脂[B]シートを得た。
次に、樹脂[B]シート2枚の間に、前記炭素繊維ストランドを供給して一方向に均一に配列[目付け(190g/m)]させることにより、炭素繊維ストランドをシート状にし、これらをローラーを用いて、130℃で加圧及び加熱して、1次プリプレグを得た。
 その後、樹脂[A]シート2枚の間に前記1次プリプレグを供給し、ローラーを用いて70℃で加圧及び加熱して、ロールに巻き取り、プリプレグを得た。プリプレグ全体に対する樹脂の含有率は35質量%であった。得られたプリプレグの各種性能を表1に示した。
 実施例1、2で得られたプリプレグでは、導電性粒子がプリプレグ表面に分散している。そのため、このプリプレグを積層し硬化させて作製されるFRPの導電性は、十分に高いものであった。
 〔比較例1、2〕
 表1に記載する割合で、攪拌機を用いてエポキシ樹脂に80℃で硬化剤を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。なお、エポキシ樹脂組成物[B]には熱可塑性樹脂は添加しなかった。また、表1に記載する割合で、実施例1と同様の方法で、エポキシ樹脂組成物[A]を調製した。実施例1と同様の方法でプリプレグを製造し、得られたプリプレグの各種性能を表1に示した。
 エポキシ樹脂組成物[B]に熱可塑性樹脂を加えなかったため、比較例1、2で得られたプリプレグでは、導電性粒子がプリプレグの内層に沈み込んでしまった。そのため、得られたプリプレグを積層硬化して作製されたFRPは、2倍量の導電性粒子を加えた比較例2でさえも実施例1に比べて体積抵抗率が高く、導電性が低いものであった。また、比較例1、2では、FRPの耐衝撃性及び靭性も低いものであった。
 一方、実施例1、2は、熱可塑性樹脂の存在により、1次プリプレグに含浸されている樹脂組成物の最低粘度が比較例1、2に比べて高かった。そのため、導電性粒子がプリプレグの内層に沈み込み難かった。したがって、プリプレグを積層硬化して作製されたFRPでは、FRPの樹脂層(プリプレグの表面層及び1次プリプレグの樹脂層に由来する)に導電性粒子が多く留まり、各強化繊維層間(積層されたプリプレグの各強化繊維層に由来する)の導電ブリッジとして働いた。そのため、得られたFRPは、厚さ方向の体積抵抗率が低く、導電性が高いものであった。また、実施例1、2では、FRPの耐衝撃性及び靭性も高いものであった。
 〔実施例3~5〕
 エポキシ樹脂組成物[A]及びエポキシ樹脂組成物[B]で用いる熱可塑性樹脂を表1に記載するとおり変更した以外は、実施例1と同様の方法でプリプレグを製造した。得られたプリプレグの各種性能を表1に示した。
 熱可塑性樹脂の種類を変更した実施例3~5でも、実施例1、2と同様に、熱可塑性樹脂の存在により、プリプレグの内層である1次プリプレグに含浸されている樹脂組成物の最低粘度が比較例1、2に比べて高い。そのため、導電性粒子がプリプレグの内層に沈み込み難かった。したがって、プリプレグを積層硬化して作製されたFRPでは、FRPの樹脂層に導電性粒子が多く留まり、各強化繊維層間の導電ブリッジとして働いた。そのため、得られたFRPは、厚さ方向の体積抵抗率が低く、導電性が高いものであった。また、得られたFRPの耐衝撃性及び靭性も高いものであった。
Figure JPOXMLDOC01-appb-T000001
 
 〔実施例6~11〕
 表2に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂(Ultem1000-1000)10質量部を120℃で溶解させた。その後、80℃まで降温し、硬化剤、残りのエポキシ樹脂可溶性熱可塑性樹脂、エポキシ樹脂不溶性熱可塑性樹脂(TR-55)を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。エポキシ樹脂組成物[A]は、導電性粒子の添加量を変えた以外は、実施例1と同様に調製した。実施例1と同様の方法でプリプレグを製造し、得られたプリプレグの性能を表2に示した。
 実施例6~11で得られたプリプレグは、温度26.7℃、湿度65%で10日間保存した後におけるドレープ性は製造直後と変わらず、タック性は50%以上を維持しており、貯蔵安定性にも優れていた。また、得られたFRPは、厚さ方向の体積抵抗率が低く、導電性が高いものであった。得られたFRPは、耐衝撃性及び靭性も高いものであった。
 〔比較例3〕
 エポキシ樹脂組成物[A]に導電性粒子を添加しない以外は、実施例6と同様にプリプレグを製造し、得られたプリプレグの各種性能を表2に示した。
 〔比較例4、5〕
 エポキシ樹脂組成物[B]を、表2の割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂(Ultem1000-1000)10質量部を120℃で溶解させた。その後、80℃まで降温し、硬化剤、残りのエポキシ樹脂可溶性熱可塑性樹脂、エポキシ樹脂不溶性熱可塑性樹脂(TR-55)及び導電性粒子を添加し、30分間混合し、調製した。エポキシ樹脂組成物[A]は、攪拌機を用いてエポキシ樹脂に熱可塑性樹脂を120℃で溶解させ調製した。なお、エポキシ樹脂組成物[A]には導電性粒子を添加しなかった。その後、実施例1と同様にプリプレグを製造し、得られたプリプレグの各種性能を表2に示した。
 〔実施例12〕
 表2の割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂(Ultem1000-1000)10質量部を120℃で溶解させた。その後、80℃まで降温し、硬化剤、残りのエポキシ樹脂可溶性熱可塑性樹脂、エポキシ樹脂不溶性熱可塑性樹脂(TR-55)及び導電性粒子を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。エポキシ樹脂組成物[A]は、導電性粒子の添加量を表2に記載する割合に変えた以外は、実施例1と同様に調製した。その後、実施例1と同様にプリプレグを製造し、得られたプリプレグの各種性能を表2に示した。
 導電性粒子を添加していない比較例3は、FRPの各強化繊維層間に不溶性熱可塑性樹脂(TR-55)が分布し、FRPの樹脂層に絶縁層を形成する。そのため、得られたFRPは、厚さ方向の体積抵抗率が高く、導電性が低いものであった。
 一方、実施例6~11は、プリプレグの表面層に導電性粒子を添加することで、FRPの強化繊維層間(樹脂層)に導電性粒子が分散し、各強化繊維層間の厚さ方向の導電ブリッジとして働いた。その結果、樹脂層に不溶性熱可塑性樹脂(TR-55)が存在しているにも拘らず、得られたFRPは、体積抵抗率が低く、導電性が高いものであった。
 比較例4、5では、プリプレグの内層に熱可塑性樹脂に加えて、微小な固体粒子である導電性粒子を多量に(エポキシ樹脂組成物[B]に含まれるエポキシ樹脂100質量部に対してそれぞれ3質量部、6質量部)添加した。そのため、エポキシ樹脂組成物[B]は粘度が高くなり、プリプレグの樹脂含浸性が悪化するなど取扱性が悪化し、得られたFRPのGIcの値も低下してしまった。また、マトリクス樹脂全体に占める導電性粒子の割合が同程度になるように導電性粒子をエポキシ樹脂組成物[A]に含む場合(実施例9、10)に比べて、比較例4、5で得られたFRPは、体積抵抗率が高く、導電性が低いものであった。
 実施例12では、エポキシ樹脂組成物[A]、[B]の両方に導電性粒子を添加した。その結果、得られたFRPの導電性は、エポキシ樹脂組成物[A]のみに、マトリクス樹脂全体に占める添加量が同程度になるように導電性粒子を添加した場合(実施例9)と比べるとやや低下したものの、比較例4、5と比べると十分に高いものであった。
Figure JPOXMLDOC01-appb-T000002
 〔実施例13、14〕
 導電性粒子の種類をカーボンブラックからVGCFに変え、添加量を表3に記載する添加量とした以外は、実施例6と同様にプリプレグを製造し、得られたプリプレグの各種性能を表3に示した。
 〔比較例6〕
 導電性粒子の種類をカーボンブラックからVGCFに変えた以外は、比較例4と同様にプリプレグを製造し、得られたプリプレグの各種性能を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 〔実施例15、16〕
 導電性粒子の種類をカーボンブラックから膨張黒鉛に変え、添加量を表4に記載する添加量とした以外は、実施例6と同様にプリプレグを製造し、得られたプリプレグの各種性能を表4に示した。
 〔比較例7〕
 導電性粒子の種類をカーボンブラックから膨張黒鉛に変えた以外は、比較例4と同様にプリプレグを製造し、得られたプリプレグの各種性能を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 〔実施例17、18〕
 導電性粒子の種類をカーボンブラックから銅粉に変え、添加量を表5に記載する添加量とした以外は、実施例6と同様にプリプレグを製造し、得られたプリプレグの各種性能を表5に示した。
 〔比較例8〕
 導電性粒子の種類をカーボンブラックから銅粉に変えた以外は、比較例4と同様にプリプレグを製造し、得られたプリプレグの各種性能を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 〔実施例19~24〕
 エポキシ樹脂組成物[B]のエポキシ樹脂の種類を変えた以外は、実施例9と同様にプリプレグを製造し、得られたプリプレグの各種性能を表6に示した。
Figure JPOXMLDOC01-appb-T000006

 〔実施例25〕
 エポキシ樹脂組成物[B]のエポキシ樹脂不溶性熱可塑性樹脂の種類をTR-55からTR-90に変えた以外は、実施例9と同様にプリプレグを製造し、得られたプリプレグの各種性能を表7に示した。
 〔実施例26〕
 エポキシ樹脂組成物[A]及びエポキシ樹脂組成物[B]のエポキシ樹脂の種類をMY0600、MY721からそれぞれMY0610、MY725に変えた以外は、実施例9と同様にプリプレグを製造し、得られたプリプレグの各種性能を表7に示した。
 〔実施例27〕
 エポキシ樹脂組成物[A]及びエポキシ樹脂組成物[B]のエポキシ樹脂の種類をMY0600、MY721からそれぞれMY0610、MY725に変更し、更に導電性微粒子の添加量を変更した以外は、実施例12と同様にプリプレグを製造し、得られたプリプレグの各種性能を表7に示した。
 〔実施例28、29〕
 表7に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂(Ultem1000-1000)10質量部を120℃で溶解させた。その後、80℃に降温し、硬化剤、残りのエポキシ樹脂可溶性熱可塑性樹脂及びエポキシ樹脂不溶性熱可塑性樹脂(TR-55)を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。表7に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂(Ultem1000-1000)10質量部を120℃で溶解させた後、80℃に降温し、導電性粒子、硬化剤、残りのエポキシ樹脂可溶性熱可塑性樹脂及びエポキシ樹脂不溶性熱可塑性樹脂を添加して30分間混合し、エポキシ樹脂組成物[A]を調製した。実施例1と同様にプリプレグを製造し、得られたプリプレグの各種性能を表7に示した。
 実施例28、29では、プリプレグの表面層であるエポキシ樹脂組成物[A]に、硬化剤を添加したため、得られたプリプレグのドレープ性、タック性の維持率が実施例6~11に比べて低下し、室温保存安定性がやや低下していたものの、FRPの導電性、耐衝撃性は十分なものであった。
 〔実施例30、31〕
 表7に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂(Ultem1000-1000)7質量部を120℃で溶解させた。その後、80℃に降温し、残りのエポキシ樹脂可溶性熱可塑性樹脂、エポキシ樹脂不溶性熱可塑性樹脂を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。なお、エポキシ樹脂組成物[B]には硬化剤を添加しなかった。表7に記載する割合で、攪拌機を用いてエポキシ樹脂にすべてのエポキシ樹脂可溶性熱可塑性樹脂を120℃で溶解させた。その後、80℃に降温し、硬化剤、導電性粒子を添加して30分間混合し、エポキシ樹脂組成物[A]を調製した。実施例1と同様の方法でプリプレグを製造し、得られたプリプレグの各種性能を表7に示した。
 エポキシ樹脂組成物[B]に硬化剤を添加しなかった実施例30、31で得られたプリプレグは、実施例1、2と同様に導電性粒子がプリプレグ表面に分散している。そのため、得られたプリプレグを積層硬化して作製されたFRPの導電性は、十分に高く、耐衝撃性及び靭性も高いものであった。実施例30、31で得られたプリプレグは、ドレープ性、タック性ともに優れ、また、温度26.7℃、湿度65%で10日間保存した後でも、ドレープ性は製造直後と変わらず、タック性は50%以上を維持しており、室温保存安定性が優れていた。
Figure JPOXMLDOC01-appb-T000007

 〔比較例9~11〕
 表8に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂(Ultem1000-1000)10質量部を120℃で溶解させた。その後、80℃に降温し、硬化剤、残りのエポキシ樹脂可溶性熱可塑性樹脂、エポキシ樹脂不溶性熱可塑性樹脂(TR-55)及び導電性粒子を添加して30分間混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物をフィルムコーターを用いて、表8に示す目付けで離型フィルム上に塗布し、樹脂シートを得た。次に、この樹脂シート2枚の間に、前記炭素繊維ストランドを一方向に均一に配列[目付け(190g/m)]させて供給し、ローラーを用いて130℃で加圧及び加熱した後、ロールに巻き取り、プリプレグを得た。このプリプレグ全体に対する樹脂組成物の含有率は35質量%であった。得られたプリプレグの各種性能を表8に示した。
 比較例9~11は、熱可塑性樹脂及び微小な固体粒子である導電性粒子をエポキシ樹脂を多量に添加したため、樹脂組成物の粘度が高くなった。そのため、プリプレグの樹脂含浸性が悪化するなど取扱性が悪化した。また、得られたFRPのGIcの値も低いものであった。
 また、比較例9~11のプリプレグは、3官能グリシジルアミン型エポキシ樹脂と3,3’-DDSとの硬化反応により、室温保存安定性、タック保持性、ドレープ性が著しく悪化しており、使用するのは困難であった。
 また更に、比較例9~11は、プリプレグ全体に導電性粒子が混ざっている。そのため、マトリクス樹脂全体に占める導電性粒子の割合が同程度で、プリプレグの表面層のみに導電性粒子を含む場合(実施例9、10)と比べて、強化繊維層内に沈み込んでいる導電性粒子の量が多い。したがって、プリプレグを積層硬化して作製されたFRPは、各強化繊維層同士を接続する導電性粒子の量が少なくなる。そのため、比較例9~11では、プリプレグの表面層のみに導電性粒子が添加されている実施例9、10と比較して体積抵抗率が高い値となった。
Figure JPOXMLDOC01-appb-T000008
 〔実施例32、33〕
 表9に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂を120℃で溶解させた後、80℃まで降温し、導電性粒子を添加して30分間混合し、エポキシ樹脂組成物[A]を調製した。表9に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂10質量部を120℃で溶解させた。その後、80℃まで降温し、残りのエポキシ樹脂可溶性熱可塑性樹脂、導電性粒子、硬化剤、エポキシ樹脂不溶性熱可塑性樹脂を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。実施例1と同様にプリプレグを製造し、得られたプリプレグの各種性能を表9に示した。
 実施例32、33のプリプレグは、1次プリプレグ表面に粒子径の大きな導電性粒子が存在することにより、プリプレグの表面層に導電性粒子が分散した。これにより、FRPの樹脂層に導電性粒子が分散してFRPの各強化繊維層間の導電ブリッジとして働き、導電性が向上した。
Figure JPOXMLDOC01-appb-T000009
 〔比較例12-15〕
 表10に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂10質量部を120℃で溶解させた。その後、80℃まで降温し、硬化剤、残りのエポキシ樹脂可溶性熱可塑性樹脂、エポキシ樹脂不溶性熱可塑性樹脂及び導電性粒子を添加して30分間混合し、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物をフィルムコーターを用いて、表10に示す目付けで離型フィルム上に塗布し、樹脂シートを得た。
 次に、樹脂シート2枚の間に、前記炭素繊維ストランドを一方向に均一に配列[目付け(190g/m)]させて供給し、ローラーを用いて、130℃で加圧及び加熱して、ロールに巻き取り、プリプレグを得た。プリプレグ全体に対する樹脂組成物の含有率は35質量%であった。得られたプリプレグの各種性能を表10に示した。
 比較例12-15は、熱可塑性樹脂に加えて、導電性粒子をエポキシ樹脂100質量部に対して10~20質量部と多量に添加したため、樹脂組成物の粘度が高くなった。そのため、プリプレグの樹脂含浸性が悪化するなど取扱性が悪化した。また、得られたFRPのGIcの値も低いものであった。
 また、比較例12-15のプリプレグは、3官能グリシジルアミン型エポキシ樹脂と3,3’-DDSとの硬化反応により、室温保存安定性、タック保持性、ドレープ性が著しく悪化しており、使用するのは困難であった。
Figure JPOXMLDOC01-appb-T000010
 〔実施例34、35〕
 表11に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂を120℃で溶解させた後、80℃まで降温し、硬化剤、導電性粒子を添加して30分間混合し、エポキシ樹脂組成物[A]を調製した。表11に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂を120℃で溶解させた後、80℃まで降温し、エポキシ樹脂不溶性熱可塑性樹脂を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。
 エポキシ樹脂組成物[A]、エポキシ樹脂組成物[B]を、それぞれフィルムコーターを用いて離型フィルム上に塗布し、表11に示す目付けの樹脂[A]シート、樹脂[B]シートを得た。
 次に、樹脂[B]シート2枚の間に、前記炭素繊維ストランドを供給して一方向に均一に配列[目付け(190g/m)]させることにより、炭素繊維ストランドをシート状にし、ローラーを用いて140℃で加圧及び加熱して、1次プリプレグを得た。
 得られた1次プリプレグを樹脂[A]シート2枚の間に供給し、ローラーを用いて70℃で加圧及び加熱して、ロールに巻き取り、プリプレグを得た。プリプレグ全体に対する樹脂組成物の含有率は35質量%であった。得られたプリプレグの各種性能を表11に示した。
Figure JPOXMLDOC01-appb-T000011
 〔実施例36-40〕
 表12に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂を120℃で溶解させた後、80℃まで降温し、硬化剤、エポキシ樹脂不溶性熱可塑性樹脂、導電性粒子を添加して30分間混合し、エポキシ樹脂組成物[A]を調製した。表12に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂を120℃で溶解させた後、80℃まで降温し、エポキシ樹脂不溶性熱可塑性樹脂、導電性粒子を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。
 次に、樹脂[B]シート2枚の間に、前記炭素繊維ストランドを供給して一方向に均一に配列[目付け(190g/m)]させることにより、炭素繊維ストランドをシート状にし、これらをローラーを用いて、140℃で加圧及び加熱して、1次プリプレグを得た。
 その後、樹脂[A]シート2枚の間に前記1次プリプレグを供給し、ローラーを用いて70℃で加圧及び加熱して、ロールに巻き取り、プリプレグを得た。プリプレグ全体に対する樹脂組成物の含有率は35質量%であった。得られたプリプレグの各種性能を表12に示した。
 実施例36-40では、プリプレグの表面層を構成するエポキシ樹脂組成物[A]と、プリプレグ内層を構成するエポキシ樹脂組成物[B]とに導電性粒子を添加した。エポキシ樹脂組成物[B]には、平均粒子径が10μm以上の導電性粒子であるダイアリードと、平均粒子径が5μm以下の導電性粒子であるカーボンブラックとを添加した。
 平均粒子径が10μm以上の導電性粒子であるダイアリードは、強化繊維層内にエポキシ樹脂組成物[B]を含浸させる工程において、強化繊維層内に入り込み難く、プリプレグの表面層に残留した。一方、平均粒子径が5μm以下の導電性粒子であるカーボンブラックは、強化繊維層内に入り込んで拡散した。
 その結果、実施例36-40で得られたプリプレグでは、強化繊維層近傍にエポキシ樹脂組成物[B]に由来する平均粒子径が10~200μmの導電性粒子と、エポキシ樹脂組成物[A]に由来する導電性粒子とが分散していた。
 また、実施例36-40のプリプレグでは、成型時において、隣接する強化繊維層と強化繊維層との間(層間)に粒子径の大きな導電性粒子が分散する一方、粒子径の小さな導電性粒子が強化繊維層間及び強化繊維層内にも分散される。これにより、FRPの強化繊維層間、強化繊維層内のそれぞれにおいて導電性粒子が導電ブリッジとして働き、FRPの厚さ方向の導電性を更に向上させることができた。
 また、プリプレグの内層に硬化剤が含有されていないため、プリプレグの取扱性及び室温保存安定性は良好であった。
 〔実施例41〕
 表12に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂(VW-10200RSFP)10質量部を120℃で溶解させた後、80℃まで降温し、硬化剤、残りのエポキシ樹脂可溶性熱可塑性樹脂、エポキシ樹脂不溶性熱可塑性樹脂、導電性粒子を添加して30分間混合し、エポキシ樹脂組成物[A]を調製した。表12に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂(VW-10200RSFP)10質量部を120℃で溶解させた後、80℃まで降温し、残りのエポキシ樹脂可溶性熱可塑性樹脂、エポキシ樹脂不溶性熱可塑性樹脂、導電性粒子を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。実施例36と同様にプリプレグを製造し、得られたプリプレグの各種性能を表12に示した。
 実施例41では、エポキシ樹脂可溶性熱可塑性樹脂として重量平均分子量(Mw)が40000以上のポリエーテルスルホンを用いたことから、得られたエポキシ樹脂組成物[A]及びエポキシ樹脂組成物[B]の粘度が増加した。
Figure JPOXMLDOC01-appb-T000012
 〔実施例42-46〕
 エポキシ樹脂組成物[A]及び[B]で用いる導電性粒子の種類を、カーボンブラックからVGCFに、ダイアリードからGRANOCにそれぞれ変更し、表13に記載する割合とした以外は実施例36と同様の方法でプリプレグを得た。
 実施例36-41で得られたプリプレグと同様に、実施例42-46で得られたプリプレグも優れた導電性を有していた。
 また、プリプレグの内層に硬化剤が含有されていないため、プリプレグの取扱性及び室温保存安定性は良好であった。
Figure JPOXMLDOC01-appb-T000013
 〔実施例47〕
 表14に記載する割合で、攪拌機を用いて80℃のエポキシ樹脂に導電性粒子を加えて30分間撹拌し、エポキシ樹脂組成物[A]を調製した。表14の割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂を120℃で溶解させた後、80℃まで降温し、硬化剤、導電性粒子、エポキシ樹脂不溶性熱可塑性樹脂を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。
 エポキシ樹脂組成物[A]、エポキシ樹脂組成物[B]を、それぞれフィルムコーターを用いて離型シート上に塗布し、表14に示す目付けの樹脂[A]シート、樹脂[B]シートを得た。
 次に、樹脂[B]シート2枚の間に、前記炭素繊維ストランドを供給して一方向に均一に配列[目付け(190g/m)]させることにより、炭素繊維ストランドをシート状にし、これらをローラーを用いて、90℃で加圧及び加熱して、1次プリプレグを得た。
 その後、樹脂[A]シート2枚の間に前記1次プリプレグを供給し、ローラーを用いて70℃で加圧及び加熱して、ロールに巻き取り、プリプレグを得た。プリプレグ全体に対する樹脂組成物の含有率は35質量%であった。得られたプリプレグの各種性能を表14に示した。
 実施例47で得られたプリプレグは、導電性粗大粒子がプリプレグの表面に存在し、かつ、導電性微細粒子が強化繊維層に分散する。そのため、このプリプレグを積層し硬化させて作製されるFRPの導電性は、十分に高いものであった。また、本プリプレグは保存安定性が優れたものであった。本プリプレグから作製されるCFRPは、優れた機械物性と厚さ方向の導電性とを兼ね備えていた。
Figure JPOXMLDOC01-appb-T000014
 〔実施例48-57〕
 表15に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂を120℃で溶解させた後、80℃まで降温し、導電性粒子を加えて30分間撹拌し、エポキシ樹脂組成物[A]を調製した。表15に記載する割合で、攪拌機を用いてエポキシ樹脂にエポキシ樹脂可溶性熱可塑性樹脂(DAMS VW-30500RP)を120℃で溶解させた後、80℃まで降温し、残りのエポキシ樹脂可溶性熱可塑性樹脂(VW-10700RSFP)、エポキシ樹脂不溶性熱可塑性樹脂、硬化剤、導電性粒子を添加して30分間混合し、エポキシ樹脂組成物[B]を調製した。
 エポキシ樹脂組成物[A]、エポキシ樹脂組成物[B]を、それぞれフィルムコーターを用いて離型シート上に塗布し、表15に示す目付けの樹脂[A]シート、樹脂[B]シートを得た。
 次に、樹脂[B]シート2枚の間に、前記炭素繊維ストランドを供給して一方向に均一に配列[目付け(190g/m)]させることにより、炭素繊維ストランドをシート状にし、これらをローラーを用いて、130℃で加圧及び加熱して、1次プリプレグを得た。
 その後、樹脂[A]シート2枚の間に前記1次プリプレグを供給し、ローラーを用いて70℃で加圧及び加熱して、ロールに巻き取り、プリプレグを得た。プリプレグ全体に対する樹脂組成物の含有率は35質量%であった。得られたプリプレグの各種性能を表15に示した。
 実施例48-57で得られたプリプレグは、表面層に硬化剤が含まれないため、プリプレグの取扱性が優れていた。また、導電性粗大粒子がプリプレグの表面層に局在化し、また、導電性微細粒子が表面層及び強化繊維層内に分散している。これにより、得られたプリプレグを用いて作製されたCFRPは、CFRPの強化繊維層内で導電性微細粒子が分散し、さらには強化繊維層間に導電性粗大粒子が局在化している。そのため、CFRPの導電性は、十分に高いものであった。また、本プリプレグは保存安定性が優れたものであった。本プリプレグから作製されるCFRPは、優れた機械物性と厚さ方向の導電性とを兼ね備えていた。
 〔実施例58〕
 エポキシ樹脂組成物[B]に導電性粗大粒子を配合しない以外は、実施例50と同様の方法でプリプレグを製造した。このプリプレグの各種性能を表15に示した。
 実施例58で得られたプリプレグは、保存安定性は優れていた。また、このプリプレグを用いて作製したCFRPの機械物性は優れていたが、CFRPの強化繊維層間(樹脂層)に導電性粗大粒子が存在しないため、導電ブリッジの形成がやや不十分となった。そのため、CFRPの導電性は、実施例4に比べて低い値となったものの、十分実用に耐えうる値であった。
 〔比較例16〕
 エポキシ樹脂組成物[A]及び[B]に導電性粒子を添加しない以外は、実施例48と同様の方法でプリプレグを製造した。このプリプレグの各種性能を表15に示した。
 比較例16で得られたプリプレグは、保存安定性は優れていた。また、このプリプレグを用いて作製したCFRPは、機械物性は優れていたが、導電性粒子を添加していないため、導電性は低い値となった。
 〔比較例17〕
 エポキシ樹脂組成物[A]に導電性粒子を添加しない以外は、実施例48と同様の方法でプリプレグを製造した。このプリプレグの各種性能を表15に示した。
 比較例17で得られたプリプレグは、保存安定性は優れていた。また、このプリプレグを用いて作製したCFRPは、機械物性は優れていたが、エポキシ樹脂組成物[A]に導電性粒子を添加していないため、導電性は低い値となった。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 100・・・プリプレグ
  10・・・1次プリプレグ
  11・・・強化繊維
  12、21、36、38・・・強化繊維層
  13・・・エポキシ樹脂組成物[B]
    13a、13b・・・樹脂[B]シート
  14a、14b・・・離型紙
  15・・・エポキシ樹脂組成物[A]
    15a、15b・・・樹脂[A]シート
  40・・・樹脂層
  34・・・導電性粗大粒子
  21・・・強化繊維層
  23a、23b・・・樹脂[A]シートのロール
  24a、24b・・・離型紙の巻き取りロール
  25a、25b・・・樹脂[B]シートのロール
  27a、27b、29a、29b・・・熱ローラー
  101・・・プリプレグの巻き取りロール
  A・・・強化繊維シートの走行方向を示す矢印
  Z・・・強化繊維シートの厚さ方向を示す矢印

Claims (17)

  1.  強化繊維と、前記強化繊維が形成する強化繊維層内に含浸された樹脂組成物(I)と、からなる1次プリプレグと、
     前記1次プリプレグの片面又は両面に形成される樹脂組成物(II)からなる表面層と、
    からなるプリプレグであって、
     樹脂組成物(I)は、少なくともエポキシ樹脂と、熱可塑性樹脂とを含むエポキシ樹脂組成物[B]であり、
     樹脂組成物(II)は、少なくともエポキシ樹脂と、導電性粒子とを含むエポキシ樹脂組成物[A]であるプリプレグ。
  2.  エポキシ樹脂組成物[A]の導電性粒子の含有量が、エポキシ樹脂組成物[A]に含まれるエポキシ樹脂100質量部に対して0.2~20質量部である請求項1に記載のプリプレグ。
  3.  エポキシ樹脂組成物[A]に含まれる導電性粒子が、レーザー回折法による平均粒子径10μm未満の導電性粒子である請求項1に記載のプリプレグ。
  4.  エポキシ樹脂組成物[A]に含まれるエポキシ樹脂とエポキシ樹脂組成物[B]に含まれるエポキシ樹脂との質量比が、1:1~1:9である請求項1に記載のプリプレグ。
  5.  エポキシ樹脂組成物[B]に含まれる熱可塑性樹脂が、エポキシ樹脂可溶性熱可塑性樹脂である請求項1に記載のプリプレグ。
  6.  エポキシ樹脂組成物[B]に含まれる熱可塑性樹脂が、エポキシ樹脂可溶性熱可塑性樹脂及びエポキシ樹脂不溶性熱可塑性樹脂である請求項1に記載のプリプレグ。
  7.  前記エポキシ樹脂可溶性熱可塑性樹脂が、ポリエーテルスルホン、ポリエーテルイミド、ポリカーボネート、ポリスルホンから選択される少なくとも1種である請求項5又は請求項6に記載のプリプレグ。
  8.  前記エポキシ樹脂不溶性熱可塑性樹脂が、非晶性ナイロン、ナイロン6、ナイロン12、非晶性ポリイミドから選択される少なくとも1種である請求項6に記載のプリプレグ。
  9.  エポキシ樹脂可溶性熱可塑性樹脂の重量平均分子量(Mw)が8000~40000である請求項5又は請求項6に記載のプリプレグ。
  10.  エポキシ樹脂組成物[B]が、エポキシ樹脂組成物[B]に含まれるエポキシ樹脂100質量部に対して0.2~20質量部の導電性粒子を更に含む請求項1に記載のプリプレグ。
  11.  エポキシ樹脂組成物[B]に含まれる導電性粒子が、レーザー回折法による平均粒子径が10~200μmの導電性粒子である請求項10に記載のプリプレグ。
  12.  エポキシ樹脂組成物[A]及びエポキシ樹脂組成物[B]の少なくとも一方が硬化剤を含む請求項1に記載のプリプレグ。
  13.  エポキシ樹脂組成物[B]が、エポキシ樹脂の硬化剤を含まないエポキシ樹脂組成物であり、
     エポキシ樹脂組成物[A]が、エポキシ樹脂の硬化剤を含むエポキシ樹脂組成物である請求項1に記載のプリプレグ。
  14.  前記導電性粒子が、カーボン粒子、金属粒子、被覆導電性粒子、及び炭素繊維粒子から選択される少なくとも1種である請求項1に記載のプリプレグ。
  15.  前記カーボン粒子が、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、膨張黒鉛、鱗片状黒鉛、黒鉛粉末、黒鉛粒子、グラフェンシート、カーボンミルドファイバーから選択される少なくとも1種である請求項14に記載のプリプレグ。
  16.  強化繊維が炭素繊維である請求項1に記載のプリプレグ。
  17.  強化繊維層内に樹脂組成物(I)を含浸させることにより1次プリプレグを得、
     次いで、前記1次プリプレグの片面又は両面に、樹脂脂組成物(II)のシートを積重して、前記1次プリプレグと樹脂組成物(II)のシートとを熱圧着することにより一体化させることを特徴とする請求項1に記載のプリプレグの製造方法。
PCT/JP2013/075922 2012-09-26 2013-09-25 プリプレグ及びその製造方法 WO2014050896A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380050176.1A CN105164192B (zh) 2012-09-26 2013-09-25 预浸料及其制造方法
JP2014527397A JP5603528B2 (ja) 2012-09-26 2013-09-25 プリプレグ及びその製造方法
ES13841025T ES2732361T3 (es) 2012-09-26 2013-09-25 Material preimpregnado y método para producir el mismo
EP13841025.3A EP2902435B1 (en) 2012-09-26 2013-09-25 Prepreg and method for producing same
US14/431,079 US10927226B2 (en) 2012-09-26 2013-09-25 Prepreg and method for producing same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2012-212949 2012-09-26
JP2012212949 2012-09-26
JP2012212939 2012-09-26
JP2012-212934 2012-09-26
JP2012212934 2012-09-26
JP2012-212939 2012-09-26
JP2013-167899 2013-08-12
JP2013167899 2013-08-12
JP2013-167900 2013-08-12
JP2013167900 2013-08-12

Publications (1)

Publication Number Publication Date
WO2014050896A1 true WO2014050896A1 (ja) 2014-04-03

Family

ID=50388291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075922 WO2014050896A1 (ja) 2012-09-26 2013-09-25 プリプレグ及びその製造方法

Country Status (6)

Country Link
US (1) US10927226B2 (ja)
EP (1) EP2902435B1 (ja)
JP (5) JP5603528B2 (ja)
CN (1) CN105164192B (ja)
ES (1) ES2732361T3 (ja)
WO (1) WO2014050896A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105086363A (zh) * 2015-07-31 2015-11-25 山东大学 基于共固化和反应诱导相分离的复合材料功能改性方法
WO2016002777A1 (ja) * 2014-06-30 2016-01-07 三菱レイヨン株式会社 トウプリプレグ、及び複合材料圧力容器とその製造方法
WO2016136052A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2016183328A (ja) * 2014-07-28 2016-10-20 東邦テナックス株式会社 プリプレグおよび繊維強化複合材料
JP2017501904A (ja) * 2013-12-13 2017-01-19 サイテック インダストリーズ インコーポレイテッド 導電特性及び耐層間剥離特性を有する複合材料
JP2017031352A (ja) * 2015-08-04 2017-02-09 富士ゼロックス株式会社 樹脂成形体用中間体及び樹脂成形体
JP2017045558A (ja) * 2015-08-25 2017-03-02 矢崎総業株式会社 導電性樹脂体及び車両アース構造
JP2017132932A (ja) * 2016-01-29 2017-08-03 東レ株式会社 プリプレグおよび繊維強化複合材料
WO2017135376A1 (ja) * 2016-02-05 2017-08-10 住友化学株式会社 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
WO2017135379A1 (ja) * 2016-02-05 2017-08-10 住友化学株式会社 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
JP2017141426A (ja) * 2016-02-05 2017-08-17 住友化学株式会社 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
JP2017141427A (ja) * 2016-02-05 2017-08-17 住友化学株式会社 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
KR20180045796A (ko) * 2016-10-26 2018-05-04 주식회사 스탠다드그래핀 탄소 섬유 프리프레그 또는 탄소 섬유-강화 플라스틱 및 이를 포함하는 내외장재
JP2018531809A (ja) * 2015-07-08 2018-11-01 ジー−ロッズ インターナショナル リミティド ライアビリティ カンパニー 様々なコンポーネントへのグラフェンの組み込み及び製造方法
JP2018172487A (ja) * 2017-03-31 2018-11-08 帝人株式会社 プリプレグ及びその製造方法、並びに繊維強化複合材料
JP2018535131A (ja) * 2015-09-14 2018-11-29 リンテック オブ アメリカ インコーポレーテッドLintec of America, Inc. 形状適応性複数層複合材
JP2019510090A (ja) * 2016-01-04 2019-04-11 ダウ グローバル テクノロジーズ エルエルシー 低減された表面粗さを有する繊維複合材及びそれらを作製する方法
KR20190054064A (ko) * 2016-09-16 2019-05-21 스미또모 가가꾸 가부시끼가이샤 방향족 폴리에테르 미립자, 수지 경화물의 제조 방법 및 탄소 섬유 강화 복합 재료의 제조 방법
CN111423692A (zh) * 2019-01-10 2020-07-17 山东非金属材料研究所 一种导电复合材料及其制备方法
WO2020149662A1 (ko) * 2019-01-17 2020-07-23 한국기계연구원 복합체 및 복합체의 제조 방법
CN113402750A (zh) * 2021-06-04 2021-09-17 中国航发北京航空材料研究院 一种具有三维网络结构的石墨烯预浸料的制备方法
WO2022004586A1 (ja) * 2020-06-30 2022-01-06 東レ株式会社 繊維強化複合材料およびプリプレグの製造方法
WO2023182432A1 (ja) * 2022-03-23 2023-09-28 帝人株式会社 熱硬化性プリプレグ及びその製造方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106459452B (zh) * 2014-09-12 2018-03-20 三菱化学株式会社 成型材料、片状模塑料以及使用其而获得的纤维增强复合材料
JP6682811B2 (ja) * 2015-11-10 2020-04-15 株式会社Ihi 繊維強化複合材料の界面接着強度検査方法および試験片
JP6332478B2 (ja) * 2015-12-14 2018-05-30 三菱ケミカル株式会社 多軸挿入編物基材の製造方法、多軸挿入編物基材、及び繊維強化複合材料
US11028244B2 (en) * 2015-12-16 2021-06-08 Toray Industries, Inc. Prepreg, laminate body, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
JP6739178B2 (ja) * 2016-01-27 2020-08-12 帝人株式会社 プリプレグの製造方法
BR112018071036A2 (pt) * 2016-04-13 2019-02-12 Teijin Limited material compósito reforçado com fibra de pré-impregnado e fibras de reforço de superfície modificada
CN106003972B (zh) * 2016-05-25 2018-01-30 江西洪都航空工业集团有限责任公司 一种防静电热塑性复合材料的制备方法
WO2017221921A1 (ja) * 2016-06-23 2017-12-28 東レ株式会社 筐体及び筐体の製造方法
CN106079481B (zh) * 2016-07-04 2020-11-10 西安交通大学 一种具有雷电保护作用的复合材料的成型方法
EP3533821A4 (en) * 2016-10-26 2020-06-10 Standardgraphene Co., Ltd. CARBON FIBER PREPREGNATE OR PLASTIC REINFORCED WITH CARBON FIBERS AND INTERIOR AND EXTERIOR MATERIAL COMPRISING THE SAME
CN108084655B (zh) * 2016-11-21 2021-06-22 航天特种材料及工艺技术研究所 一种耐低温环氧树脂材料及制备方法
FR3060052B1 (fr) * 2016-12-14 2020-10-09 Safran Helicopter Engines Procede de fabrication d'une cartouche de blindage d'un element de turbomachine et cartouche de blindage et element de turbomachine correspondants
JP6579092B2 (ja) * 2016-12-14 2019-09-25 トヨタ自動車株式会社 トウプリプレグの製造方法及び検査方法
WO2018162497A1 (en) * 2017-03-07 2018-09-13 Solvay Specialty Polymers Usa, Llc Blends of aromatic polymers and adducts obtained therefrom
CN110461906A (zh) * 2017-03-07 2019-11-15 索尔维特殊聚合物美国有限责任公司 芳香族聚合物的共混物以及由其获得的加合物
JP6902238B2 (ja) * 2017-03-17 2021-07-14 三菱重工業株式会社 樹脂シートの製造方法、構造体の製造方法、構造体及び航空機機体
CN108623998A (zh) * 2017-03-23 2018-10-09 洛阳尖端技术研究院 一种吸波材料以及制备方法
CN108340639A (zh) * 2017-09-19 2018-07-31 安徽旭升新材料有限公司 一种高导电性碳纤维板及其制备方法
CN107698739A (zh) * 2017-09-23 2018-02-16 陕西理工大学 硅烷偶联剂改性CNTs/CFDSF/AG‑80环氧树脂复合材料的制备方法
DE102017009986A1 (de) * 2017-10-26 2019-05-02 Senvion Gmbh Herstellungsvorrichtung und Herstellungsverfahren für ein Verbund-Bauteil
US11505666B2 (en) * 2018-04-02 2022-11-22 Toray Industries, Inc. Prepreg and manufacturing method for same
CN112313078A (zh) * 2018-06-26 2021-02-02 东丽株式会社 预浸料坯及其制造方法、分切带预浸料坯、碳纤维增强复合材料
JPWO2020100916A1 (ja) * 2018-11-14 2021-09-30 株式会社ブリヂストン 強化繊維複合樹脂の製造方法
CN111196072A (zh) * 2018-11-16 2020-05-26 中国航空工业集团公司基础技术研究院 一种增材制造用连续纤维增强热塑性预浸料单向带
US11826993B2 (en) * 2019-02-21 2023-11-28 Textron Innovations Inc. Thermally conductive curing process for composite rotorcraft structure fabrication
JP7173299B2 (ja) * 2019-04-02 2022-11-16 日本製鉄株式会社 金属-炭素繊維強化樹脂材料複合体および金属-炭素繊維強化樹脂材料複合体の製造方法
CN113710469A (zh) * 2019-05-17 2021-11-26 大塚化学株式会社 复合叠层体及其制造方法
US20220203663A1 (en) * 2019-05-17 2022-06-30 Otsuka Chemical Co., Ltd. Composite laminate and method for producing same
JP7088143B2 (ja) * 2019-08-23 2022-06-21 横浜ゴム株式会社 プリプレグおよびその製造方法
KR102291006B1 (ko) * 2019-12-17 2021-08-19 다이텍연구원 고강도 경량 차량용 도어 임팩트 빔 제조방법
JP7448409B2 (ja) 2020-04-21 2024-03-12 帝人株式会社 プリプレグ
WO2021222990A1 (en) * 2020-05-08 2021-11-11 Titomic Limited A composite structure
CN111923438B (zh) * 2020-06-16 2021-09-14 北京航空航天大学 一种自转化的多功能石墨烯复合材料制备方法
CN114679903B (zh) * 2022-05-26 2023-02-28 江苏亨睿航空工业有限公司 一种夹芯结构电磁屏蔽复合材料、电磁屏蔽体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344519A (ja) 1993-06-07 1994-12-20 Mitsubishi Rayon Co Ltd 樹脂成形材料
JPH0741576A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化樹脂
JPH0741575A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化複合材料
JPH0741577A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化プラスチック
JPH0834864A (ja) 1994-07-22 1996-02-06 Nippon Steel Chem Co Ltd 耐衝撃性プリプレグ
JPH08259713A (ja) 1995-03-22 1996-10-08 Toray Ind Inc プリプレグおよび繊維強化複合材料
WO2008018421A1 (fr) * 2006-08-07 2008-02-14 Toray Industries, Inc. Préimprégné et matériau composite renforcé avec des fibres de carbone
WO2011027160A1 (en) * 2009-09-04 2011-03-10 Hexcel Composites Limited Improvements in composite materials
JP2011213991A (ja) * 2010-03-16 2011-10-27 Toray Ind Inc 炭素繊維強化複合材料
JP2012211310A (ja) * 2011-03-24 2012-11-01 Toray Ind Inc 炭素繊維強化複合材料、プリプレグ及び炭素繊維強化複合材料の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426651A (en) 1987-01-06 1989-01-27 Toray Industries Production of prepreg
ES2237042T3 (es) * 1999-07-28 2005-07-16 Hexcel Corporation Materiales laminares de resinas reactivas.
JP2001213991A (ja) * 2000-02-03 2001-08-07 Esuteia:Kk 発泡高分子材料の製造方法と発泡製品の製造方法
JP2002020457A (ja) 2000-07-03 2002-01-23 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物及びそれを用いたプリプレグ
WO2004086565A1 (ja) * 2003-03-26 2004-10-07 Jsr Corporation 異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法
JP4544178B2 (ja) * 2006-02-22 2010-09-15 富士ゼロックス株式会社 インクジェット用インクセット、インクカートリッジ、インクジェット記録方法、及びインクジェット記録装置
US8101262B2 (en) * 2006-09-28 2012-01-24 Toray Industries, Inc. Fiber-reinforced plastic and process for production thereof
GB0622060D0 (en) 2006-11-06 2006-12-13 Hexcel Composites Ltd Improved composite materials
EP2223966B1 (en) * 2009-02-25 2017-08-16 3M Innovative Properties Company Epoxy adhesive compositions with high mechanical strength over a wide temperature range
JP5120310B2 (ja) * 2009-03-27 2013-01-16 富士ゼロックス株式会社 帯電部材、プロセスカートリッジ及び画像形成装置
JP5547456B2 (ja) * 2009-11-10 2014-07-16 スリーエム イノベイティブ プロパティズ カンパニー 一液型エポキシ樹脂組成物及びそれを用いた接着方法
JP2011144213A (ja) * 2010-01-12 2011-07-28 Toray Ind Inc 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP5123341B2 (ja) * 2010-03-15 2013-01-23 信越化学工業株式会社 接着剤組成物、半導体ウエハ保護膜形成用シート
US8686069B2 (en) * 2010-10-12 2014-04-01 Hexcel Corporation Solvent resistance of epoxy resins toughened with polyethersulfone
EP2675610A1 (en) 2010-12-31 2013-12-25 Cytec Technology Corp. Method of fabricating a composite structure with a conductive surface
WO2012124450A1 (ja) 2011-03-17 2012-09-20 東レ株式会社 プリプレグ、プリプレグの製造方法および炭素繊維強化複合材料
EP2834308B1 (en) * 2012-06-27 2018-04-18 Toray Industries, Inc. Benzoxazine resin composition, prepreg, and fiber-reinforced composite material
BR112015012619B1 (pt) * 2012-12-05 2021-06-01 Cytec Industries Inc. Material de revestimento eletricamente conductor, fita condutora pré-impregnada, método para fabricação de uma estrutura de compósito, e, estrutura de compósito
US10131790B2 (en) * 2014-07-10 2018-11-20 Nippon Paint Holdings Co., Ltd. Infrared-reflective pigment and infrared-reflective coating composition
AR107015A1 (es) * 2015-12-08 2018-03-14 Chevron Usa Inc Métodos para recuperación de hidrocarburos
JP6854140B2 (ja) * 2017-02-03 2021-04-07 日産自動車株式会社 積層体、摺動部材、及び積層体の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344519A (ja) 1993-06-07 1994-12-20 Mitsubishi Rayon Co Ltd 樹脂成形材料
JPH0741576A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化樹脂
JPH0741575A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化複合材料
JPH0741577A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化プラスチック
JPH0834864A (ja) 1994-07-22 1996-02-06 Nippon Steel Chem Co Ltd 耐衝撃性プリプレグ
JPH08259713A (ja) 1995-03-22 1996-10-08 Toray Ind Inc プリプレグおよび繊維強化複合材料
WO2008018421A1 (fr) * 2006-08-07 2008-02-14 Toray Industries, Inc. Préimprégné et matériau composite renforcé avec des fibres de carbone
WO2011027160A1 (en) * 2009-09-04 2011-03-10 Hexcel Composites Limited Improvements in composite materials
JP2011213991A (ja) * 2010-03-16 2011-10-27 Toray Ind Inc 炭素繊維強化複合材料
JP2012211310A (ja) * 2011-03-24 2012-11-01 Toray Ind Inc 炭素繊維強化複合材料、プリプレグ及び炭素繊維強化複合材料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902435A4

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501904A (ja) * 2013-12-13 2017-01-19 サイテック インダストリーズ インコーポレイテッド 導電特性及び耐層間剥離特性を有する複合材料
WO2016002777A1 (ja) * 2014-06-30 2016-01-07 三菱レイヨン株式会社 トウプリプレグ、及び複合材料圧力容器とその製造方法
CN106536605A (zh) * 2014-07-28 2017-03-22 东邦特耐克丝株式会社 预浸料和纤维强化复合材料
JP2016183328A (ja) * 2014-07-28 2016-10-20 東邦テナックス株式会社 プリプレグおよび繊維強化複合材料
US10544274B2 (en) 2014-07-28 2020-01-28 Toho Tenax Co., Ltd. Prepreg and fiber-reinforced composite material
CN106536605B (zh) * 2014-07-28 2020-01-10 帝人株式会社 预浸料和纤维强化复合材料
EP3176205A4 (en) * 2014-07-28 2017-06-28 Toho Tenax Co., Ltd. Prepreg and fiber reinforced composite material
WO2016136052A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2018531809A (ja) * 2015-07-08 2018-11-01 ジー−ロッズ インターナショナル リミティド ライアビリティ カンパニー 様々なコンポーネントへのグラフェンの組み込み及び製造方法
CN105086363A (zh) * 2015-07-31 2015-11-25 山东大学 基于共固化和反应诱导相分离的复合材料功能改性方法
CN105086363B (zh) * 2015-07-31 2017-12-19 山东大学 基于共固化和反应诱导相分离的复合材料功能改性方法
JP2017031352A (ja) * 2015-08-04 2017-02-09 富士ゼロックス株式会社 樹脂成形体用中間体及び樹脂成形体
CN106433024A (zh) * 2015-08-04 2017-02-22 富士施乐株式会社 树脂成型体用中间体和树脂成型体
JP2017045558A (ja) * 2015-08-25 2017-03-02 矢崎総業株式会社 導電性樹脂体及び車両アース構造
JP2018535131A (ja) * 2015-09-14 2018-11-29 リンテック オブ アメリカ インコーポレーテッドLintec of America, Inc. 形状適応性複数層複合材
JP2019510090A (ja) * 2016-01-04 2019-04-11 ダウ グローバル テクノロジーズ エルエルシー 低減された表面粗さを有する繊維複合材及びそれらを作製する方法
JP2017132932A (ja) * 2016-01-29 2017-08-03 東レ株式会社 プリプレグおよび繊維強化複合材料
JP2017141426A (ja) * 2016-02-05 2017-08-17 住友化学株式会社 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
KR20180109063A (ko) * 2016-02-05 2018-10-05 스미또모 가가꾸 가부시끼가이샤 방향족 폴리술폰, 프리프레그 및 프리프레그의 제조 방법
KR102653602B1 (ko) 2016-02-05 2024-04-01 스미또모 가가꾸 가부시끼가이샤 방향족 폴리술폰, 프리프레그 및 프리프레그의 제조 방법
JP2017141427A (ja) * 2016-02-05 2017-08-17 住友化学株式会社 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
US10851207B2 (en) 2016-02-05 2020-12-01 Sumitomo Chemical Company, Limited Aromatic polysulfone, prepreg, and method for producing prepreg
WO2017135379A1 (ja) * 2016-02-05 2017-08-10 住友化学株式会社 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
WO2017135376A1 (ja) * 2016-02-05 2017-08-10 住友化学株式会社 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
US10899888B2 (en) 2016-02-05 2021-01-26 Sumitomo Chemical Company, Limited Aromatic polysulfone, prepreg, and method for producing prepreg
KR20190054064A (ko) * 2016-09-16 2019-05-21 스미또모 가가꾸 가부시끼가이샤 방향족 폴리에테르 미립자, 수지 경화물의 제조 방법 및 탄소 섬유 강화 복합 재료의 제조 방법
KR102460774B1 (ko) 2016-09-16 2022-10-28 스미또모 가가꾸 가부시끼가이샤 방향족 폴리에테르 미립자, 수지 경화물의 제조 방법 및 탄소 섬유 강화 복합 재료의 제조 방법
KR20180045796A (ko) * 2016-10-26 2018-05-04 주식회사 스탠다드그래핀 탄소 섬유 프리프레그 또는 탄소 섬유-강화 플라스틱 및 이를 포함하는 내외장재
KR101985849B1 (ko) * 2016-10-26 2019-06-05 주식회사 스탠다드그래핀 탄소 섬유 프리프레그 또는 탄소 섬유-강화 플라스틱 및 이를 포함하는 내외장재
JP2018172487A (ja) * 2017-03-31 2018-11-08 帝人株式会社 プリプレグ及びその製造方法、並びに繊維強化複合材料
CN111423692A (zh) * 2019-01-10 2020-07-17 山东非金属材料研究所 一种导电复合材料及其制备方法
CN111423692B (zh) * 2019-01-10 2022-11-29 山东非金属材料研究所 一种导电复合材料及其制备方法
KR20200089796A (ko) * 2019-01-17 2020-07-28 한국기계연구원 복합체 및 복합체의 제조 방법
KR102173036B1 (ko) * 2019-01-17 2020-11-03 한국기계연구원 복합체 및 복합체의 제조 방법
WO2020149662A1 (ko) * 2019-01-17 2020-07-23 한국기계연구원 복합체 및 복합체의 제조 방법
WO2022004586A1 (ja) * 2020-06-30 2022-01-06 東レ株式会社 繊維強化複合材料およびプリプレグの製造方法
CN113402750A (zh) * 2021-06-04 2021-09-17 中国航发北京航空材料研究院 一种具有三维网络结构的石墨烯预浸料的制备方法
WO2023182432A1 (ja) * 2022-03-23 2023-09-28 帝人株式会社 熱硬化性プリプレグ及びその製造方法

Also Published As

Publication number Publication date
JP6254995B2 (ja) 2017-12-27
JP5695261B2 (ja) 2015-04-01
JP2015057472A (ja) 2015-03-26
EP2902435A4 (en) 2016-05-11
JP2015057473A (ja) 2015-03-26
EP2902435B1 (en) 2019-04-03
JP5997783B2 (ja) 2016-09-28
ES2732361T3 (es) 2019-11-22
US20150274911A1 (en) 2015-10-01
JP5603528B2 (ja) 2014-10-08
JP2015107651A (ja) 2015-06-11
US10927226B2 (en) 2021-02-23
JPWO2014050896A1 (ja) 2016-08-22
CN105164192B (zh) 2018-11-09
JP5695260B2 (ja) 2015-04-01
CN105164192A (zh) 2015-12-16
EP2902435A1 (en) 2015-08-05
JP2016094608A (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6254995B2 (ja) プリプレグ及びその製造方法
RU2702556C2 (ru) Композитные материалы с высокой удельной электрической проводимостью в z-направлении
EP2692783B1 (en) Prepreg and method for manufacturing same
CN111566164A (zh) 具有层间增韧颗粒的复合材料及其制造方法
CN106536605B (zh) 预浸料和纤维强化复合材料
WO2018003694A1 (ja) プリプレグおよびその製造方法
JP2009074075A (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP6854591B2 (ja) プリプレグ、強化繊維、繊維強化複合材料、およびプリプレグの製造方法
JP2021172694A (ja) プリプレグ
EP4286461A1 (en) Prepreg
JP6118655B2 (ja) プリプレグおよびその製造方法、それを用いる繊維強化複合材料
JP6213225B2 (ja) プリプレグおよび繊維強化複合材料
JP2012193322A (ja) プリプレグ、および炭素繊維強化複合材料
JP2019156981A (ja) プリプレグ、繊維強化複合材料、及びそれらの製造方法
JP6549399B2 (ja) プリプレグおよび繊維強化複合材料
WO2021131740A1 (ja) プリプレグ
JP7143473B2 (ja) プリプレグ及びその製造方法、並びに繊維強化複合材料
WO2023182432A1 (ja) 熱硬化性プリプレグ及びその製造方法
JP2013067750A (ja) プリプレグおよび炭素繊維強化複合材料
JP2021178902A (ja) プリプレグ
JP2021195473A (ja) プリプレグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380050176.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014527397

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431079

Country of ref document: US

Ref document number: 2013841025

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE