WO2020149662A1 - 복합체 및 복합체의 제조 방법 - Google Patents

복합체 및 복합체의 제조 방법 Download PDF

Info

Publication number
WO2020149662A1
WO2020149662A1 PCT/KR2020/000798 KR2020000798W WO2020149662A1 WO 2020149662 A1 WO2020149662 A1 WO 2020149662A1 KR 2020000798 W KR2020000798 W KR 2020000798W WO 2020149662 A1 WO2020149662 A1 WO 2020149662A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
thermally conductive
conductive particles
composite
particles
Prior art date
Application number
PCT/KR2020/000798
Other languages
English (en)
French (fr)
Inventor
이한민
이준협
김민근
조치형
이근호
한정우
김수철
Original Assignee
한국기계연구원
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원, 명지대학교 산학협력단 filed Critical 한국기계연구원
Publication of WO2020149662A1 publication Critical patent/WO2020149662A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive

Definitions

  • the present description relates to a composite and a method of manufacturing the composite.
  • the composite includes carbon fiber reinforced plastic (CFRP) and glass fiber reinforced plastic (GFRP).
  • CFRP carbon fiber reinforced plastic
  • GFRP glass fiber reinforced plastic
  • the composite in which the prepregs are bonded has high thermal conductivity in the horizontal direction in the plane direction, but very low thermal conductivity in the vertical direction in the thickness direction, due to the inherent properties of the carbon fiber reinforced plastic.
  • a prepreg containing thermally conductive particles undergoes a multi-step drying and curing process for mixing the thermally conductive particles with a resin during prepreg manufacturing, thereby increasing manufacturing time and manufacturing cost.
  • the prepreg containing thermally conductive particles has a problem in that mechanical strength is reduced by the non-uniform dispersion of the thermally conductive particles in the resin.
  • One embodiment is to provide a composite and a method of manufacturing a composite having reduced manufacturing time and manufacturing cost while improving thermal conductivity in a vertical direction, which is a thickness direction, even if prepregs bonded to each other are included.
  • an embodiment is to provide a composite and a method of manufacturing a composite having a reduced mechanical strength while minimizing a decrease in mechanical strength while improving the thermal conductivity in a vertical direction, which is a thickness direction, even if prepregs bonded to each other are included.
  • One side is a first prepreg (prepreg), a second prepreg directly bonded to the first prepreg, and a plurality of first thermally conductive particles positioned dispersed between the first prepreg and the second prepreg It provides a complex comprising a.
  • the first thermally conductive particles may have a higher thermal conductivity than the first prepreg and the second prepreg.
  • the first thermally conductive particles may include organic particles.
  • the particle size of the organic particles may be 0.01 ⁇ m to 50 ⁇ m.
  • the organic particles may include at least one of graphite (Graphite), graphene (Graphene), and carbon nanotubes (Carbon nanotube).
  • the first thermally conductive particles may include inorganic particles.
  • the inorganic particles may have a particle diameter of 0.1 ⁇ m to 500 ⁇ m.
  • the inorganic particles may include at least one of copper, silver, aluminum, magnesium, and iron.
  • the first thermally conductive particles may include organic particles and inorganic particles.
  • the inorganic particles may be larger than the organic particles.
  • the first thermally conductive particles may be located on the rear surface of the second prepreg, and the composite may further include a plurality of second thermally conductive particles dispersed and located on the front surface of the second prepreg.
  • the second thermally conductive particles may include at least one of organic particles and inorganic particles.
  • the composite may further include a third prepreg directly bonded to the front surface of the second prepreg, and the second thermally conductive particles may be located between the second prepreg and the third prepreg.
  • the composite may further include a plurality of third thermally conductive particles located on the front surface of the third prepreg.
  • the first prepreg and the second prepreg may include at least one of carbon fiber and glass fiber.
  • one side is coated by dispersing and coating a plurality of first thermally conductive particles on the front side of the first prepreg, and placing the second prepreg on the front side of the first prepreg with the first thermally conductive particles therebetween. It provides a method for producing a complex comprising the step of direct bonding.
  • Dispersing and coating the first thermally conductive particles may include applying a dispersion solution in which the first thermally conductive particles are dispersed on the front side of the first prepreg, and dispersion applied on the front side of the first prepreg. And evaporating the solvent of the solution.
  • the step of directly bonding the second prepreg to the front surface of the first prepreg may be performed using a hot press of high temperature and high pressure.
  • the method of manufacturing the composite may further include dispersing and coating a plurality of second thermally conductive particles on the front surface of the second prepreg.
  • the method of manufacturing the composite further includes dispersing and coating a plurality of third thermally conductive particles on the front surface of the third prepreg, and directly bonding the second prepreg to the front surface of the first prepreg comprises: 2 directly bonding the third prepreg to the front surface of the prepreg.
  • a thermal conductivity in the vertical direction in the thickness direction is improved, and at the same time, a composite and a method for manufacturing the composite are provided, which reduce manufacturing time and manufacturing cost.
  • a thermal conductivity in the vertical direction in the thickness direction is improved, and at the same time, there is provided a composite and a method for manufacturing the composite with a minimum reduction in mechanical strength.
  • FIG. 1 is a cross-sectional view showing a composite according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a composite according to the second embodiment.
  • FIG 3 is a cross-sectional view showing a composite according to a third embodiment.
  • FIG. 4 is a cross-sectional view showing a composite according to a fourth embodiment.
  • FIG. 5 is a cross-sectional view showing a composite according to a fifth embodiment.
  • FIG. 6 is a cross-sectional view showing a composite according to a sixth embodiment.
  • FIG. 7 is a flowchart showing a method of manufacturing a composite according to the seventh embodiment.
  • FIG. 8 is a view showing a method of manufacturing a composite according to the seventh embodiment.
  • 9 is a view showing a first experimental example.
  • the composite according to the first embodiment may be a part constituting a gearbox requiring characteristics such as high mechanical strength, high thermal conductivity, low thermal expansion, and light weight, but is not limited thereto and constitutes various structures. It can be part of what you do.
  • FIG. 1 is a cross-sectional view showing a composite according to the first embodiment.
  • the composite 1000 includes a first prepreg 100, a second prepreg 200, and a plurality of first thermally conductive particles 300.
  • the first prepreg 100 may be carbon fiber reinforced plastic (CFRP) including carbon fiber and a thermosetting resin impregnated with the carbon fiber.
  • CFRP carbon fiber reinforced plastic
  • the first prepreg 100 may be glass fiber reinforced plastic (GFRP) including glass fiber and a thermosetting resin or a thermoplastic resin impregnated into the glass fiber, but is not limited thereto.
  • GFRP glass fiber reinforced plastic
  • the first prepreg 100 may be a prepreg including at least one of carbon fiber and glass fiber.
  • the first prepreg 100 may have a thickness of 1 ⁇ m to 1000 ⁇ m, but is not limited thereto.
  • the second prepreg 200 is positioned on the first prepreg 100.
  • the back surface of the second prepreg 200 is directly bonded to the front surface of the first prepreg 100.
  • the second prepreg 200 may be directly bonded to the first prepreg 100 using a hot press of high temperature and high pressure.
  • the second prepreg 200 may be carbon fiber reinforced plastic (CFRP) including carbon fiber and a thermosetting resin impregnated with the carbon fiber.
  • CFRP carbon fiber reinforced plastic
  • the second prepreg 200 may be glass fiber reinforced plastic (GFRP) including glass fiber and a thermosetting resin or a thermoplastic resin impregnated into the glass fiber, but is not limited thereto.
  • GFRP glass fiber reinforced plastic
  • the second prepreg 200 may be a prepreg including at least one of carbon fiber and glass fiber.
  • the second prepreg 200 may have a thickness of 1 ⁇ m to 1000 ⁇ m, but is not limited thereto.
  • the plurality of first thermally conductive particles 300 are dispersed and positioned between the first prepreg 100 and the second prepreg 200.
  • the first thermally conductive particles 300 are positioned in a horizontal direction at an interface between the first prepreg 100 and the second prepreg 200.
  • the first thermally conductive particles 300 are located between the front surface of the first prepreg 100 and the rear surface of the second prepreg 200 and inserted into the first prepreg 100 and the second prepreg 200, respectively. do.
  • the first thermally conductive particles 300 apply a solution containing the first thermally conductive particles 300 to the front side of the first prepreg 100 or the back side of the second prepreg 200 and the solution
  • the solvent may be evaporated to be dispersed and coated on the front surface of the first prepreg 100 or the back surface of the second prepreg 200.
  • the front surface of the first prepreg 100 and the second prepreg ( The back surface of 200) is directly bonded using a hot press of high temperature and high pressure so that the first thermal conductive particles 300 are dispersed and positioned between the first prepreg 100 and the second prepreg 200 directly bonded.
  • the first thermally conductive particles 300 have higher thermal conductivity than the first prepreg 100 and the second prepreg 200.
  • the first thermally conductive particles 300 may have a higher thermal conductivity than the resin or fiber reinforcement included in the first prepreg 100 and the second prepreg 200.
  • the first thermally conductive particles 300 include organic particles including at least one of graphite, graphene, and carbon nanotubes.
  • the particle size of the organic particles included in the first thermally conductive particles 300 may be 0.01 ⁇ m to 50 ⁇ m.
  • the cross-section of the first thermally conductive particles 300 may have various shapes such as circular, elliptical, plate-shaped, closed-loop, polygonal, amorphous, and shaped.
  • the first thermally conductive particles 300 are inserted into each of the first prepreg 100 and the second prepreg 200 between the first prepreg 100 and the second prepreg 200, and thus the first prepreg ( 100) and the carbon fibers of the second prepreg 200, respectively.
  • the first thermally conductive particles 300 connect the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200 to increase the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1000. Improve.
  • the first thermally conductive particles 300 are fiber reinforcement material including at least one of glass fibers and carbon fibers of the first prepreg 100 and glass fibers and carbon of the second prepreg 200 By connecting between the fiber reinforcements including at least one of the fibers, it is possible to improve the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1000.
  • the composite 1000 according to the first embodiment is disposed by dispersing the first thermally conductive particles 300 between the first prepreg 100 and the second prepreg 200 that are directly bonded. 1 Since the thermally conductive particles 300 connect between the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200, the thermal conductivity in the vertical direction which is the thickness direction of the composite 1000 Improves.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200, and the first prepreg Located between the (100) and the second prepreg 200 to improve the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1000, it is necessary to mix the thermally conductive particles with the resin when manufacturing the prepreg Since there is no, manufacturing time and manufacturing cost are saved.
  • the composite 1000 is provided which improves thermal conductivity in the vertical direction in the thickness direction while reducing manufacturing time and manufacturing cost.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200, and the first prepreg Located between the (100) and the second prepreg 200 to improve the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1000, the resin of the first prepreg 100 and the second prepreg 200 Since the thermally conductive particles are not non-uniformly dispersed inside the resin of the resin, a decrease in mechanical strength is minimized.
  • the composite 1000 is provided with improved thermal conductivity in the vertical direction in the thickness direction while minimizing reduction in mechanical strength.
  • FIG. 2 is a cross-sectional view showing a composite according to the second embodiment.
  • the composite 1002 according to the second embodiment includes a first prepreg 100, a second prepreg 200, and a plurality of first thermally conductive particles 300.
  • the plurality of first thermally conductive particles 300 are dispersed and positioned between the first prepreg 100 and the second prepreg 200.
  • the first thermally conductive particles 300 are positioned in a horizontal direction at an interface between the first prepreg 100 and the second prepreg 200.
  • the first thermally conductive particles 300 are located between the front surface of the first prepreg 100 and the rear surface of the second prepreg 200 and inserted into the first prepreg 100 and the second prepreg 200, respectively. do.
  • the first thermally conductive particles 300 include inorganic particles including at least one of copper, silver, aluminum, magnesium, and iron.
  • the particle diameter of the inorganic particles included in the first thermally conductive particles 300 may be 0.1 ⁇ m to 500 ⁇ m.
  • the first thermally conductive particles 300 are inserted into each of the first prepreg 100 and the second prepreg 200 between the first prepreg 100 and the second prepreg 200, and thus the first prepreg ( 100) and the carbon fibers of the second prepreg 200, respectively.
  • the first thermally conductive particles 300 connect the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200, thereby increasing the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1002. Improve.
  • the composite 1002 according to the second embodiment is disposed by dispersing the first thermally conductive particles 300 between the first prepreg 100 and the second prepreg 200 that are directly bonded. 1 Since the thermally conductive particles 300 connect between the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200, the thermal conductivity in the vertical direction which is the thickness direction of the composite 1002 Improves.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200, and the first prepreg Located between (100) and the second prepreg 200 to improve the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1002, it is necessary to mix the thermally conductive particles with the resin during prepreg production. Since there is no, manufacturing time and manufacturing cost are saved.
  • the composite 1002 is provided, which improves thermal conductivity in the vertical direction, which is the thickness direction, and reduces manufacturing time and manufacturing cost.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200, and the first prepreg
  • the resin and the second prepreg 200 of the first prepreg 100 are positioned between (100) and the second prepreg 200 to improve thermal conductivity in the vertical direction which is the thickness direction of the composite 1002 Since the thermally conductive particles are not non-uniformly dispersed inside the resin of the resin, a decrease in mechanical strength is minimized.
  • the composite 1002 is provided with improved thermal conductivity in the vertical direction in the thickness direction while minimizing reduction in mechanical strength.
  • FIG 3 is a cross-sectional view showing a composite according to a third embodiment.
  • the composite 1003 includes a first prepreg 100, a second prepreg 200, and a plurality of first thermally conductive particles 300.
  • the plurality of first thermally conductive particles 300 are dispersed and positioned between the first prepreg 100 and the second prepreg 200.
  • the first thermally conductive particles 300 are positioned in a horizontal direction at an interface between the first prepreg 100 and the second prepreg 200.
  • the first thermally conductive particles 300 are located between the front surface of the first prepreg 100 and the rear surface of the second prepreg 200 and inserted into the first prepreg 100 and the second prepreg 200, respectively. do.
  • the first thermally conductive particles 300 include inorganic particles 320 and organic particles 310.
  • the inorganic particles 320 include at least one of copper, silver, aluminum, magnesium, and iron, and the particle diameter of the inorganic particles 320 is 0.1 ⁇ m to 500 ⁇ m.
  • the organic particle 310 includes at least one of graphite, graphene, and carbon nanotube, and the particle diameter of the organic particle 310 may be 0.01 ⁇ m to 50 ⁇ m.
  • the inorganic particles 320 may be larger than the organic particles 310, but are not limited thereto.
  • the inorganic particles 320 and the organic particles 310 are positioned to be dispersed in a horizontal direction at an interface between the first prepreg 100 and the second prepreg 200.
  • the inorganic particles 320 and the organic particles 310 included in the first thermally conductive particles 300 may include a first prepreg 100 and a first prepreg 100 between the first prepreg 100 and the second prepreg 200. 2 It is inserted into each of the prepregs 200 and contacts with each of the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200.
  • the inorganic particles 320 and the organic particles 310 included in the first thermally conductive particles 300 are connected between the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200,
  • the thermal conductivity in the vertical direction which is the thickness direction of the composite 1003, is improved.
  • the composite 1003 according to the third embodiment includes inorganic particles 320 of the first thermally conductive particles 300 between the first prepreg 100 and the second prepreg 200 that are directly bonded. Since the organic particles 310 are dispersed and positioned, the first thermally conductive particles 300 connect between the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200, thereby making the composite 1003 ), the thermal conductivity in the vertical direction, which is the thickness direction, is improved.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200 and the first prepreg Located between the (100) and the second prepreg 200 to improve the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1003, it is necessary to mix the thermally conductive particles with the resin during prepreg production. Since there is no, manufacturing time and manufacturing cost are saved.
  • the composite 1003 is provided, which improves thermal conductivity in the vertical direction in the thickness direction while reducing manufacturing time and manufacturing cost.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200 and the first prepreg
  • the resin and the second prepreg 200 of the first prepreg 100 are positioned between (100) and the second prepreg 200 to improve thermal conductivity in the vertical direction which is the thickness direction of the composite 1003 Since the thermally conductive particles are not non-uniformly dispersed inside the resin of the resin, a decrease in mechanical strength is minimized.
  • the composite 1003 is provided, which improves thermal conductivity in the vertical direction in the thickness direction and minimizes reduction in mechanical strength.
  • FIG. 4 is a cross-sectional view showing a composite according to a fourth embodiment.
  • the composite 1004 includes a first prepreg 100, a second prepreg 200, a plurality of first thermally conductive particles 300, and a plurality of second thermoelectrics It includes conductive particles 400.
  • the plurality of second thermally conductive particles 400 are dispersed and positioned in the horizontal direction on the front surface of the second prepreg 200.
  • the second thermally conductive particles 400 are partially inserted into the front surface of the second prepreg 200.
  • the second thermally conductive particles 400 spray the solution containing the second thermally conductive particles 400 on the front surface of the second prepreg 200 and evaporate the solvent of the solution to obtain the second prepreg ( 200) may be dispersed and coated. Then, with the second thermal conductive particles 400 coated on the front surface of the second prepreg 200, the first prepreg 100 and the second prepreg 200 are directly heated using a hot press of high temperature and high pressure. By bonding, the second thermally conductive particles 400 may be dispersed and positioned on the front surface of the second prepreg 200 directly bonded to the first prepreg 100.
  • the second thermally conductive particles 400 have higher thermal conductivity than the first prepreg 100 and the second prepreg 200.
  • the second thermally conductive particles 400 may have a higher thermal conductivity than the resin or fiber reinforcement included in the first prepreg 100 and the second prepreg 200.
  • the second thermally conductive particles 400 may include at least one of organic particles and inorganic particles.
  • Organic particles include at least one of graphite, graphene, and carbon nanotubes, and inorganic particles include copper, silver, aluminum, and magnesium ), and iron.
  • the particle diameter of the second thermally conductive particles 400 may be 0.01 ⁇ m to 50 ⁇ m or 0.1 ⁇ m to 500 ⁇ m.
  • the first thermally conductive particles 300 are inserted into each of the first prepreg 100 and the second prepreg 200 between the first prepreg 100 and the second prepreg 200, and thus the first prepreg ( 100) and the carbon fibers of the second prepreg 200, respectively.
  • the second thermally conductive particles 400 are inserted into the front surface of the second prepreg 200 to contact the carbon fiber of the second prepreg 200.
  • the first thermally conductive particles 300 between the first prepreg 100 and the second prepreg 200 connect between the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200. Then, the second thermally conductive particles 400 located on the front surface of the second prepreg 200 contact the carbon fiber of the second prepreg 200, thereby making the thermoelectric in the vertical direction that is the thickness direction of the composite 1004 Improves the conductivity.
  • the first thermally conductive particles 300 are dispersed and positioned between the first prepreg 100 and the second prepreg 200 that are directly bonded.
  • the first thermally conductive particles 300 are carbon fibers of the first prepreg 100 and carbon of the second prepreg 200 Since the fibers are connected and the second thermally conductive particles 400 contact the carbon fibers of the second prepreg 200, thermal conductivity in the vertical direction, which is the thickness direction of the composite 1004, is improved.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200, and the second thermoelectric The conductive particles 400 are not included in the interior of the second prepreg 200, but by improving the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1004, mixing the thermally conductive particles with a resin during prepreg production Since there is no need to ), manufacturing time and manufacturing cost are reduced.
  • the composite 1004 is provided, which improves thermal conductivity in the vertical direction in the thickness direction while reducing manufacturing time and manufacturing cost.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200, and the second thermoelectric The conductive particles 400 are not included in the interior of the second prepreg 200, but by improving the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1004, the resin and the second prepreg of the first prepreg 100 Since the thermally conductive particles are not non-uniformly dispersed within the resin of the leg 200, a decrease in mechanical strength is minimized.
  • the composite 1004 is provided with improved thermal conductivity in the vertical direction in the thickness direction while minimizing reduction in mechanical strength.
  • FIG. 5 is a cross-sectional view showing a composite according to a fifth embodiment.
  • the composite 1005 according to the fifth embodiment includes a first prepreg 100, a second prepreg 200, a plurality of first thermally conductive particles 300, and a plurality of second thermoelectrics It includes the conductive particles 400, the third prepreg 500.
  • the third prepreg 500 is positioned on the second prepreg 200.
  • the back surface of the third prepreg 500 is directly joined to the front surface of the second prepreg 200.
  • the third prepreg 500 may be directly bonded to the second prepreg 200 using a hot press of high temperature and high pressure.
  • the third prepreg 500 may be carbon fiber reinforced plastic (CFRP) including carbon fiber and a thermosetting resin impregnated with the carbon fiber.
  • CFRP carbon fiber reinforced plastic
  • the third prepreg 500 may be glass fiber reinforced plastic (GFRP) including glass fiber and a thermosetting resin or a thermoplastic resin impregnated into the glass fiber, but is not limited thereto.
  • GFRP glass fiber reinforced plastic
  • the third prepreg 500 may be a prepreg including at least one of carbon fiber and glass fiber.
  • the third prepreg 500 may have a thickness of 1 ⁇ m to 1000 ⁇ m, but is not limited thereto.
  • the plurality of second thermally conductive particles 400 are dispersed and positioned between the second prepreg 200 and the third prepreg 500.
  • the second thermally conductive particles 400 are located in a horizontal direction at the interface between the second prepreg 200 and the third prepreg 500.
  • the second thermally conductive particles 400 are located between the front surface of the second prepreg 200 and the rear surface of the third prepreg 500 and inserted into each of the second prepreg 200 and the third prepreg 500. do.
  • the second thermally conductive particles 400 apply a solution containing the second thermally conductive particles 400 to the front side of the second prepreg 200 or the back side of the third prepreg 500 and the solution
  • the solvent may be evaporated to be dispersed and coated on the front surface of the second prepreg 200 or the back surface of the third prepreg 500.
  • the front surface of the second prepreg 200 and the third prepreg By directly bonding the back surface of 500) using a hot press of high temperature and high pressure, the second thermal conductive particles 400 may be dispersed and positioned between the second prepreg 200 and the third prepreg 500 directly bonded. have.
  • the second thermally conductive particles 400 have higher thermal conductivity than the second prepreg 200 and the third prepreg 500.
  • the second thermally conductive particles 400 may have a higher thermal conductivity than the resin or fiber reinforcement included in the second prepreg 200 and the third prepreg 500.
  • the second thermally conductive particles 400 include at least one of organic particles and inorganic particles.
  • Organic particles include at least one of graphite, graphene, and carbon nanotubes, and inorganic particles include copper, silver, aluminum, and magnesium ), and iron.
  • the particle diameter of the second thermally conductive particles 400 may be 0.01 ⁇ m to 50 ⁇ m or 0.1 ⁇ m to 500 ⁇ m.
  • the second thermally conductive particles 400 are inserted into each of the second prepreg 200 and the third prepreg 500 between the second prepreg 200 and the third prepreg 500, and the second prepreg ( 200) and each of the carbon fibers of the third prepreg 500, the first thermally conductive particles 300 are first prepreg between the first prepreg 100 and the second prepreg 200 It is inserted into each of the leg 100 and the second prepreg 200 to contact each of the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200.
  • the first thermally conductive particles 300 connect between the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200, and the second thermally conductive particles 400 are the second prepreg 200 ) By connecting between the carbon fiber of the third prepreg 500 and the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1005.
  • the first thermal conductive particles 300 are dispersed and directly bonded between the first prepreg 100 and the second prepreg 200 which are directly bonded.
  • the first thermally conductive particles 300 are carbon fibers of the first prepreg 100
  • the carbon fibers of the second prepreg 200 while the second thermal conductive particles 400 connect between the carbon fibers of the second prepreg 200 and the carbon fibers of the third prepreg 500 Therefore, thermal conductivity in the vertical direction which is the thickness direction of the composite 1005 is improved.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200 and are second thermally conductive.
  • the particles 400 are not included in the interior of the second prepreg 200 or the interior of the third prepreg 500, the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1005, is improved, thereby producing the prepreg. Since there is no need to mix the thermally conductive particles with the resin, manufacturing time and manufacturing cost are reduced.
  • the composite 1005 is provided, which improves thermal conductivity in the vertical direction, which is the thickness direction, while reducing manufacturing time and manufacturing cost.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200 and are second thermally conductive.
  • Particles 400 are not included in the interior of the second prepreg 200 or the third prepreg 500, but by improving the thermal conductivity in the vertical direction, which is the thickness direction of the composite 1005, the first prepreg Since the thermally conductive particles are not non-uniformly dispersed within the resin of (100), the resin of the second prepreg 200, and the resin of the third prepreg 500, the reduction in mechanical strength is minimized do.
  • the composite 1005 is provided that improves thermal conductivity in the vertical direction, which is the thickness direction, while minimizing reduction in mechanical strength.
  • FIG. 6 is a cross-sectional view showing a composite according to a sixth embodiment.
  • the composite 1006 includes a first prepreg 100, a second prepreg 200, a plurality of first thermally conductive particles 300, and a plurality of second thermoelectrics It includes conductive particles 400, a third prepreg 500, and a plurality of third thermally conductive particles 600.
  • the plurality of third thermally conductive particles 600 are dispersed and positioned on the front surface of the third prepreg 500.
  • the third thermally conductive particles 600 are partially inserted into the front surface of the third prepreg 500.
  • the third thermally conductive particles 600 are sprayed with a solution containing the third thermally conductive particles 600 on the front surface of the third prepreg 500, and the solvent of the solution is evaporated to generate a third prepreg ( 500) may be dispersed and coated. Then, with the third thermally conductive particles 600 coated on the front surface of the third prepreg 500, the second prepreg 200 and the third prepreg 500 are directly heated using a hot press of high temperature and high pressure. By bonding, the third thermally conductive particles 600 may be dispersed and positioned on the front surface of the third prepreg 500 directly bonded to the second prepreg 200.
  • the third thermally conductive particles 600 have higher thermal conductivity than the second prepreg 200 and the third prepreg 500.
  • the third thermally conductive particles 600 may have a higher thermal conductivity than the resin or fiber reinforcement included in the second prepreg 200 and the third prepreg 500.
  • the third thermally conductive particles 600 may include at least one of organic particles and inorganic particles.
  • Organic particles include at least one of graphite, graphene, and carbon nanotubes, and inorganic particles include copper, silver, aluminum, and magnesium ), and iron.
  • the particle diameter of the third thermally conductive particles 600 may be 0.01 ⁇ m to 50 ⁇ m or 0.1 ⁇ m to 500 ⁇ m.
  • the first thermally conductive particles 300 are inserted into each of the first prepreg 100 and the second prepreg 200 between the first prepreg 100 and the second prepreg 200, and thus the first prepreg ( 100) and the carbon fibers of the second prepreg 200, respectively.
  • the second thermally conductive particles 400 are inserted into each of the second prepreg 200 and the third prepreg 500 between the second prepreg 200 and the third prepreg 500, and the second prepreg.
  • the carbon fibers of the leg 200 and the carbon fibers of the third prepreg 500 are respectively contacted.
  • the third thermally conductive particles 600 are inserted into the front surface of the third prepreg 500 to contact the carbon fiber of the third prepreg 500.
  • the first thermally conductive particles 300 between the first prepreg 100 and the second prepreg 200 connect between the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200.
  • the second thermally conductive particles 400 between the second prepreg 200 and the third prepreg 500 are between the carbon fiber of the second prepreg 200 and the carbon fiber of the third prepreg 500 .
  • the third thermally conductive particles 600 positioned on the front surface of the third prepreg 500 contact the carbon fibers of the third prepreg 500, in the vertical direction, which is the thickness direction of the composite 1006. Improves its thermal conductivity.
  • the first thermal conductive particles 300 are dispersed and positioned between the first prepreg 100 and the second prepreg 200 that are directly bonded.
  • the second thermal conductive particles 400 are dispersed between the leg 200 and the third prepreg 500, and the third thermal conductive particles 600 are dispersed and located on the front surface of the third prepreg 500,
  • the first thermally conductive particles 300 connect between the carbon fibers of the first prepreg 100 and the carbon fibers of the second prepreg 200, and the second thermally conductive particles 400 are the second prepreg 200 Since the carbon fiber of the third prepreg 500 is connected between the carbon fibers and the third thermally conductive particles 600 are in contact with the carbon fibers of the third prepreg 500, the thickness direction of the composite 1006 is The thermal conductivity in the vertical direction is improved.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200, and the second thermoelectric The conductive particles 400 are not included inside the second prepreg 200 or inside the third prepreg 500, and the third thermally conductive particles 600 are included inside the third prepreg 500
  • the thermal conductivity in the vertical direction which is the thickness direction of the composite 1006
  • the composite 1006 is provided, which improves thermal conductivity in the vertical direction, which is the thickness direction, and reduces manufacturing time and manufacturing cost.
  • the first thermally conductive particles 300 are not included inside the first prepreg 100 or inside the second prepreg 200, and the second thermoelectric The conductive particles 400 are not included inside the second prepreg 200 or inside the third prepreg 500, and the third thermally conductive particles 600 are included inside the third prepreg 500
  • the thermal conductivity in the vertical direction which is the thickness direction of the composite 1006
  • the inside of the resin of the first prepreg 100, the inside of the resin of the second prepreg 200, and the third prepreg 500 Since the thermally conductive particles are not non-uniformly dispersed inside the resin of the resin, a decrease in mechanical strength is minimized.
  • the composite 1006 is provided with improved thermal conductivity in the vertical direction in the thickness direction while minimizing reduction in mechanical strength.
  • the composite may include four or more prepregs and thermally conductive particles located at the interface of each of the prepregs.
  • the composites according to the first to sixth embodiments described above may be manufactured using the method for manufacturing the composites according to the seventh embodiment, but is not limited thereto.
  • FIG. 7 is a flowchart showing a method of manufacturing a composite according to the seventh embodiment.
  • 8 is a view showing a method of manufacturing a composite according to the seventh embodiment.
  • the first thermally conductive particles 300 are coated on the entire surface of the first prepreg 100 (S100).
  • first thermally conductive particles 300 are dispersed and coated on the front surface of the first prepreg 100.
  • a dispersion solution DS in which the first thermal conductive particles are dispersed is applied to the front surface of the first prepreg 100.
  • Application of the dispersion solution (DS) can be carried out by spraying.
  • a plurality of first thermally conductive particles 300 are applied to the front surface of the first prepreg 100 by evaporating the solvent SO of the dispersion solution applied to the front surface of the first prepreg 100.
  • the solvent (SO) may include ethanol, but is not limited thereto.
  • the second thermally conductive particles 400 are coated on the entire surface of the second prepreg 200 (S200).
  • the second prepreg 200 is applied to the dispersion solution in which the second heat-conducting particles are dispersed, and the solvent of the dispersion solution applied to the front surface of the second prepreg 200 is evaporated to form the second prepreg. Disperse and coat the plurality of second thermally conductive particles 400 on the front surface of the 200.
  • the third thermally conductive particles 600 are coated on the front surface of the third prepreg 500 (S300).
  • the third prepreg 500 is applied to the dispersion solution in which the third heat conductive particles are dispersed on the front surface, and the solvent of the dispersion solution applied to the front surface of the third prepreg 500 is evaporated to the third prepreg A plurality of third thermally conductive particles 600 are dispersed and coated on the front surface of 500.
  • each of the prepregs (PP) is coated with a dispersion solution in which another thermally conductive particles are dispersed on the front side, and the solvent of the dispersion solution applied on the front side of each of the other prepregs (PP) is evaporated.
  • Another thermally conductive particles are dispersed on the front surface of each of the other prepregs PP to coat.
  • the second pre-conductive particles are directly bonded to the front surface of the first pre-preg 100 with the first heat-conductive particles 300 interposed therebetween by using a hot press of high temperature and high pressure.
  • the third prepreg 500 in which the third thermal conductive particles 600 are dispersed coated is directly bonded to the front surface of the second prepreg 200 with the 400s interposed therebetween.
  • HP high pressure hot press
  • the method for manufacturing the composite according to the seventh embodiment includes the first prepreg 100, the second prepreg 200, the third prepreg 500, and the other prepregs directly bonded.
  • the first thermally conductive particles 300, the second thermally conductive particles 400, the third thermally conductive particles 600, and other thermally conductive particles are dispersed and positioned, thereby prepregs having high thermal conductivity Since the thermally conductive particles including at least one of organic and inorganic particles having high thermal conductivity are located between the carbon fibers to provide a short thermal conduction path in the vertical direction, which is the thickness direction of the composite, the thickness of the composite to which the prepregs are bonded. The thermal conductivity in the vertical direction, which is the direction, is improved.
  • the method of manufacturing a composite according to the seventh embodiment does not include the thermally conductive particles in each of the prepregs, but improves the thermal conductivity in the vertical direction, which is the thickness direction of the composite, thereby making the thermally conductive particles Since there is no need to mix with the resin, manufacturing time and manufacturing cost are reduced.
  • the method of manufacturing a composite according to the seventh embodiment does not include the thermally conductive particles in each of the prepregs, but improves the thermal conductivity in the vertical direction, which is the thickness direction of the composite, thereby making the thermoelectric inside each of the prepregs. Since the conductive particles do not disperse non-uniformly, the reduction in mechanical strength is minimized.
  • 9 is a view showing a first experimental example.
  • a dispersion solution in which thermally conductive particles are dispersed is prepared and applied.
  • the dispersion solution is composed of a mixture of a dispersing solvent and thermally conductive organic particles.
  • the ethanol solvent and graphene (Graphene) organic particles are subjected to ultrasonic treatment at room temperature for about 10 seconds to perform graphene organic particles. Ensure that it is completely dispersed.
  • the concentration of the graphene organic particles is 0.01 wt% to 10 wt%, and preferably 0.1 wt% to 5 wt%.
  • the prepared dispersion solution is evenly applied to the surface of the prepreg through spraying.
  • the solvent of the applied dispersion solution is dried. Since ethanol used as a solvent is a material having a low boiling point of 78.4° C., the solvent is evaporated for about 1 hour at room temperature in a vacuum condition through a vacuum oven or for about 1 hour under atmospheric pressure through a hot-plate.
  • the prepregs after the solvent drying process are laminated to a predetermined thickness at high temperature and pressure.
  • the prepregs coated with graphene organic particles dispersed on one side are sequentially stacked on a hot press to form a composite according to the first experimental example having a thickness of 1 mm at a pressure of about 35 kgf/cm 2 at about 200°C. .
  • the thermal conductivity characteristics of the composite 10 according to the first experimental example and the composite according to the comparative example were measured.
  • the composite 10 in which the lateral direction is surrounded by the insulating agent IS is seated.
  • a temperature change is measured by attaching a contact thermometer to the opposite side of the composite 10 facing the hot-plate PL.
  • the insulation (IS) is used to prevent heat loss in the horizontal direction.
  • the temperature change of the composite according to the contrast example is measured.
  • the measured temperature is finally about 138.9 °C, a constant value is measured.
  • a constant value is measured at about 144.1°C.
  • ⁇ T is T 1 (150°C)-T 2 (measurement temperature).
  • the thermal conductivity tendency is improved by about 64% compared to the composite according to the comparative example.
  • a dispersion solution in which thermally conductive particles are dispersed is prepared and applied.
  • the dispersion solution is composed of a mixture of a dispersion solvent and thermally conductive inorganic particles.
  • the copper inorganic particles are completely dissolved by performing an ultrasonic treatment for about 10 seconds at room temperature using an ethanol solvent and copper inorganic particles. To be distributed.
  • the concentration of the copper inorganic particles is 0.01 wt% to 10 wt%, preferably 0.1 wt% to 5 wt%.
  • the prepared dispersion solution is evenly applied to the surface of the prepreg through spraying.
  • the solvent of the applied dispersion solution is dried. Since ethanol used as a solvent is a material having a low boiling point of 78.4° C., the solvent is evaporated for about 1 hour at room temperature in a vacuum condition through a vacuum oven or for about 1 hour under atmospheric pressure through a hot-plate.
  • the prepregs after the solvent drying process are laminated to a certain thickness at high temperature and pressure.
  • the prepregs coated with graphene organic particles dispersed on one side are sequentially stacked on a hot press to form a composite according to the second experimental example having a thickness of 1 mm at a pressure of about 35 kgf/cm 2 at about 200°C. .
  • thermo conductivity properties of the composite according to the second experimental example and the composite according to the comparative example were measured.
  • a composite surrounded by a thermal insulation material is placed on a hot-plate heated to 150° C. by a heater.
  • the temperature change is measured by attaching a contact thermometer to the opposite side of the composite facing the hot-plate.
  • the heat insulation is used to prevent heat loss in the horizontal direction.
  • the temperature change of the composite according to the contrast example is measured.
  • the temperature change of the composite according to the second experimental example is more It goes fast.
  • the measured temperature is finally about 138.9 °C, a constant value is measured.
  • a constant value is measured at about 144.0°C.
  • ⁇ T is T 1 (150°C)-T 2 (measurement temperature).
  • the thermal conductivity tendency is improved by about 60% compared to the composite according to the comparative example.
  • a dispersion solution in which thermally conductive particles are dispersed is prepared and applied.
  • the dispersion solution is composed of a mixture of a dispersion solvent, thermally conductive organic particles, and thermally conductive inorganic particles.
  • the graphene organic particles and copper inorganic particles are mixed in an ethanol solvent with a weight ratio of 0.6 wt%:2wt%. Simultaneously mixed with and subjected to ultrasonic treatment (ultrasonication) for about 10 seconds at room temperature so that the graphene organic particles and the copper inorganic particles are completely dispersed.
  • the concentration of each of the graphene organic particles and the copper inorganic particles is 0.01 wt% to 10 wt%, and preferably 0.1 wt% to 5 wt%.
  • the prepared dispersion solution is evenly applied to the surface of the prepreg through spraying.
  • the solvent of the applied dispersion solution is dried. Since ethanol used as a solvent is a material having a low boiling point of 78.4° C., the solvent is evaporated for about 1 hour at room temperature in a vacuum condition through a vacuum oven or for about 1 hour under atmospheric pressure through a hot-plate.
  • the prepregs after the solvent drying process are laminated to a certain thickness at high temperature and pressure.
  • Four prepregs coated with graphene organic particles dispersed on one side are sequentially stacked on a hot press to form a composite according to a third experimental example having a thickness of 1 mm at a pressure of about 35 kgf/cm 2 at about 200°C. .
  • thermo conductivity properties of the composite according to the third experimental example and the composite according to the comparative example were measured.
  • a composite surrounded by a thermal insulation material is placed on a hot-plate heated to 150° C. by a heater.
  • the temperature change is measured by attaching a contact thermometer to the opposite side of the composite facing the hot-plate.
  • the heat insulation is used to prevent heat loss in the horizontal direction.
  • the temperature change of the composite according to the contrast example is measured.
  • the measured temperature is finally determined to be about 138.9°C.
  • a constant value is measured at about 148.5°C.
  • ⁇ T is T 1 (150°C)-T 2 (measurement temperature).
  • the composite according to the third experimental example which is a composite coated with graphene organic particles and copper inorganic particles, has a value of about 0.753 mm/K.
  • the thermal conductivity tendency is improved by about 517% compared to the composite according to the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

복합체는 제1 프리프레그(prepreg), 상기 제1 프리프레그에 직접 접합된 제2 프리프레그, 및 상기 제1 프리프레그와 상기 제2 프리프레그 사이에 분산되어 위치하는 복수의 제1 열전도성 입자들을 포함한다.

Description

복합체 및 복합체의 제조 방법
본 기재는 복합체 및 복합체의 제조 방법에 관한 것이다.
복합체는 탄소 섬유 강화 플라스틱(CFRP) 및 유리 섬유 강화 플라스틱(GFRP) 등을 포함한다.
종래의 복합체는 탄소 섬유 또는 유리 섬유 등의 섬유 강화재에 수지가 함침된 프리프레그(prepreg)들을 접합하여 제조하였다.
일반적으로, 프리프레그들이 접합된 복합체는, 탄소 섬유 강화 플라스틱 고유의 특성으로 인해, 판면 방향인 수평 방향으로 높은 열전도성을 가지나, 두께 방향인 수직 방향으로 매우 낮은 열전도성을 가진다.
최근, 복합체의 두께 방향인 수직 방향으로의 열전도성 향상을 위해, 열전도성 입자들을 포함하는 프리프레그들이 접합된 복합체가 개발되었다.
그런데, 열전도성 입자들을 포함하는 프리프레그는, 프리프레그 제조 시 열전도성 입자들을 수지와 믹싱(mixing)하기 위한 다단계의 건조 및 경화 공정을 거치게 됨으로써, 제조 시간 및 제조 비용이 증가되는 문제점이 있다.
또한, 열전도성 입자들을 포함하는 프리프레그는, 수지 내부에 열전도성 입자들이 불균일하게 분산(dispersion)됨으로써, 기계적 강도가 감소되는 문제점이 있다.
일 실시예는, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 제조 시간 및 제조 비용이 절감된 복합체 및 복합체의 제조 방법을 제공하고자 한다.
또한, 일 실시예는, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 기계적 강도의 감소가 최소화된 복합체 및 복합체의 제조 방법을 제공하고자 한다.
일 측면은 제1 프리프레그(prepreg), 상기 제1 프리프레그에 직접 접합된 제2 프리프레그, 및 상기 제1 프리프레그와 상기 제2 프리프레그 사이에 분산되어 위치하는 복수의 제1 열전도성 입자들을 포함하는 복합체를 제공한다.
상기 제1 열전도성 입자들은 상기 제1 프리프레그 및 상기 제2 프리프레그 대비 높은 열전도도를 가질 수 있다.
상기 제1 열전도성 입자들은 유기 입자를 포함할 수 있다.
상기 유기 입자의 입경은 0.01㎛ 내지 50㎛일 수 있다.
상기 유기 입자는 흑연(Graphite), 그래핀(Graphene), 및 탄소 나노 튜브(Carbon nanotube) 중 적어도 하나를 포함할 수 있다.
상기 제1 열전도성 입자들은 무기 입자를 포함할 수 있다.
상기 무기 입자의 입경은 0.1㎛ 내지 500㎛일 수 있다.
상기 무기 입자는 구리(Copper), 은(Silver), 알루미늄(Aluminum), 마그네슘(Magnesium), 및 철(Iron) 중 적어도 하나를 포함할 수 있다.
상기 제1 열전도성 입자들은 유기 입자 및 무기 입자를 포함할 수 있다.
상기 무기 입자는 상기 유기 입자 대비 클 수 있다.
상기 제1 열전도성 입자들은 상기 제2 프리프레그의 배면에 위치하며, 상기 복합체는 상기 제2 프리프레그의 전면에 분산되어 위치하는 복수의 제2 열전도성 입자들을 더 포함할 수 있다.
상기 제2 열전도성 입자들은 유기 입자 및 무기 입자 중 적어도 하나를 포함할 수 있다.
상기 복합체는 상기 제2 프리프레그의 전면에 직접 접합된 제3 프리프레그를 더 포함하며, 상기 제2 열전도성 입자들은 상기 제2 프리프레그와 상기 제3 프리프레그 사이에 위치할 수 있다.
상기 복합체는 상기 제3 프리프레그의 전면에 분산되어 위치하는 복수의 제3 열전도성 입자들을 더 포함할 수 있다.
상기 제1 프리프레그 및 상기 제2 프리프레그는 탄소 섬유 및 유리 섬유 중 적어도 하나를 포함할 수 있다.
또한, 일 측면은 제1 프리프레그의 전면에 복수의 제1 열전도성 입자들을 분산시켜 코팅하는 단계, 및 상기 제1 열전도성 입자들을 사이에 두고 상기 제1 프리프레그의 전면에 제2 프리프레그를 직접 접합하는 단계를 포함하는 복합체의 제조 방법을 제공한다.
상기 제1 열전도성 입자들을 분산시켜 코팅하는 단계는, 상기 제1 프리프레그의 전면에 상기 제1 열전도성 입자들이 분산된 분산 용액을 도포하는 단계, 및 상기 제1 프리프레그의 전면에 도포된 분산 용액의 용매를 증발시키는 단계를 포함할 수 있다.
상기 제1 프리프레그의 전면에 제2 프리프레그를 직접 접합하는 단계는 고온 및 고압의 핫 프레스를 이용해 수행할 수 있다.
상기 복합체의 제조 방법은 상기 제2 프리프레그의 전면에 복수의 제2 열전도성 입자들을 분산시켜 코팅하는 단계를 더 포함할 수 있다.
상기 복합체의 제조 방법은 제3 프리프레그의 전면에 복수의 제3 열전도성 입자들을 분산시켜 코팅하는 단계를 더 포함하며, 상기 제1 프리프레그의 전면에 제2 프리프레그를 직접 접합하는 단계는 제2 프리프레그의 전면에 상기 제3 프리프레그를 직접 접합하는 단계를 포함할 수 있다.
일 실시예에 따르면, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 제조 시간 및 제조 비용이 절감된 복합체 및 복합체의 제조 방법이 제공된다.
또한, 일 실시예는, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 기계적 강도의 감소가 최소화된 복합체 및 복합체의 제조 방법이 제공된다.
도 1은 제1 실시예에 따른 복합체를 나타낸 단면도이다.
도 2는 제2 실시예에 따른 복합체를 나타낸 단면도이다.
도 3은 제3 실시예에 따른 복합체를 나타낸 단면도이다.
도 4는 제4 실시예에 따른 복합체를 나타낸 단면도이다.
도 5는 제5 실시예에 따른 복합체를 나타낸 단면도이다.
도 6은 제6 실시예에 따른 복합체를 나타낸 단면도이다.
도 7은 제7 실시예에 따른 복합체의 제조 방법을 나타낸 순서도이다.
도 8은 제7 실시예에 따른 복합체의 제조 방법을 나타낸 도면이다.
도 9는 제1 실험예를 나타낸 도면이다.
도 10 및 도 11은 제1 실험예의 결과를 나타낸 그래프들이다.
도 12 및 도 13은 제2 실험예의 결과를 나타낸 그래프들이다.
도 14 및 도 15는 제3 실험예의 결과를 나타낸 그래프들이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하, 도 1을 참조하여 제1 실시예에 따른 복합체를 설명한다. 제1 실시예에 따른 복합체는 높은 기계적 강도와 높은 열전도성, 낮은 열팽창성, 경량성과 같은 특성이 요구되는 기어박스(Gearbox)를 구성하는 일 부분일 수 있으나, 이에 한정되지는 않고 다양한 구조물을 구성하는 일 부분일 수 있다.
도 1은 제1 실시예에 따른 복합체를 나타낸 단면도이다.
도 1을 참조하면, 제1 실시예에 따른 복합체(1000)는 제1 프리프레그(100), 제2 프리프레그(200), 복수의 제1 열전도성 입자(300)들을 포함한다.
제1 프리프레그(100)는 탄소 섬유 및 탄소 섬유에 함침된 열경화성 수지를 포함하는 탄소 섬유 강화 플라스틱(CFRP)일 수 있다.
한편, 다른 실시예에서 제1 프리프레그(100)는 유리 섬유 및 유리 섬유에 함침된 열경화성 수지 또는 열가소성 수지를 포함하는 유리 섬유 강화 플라스틱(GFRP)일 수 있으나, 이에 한정되지 않는다.
일례로, 제1 프리프레그(100)는 탄소 섬유 및 유리 섬유 중 적어도 하나를 포함하는 프리프레그(prepreg)일 수 있다.
제1 프리프레그(100)는 1㎛ 내지 1000㎛의 두께를 가질 수 있으나, 이에 한정되지는 않는다.
제2 프리프레그(200)는 제1 프리프레그(100) 상에 위치한다. 제2 프리프레그(200)의 배면은 제1 프리프레그(100)의 전면과 직접 접합된다. 제2 프리프레그(200)는 고온 및 고압의 핫 프레스(hot press)를 이용해 제1 프리프레그(100)에 직접 접합될 수 있다.
제2 프리프레그(200)는 탄소 섬유 및 탄소 섬유에 함침된 열경화성 수지를 포함하는 탄소 섬유 강화 플라스틱(CFRP)일 수 있다.
한편, 다른 실시예에서 제2 프리프레그(200)는 유리 섬유 및 유리 섬유에 함침된 열경화성 수지 또는 열가소성 수지를 포함하는 유리 섬유 강화 플라스틱(GFRP)일 수 있으나, 이에 한정되지 않는다.
일례로, 제2 프리프레그(200)는 탄소 섬유 및 유리 섬유 중 적어도 하나를 포함하는 프리프레그(prepreg)일 수 있다.
제2 프리프레그(200)는 1㎛ 내지 1000㎛의 두께를 가질 수 있으나, 이에 한정되지는 않는다.
복수의 제1 열전도성 입자(300)들은 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 분산되어 위치한다. 제1 열전도성 입자(300)들은 제1 프리프레그(100)와 제2 프리프레그(200) 사이의 계면에 수평 방향으로 분산되어 위치한다. 제1 열전도성 입자(300)들은 제1 프리프레그(100)의 전면과 제2 프리프레그(200)의 배면 사이에 위치하여 제1 프리프레그(100) 및 제2 프리프레그(200) 각각에 삽입된다.
제1 열전도성 입자(300)들은, 제1 열전도성 입자(300)들을 포함하는 용액을 제1 프리프레그(100)의 전면 또는 제2 프리프레그(200)의 배면에 도포(spray)하고, 용액의 용매를 증발시켜 제1 프리프레그(100)의 전면 또는 제2 프리프레그(200)의 배면에 분산되어 코팅될 수 있다. 그리고 제1 프리프레그(100)의 전면 또는 제2 프리프레그(200)의 배면에 제1 열전도성 입자(300)들이 코팅된 상태로, 제1 프리프레그(100)의 전면과 제2 프리프레그(200)의 배면을 고온 및 고압의 핫 프레스를 이용해 직접 접합하여 제1 열전도성 입자(300)들이 직접 접합된 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 분산되어 위치될 수 있다.
제1 열전도성 입자(300)들은 제1 프리프레그(100) 및 제2 프리프레그(200) 대비 높은 열전도도를 가진다. 여기서, 제1 열전도성 입자(300)들은 제1 프리프레그(100) 및 제2 프리프레그(200)에 포함된 수지 또는 섬유 강화재 대비 높은 열전도도를 가질 수 있다.
제1 열전도성 입자(300)들은 흑연(Graphite), 그래핀(Graphene), 및 탄소 나노 튜브(Carbon nanotube) 중 적어도 하나를 포함하는 유기 입자를 포함한다.
제1 열전도성 입자(300)들에 포함된 유기 입자의 입경(particle size)은 0.01㎛ 내지 50㎛일 수 있다.
한편, 제1 열전도성 입자(300)들의 단면은 원형, 타원형, 판형, 폐루프형, 다각형, 비정형, 정형 등의 다양한 형태를 가질 수 있다.
제1 열전도성 입자(300)들은 제1 프리프레그(100)와 제2 프리프레그(200) 사이에서 제1 프리프레그(100) 및 제2 프리프레그(200) 각각에 삽입되어 제1 프리프레그(100)의 탄소 섬유 및 제2 프리프레그(200)의 탄소 섬유 각각과 접촉한다. 제1 열전도성 입자(300)들은 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결함으로써, 복합체(1000)의 두께 방향인 수직 방향으로의 열전도성을 향상시킨다.
한편, 다른 실시예에서, 제1 열전도성 입자(300)들은 제1 프리프레그(100)의 유리 섬유 및 탄소 섬유 중 적어도 하나를 포함하는 섬유 강화재와 제2 프리프레그(200)의 유리 섬유 및 탄소 섬유 중 적어도 하나를 포함하는 섬유 강화재 사이를 연결함으로써, 복합체(1000)의 두께 방향인 수직 방향으로의 열전도성을 향상시킬 수 있다.
이상과 같이, 제1 실시예에 따른 복합체(1000)는 직접 접합된 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 제1 열전도성 입자(300)들이 분산되어 위치함으로써, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결하기 때문에, 복합체(1000)의 두께 방향인 수직 방향으로의 열전도성이 향상된다.
또한, 제1 실시예에 따른 복합체(1000)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 위치하여 복합체(1000)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 프리프레그 제조 시 열전도성 입자들을 수지와 믹싱(mixing)할 필요가 없기 때문에, 제조 시간 및 제조 비용이 절감된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 제조 시간 및 제조 비용이 절감된 복합체(1000)가 제공된다.
또한, 제1 실시예에 따른 복합체(1000)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 위치하여 복합체(1000)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 제1 프리프레그(100)의 수지 및 제2 프리프레그(200)의 수지 내부에 열전도성 입자들이 불균일하게 분산(dispersion)되지 않기 때문에, 기계적 강도의 감소가 최소화된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 기계적 강도의 감소가 최소화된 복합체(1000)가 제공된다.
이하, 도 2를 참조하여 제2 실시예에 따른 복합체를 설명한다.
이하에서는 상술한 제1 실시예에 따른 복합체와 다른 부분에 대해서 설명한다.
도 2는 제2 실시예에 따른 복합체를 나타낸 단면도이다.
도 2를 참조하면, 제2 실시예에 따른 복합체(1002)는 제1 프리프레그(100), 제2 프리프레그(200), 복수의 제1 열전도성 입자(300)들을 포함한다.
복수의 제1 열전도성 입자(300)들은 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 분산되어 위치한다. 제1 열전도성 입자(300)들은 제1 프리프레그(100)와 제2 프리프레그(200) 사이의 계면에 수평 방향으로 분산되어 위치한다. 제1 열전도성 입자(300)들은 제1 프리프레그(100)의 전면과 제2 프리프레그(200)의 배면 사이에 위치하여 제1 프리프레그(100) 및 제2 프리프레그(200) 각각에 삽입된다.
제1 열전도성 입자(300)들은 구리(Copper), 은(Silver), 알루미늄(Aluminum), 마그네슘(Magnesium), 및 철(Iron) 중 적어도 하나를 포함하는 무기 입자를 포함한다.
제1 열전도성 입자(300)들에 포함된 무기 입자의 입경은 0.1㎛ 내지 500㎛일 수 있다.
제1 열전도성 입자(300)들은 제1 프리프레그(100)와 제2 프리프레그(200) 사이에서 제1 프리프레그(100) 및 제2 프리프레그(200) 각각에 삽입되어 제1 프리프레그(100)의 탄소 섬유 및 제2 프리프레그(200)의 탄소 섬유 각각과 접촉한다. 제1 열전도성 입자(300)들은 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결함으로써, 복합체(1002)의 두께 방향인 수직 방향으로의 열전도성을 향상시킨다.
이상과 같이, 제2 실시예에 따른 복합체(1002)는 직접 접합된 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 제1 열전도성 입자(300)들이 분산되어 위치함으로써, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결하기 때문에, 복합체(1002)의 두께 방향인 수직 방향으로의 열전도성이 향상된다.
또한, 제2 실시예에 따른 복합체(1002)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 위치하여 복합체(1002)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 프리프레그 제조 시 열전도성 입자들을 수지와 믹싱(mixing)할 필요가 없기 때문에, 제조 시간 및 제조 비용이 절감된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 제조 시간 및 제조 비용이 절감된 복합체(1002)가 제공된다.
또한, 제2 실시예에 따른 복합체(1002)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 위치하여 복합체(1002)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 제1 프리프레그(100)의 수지 및 제2 프리프레그(200)의 수지 내부에 열전도성 입자들이 불균일하게 분산(dispersion)되지 않기 때문에, 기계적 강도의 감소가 최소화된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 기계적 강도의 감소가 최소화된 복합체(1002)가 제공된다.
이하, 도 3을 참조하여 제3 실시예에 따른 복합체를 설명한다.
이하에서는 상술한 제1 실시예에 따른 복합체와 다른 부분에 대해서 설명한다.
도 3은 제3 실시예에 따른 복합체를 나타낸 단면도이다.
도 3을 참조하면, 제3 실시예에 따른 복합체(1003)는 제1 프리프레그(100), 제2 프리프레그(200), 복수의 제1 열전도성 입자(300)들을 포함한다.
복수의 제1 열전도성 입자(300)들은 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 분산되어 위치한다. 제1 열전도성 입자(300)들은 제1 프리프레그(100)와 제2 프리프레그(200) 사이의 계면에 수평 방향으로 분산되어 위치한다. 제1 열전도성 입자(300)들은 제1 프리프레그(100)의 전면과 제2 프리프레그(200)의 배면 사이에 위치하여 제1 프리프레그(100) 및 제2 프리프레그(200) 각각에 삽입된다.
제1 열전도성 입자(300)들은 무기 입자(320) 및 유기 입자(310)를 포함한다.
무기 입자(320)는 구리(Copper), 은(Silver), 알루미늄(Aluminum), 마그네슘(Magnesium), 및 철(Iron) 중 적어도 하나를 포함하며, 무기 입자(320)의 입경은 0.1㎛ 내지 500㎛일 수 있다.
유기 입자(310)는 흑연(Graphite), 그래핀(Graphene), 및 탄소 나노 튜브(Carbon nanotube) 중 적어도 하나를 포함하며, 유기 입자(310)의 입경은 0.01㎛ 내지 50㎛일 수 있다.
무기 입자(320)는 유기 입자(310) 대비 클 수 있으나, 이에 한정되지는 않는다.
무기 입자(320) 및 유기 입자(310)는 제1 프리프레그(100)와 제2 프리프레그(200) 사이의 계면에서 수평 방향으로 분산되어 위치한다.
제1 열전도성 입자(300)들에 포함된 무기 입자(320) 및 유기 입자(310)는 제1 프리프레그(100)와 제2 프리프레그(200) 사이에서 제1 프리프레그(100) 및 제2 프리프레그(200) 각각에 삽입되어 제1 프리프레그(100)의 탄소 섬유 및 제2 프리프레그(200)의 탄소 섬유 각각과 접촉한다. 제1 열전도성 입자(300)들에 포함된 무기 입자(320) 및 유기 입자(310)는 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결함으로써, 복합체(1003)의 두께 방향인 수직 방향으로의 열전도성을 향상시킨다.
이상과 같이, 제3 실시예에 따른 복합체(1003)는 직접 접합된 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 제1 열전도성 입자(300)들의 무기 입자(320) 및 유기 입자(310)가 분산되어 위치함으로써, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결하기 때문에, 복합체(1003)의 두께 방향인 수직 방향으로의 열전도성이 향상된다.
또한, 제3 실시예에 따른 복합체(1003)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 위치하여 복합체(1003)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 프리프레그 제조 시 열전도성 입자들을 수지와 믹싱(mixing)할 필요가 없기 때문에, 제조 시간 및 제조 비용이 절감된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 제조 시간 및 제조 비용이 절감된 복합체(1003)가 제공된다.
또한, 제3 실시예에 따른 복합체(1003)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 위치하여 복합체(1003)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 제1 프리프레그(100)의 수지 및 제2 프리프레그(200)의 수지 내부에 열전도성 입자들이 불균일하게 분산(dispersion)되지 않기 때문에, 기계적 강도의 감소가 최소화된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 기계적 강도의 감소가 최소화된 복합체(1003)가 제공된다.
이하, 도 4를 참조하여 제4 실시예에 따른 복합체를 설명한다.
이하에서는 상술한 제1 실시예에 따른 복합체와 다른 부분에 대해서 설명한다.
도 4는 제4 실시예에 따른 복합체를 나타낸 단면도이다.
도 4를 참조하면, 제4 실시예에 따른 복합체(1004)는 제1 프리프레그(100), 제2 프리프레그(200), 복수의 제1 열전도성 입자(300)들, 복수의 제2 열전도성 입자(400)들을 포함한다.
복수의 제2 열전도성 입자(400)들은 제2 프리프레그(200)의 전면에 수평 방향으로 분산되어 위치한다.
제2 열전도성 입자(400)들은 제2 프리프레그(200)의 전면에 일부 삽입된다.
제2 열전도성 입자(400)들은, 제2 열전도성 입자(400)들을 포함하는 용액을 제2 프리프레그(200)의 전면에 도포(spray)하고, 용액의 용매를 증발시켜 제2 프리프레그(200)의 전면에 분산되어 코팅될 수 있다. 그리고 제2 프리프레그(200)의 전면에 제2 열전도성 입자(400)들이 코팅된 상태로, 제1 프리프레그(100)와 제2 프리프레그(200)를 고온 및 고압의 핫 프레스를 이용해 직접 접합하여 제2 열전도성 입자(400)들이 제1 프리프레그(100)와 직접 접합된 제2 프리프레그(200)의 전면에 분산되어 위치될 수 있다.
제2 열전도성 입자(400)들은 제1 프리프레그(100) 및 제2 프리프레그(200) 대비 높은 열전도도를 가진다. 여기서, 제2 열전도성 입자(400)들은 제1 프리프레그(100) 및 제2 프리프레그(200)에 포함된 수지 또는 섬유 강화재 대비 높은 열전도도를 가질 수 있다.
제2 열전도성 입자(400)들은 유기 입자 및 무기 입자 중 적어도 하나를 포함할 수 있다.
유기 입자는 흑연(Graphite), 그래핀(Graphene), 및 탄소 나노 튜브(Carbon nanotube) 중 적어도 하나를 포함하며, 무기 입자는 구리(Copper), 은(Silver), 알루미늄(Aluminum), 마그네슘(Magnesium), 및 철(Iron) 중 적어도 하나를 포함한다.
제2 열전도성 입자(400)들의 입경은 0.01㎛ 내지 50㎛ 또는 0.1㎛ 내지 500㎛일 수 있다.
제1 열전도성 입자(300)들은 제1 프리프레그(100)와 제2 프리프레그(200) 사이에서 제1 프리프레그(100) 및 제2 프리프레그(200) 각각에 삽입되어 제1 프리프레그(100)의 탄소 섬유 및 제2 프리프레그(200)의 탄소 섬유 각각과 접촉한다.
또한, 제2 열전도성 입자(400)들은 제2 프리프레그(200)의 전면에 삽입되어 제2 프리프레그(200)의 탄소 섬유와 접촉한다.
제1 프리프레그(100)와 제2 프리프레그(200) 사이의 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결하고, 제2 프리프레그(200)의 전면에 위치하는 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 탄소 섬유와 접촉함으로써, 복합체(1004)의 두께 방향인 수직 방향으로의 열전도성을 향상시킨다.
이상과 같이, 제4 실시예에 따른 복합체(1004)는 직접 접합된 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 제1 열전도성 입자(300)들이 분산되어 위치하고 제2 프리프레그(200)의 전면에 제2 열전도성 입자(400)들이 분산되어 위치함으로써, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결하고 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 탄소 섬유와 접촉하기 때문에, 복합체(1004)의 두께 방향인 수직 방향으로의 열전도성이 향상된다.
또한, 제4 실시예에 따른 복합체(1004)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고, 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 내부에 포함되지 않고 복합체(1004)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 프리프레그 제조 시 열전도성 입자들을 수지와 믹싱(mixing)할 필요가 없기 때문에, 제조 시간 및 제조 비용이 절감된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 제조 시간 및 제조 비용이 절감된 복합체(1004)가 제공된다.
또한, 제4 실시예에 따른 복합체(1004)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고, 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 내부에 포함되지 않고 복합체(1004)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 제1 프리프레그(100)의 수지 및 제2 프리프레그(200)의 수지 내부에 열전도성 입자들이 불균일하게 분산(dispersion)되지 않기 때문에, 기계적 강도의 감소가 최소화된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 기계적 강도의 감소가 최소화된 복합체(1004)가 제공된다.
이하, 도 5를 참조하여 제5 실시예에 따른 복합체를 설명한다.
이하에서는 상술한 제1 실시예에 따른 복합체와 다른 부분에 대해서 설명한다.
도 5는 제5 실시예에 따른 복합체를 나타낸 단면도이다.
도 5를 참조하면, 제5 실시예에 따른 복합체(1005)는 제1 프리프레그(100), 제2 프리프레그(200), 복수의 제1 열전도성 입자(300)들, 복수의 제2 열전도성 입자(400)들, 제3 프리프레그(500)를 포함한다.
제3 프리프레그(500)는 제2 프리프레그(200) 상에 위치한다. 제3 프리프레그(500)의 배면은 제2 프리프레그(200)의 전면과 직접 접합된다. 제3 프리프레그(500)는 고온 및 고압의 핫 프레스(hot press)를 이용해 제2 프리프레그(200)에 직접 접합될 수 있다.
제3 프리프레그(500)는 탄소 섬유 및 탄소 섬유에 함침된 열경화성 수지를 포함하는 탄소 섬유 강화 플라스틱(CFRP)일 수 있다.
한편, 다른 실시예에서 제3 프리프레그(500)는 유리 섬유 및 유리 섬유에 함침된 열경화성 수지 또는 열가소성 수지를 포함하는 유리 섬유 강화 플라스틱(GFRP)일 수 있으나, 이에 한정되지 않는다.
일례로, 제3 프리프레그(500)는 탄소 섬유 및 유리 섬유 중 적어도 하나를 포함하는 프리프레그(prepreg)일 수 있다.
제3 프리프레그(500)는 1㎛ 내지 1000㎛의 두께를 가질 수 있으나, 이에 한정되지는 않는다.
복수의 제2 열전도성 입자(400)들은 제2 프리프레그(200)와 제3 프리프레그(500) 사이에 분산되어 위치한다. 제2 열전도성 입자(400)들은 제2 프리프레그(200)와 제3 프리프레그(500) 사이의 계면에 수평 방향으로 분산되어 위치한다. 제2 열전도성 입자(400)들은 제2 프리프레그(200)의 전면과 제3 프리프레그(500)의 배면 사이에 위치하여 제2 프리프레그(200) 및 제3 프리프레그(500) 각각에 삽입된다.
제2 열전도성 입자(400)들은, 제2 열전도성 입자(400)들을 포함하는 용액을 제2 프리프레그(200)의 전면 또는 제3 프리프레그(500)의 배면에 도포(spray)하고, 용액의 용매를 증발시켜 제2 프리프레그(200)의 전면 또는 제3 프리프레그(500)의 배면에 분산되어 코팅될 수 있다. 그리고 제2 프리프레그(200)의 전면 또는 제3 프리프레그(500)의 배면에 제2 열전도성 입자(400)들이 코팅된 상태로, 제2 프리프레그(200)의 전면과 제3 프리프레그(500)의 배면을 고온 및 고압의 핫 프레스를 이용해 직접 접합하여 제2 열전도성 입자(400)들이 직접 접합된 제2 프리프레그(200)와 제3 프리프레그(500) 사이에 분산되어 위치될 수 있다.
제2 열전도성 입자(400)들은 제2 프리프레그(200) 및 제3 프리프레그(500) 대비 높은 열전도도를 가진다. 여기서, 제2 열전도성 입자(400)들은 제2 프리프레그(200) 및 제3 프리프레그(500)에 포함된 수지 또는 섬유 강화재 대비 높은 열전도도를 가질 수 있다.
제2 열전도성 입자(400)들은 유기 입자 및 무기 입자 중 적어도 하나를 포함한다.
유기 입자는 흑연(Graphite), 그래핀(Graphene), 및 탄소 나노 튜브(Carbon nanotube) 중 적어도 하나를 포함하며, 무기 입자는 구리(Copper), 은(Silver), 알루미늄(Aluminum), 마그네슘(Magnesium), 및 철(Iron) 중 적어도 하나를 포함한다.
제2 열전도성 입자(400)들의 입경은 0.01㎛ 내지 50㎛ 또는 0.1㎛ 내지 500㎛일 수 있다.
제2 열전도성 입자(400)들은 제2 프리프레그(200)와 제3 프리프레그(500) 사이에서 제2 프리프레그(200) 및 제3 프리프레그(500) 각각에 삽입되어 제2 프리프레그(200)의 탄소 섬유 및 제3 프리프레그(500)의 탄소 섬유 각각과 접촉하며, 제1 열전도성 입자(300)들은 제1 프리프레그(100)와 제2 프리프레그(200) 사이에서 제1 프리프레그(100) 및 제2 프리프레그(200) 각각에 삽입되어 제1 프리프레그(100)의 탄소 섬유 및 제2 프리프레그(200)의 탄소 섬유 각각과 접촉한다.
제1 열전도성 입자(300)들이 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결하고, 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 탄소 섬유와 제3 프리프레그(500)의 탄소 섬유 사이를 연결함으로써, 복합체(1005)의 두께 방향인 수직 방향으로의 열전도성을 향상시킨다.
이상과 같이, 제5 실시예에 따른 복합체(1005)는 직접 접합된 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 제1 열전도성 입자(300)들이 분산되어 위치하고 직접 접합된 제2 프리프레그(200)와 제3 프리프레그(500) 사이에 제2 열전도성 입자(400)들이 분산되어 위치함으로써, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결하는 동시에 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 탄소 섬유와 제3 프리프레그(500)의 탄소 섬유 사이를 연결하기 때문에, 복합체(1005)의 두께 방향인 수직 방향으로의 열전도성이 향상된다.
또한, 제5 실시예에 따른 복합체(1005)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 내부 또는 제3 프리프레그(500)의 내부에 포함되지 않고 복합체(1005)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 프리프레그 제조 시 열전도성 입자들을 수지와 믹싱(mixing)할 필요가 없기 때문에, 제조 시간 및 제조 비용이 절감된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 제조 시간 및 제조 비용이 절감된 복합체(1005)가 제공된다.
또한, 제5 실시예에 따른 복합체(1005)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 내부 또는 제3 프리프레그(500)의 내부에 포함되지 않고 복합체(1005)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 제1 프리프레그(100)의 수지 내부, 제2 프리프레그(200)의 수지 내부, 및 제3 프리프레그(500)의 수지 내부에 열전도성 입자들이 불균일하게 분산(dispersion)되지 않기 때문에, 기계적 강도의 감소가 최소화된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 기계적 강도의 감소가 최소화된 복합체(1005)가 제공된다.
이하, 도 6을 참조하여 제6 실시예에 따른 복합체를 설명한다.
이하에서는 상술한 제5 실시예에 따른 복합체와 다른 부분에 대해서 설명한다.
도 6은 제6 실시예에 따른 복합체를 나타낸 단면도이다.
도 6을 참조하면, 제6 실시예에 따른 복합체(1006)는 제1 프리프레그(100), 제2 프리프레그(200), 복수의 제1 열전도성 입자(300)들, 복수의 제2 열전도성 입자(400)들, 제3 프리프레그(500), 복수의 제3 열전도성 입자(600)들 포함한다.
복수의 제3 열전도성 입자(600)들은 제3 프리프레그(500)의 전면에 수평 방향으로 분산되어 위치한다.
제3 열전도성 입자(600)들은 제3 프리프레그(500)의 전면에 일부 삽입된다.
제3 열전도성 입자(600)들은, 제3 열전도성 입자(600)들을 포함하는 용액을 제3 프리프레그(500)의 전면에 도포(spray)하고, 용액의 용매를 증발시켜 제3 프리프레그(500)의 전면에 분산되어 코팅될 수 있다. 그리고 제3 프리프레그(500)의 전면에 제3 열전도성 입자(600)들이 코팅된 상태로, 제2 프리프레그(200)와 제3 프리프레그(500)를 고온 및 고압의 핫 프레스를 이용해 직접 접합하여 제3 열전도성 입자(600)들이 제2 프리프레그(200)와 직접 접합된 제3 프리프레그(500)의 전면에 분산되어 위치될 수 있다.
제3 열전도성 입자(600)들은 제2 프리프레그(200) 및 제3 프리프레그(500) 대비 높은 열전도도를 가진다. 여기서, 제3 열전도성 입자(600)들은 제2 프리프레그(200) 및 제3 프리프레그(500)에 포함된 수지 또는 섬유 강화재 대비 높은 열전도도를 가질 수 있다.
제3 열전도성 입자(600)들은 유기 입자 및 무기 입자 중 적어도 하나를 포함할 수 있다.
유기 입자는 흑연(Graphite), 그래핀(Graphene), 및 탄소 나노 튜브(Carbon nanotube) 중 적어도 하나를 포함하며, 무기 입자는 구리(Copper), 은(Silver), 알루미늄(Aluminum), 마그네슘(Magnesium), 및 철(Iron) 중 적어도 하나를 포함한다.
제3 열전도성 입자(600)들의 입경은 0.01㎛ 내지 50㎛ 또는 0.1㎛ 내지 500㎛일 수 있다.
제1 열전도성 입자(300)들은 제1 프리프레그(100)와 제2 프리프레그(200) 사이에서 제1 프리프레그(100) 및 제2 프리프레그(200) 각각에 삽입되어 제1 프리프레그(100)의 탄소 섬유 및 제2 프리프레그(200)의 탄소 섬유 각각과 접촉한다.
또한, 제2 열전도성 입자(400)들은 제2 프리프레그(200)와 제3 프리프레그(500) 사이에서 제2 프리프레그(200) 및 제3 프리프레그(500) 각각에 삽입되어 제2 프리프레그(200)의 탄소 섬유 및 제3 프리프레그(500)의 탄소 섬유 각각과 접촉한다.
또한, 제3 열전도성 입자(600)들은 제3 프리프레그(500)의 전면에 삽입되어 제3 프리프레그(500)의 탄소 섬유와 접촉한다.
제1 프리프레그(100)와 제2 프리프레그(200) 사이의 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결하고, 제2 프리프레그(200)와 제3 프리프레그(500) 사이의 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 탄소 섬유와 제3 프리프레그(500)의 탄소 섬유 사이를 연결하고, 제3 프리프레그(500)의 전면에 위치하는 제3 열전도성 입자(600)들이 제3 프리프레그(500)의 탄소 섬유와 접촉함으로써, 복합체(1006)의 두께 방향인 수직 방향으로의 열전도성을 향상시킨다.
이상과 같이, 제6 실시예에 따른 복합체(1006)는 직접 접합된 제1 프리프레그(100)와 제2 프리프레그(200) 사이에 제1 열전도성 입자(300)들이 분산되어 위치하고 제2 프리프레그(200)와 제3 프리프레그(500) 사이에 제2 열전도성 입자(400)들이 분산되어 위치하고 제3 프리프레그(500)의 전면에 제3 열전도성 입자(600)들이 분산되어 위치함으로써, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 탄소 섬유와 제2 프리프레그(200)의 탄소 섬유 사이를 연결하고 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 탄소 섬유와 제3 프리프레그(500)의 탄소 섬유 사이를 연결하고 제3 열전도성 입자(600)들이 제3 프리프레그(500)의 탄소 섬유와 접촉하기 때문에, 복합체(1006)의 두께 방향인 수직 방향으로의 열전도성이 향상된다.
또한, 제6 실시예에 따른 복합체(1006)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고, 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 내부 또는 제3 프리프레그(500)의 내부에 포함되지 않고, 제3 열전도성 입자(600)들이 제3 프리프레그(500)의 내부에 포함되지 않고 복합체(1006)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 프리프레그 제조 시 열전도성 입자들을 수지와 믹싱(mixing)할 필요가 없기 때문에, 제조 시간 및 제조 비용이 절감된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 제조 시간 및 제조 비용이 절감된 복합체(1006)가 제공된다.
또한, 제6 실시예에 따른 복합체(1006)는, 제1 열전도성 입자(300)들이 제1 프리프레그(100)의 내부 또는 제2 프리프레그(200)의 내부에 포함되지 않고, 제2 열전도성 입자(400)들이 제2 프리프레그(200)의 내부 또는 제3 프리프레그(500)의 내부에 포함되지 않고, 제3 열전도성 입자(600)들이 제3 프리프레그(500)의 내부에 포함되지 않고 복합체(1006)의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 제1 프리프레그(100)의 수지 내부, 제2 프리프레그(200)의 수지 내부, 및 제3 프리프레그(500)의 수지 내부에 열전도성 입자들이 불균일하게 분산(dispersion)되지 않기 때문에, 기계적 강도의 감소가 최소화된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 기계적 강도의 감소가 최소화된 복합체(1006)가 제공된다.
한편, 또 다른 실시예에서, 복합체는 4개 이상의 프리프레그들 및 프리프레그들 각각의 계면에 위치하는 열전도성 입자들을 포함할 수 있다.
이하, 도 7 및 도 8을 참조하여 제7 실시예에 따른 복합체의 제조 방법을 설명한다. 제7 실시예에 따른 복합체의 제조 방법을 이용해 상술한 제1 실시예 내지 제6 실시예에 따른 복합체를 제조할 수 있으나, 이에 한정되지는 않는다.
도 7은 제7 실시예에 따른 복합체의 제조 방법을 나타낸 순서도이다. 도 8은 제7 실시예에 따른 복합체의 제조 방법을 나타낸 도면이다.
도 7 및 도 8의 (A)와 (B)를 참조하면, 제1 프리프레그(100) 전면에 제1 열전도성 입자(300)들을 코팅한다(S100).
구체적으로, 제1 프리프레그(100)의 전면에 복수의 제1 열전도성 입자(300)들을 분산시켜 코팅한다.
도 8의 (A)와 같이, 제1 프리프레그(100)의 전면에 제1 열전도성 입자들이 분산된 분산 용액(DS)을 도포한다. 분산 용액(DS)의 도포는 스프레이로 수행될 수 있다.
도 8의 (B)와 같이, 제1 프리프레그(100)의 전면에 도포된 분산 용액의 용매(SO)를 증발시켜 제1 프리프레그(100)의 전면에 복수의 제1 열전도성 입자(300)들을 분산시켜 코팅한다. 용매(SO)는 에탄올을 포함할 수 있으나, 이에 한정되지는 않는다.
다음, 도 8의 (C)를 참조하면, 제2 프리프레그(200) 전면에 제2 열전도성 입자(400)들을 코팅한다(S200).
구체적으로, 제2 프리프레그(200)의 전면에 제2 열전도성 입자들이 분산된 분산 용액을 도포하고, 제2 프리프레그(200)의 전면에 도포된 분산 용액의 용매를 증발시켜 제2 프리프레그(200)의 전면에 복수의 제2 열전도성 입자(400)들을 분산시켜 코팅한다.
다음, 제3 프리프레그(500) 전면에 제3 열전도성 입자(600)들을 코팅한다(S300).
구체적으로, 제3 프리프레그(500)의 전면에 제3 열전도성 입자들이 분산된 분산 용액을 도포하고, 제3 프리프레그(500)의 전면에 도포된 분산 용액의 용매를 증발시켜 제3 프리프레그(500)의 전면에 복수의 제3 열전도성 입자(600)들을 분산시켜 코팅한다.
다음, 또 다른 프리프레그(PP)들 각각의 전면에 또 다른 열전도성 입자들이 분산된 분산 용액을 각각 도포하고, 또 다른 프리프레그(PP)들 각각의 전면에 도포된 분산 용액의 용매를 증발시켜 또 다른 프리프레그(PP)들 각각의 전면에 또 다른 열전도성 입자들을 분산시켜 코팅한다.
다음, 제1 프리프레그(100), 제2 프리프레그(200), 및 제3 프리프레그(500)를 접합한다(S400).
구체적으로, 고온 및 고압의 핫 프레스를 이용해 제1 열전도성 입자(300)들을 사이에 두고 제1 프리프레그(100)의 전면에 제2 프리프레그(200)를 직접 접합하는 동시에 제2 열전도성 입자(400)들을 사이에 두고 제2 프리프레그(200)의 전면에 제3 열전도성 입자(600)들이 분산 코팅된 제3 프리프레그(500)를 직접 접합한다.
도 8의 (C)와 같이, 제1 열전도성 입자(300)들이 분산 코팅된 제1 프리프레그(100) 상에 제2 열전도성 입자(400)들이 분산 코팅된 제2 프리프레그(200), 제3 열전도성 입자(600)들이 분산 코팅된 제3 프리프레그(500), 또 다른 열전도성 입자들이 분산 코팅된 또 다른 프리프레그(PP)들을 순차적으로 적층하고, 고온 및 고압의 핫 프레스(HP)를 이용해 제1 프리프레그(100), 제2 프리프레그(200), 제3 프리프레그(500), 또 다른 프리프레그(PP)들을 직접 접합하여 복합체를 형성한다.
이상과 같이, 제7 실시예에 따른 복합체의 제조 방법은 직접 접합된 제1 프리프레그(100), 제2 프리프레그(200), 제3 프리프레그(500), 또 다른 프리프레그(PP)들 사이에 제1 열전도성 입자(300)들, 제2 열전도성 입자(400)들, 제3 열전도성 입자(600)들, 또 다른 열전도성 입자들이 분산되어 위치함으로써, 열전도도가 높은 프리프레그들의 탄소 섬유들 사이에 열전도도가 높은 유기 입자 및 무기 입자 중 적어도 하나를 포함하는 열전도성 입자가 위치하여 복합체의 두께 방향인 수직 방향으로 짧은 열전도 경로를 제공하기 때문에, 프리프레그들이 접합된 복합체의 두께 방향인 수직 방향으로의 열전도성이 향상된다.
또한, 제7 실시예에 따른 복합체의 제조 방법은 열전도성 입자들이 프리프레그들 각각의 내부에 포함되지 않고 복합체의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 프리프레그 제조 시 열전도성 입자들을 수지와 믹싱(mixing)할 필요가 없기 때문에, 제조 시간 및 제조 비용이 절감된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 제조 시간 및 제조 비용이 절감된 복합체의 제조 방법이 제공된다.
또한, 제7 실시예에 따른 복합체의 제조 방법은 열전도성 입자들이 프리프레그들 각각의 내부에 포함되지 않고 복합체의 두께 방향인 수직 방향으로의 열전도성을 향상함으로써, 프리프레그들 각각의 내부에 열전도성 입자들이 불균일하게 분산(dispersion)되지 않기 때문에, 기계적 강도의 감소가 최소화된다.
즉, 서로 접합된 프리프레그들을 포함하더라도, 두께 방향인 수직 방향으로의 열전도성이 향상되는 동시에 기계적 강도의 감소가 최소화된 복합체의 제조 방법이 제공된다.
이하, 도 9 내지 도 15를 참조하여 상술한 제1 실시예 내지 제6 실시예에 따른 복합체의 효과 및 상술한 제7 실시예에 따른 복합체의 제조 방법의 효과를 확인한 실험예들을 설명한다.
우선, 도 9 내지 도 11을 참조하여, 제1 실험예를 설명한다.
도 9는 제1 실험예를 나타낸 도면이다.
제1 실험예로서, 첫 번째 단계로, 열전도성 입자가 분산된 분산 용액을 제조 및 도포한다.
분산 용액은 분산 용매와 열전도성 유기 입자의 혼합으로 구성되어 있으며, 바람직하게는 에탄올 용매와 그래핀(Graphene) 유기 입자를 사용하여 상온에서 약 10초간 초음파 처리(ultrasonication)을 진행하여 그래핀 유기 입자가 완전히 분산되도록 한다.
상기 혼합 방법에서 그래핀 유기 입자의 농도는 0.01wt% 내지 10wt%로 하며, 바람직하게는 0.1wt% 내지 5wt%로 한다. 제조한 분산 용액은 스프레이를 통해 프리프레그 표면에 고르게 도포한다.
두 번째 단계로, 도포된 분산 용액의 용매를 건조시킨다. 용매로 사용된 에탄올은 끓는점이 78.4℃로 낮은 물질이기 때문에, 진공 오븐을 통해 진공 조건에서 상온으로 약 1시간 또는 핫-플레이트를 통해 대기압 조건 하에서 약 1시간 동안 용매를 증발 시킨다.
세 번째 단계로, 용매 건조 과정이 끝난 프리프레그들을 고온 및 고압에서 일정 두께로 적층한다. 한쪽 면에 그래핀 유기 입자들이 분산 코팅된 프리프레그들을 핫-프레스 위에 순차적으로 4장 적층하여 약 200℃에서 약 35 kgf/cm2의 압력으로 1mm 두께의 제1 실험예에 따른 복합체를 성형한다.
이와 유사하게, 대비예로서 그래핀 유기 입자들이 분산 코팅되지 않은 프리프레그들을 핫-프레스 위에 순차적으로 4장 적층하여 약 200℃에서 약 35 kgf/cm2의 압력으로 1mm 두께의 대비예에 따른 복합체를 성형한다.
도 9를 참조하면, 제1 실험예에 따른 복합체(10) 및 대비예에 따른 복합체의 열전도 특성을 측정하였다.
먼저, 히터(HE)에 의해 150℃로 가열되어 있는 핫-플레이트(PL) 위에 측면 방향이 단열제(IS)로 둘러싸인 복합체(10)를 안착시킨다. 핫-플레이트(PL)와 마주한 복합체(10)의 반대 면에 접촉식 온도계를 부착하여 온도 변화를 측정한다. 이때, 단열제(IS)는 수평 방향으로의 열 손실을 방지하기 위해 사용된다.
이와 유사하게, 대비예에 따른 복합체의 온도 변화를 측정한다.
도 10 및 도 11은 제1 실험예의 결과를 나타낸 그래프들이다.
도 10을 참조하면, 제1 실험예에 따른 복합체(Graphene coating CFRP)와 대비예에 따른 복합체(Pure CFRP)의 온도 변화를 측정한 결과, 제1 실험예에 따른 복합체의 경우 온도 변화가 보다 빠르게 진행된다.
따라서 같은 열을 주었을 경우, 시간 대비 온도 변화가 크기 때문에 열역학적으로 제1 실험예에 따른 복합체의 열전도 효율이 대비예에 따른 복합체 대비 높음이 확인된다.
그리고, 대비예에 따른 복합체의 경우 측정되는 온도가 최종적으로 약 138.9℃로 일정한 값이 측정된다. 반면에 제1 실험예에 따른 복합체의 경우 약 144.1℃로 일정한 값이 측정된다.
Fourier의 열전도식은 q(열량)/A(단면적)=-k(열전도도)*△T(온도차이)/L(시편 두께)로서, 열량 및 단면적이 동일하다는 가정 하에서 k=L(시편 두께)/△T(온도차이)의 식에 따라, k값은 L(시편 두께)에 비례하고 △T(온도차이)에 반비례함을 알 수 있다.
여기서, △T는 T1(150℃)-T2(측정 온도)이다.
따라서, 복합체의 두께 또한 동일하게 만들었을 경우, 측정된 최종 온도가 높을수록 k값이 증가함을 알 수 있다.
도 11을 참조하면, 이를 보다 정량적으로 비교하기 위해, 열전도도 k의 경향을 비교하는 식을 세워 비교하면, 순수 프리프레그 복합체인 대비예에 따른 복합체(Pure)의 경우 약 0.122mm/K 라는 값을 갖는 반면, 그래핀 입자가 코팅된 복합체인 제1 실험예에 따른 복합체(Graphene coating)의 경우 약 0.2mm/K 라는 값을 가진다.
즉, 제1 실험예에 따른 복합체(Graphene coating)는 대비예에 따른 복합체(Pure) 대비 열전도 경향이 약 64% 정도 향상된다.
다음, 도 12 및 도 13을 참조하여, 제2 실험예를 설명한다.
제2 실험예로서, 첫 번째 단계로, 열전도성 입자가 분산된 분산 용액을 제조 및 도포한다.
분산 용액은 분산 용매와 열전도성 무기 입자의 혼합으로 구성되어 있으며, 바람직하게는 에탄올 용매와 구리(Copper) 무기 입자를 사용하여 상온에서 약 10초간 초음파 처리(ultrasonication)을 진행하여 구리 무기 입자가 완전히 분산되도록 한다.
상기 혼합 방법에서 구리 무기 입자의 농도는 0.01wt% 내지 10wt%로 하며, 바람직하게는 0.1wt% 내지 5wt%로 한다. 제조한 분산 용액은 스프레이를 통해 프리프레그 표면에 고르게 도포한다.
두 번째 단계로, 도포된 분산 용액의 용매를 건조시킨다. 용매로 사용된 에탄올은 끓는점이 78.4℃로 낮은 물질이기 때문에, 진공 오븐을 통해 진공 조건에서 상온으로 약 1시간 또는 핫-플레이트를 통해 대기압 조건 하에서 약 1시간 동안 용매를 증발 시킨다.
세 번째 단계로, 용매 건조 과정이 끝난 프리프레그들을 고온 및 고압에서 일정 두께로 적층한다. 한쪽 면에 그래핀 유기 입자들이 분산 코팅된 프리프레그들을 핫-프레스 위에 순차적으로 4장 적층하여 약 200℃에서 약 35 kgf/cm2의 압력으로 1mm 두께의 제2 실험예에 따른 복합체를 성형한다.
이와 유사하게, 대비예로서 그래핀 유기 입자들이 분산 코팅되지 않은 프리프레그들을 핫-프레스 위에 순차적으로 4장 적층하여 약 200℃에서 약 35 kgf/cm2의 압력으로 1mm 두께의 대비예에 따른 복합체를 성형한다.
제2 실험예에 따른 복합체 및 대비예에 따른 복합체의 열전도 특성을 측정하였다.
먼저, 히터에 의해 150℃로 가열되어 있는 핫-플레이트 위에 측면 방향이 단열제로 둘러싸인 복합체를 안착시킨다. 핫-플레이트와 마주한 복합체의 반대 면에 접촉식 온도계를 부착하여 온도 변화를 측정한다. 이때, 단열제는 수평 방향으로의 열 손실을 방지하기 위해 사용된다.
이와 유사하게, 대비예에 따른 복합체의 온도 변화를 측정한다.
도 12 및 도 13은 제2 실험예의 결과를 나타낸 그래프들이다.
도 12를 참조하면, 제2 실험예에 따른 복합체(Copper particle coating CFRP)와 대비예에 따른 복합체(Pure CFRP)의 온도 변화를 측정한 결과, 제2 실험예에 따른 복합체의 경우 온도 변화가 보다 빠르게 진행된다.
따라서 같은 열을 주었을 경우, 시간 대비 온도 변화가 크기 때문에 열역학적으로 제2 실험예에 따른 복합체의 열전도 효율이 대비예에 따른 복합체 대비 높음이 확인된다.
그리고, 대비예에 따른 복합체의 경우 측정되는 온도가 최종적으로 약 138.9℃로 일정한 값이 측정된다. 반면에 제2 실험예에 따른 복합체의 경우 약 144.0℃로 일정한 값이 측정된다.
Fourier의 열전도식은 q(열량)/A(단면적)=-k(열전도도)*△T(온도차이)/L(시편 두께)로서, 열량 및 단면적이 동일하다는 가정 하에서 k=L(시편 두께)/△T(온도차이)의 식에 따라, k값은 L(시편 두께)에 비례하고 △T(온도차이)에 반비례함을 알 수 있다.
여기서, △T는 T1(150℃)-T2(측정 온도)이다.
따라서, 복합체의 두께 또한 동일하게 만들었을 경우, 측정된 최종 온도가 높을수록 k값이 증가함을 알 수 있다.
도 13을 참조하면, 이를 보다 정량적으로 비교하기 위해, 열전도도 k의 경향을 비교하는 식을 세워 비교하면, 순수 프리프레그 복합체인 대비예에 따른 복합체(Pure)의 경우 약 0.122mm/K 라는 값을 갖는 반면, 구리 무기 입자가 코팅된 복합체인 제2 실험예에 따른 복합체(Copper particle coating)의 경우 약 0.195mm/K 라는 값을 가진다.
즉, 제2 실험예에 따른 복합체(Copper particle coating)는 대비예에 따른 복합체(Pure) 대비 열전도 경향이 약 60% 정도 향상된다.
다음, 도 14 및 도 15를 참조하여, 제3 실험예를 설명한다.
제3 실험예로서, 첫 번째 단계로, 열전도성 입자가 분산된 분산 용액을 제조 및 도포한다.
분산 용액은 분산 용매와 열전도성 유기 입자 및 열전도성 무기 입자의 혼합으로 구성되어 있으며, 바람직하게는 에탄올 용매에 그래핀(Graphene) 유기 입자와 구리(Copper) 무기 입자를 질량비 0.6wt%:2wt%로 동시에 혼합하여 상온에서 약 10초간 초음파 처리(ultrasonication)을 진행하여 그래핀 유기 입자와 구리 무기 입자가 완전히 분산되도록 한다.
상기 혼합 방법에서 그래핀 유기 입자 및 구리 무기 입자 각각의 농도는 0.01wt% 내지 10wt%로 하며, 바람직하게는 0.1wt% 내지 5wt%로 한다. 제조한 분산 용액은 스프레이를 통해 프리프레그 표면에 고르게 도포한다.
두 번째 단계로, 도포된 분산 용액의 용매를 건조시킨다. 용매로 사용된 에탄올은 끓는점이 78.4℃로 낮은 물질이기 때문에, 진공 오븐을 통해 진공 조건에서 상온으로 약 1시간 또는 핫-플레이트를 통해 대기압 조건 하에서 약 1시간 동안 용매를 증발 시킨다.
세 번째 단계로, 용매 건조 과정이 끝난 프리프레그들을 고온 및 고압에서 일정 두께로 적층한다. 한쪽 면에 그래핀 유기 입자들이 분산 코팅된 프리프레그들을 핫-프레스 위에 순차적으로 4장 적층하여 약 200℃에서 약 35 kgf/cm2의 압력으로 1mm 두께의 제3 실험예에 따른 복합체를 성형한다.
이와 유사하게, 대비예로서 그래핀 유기 입자들이 분산 코팅되지 않은 프리프레그들을 핫-프레스 위에 순차적으로 4장 적층하여 약 200℃에서 약 35 kgf/cm2의 압력으로 1mm 두께의 대비예에 따른 복합체를 성형한다.
제3 실험예에 따른 복합체 및 대비예에 따른 복합체의 열전도 특성을 측정하였다.
먼저, 히터에 의해 150℃로 가열되어 있는 핫-플레이트 위에 측면 방향이 단열제로 둘러싸인 복합체를 안착시킨다. 핫-플레이트와 마주한 복합체의 반대 면에 접촉식 온도계를 부착하여 온도 변화를 측정한다. 이때, 단열제는 수평 방향으로의 열 손실을 방지하기 위해 사용된다.
이와 유사하게, 대비예에 따른 복합체의 온도 변화를 측정한다.
도 14 및 도 15은 제3 실험예의 결과를 나타낸 그래프들이다.
도 14를 참조하면, 제3 실험예에 따른 복합체(Graphene/Copper hybrid coating CFRP)와 대비예에 따른 복합체(Pure CFRP)의 온도 변화를 측정한 결과, 제3 실험예에 따른 복합체의 경우 온도 변화가 보다 빠르게 진행된다.
따라서 같은 열을 주었을 경우, 시간 대비 온도 변화가 크기 때문에 열역학적으로 제3 실험예에 따른 복합체의 열전도 효율이 대비예에 따른 복합체 대비 높음이 확인된다.
그리고, 대비예에 따른 복합체의 경우 측정되는 온도가 최종적으로 약 138.9℃로 일정한 값이 측정된다. 반면에 제3 실험예에 따른 복합체의 경우 약 148.5℃로 일정한 값이 측정된다.
Fourier의 열전도식은 q(열량)/A(단면적)=-k(열전도도)*△T(온도차이)/L(시편 두께)로서, 열량 및 단면적이 동일하다는 가정 하에서 k=L(시편 두께)/△T(온도차이)의 식에 따라, k값은 L(시편 두께)에 비례하고 △T(온도차이)에 반비례함을 알 수 있다.
여기서, △T는 T1(150℃)-T2(측정 온도)이다.
따라서, 복합체의 두께 또한 동일하게 만들었을 경우, 측정된 최종 온도가 높을수록 k값이 증가함을 알 수 있다.
도 15을 참조하면, 이를 보다 정량적으로 비교하기 위해, 열전도도 k의 경향을 비교하는 식을 세워 비교하면, 순수 프리프레그 복합체인 대비예에 따른 복합체(Pure)의 경우 약 0.122mm/K 라는 값을 갖는 반면, 그래핀 유기 입자와 구리 무기 입자가 코팅된 복합체인 제3 실험예에 따른 복합체(Graphene/Copper coating)의 경우 약 0.753mm/K 라는 값을 가진다.
즉, 제3 실험예에 따른 복합체(Graphene/Copper coating)는 대비예에 따른 복합체(Pure) 대비 열전도 경향이 약 517% 정도 향상된다.
이상에서 본 발명의 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
제1 프리프레그(100), 제2 프리프레그(200), 제1 열전도성 입자(300), 제2 열전도성 입자(400)

Claims (20)

  1. 제1 프리프레그(prepreg);
    상기 제1 프리프레그에 직접 접합된 제2 프리프레그; 및
    상기 제1 프리프레그와 상기 제2 프리프레그 사이에 분산되어 위치하는 복수의 제1 열전도성 입자들
    을 포함하는 복합체.
  2. 제1항에서,
    상기 제1 열전도성 입자들은 상기 제1 프리프레그 및 상기 제2 프리프레그 대비 높은 열전도도를 가지는 복합체.
  3. 제1항에서,
    상기 제1 열전도성 입자들은 유기 입자를 포함하는 복합체.
  4. 제3항에서,
    상기 유기 입자의 입경은 0.01㎛ 내지 50㎛인 복합체.
  5. 제3항에서,
    상기 유기 입자는 흑연(Graphite), 그래핀(Graphene), 및 탄소 나노 튜브(Carbon nanotube) 중 적어도 하나를 포함하는 복합체.
  6. 제1항에서,
    상기 제1 열전도성 입자들은 무기 입자를 포함하는 복합체.
  7. 제6항에서,
    상기 무기 입자의 입경은 0.1㎛ 내지 500㎛인 복합체.
  8. 제6항에서,
    상기 무기 입자는 구리(Copper), 은(Silver), 알루미늄(Aluminum), 마그네슘(Magnesium), 및 철(Iron) 중 적어도 하나를 포함하는 복합체.
  9. 제1항에서,
    상기 제1 열전도성 입자들은 유기 입자 및 무기 입자를 포함하는 복합체.
  10. 제9항에서,
    상기 무기 입자는 상기 유기 입자 대비 큰 복합체.
  11. 제1항에서,
    상기 제1 열전도성 입자들은 상기 제2 프리프레그의 배면에 위치하며,
    상기 제2 프리프레그의 전면에 분산되어 위치하는 복수의 제2 열전도성 입자들을 더 포함하는 복합체.
  12. 제11항에서,
    상기 제2 열전도성 입자들은 유기 입자 및 무기 입자 중 적어도 하나를 포함하는 복합체.
  13. 제11항에서,
    상기 제2 프리프레그의 전면에 직접 접합된 제3 프리프레그를 더 포함하며,
    상기 제2 열전도성 입자들은 상기 제2 프리프레그와 상기 제3 프리프레그 사이에 위치하는 복합체.
  14. 제13항에서,
    상기 제3 프리프레그의 전면에 분산되어 위치하는 복수의 제3 열전도성 입자들을 더 포함하는 복합체.
  15. 제1항에서,
    상기 제1 프리프레그 및 상기 제2 프리프레그는 탄소 섬유 및 유리 섬유 중 적어도 하나를 포함하는 복합체.
  16. 제1 프리프레그의 전면에 복수의 제1 열전도성 입자들을 분산시켜 코팅하는 단계; 및
    상기 제1 열전도성 입자들을 사이에 두고 상기 제1 프리프레그의 전면에 제2 프리프레그를 직접 접합하는 단계
    를 포함하는 복합체의 제조 방법.
  17. 제16항에서,
    상기 제1 열전도성 입자들을 분산시켜 코팅하는 단계는,
    상기 제1 프리프레그의 전면에 상기 제1 열전도성 입자들이 분산된 분산 용액을 도포하는 단계; 및
    상기 제1 프리프레그의 전면에 도포된 분산 용액의 용매를 증발시키는 단계
    를 포함하는 복합체의 제조 방법.
  18. 제16항에서,
    상기 제1 프리프레그의 전면에 제2 프리프레그를 직접 접합하는 단계는 고온 및 고압의 핫 프레스를 이용해 수행하는 복합체의 제조 방법.
  19. 제16항에서,
    상기 제2 프리프레그의 전면에 복수의 제2 열전도성 입자들을 분산시켜 코팅하는 단계를 더 포함하는 복합체의 제조 방법.
  20. 제19항에서,
    제3 프리프레그의 전면에 복수의 제3 열전도성 입자들을 분산시켜 코팅하는 단계를 더 포함하며,
    상기 제1 프리프레그의 전면에 제2 프리프레그를 직접 접합하는 단계는 제2 프리프레그의 전면에 상기 제3 프리프레그를 직접 접합하는 단계를 포함하는 복합체의 제조 방법.
PCT/KR2020/000798 2019-01-17 2020-01-16 복합체 및 복합체의 제조 방법 WO2020149662A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190006427A KR102173036B1 (ko) 2019-01-17 2019-01-17 복합체 및 복합체의 제조 방법
KR10-2019-0006427 2019-01-17

Publications (1)

Publication Number Publication Date
WO2020149662A1 true WO2020149662A1 (ko) 2020-07-23

Family

ID=71614556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000798 WO2020149662A1 (ko) 2019-01-17 2020-01-16 복합체 및 복합체의 제조 방법

Country Status (2)

Country Link
KR (1) KR102173036B1 (ko)
WO (1) WO2020149662A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112480604A (zh) * 2020-11-17 2021-03-12 中国科学院金属研究所 一种具有叠层混杂结构的高导热碳纤维复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281469A (ja) * 1999-03-31 2000-10-10 Ngk Insulators Ltd 被覆層を有する炭素複合材およびその製造方法
JP2003136634A (ja) * 2001-10-31 2003-05-14 Toshio Tanimoto 繊維強化プラスチック複合材料およびその製造方法
KR101266390B1 (ko) * 2012-10-05 2013-05-22 주식회사 엘엠에스 열전도 조성물 및 시트
WO2014050896A1 (ja) * 2012-09-26 2014-04-03 東邦テナックス株式会社 プリプレグ及びその製造方法
KR20160097284A (ko) * 2013-12-13 2016-08-17 사이텍 인더스트리스 인코포레이티드 전기전도성 및 층간분리 저항성을 가진 복합 재료

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281469A (ja) * 1999-03-31 2000-10-10 Ngk Insulators Ltd 被覆層を有する炭素複合材およびその製造方法
JP2003136634A (ja) * 2001-10-31 2003-05-14 Toshio Tanimoto 繊維強化プラスチック複合材料およびその製造方法
WO2014050896A1 (ja) * 2012-09-26 2014-04-03 東邦テナックス株式会社 プリプレグ及びその製造方法
KR101266390B1 (ko) * 2012-10-05 2013-05-22 주식회사 엘엠에스 열전도 조성물 및 시트
KR20160097284A (ko) * 2013-12-13 2016-08-17 사이텍 인더스트리스 인코포레이티드 전기전도성 및 층간분리 저항성을 가진 복합 재료

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112480604A (zh) * 2020-11-17 2021-03-12 中国科学院金属研究所 一种具有叠层混杂结构的高导热碳纤维复合材料及其制备方法

Also Published As

Publication number Publication date
KR102173036B1 (ko) 2020-11-03
KR20200089796A (ko) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2018030607A1 (en) Heating module and heater assembly including the same
WO2020149662A1 (ko) 복합체 및 복합체의 제조 방법
WO2020022848A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2019066543A1 (ko) 인조 흑연 분말을 이용한 열전도성 박막의 제조방법
WO2012087058A2 (en) Printed circuit board and method for manufacturing the same
WO2021230622A1 (ko) 분리막 구조, 그 제조 방법 및 이를 이용한 이차전지
WO2018030552A1 (ko) 중합성 조성물
WO2018074889A2 (ko) 그라파이트 시트의 제조방법
WO2020076040A1 (ko) 리셉터클 커넥터
WO2020105968A1 (ko) 단분자가 결합된 질화붕소 나노튜브와 이를 이용한 콜로이드 용액의 제조 방법
WO2021002660A1 (ko) 에어로겔 함유 분무용 조성물과 그 제조방법
WO2018176563A1 (zh) 一种蒸发源
WO2020180149A1 (ko) 패키징 기판 및 이를 포함하는 반도체 장치
WO2021025460A1 (ko) 엘이디 스핀척
WO2010008213A9 (en) Silane based compound, method for preparing the same, and surface treating agent composition for copper foil including the silane based compound
WO2018139822A1 (ko) 반도체 도너 기판과, 반도체 도너 기판의 제조 방법과, 유기 발광 장치의 제조 방법 및 도너 기판 모듈
WO2017135706A2 (ko) 히터 및 이의 제조 방법
WO2018190633A1 (ko) 저삽입력 커넥터 어셈블리 및 반도체 부품 시험 장치
WO2020185021A1 (ko) 패키징 기판 및 이를 포함하는 반도체 장치
WO2015106461A1 (zh) 地址获取方法及网络虚拟化边缘设备
WO2015152674A1 (ko) 시아네이트계 수지에 대한 분산성이 우수한 실리카졸 조성물 및 이의 제조 방법
WO2017099293A1 (ko) 전기 자동차용 배터리 스택용 쿨링 플레이트 제조 방법 및 이에 의해 제조된 쿨링 플레이트
WO2020185023A1 (ko) 패키징 기판 및 이의 제조방법
WO2016122144A1 (ko) 변성 이소부틸렌-이소프렌 고무, 이의 제조방법 및 경화물
WO2020159035A1 (ko) 폴리이미드 필름, 이를 이용한 플렉서블 기판 및 플렉서블 기판을 포함하는 플렉서블 디스플레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741313

Country of ref document: EP

Kind code of ref document: A1