WO2018030552A1 - 중합성 조성물 - Google Patents

중합성 조성물 Download PDF

Info

Publication number
WO2018030552A1
WO2018030552A1 PCT/KR2016/008695 KR2016008695W WO2018030552A1 WO 2018030552 A1 WO2018030552 A1 WO 2018030552A1 KR 2016008695 W KR2016008695 W KR 2016008695W WO 2018030552 A1 WO2018030552 A1 WO 2018030552A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
compound
polymerizable composition
independently hydrogen
Prior art date
Application number
PCT/KR2016/008695
Other languages
English (en)
French (fr)
Inventor
김상우
이승희
안기호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16912751.1A priority Critical patent/EP3483200A4/en
Priority to JP2019502043A priority patent/JP6818123B2/ja
Priority to CN201680088159.0A priority patent/CN109563266B/zh
Priority to US16/324,417 priority patent/US10927215B2/en
Priority to PCT/KR2016/008695 priority patent/WO2018030552A1/ko
Publication of WO2018030552A1 publication Critical patent/WO2018030552A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/40Polyesters derived from ester-forming derivatives of polycarboxylic acids or of polyhydroxy compounds, other than from esters thereof
    • C08G63/44Polyamides; Polynitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/50Iso-indoles; Hydrogenated iso-indoles with oxygen and nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present application relates to polymerizable compositions, prepolymers, phthalonitrile resins, composites, methods of making the same, and uses thereof.
  • the phthalonitrile resin can be used for various applications.
  • a composite formed by impregnating a phthalonitrile resin into a filler such as glass fiber or carbon fiber may be used as a material for automobiles, airplanes, ships, and the like.
  • the manufacturing process of the composite may include, for example, a process of curing after mixing a prepolymer and a filler formed by a mixture of a phthalonitrile and a curing agent or a reaction of the mixture (for example, Patent Document 1 Reference).
  • Patent Document 1 Korean Registered Patent No. 0558158
  • the present application provides a polymerizable composition, a prepolymer, a phthalonitrile resin, a composite, a method for preparing the same, and a use thereof.
  • One object of the present application is to provide a polymerizable composition containing a curing agent that is excellent in heat resistance and does not produce defects such as voids that may adversely affect physical properties.
  • the present application is another object to enable the polymerizable composition to exhibit a suitable curability, processing temperature and process window, to form a composite of excellent physical properties.
  • the present application is directed to a polymerizable composition.
  • the polymerizable composition may be a composition capable of forming a so-called phthalonitrile resin through a polymerization reaction.
  • the polymerizable composition may contain a phthalonitrile compound and a curing agent.
  • the kind of phthalonitrile compound which can be used in a polymerizable composition is not specifically limited, For example, two or more, two to phthalonitrile structures which can form a phthalonitrile resin through reaction with a hardening
  • curing agent are mentioned.
  • Compounds containing about 20, 2 to 16, 2 to 12, 2 to 8 or 2 to 4 can be used.
  • the polymerizable composition further includes a curing agent, and a compound of the following Chemical Formula 1 may be used as the curing agent.
  • the curing agent of the following formula has an imide structure in the molecular structure, and thereby exhibits excellent heat resistance, thus adversely affecting physical properties even when excessively contained in the polymerizable composition or when the polymerizable composition is processed or cured at a high temperature. It is possible to form a polymerizable composition that does not produce voids or the like.
  • M is a tetravalent radical
  • X 1 and X 2 are each independently an alkylene group, an alkylidene group or an aromatic divalent radical.
  • n-valent radicals may mean a tetravalent moiety derived from a compound, unless otherwise specified.
  • M may be a tetravalent radical derived from an aliphatic, alicyclic or aromatic compound, and in this case, for example, M may be selected from four aliphatic, alicyclic or aromatic compounds.
  • the radicals formed by leaving the hydrogen atoms may have a structure in which each of the radicals is connected to the carbon atom of the carbonyl group represented by the formula (1).
  • alkane alkenes or alkynes which are linear or branched.
  • alkanes, alkenes or alkynes having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms may be used.
  • the alkanes, alkenes or alkynes may be optionally substituted by one or more substituents.
  • a hydrocarbon compound containing a non-aromatic ring structure having 3 to 20 carbon atoms, 3 to 16 carbon atoms, 3 to 12 carbon atoms, 3 to 8 carbon atoms or 3 to 4 carbon atoms.
  • Such an alicyclic hydrocarbon compound may include at least one hetero atom such as oxygen or nitrogen as a ring constituent atom, and may be optionally substituted with one or more substituents if necessary.
  • the aromatic compound may be benzene, a compound containing benzene, or a derivative of any one of the above.
  • the compound including benzene it may mean a compound having a structure in which two or more benzene rings are condensed while sharing one or two carbon atoms, or connected by a directly linked structure or an appropriate linker.
  • the aromatic compound may include, for example, 6 to 25, 6 to 20, or 6 to 12 carbon atoms, and may be substituted by one or more substituents if necessary.
  • a compound represented by one of the following Chemical Formulas 2 to 7 may be exemplified.
  • R 1 to R 6 in Formula 2 are each independently hydrogen, an alkyl group, an alkoxy group or an aryl group.
  • R 1 to R 8 in Formula 3 are each independently hydrogen, an alkyl group, an alkoxy group or an aryl group.
  • R 1 to R 10 in Formula 4 are each independently hydrogen, an alkyl group, an alkoxy group or an aryl group
  • a 1 and A 2 may be each independently a single bond or an alkylene group.
  • the term single bond means a case where no separate atom is present at a corresponding site, and, for example, when X is a single bond in formula (4), it means a case where no separate atom exists at that part.
  • the benzene rings on both sides of X may be directly connected to form a biphenyl structure.
  • R 1 to R 4 are each independently hydrogen, an alkyl group, or an alkoxy group, and A is an alkylene group or an alkenylene group.
  • two of R 1 to R 4 may be connected to each other to form an alkylene group, and the alkylene group or alkenylene group of A may include one or more oxygen atoms as a hetero atom.
  • R 1 to R 4 in Formula 6 are each independently hydrogen, an alkyl group or an alkoxy group, and A is an alkylene group.
  • R 1 to R 10 in Formula 7 are each independently hydrogen, an alkyl group or an alkoxy group.
  • alkyl group may be an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkyl group may be linear, branched or cyclic and may be substituted by one or more substituents if necessary.
  • alkoxy group in the present application may be an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkoxy group may be linear, branched or cyclic and may be substituted by one or more substituents if necessary.
  • aryl group in the present application may refer to monovalent residues derived from the aromatic compounds described above, unless otherwise specified.
  • the term aryl group in the present application may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group.
  • alkylene group or alkylidene group in the present application means an alkylene group or alkylidene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, unless otherwise specified. can do.
  • the alkylene group or alkylidene group may be linear, branched or cyclic.
  • the alkylene group or alkylidene group may be optionally substituted with one or more substituents.
  • substituents that may be optionally substituted with an aliphatic compound, an alicyclic compound, an aromatic compound, an alkyl group, an alkoxy group, an aryl group, an alkylene group, or an alkylidene group include halogen, glycidyl groups such as chlorine or fluorine, Epoxy groups such as epoxyalkyl groups, glycidoxyalkyl groups, or alicyclic epoxy groups, acryloyl groups, methacryloyl groups, isocyanate groups, thiol groups, alkyl groups, alkoxy groups, or aryl groups may be exemplified, but are not limited thereto.
  • benzene, alkylbenzene, or dialkylbenzene may be exemplified, but is not limited thereto.
  • cycloalkane having 4 to 8 carbon atoms such as cyclohexane, cyclohexene which may be substituted with one or more alkyl groups, or the like, and represented by the formula of any one of Formulas G to I
  • the compound to be exemplified can be exemplified, but is not limited thereto.
  • Such radicals are formed by directly leaving R 1 to R 10 substituents of Formulas 2 to 7 or belonging to an alkyl group, alkoxy group, aryl group, alkylene group or alkenylene group, which is a substituent which may be present in R 1 to R 10 .
  • the hydrogen atom may be separated and formed.
  • the radical when the radical is derived from a compound of Formula 2, at least one, at least two, at least three or four of R 1 to R 6 of Formula 2 form a radical, or the R 1 to R Hydrogen atoms of the alkyl, alkoxy or aryl groups present in 6 may be released to form the radical.
  • Forming a radical in the above may mean that the site is connected to the carbon atom of the carbonyl group of Formula 1 as described above.
  • R 2 , R 3 , R 5, and R 6 in Formula 2 form a radical linked to Formula 1, the same core structure as that of Compound CA1 may be formed in the following Examples.
  • the tetravalent radical of Formula 1 may be a tetravalent radical derived from a compound represented by any one of Formulas 2 to 4.
  • R 1 to R 6 of Formula 2, R 1 to R 8 of Formula 3, or R 1 to R 11 of Formula 4 each independently represent a hydrogen, an alkyl group, an alkoxy group, or an aryl group, each of four or more of them. May form a radical linked to formula (1).
  • Each of which does not form a radical in the above may be hydrogen, an alkyl group or an alkoxy group, or may be hydrogen or an alkyl group.
  • R 2 , R 3 , R 5, and R 6 may form the radical, and R 1 and R 4 are each independently hydrogen, an alkyl group, an alkoxy group, or an aryl group, or hydrogen, It may be an alkyl group or an alkoxy group, or may be a hydrogen or an alkyl group.
  • R 3 , R 4 , R 8, and R 7 may form the radical, and R 1 , R 2 , R 5, and R 6 may each independently represent a hydrogen, an alkyl group, an alkoxy group, or an aryl group. It may be a hydrogen, an alkyl group, or an alkoxy group, or may be a hydrogen or an alkyl group.
  • R 2 , R 3 , R 8 and R 9 may form the radical, and R 1 , R 4 , R 5 , R 6 , R 7 and R 10 are each independently hydrogen, an alkyl group. , An alkoxy group or an aryl group, hydrogen, an alkyl group or an alkoxy group, or may be a hydrogen or alkyl group.
  • X may be an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom.
  • X in Formula 4 may be an alkylene group, an alkylidene group, an oxygen atom, or an oxygen atom.
  • X 1 and X 2 are each independently an alkylene group, an alkylidene group, or an aromatic divalent radical, and in another example, they may be the same or different aromatic divalent radicals.
  • the aromatic divalent radical may be a divalent radical derived from the aforementioned aromatic compound.
  • X 1 and X 2 of Formula 1 may each independently be a divalent radical derived from a compound represented by any one of Formulas 8 to 10 below.
  • R 1 to R 6 in Formula 8 are each independently hydrogen, an alkyl group, an alkoxy group, an aryl group, a hydroxy group, or a carboxyl group.
  • R 1 to R 10 are each independently hydrogen, an alkyl group, an alkoxy group, a hydroxy group, a carboxyl group or an aryl group, and X is a single bond, an alkylene group, an alkylidene group, an oxygen atom, a sulfur atom, a carbonyl group, —NR 11 —, —S ( ⁇ O) — or —S ( ⁇ O) 2 —, wherein R 11 is hydrogen, an alkyl group, an alkoxy group, or an aryl group.
  • R 1 to R 10 are each independently hydrogen, an alkyl group, an alkoxy group, a hydroxy group, a carboxyl group or an aryl group.
  • benzene which may be substituted with at least one hydroxy group or carboxyl group may be exemplified, but is not limited thereto.
  • At least one hydroxy group while being represented by any one of the compounds represented by any one of the formulas A to F or biphenyl which may be substituted with at least one hydroxy group or a carboxyl group Or a compound which may be substituted with a carboxyl group or a compound represented by the following formulas K to N, or a compound that may be substituted with at least one hydroxy group or a carboxyl group represented by the following formulas K to N, but is not limited thereto. It is not.
  • a compound represented by the following Formula O or a compound which may be substituted with at least one hydroxy group or a carboxyl group while being represented by the above Formula O may be exemplified, but is not limited thereto.
  • the aromatic divalent radical may be a radical derived from the compound of Formula 8, and examples thereof include, but are not limited to, phenylene.
  • 2 may be when the radical is phenylene, the substitution position of the amine groups relative to the portion coupled to the N in X 1 of the formula (1) Deletion (ortho), meth (meta) or p (para) position,
  • the substitution position of the amine group based on the site linked to N in X 2 of Formula 1 may also be an ortho, meta, or para position.
  • the compound of the formula (1) can be synthesized according to a known synthesis method of an organic compound, and the specific manner thereof is not particularly limited.
  • the compound of Formula 1 may be formed by a dehydration condensation reaction of a dianhydride compound and a diamine compound.
  • Compound (1) has a high boiling point, does not volatilize or decompose at high temperatures, thereby maintaining a stable curability of the polymerizable composition, a void that may adversely affect the physical properties of the composite during high temperature processing or curing ( void).
  • the compound may have a decomposition temperature of at least 300 ° C, at least 350 ° C, at least 400 ° C, or at least 500 ° C.
  • the term decomposition temperature in the present application may mean a temperature at which the decomposition rate of the compound of Formula 1 is maintained in the range of 10% or less, 5% or less, or 1% or less.
  • the upper limit of the decomposition temperature in the above is not particularly limited, and for example, may be about 1,000 ° C. or less.
  • the compound of the formula (1) is a process window of the reactive or polymerizable composition itself, i.e., by the selection of M or a linker X 1 or X 2 of the core, that is, the melting temperature and curing temperature of the polymerizable composition or the prepolymer formed therefrom.
  • the difference can be easily adjusted, and can act as a curing agent of various physical properties depending on the use.
  • the proportion of the curing agent in the polymerizable composition is not particularly limited.
  • the ratio may be adjusted to ensure the desired curability in consideration of the ratio or kind of the curable component such as the phthalonitrile compound included in the composition.
  • the curing agent may be included in an amount of about 0.02 mol to 1.5 mol per mol of the phthalonitrile compound included in the polymerizable composition.
  • the ratio is only an example of the present application.
  • the ratio of the curing agent in the polymerizable composition is high, but the process window is narrow, and when the ratio of the curing agent is low, the curing property tends to be insufficient, so in view of this point, an appropriate ratio of curing agent can be selected. have.
  • the polymerizable composition of the present application exhibits proper curing property, melting temperature, and process window through the use of the compound of Formula 1, and is capable of forming a complex of excellent physical properties without deterioration of physical properties such as voids. It is possible to provide a sex composition and a prepolymer.
  • the processing temperature of the polymerizable composition may be in the range of 150 ° C to 350 ° C.
  • the term processing temperature in the present application may mean a temperature at which the compound, the following polymerizable composition or prepolymer including the same, and the like exist in a processable state.
  • a processing temperature may be, for example, a melting temperature (Tm) or a glass transition temperature (Tg).
  • Tm melting temperature
  • Tg glass transition temperature
  • the process window of the polymerizable composition i.e. the absolute value of the difference (Tc-Tp) between the processing temperature (Tp) and the curing temperature (Tc) of the phthalonitrile compound and the compound of formula 1 is 30 ° C. Or more, 50 ° C.
  • the curing temperature Tc may be higher than the processing temperature Tp. This range may be advantageous to secure appropriate processability in the process of producing a composite, for example, which will be described later using the polymerizable composition.
  • the upper limit of the process window is not particularly limited, but, for example, the absolute value of the difference (Tc-Tp) between the processing temperature Tp and the curing temperature Tc may be 400 ° C or less or 300 ° C or less. have.
  • the polymerizable composition may further include various additives.
  • additives can be exemplified by various fillers.
  • the kind of material that can be used as the filler is not particularly limited, and all known fillers suitable for the intended use can be used.
  • Exemplary fillers include, but are not limited to, metal materials, ceramic materials, glass, metal oxides, metal nitrides, carbon-based materials, and the like.
  • the form of the filler is not particularly limited, and it is a fibrous material such as aramid fiber, glass fiber or ceramic fiber, or a woven fabric, nonwoven fabric, string or string, particulate, polygonal or other amorphous material including nanoparticles formed by the material. And the like.
  • Examples of the carbon-based material may include graphite, graphene, carbon nanotubes, derivatives, isomers, and the like, such as oxides thereof.
  • the components which the polymerizable composition may further include are not limited to the above, and various monomers or other known polymers that are known to be applicable to the production of so-called engineering plastics such as, for example, polyimide, polyamide or polystyrene, etc. Additives may also be included without limitation, depending on the purpose.
  • the present application also relates to a prepolymer formed by the reaction of the polymerizable composition, ie, the phthalonitrile compound and the polymerizable composition comprising the compound of Formula 1.
  • the term prepolymer state is a state in which a reaction between a phthalonitrile compound and a compound of formula 1 occurs in the polymerizable composition (for example, a so-called A or B stage stage of polymerization), It can mean the state which can process a composite_body
  • the prepolymer state is a state in which the polymerization of the polymerizable composition is somewhat advanced, and the melt viscosity measured at any temperature within the range of about 150 ° C. to 250 ° C. is 100 cP to the composition. It may mean a state within the range of 10,000 cP, 100 cP to 5,000 cP or 100 cP to 3,000 cP.
  • the prepolymer may also exhibit good curability, low melting temperature and wide process window.
  • the processing temperature of the prepolymer may be in the range of 150 ° C to 350 ° C.
  • the absolute value of the process window of the prepolymer i.e. the difference (Tc-Tp) between the processing temperature (Tp) and the curing temperature (Tc) of the prepolymer, is at least 30 ° C, at least 50 ° C or at least 100 ° C.
  • the curing temperature Tc may be higher than the processing temperature Tp. This range may be advantageous to ensure appropriate processability using a prepolymer, for example, in the preparation of the composite described below.
  • the upper limit of the process window is not particularly limited, but, for example, the absolute value of the difference (Tc-Tp) between the processing temperature Tp and the curing temperature Tc may be 400 ° C or less or 300 ° C or less. have.
  • the prepolymer may further comprise any known additive in addition to the above components.
  • examples of such an additive may include, but are not limited to, the aforementioned fillers.
  • the present application also relates to phthalonitrile resins which are polymers of the polymerizable composition.
  • phthalonitrile resins which are polymers of the polymerizable composition.
  • Such resin can be formed by polymerizing the above-mentioned polymerizable composition or prepolymer, for example.
  • the present application also relates to composites.
  • the composite may include the phthalonitrile resin and filler described above.
  • the use of the polymerizable composition of the present application enables attainment of appropriate curability, melting temperature and process window, and may adversely affect physical properties even at high temperatures applied in the formation of the composite or resin. Voids and the like can be prevented, and thus a so-called reinforced polymer composite of excellent physical properties can be easily formed.
  • the composite formed as described above may include the phthalonitrile resin and the filler, and may be applied to various applications including, for example, durable materials such as automobiles, airplanes, or ships.
  • filler is not particularly limited and may be appropriately selected in consideration of the intended use.
  • Fillers that can be used include fibrous materials such as carbon fibers, aramid fibers, glass fibers or ceramic fibers, or carbon nanomaterials such as woven fabrics, nonwovens, strings or strings or carbon nanotubes or graphemes formed by the materials. Etc. may be exemplified, but is not limited thereto.
  • the proportion of the filler is also not particularly limited and may be set in an appropriate range depending on the intended use.
  • the present application also relates to a precursor for preparing the composite, which precursor may comprise, for example, the polymerizable composition and the filler described above, or may comprise the prepolymer and the filler described above.
  • the composite can be prepared in a known manner using the precursor.
  • the composite may be formed by curing the precursor.
  • the precursor may be prepared by mixing the phthalonitrile compound in a molten state with a polymerizable composition prepared by mixing the compound of Formula 1 or the prepolymer with the filler in a molten state by heating or the like.
  • the precursor prepared as described above may be molded into a desired shape and then cured to prepare the above-described composite.
  • a method of forming a prepolymer or the like, a method of mixing the prepolymer or the like with filler, processing and curing to prepare a composite, and the like may be performed according to a known method.
  • the present application it is possible to provide a polymerizable composition including a curing agent that is excellent in heat resistance and does not produce defects such as voids that may adversely affect physical properties.
  • the present application may allow the polymerizable composition to exhibit an appropriate curability, processing temperature and process window, and to form a composite of excellent physical properties.
  • TGA analysis was performed using a TGA e850 instrument from Mettler-Toledo. The analysis was performed in an atmosphere of N 2 flow while raising the temperature at a rate of 10 ° C./min from about 25 ° C. to 800 ° C. for the compound of measurement.
  • FT-IR analysis was performed by Attenuated Total Reflectance (ATR) method using Varian equipment. The samples were measured after thermosetting, pulverizing, and pulverizing the prepolymers of Examples or Comparative Examples, wherein the FT-IR peaks were measured over an absorption wavelength of 400 cm ⁇ 1 to 4000 cm ⁇ 1 .
  • ATR Attenuated Total Reflectance
  • the compounds of formula (I) were synthesized in the following manner. 27.9 g of Compound II and 100 g of DMF (Dimethyl Formamide) were added to a three neck round bottom flask (RBF), followed by stirring at room temperature to dissolve. Subsequently, 51.9 g of the compound of formula III was added thereto, and 50 g of DMF was added, followed by stirring to dissolve. Then 62.2 g of potassium carbonate and 50 g of DMF were added together, and the temperature was raised to 85 ° C. while stirring. After reacting for about 5 hours in the above state, the mixture was cooled to room temperature.
  • DMF Dimethyl Formamide
  • the cooled reaction solution was poured into 0.2N aqueous hydrochloric acid solution to neutralize precipitate, and washed with water after filtering.
  • the filtered reaction was then dried in a vacuum oven at 100 ° C. for 1 day, and after removing the water and residual solvent, the compound of formula I was obtained in a yield of about 83% by weight.
  • the NMR results for the compound of formula I are shown in FIG. 1.
  • the following compound of formula IIX was synthesized in the following manner. First, 24 g of a compound of formula VI and 45 g of N-methyl-pyrrolidone (NMP) were added to a three neck round bottom flask (RBF), and stirred at room temperature to dissolve. The above was cooled by a water bath, and 12.4 g of the compound of formula (VII) was slowly added in three portions with 45 g of NMP. When all the compound added dissolved, 18 g of toluene was added to the reaction for azeotrope. Dean-Stark device and reflux condenser were installed, and toluene was charged to Dean-Stark device.
  • NMP N-methyl-pyrrolidone
  • the compound of formula X was synthesized in the following manner. First, 13 g of a compound of Formula IX and 33 g of N-methyl-pyrrolidone (NMP) were added to a three neck round bottom flask (RBF), followed by stirring at room temperature to dissolve. The above was cooled by a water bath, and 12.4 g of the compound of VII of Preparation Example 3 was slowly divided into three portions and added with 30 g of NMP. When all the compound was dissolved, 13 g of toluene was added to the reaction for azeotrope. Dean-Stark device and reflux condenser were installed, and toluene was charged to Dean-Stark device.
  • NMP N-methyl-pyrrolidone
  • the compound of formula XII was synthesized in the following manner. First, 13 g of a compound of formula XI and 33 g of N-methyl-pyrrolidone (NMP) were added to a three neck round bottom flask (RBF), and the mixture was stirred at room temperature to dissolve. The above was cooled by a water bath, and 12.4 g of the compound of VII of Preparation Example 3 was slowly divided into three portions and added with 30 g of NMP. When all the compound was dissolved, 13 g of toluene was added to the reaction for azeotrope. Dean-Stark device and reflux condenser were installed, and toluene was charged to Dean-Stark device.
  • NMP N-methyl-pyrrolidone
  • the compound of Formula 14 was synthesized by dehydration of diamine and dianhydride.
  • 24 g of compound (4,4'-oxydianiline) of Formula VI and 40 g of N-methyl-pyrrolidone (NMP) of Preparation Example 3 were added to a three neck round bottom flask (RBF), and the mixture was stirred at room temperature to dissolve. .
  • the above was cooled by a water bath, and 8.7 g of the compound of Formula 13 was slowly added in three portions and 40 g of NMP was added thereto.
  • 16 g of toluene was added to the reaction for azeotrope.
  • Dean-Stark device and reflux condenser were installed, and toluene was charged to Dean-Stark device.
  • the compound of Formula 16 was synthesized by dehydration of diamine and dianhydride.
  • 24 g of compound (4,4'-oxydianiline) of Formula VI and 45 g of N-methyl-pyrrolidone (NMP) of Preparation Example 3 were added to a three neck round bottom flask (RBF), and the mixture was stirred at room temperature to dissolve. .
  • the above was cooled in a water bath, and 11.8 g of the compound of Formula 15 was slowly added in three portions and added with 45 g of NMP.
  • 18 g of toluene was added to the reaction for azeotrope.
  • Dean-Stark device and reflux condenser were installed, and toluene was charged to Dean-Stark device.
  • the compound of formula 18 was synthesized by dehydration of diamine and dianhydride.
  • 24 g of compound (4,4'-oxydianiline) of Formula VI and 45 g of N-methyl-pyrrolidone (NMP) of Preparation Example 3 were added to a three neck round bottom flask (RBF), and the mixture was stirred at room temperature to dissolve. .
  • the above was cooled by a water bath, and 11.8 g of the compound represented by the following Formula 17 was gradually divided into three portions, and added with 45 g of NMP. When all the compound added dissolved, 18 g of toluene was added to the reaction for azeotrope.
  • the compound of formula 20 was synthesized by dehydration of diamine and dianhydride.
  • 24 g of compound (4,4'-oxydianiline) of Formula VI and 45 g of N-methyl-pyrrolidone (NMP) of Preparation Example 3 were added to a three neck round bottom flask (RBF), and the mixture was stirred at room temperature to dissolve. .
  • the above was cooled by a water bath, and 9 g of the compound of Formula 19 was slowly added in three portions with 41 g of NMP.
  • 18 g of toluene was added to the reaction for azeotrope.
  • Dean-Stark device and reflux condenser were installed, and toluene was charged to Dean-Stark device.
  • Compound 22 was synthesized by dehydration of diamine and dianhydride.
  • 24 g of compound (4,4'-oxydianiline) of Formula VI and 60 g of N-methyl-pyrrolidone (NMP) of Preparation Example 3 were added to a three neck round bottom flask (RBF), and the mixture was stirred at room temperature to dissolve. .
  • the above was cooled by a water bath, and 12.3 g of the compound represented by Chemical Formula 21 was slowly divided into three portions and added with 60 g of NMP.
  • 24 g of toluene was added to the reaction for azeotrope.
  • Dean-Stark device and reflux condenser were installed, and toluene was charged to Dean-Stark device.
  • the compound of formula 23 (CA9) was obtained from TCI (Tokyo Chemical Industry Co., Ltd.) and used without further purification.
  • a polymerizable composition and a prepolymer were prepared in the same manner as in Example 1, except that the compound (CA2) of Preparation Example 4 was used instead of the compound (CA1) of Preparation Example 3.
  • the compound (CA2) of Preparation Example 4 was used instead of the compound (CA1) of Preparation Example 3.
  • an imide peak may be observed at 1720 cm ⁇ 1 and 1770 cm ⁇ 1 .
  • a polymerizable composition and a prepolymer were prepared in the same manner as in Example 1, except that the compound (CA3) of Preparation Example 5 was used instead of the compound (CA1) of Preparation Example 3.
  • Example 4 is the case can be observed in Fig peak imide (imide stretching peak) is 1720 cm -1 and 1770 cm -1 in the FT-IR analysis.
  • a polymerizable composition and a prepolymer were prepared in the same manner as in Example 1, except that the compound (CA4) of Preparation Example 6 was used instead of the compound (CA1) of Preparation Example 3.
  • an imide stretching peak may be observed at 1720 cm ⁇ 1 and 1770 cm ⁇ 1 in FT-IR analysis.
  • a polymerizable composition and a prepolymer were prepared in the same manner as in Example 1, except that the compound (CA5) of Preparation Example 7 was used instead of the compound (CA1) of Preparation Example 3.
  • Example 6 is the case can be observed in Fig peak imide (imide stretching peak) is 1720 cm -1 and 1770 cm -1 in the FT-IR analysis.
  • a polymerizable composition and a prepolymer were prepared in the same manner as in Example 1, except that the compound (CA6) of Preparation Example 8 was used instead of the compound (CA1) of Preparation Example 3.
  • imide peaks may also be observed at 1720 cm ⁇ 1 and 1770 cm ⁇ 1 in FT-IR analysis.
  • a polymerizable composition and a prepolymer were prepared in the same manner as in Example 1, except that the compound (CA7) of Preparation Example 9 was used instead of the compound (CA1) of Preparation Example 3.
  • an imide stretching peak may be observed at 1720 cm ⁇ 1 and 1770 cm ⁇ 1 in FT-IR analysis.
  • a polymerizable composition and a prepolymer were prepared in the same manner as in Example 1, except that the compound (CA8) of Preparation Example 10 was used instead of the compound (CA1) of Preparation Example 3.
  • an imide stretching peak may be observed at 1720 cm ⁇ 1 and 1770 cm ⁇ 1 in FT-IR analysis.

Abstract

본 출원은 중합성 조성물, 프리폴리머, 프탈로니트릴 수지, 복합체, 그 제조 방법 및 그 용도에 대한 것이다. 본 출원에서는, 내열성이 우수하여, 물성에 악영향을 줄 수 있는 결함을 생성시키지 않는 경화제를 포함하는 중합성 조성물을 제공할 수 있다. 또한, 본 출원은 상기 중합성 조성물이, 적절한 경화성, 가공 온도 및 프로세스 윈도우를 나타내며, 탁월한 물성의 복합체를 형성할 수 있도록 할 수 있다.

Description

중합성 조성물
본 출원은 중합성 조성물, 프리폴리머, 프탈로니트릴 수지, 복합체, 그 제조 방법 및 그 용도에 대한 것이다.
프탈로니트릴 수지는, 다양한 용도에 사용될 수 있다. 예를 들면, 프탈로니트릴 수지를 유리 섬유나 탄소 섬유 등과 같은 충전제에 함침시켜 형성되는 복합체(composite)는, 자동차, 비행기 또는 선박 등의 소재로 사용될 수 있다. 상기 복합체의 제조 과정은, 예를 들면, 프탈로니트릴과 경화제의 혼합물 또는 그 혼합물의 반응에 의해 형성되는 프리폴리머와 충전제를 혼합한 후에 경화시키는 과정을 포함할 수 있다(예를 들면, 특허문헌 1 참조).
프탈로니트릴 화합물과 경화제의 반응 과정에서 상기 경화제가 분해될 경우에 프리폴리머, 수지 또는 복합체 내에 보이드(Void)의 잔존 등의 결함이 발생하게 되고, 이와 같은 결함은 최종 제품의 물성을 저해하는 요인이 될 수 있다. 따라서, 상기와 같은 문제의 해결을 위해서, 경화제의 비율을 낮게 조절하거나, 경화 반응 시에 온도를 낮게 조절하는 방법 등을 고려할 수 있으나, 이러한 방법은, 경화 효율 등을 떨어뜨려 역시 최종 제품의 물성에 악영향을 줄 수 있다.
(특허문헌 1) 한국등록특허 제0558158호
본 출원은 중합성 조성물, 프리폴리머, 프탈로니트릴 수지, 복합체, 그 제조 방법 및 그 용도를 제공한다. 본 출원에서는, 내열성이 우수하여, 물성에 악영향을 줄 수 있는 보이드(void) 등의 결함을 생성시키지 않는 경화제를 포함하는 중합성 조성물을 제공하는 것을 하나의 목적으로 한다. 또한, 본 출원은 상기 중합성 조성물이, 적절한 경화성, 가공 온도 및 프로세스 윈도우를 나타내며, 탁월한 물성의 복합체를 형성할 수 있도록 하는 것을 또 다른 목적으로 한다.
본 출원은 중합성 조성물에 대한 것이다. 하나의 예시에서 상기 중합성 조성물은, 소위 프탈로니트릴 수지를 중합 반응을 통해 형성할 수 있는 조성물일 수 있다.
중합성 조성물은, 프탈로니트릴 화합물과 경화제를 포함할 수 있다.
중합성 조성물에서 사용될 수 있는 프탈로니트릴 화합물의 종류는 특별히 한정되지 않고, 예를 들면, 경화제와의 반응을 통해 프탈로니트릴 수지를 형성할 수 있는 프탈로니트릴 구조를 2개 이상, 2개 내지 20개, 2개 내지 16개, 2개 내지 12개, 2개 내지 8개 또는 2개 내지 4개 정도 포함하는 화합물을 사용할 수 있다. 프탈로니트릴 수지의 형성에 적합한 것으로 공지되어 있는 화합물은 다양하게 존재하며, 본 출원에서는 상기와 같은 공지의 화합물이 모두 사용될 수 있다. 하나의 예시에서 화합물의 예로는, 미국 특허 제4,408,035호, 미국 특허 제5,003,039호, 미국 특허 제5,003,078호, 미국 특허 제5,004,801호, 미국 특허 제5,132,396호, 미국 특허 제5,139,054호, 미국 특허 제5,208,318호, 미국 특허 제5,237,045호, 미국 특허 제5,292,854호 또는 미국 특허 제5,350,828호 등에서 공지되어 있는 화합물이 예시될 수 있으며, 상기 문헌들에 의한 것 외에도 업계에서 공지되어 있는 다양한 화합물이 상기 예시에 포함될 수 있다.
중합성 조성물은 경화제를 추가로 포함하고, 경화제로는 하기 화학식 1의 화합물이 사용될 수 있다. 하기와 같은 화학식의 경화제는, 분자 구조 내에 이미드 구조를 가지고, 이에 의해 우수한 내열성을 나타내어, 중합성 조성물에 과량 포함되거나, 혹은 중합성 조성물이 높은 온도에서 가공 또는 경화되는 경우에도 물성에 악영향을 줄 수 있는 보이드 등을 생성시키지 않는 중합성 조성물을 형성할 수 있다.
[화학식 1]
Figure PCTKR2016008695-appb-I000001
화학식 1에서 M은 4가 라디칼이고, X1 및 X2는 각각 독립적으로 알킬렌기, 알킬리덴기 또는 방향족 2가 라디칼이다.
본 출원에서 용어 n가 라디칼(상기에서 n은 임의의 수)은, 특별히 달리 규정하지 않는 한, 소정 화합물로부터 유래되는 4가의 잔기를 의미할 수 있다. 예를 들면, 상기 화학식 1에서 M은, 지방족, 지환족 또는 방향족 화합물 유래의 4가 라디칼일 수 있으며, 이러한 경우는, 예를 들면, 상기 M은, 상기 지방족, 지환족 또는 방향족 화합물에서 4개의 수소 원자가 이탈되어 형성되는 라디칼이 각각 화학식 1의 카보닐기의 탄소 원자와 연결되는 구조를 가질 수 있다.
상기에서 지방족 화합물로는, 직쇄형 또는 분지쇄형인 알칸, 알켄 또는 알킨이 예시될 수 있다. 상기 지방족 화합물로는, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알칸, 알켄 또는 알킨이 사용될 수 있다. 이러한 경우에 상기 알칸, 알켄 또는 알킨은 임의로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
상기에서 지환족 화합물로는, 탄소수 3 내지 20, 탄소수 3 내지 16, 탄소수 3 내지 12, 탄소수 3 내지 8 또는 탄소수 3 내지 4의 비방향족 고리 구조를 포함하는 탄화수소 화합물이 예시될 수 있다. 이러한 지환족 탄화수소 화합물은 고리 구성 원자로서, 산소 또는 질소와 같은 헤테로 원자를 적어도 하나 포함할 수도 있으며, 필요한 경우에 임의로 하나 이상의 치환기로 치환되어 있을 수 있다.
또한, 상기에서 방향족 화합물은, 벤젠, 벤젠을 포함하는 화합물 또는 상기 중 어느 하나의 유도체가 예시될 수 있다. 상기에서 벤젠을 포함하는 화합물로는, 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 축합되어 있거나, 직접 연결된 구조 또는 적절한 링커에 의해 연결되어 있는 구조의 화합물을 의미할 수 있다. 상기 방향족 화합물은, 예를 들면, 6개 내지 25개, 6개 내지 20개 또는 6개 내지 12개의 탄소 원자를 포함할 수 있고, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
하나의 예시에서 상기 4가 라디칼을 형성하는 지환족 또는 방향족 화합물로는, 하기 화학식 2 내지 7 중 어느 하나로 표시되는 화합물이 예시될 수 있다.
[화학식 2]
Figure PCTKR2016008695-appb-I000002
화학식 2에서 R1 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이다.
[화학식 3]
Figure PCTKR2016008695-appb-I000003
화학식 3에서 R1 내지 R8은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이다.
[화학식 4]
Figure PCTKR2016008695-appb-I000004
화학식 4에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이고, X는, 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자, 황 원자, 카보닐기, -A1-O-C(=O)-A2-, -A1-C(=O)-O-A2-, -S(=O)- 또는 -S(=O)2-이다. 상기에서 A1 및 A2는 각각 독립적으로 단일 결합이거나 알킬렌기일 수 있다.
본 명세서에서 용어 단일 결합은, 해당 부위에 별도의 원자가 존재하지 않는 경우를 의미하고, 예를 들어, 화학식 4에서 X가 단일 결합인 경우는, 그 부분에 별도의 원자가 존재하지 않는 경우를 의미하고, 이 경우 X의 양측의 벤젠 고리는 직접 연결되어 비페닐 구조를 형성할 수 있다.
[화학식 5]
Figure PCTKR2016008695-appb-I000005
화학식 5에서 R1 내지 R4는 각각 독립적으로 수소, 알킬기 또는 알콕시기이고, A는 알킬렌기 또는 알케닐렌기이다.
화학식 5에서 R1 내지 R4 중 2개는 서로 연결되어 알킬렌기를 형성할 수도 있고, A의 알킬렌기 또는 알케닐렌기는 헤테로 원자로서 하나 이상의 산소 원자를 포함할 수 있다.
[화학식 6]
화학식 6에서 R1 내지 R4는 각각 독립적으로 수소, 알킬기 또는 알콕시기이고, A는 알킬렌기이다.
[화학식 7]
Figure PCTKR2016008695-appb-I000007
화학식 7에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기 또는 알콕시기이다.
본 출원에서 용어 알킬기는 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기일 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 알콕시기는 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기일 수 있다. 상기 알콕시기는 직쇄형, 분지쇄형 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 아릴기는, 특별히 달리 규정하지 않는 한, 상기 기술한 방향족 화합물로부터 유래된 1가 잔기를 의미할 수 있다. 본 출원에서 용어 아릴기의 범주에는 통상적으로 아릴기로 호칭되는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다.
본 출원에서 용어 알킬렌기 또는 알킬리덴기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기를 의미할 수 있다. 상기 알킬렌기 또는 알킬리덴기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬렌기 또는 알킬리덴기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 지방족 화합물, 지환족 화합물, 방향족 화합물, 알킬기, 알콕시기, 아릴기, 알킬렌기 또는 알킬리덴기 등에 임의적으로 치환되어 있을 수 있는 치환기로는, 염소 또는 불소 등의 할로겐, 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기, 알킬기, 알콕시기 또는 아릴기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기에서 화학식 2의 화합물로는, 벤젠, 알킬벤젠 또는 디알킬벤젠 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기에서 화학식 4의 화합물로는, 비페닐이나 하기 화학식 A 내지 F 중 어느 하나의 화학식으로 표시되는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 A]
Figure PCTKR2016008695-appb-I000008
[화학식 B]
Figure PCTKR2016008695-appb-I000009
[화학식 C]
Figure PCTKR2016008695-appb-I000010
[화학식 D]
Figure PCTKR2016008695-appb-I000011
[화학식 E]
Figure PCTKR2016008695-appb-I000012
[화학식 F]
Figure PCTKR2016008695-appb-I000013
상기에서 화학식 5의 화합물로는, 예를 들면, 사이클로헥산 등과 같은 탄소수 4 내지 8의 사이클로알칸 또는 하나 이상의 알킬기로 치환되어 있을 수 있는 사이클로헥센 등이나, 화학식 G 내지 I 중 어느 하나의 화학식으로 표시되는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 G]
Figure PCTKR2016008695-appb-I000014
[화학식 H]
Figure PCTKR2016008695-appb-I000015
[화학식 I]
Figure PCTKR2016008695-appb-I000016
상기에서 화학식 6의 화합물로는, 하나 이상의 알킬기로 치환되어 있을 수 있는 하기 화학식 J로 표시되는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 J]
Figure PCTKR2016008695-appb-I000017
상기와 같은 화합물에서, 예를 들면, 4개의 수소 원자가 이탈되어 라디칼이 형성되고, 그 라디칼이 화학식 1의 구조 내에 포함될 수 있다.
이러한 라디칼은 상기 화학식 2 내지 7의 치환기인 R1 내지 R10이 직접 이탈되어 형성되거나, 혹은 R1 내지 R10에 존재할 수 있는 치환기인 알킬기, 알콕시기, 아릴기, 알킬렌기 또는 알케닐렌기에 속하는 수소 원자가 이탈되어 형성될 수도 있다.
예를 들어, 상기 라디칼이 화학식 2의 화합물로부터 유래하는 경우, 화학식 2의 R1 내지 R6 중 1개 이상, 2개 이상, 3개 이상 또는 4개가 라디칼을 형성하거나, 혹은 상기 R1 내지 R6에 존재하는 알킬기, 알콕시기 또는 아릴기의 수소 원자가 이탈되어 상기 라디칼이 형성될 수 있다. 상기에서 라디칼을 형성한다는 것은, 상기 기술한 바와 같이 그 부위가 화학식 1의 카보닐기의 탄소 원자에 연결되는 것을 의미할 수 있다. 예를 들어, 상기 화학식 2에서 R2, R3, R5 및 R6가 화학식 1에 연결되는 라디칼을 형성하는 경우에는 후술하는 실시예에서의 화합물 CA1과 같은 코어 구조가 형성될 수 있다.
하나의 예시에서 화학식 1의 4가 라디칼은 상기 화학식 2 내지 4 중 어느 하나로 표시되는 화합물로부터 유래하는 4가 라디칼일 수 있다. 이러한 경우에 화학식 2의 R1 내지 R6, 화학식 3의 R1 내지 R8 또는 화학식 4의 R1 내지 R11은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이되, 상기 각각의 4개 이상은 화학식 1에 연결되는 라디칼을 형성할 수 있다. 상기에서 라디칼을 형성하지 않는 각각은 수소, 알킬기 또는 알콕시기이거나, 수소 또는 알킬기일 수 있다. 하나의 예시에서 화학식 2에서는 R2, R3, R5 및 R6이 상기 라디칼을 형성할 수 있고, R1 및 R4는, 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이거나, 수소, 알킬기 또는 알콕시기이거나, 또는 수소 또는 알킬기일 수 있다. 또한, 화학식 3에서는 R3, R4, R8 및 R7이 상기 라디칼을 형성할 수 있고, R1, R2, R5 및 R6는, 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이거나, 수소, 알킬기 또는 알콕시기이거나, 또는 수소 또는 알킬기일 수 있다. 또한, 화학식 4에서는 R2, R3, R8 및 R9가 상기 라디칼을 형성할 수 있고, R1, R4, R5, R6, R7 및 R10는, 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이거나, 수소, 알킬기 또는 알콕시기이거나, 또는 수소 또는 알킬기일 수 있다.
화학식 4에서 X는 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자일 수 있다. 다른 예시에서 화학식 4의 X는, 알킬렌기, 알킬리덴기 또는 산소 원자이거나, 산소 원자일 수 있다.
화학식 1에서 X1 및 X2는 각각 독립적으로 알킬렌기, 알킬리덴기 또는 방향족 2가 라디칼이고, 다른 예시에서 상기는 동일하거나 상이한 방향족 2가 라디칼일 수 있다. 상기에서 방향족 2가 라디칼은 전술한 방향족 화합물로부터 유래하는 2가 라디칼일 수 있다.
하나의 예시에서 상기 화학식 1의 X1 및 X2는 각각 독립적으로 하기 화학식 8 내지 10 중 어느 하나로 표시되는 화합물로부터 유래하는 2가 라디칼일 수 있다.
[화학식 8]
Figure PCTKR2016008695-appb-I000018
화학식 8에서 R1 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기, 히드록시기 또는 카복실기이다.
[화학식 9]
Figure PCTKR2016008695-appb-I000019
화학식 9에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 카복실기 또는 아릴기이고, X는, 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자, 황 원자, 카보닐기, -NR11-, -S(=O)- 또는 -S(=O)2-이며, 상기에서 R11은 수소, 알킬기, 알콕시기 또는 아릴기이다.
상기에서 단일 결합의 의미는 화학식 4에서 정의된 바와 같다.
[화학식 10]
Figure PCTKR2016008695-appb-I000020
화학식 10에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 카복실기 또는 아릴기이다.
화학식 8의 화합물로는, 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 벤젠이 예시될 수 있으나, 이에 제한되는 것은 아니다.
또한, 화학식 9의 화합물로는, 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 비페닐 또는 상기 화학식 A 내지 F 중 어느 하나로 표시되는 화합물 또는 상기 화학식 A 내지 F 중 어느 하나로 표시되면서 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 화합물 또는 하기 화학식 K 내지 N으로 표시되는 화합물 또는 하기 화학식 K 내지 N으로 표시되면서 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 K]
Figure PCTKR2016008695-appb-I000021
[화학식 L]
Figure PCTKR2016008695-appb-I000022
[화학식 M]
Figure PCTKR2016008695-appb-I000023
[화학식 N]
Figure PCTKR2016008695-appb-I000024
화학식 10의 화합물로는, 하기 화학식 O로 표시되는 화합물 또는 상기 화학식 O로 표시되면서 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 O]
Figure PCTKR2016008695-appb-I000025
하나의 예시에서 상기 방향족 2가 라디칼은 상기 화학식 8의 화합물 유래의 라디칼일 수 있고, 그 예로는, 페닐렌을 들 수 있지만, 이에 제한되는 것은 아니다. 2가 라디칼이 페닐렌인 경우에, 화학식 1의 X1에서 N에 연결되는 부위를 기준으로 한 아민기의 치환 위치는 오소(ortho), 메타(meta) 또는 파라(para) 위치일 수 있고, 화학식 1의 X2에서 N에 연결되는 부위를 기준으로 한 아민기의 치환 위치는 역시 오소(ortho), 메타(meta) 또는 파라(para) 위치일 수 있다.
화학식 1의 화합물은, 공지의 유기 화합물의 합성법에 따라 합성할 수 있으며, 그 구체적인 방식은 특별히 제한되지 않는다. 예를 들면, 화학식 1의 화합물은, 디언하이드라이드(dianhydride) 화합물과 디아민 화합물의 탈수 축합 반응 등에 의해 형성할 수 있다.
화학식 1의 화합물은, 높은 비점을 가져서, 고온에서 휘발 내지는 분해되지 않으며, 이에 따라 중합성 조성물의 경화성이 안정적으로 유지되면서, 고온의 가공 내지는 경화 과정에서 복합체의 물성에 악영향을 줄 수 있는 보이드(void)를 형성하지 않는다. 이에 따라 하나의 예시에서 상기 화합물은, 분해 온도가 300°C 이상, 350°C 이상, 400°C 이상 또는 500°C 이상일 수 있다. 본 출원에서 용어 분해 온도는, 상기 화학식 1의 화합물의 분해율이 10% 이하, 5% 이하 또는 1% 이하의 범위로 유지되는 온도를 의미할 수 있다. 상기에서 분해 온도의 상한은 특별히 제한되지 않고, 예를 들면, 약 1,000°C 이하일 수 있다.
또한, 화학식 1의 화합물은, 코어의 M이나 링커인 X1 또는 X2의 선택에 의하여 반응성 내지는 중합성 조성물 자체의 프로세스 윈도우, 즉 상기 중합성 조성물 또는 그로부터 형성되는 프리폴리머의 용융 온도와 경화 온도의 차이를 용이하게 조절할 수 있어서, 용도에 따라 다양한 물성의 경화제로서 작용할 수 있다.
중합성 조성물 내에서의 경화제의 비율은 특별히 제한되지 않는다. 상기 비율은, 예를 들면, 조성물에 포함되어 있는 프탈로니트릴 화합물 등의 경화성 성분의 비율이나 종류 등을 고려하여 목적하는 경화성이 확보될 수 있도록 조절될 수 있다. 예를 들면, 경화제는 중합성 조성물에 포함되어 있는 프탈로니트릴 화합물 1몰 당 약 0.02몰 내지 1.5몰 정도로 포함되어 있을 수 있다. 그렇지만, 상기 비율은 본 출원의 예시에 불과하다. 통상 중합성 조성물에서 경화제의 비율이 높아지만, 프로세스 윈도우가 좁아지는 경향이 있고, 경화제의 비율이 낮아지면, 경화성이 불충분해지는 경향이 있으므로, 이러한 점 등을 고려하여 적절한 경화제의 비율이 선택될 수 있다.
본 출원의 중합성 조성물은 상기 화학식 1의 화합물의 사용을 통해 적절한 경화성, 용융 온도 및 프로세스 윈도우(process window)를 나타내며, 보이드 등의 의한 물성의 저하가 없는 우수한 물성의 복합체를 형성할 수 있는 중합성 조성물 및 프리폴리머를 제공할 수 있다.
이에 따라 하나의 예시에서 상기 중합성 조성물의 가공 온도는, 150°C 내지 350°C의 범위 내에 있을 수 있다. 본 출원에서 용어 가공 온도는, 상기 화합물, 그를 포함하는 하기 중합성 조성물 또는 프리폴리머 등이 가공 가능한 상태로 존재하는 온도를 의미할 수 있다. 이러한 가공 온도는, 예를 들면, 용융 온도(Tm) 또는 유리전이온도(Tg)일 수 있다. 이러한 경우에 상기 중합성 조성물의 프로세스 원도우, 즉 상기 가공 온도(Tp)와 상기 프탈로니트릴 화합물과 상기 화학식 1의 화합물의 경화 온도(Tc)의 차이(Tc - Tp)의 절대값은 30°C 이상, 50°C 이상 또는 100°C 이상일 수 있다. 하나의 예시에서 상기 경화 온도(Tc)가 상기 가공 온도(Tp)에 비하여 높을 수 있다. 이러한 범위는 중합성 조성물을 사용하여, 예를 들어 후술하는 복합체를 제조하는 과정에서 적절한 가공성을 확보하는 것에 유리할 수 있다. 상기에서 프로세스 윈도우의 상한은 특별히 제한되는 것은 아니나, 예를 들면, 상기 가공 온도(Tp)와 경화 온도(Tc)의 차이(Tc - Tp)의 절대값은 400°C 이하 또는 300°C 이하일 수 있다.
중합성 조성물은 다양한 첨가제를 추가로 포함할 수 있다. 이러한 첨가제의 예로는 다양한 충전제가 예시될 수 있다. 충전제로 사용될 수 있는 물질의 종류는 특별히 제한되지 않고, 목적하는 용도에 따라 적합한 공지의 충전제가 모두 사용될 수 있다. 예시적인 충전제로는, 금속 물질, 세라믹 물질, 유리, 금속 산화물, 금속 질화물 또는 탄소계 물질 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. 또한, 상기 충전제의 형태도 특별히 제한되지 않고, 아라미드 섬유, 유리 섬유 또는 세라믹 섬유 등과 같은 섬유상 물질, 또는 그 물질에 의해 형성된 직포, 부직포, 끈 또는 줄, 나노 입자를 포함하는 입자상, 다각형 또는 기타 무정형 등 다양한 형태일 수 있다. 상기에서 탄소계 물질로는, 그래파이트(graphite), 그래핀(graphene) 또는 탄소 나노튜브 등이나 그들의 산화물 등과 같은 유도체 내지는 이성질체 등이 예시될 수 있다. 그러나, 중합성 조성물이 추가로 포함할 수 있는 성분은 상기에 제한되는 것은 아니며, 예를 들면, 폴리이미드, 폴리아미드 또는 폴리스티렌 등과 같은 소위 엔지니어링 플라스틱의 제조에 적용될 수 있는 것으로 알려진 다양한 단량체들이나 기타 다른 첨가제도 목적에 따라 제한 없이 포함할 수 있다.
본 출원은 또한, 상기 중합성 조성물, 즉 프탈로니트릴 화합물과 상기 화학식 1의 화합물을 포함하는 중합성 조성물의 반응에 의해 형성되는 프리폴리머(prepolymer)에 대한 것이다.
본 출원에서 용어 프리폴리머 상태는, 상기 중합성 조성물 내에서 프탈로니트릴 화합물과 화학식 1의 화합물의 반응이 어느 정도의 일어난 상태(예를 들면, 소위 A 또는 B 스테이지 단계의 중합이 일어난 상태)이나, 완전히 중합된 상태에는 이르지 않고, 적절한 유동성을 나타내어, 예를 들면, 후술하는 바와 같은 복합체의 가공이 가능한 상태를 의미할 수 있다. 하나의 예시에서 상기 프리폴리머 상태는, 상기 중합성 조성물의 중합이 어느 정도 진행된 상태로서, 그 조성물에 대하여 약 150°C 내지 250°C의 범위 내 중 어느 한 온도에서 측정된 용융 점도가 100 cP 내지 10,000 cP, 100 cP 내지 5,000 cP 또는 100cP 내지 3,000cP의 범위 내에 있는 상태를 의미할 수 있다.
상기 프리폴리머 역시 우수한 경화성, 낮은 용융 온도 및 넓은 프로세스 윈도우(process window)를 나타낼 수 있다.
예를 들면, 상기 프리폴리머의 가공 온도는, 150°C 내지 350°C의 범위 내에 있을 수 있다. 이러한 경우에 상기 프리폴리머의 프로세스 원도우, 즉 상기 가공 온도(Tp)와 상기 프리폴리머의 경화 온도(Tc)의 차이(Tc - Tp)의 절대값은 30°C 이상, 50°C 이상 또는 100°C 이상일 수 있다. 하나의 예시에서 상기 경화 온도(Tc)가 상기 가공 온도(Tp)에 비하여 높을 수 있다. 이러한 범위는 프리폴리머를 사용하여, 예를 들어 후술하는 복합체를 제조하는 과정에서 적절한 가공성을 확보하는 것에 유리할 수 있다. 상기에서 프로세스 윈도우의 상한은 특별히 제한되는 것은 아니나, 예를 들면, 상기 가공 온도(Tp)와 경화 온도(Tc)의 차이(Tc - Tp)의 절대값은 400°C 이하 또는 300°C 이하일 수 있다.
프리폴리머는 상기 성분 외에 공지의 임의의 첨가제를 추가로 포함할 수 있다. 이러한 첨가제의 예로는 전술한 충전제 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
본 출원은 또한 상기 중합성 조성물의 중합체인 프탈로니트릴 수지에 대한 것이다. 이러한 수지는, 예를 들면, 전술한 중합성 조성물 또는 프리폴리머를 중합시켜서 형성할 수 있다.
본 출원은 또한 복합체(composite)에 대한 것이다. 상기 복합체는 상기 기술한 프탈로니트릴 수지 및 충전제를 포함할 수 있다. 상기 기술한 바와 같이, 본 출원의 중합성 조성물을 사용하면 적절한 경화성, 용융 온도 및 프로세스 윈도우(process window)의 달성이 가능하며, 복합체 또는 수지의 형성 과정에서 적용되는 고온에서도 물성의 악영향을 미칠 수 있는 보이드(void) 등을 방지할 수 있고, 이에 따라 우수한 물성의 소위 강화 수지 복합체(reinforced polymer composite)를 용이하게 형성할 수 있다. 이와 같이 형성된 복합체는 상기 프탈로니트릴 수지와 충전제를 포함할 수 있고, 예를 들면, 자동차, 비행기 또는 선박 등의 내구재 등을 포함한 다양한 용도에 적용될 수 있다.
충전제의 종류는 특별히 제한되지 않으며, 목적하는 용도를 고려하여 적절하게 선택될 수 있다. 사용될 수 있는 충전제로는 탄소 섬유, 아라미드 섬유, 유리 섬유 또는 세라믹 섬유 등과 같은 섬유상 물질, 또는 그 물질에 의해 형성된 직포, 부직포, 끈 또는 줄이나 탄소 나노튜브 또는 그래핀(grapheme)과 같은 탄소 나노 물질 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
충전제의 비율도 특별히 제한되는 것은 아니며, 목적하는 용도에 따라 적정 범위로 설정될 수 있다.
본 출원은 또한, 상기 복합체를 제조하기 위한 전구체에 대한 것이고, 상기 전구체는 예를 들면, 상기 기술한 중합성 조성물과 상기 충전제를 포함하거나, 혹은 상기 기술한 프리폴리머와 상기 충전제를 포함할 수 있다.
복합체는 상기 전구체를 사용한 공지의 방식으로 제조할 수 있다. 예를 들면, 상기 복합체는 상기 전구체를 경화시켜서 형성할 수 있다.
하나의 예시에서 상기 전구체는, 프탈로니트릴 화합물을 용융 상태에서 상기 화학식 1의 화합물과 배합하여 제조된 중합성 조성물 내지는 상기 프리폴리머를 가열 등에 의해 용융시킨 상태에서 상기 충전제와 배합하여 제조할 수 있다. 예를 들면, 상기와 같이 제조된 전구체를 목적하는 형상으로 성형한 후에 경화시켜서 전술한 복합체의 제조가 가능하다. 상기 과정에서 프리폴리머 등을 형성하는 방법, 그러한 프리폴리머 등과 충전제를 배합하고, 가공 및 경화시켜 복합체를 제조하는 방법 등은 공지된 방식에 따라 진행될 수 있다.
본 출원에서는, 내열성이 우수하여, 물성에 악영향을 줄 수 있는 보이드(void) 등의 결함을 생성시키지 않는 경화제를 포함하는 중합성 조성물을 제공할 수 있다. 또한, 본 출원은 상기 중합성 조성물이, 적절한 경화성, 가공 온도 및 프로세스 윈도우를 나타내며, 탁월한 물성의 복합체를 형성할 수 있도록 할 수 있다.
도 1 내지 10은 제조예에서 제조된 화합물에 대한 NMR 분석 결과이다.
도 11은, 실시예 및 비교예의 중합성 조성물에 대한 FT-IR 분석 결과이다.
이하 실시예 및 비교예를 통하여 본 출원의 중합성 조성물 등을 구체적으로 설명하지만, 상기 중합성 조성물 등의 범위가 하기 실시예에 제한되는 것은 아니다.
1. TGA(Thermogravimetric Analysis)
TGA 분석은 Mettler-Toledo사의 TGA e850 장비를 사용하여 수행하였다. 측정의 대상 화합물에 대하여 약 25°C에서 800°C까지 10°C/분의 속도로 온도를 승온시키면서 N2 flow의 분위기에서 분석을 수행하였다.
2. FT-IR (Fourier-transform infrared spectroscopy)
FT-IR 분석은 Varian사의 장비를 사용하여 ATR(Attenuated Total Reflectance) 방식으로 수행하였다. 시료는, 실시예 또는 비교예의 프리폴리머를 열경화시키고, 분쇄하여 분말화한 후 측정하였으며, 이 때 FT-IR 피크는 흡수파장으로 400 cm-1 내지 4000 cm-1 파장에 걸쳐서 측정하였다.
제조예 1. 화합물(PN1)의 합성
하기 화학식 I의 화합물은 다음의 방식으로 합성하였다. 하기 화학식 II의 화합물 27.9g 및 100 g의 DMF(Dimethyl Formamide)를 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 이어서 상기에 하기 화학식 III의 화합물 51.9 g을 추가하고, DMF 50 g을 추가한 후에 교반하여 용해시켰다. 이어서 탄산칼륨 62.2 g 및 DMF 50 g을 함께 투입하고, 교반하면서 온도를 85°C까지 승온시켰다. 상기 상태에서 약 5 시간 정도 반응시킨 후에 상온까지 냉각시켰다. 냉각된 반응 용액을 0.2N 농도의 염산 수용액에 부어 중화 침전시키고, 필터링 후에 물로 세척하였다. 그 후, 필터링된 반응물을 100°C의 진공 오븐에서 1일 건조하고, 물과 잔류 용매를 제거한 후에 하기 화학식 I의 화합물을 약 83중량%의 수율로 수득하였다. 상기 화학식 I의 화합물에 대한 NMR 결과는 도 1에 기재하였다.
[화학식 I]
Figure PCTKR2016008695-appb-I000026
[화학식 II]
Figure PCTKR2016008695-appb-I000027
[화학식 III]
Figure PCTKR2016008695-appb-I000028
제조예 2. 화합물(PN2)의 합성
하기 화학식 IV의 화합물 50.4 g 및 DMF(Dimethyl Formamide) 150 g을 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 그 후 제조예 1의 화학식 III의 화합물 51.9 g을 추가하고, DMF 50 g을 추가한 후에 교반하여 용해시켰다. 이어서 탄산칼륨 62.2 g 및 DMF 50 g을 함께 투입하고, 교반하면서 온도를 85°C까지 승온시켰다. 상기 상태에서 약 5 시간 정도 반응시킨 후에 상온까지 냉각시켰다. 냉각된 반응 용액을 0.2N 농도의 염산 수용액에 부어 중화 침전시키고, 필터링 후에 물로 세척하였다. 그 후, 필터링된 반응물을 100°C의 진공 오븐에서 1일 건조하고, 물과 잔류 용매를 제거한 후에 하기 화학식 V의 화합물(PN2)을 약 87중량%의 수율로 수득하였다. 상기 화학식 V의 화합물에 대한 NMR 결과는 도 2에 기재하였다.
[화학식 IV]
Figure PCTKR2016008695-appb-I000029
[화학식 V]
Figure PCTKR2016008695-appb-I000030
제조예 3. 화합물(CA1)의 합성
하기 화학식 IIX의 화합물을 다음의 방식으로 합성하였다. 우선 하기 화학식 VI의 화합물 24 g 및 NMP(N-methyl-pyrrolidone) 45 g을 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 워터 배스(water bath)로 상기를 냉각시키고, 하기 화학식 VII의 화합물 12.4 g을 서서히 3번에 나누어 45 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope를 위해 반응물에 툴루엔 18 g을 투입하였다. Dean-Stark 장치와 리플럭스 콘덴서를 설치하고, Dean-Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 4.2 mL를 투입하고, 온도를 170°C까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거해 주면서 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 IIX의 화합물을 약 81 중량%의 수율로 수득하였다. 상기 화학식 IIX의 화합물에 대한 NMR 결과는 도 3에 기재하였다.
[화학식 VI]
Figure PCTKR2016008695-appb-I000031
[화학식 VII]
Figure PCTKR2016008695-appb-I000032
[화학식 IIX]
Figure PCTKR2016008695-appb-I000033
제조예 4. 화합물(CA2)의 합성
하기 화학식 X의 화합물을 다음의 방식으로 합성하였다. 우선 하기 화학식 IX의 화합물 13 g 및 NMP(N-methyl-pyrrolidone) 33 g을 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 워터 배스(water bath)로 상기를 냉각시키고, 제조예 3의 VII의 화합물 12.4 g을 서서히 3번에 나누어 30 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope를 위해 반응물에 툴루엔 13 g을 투입하였다. Dean-Stark 장치와 리플럭스 콘덴서를 설치하고, Dean-Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 4.2 mL를 투입하고, 온도를 170°C까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거해 주면서 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 X의 화합물을 약 78 중량%의 수율로 수득하였다. 상기 화학식 X의 화합물에 대한 NMR 결과는 도 4에 기재하였다.
[화학식 IX]
Figure PCTKR2016008695-appb-I000034
[화학식 X]
Figure PCTKR2016008695-appb-I000035
제조예 5. 화합물(CA3)의 합성
하기 화학식 XII의 화합물을 다음의 방식으로 합성하였다. 우선 하기 화학식 XI의 화합물 13 g 및 NMP(N-methyl-pyrrolidone) 33 g을 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 워터 배스(water bath)로 상기를 냉각시키고, 제조예 3의 VII의 화합물 12.4 g을 서서히 3번에 나누어 30 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope를 위해 반응물에 툴루엔 13 g을 투입하였다. Dean-Stark 장치와 리플럭스 콘덴서를 설치하고, Dean-Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 4.2 mL를 투입하고, 온도를 170°C까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거해 주면서 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 XII의 화합물을 약 80 중량%의 수율로 수득하였다. 상기 화학식 XII의 화합물에 대한 NMR 결과는 도 5에 기재하였다.
[화학식 XI]
Figure PCTKR2016008695-appb-I000036
[화학식 XII]
Figure PCTKR2016008695-appb-I000037
제조예 6. 화합물(CA4)의 합성
하기 화학식 14의 화합물은 디아민과 디언하이드라이드의 탈수축합에 의해 합성하였다. 제조예 3의 화학식 VI의 화합물(4,4'-oxydianiline) 24 g 및 NMP(N-methyl-pyrrolidone) 40 g을 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 워터 배스(water bath)로 상기를 냉각시키고, 하기 화학식 13의 화합물 8.7 g을 서서히 3번에 나누어 40 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope를 위해 반응물에 툴루엔 16 g을 투입하였다. Dean-Stark 장치와 리플럭스 콘덴서를 설치하고, Dean-Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 4.2 mL를 투입하고, 온도를 170°C까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거해 주면서 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 14의 화합물을 약 85 중량%의 수율로 수득하였다. 상기 화학식 14의 화합물에 대한 NMR 결과는 도 6에 기재하였다.
[화학식 13]
Figure PCTKR2016008695-appb-I000038
[화학식 14]
Figure PCTKR2016008695-appb-I000039
제조예 7. 화합물(CA5)의 합성
하기 화학식 16의 화합물은 디아민과 디언하이드라이드의 탈수축합에 의해 합성하였다. 제조예 3의 화학식 VI의 화합물(4,4'-oxydianiline) 24 g 및 NMP(N-methyl-pyrrolidone) 45 g을 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 워터 배스(water bath)로 상기를 냉각시키고, 하기 화학식 15의 화합물 11.8 g을 서서히 3번에 나누어 45 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope를 위해 반응물에 툴루엔 18 g을 투입하였다. Dean-Stark 장치와 리플럭스 콘덴서를 설치하고, Dean-Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 4.2 mL를 투입하고, 온도를 170°C까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거해 주면서 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 soxhlet 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 16의 화합물을 약 77 중량%의 수율로 수득하였다. 상기 화학식 16의 화합물에 대한 NMR 결과는 도 7에 기재하였다.
[화학식 15]
Figure PCTKR2016008695-appb-I000040
[화학식 16]
Figure PCTKR2016008695-appb-I000041
제조예 8. 화합물(CA6)의 합성
하기 화학식 18의 화합물은 디아민과 디언하이드라이드의 탈수축합에 의해 합성하였다. 제조예 3의 화학식 VI의 화합물(4,4'-oxydianiline) 24 g 및 NMP(N-methyl-pyrrolidone) 45 g을 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 워터 배스(water bath)로 상기를 냉각시키고, 하기 화학식 17의 화합물 11.8 g을 서서히 3번에 나누어 45 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope를 위해 반응물에 툴루엔 18 g을 투입하였다. Dean-Stark 장치와 리플럭스 콘덴서를 설치하고, Dean-Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 4.2 mL를 투입하고, 온도를 170°C까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거해 주면서 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 soxhlet 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 18의 화합물을 약 87 중량%의 수율로 수득하였다. 상기 화학식 18의 화합물에 대한 NMR 결과는 도 8에 기재하였다.
[화학식 17]
Figure PCTKR2016008695-appb-I000042
[화학식 18]
Figure PCTKR2016008695-appb-I000043
제조예 9. 화합물(CA7)의 합성
하기 화학식 20의 화합물은 디아민과 디언하이드라이드의 탈수축합에 의해 합성하였다. 제조예 3의 화학식 VI의 화합물(4,4'-oxydianiline) 24 g 및 NMP(N-methyl-pyrrolidone) 45 g을 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 워터 배스(water bath)로 상기를 냉각시키고, 하기 화학식 19의 화합물 9 g을 서서히 3번에 나누어 41 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope를 위해 반응물에 툴루엔 18 g을 투입하였다. Dean-Stark 장치와 리플럭스 콘덴서를 설치하고, Dean-Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 4.2 mL를 투입하고, 온도를 170°C까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거해 주면서 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 soxhlet 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 20의 화합물을 약 75 중량%의 수율로 수득하였다. 상기 화학식 20의 화합물에 대한 NMR 결과는 도 9에 기재하였다.
[화학식 19]
Figure PCTKR2016008695-appb-I000044
[화학식 20]
Figure PCTKR2016008695-appb-I000045
제조예 10. 화합물(CA8)의 합성
하기 화학식 22의 화합물은 디아민과 디언하이드라이드의 탈수축합에 의해 합성하였다. 제조예 3의 화학식 VI의 화합물(4,4'-oxydianiline) 24 g 및 NMP(N-methyl-pyrrolidone) 60 g을 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 워터 배스(water bath)로 상기를 냉각시키고, 하기 화학식 21의 화합물 12.3 g을 서서히 3번에 나누어 60 g의 NMP와 함께 투입하였다. 투입된 화합물이 모두 용해되면, azeotrope를 위해 반응물에 툴루엔 24 g을 투입하였다. Dean-Stark 장치와 리플럭스 콘덴서를 설치하고, Dean-Stark 장치에 톨루엔을 투입하여 채웠다. 탈수 축합 촉매로 피리딘 4.2 mL를 투입하고, 온도를 170°C까지 승온시키고, 3 시간 동안 교반하였다. 이미드 고리가 형성되면서 발생되는 물을 Dean Stark 장치로 제거해 주면서 2 시간 동안 추가 교반하고, 잔류 톨루엔과 피리딘을 제거하였다. 반응 생성물을 상온까지 냉각하고, 메탄올에 침전시켜서 회수하였다. 회수된 침전물을 메탄올로 soxhlet 추출하여 잔류 반응물을 제거하고, 진공 오븐에서 건조하여 화학식 22의 화합물을 약 87 중량%의 수율로 수득하였다. 상기 화학식 22의 화합물에 대한 NMR 결과는 도 10에 기재하였다.
[화학식 21]
Figure PCTKR2016008695-appb-I000046
[화학식 22]
Figure PCTKR2016008695-appb-I000047
제조예 11. 화합물(CA9)의 합성
하기 화학식 23의 화합물(CA9)은 TCI(Tokyo Chemical Industry Co., Ltd.)사의 시판 제품을 입수하여, 추가 정제 없이 사용하였다.
[화학식 23]
Figure PCTKR2016008695-appb-I000048
제조예 3 내지 11의 화합물에 대하여 TGA 분석을 수행한 결과를 하기 표 1에 정리하여 기재하였다. 표 1로부터 제조예 11의 화합물(CA9)에 비하여 제조예 3 내지 10의 화합물(CA1~CA8)이 우수한 내열 특성을 보이는 것을 확인할 수 있다. CA9 화합물은 330°C 근처에서 모두 분해되는 반면, CA1~CA8 화합물들은 Td10%가 300°C 이상으로 고온 소성 시에도 열에 의한 분해가 거의 발생하지 않는 것을 알 수 있다.
Td10% Residue at 800 ℃ Td100%
제조예3(CA1) 303 ℃ 43.3 % -
제조예4(CA2) 356 ℃ 48.9 % -
제조예5(CA3) 382 ℃ 44.3 % -
제조예6(CA4) 354 ℃ 29.1 % -
제조예7(CA5) 319 ℃ 45.1 % -
제조예8(CA6) 393 ℃ 50.8 % -
제조예9(CA7) 436 ℃ 29.1 % -
제조예10(CA8) 390 ℃ 41.9 % -
제조예11(CA9) 264 ℃ 0 % 331 ℃
실시예 1.
제조예 1의 화합물(PN1)에 상기 화합물(PN1)의 사용량 대비 약 6 몰%의 제조예 3의 화합물(CA1)을 첨가하고, 잘 혼합하여 중합성 조성물을 제조하였다. 상기 조성물에 대하여 FT-IR 분석을 수행한 결과는 도 11에 기재되어 있다. 상기 중합성 조성물을 240에서 용융시켜 5분 동안 교반하면 프리폴리머의 제조가 가능하다. 도 11에 나타난 바와 같이, 상기 중합성 조성물은 FT-IR 분석 결과 이미드 피크(imide stretching peak)가 1720 cm-1과 1770 cm-1에서 관찰되어 우수한 내열성 등을 나타낼 것을 확인할 수 있다(실시예 1의 그래프는 도 11의 상단에서 두 번째 그래프이다.).
실시예 2.
제조예 2의 화합물(PN2)에 상기 화합물(PN2)의 사용량 대비 약 6 몰%의 제조예 3의 화합물(CA1)을 첨가하고, 잘 혼합하여 중합성 조성물을 제조하였다. 상기 조성물에 대하여 FT-IR 분석을 수행한 결과는 도 11에 기재되어 있다. 상기 중합성 조성물을 240에서 용융시켜 5분 동안 교반하면 프리폴리머의 제조가 가능하다. 도 11에 나타난 바와 같이, 상기 중합성 조성물은 FT-IR 분석 결과 이미드 피크(imide stretching peak)가 1720 cm-1과 1770 cm-1에서 관찰되어 우수한 내열성 등을 나타낼 것을 확인할 수 있다(실시예 2의 그래프는 도 11의 가장 상부의 그래프이다.).
실시예 3
제조예 3의 화합물(CA1) 대신 제조예 4의 화합물(CA2)을 사용한 것을 제외하고는 실시예 1과 동일하게 중합성 조성물 및 프리폴리머를 제조하였다. 실시예 3의 경우도 FT-IR 분석에서 이미드 피크(imide stretching peak)가 1720 cm-1과 1770 cm-1에서 관찰될 수 있다.
실시예 4
제조예 3의 화합물(CA1) 대신 제조예 5의 화합물(CA3)을 사용한 것을 제외하고는 실시예 1과 동일하게 중합성 조성물 및 프리폴리머를 제조하였다. 실시예 4의 경우도 FT-IR 분석에서 이미드 피크(imide stretching peak)가 1720 cm-1과 1770 cm-1에서 관찰될 수 있다.
실시예 5
제조예 3의 화합물(CA1) 대신 제조예 6의 화합물(CA4)을 사용한 것을 제외하고는 실시예 1과 동일하게 중합성 조성물 및 프리폴리머를 제조하였다. 실시예 5의 경우도 FT-IR 분석에서 이미드 피크(imide stretching peak)가 1720 cm-1과 1770 cm-1에서 관찰될 수 있다.
실시예 6
제조예 3의 화합물(CA1) 대신 제조예 7의 화합물(CA5)을 사용한 것을 제외하고는 실시예 1과 동일하게 중합성 조성물 및 프리폴리머를 제조하였다. 실시예 6의 경우도 FT-IR 분석에서 이미드 피크(imide stretching peak)가 1720 cm-1과 1770 cm-1에서 관찰될 수 있다.
실시예 7
제조예 3의 화합물(CA1) 대신 제조예 8의 화합물(CA6)을 사용한 것을 제외하고는 실시예 1과 동일하게 중합성 조성물 및 프리폴리머를 제조하였다. 실시예 7의 경우도 FT-IR 분석에서 이미드 피크(imide stretching peak)가 1720 cm-1과 1770 cm-1에서 관찰될 수 있다.
실시예 8
제조예 3의 화합물(CA1) 대신 제조예 9의 화합물(CA7)을 사용한 것을 제외하고는 실시예 1과 동일하게 중합성 조성물 및 프리폴리머를 제조하였다. 실시예 8의 경우도 FT-IR 분석에서 이미드 피크(imide stretching peak)가 1720 cm-1과 1770 cm-1에서 관찰될 수 있다.
실시예 10
제조예 3의 화합물(CA1) 대신 제조예 10의 화합물(CA8)을 사용한 것을 제외하고는 실시예 1과 동일하게 중합성 조성물 및 프리폴리머를 제조하였다. 실시예 10의 경우도 FT-IR 분석에서 이미드 피크(imide stretching peak)가 1720 cm-1과 1770 cm-1에서 관찰될 수 있다.
비교예 1.
제조예 1의 화합물(PN1)에 상기 화합물(PN1)의 사용량 대비 약 6 몰%의 제조예 11의 화합물(CA9)을 첨가하고, 잘 혼합하여 중합성 조성물을 제조하였다. 상기 조성물에 대하여 FT-IR 분석을 수행한 결과는 도 11에 기재되어 있다. 상기 중합성 조성물을 240에서 용융시켜 5분 동안 교반하면 프리폴리머의 제조가 가능하다. 도 11에 나타난 바와 같이, 상기 중합성 조성물은 FT-IR 분석 결과 이미드 피크(imide stretching peak)가 관찰되지 않아, 내열성 등의 물성이 실시예에 비하여 떨어질 것을 확인할 수 있다(비교예 1의 그래프는 도 11에서 상부에서 네 번째 그래프이다.).
비교예 2.
제조예 2의 화합물(PN2)에 상기 화합물(PN2)의 사용량 대비 약 6 몰%의 제조예 11의 화합물(CA9)을 첨가하고, 잘 혼합하여 중합성 조성물을 제조하였다. 상기 조성물에 대하여 FT-IR 분석을 수행한 결과는 도 11에 기재되어 있다. 상기 중합성 조성물을 240에서 용융시켜 5분 동안 교반하면 프리폴리머의 제조가 가능하다. 도 11에 나타난 바와 같이, 상기 중합성 조성물은 FT-IR 분석 결과 이미드 피크(imide stretching peak)가 관찰되지 않아, 내열성 등의 물성이 실시예에 비하여 떨어질 것을 확인할 수 있다(비교예 1의 그래프는 도 11에서 상부에서 세 번째 그래프이다.).

Claims (17)

  1. 프탈로니트릴 화합물 및 하기 화학식 1의 화합물을 포함하는 중합성 조성물:
    [화학식 1]
    Figure PCTKR2016008695-appb-I000049
    화학식 1에서 M은 4가 라디칼이고, X1 및 X2는 각각 독립적으로 알킬렌기, 알킬리덴기 또는 방향족 2가 라디칼이다.
  2. 제 1 항에 있어서, 4가 라디칼은 지방족, 지환족 또는 방향족 화합물 유래의 4가 라디칼인 중합성 조성물.
  3. 제 1 항에 있어서, 4가 라디칼은 알칸, 알켄 또는 알킨 유래의 4가 라디칼이거나, 하기 화학식 2 내지 7 중 어느 하나로 표시되는 화합물 유래의 4가 라디칼인 중합성 조성물:
    [화학식 2]
    Figure PCTKR2016008695-appb-I000050
    화학식 2에서 R1 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이다:
    [화학식 3]
    Figure PCTKR2016008695-appb-I000051
    화학식 3에서 R1 내지 R8은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이다:
    [화학식 4]
    Figure PCTKR2016008695-appb-I000052
    화학식 4에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이고, X는, 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자, 황 원자, 카보닐기, -A1-O-C(=O)-A2-, -A1-C(=O)-O-A2-, S(=O)- 또는 -S(=O)2-이며, 상기에서 A1 및 A2는 각각 독립적으로 단일 결합 또는 알킬렌기이다:
    [화학식 5]
    Figure PCTKR2016008695-appb-I000053
    화학식 5에서 R1 내지 R4는 각각 독립적으로 수소, 알킬기 또는 알콕시기이고, A는 알킬렌기 또는 알케닐렌기이다(단, 상기에서 R1 내지 R4 중 2개는 서로 연결되어 알킬렌기를 형성할 수도 있고, A의 알킬렌기 또는 알케닐렌기는 헤테로 원자로서 하나 이상의 산소 원자를 포함할 수 있다.):
    [화학식 6]
    Figure PCTKR2016008695-appb-I000054
    화학식 6에서 R1 내지 R4는 각각 독립적으로 수소, 알킬기 또는 알콕시기이고, A는 알킬렌기이다:
    [화학식 7]
    Figure PCTKR2016008695-appb-I000055
    화학식 7에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기 또는 알콕시기이다.
  4. 제 1 항에 있어서, X1 및 X2는 방향족 2가 라디칼인 중합성 조성물.
  5. 제 4 항에 있어서, 방향족 2가 라디칼은 탄소수 6 내지 40의 방향족 화합물 유래의 2가 라디칼인 중합성 조성물.
  6. 제 1 항에 있어서, X1 및 X2는 하기 화학식 8 내지 10 중 어느 하나로 표시되는 화합물 유래의 2가 라디칼인 중합성 조성물:
    [화학식 8]
    Figure PCTKR2016008695-appb-I000056
    화학식 8에서 R1 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기, 히드록시기 또는 카복실기이다:
    [화학식 9]
    Figure PCTKR2016008695-appb-I000057
    화학식 9에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 카복실기 또는 아릴기이고, X는, 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자, 황 원자, 카보닐기, -A1-O-C(=O)-A2-, -A1-C(=O)-O-A2-, -NR11-, -S(=O)- 또는 -S(=O)2-이며, 상기에서 R11은 수소, 알킬기, 알콕시기 또는 아릴기이고, A1 및 A2는 각각 독립적으로 단일 결합 또는 알킬렌기이다:
    [화학식 10]
    Figure PCTKR2016008695-appb-I000058
    화학식 10에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 카복실기 또는 아릴기이다.
  7. 제 1 항에 있어서, 화학식 1의 화합물은 10중량% 분해 온도가 300°C 이상인 중합성 조성물.
  8. 제 1 항에 있어서, 가공 온도(Tp)가 150°C 내지 350°C의 범위 내에 있는 중합성 조성물.
  9. 제 1 항에 있어서, 충전제를 추가로 포함하는 중합성 조성물.
  10. 제 1 항에 있어서, 화학식 1의 화합물은 프탈로니트릴 화합물 1몰 당 약 0.02몰 내지 1.5몰로 포함되어 있는 중합성 조성물.
  11. 제 1 항의 중합성 조성물의 반응물인 프리폴리머.
  12. 제 11 항에 있어서, 150°C 내지 250°C의 범위 내의 어느 한 온도에서의 용융 점도가 0.1 pa·s 내지 100 pa·s의 범위 내에 있는 프리폴리머.
  13. 제 11 항에 있어서, 가공 온도(Tp)가 150°C 내지 350°C의 범위 내에 있는 프리폴리머.
  14. 제 1 항의 중합성 조성물의 중합체인 프탈로니트릴 수지.
  15. 제 14 항의 프탈로니트릴 수지 및 충전제를 포함하는 복합체.
  16. 제 15 항에 있어서, 충전제는 섬유상 물질 또는 탄소 나노 물질인 복합체.
  17. 제 1 항의 중합성 조성물 또는 제 11 항의 프리폴리머를 경화시키는 단계를 포함하는 복합체의 제조 방법.
PCT/KR2016/008695 2016-08-08 2016-08-08 중합성 조성물 WO2018030552A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16912751.1A EP3483200A4 (en) 2016-08-08 2016-08-08 POLYMERIZABLE COMPOSITION
JP2019502043A JP6818123B2 (ja) 2016-08-08 2016-08-08 重合性組成物
CN201680088159.0A CN109563266B (zh) 2016-08-08 2016-08-08 可聚合组合物
US16/324,417 US10927215B2 (en) 2016-08-08 2016-08-08 Polymerizable composition
PCT/KR2016/008695 WO2018030552A1 (ko) 2016-08-08 2016-08-08 중합성 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/008695 WO2018030552A1 (ko) 2016-08-08 2016-08-08 중합성 조성물

Publications (1)

Publication Number Publication Date
WO2018030552A1 true WO2018030552A1 (ko) 2018-02-15

Family

ID=61162335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008695 WO2018030552A1 (ko) 2016-08-08 2016-08-08 중합성 조성물

Country Status (5)

Country Link
US (1) US10927215B2 (ko)
EP (1) EP3483200A4 (ko)
JP (1) JP6818123B2 (ko)
CN (1) CN109563266B (ko)
WO (1) WO2018030552A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705541A4 (en) * 2018-09-21 2021-08-18 Lg Chem, Ltd. THREE-DIMENSIONAL PRINTING INK WITH PHTHALONITRILE OLIGOMERS

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102218559B1 (ko) 2018-08-28 2021-02-22 주식회사 엘지화학 향상된 충격 강도를 갖는 프탈로니트릴계 수지
CN110964329A (zh) * 2019-12-17 2020-04-07 中国工程物理研究院总体工程研究所 一种空心玻璃微珠复合邻苯二甲腈树脂硬质泡沫及其制备方法
CN110938029A (zh) * 2019-12-17 2020-03-31 中国工程物理研究院总体工程研究所 六元脂环酰亚胺类衍生物单体及其制备、应用、固化邻苯二甲腈树脂的方法
CN112062958B (zh) * 2020-08-20 2023-04-07 长春高琦聚酰亚胺材料有限公司 一种聚酰亚胺材料及其制备方法
CN113121997B (zh) * 2021-03-19 2022-09-30 成都大学 一种基于腈基树脂回收的腈基树脂单组分复合材料及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244857A (en) * 1979-08-30 1981-01-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Curing agent for polyepoxides and epoxy resins and composites cured therewith
US4408035A (en) 1981-08-24 1983-10-04 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile resin from diphthalonitrile monomer and amine
US5003078A (en) 1989-05-16 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages
US5003039A (en) 1988-11-18 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Amino phenyl containing curing agent for high performance phthalonitrile resin
US5004801A (en) 1988-11-21 1991-04-02 The United States Of America As Represented By The Secretary Of The Navy Polymer of dithioether-linked phthalonitrile
US5132396A (en) 1990-04-30 1992-07-21 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile monomers containing imide and/or phenoxy linkages, and polymers thereof
US5139054A (en) 1991-06-28 1992-08-18 Leggett & Platt, Incorporated Spring interior forming and assembling apparatus
US5208318A (en) 1991-03-15 1993-05-04 Keller Teddy M Phosphazene-containing amine as curing agent for phthalonitrile-base polymer
US5237045A (en) 1992-01-09 1993-08-17 The United States Of America As Represented By The Secretary Of The Navy Curing phthalonitrile resins with acid and amine
US5292854A (en) 1989-05-16 1994-03-08 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages with aromatic diamine curing agent
KR20010030872A (ko) * 1997-10-02 2001-04-16 더 거번먼트 오브 더 유나이티드 스테이츠 오브 아메리카, 애즈 레프리젠티드 바이 더 세크러테리 오브 더 네이비 네이벌 리서치 래보러토리 낮은 반응성을 지닌 방향족 아민 경화제로 경화시킨섬유-강화 프탈로니트릴 조성물
KR20010072625A (ko) * 1998-06-26 2001-07-31 엘워드 사울 프탈로니트릴 수지로부터 유도된 탄소 베이스 복합물
KR20160059444A (ko) * 2014-11-18 2016-05-26 주식회사 엘지화학 프탈로니트릴 수지
KR20160115543A (ko) * 2015-03-27 2016-10-06 주식회사 엘지화학 중합성 조성물

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020995B2 (ko) 1971-08-25 1975-07-18
CA1221192A (en) * 1982-08-12 1987-04-28 Andrew Garton Epoxy resin fortification
US4587325A (en) * 1985-01-09 1986-05-06 The United States Of America As Represented By The Secretary Of The Navy Processable and stable conductive polymers from diether-linked bisorthodinitrile monomers
US4619986A (en) * 1985-06-28 1986-10-28 The United States Of America As Represented By The Secretary Of The Navy Epoxy phthalonitrile polymers
JPH01103632A (ja) 1987-07-06 1989-04-20 Matsushita Electric Works Ltd 電気絶縁用積層板
US5939508A (en) * 1995-09-01 1999-08-17 The United States Of America As Represented By The Secretary Of The Navy High temperature epoxy-phthalonitrile blends
US6297298B1 (en) * 1998-01-15 2001-10-02 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile prepolymerization composition
JP4639697B2 (ja) 2004-08-31 2011-02-23 新日本理化株式会社 イミド基含有ジアミン、該イミド基含有ポリイミド前駆体、該前駆体を含有してなるポジ型感光性樹脂組成物、ポジ型パターンの製造方法及び電子部品
US8901274B2 (en) * 2012-08-24 2014-12-02 Lonza Group, Ltd. Polyimide oligomers
WO2014051523A1 (en) * 2012-09-28 2014-04-03 Nanyang Technological University Methods of producing foams and nanocomposites of phthalonitrile based resins, and foams and nanocomposites produced thereof
JP2016023285A (ja) 2014-07-24 2016-02-08 デクセリアルズ株式会社 ポリイミド、ポリアミド酸、樹脂組成物、及びフレキシブルディスプレイ用基板
US9464170B2 (en) * 2014-12-15 2016-10-11 The United States Of America, As Represented By The Secretary Of The Navy Controlling crosslinking density and processing parameters of phthalonitriles
US9920165B2 (en) * 2015-04-23 2018-03-20 The United States Of America, As Represented By The Secretary Of The Navy Phthalonitriles derived from polyphenols
KR101959463B1 (ko) * 2015-05-22 2019-03-18 주식회사 엘지화학 프탈로니트릴 화합물
KR102053093B1 (ko) * 2015-12-02 2019-12-06 주식회사 엘지화학 프탈로니트릴 화합물
KR101953369B1 (ko) 2015-12-04 2019-02-28 주식회사 엘지화학 중합성 조성물
JP6724144B2 (ja) * 2016-01-07 2020-07-15 エルジー・ケム・リミテッド フタロニトリル樹脂
WO2018084465A1 (ko) * 2016-11-04 2018-05-11 주식회사 엘지화학 중합성 조성물
KR102046576B1 (ko) * 2017-05-18 2019-11-21 주식회사 엘지화학 저마찰 중합성 조성물
KR102060191B1 (ko) * 2017-05-22 2019-12-27 주식회사 엘지화학 브레이크 패드 마찰재용 수지 조성물 및 상기 수지 조성물로 제조된 브레이크 패드 마찰재

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244857A (en) * 1979-08-30 1981-01-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Curing agent for polyepoxides and epoxy resins and composites cured therewith
US4408035A (en) 1981-08-24 1983-10-04 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile resin from diphthalonitrile monomer and amine
US5003039A (en) 1988-11-18 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Amino phenyl containing curing agent for high performance phthalonitrile resin
US5350828A (en) 1988-11-21 1994-09-27 The United States Of America As Represented By The Secretary Of The Navy Synthesis and polymerization of dithioether-linked phthalonitrile monomers
US5004801A (en) 1988-11-21 1991-04-02 The United States Of America As Represented By The Secretary Of The Navy Polymer of dithioether-linked phthalonitrile
US5003078A (en) 1989-05-16 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages
US5292854A (en) 1989-05-16 1994-03-08 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages with aromatic diamine curing agent
US5132396A (en) 1990-04-30 1992-07-21 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile monomers containing imide and/or phenoxy linkages, and polymers thereof
US5208318A (en) 1991-03-15 1993-05-04 Keller Teddy M Phosphazene-containing amine as curing agent for phthalonitrile-base polymer
US5139054A (en) 1991-06-28 1992-08-18 Leggett & Platt, Incorporated Spring interior forming and assembling apparatus
US5237045A (en) 1992-01-09 1993-08-17 The United States Of America As Represented By The Secretary Of The Navy Curing phthalonitrile resins with acid and amine
KR20010030872A (ko) * 1997-10-02 2001-04-16 더 거번먼트 오브 더 유나이티드 스테이츠 오브 아메리카, 애즈 레프리젠티드 바이 더 세크러테리 오브 더 네이비 네이벌 리서치 래보러토리 낮은 반응성을 지닌 방향족 아민 경화제로 경화시킨섬유-강화 프탈로니트릴 조성물
KR100558158B1 (ko) 1997-10-02 2006-03-10 더 거번먼트 오브 더 유나이티드 스테이츠 오브 아메리카, 애즈 레프리젠티드 바이 더 세크러테리 오브 더 네이비 네이벌 리서치 래보러토리 낮은 반응성을 지닌 방향족 아민 경화제로 경화시킨섬유-강화 프탈로니트릴 조성물
KR20010072625A (ko) * 1998-06-26 2001-07-31 엘워드 사울 프탈로니트릴 수지로부터 유도된 탄소 베이스 복합물
KR20160059444A (ko) * 2014-11-18 2016-05-26 주식회사 엘지화학 프탈로니트릴 수지
KR20160115543A (ko) * 2015-03-27 2016-10-06 주식회사 엘지화학 중합성 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JI, S. ET AL.: "A Novel Curing Agent for Phthalonitrile Monomers: Curing Behaviors and Properties of the Polymer Network", POLYMER, vol. 84, 7 January 2016 (2016-01-07), pages 365 - 370, XP029406692 *
See also references of EP3483200A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705541A4 (en) * 2018-09-21 2021-08-18 Lg Chem, Ltd. THREE-DIMENSIONAL PRINTING INK WITH PHTHALONITRILE OLIGOMERS
US11591487B2 (en) 2018-09-21 2023-02-28 Lg Chem, Ltd. Curable resin composition comprising a phthalonitrile oligomer and a prepolymer thereof
US11674045B2 (en) 2018-09-21 2023-06-13 Lg Chem, Ltd Three-dimensional printing ink comprising a phthalonitrile oligomer

Also Published As

Publication number Publication date
JP2019522714A (ja) 2019-08-15
CN109563266A (zh) 2019-04-02
US10927215B2 (en) 2021-02-23
EP3483200A1 (en) 2019-05-15
EP3483200A4 (en) 2019-08-07
JP6818123B2 (ja) 2021-01-20
US20190169364A1 (en) 2019-06-06
CN109563266B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2017095174A1 (ko) 중합성 조성물
WO2018030552A1 (ko) 중합성 조성물
WO2018084465A1 (ko) 중합성 조성물
WO2017052323A1 (ko) 프탈로니트릴 화합물
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2017119793A2 (ko) 프탈로니트릴 수지
WO2016032299A1 (ko) 단량체 염을 이용한 폴리이미드 제조방법
WO2018080088A1 (ko) 화합물
WO2020159085A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2020130261A1 (ko) 가교제 화합물, 이를 포함하는 감광성 조성물, 및 이를 이용한 감광 재료
WO2020159193A1 (ko) 폴리이미드 전구체 조성물 및 이로부터 제조된 폴리이미드 필름, 디스플레이 장치용 기판, 및 광학 장치
WO2018097496A9 (ko) 화합물
WO2018147617A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2020045897A1 (ko) 향상된 충격 강도를 갖는 프탈로니트릴계 수지
WO2015152674A1 (ko) 시아네이트계 수지에 대한 분산성이 우수한 실리카졸 조성물 및 이의 제조 방법
WO2016122144A1 (ko) 변성 이소부틸렌-이소프렌 고무, 이의 제조방법 및 경화물
WO2016060340A1 (ko) 가압 조건 하에서 수행되는 폴리이미드 제조방법
WO2020045904A1 (ko) 유기 발광 소자용 잉크 조성물
WO2020060266A1 (ko) 프탈로니트릴 올리고머를 포함하는 3차원 프린팅용 잉크
WO2024049140A1 (ko) 재가공 또는 재활용이 가능한 액정성 에폭시 수지 경화물, 이의 재경화물 및 이의 제조방법
WO2020153771A1 (ko) 디아민 화합물, 및 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2020130552A1 (ko) 디아민 화합물, 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2014200314A1 (ko) 고효율의 탄소 소재 원료용 고순도 피치의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502043

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016912751

Country of ref document: EP

Effective date: 20190205

NENP Non-entry into the national phase

Ref country code: DE