WO2017119793A2 - 프탈로니트릴 수지 - Google Patents

프탈로니트릴 수지 Download PDF

Info

Publication number
WO2017119793A2
WO2017119793A2 PCT/KR2017/000246 KR2017000246W WO2017119793A2 WO 2017119793 A2 WO2017119793 A2 WO 2017119793A2 KR 2017000246 W KR2017000246 W KR 2017000246W WO 2017119793 A2 WO2017119793 A2 WO 2017119793A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
group
polymerizable composition
polymerized unit
Prior art date
Application number
PCT/KR2017/000246
Other languages
English (en)
French (fr)
Other versions
WO2017119793A3 (ko
Inventor
이승희
김상우
안기호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17736165.6A priority Critical patent/EP3401351B1/en
Priority to JP2018533732A priority patent/JP6724144B2/ja
Priority to US16/065,327 priority patent/US20190127525A1/en
Priority to CN201780005720.9A priority patent/CN108431085B/zh
Publication of WO2017119793A2 publication Critical patent/WO2017119793A2/ko
Publication of WO2017119793A3 publication Critical patent/WO2017119793A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0683Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0688Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polyquinolines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/38Polyamides prepared from aldehydes and polynitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Definitions

  • the present application relates to phthalonitrile resins, polymerizable compositions, prepolymers, composites, methods of making and uses thereof.
  • the phthalonitrile resin can be used for various applications.
  • a composite formed by impregnating a phthalonitrile resin into a filler such as glass fiber or carbon fiber may be used as a material for automobiles, airplanes, ships, and the like.
  • the manufacturing process of the composite may include, for example, a process of curing after mixing a prepolymer and a filler formed by a mixture of a phthalonitrile and a curing agent or a reaction of the mixture (for example, Patent Document 1 Reference).
  • the monomer phthalonitrile or the polymerizable composition or prepolymer formed therefrom have appropriate meltability and fluidity, and a so-called process window is wide.
  • Patent Document 1 Korean Registered Patent No. 0558158
  • the present application provides phthalonitrile resins, polymerizable compositions, prepolymers, composites, precursors and methods of making and using the composites.
  • a phthalonitrile, a polymerizable composition and a prepolymer using the same, which exhibit an appropriate processing temperature and a wide process window, and which are excellent in curability and capable of forming a composite of excellent physical properties.
  • the present application is directed to phthalonitrile resins.
  • the phthalonitrile resin may include a polymerized unit derived from the compound of formula (1).
  • the term “polymerized unit derived from a compound” may refer to a skeleton of a polymer formed by polymerization or curing of the compound.
  • the polymerized unit derived from the compound of formula (1) may have a structure in which a cyano group of the compound of formula (1) is reacted with a functional group present in a curing agent such as an amine or a hydroxyl group.
  • R 1 to R 10 are each independently hydrogen, an alkyl group, an alkoxy group, an aryl group, or a substituent of the following Formula 2, wherein at least one of R 1 to R 5 is a substituent of the following Formula 2, and R 6 to R At least one of 10 is a substituent of Formula 2, and X is an alkylene group or an alkylidene group:
  • L is an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom.
  • alkyl group may be an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkyl group may be linear, branched or cyclic and may be substituted by one or more substituents if necessary.
  • alkoxy group in the present application may be an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkoxy group may be linear, branched or cyclic and may be substituted by one or more substituents if necessary.
  • aryl group in the present application may mean a monovalent moiety derived from a benzene ring, a compound containing a benzene ring, or a derivative of any one of the above, unless otherwise specified.
  • the compound including the benzene ring it may mean a compound having a structure in which two or more benzene rings are condensed while sharing one or two carbon atoms, or are directly connected or connected by an appropriate linker.
  • biphenyl, naphthalene, etc. can be illustrated.
  • the aryl group may include, for example, 6 to 25, 6 to 20, or 6 to 12 carbon atoms.
  • aryl group may include, but are not limited to, a phenyl group, benzyl group, biphenyl group or naphthalenyl group.
  • the scope of the aryl group in the present application may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group.
  • alkylene group or alkylidene group in the present application means an alkylene group or alkylidene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, unless otherwise specified. can do.
  • the alkylene group or alkylidene group may be linear, branched or cyclic.
  • the alkylene group or alkylidene group may be optionally substituted with one or more substituents.
  • R 1 to R 10 are each independently hydrogen, an alkyl group, an alkoxy group, or an aryl group, at least one of R 1 to R 5 is a substituent of Formula 2, and at least one of R 6 to R 10 is 2 is a substituent.
  • L in Formula 2 may be linked to Formula 1.
  • the substituents other than the substituent of Formula 2 may each independently be a hydrogen, an alkyl group or an alkoxy group, or may be a hydrogen or an alkyl group.
  • X is an alkylene group or an alkylidene group, and in another example, an alkylene group or alkylidene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, or It may be a methylene group.
  • L may be an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom, and in another example, may be an oxygen atom.
  • the phthalonitrile resin can be prepared by polymerizing a composition containing the compound of Formula 1 and a curing agent described below.
  • the specific polymerization method is not particularly limited, and a known production method of phthalonitrile resin is applied. Just do it.
  • the phthalonitrile resin may include polymerized units of two or more kinds of compounds belonging to the formula (1) and different in structure from each other.
  • Such phthalonitrile resin can be formed by polymerizing the polymerizable composition which mixed the said 2 or more types of compound with a hardening
  • the phthalonitrile resin may include polymerized units of two or more compounds among the compounds represented by the following Chemical Formulas 3 to 5 as polymerized units derived from the compound of Chemical Formula 1.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 and R 10 are each independently hydrogen, an alkyl group, an alkoxy group or an aryl group, X is an alkylene group or an alkylidene group , L is an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom.
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 9 and R 10 are each independently hydrogen, an alkyl group, an alkoxy group or an aryl group, and X is an alkylene group or an alkylidene group , L is an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom.
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are each independently hydrogen, an alkyl group, an alkoxy group or an aryl group, and X is an alkylene group or an alkylidene group , L is an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom.
  • R 1 to R 10 may be hydrogen, an alkyl group, or an alkoxy group in another example, or may be hydrogen or an alkyl group.
  • the phthalonitrile resin may include polymerized units derived from at least two or more of the compounds of the above formulas (3) to (5), or may include polymerized units derived from all of the three kinds of compounds.
  • the phthalonitrile resin may include polymerized units derived from the compounds of Formulas 4 and / or 5, including at least polymerized units derived from the compounds of Formula 3.
  • the polymerized unit derived from the compound of Formula 3 may be included as a main component. Included as the main component in the above may mean that the polymerized unit derived from Formula 3 is 55% or more by weight in the total phthalonitrile-derived polymerized unit.
  • the phthalonitrile resin may include about 1 to 200 parts by weight of polymerized units derived from the compounds of Formulas 4 and / or 5 based on 100 parts by weight of the polymerized units derived from the compound of Formula 3.
  • the unit weight part may mean a ratio of weights between components, unless otherwise specified.
  • the weight ratio of the polymerized unit derived from the compound of Formula 4 and / or 5 is, in another example, 10 parts by weight, 20 parts by weight, 30 parts by weight, 40 parts by weight, 50 parts by weight or 60 parts by weight. It may be abnormal.
  • the weight ratio of the polymerized unit derived from the compound of the general formula (4) and / or 5 above is 190 parts by weight, 180 parts by weight, 170 parts by weight, 160 parts by weight, 150 parts by weight, 140 parts by weight in another example. It may be up to 130 parts by weight, up to 120 parts by weight, up to 110 parts by weight, up to 100 parts by weight, up to 90 parts by weight, up to 80 parts by weight or up to 70 parts by weight. It is possible to maintain an appropriate processing temperature within the above ratio range and to secure a wide process window.
  • the polymer unit derived from the compound of Formula 4 is a compound of Formula 3 It may be included in 1 to 150 parts by weight based on 100 parts by weight of the polymerized unit derived from, and the polymerized unit derived from the compound of Formula 5 may also be included in 1 to 150 parts by weight relative to 100 parts by weight of polymerized unit derived from the compound of Formula 3.
  • the weight ratio of the polymerized unit derived from the compound of Formula 4 or 5 may be 10 parts by weight, 20 parts by weight, 30 parts by weight, 40 parts by weight, 50 parts by weight or 60 parts by weight in another example. It may be abnormal.
  • the weight ratio of the polymerized unit derived from the compound of Formula 4 or 5 is 140 parts by weight, 130 parts by weight, 120 parts by weight, 110 parts by weight, 100 parts by weight, 90 parts by weight in another example. It may be 80 parts by weight or less, 70 parts by weight or less, 60 parts by weight or less, 50 parts by weight or less, 40 parts by weight or less, 30 parts by weight or less, 20 parts by weight or less, or 10 parts by weight or less. It is possible to maintain an appropriate processing temperature within the above ratio range and to secure a wide process window.
  • the above-mentioned compounds of the formulas (1) and (3) to (5) or their combinations may exhibit appropriate processing temperatures and process windows in the process of preparing phthalonitrile resins due to their structural characteristics, and are excellent in reactivity with the curing agent.
  • the processing temperature of the compound may be, for example, in the range of 50 ° C to 200 ° C.
  • the term processing temperature in the present application may mean a temperature at which the compound, the following polymerizable composition or prepolymer including the same, and the like exist in a processable state.
  • Such a processing temperature may be, for example, a softening point, a melting temperature (Tm) or a glass transition temperature (Tg).
  • Tm melting temperature
  • Tg glass transition temperature
  • the compounds of the formulas (1) and (3) to (5) can be synthesized according to known synthesis methods for organic compounds.
  • the compounds of the formulas (1) and (3) to (5) include a reaction known as a nitro displacement reaction, for example, a compound containing a hydroxy group and a compound containing a nitrile group in the presence of a basic catalyst or the like. It can synthesize
  • the phthalonitrile resin may further include polymerized units of other phthalonitrile compounds in addition to the polymerized units of the compounds of the general formulas (1) and / or 3 to 5 above.
  • the kind of phthalonitrile compound that can be selected and used is not particularly limited, and known compounds known to be useful for the formation of phthalonitrile resins and the control of their physical properties can be applied. Examples of such compounds include U.S. Patent 4,408,035, U.S. Patent 5,003,039, U.S. Patent 5,003,078, U.S. Patent 5,004,801, U.S. Patent 5,132,396, U.S. Patent 5,139,054, U.S. Patent 5,208,318, U.S. Patent Compounds known from US Pat. No. 5,237,045, US Pat. No. 5,292,854, US Pat. No. 5,350,828, and the like can be exemplified, and various compounds known in the art other than those described above can be included in the examples.
  • the polymerization unit such as the compound of formula 1 may be a polymerization unit formed by the reaction of the compound of formula 1 and the like with a curing agent. Therefore, the phthalonitrile resin may further include a polymerized unit of the curing agent.
  • the type of curing agent is not particularly limited as long as it can react with a compound of the formula (1) to form a polymer.
  • any compound may be used as long as it is a compound known to be useful for forming a so-called phthalonitrile resin.
  • Curing agents known to be suitable for the formation of phthalonitrile resins include, but are not limited to, aromatic amine compounds, phenol compounds, inorganic acids, organic acids, metals or metal salts, and the like.
  • an amine compound such as an aromatic amine compound or a hydroxy compound such as phenol may be used as a curing agent.
  • a hydroxy compound may mean a compound including at least one or two hydroxy groups in a molecule.
  • Curing agents capable of curing the phthalonitrile compound to form a resin are variously known, and such curing agents can be applied to most of the present application.
  • a compound of Formula 6 may be used as a curing agent.
  • R 11 to R 16 in Formula 6 may each independently represent a hydrogen, an alkyl group, an alkoxy group, an aryl group, an amine group, or a substituent of Formula 7, provided that at least two of R 11 to R 16 may be an amine group, or It is a substituent.
  • L 1 is an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom
  • R 17 to R 21 are hydrogen, an alkyl group, an alkoxy group, an aryl group or an amine group, and at least one of R 17 to R 21 is It is an amine group.
  • L 1 in the structure may be linked to the benzene ring of Formula 6.
  • the curing agent may be a compound in which two of R 11 to R 16 in Formula 6 are substituents of Formula 7.
  • the substituents of the two formulas (7) in Formula 6 may be a structure in which the other is present in the ortho, meta or para position.
  • any one of R 18 to R 20 in the substituent of Formula 7 may be an amine group.
  • the present application also relates to polymerizable compositions.
  • the polymerizable composition may include the compound of Formula 1 described above.
  • the polymerizable composition may further include a curing agent together with the compound of Formula 1.
  • the polymerizable composition may include any one or two or more of Formulas 3 to 5 as the compound of Formula 1.
  • the polymerizable composition may include the compound of Formula 3 and the compound of Formula 4 or 5, or may include all of the compounds of Formulas 3 to 5.
  • the weight ratio of the compound of each formula of Formulas 3 to 5 may be equally applied to the weight ratio of the polymer unit derived from the compound described above.
  • the kind of curing agent that can be used in the polymerizable composition is not particularly limited, and for example, a curing agent as described above can be used.
  • the proportion of the curing agent in the polymerizable composition is not particularly limited.
  • the ratio may be adjusted to ensure the desired curability in consideration of the ratio or type of the curable component such as the compound of Formula 1 included in the composition.
  • the curing agent may be contained in about 0.02 to 1.5 moles per mole of the compound of Formula 1 (when two or more of the compounds of Formulas 3 to 5 are included in total) contained in the polymerizable composition. have.
  • the ratio is only an example of the present application.
  • curing agent becomes high in a polymeric composition, there exists a tendency for a process window to become narrow or wide according to the kind of hardening
  • curing agent becomes low, since sclerosis
  • the polymerizable composition of the present application can exhibit an appropriate processing temperature and a wide process window while being excellent in curability.
  • the processing temperature of the polymerizable composition may be in the range of 50 ° C to 200 ° C or 100 ° C to 200 ° C.
  • the absolute value of the process window of the polymerizable composition that is, the difference (To-Tp) between the processing temperature (Tp) and the curing reaction start temperature (To) of the compound of Formula 1 and the like and the curing agent is 50 ° C. or more, 70 Or at least 100 ° C.
  • the term "curing reaction start temperature" in the present application may mean a temperature at which the polymerization or curing of the polymerizable composition or the prepolymer described later starts.
  • the curing reaction start temperature (To) may be higher than the processing temperature. This range may be advantageous to secure appropriate processability in the process of producing a composite, for example, which will be described later using the polymerizable composition.
  • the upper limit of the process window is not particularly limited.
  • the absolute value of the difference (To-Tp) between the processing temperature Tp and the curing reaction start temperature To is 600 ° C or less, 500 ° C or less, It may be 400 degrees C or less, 300 degrees C or less, or 200 degrees C or less.
  • the polymerizable composition may further include various additives.
  • additives can be exemplified by various fillers.
  • the kind of material that can be used as the filler is not particularly limited, and all known fillers suitable for the intended use can be used.
  • Exemplary fillers include, but are not limited to, metal materials, ceramic materials, glass, metal oxides, metal nitrides, or carbon-based materials.
  • the form of the filler is not particularly limited, and particulates, polygons including fibrous materials such as aramid fibers, glass fibers, carbon fibers or ceramic fibers, or woven fabrics, nonwoven fabrics, strings or strings, and nanoparticles formed by the materials. Or other amorphous forms.
  • Examples of the carbon-based material may include graphite, graphene, carbon nanotubes, derivatives, isomers, and the like, such as oxides thereof.
  • the present application also relates to a prepolymer formed by the reaction of the polymerizable composition described above.
  • prepolymer state refers to a state in which the compound of Formula 1 and a curing agent occur to some extent in the polymerizable composition (for example, a state in which polymerization of the A or B stage stage occurs), It can mean the state which can process a composite_body
  • the prepolymer state may refer to a state in which polymerization of the polymerizable composition is performed to some extent.
  • Prepolymers can also exhibit good curability, suitable processing temperatures and wide process windows.
  • the prepolymer may exhibit stability over time even when stored at room temperature for a long time.
  • the processing temperature of the prepolymer for example, glass transition temperature or melting temperature
  • the absolute value of the process window of the prepolymer i.e., the difference between the processing temperature (Tp) and the curing reaction start temperature (To) of the prepolymer (To-Tp) may be 50 ° C or more, 70 ° C or more, or 100 ° C or more.
  • the curing reaction start temperature (To) may be higher than the processing temperature (Tp). This range may be advantageous to ensure appropriate processability using a prepolymer, for example, in the preparation of the composite described below.
  • the upper limit of the process window is not particularly limited.
  • the absolute value of the difference (To-Tp) between the processing temperature Tp and the curing reaction start temperature To is 600 ° C or less, 500 ° C or less, It may be 400 degrees C or less, 300 degrees C or less, or 200 degrees C or less.
  • the prepolymer may further comprise any known additive in addition to the above components.
  • examples of such an additive may include, but are not limited to, the aforementioned fillers.
  • the present application also relates to composites.
  • the composite may include the phthalonitrile resin and filler described above. As described above, it is possible to achieve excellent curing properties, a suitable processing temperature and a wide process window through the compound of the formula (1) of the present application, and thus the so-called reinforced resin composite having excellent physical properties including various fillers (reinforced polymer composite) can be easily formed.
  • the composite formed as described above may include the phthalonitrile resin and the filler, and may be applied to various applications including, for example, durable materials such as automobiles, airplanes, or ships.
  • the type of filler is not particularly limited and may be appropriately selected in consideration of the intended use. Fillers that can be used may be exemplified, but are not limited thereto.
  • the proportion of the filler is also not particularly limited and may be set in an appropriate range depending on the intended use.
  • the present application also relates to a precursor for preparing the composite, which precursor may comprise, for example, the polymerizable composition and the filler described above, or may comprise the prepolymer and the filler described above.
  • the composite can be prepared in a known manner using the precursor.
  • the composite may be formed by curing the precursor.
  • the precursor is a polymerizable composition comprising the compound of Formula 1 and a curing agent, or the filler, if necessary, in a state in which the prepolymer formed by temporarily curing the polymerizable composition is melted by heating or the like. It can mix and manufacture.
  • the precursor prepared as described above may be molded into a desired shape and then cured to prepare the above-described composite.
  • the polymerizable composition or prepolymer has an appropriate processing temperature and a wide process temperature, and excellent curing property, so that molding and curing can be efficiently performed in the process.
  • a method of forming a prepolymer or the like, a method of mixing the prepolymer or the like with filler, processing and curing to prepare a composite, and the like may be performed according to a known method.
  • NMR analysis was performed according to the manufacturer's manual using Agilent's 500 MHz NMR equipment. Samples for the measurement of NMR were prepared by dissolving the compound in dimethyl sulfoxide (dSO) -d6.
  • DSC analysis was carried out in a N2 flow atmosphere using a TA instrument Q20 system while raising the temperature at a rate of temperature rise of 10 ° C./minute from 35 ° C. to 450 ° C.
  • TGA analysis was performed using a TGA e850 instrument from Mettler-Toledo.
  • the compound prepared in Preparation Example was analyzed in an N2 flow atmosphere while raising the temperature at a temperature increase rate of 10 ° C./min from 25 ° C. to 800 ° C., and the composition prepared in Examples or Comparative Examples was post-cured at a temperature of 375 ° C. After the temperature was raised from 25 ° C. to 900 ° C. at a rate of 10 ° C./min, the temperature was analyzed in N 2 flow atmosphere.
  • the compound of formula A was synthesized in the following manner. First, 28 g of 4,4'-bis (hydroxyphenylmethane) and 150 mL of DMF (dimethyl formamide) were added to 500 mL of 3 neck RBF (3 neck round-bottom flast), followed by stirring at room temperature to dissolve. 48.5 g of 4-nitro phthalonitrile were added to the above, and 50 g of DMF was added thereto, followed by stirring to dissolve it. Then, 58.1 g of potassium carbonate and 50 g of DMF were added together, and then the temperature was raised to 85 ° C. while stirring. After reacting for about 5 hours, the mixture is cooled to room temperature.
  • DMF dimethyl formamide
  • the cooled reaction solution was poured into 0.2N aqueous hydrochloric acid to neutralize precipitate. After filtering it was washed with water. The filtered reaction was then dried in a vacuum oven at 100 ° C. for one day. After removing water and residual solvent, the desired compound was obtained in a yield of 85% by weight.
  • the mixture of the compound of formula A, the compound of formula B and the compound of formula C was synthesized in the following manner. First, 28 g of a mixture of 4,4'-bis (hydroxyphenylmethane), 2,4'-bis (hydroxyphenylmethane) and 2,2'-bis (hydroxyphenylmethane) and 150 mL of DMF (dimethyl) formamide) was added to 500 mL of 3 neck RBF (3 neck round-bottom flast), and stirred at room temperature to dissolve.
  • DMF dimethyl
  • the weight ratio of 4,4'-bis (hydroxyphenylmethane), 2,4'-bis (hydroxyphenylmethane) and 2,2'-bis (hydroxyphenylmethane) in the mixture is 60: 35: 5 (4,4'-bis (hydroxyphenylmethane): 2,4'-bis (hydroxyphenylmethane): 2,2'-bis (hydroxyphenylmethane)).
  • 48.5 g of 4-nitro phthalonitrile were added to the above, and 50 g of DMF was added thereto, followed by stirring to dissolve it. Then, 58.1 g of potassium carbonate and 50 g of DMF were added together, and then the temperature was raised to 85 ° C. while stirring.
  • the compound of formula G used as a curing agent was obtained from TCI (Tokyo Chemical Industry Co., Ltd.) and used without further purification.
  • the melting temperature (Tm) was found to be two because of the mixture. In the case of the mixture, it was confirmed that the melting temperature is lower than the single compound is advantageous in the processability.
  • a curing agent (CA1, 1,3-bis (3-aminophenoxy) benzene) was added in an amount of about 0.15 mole per mole of the compound (PN1) to prepare a polymerizable composition.
  • the results of performing DSC and TGA analysis on the composition are listed in Table 2 below.
  • the composition was cured in an oven by heating at a temperature of 220 ° C., 250 ° C., 280 ° C., 310 ° C. and 340 ° C. for 2 hours for a total of 10 hours.
  • the TGA analysis results performed on the composition after curing are summarized in Table 3 below.
  • a polymerizable composition was prepared in the same manner as in Example 1, except that the mixture (PN2) of Preparation Example 2 was used instead of the compound (PN1) of Preparation Example 1.
  • the results of performing DSC and TGA analysis on the composition are listed in Table 2 below.
  • the composition was cured in an oven by heating at a temperature of 220 ° C., 250 ° C., 280 ° C., 310 ° C. and 340 ° C. for 2 hours for a total of 10 hours.
  • the TGA analysis results performed on the composition after curing are summarized in Table 3 below.
  • a polymerizable composition was prepared in the same manner as in Example 1 except that the compound (PN3) of Preparation Example 3 was used instead of the compound (PN1) of Preparation Example 1.
  • the results of performing DSC and TGA analysis on the composition are listed in Table 2 below.
  • the composition was cured in an oven by heating at a temperature of 220 ° C., 250 ° C., 280 ° C., 310 ° C. and 340 ° C. for 2 hours for a total of 10 hours.
  • the TGA analysis results performed on the composition after curing are summarized in Table 3 below.
  • a polymerizable composition was prepared in the same manner as in Example 1 except that the compound (PN4) of Preparation Example 4 was used instead of the compound (PN1) of Preparation Example 1.
  • the results of performing DSC and TGA analysis on the composition are listed in Table 2 below.
  • the composition was cured in an oven by heating at a temperature of 220 ° C., 250 ° C., 280 ° C., 310 ° C. and 340 ° C. for 2 hours for a total of 10 hours.
  • the TGA analysis results performed on the composition after curing are summarized in Table 3 below.
  • a polymerizable composition was prepared in the same manner as in Example 1 except that the compound (PN5) of Preparation Example 5 was used instead of the compound (PN1) of Preparation Example 1.
  • the results of performing DSC and TGA analysis on the composition are listed in Table 2 below.
  • the composition was cured in an oven by heating at a temperature of 220 ° C., 250 ° C., 280 ° C., 310 ° C. and 340 ° C. for 2 hours for a total of 10 hours.
  • the TGA analysis results performed on the composition after curing are summarized in Table 3 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 출원은 프탈로니트릴 수지, 중합성 조성물, 프리폴리머, 복합체, 그 제조 방법 및 용도에 관한 것이다. 본 출원에서는 경화성이 우수하고, 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 나타내며, 우수한 물성의 복합체를 형성할 수 있는 프탈로니트릴, 그를 사용한 중합성 조성물 및 프리폴리머를 제공할 수 있다.

Description

프탈로니트릴 수지
본 출원은 2016년 1월 7일자 제출된 대한민국 특허출원 제10-2016-0001941호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다
본 출원은 프탈로니트릴 수지, 중합성 조성물, 프리폴리머, 복합체, 그 제조 방법 및 용도에 대한 것이다.
프탈로니트릴 수지는, 다양한 용도에 사용될 수 있다. 예를 들면, 프탈로니트릴 수지를 유리 섬유나 탄소 섬유 등과 같은 충전제에 함침시켜 형성되는 복합체(composite)는, 자동차, 비행기 또는 선박 등의 소재로 사용될 수 있다. 상기 복합체의 제조 과정은, 예를 들면, 프탈로니트릴과 경화제의 혼합물 또는 그 혼합물의 반응에 의해 형성되는 프리폴리머와 충전제를 혼합한 후에 경화시키는 과정을 포함할 수 있다(예를 들면, 특허문헌 1 참조).
복합체의 제조 과정에 효과적으로 이루어지기 위해서는, 단량체인 프탈로니트릴 또는 그로부터 형성된 중합성 조성물이나 프리폴리머(prepolymer)가 적절한 용융성과 유동성을 가지고, 소위 프로세스 윈도우(process window)가 넓을 것이 요구된다.
또한, 상기 프탈로니트릴과 경화제의 혼합물이나 프리폴리머가 보이드(void)를 포함하거나, 가공 혹은 경화 과정에서 보이드를 생성할 경우에 복합체의 물성의 저하가 발생할 수 있으므로, 이러한 문제도 고려되어야 한다.
<선행기술문헌>
<특허문헌>
(특허문헌 1) 한국등록특허 제0558158호
본 출원은 프탈로니트릴 수지, 중합성 조성물, 프리폴리머, 복합체, 상기 복합체의 전구체와 제조 방법 및 용도를 제공한다. 본 출원에서는 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 나타내며, 경화성이 우수하고, 우수한 물성의 복합체를 형성할 수 있는 프탈로니트릴, 그를 사용한 중합성 조성물 및 프리폴리머를 제공할 수 있다.
본 출원은 프탈로니트릴 수지에 대한 것이다. 프탈로니트릴 수지는, 하기 화학식 1의 화합물 유래의 중합 단위를 포함할 수 있다. 본 출원에서 용어 소정 화합물 유래의 중합 단위는 그 화합물의 중합 내지 경화에 의해 형성된 폴리머의 골격을 의미할 수 있다. 예를 들면, 하기 화학식 1의 화합물 유래의 중합 단위는, 하기 화학식 1의 화합물의 시아노기가 아민이나 히드록시기 등의 경화제에 존재하는 관능기와 반응한 상태의 구조일 수 있다.
[화학식 1]
Figure PCTKR2017000246-appb-I000001
화학식 1에서 R1 내지 R10는 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기 또는 하기 화학식 2의 치환기이되, R1 내지 R5 중 적어도 1개는 하기 화학식 2의 치환기이고, R6 내지 R10 중 적어도 1개는 하기 화학식 2의 치환기이며, X는 알킬렌기 또는 알킬리덴기이다:
[화학식 2]
Figure PCTKR2017000246-appb-I000002
화학식 2에서 L은, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이다.
본 출원에서 용어 알킬기는 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기일 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 알콕시기는 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기일 수 있다. 상기 알콕시기는 직쇄형, 분지쇄형 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 아릴기는, 특별히 달리 규정하지 않는 한, 벤젠 고리, 벤젠 고리를 포함하는 화합물 또는 상기 중 어느 하나의 유도체로부터 유래된 1가 잔기를 의미할 수 있다. 상기에서 벤젠 고리를 포함하는 화합물로는, 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 축합되어 있거나, 직접 연결된 구조 또는 적절한 링커에 의해 연결되어 있는 구조의 화합물을 의미할 수 있다. 상기와 같은 화합물로는, 비페닐이나 나프탈렌 등이 예시될 수 있다. 상기 아릴기는, 예를 들면, 6개 내지 25개, 6개 내지 20개 또는 6개 내지 12개의 탄소 원자를 포함할 수 있다. 아릴기의 구체적인 종류로는 페닐기, 벤질기, 비페닐기 또는 나프탈레닐기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 또한, 본 출원에서 아릴기의 범주에는 통상적으로 아릴기로 호칭되는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다.
본 출원에서 용어 알킬렌기 또는 알킬리덴기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기를 의미할 수 있다. 상기 알킬렌기 또는 알킬리덴기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬렌기 또는 알킬리덴기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 상기 알킬기, 알콕시기, 아릴기, 알킬렌기 또는 알킬리덴기에 임의적으로 치환되어 있을 수 있는 치환기로는, 염소 또는 불소 등의 할로겐, 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기, 알킬기, 알콕시기 또는 아릴기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
화학식 1에서 R1 내지 R10는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이되, R1 내지 R5 중 하나 이상은 상기 화학식 2의 치환기이고, R6 내지 R10 중 하나 이상은 상기 화학식 2의 치환기이다. 화학식 2의 치환기는 상기 화학식 2의 L이 화학식 1에 연결되어 있을 수 있다. 화학식 1의 R1 내지 R10 중에서 화학식 2의 치환기가 아닌 치환기는, 각각 독립적으로 수소, 알킬기 또는 알콕시기이거나, 수소 또는 알킬기일 수 있다.
화학식 1에서 X는 알킬렌기 또는 알킬리덴기이고, 다른 예시에서 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기이거나, 혹은 메틸렌기일 수 있다.
또한, 화학식 2에서 L은, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이고, 다른 예시에서 산소 원자일 수 있다.
프탈로니트릴 수지는, 상기 화학식 1의 화합물과 후술하는 경화제를 배합한 조성물을 중합시켜 제조할 수 있으며, 이러한 경우에 구체적인 중합 방법은 특별히 제한되지 않고, 공지의 프탈로니트릴 수지의 제조 방식을 적용하면 된다.
프탈로니트릴 수지는, 화학식 1의 범주에 속하면서 서로 구조가 다른 2종 이상의 화합물의 중합 단위를 포함할 수도 있다. 이러한 프탈로니트릴 수지는, 상기 2종 이상의 화합물을 경화제와 혼합한 중합성 조성물을 중합시켜 형성할 수 있다.
하나의 예시에서 상기 프탈로니트릴 수지는, 상기 화학식 1의 화합물 유래의 중합 단위로서, 각각 하기 화학식 3 내지 5로 표시되는 화합물 중에서 2개 이상의 화합물의 중합 단위를 포함할 수 있다.
[화학식 3]
Figure PCTKR2017000246-appb-I000003
화학식 3에서 R1, R2, R4, R5, R6, R7, R9 및 R10는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이고, X는 알킬렌기 또는 알킬리덴기 이며, L은, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이다.
[화학식 4]
Figure PCTKR2017000246-appb-I000004
화학식 4에서 R2, R3, R4, R5, R6, R7, R9 및 R10는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이고, X는 알킬렌기 또는 알킬리덴기 이며, L은, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이다.
[화학식 5]
Figure PCTKR2017000246-appb-I000005
화학식 5에서 R2, R3, R4, R5, R6, R7, R8 및 R9는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이고, X는 알킬렌기 또는 알킬리덴기이며, L은, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이다.
화학식 3 내지 5에서 R1 내지 R10은 다른 예시에서 수소, 알킬기 또는 알콕시기이거나, 수소 또는 알킬기일 수 있다.
프탈로니트릴 수지는, 상기 화학식 3 내지 5의 화합물 중 적어도 2개 이상으로부터 유래된 중합 단위를 포함하거나, 혹은 상기 3종의 화합물 모두로부터 유래된 중합 단위를 포함할 수도 있다.
하나의 예시에서 프탈로니트릴 수지는 적어도 화학식 3의 화합물 유래의 중합 단위를 포함하면서, 상기 화학식 4 및/또는 5의 화합물 유래의 중합 단위를 포함할 수도 있다. 상기와 같은 경우에 화학식 3의 화합물 유래의 중합 단위는 주성분으로 포함될 수 있다. 상기에서 주성분으로 포함된다는 것은 화학식 3 유래의 중합 단위가 전체 프탈로니트릴 유래 중합 단위에서 중량을 기준으로 55% 이상인 경우를 의미할 수 있다.
또한, 상기와 같은 경우에 상기 프탈로니트릴 수지는, 상기 화학식 3의 화합물 유래의 중합 단위 100 중량부에 대하여 상기 화학식 4 및/또는 5의 화합물 유래의 중합 단위를 약 1 내지 200 중량부로 포함할 수 있다. 본 명세서에서 단위 중량부는 특별히 달리 규정하지 않는 한, 성분들간의 중량의 비율을 의미할 수 있다. 상기에서 화학식 4 및/또는 5의 화합물 유래의 중합 단위의 중량 비율은, 다른 예시에서 10 중량부 이상, 20 중량부 이상, 30 중량부 이상, 40 중량부 이상, 50 중량부 이상 또는 60 중량부 이상일 수 있다. 또한, 상기에서 화학식 4 및/또는 5의 화합물 유래의 중합 단위의 중량 비율은, 다른 예시에서 190 중량부 이하, 180 중량부 이하, 170 중량부 이하, 160 중량부 이하, 150 중량부 이하, 140 중량부 이하, 130 중량부 이하, 120 중량부 이하, 110 중량부 이하, 100 중량부 이하, 90 중량부 이하, 80 중량부 이하 또는 70 중량부 이하일 수 있다. 상기와 같은 비율의 범위 하에서 적절한 가공 온도를 유지하고, 또한 넓은 프로세스 윈도우를 확보할 수 있다.
또한, 프탈로니트릴 수지가 상기 화학식 1의 화합물 유래의 중합 단위로서, 화학식 3 내지 5의 화합물 유래의 중합 단위를 모두 포함하는 경우에는, 상기 화학식 4의 화합물 유래의 중합 단위는 상기 화학식 3의 화합물 유래의 중합 단위 100 중량부 대비 1 내지 150 중량부로 포함될 수 있고, 상기 화학식 5의 화합물 유래의 중합 단위도 상기 화학식 3의 화합물 유래의 중합 단위 100 중량부 대비 1 내지 150 중량부로 포함될 수 있다. 상기에서 화학식 4 또는 5의 화합물 유래의 중합 단위의 중량 비율은 다른 예시에서 다른 예시에서 10 중량부 이상, 20 중량부 이상, 30 중량부 이상, 40 중량부 이상, 50 중량부 이상 또는 60 중량부 이상일 수 있다. 또한, 상기에서 화학식 4 또는 5의 화합물 유래의 중합 단위의 중량 비율은, 다른 예시에서 140 중량부 이하, 130 중량부 이하, 120 중량부 이하, 110 중량부 이하, 100 중량부 이하, 90 중량부 이하, 80 중량부 이하, 70 중량부 이하, 60 중량부 이하, 50 중량부 이하, 40 중량부 이하, 30 중량부 이하, 20 중량부 이하 또는 10 중량부 이하일 수 있다. 상기와 같은 비율의 범위 하에서 적절한 가공 온도를 유지하고, 또한 넓은 프로세스 윈도우를 확보할 수 있다.
상기 언급한 화학식 1 및 3 내지 5의 화합물 또는 그들의 조합은 구조적 특징으로 인해 프탈로니트릴 수지 제조 과정에서 적절한 가공 온도와 프로세스 윈도우를 나타낼 수 있고, 경화제와의 반응성이 우수하다.
이에 따라 경화성이 우수하고, 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 나타내며, 우수한 물성의 복합체를 형성할 수 있는 중합성 조성물 및 프리폴리머를 제공할 수 있다.
하나의 예시에서 상기 화합물의 가공 온도는, 예를 들면, 50℃ 내지 200℃의 범위 내에 있을 수 있다. 본 출원에서 용어 가공 온도는, 상기 화합물, 그를 포함하는 하기 중합성 조성물 또는 프리폴리머 등이 가공 가능한 상태로 존재하는 온도를 의미할 수 있다. 이러한 가공 온도는, 예를 들면, 연화점, 용융 온도(Tm) 또는 유리전이온도(Tg)일 수 있다. 이러한 범위는 적절한 유동성과 가공성을 나타내고, 넓은 프로세스 윈도우가 확보되며, 우수한 물성의 복합체를 형성할 수 있는 중합성 조성물 또는 프리폴리머을 구현하는 것에 유리하다.
화학식 1 및 3 내지 5의 화합물은 공지의 유기 화합물의 합성법에 따라 합성할 수 있다. 예를 들면, 화학식 1 및 3 내지 5의 화합물은, 소위 니트로 치환(nitro displacement) 반응으로 공지되어 있는 반응, 예를 들면, 히드록시기를 포함하는 화합물 및 니트릴기를 포함하는 화합물을 염기성 촉매 등이 존재 하에서 반응시키는 방식으로 합성할 수 있다.
프탈로니트릴 수지는, 상기 화학식 1 및/또는 3 내지 5의 화합물의 중합 단위에 추가로 다른 프탈로니트릴 화합물의 중합 단위를 포함할 수도 있다. 이러한 경우에 선택 및 사용될 수 있는 프탈로니트릴 화합물의 종류는 특별히 제한되지 않으며, 프탈로니트릴 수지의 형성 및 그 물성의 조절에 유용한 것으로 알려진 공지의 화합물이 적용될 수 있다. 이러한 화합물의 예로는, 미국 특허 제4,408,035호, 미국 특허 제5,003,039호, 미국 특허 제5,003,078호, 미국 특허 제5,004,801호, 미국 특허 제5,132,396호, 미국 특허 제5,139,054호, 미국 특허 제5,208,318호, 미국 특허 제5,237,045호, 미국 특허 제5,292,854호 또는 미국 특허 제5,350,828호 등에서 공지되어 있는 화합물이 예시될 수 있으며, 상기 문헌들에 의한 것 외에도 업계에서 공지되어 있는 다양한 화합물이 상기 예시에 포함될 수 있다.
프탈로니트릴 수지에서 화학식 1의 화합물 등의 중합 단위는, 상기 화학식 1의 화합물 등과 경화제의 반응에 의해 형성되는 중합 단위일 수 있다. 따라서, 상기 프탈로니트릴 수지는, 상기 경화제의 중합 단위를 추가로 포함할 수 있다. 경화제의 종류는 화학식 1의 화합물 등과 반응하여 고분자를 형성할 수 있는 것이라면, 특별히 제한되지 않으며, 예를 들면, 소위 프탈로니트릴 수지의 형성에 유용한 것으로 알려진 화합물이라면 어떠한 화합물도 사용할 수 있다. 프탈로니트릴 수지의 형성에 적합한 것으로 공지된 경화제로는 방향족 아민 화합물, 페놀 화합물, 무기산, 유기산, 금속 또는 금속염 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
하나의 예시에서는 경화제로서 방향족 아민 화합물과 같은 아민 화합물 또는 페놀 등의 히드록시 화합물을 사용할 수 있다. 본 출원에서 히드록시 화합물은, 분자 내에 적어도 하나 또는 두 개의 히드록시기를 포함하는 화합물을 의미할 수 있다. 프탈로니트릴 화합물을 경화시켜 수지를 형성할 수 있는 경화제는 다양하게 공지되어 있고, 이러한 경화제는 본 출원에서 대부분 적용될 수 있다.
하나의 예시에서 경화제로는 하기 화학식 6의 화합물이 사용될 수 있다.
[화학식 6]
Figure PCTKR2017000246-appb-I000006
화학식 6에서 R11 내지 R16은 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기, 아민기 또는 하기 화학식 7의 치환기이고, 단 R11 내지 R16 중 2개 이상은 아민기이거나 하기 화학식 7의 치환기이다.
[화학식 7]
Figure PCTKR2017000246-appb-I000007
화학식 7에서 L1은, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이고, R17 내지 R21은 수소, 알킬기, 알콕시기, 아릴기 또는 아민기이되, R17 내지 R21 중 적어도 하나는 아민기다.
화학식 7의 치환기가 존재하는 경우, 상기 구조에서 L1이 화학식 6의 벤젠 고리에 연결될 수 있다.
하나의 예시에서 상기 경화제는 화학식 6에서 R11 내지 R16 중 2개가 상기 화학식 7의 치환기인 화합물일 수 있다. 이러한 경우에 화학식 6에서 상기 2개의 화학식 7의 치환기는, 그 중 어느 하나를 기준으로 다른 하나가 오소, 메타 또는 파라 위치에 존재하는 구조일 수 있다. 또한, 이러한 경우에 상기 화학식 7의 치환기에서 R18 내지 R20 중 어느 하나가 아민기일 수 있다.
본 출원은 또한 중합성 조성물에 대한 것이다. 중합성 조성물은, 상기 기술한 화학식 1의 화합물을 포함할 수 있다.
중합성 조성물은 상기 화학식 1의 화합물과 함께 경화제를 추가로 포함할 수 있다.
중합성 조성물은, 상기 화학식 1의 화합물로서, 상기 화학식 3 내지 5 중 어느 하나 또는 2개 이상을 포함할 수 있다. 예를 들면, 상기 중합성 조성물은, 상기 화학식 3의 화합물 및 상기 화학식 4 또는 5의 화합물을 포함하거나, 상기 화학식 3 내지 5의 화합물을 모두 포함할 수 있다.
상기와 같은 경우에 화학식 3 내지 5의 각 화학식의 화합물의 중량 비율은, 전술한 상기 화합물 유래의 중합 단위의 중량 비율에 대한 사항이 동일하게 적용될 수 있다.
중합성 조성물에 사용될 수 있는 경화제의 종류는 특별히 제한되지 않고, 예를 들면, 이미 기술한 것과 같은 경화제를 사용할 수 있다.
중합성 조성물에서 경화제의 비율은 특별히 제한되지 않는다. 상기 비율은, 예를 들면, 조성물에 포함되어 있는 화학식 1의 화합물 등의 경화성 성분의 비율이나 종류 등을 고려하여 목적하는 경화성이 확보될 수 있도록 조절될 수 있다. 예를 들면, 경화제는 중합성 조성물에 포함되어 있는 화학식 1의 화합물(화학식 3 내지 5의 화합물 중 2개 이상이 포함되는 경우, 그 전체) 1몰 당 약 0.02몰 내지 1.5몰 정도로 포함되어 있을 수 있다. 그렇지만, 상기 비율은 본 출원의 예시에 불과하다. 통상 중합성 조성물에서 경화제의 비율이 높아지면, 경화제의 종류에 따라 프로세스 윈도우가 좁아지거나 넓어지는 경향이 있어서 가공성이 떨어지거나, 고온의 경화 조건이 필요할 우려가 있다. 또한, 경화제의 비율이 낮아지면, 경화성이 불충분해지는 경향이 있으므로, 이러한 점 등을 고려하여 적절한 경화제의 비율이 선택될 수 있다.
본 출원의 중합성 조성물은, 경화성이 우수하면서, 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 나타낼 수 있다.
하나의 예시에서 상기 중합성 조성물의 가공 온도, 즉 용융 온도 또는 유리전이온도는, 50℃ 내지 200℃ 또는 100℃ 내지 200℃의 범위 내에 있을 수 있다. 이러한 경우에 상기 중합성 조성물의 프로세스 원도우, 즉 상기 가공 온도(Tp)와 상기 화학식 1의 화합물 등과 경화제의 경화 반응 개시 온도(To)의 차이(To - Tp)의 절대값은 50℃ 이상, 70℃ 이상 또는 100℃ 이상일 수 있다. 본 출원에서 용어 경화 반응 개시 온도는, 중합성 조성물이나 후술하는 프리폴리머의 중합 내지는 경화가 시작되는 시점의 온도를 의미할 수 있다. 하나의 예시에서 상기 경화 반응 개시 온도(To)가 상기 가공 온도에 비하여 높을 수 있다. 이러한 범위는 중합성 조성물을 사용하여, 예를 들어 후술하는 복합체를 제조하는 과정에서 적절한 가공성을 확보하는 것에 유리할 수 있다. 상기에서 프로세스 윈도우의 상한은 특별히 제한되는 것은 아니나, 예를 들면, 상기 가공 온도(Tp)와 경화 반응 개시 온도(To)의 차이(To - Tp)의 절대값은 600℃ 이하, 500℃ 이하, 400℃ 이하, 300℃ 이하 또는 200℃ 이하일 수 있다.
중합성 조성물은 다양한 첨가제를 추가로 포함할 수 있다. 이러한 첨가제의 예로는 다양한 충전제가 예시될 수 있다. 충전제로 사용될 수 있는 물질의 종류는 특별히 제한되지 않고, 목적하는 용도에 따라 적합한 공지의 충전제가 모두 사용될 수 있다. 예시적인 충전제로는 금속 물질, 세라믹 물질, 유리, 금속 산화물, 금속 질화물 또는 탄소계 물질 등이 있지만 이에 제한되는 것은 아니다. 또한, 상기 충전제의 형태도 특별히 제한되지 않고, 아라미드 섬유, 유리 섬유, 탄소 섬유 또는 세라믹 섬유 등과 같은 섬유상 물질, 또는 그 물질에 의해 형성된 직포, 부직포, 끈 또는 줄, 나노 입자를 포함하는 입자상, 다각형 또는 기타 무정형 등 다양한 형태일 수 있다. 상기에서 탄소계 물질로는, 그래파이트(graphite), 그래핀(graphene) 또는 탄소 나노튜브 등이나 그들의 산화물 등과 같은 유도체 내지는 이성질체 등이 예시될 수 있다.
본 출원은 또한, 상기 기술한 중합성 조성물의 반응에 의해 형성되는 프리폴리머(prepolymer)에 대한 것이다.
본 출원에서 용어 프리폴리머 상태는, 상기 중합성 조성물 내에서 화학식 1의 화합물과 경화제가 어느 정도의 일어난 상태(예를 들면, 소위 A 또는 B 스테이지 단계의 중합이 일어난 상태)이나, 완전히 중합된 상태에는 이르지 않고, 적절한 유동성을 나타내어, 예를 들면, 후술하는 바와 같은 복합체의 가공이 가능한 상태를 의미할 수 있다. 하나의 예시에서 상기 프리폴리머 상태는, 상기 중합성 조성물의 중합이 어느 정도 진행된 상태를 의미할 수 있다.
프리폴리머 역시 우수한 경화성, 적절한 가공 온도 및 넓은 프로세스 윈도우(process window)를 나타낼 수 있다. 또한, 상기 프리폴리머는, 상온에서 장기간 보관되는 경우에도 경시적으로 안정성을 나타낼 수 있다.
예를 들면, 상기 프리폴리머의 가공 온도, 예를 들어, 유리전이온도 또는 용융 온도는, 50℃ 내지 200℃ 또는 100℃ 내지 200℃의 범위 내에 있을 수 있다. 이러한 경우에 상기 프리폴리머의 프로세스 원도우, 즉 상기 가공 온도(Tp)와 상기 프리폴리머의 경화 반응 개시 온도(To)의 차이(To - Tp)의 절대값은 50℃ 이상, 70℃ 이상 또는 100℃ 이상일 수 있다. 하나의 예시에서 상기 경화 반응 개시 온도(To)가 상기 가공 온도(Tp)에 비하여 높을 수 있다. 이러한 범위는 프리폴리머를 사용하여, 예를 들어 후술하는 복합체를 제조하는 과정에서 적절한 가공성을 확보하는 것에 유리할 수 있다. 상기에서 프로세스 윈도우의 상한은 특별히 제한되는 것은 아니나, 예를 들면, 상기 가공 온도(Tp)와 경화 반응 개시 온도(To)의 차이(To - Tp)의 절대값은 600℃ 이하, 500℃ 이하, 400℃ 이하, 300℃ 이하 또는 200℃ 이하일 수 있다.
프리폴리머는 상기 성분 외에 공지의 임의의 첨가제를 추가로 포함할 수 있다. 이러한 첨가제의 예로는 전술한 충전제 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
본 출원은 또한 복합체(composite)에 대한 것이다. 상기 복합체는 상기 기술한 프탈로니트릴 수지 및 충전제를 포함할 수 있다. 상기 기술한 바와 같이, 본 출원의 화학식 1의 화합물 등을 통해 우수한 경화성, 적절한 가공 온도와 넓은 프로세스 윈도우(process window)의 달성이 가능하며, 이에 따라 다양한 충전제를 포함하는 우수한 물성의 소위 강화 수지 복합체(reinforced polymer composite)를 용이하게 형성할 수 있다. 이와 같이 형성된 복합체는 상기 프탈로니트릴 수지와 충전제를 포함할 수 있고, 예를 들면, 자동차, 비행기 또는 선박 등의 내구재 등을 포함한 다양한 용도에 적용될 수 있다.
충전제의 종류는 특별히 제한되지 않으며, 목적하는 용도를 고려하여 적절하게 선택될 수 있다. 사용될 수 있는 충전제로는 이미 기술한 종류가 예시될 수 있지만, 이에 제한되는 것은 아니다.
충전제의 비율도 특별히 제한되는 것은 아니며, 목적하는 용도에 따라 적정 범위로 설정될 수 있다.
본 출원은 또한, 상기 복합체를 제조하기 위한 전구체에 대한 것이고, 상기 전구체는 예를 들면, 상기 기술한 중합성 조성물과 상기 충전제를 포함하거나, 혹은 상기 기술한 프리폴리머와 상기 충전제를 포함할 수 있다.
복합체는 상기 전구체를 사용한 공지의 방식으로 제조할 수 있다. 예를 들면, 상기 복합체는 상기 전구체를 경화시켜서 형성할 수 있다.
하나의 예시에서 상기 전구체는, 상기 화학식 1의 화합물 및 경화제를 포함하는 중합성 조성물이나, 상기 중합성 조성물이 가경화되어 형성되는 상기 프리폴리머를 가열 등에 의해 용융시킨 상태에서, 필요한 경우에 상기 충전제와 배합하여 제조할 수 있다. 예를 들면, 상기와 같이 제조된 전구체를 목적하는 형상으로 성형한 후에 경화시켜서 전술한 복합체의 제조가 가능하다. 상기 중합성 조성물 또는 프리폴리머는 적절한 가공 온도와 넓은 프로세스 온도를 가지고, 경화성이 탁월하여 상기 과정에서 성형 및 경화가 효율적으로 수행될 수 있다.
상기 과정에서 프리폴리머 등을 형성하는 방법, 그러한 프리폴리머 등과 충전제를 배합하고, 가공 및 경화시켜 복합체를 제조하는 방법 등은 공지된 방식에 따라 진행될 수 있다.
본 출원에서는 경화성이 우수하고, 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 나타내며, 우수한 물성의 복합체를 형성할 수 있는 프탈로니트릴, 그를 사용한 중합성 조성물 및 프리폴리머를 제공할 수 있다.
도 1 내지 3은 제조예에서 제조된 화합물에 대한 NMR 분석 결과이다.
이하 실시예 및 비교예를 통하여 본 출원의 프탈로니트릴 수지 등을 구체적으로 설명하지만, 상기 수지 등의 범위가 하기 실시예에 제한되는 것은 아니다.
1. NMR(Nuclear magnetic resonance) 분석
NMR 분석은 Agilent사의 500 MHz NMR 장비를 사용하여 제조사의 매뉴얼대로 수행하였다. NMR의 측정을 위한 샘플은 화합물을 DMSO(dimethyl sulfoxide)-d6에 용해시켜 제조하였다.
2. DSC(Differential scanning calorimetry) 분석
DSC 분석은, TA instrument사의 Q20 시스템을 사용하여 35℃에서 450℃까지 10℃/분의 승온 속도로 승온하면서 N2 flow 분위기에서 수행하였다.
3. TGA(Thermogravimetric Analysis) 분석
TGA 분석은 Mettler-Toledo사의 TGA e850 장비를 사용하여 수행하였다. 제조예에서 제조된 화합물의 경우 25℃에서 800℃까지 10℃/분의 승온 속도로 승온하면서 N2 flow 분위기에서 분석하였고, 실시예 또는 비교예에서 제조된 조성물의 경우는 375℃의 온도에서 후경화시킨 후에 25℃에서 900℃까지 10℃/분의 승온 속도로 승온하면서 N2 flow 분위기에서 분석하였다.
제조예 1. 화합물(PN1)의 합성
하기 화학식 A의 화합물은 다음의 방식으로 합성하였다. 우선, 4,4’-비스(히드록시페닐메탄) 28 g과 150mL의 DMF(dimethyl formamide)를 500 mL의 3넥 RBF(3 neck round-bottom flast)에 투입하고, 상온에서 교반하여 용해시켰다. 상기에 4-니트로 프탈로니트릴 48.5 g을 추가하고, DMF 50 g을 추가한 후 교반하여 용해시켰다. 이어서 탄산칼륨 58.1 g 및 DMF 50 g을 함께 투입한 후에 교반하면서 온도를 85℃까지 승온하였다. 5 시간 정도 반응시킨 후에 상온까지 냉각시킨다. 냉각된 반응 용액을 0.2N 염산 수용액에 부어 중화 침전하였다. 필터링 후에 물로 세척하였다. 그 후, 필터링된 반응물을 100℃의 진공 오븐에서 하루 동안 건조시켰다. 물과 잔류 용매를 제거한 후에 목적 화합물을 85중량%의 수율로 수득하였다.
제조된 하기 화학식 A의 화합물의 NMR 분석 결과는 도 1에 기재하였고, DSC 및 TGA 분석 결과는 표 1에 정리하였다.
[화학식 A]
Figure PCTKR2017000246-appb-I000008
제조예 2. 혼합물(PN2)의 합성
상기 화학식 A의 화합물, 하기 화학식 B의 화합물 및 하기 화학식 C의 화합물의 혼합물은 다음의 방식으로 합성하였다. 우선, 4,4’-비스(히드록시페닐메탄), 2,4’-비스(히드록시페닐메탄) 및 2,2’-비스(히드록시페닐메탄)의 혼합물 28 g과 150mL의 DMF(dimethyl formamide)를 500 mL의 3넥 RBF(3 neck round-bottom flast)에 투입하고, 상온에서 교반하여 용해시켰다. 상기 혼합물에서 4,4’-비스(히드록시페닐메탄), 2,4’-비스(히드록시페닐메탄) 및 2,2’-비스(히드록시페닐메탄)의 중량 비율은 60:35:5(4,4’-비스(히드록시페닐메탄):2,4’-비스(히드록시페닐메탄):2,2’-비스(히드록시페닐메탄))였다. 상기에 4-니트로 프탈로니트릴 48.5 g을 추가하고, DMF 50 g을 추가한 후 교반하여 용해시켰다. 이어서 탄산칼륨 58.1 g 및 DMF 50 g을 함께 투입한 후에 교반하면서 온도를 85℃까지 승온하였다. 5 시간 정도 반응시킨 후에 상온까지 냉각시킨다. 냉각된 반응 용액을 0.2N 염산 수용액에 부어 중화 침전하였다. 필터링 후에 물로 세척하였다. 그 후, 필터링된 반응물을 100℃의 진공 오븐에서 하루 동안 건조시켰다. 물과 잔류 용매를 제거한 후에 목적 혼합물을 80중량%의 수율로 수득하였다.
제조된 화학식 A의 화합물, 화학식 B의 화합물 및 화학식 C의 화합물의 혼합물의 NMR 분석 결과는 도 2에 기재하였고, DSC 및 TGA 분석 결과는 표 1에 정리하였다.
[화학식 B]
Figure PCTKR2017000246-appb-I000009
[화학식 C]
Figure PCTKR2017000246-appb-I000010
제조예 3. 화합물(PN3)의 합성
4,4’-디하이드록시비페닐 에테르 25.3 g 및 100 mL의 DMF(dimethyl formamide)를 3넥 RBF(3 neck round-bottom flast)에 투입하고, 상온에서 교반하여 용해시켰다. 상기에 4 니트로프탈로니트릴 43.3 g을 추가하고, DMF 70 g을 추가한 후 교반하여 용해시켰다. 이어서 탄산칼륨 51.8 g 및 DMF 50 g을 함께 투입한 후에 교반하면서 온도를 85℃까지 승온하였다. 5 시간 정도 반응시킨 후에 상온까지 냉각시킨다. 냉각된 반응 용액을 0.2N 염산 수용액에 부어 중화 침전하였다. 필터링 후에 물로 세척하였다. 그 후, 필터링된 반응물을 100℃의 진공 오븐에서 하루 동안 건조시켰다. 물과 잔류 용매를 제거한 후에 하기 화학식 D의 화합물(PN3)을 88중량%의 수율로 수득하였다.
상기 화합물에 대한 NMR 결과는 도 3에 기재하였고, DSC 및 TGA 분석 결과는 표 1에 정리하였다.
[화학식 D]
Figure PCTKR2017000246-appb-I000011
제조예 4. 화합물(PN4)의 합성
4,4’-디하이드록시비페닐 27.9 g 및 100 mL의 DMF(dimethyl formamide)를 3넥 RBF(3 neck round-bottom flast)에 투입하고, 상온에서 교반하여 용해시켰다. 상기에 4 니트로프탈로니트릴 51.9 g을 추가하고, DMF 50 g을 추가한 후 교반하여 용해시켰다. 이어서 탄산칼륨 62.2 g 및 DMF 50 g을 함께 투입한 후에 교반하면서 온도를 85℃까지 승온하였다. 5 시간 정도 반응시킨 후에 상온까지 냉각시킨다. 냉각된 반응 용액을 0.2N 염산 수용액에 부어 중화 침전하였다. 필터링 후에 물로 세척하였다. 그 후, 필터링된 반응물을 100℃의 진공 오븐에서 하루 동안 건조시켰다. 물과 잔류 용매를 제거한 후에 하기 화학식 E의 화합물(PN4)을 83중량%의 수율로 수득하였다. 상기 화합물에 대한 NMR 결과는 도 4에 기재하였고, DSC 및 TGA 분석 결과는 표 1에 정리하였다.
[화학식 E]
Figure PCTKR2017000246-appb-I000012
제조예 5. 화합물(PN5)의 합성
4,4’-비스(4-하이드록시비페닐)헥사플루오로프로판(2,2-bis(4-hydroxyphenyl)hexafluoropropane) 50.4 g 및 150 mL의 DMF(dimethyl formamide)를 3넥 RBF(3 neck round-bottom flast)에 투입하고, 상온에서 교반하여 용해시켰다. 상기에 4 니트로프탈로니트릴 51.9 g을 추가하고, DMF 50 g을 추가한 후 교반하여 용해시켰다. 이어서 탄산칼륨 62.2 g 및 DMF 50 g을 함께 투입한 후에 교반하면서 온도를 85℃까지 승온하였다. 5 시간 정도 반응시킨 후에 상온까지 냉각시킨다. 냉각된 반응 용액을 0.2N 염산 수용액에 부어 중화 침전하였다. 필터링 후에 물로 세척하였다. 그 후, 필터링된 반응물을 100℃의 진공 오븐에서 하루 동안 건조시켰다. 물과 잔류 용매를 제거한 후에 하기 화학식 F의 화합물(PN5)을 87중량%의 수율로 수득하였다. 상기 화합물에 대한 NMR 결과는 도 5에 기재하였고, DSC 및 TGA 분석 결과는 표 1에 정리하였다.
[화학식 F]
Figure PCTKR2017000246-appb-I000013
화합물(CA)
경화제로 사용한 하기 화학식 G의 화합물은 TCI(Tokyo Chemical Industry Co., Ltd.)사의 시판 제품을 입수하여 추가 정제 없이 사용하였다.
[화학식 G]
Figure PCTKR2017000246-appb-I000014
제조예 1 내지 5의 화합물(PN1, PN2, PN3)에 대한 DSC 및 TGA 분석 결과는 하기 표 1에 정리되어 있다. 하기 표 1의 결과로부터, 본 출원에 따른 제조예 1 또는 2의 화합물 또는 혼합물은, 낮은 가공 온도를 가져서 저온에서 프리폴리머의 제조가 가능하고, 그에 따라 넓은 프로세스 윈도우의 확보가 가능하며, 우수한 내열 특성을 보일 것을 예측할 수 있다.
한편, 하기 표 1에서 제조예 2의 혼합물의 경우, 혼합물의 형태여서 용융 온도(Tm)가 2개로 확인되었다. 상기 혼합물의 경우, 단일 화합물 대비 용융 온도가 낮아져서 공정성에 있어서 유리한 것을 확인하였다.
또한, 하기 결과로부터 제조예 1 또는 2의 화합물 또는 그 혼합물이 자체적으로 내열 특성이 제조예 3 내지 5의 화합물에 비해 우수한 것을 확인할 수 있다.
가공온도(용융온도)(℃) 800℃에서의 residue(%)
제조예1(화합물) PN1 195 66.3
제조예2(혼합물) PN2 132, 174 66.7
제조예3(화합물) PN3 193 10.2
제조예4(화합물) PN4 235 1.1
제조예5(화합물) PN5 231 0.6
실시예 1
제조예 1의 화합물(PN1)에 상기 경화제(CA1, 1,3-bis(3-aminophenoxy)benzene)를 상기 화합물(PN1) 1몰 당 약 0.15몰이 존재하도록 배합하여 중합성 조성물을 제조하였다. 상기 조성물에 대하여 DSC와 TGA 분석을 수행한 결과는 하기 표 2에 기재되어 있다.
상기 조성물을 220℃, 250℃, 280℃, 310℃ 및 340℃의 각각의 온도에서 2시간씩 총 10 시간 동안 가열하여 오븐에서 경화시켰다. 경화 후의 조성물에 대해 수행한 TGA 분석 결과는 하기 표 3에 정리하였다.
실시예 2.
제조예 2의 혼합물(PN2)을 제조예 1의 화합물(PN1) 대신 사용한 것을 제외하고는, 실시예 1과 동일하게 중합성 조성물을 제조하였다. 상기 조성물에 대하여 DSC와 TGA 분석을 수행한 결과는 하기 표 2에 기재되어 있다.
상기 조성물을 220℃, 250℃, 280℃, 310℃ 및 340℃의 각각의 온도에서 2시간씩 총 10 시간 동안 가열하여 오븐에서 경화시켰다. 경화 후의 조성물에 대해 수행한 TGA 분석 결과는 하기 표 3에 정리하였다.
비교예 1.
제조예 3의 화합물(PN3)을 제조예 1의 화합물(PN1) 대신 사용한 것을 제외하고는, 실시예 1과 동일하게 중합성 조성물을 제조하였다. 상기 조성물에 대하여 DSC와 TGA 분석을 수행한 결과는 하기 표 2에 기재되어 있다.
상기 조성물을 220℃, 250℃, 280℃, 310℃ 및 340℃의 각각의 온도에서 2시간씩 총 10 시간 동안 가열하여 오븐에서 경화시켰다. 경화 후의 조성물에 대해 수행한 TGA 분석 결과는 하기 표 3에 정리하였다.
비교예 2.
제조예 4의 화합물(PN4)을 제조예 1의 화합물(PN1) 대신 사용한 것을 제외하고는, 실시예 1과 동일하게 중합성 조성물을 제조하였다. 상기 조성물에 대하여 DSC와 TGA 분석을 수행한 결과는 하기 표 2에 기재되어 있다.
상기 조성물을 220℃, 250℃, 280℃, 310℃ 및 340℃의 각각의 온도에서 2시간씩 총 10 시간 동안 가열하여 오븐에서 경화시켰다. 경화 후의 조성물에 대해 수행한 TGA 분석 결과는 하기 표 3에 정리하였다.
비교예 3.
제조예 5의 화합물(PN5)을 제조예 1의 화합물(PN1) 대신 사용한 것을 제외하고는, 실시예 1과 동일하게 중합성 조성물을 제조하였다. 상기 조성물에 대하여 DSC와 TGA 분석을 수행한 결과는 하기 표 2에 기재되어 있다.
상기 조성물을 220℃, 250℃, 280℃, 310℃ 및 340℃의 각각의 온도에서 2시간씩 총 10 시간 동안 가열하여 오븐에서 경화시켰다. 경화 후의 조성물에 대해 수행한 TGA 분석 결과는 하기 표 3에 정리하였다.
실시예 및 비교예의 조성물에 대하여 DSC와 TGA 분석을 수행한 결과는 하기 표 2에 기재되어 있다.
가공온도(용융온도)(℃) Exothermal onset temperature(℃) Process Window(℃) 발열에너지(J/g)
실시예1 188 293 105 200
실시예2 164 281 154 235
비교예1 190 292 102 41
비교예2 229 289 60 47
비교예3 226 361 135 11
5% 분해온도(℃) 10% 분해온도(℃) 800℃에서의 residue(%)
실시예1 496 540 77.6
실시예2 496 540 77.8
비교예1 481 493 67.0
비교예2 496 539 76.5
비교예3 495 521 65.3
표 2의 결과로부터 본 출원에서는 낮은 가공 온도를 가져 저온에서 프리폴리머의 제조가 가능하고, 넓은 프로세스 윈도우가 확보되며, 우수한 내열 특성을 보이는 것을 확인할 수 있다.
또한, DSC로 측정한 경화 발열 에너지를 보면, 비교예 대비 실시예의 경우가 발열 에너지가 높은 것을 알 수 있고, 이는 열의 한 반응이 효율적으로 진행되어 경화도가 높아졌음을 의미한다.
또한, 표 3의 결과로부터 실시예 1 및 2과 비교예 대비 매우 우수한 내열 특성을 나타내는 것을 확인할 수 있다.

Claims (17)

  1. 하기 화학식 1의 화합물 유래의 중합 단위를 포함하는 프탈로니트릴 수지:
    [화학식 1]
    Figure PCTKR2017000246-appb-I000015
    화학식 1에서 R1 내지 R10는 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기 또는 하기 화학식 2의 치환기이되, R1 내지 R5 중 적어도 1개는 하기 화학식 2의 치환기이고, R6 내지 R10 중 적어도 1개는 하기 화학식 2의 치환기이며, X는 알킬렌기 또는 알킬리덴기이다:
    [화학식 2]
    Figure PCTKR2017000246-appb-I000016
    화학식 2에서 L은, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이다.
  2. 제 1 항에 있어서, 화학식 1의 화합물 유래의 중합 단위는 하기 화학식 3 내지 5 중 2개 이상의 화합물의 중합 단위를 포함하는 프탈로니트릴 수지:
    [화학식 3]
    Figure PCTKR2017000246-appb-I000017
    [화학식 4]
    Figure PCTKR2017000246-appb-I000018
    [화학식 5]
    Figure PCTKR2017000246-appb-I000019
    화학식 3 내지 5에서 R1 내지 R10는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이고, X는 알킬렌기 또는 알킬리덴기이며, L은, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이다.
  3. 제 2 항에 있어서, 화학식 1의 화합물 유래의 중합 단위는 화학식 3의 화합물 유래의 중합 단위 및 화학식 4 또는 5의 화합물의 중합 단위를 포함하는 프탈로니트릴 수지.
  4. 제 2 항에 있어서, 화학식 1의 화합물 유래의 중합 단위는 화학식 3의 화합물 유래의 중합 단위, 화학식 4의 화합물 유래의 중합 단위 및 화학식 5의 화합물의 중합 단위를 포함하는 프탈로니트릴 수지.
  5. 제 2 항에 있어서, 화학식 1의 화합물 유래의 중합 단위는, 화학식 3의 화합물 유래의 중합 단위 100 중량부에 대하여 화학식 4 또는 5의 화합물 유래의 중합 단위 1 내지 200 중량부를 포함하는 프탈로니트릴 수지.
  6. 제 1 항에 있어서, 방향족 아민 화합물의 중합 단위를 추가로 포함하는 프탈로니트릴 수지.
  7. 하기 화학식 1의 화합물 및 경화제를 포함하는 중합성 조성물:
    [화학식 1]
    Figure PCTKR2017000246-appb-I000020
    화학식 1에서 R1 내지 R10는 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기 또는 하기 화학식 2의 치환기이되, R1 내지 R5 중 적어도 1개는 하기 화학식 2의 치환기이고, R6 내지 R10 중 적어도 1개는 하기 화학식 2의 치환기이며, X는 알킬렌기 또는 알킬리덴기이다:
    [화학식 2]
    Figure PCTKR2017000246-appb-I000021
    화학식 2에서 L은, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이다.
  8. 제 7 항에 있어서, 하기 화학식 3 내지 5 중 2개 이상의 화합물 및 경화제를 포함하는 중합성 조성물:
    [화학식 3]
    Figure PCTKR2017000246-appb-I000022
    [화학식 4]
    Figure PCTKR2017000246-appb-I000023
    [화학식 5]
    Figure PCTKR2017000246-appb-I000024
    화학식 3 내지 5에서 R1 내지 R10는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이고, X는 알킬렌기 또는 알킬리덴기이며, L은, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이다.
  9. 제 8 항에 있어서, 화학식 3의 화합물; 화학식 4 또는 5의 화합물; 및 경화제를 포함하는 중합성 조성물.
  10. 제 8 항에 있어서, 화학식 3의 화합물, 화학식 4의 화합물, 화학식 5의 화합물 및 경화제를 포함하는 중합성 조성물.
  11. 제 7 항에 있어서, 경화제는 방향족 아민 화합물, 페놀 화합물, 무기산, 유기산, 금속 또는 금속염인 중합성 조성물.
  12. 제 7 항에 있어서, 가공 온도가 50℃ 내지 200℃의 범위 내에 있는 중합성 조성물.
  13. 제 12 항에 있어서, 가공 온도와 경화 반응 개시 온도의 차이의 절대값이 50℃ 이상인 중합성 조성물.
  14. 제 7 항의 중합성 조성물의 반응물인 프리폴리머.
  15. 제 1 항의 프탈로니트릴 수지를 포함하는 복합체.
  16. 제 15 항에 있어서, 충전제를 추가로 포함하는 복합체.
  17. 제 7 항의 중합성 조성물 또는 제 14 항의 프리폴리머를 포함하는 전구체를 경화시키는 단계를 포함하는 복합체의 제조 방법.
PCT/KR2017/000246 2016-01-07 2017-01-09 프탈로니트릴 수지 WO2017119793A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17736165.6A EP3401351B1 (en) 2016-01-07 2017-01-09 Phthalonitrile resin
JP2018533732A JP6724144B2 (ja) 2016-01-07 2017-01-09 フタロニトリル樹脂
US16/065,327 US20190127525A1 (en) 2016-01-07 2017-01-09 Phthalonitrile resin
CN201780005720.9A CN108431085B (zh) 2016-01-07 2017-01-09 邻苯二甲腈树脂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0001941 2016-01-07
KR20160001941 2016-01-07

Publications (2)

Publication Number Publication Date
WO2017119793A2 true WO2017119793A2 (ko) 2017-07-13
WO2017119793A3 WO2017119793A3 (ko) 2018-08-02

Family

ID=59273885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000246 WO2017119793A2 (ko) 2016-01-07 2017-01-09 프탈로니트릴 수지

Country Status (6)

Country Link
US (1) US20190127525A1 (ko)
EP (1) EP3401351B1 (ko)
JP (1) JP6724144B2 (ko)
KR (1) KR101995727B1 (ko)
CN (1) CN108431085B (ko)
WO (1) WO2017119793A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210047528A1 (en) * 2018-09-21 2021-02-18 Lg Chem, Ltd. Three-dimensional printing ink comprising a phthalonitrile oligomer
US20210047469A1 (en) * 2018-08-17 2021-02-18 Lg Chem, Ltd. Low friction resin composites

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10927215B2 (en) * 2016-08-08 2021-02-23 Lg Chem, Ltd. Polymerizable composition
KR102118628B1 (ko) * 2017-09-22 2020-06-03 주식회사 엘지화학 프탈로니트릴 수지
KR102218559B1 (ko) 2018-08-28 2021-02-22 주식회사 엘지화학 향상된 충격 강도를 갖는 프탈로니트릴계 수지
CN110256292A (zh) * 2019-06-12 2019-09-20 四川大学 含烷基的具有自催化固化特性的邻苯二甲腈单体及其制备方法与应用
CN114506098B (zh) * 2022-02-24 2023-07-21 四川金象赛瑞化工股份有限公司 一种覆铜板用树脂基纤维增强复合材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408035A (en) 1981-08-24 1983-10-04 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile resin from diphthalonitrile monomer and amine
US5003039A (en) 1988-11-18 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Amino phenyl containing curing agent for high performance phthalonitrile resin
US5003078A (en) 1989-05-16 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages
US5004801A (en) 1988-11-21 1991-04-02 The United States Of America As Represented By The Secretary Of The Navy Polymer of dithioether-linked phthalonitrile
US5132396A (en) 1990-04-30 1992-07-21 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile monomers containing imide and/or phenoxy linkages, and polymers thereof
US5139054A (en) 1991-06-28 1992-08-18 Leggett & Platt, Incorporated Spring interior forming and assembling apparatus
US5208318A (en) 1991-03-15 1993-05-04 Keller Teddy M Phosphazene-containing amine as curing agent for phthalonitrile-base polymer
US5237045A (en) 1992-01-09 1993-08-17 The United States Of America As Represented By The Secretary Of The Navy Curing phthalonitrile resins with acid and amine
US5292854A (en) 1989-05-16 1994-03-08 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages with aromatic diamine curing agent
KR100558158B1 (ko) 1997-10-02 2006-03-10 더 거번먼트 오브 더 유나이티드 스테이츠 오브 아메리카, 애즈 레프리젠티드 바이 더 세크러테리 오브 더 네이비 네이벌 리서치 래보러토리 낮은 반응성을 지닌 방향족 아민 경화제로 경화시킨섬유-강화 프탈로니트릴 조성물
KR20160001941A (ko) 2014-06-30 2016-01-07 김경훈 단말기 장착이 가능한 휴대용 리더기

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223123A (en) * 1979-05-29 1980-09-16 The United States Of America As Represented By The Secretary Of The Navy Aliphatic phenoxy polyphthalocyanine
US4410676A (en) * 1981-08-24 1983-10-18 The United States Of America As Represented By The Secretary Of The Navy Phenolic-cured phthalonitrile resins
JPS5874720A (ja) * 1981-10-30 1983-05-06 Hitachi Ltd 耐熱性樹脂の製法
SU1509352A1 (ru) * 1987-07-15 1989-09-23 Ярославский политехнический институт Способ получени 4,4 @ -(арилендиокси)-дифталонитрилов
JPS6451436A (en) * 1987-08-21 1989-02-27 Hitachi Ltd Aromatic imino-isoindoline ether compound
US5925475A (en) * 1997-10-02 1999-07-20 United States Of America As Represented By The Secretary Of The Navy Phthalonitrile thermoset polymers and composites cured with halogen-containing aromatic amine curing agents
US5965268A (en) * 1998-06-26 1999-10-12 The United States Of America As Represented By The Secretary Of The Navy Carbon-based composites derived from phthalonitrile resins
CN103834008B (zh) * 2014-03-10 2016-09-28 中国科学院化学研究所 一种邻苯二甲腈树脂及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408035A (en) 1981-08-24 1983-10-04 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile resin from diphthalonitrile monomer and amine
US5003039A (en) 1988-11-18 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Amino phenyl containing curing agent for high performance phthalonitrile resin
US5004801A (en) 1988-11-21 1991-04-02 The United States Of America As Represented By The Secretary Of The Navy Polymer of dithioether-linked phthalonitrile
US5350828A (en) 1988-11-21 1994-09-27 The United States Of America As Represented By The Secretary Of The Navy Synthesis and polymerization of dithioether-linked phthalonitrile monomers
US5003078A (en) 1989-05-16 1991-03-26 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages
US5292854A (en) 1989-05-16 1994-03-08 The United States Of America As Represented By The Secretary Of The Navy Synthesis of phthalonitrile resins containing ether and imide linkages with aromatic diamine curing agent
US5132396A (en) 1990-04-30 1992-07-21 The United States Of America As Represented By The Secretary Of The Navy Phthalonitrile monomers containing imide and/or phenoxy linkages, and polymers thereof
US5208318A (en) 1991-03-15 1993-05-04 Keller Teddy M Phosphazene-containing amine as curing agent for phthalonitrile-base polymer
US5139054A (en) 1991-06-28 1992-08-18 Leggett & Platt, Incorporated Spring interior forming and assembling apparatus
US5237045A (en) 1992-01-09 1993-08-17 The United States Of America As Represented By The Secretary Of The Navy Curing phthalonitrile resins with acid and amine
KR100558158B1 (ko) 1997-10-02 2006-03-10 더 거번먼트 오브 더 유나이티드 스테이츠 오브 아메리카, 애즈 레프리젠티드 바이 더 세크러테리 오브 더 네이비 네이벌 리서치 래보러토리 낮은 반응성을 지닌 방향족 아민 경화제로 경화시킨섬유-강화 프탈로니트릴 조성물
KR20160001941A (ko) 2014-06-30 2016-01-07 김경훈 단말기 장착이 가능한 휴대용 리더기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3401351A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210047469A1 (en) * 2018-08-17 2021-02-18 Lg Chem, Ltd. Low friction resin composites
US11905371B2 (en) * 2018-08-17 2024-02-20 Lg Chem, Ltd. Low friction resin composites
US20210047528A1 (en) * 2018-09-21 2021-02-18 Lg Chem, Ltd. Three-dimensional printing ink comprising a phthalonitrile oligomer
US11591487B2 (en) 2018-09-21 2023-02-28 Lg Chem, Ltd. Curable resin composition comprising a phthalonitrile oligomer and a prepolymer thereof
US11674045B2 (en) * 2018-09-21 2023-06-13 Lg Chem, Ltd Three-dimensional printing ink comprising a phthalonitrile oligomer

Also Published As

Publication number Publication date
CN108431085A (zh) 2018-08-21
EP3401351A2 (en) 2018-11-14
JP6724144B2 (ja) 2020-07-15
KR20170082993A (ko) 2017-07-17
EP3401351B1 (en) 2020-05-13
KR101995727B1 (ko) 2019-07-03
JP2019500468A (ja) 2019-01-10
US20190127525A1 (en) 2019-05-02
EP3401351A4 (en) 2019-03-27
CN108431085B (zh) 2020-08-14
WO2017119793A3 (ko) 2018-08-02

Similar Documents

Publication Publication Date Title
WO2017119793A2 (ko) 프탈로니트릴 수지
WO2017052323A1 (ko) 프탈로니트릴 화합물
WO2017095174A1 (ko) 중합성 조성물
WO2016190621A1 (ko) 프탈로니트릴 화합물
WO2017003250A1 (ko) 프탈로니트릴 수지
WO2018080088A1 (ko) 화합물
WO2018084465A1 (ko) 중합성 조성물
WO2018030552A1 (ko) 중합성 조성물
KR102056593B1 (ko) 프탈로니트릴 화합물
WO2018097496A9 (ko) 화합물
WO2016080762A1 (ko) 프탈로니트릴 수지
WO2017095177A2 (ko) 프탈로니트릴 화합물
KR102071911B1 (ko) 프탈로니트릴 수지
WO2013176349A1 (ko) 신규 폴리실록산, 그 제조방법 및 이를 포함하는 폴리카보네이트-폴리실록산 공중합체
WO2018101703A1 (ko) 중합성 조성물
CN106279681B (zh) 一种生物基可自固化邻苯二甲腈树脂的制备方法
CN111819221B (zh) 具有改善的冲击强度的基于邻苯二甲腈的树脂
WO2018004289A2 (ko) 벤족사진계 혼합물, 및 이의 용도
WO2020045897A1 (ko) 향상된 충격 강도를 갖는 프탈로니트릴계 수지
KR102041817B1 (ko) 프탈로니트릴 화합물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17736165

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2018533732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017736165

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017736165

Country of ref document: EP

Effective date: 20180807