WO2018084465A1 - 중합성 조성물 - Google Patents

중합성 조성물 Download PDF

Info

Publication number
WO2018084465A1
WO2018084465A1 PCT/KR2017/011515 KR2017011515W WO2018084465A1 WO 2018084465 A1 WO2018084465 A1 WO 2018084465A1 KR 2017011515 W KR2017011515 W KR 2017011515W WO 2018084465 A1 WO2018084465 A1 WO 2018084465A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
polymerizable composition
monomer
compound
Prior art date
Application number
PCT/KR2017/011515
Other languages
English (en)
French (fr)
Inventor
안기호
김상우
이승희
김율리아나
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/347,031 priority Critical patent/US11091592B2/en
Priority to JP2019522494A priority patent/JP6900103B2/ja
Priority to EP17866948.7A priority patent/EP3536734B1/en
Priority to CN201780068149.5A priority patent/CN109923149B/zh
Publication of WO2018084465A1 publication Critical patent/WO2018084465A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • C08G75/0218Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0246Polyamines containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/0253Polyamines containing sulfur in the main chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/54Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and etherified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/18Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/20Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton with singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/024Polyamines containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • C08G75/0222Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/12Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present application relates to polymerizable compositions, prepolymers, phthalonitrile resins and composites.
  • the phthalonitrile resin can be used for various applications.
  • a composite formed by impregnating a phthalonitrile resin into a filler such as glass fiber or carbon fiber may be used as a material for automobiles, airplanes, ships, and the like.
  • the manufacturing process of the composite may include, for example, a process of curing after mixing a prepolymer and a filler formed by a mixture of a phthalonitrile and a curing agent or a reaction of the mixture (for example, Patent Document 1 Reference).
  • Patent Document 1 Korean Registered Patent No. 0558158
  • the present application provides polymerizable compositions, phthalonitrile resins, composites and prepolymers.
  • alkyl group or alkoxy group in the present application may be an alkyl group or alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkyl group or alkoxy group may be linear, branched or cyclic and may be substituted by one or more substituents if necessary.
  • the term alkyl group may include haloalkyl groups described below.
  • alkenyl group or alkynyl group may be an alkenyl group or an alkynyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified.
  • the alkenyl group or alkynyl group may be linear, branched or cyclic and may be substituted by one or more substituents if necessary.
  • aryl group in the present application may mean a monovalent moiety derived from a benzene, a compound containing a benzene structure, or a derivative of any one of the above, unless otherwise specified.
  • Aryl groups may include, for example, 6-25, 6-20, 6-15, or 6-12 carbon atoms. Specific examples of the aryl group may include, but are not limited to, a phenyl group, benzyl group, biphenyl group or naphthalenyl group.
  • the scope of the aryl group in the present application may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group.
  • the term single bond means a case where an atom is not present at a corresponding site.
  • Y is a single bond in the structure of X-Y-Z
  • X and Z are directly connected to form the structure of X-Z.
  • alkylene group or alkylidene group in the present application means an alkylene group or alkylidene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, unless otherwise specified. can do.
  • the alkylene group or alkylidene group may be linear, branched or cyclic.
  • the alkylene group or alkylidene group may be optionally substituted with one or more substituents.
  • alkenyl group or alkynylene group means an alkenyl group or alkynylene group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified. can do.
  • the alkenyl group or alkynylene group may be linear, branched or cyclic.
  • the alkenyl group or alkynylene group may be optionally substituted with one or more substituents.
  • an epoxy group such as halogen, haloalkyl group, glycidyl group, glycidylalkyl group, glycidoxyalkyl group or alicyclic epoxy group such as chlorine or fluorine, acryl Diary, methacryloyl group, isocyanate group, thiol group, alkyl group, alkoxy group or aryl group may be exemplified, but is not limited thereto.
  • the present application is directed to a polymerizable composition.
  • the polymerizable composition of the present application includes a first monomer comprising two functional groups derived from phthalonitrile.
  • the first monomer of the present application includes two functional groups derived from phthalonitrile.
  • the functional group derived from phthalolnitrile may mean a substituent represented by the following general formula (4).
  • the processability of the polymerizable composition can be improved.
  • the first monomer of the present application may have a molecular weight of 250 to 3000 or 300 to 2500. By making the molecular weight of the first monomer fall within the above-described range, the polymerizable composition containing the first monomer exhibits a low melting temperature, exhibits a wide process window, and can improve the processability of the polymerizable composition.
  • the first monomer of the present application may be a compound of Formula 1 below.
  • Ar 1 and Ar 2 in Formula 1 are each independently an aromatic divalent radical
  • L, L 1 and L 2 are each independently a single bond, an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom
  • R 1 to R 10 is at least two of each is independently hydrogen, an alkyl group, at least two of the alkoxy group, an aryl group, or cyano are nogiyi
  • R 6 to R 10 is a cyano group.
  • Ar 1 and Ar 2 may be the same or different from each other, L, L 1 and L 2 may be the same or different from each other.
  • aromatic divalent radical may refer to benzene, a compound containing benzene, or a divalent residue derived from any one of the above, unless otherwise specified.
  • the compound containing benzene in the above it may mean a compound having a structure in which two or more benzene rings are condensed while sharing two carbon atoms, or connected by an appropriate linker.
  • Aromatic divalent radicals may include, for example, 6 to 25, 6 to 20, 6 to 15 or 6 to 12 carbon atoms.
  • the aromatic divalent radical may be a radical derived from an aromatic compound of Formula 2 below.
  • R 11 to R 1 6 in Formula 2 each independently represent a hydrogen, an alkyl group, an alkoxy group, or an aryl group, and at least two of R 11 to R 1 6 form a radical.
  • Forming a radical in the above may mean that the site is connected to other elements of the formula (1).
  • Ar 1 in formula (1) share any one portion of the area which forms the radicals form a covalent bond is directly connected to L 1 in the formula (1), and the other part is directly connected to the L of formula (I) A bond can be formed.
  • Ar 2 in Formula 1 any one of the sites forming the radical is directly connected to L 2 of Formula 1 to form a covalent bond, and the other site is directly linked to L of Formula 1 to form a covalent bond.
  • Each of the substituents which do not form a radical includes hydrogen, an alkyl group or an alkoxy group; It may be hydrogen or an alkyl group.
  • R 11 and R 14 or R 11 and R 13 may form the radical.
  • the substituents which do not form radicals are each independently hydrogen, an alkyl group, an alkoxy group or an aryl group; Hydrogen, alkyl or alkoxy groups; Or hydrogen or an alkyl group.
  • L, L1, and L2 may be a single bond, an alkylene group, an alkylidene group, an oxygen atom, or a sulfur atom.
  • L in Formula 1 may be a single bond, an alkylene group, an alkylidene group, or a sulfur atom.
  • the alkylene group or alkylidene group may be substituted with at least one halogen atom or haloalkyl group, that is, an alkyl group substituted with a halogen atom, if necessary, and optionally substituted with another substituent in addition to the halogen atom.
  • the term single bond refers to a case where no separate atom exists at a corresponding site. For example, when L is a single bond, a structure in which Ar 1 and Ar 2 are directly connected to each other may be derived.
  • L 1 and L 2 may be an alkylene group, an alkylidene group, or an oxygen atom, and in one example, may be an oxygen atom.
  • R 1 to R 10 are each independently hydrogen, an alkyl group, an alkoxy group, an aryl group, or a cyano group, at least two of R 1 to R 5 are cyano groups, and at least two of R 6 to R 10 It is a cyano group.
  • R 1 to R 10 that are not cyano groups are each independently hydrogen, an alkyl group, or an alkoxy group; Or hydrogen or an alkyl group.
  • any two of R 2 to R 4 and any two of R 7 to R 9 are cyano groups, and the remaining substituents are each independently hydrogen, an alkyl group, an alkoxy group, or an aryl group; Hydrogen, alkyl or alkoxy groups; Or hydrogen or an alkyl group.
  • the compound of formula 1 can be effectively used in various applications in which so-called phthalonitrile compounds are known to be applicable.
  • the phthalonitrile compound can be effectively used as a raw material or precursor capable of producing a so-called phthalonitrile resin.
  • the compound exhibits a low melting temperature, is excellent in reactivity with the curing agent, and exhibits a wide process window, so that it can be effectively applied to the application.
  • the compound may be applied to precursors or raw materials of dyes such as phthalocyanine pigments, fluorescent brighteners, photographic sensitizers or acid anhydrides, and the like, in addition to the above uses.
  • the compound of formula 1 can be synthesized according to the synthesis method of known organic compounds.
  • the compound of Formula 1 may be synthesized by a method of reacting an aromatic compound having a phenolic hydroxy group with an aromatic compound having at least two cyano groups (ex. Nitro displacement method).
  • the aromatic compounds capable of forming the structure of the compound of Formula 1 are known, and all of these compounds may be applied to the preparation of the compound in consideration of the desired structure.
  • the polymerizable composition of the present application includes a second monomer including three or more functional groups derived from phthalonitrile.
  • the second monomer of the present application contains three or more functional groups derived from phthalonitrile.
  • the functional group derived from phthalonitrile of the present application may be a substituent represented by Formula 4 to be described later.
  • the second monomer of the present application may preferably contain three or more, four or more, five or more or six or more functional groups derived from phthalonitrile.
  • the upper limit of the functional group derived from the phthalonitrile which a 2nd monomer contains may be 9 or less, 8 or less, or 7 or less.
  • the second monomer of the present application may have a molecular weight of 600 to 5000, or 800 to 4000.
  • the molecular weight of a 2nd monomer correspond to the range mentioned above, the polymeric composition containing a 2nd monomer can make phthalonitrile resin excellent in heat resistance.
  • the second monomer of the present application may be a compound of Formula 3 below.
  • Ar 3 and Ar 6 are the same or different aryl groups
  • Ar 4 and Ar 5 are the same or different arylene groups
  • L 3 to L 5 are each independently an alkylene group, an alkylidene group, an alkenylene group Or an alkynylene group
  • each of Ar 3 to Ar 6 is substituted with at least one substituent represented by the following general formula (4).
  • L 6 is an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom
  • R 17 to R 21 are each independently hydrogen, an alkyl group, an alkoxy group, an aryl group or a cyano group, and at least one of R 17 to R 21 Two are cyano groups.
  • L 3 to L 5 in the compound of Formula 3 may each independently be an alkylene group or an alkylidene group having 1 to 4 carbon atoms, for example, may be a methylene group or an ethylene group.
  • Ar 3 to Ar 6 are an aryl group or an arylene group as described above, and at least one of the substituents of Formula 2 may be substituted in each of them.
  • substituents there may be other substituents in addition to the substituent of Formula 4, and examples thereof include epoxy groups such as halogen, glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group, and acryloyl group. , Methacryloyl group, isocyanate group, thiol group, alkyl group, alkoxy group or aryl group, and the like, and an appropriate alkyl group may be substituted.
  • epoxy groups such as halogen, glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group, and acryloyl group.
  • each of Ar 3 to Ar 6 may be substituted with at least one substituent and alkyl group of the formula (4).
  • Ar 4 and Ar 5 in Formula 3 may be an arylene group having 6 to 25, 6 to 20, 6 to 15, or 6 to 12 carbon atoms, for example, may be a phenylene group.
  • L 3 to L 5 connected to both thereof are not particularly limited.
  • Ar 5 is also coupled to L 5 Deletion (ortho), meth (meta) or p (para) position relative to the position in combination with L 4.
  • L 3 may be coupled to a meta position based on a position bonded to L 4 .
  • Ar 5 may be the case of Ar 5 based on the location combined with the L 4 meth (meta) L 5 is bonded to the position.
  • Ar 4 and Ar 5 are phenylene groups
  • the positions of the substituents of the general formula (4) substituted in each may be adjusted.
  • Ar 4 may be substituted with a substituent of Formula 2 in an ortho, meta, or para position based on the position bonded to L 4 .
  • Ar 5 may be substituted with a substituent of Formula 2 in an ortho, meta, or para position based on the position bonded to L 4 .
  • Ar 4 may have a substituent of Formula 4 bonded to a para position based on a position bonded to L 4 .
  • a substituent of Formula 2 may be bonded to a para position based on a position bonded to L 4 .
  • substituents may be present in Ar 4 and Ar 5, which are phenylene groups, and examples thereof include an alkyl group, specifically, an alkyl group having 1 to 4 carbon atoms, a methyl group, or an ethyl group.
  • the alkyl group may be substituted at an ortho, meta, or para position based on the position bonded to L 4 .
  • the alkyl group may be substituted at an ortho, meta, or para position based on the position bonded to L 4 .
  • the alkyl group in the case of Ar 4 , may be substituted at a meta position based on a position bonded to L 4 .
  • the alkyl group in the case of Ar 5 , may be substituted at a meta position based on a position bonded to L 4 .
  • Such a structure can facilitate maintaining an appropriate processing temperature and a wide process window in the course of producing the phthalonitrile resin.
  • Ar 4 is phenylene
  • the alkyl group bonded to L 4 is numbered 1
  • the alkyl group is substituted on carbon number 3
  • number 4 is The substituent of Formula 2 is substituted on the carbon atom, and the carbon atom 5 may be bonded to the L 3 .
  • the carbon atom bonded to L 4 is numbered 1, and when the number of carbon atoms is clockwise, the alkyl group is substituted on carbon number 5, and number 4 is
  • the substituent of Formula 2 is substituted on the carbon atom, and the carbon atom 3 may have a structure bonded to the L 5 .
  • Such a structure can facilitate maintaining an appropriate processing temperature and a wide process window in the course of producing the phthalonitrile resin.
  • Ar 3 and Ar 6 in Formula 3 may be an aryl group having 6 to 25, 6 to 20, 6 to 15, or 6 to 12 carbon atoms, for example, may be a phenyl group.
  • Ar 3 and Ar 6 are phenyl groups
  • the positions of the substituents of the general formula (4) substituted in each may be adjusted.
  • Ar 3 may be substituted with a substituent of Formula 4 in an ortho, meta, or para position based on the position bonded to L 3 .
  • Ar 6 may be substituted with a substituent of Formula 4 in an ortho, meta, or para position based on the position bonded to L 5 .
  • Ar 3 may have a substituent of Formula 4 bonded to an ortho position based on the position bonded to L 3 .
  • a substituent of Formula 4 may be bonded to an ortho position based on the position bonded to L 5 .
  • substituents may be present in Ar 3 and Ar 6, which are phenylene groups, and examples thereof include an alkyl group, specifically, an alkyl group having 1 to 4 carbon atoms, a methyl group, or an ethyl group.
  • the alkyl group may be substituted at an ortho, meta, or para position based on a position bonded to L 3 .
  • the alkyl group may be substituted at an ortho, meta, or para position based on the position bonded to L 5 .
  • the alkyl group in the case of Ar 3 , may be substituted at a meta position based on the position bonded to L 3 .
  • the alkyl group in the case of Ar 6 , may be substituted at a meta position based on the position bonded to L 1 .
  • Such a structure can facilitate maintaining an appropriate processing temperature and a wide process window in the course of producing the phthalonitrile resin.
  • Ar 3 when Ar 3 is a phenyl group, the carbon atom bonded to L 3 is 1, and when the number of carbon atoms is clockwise, the alkyl group is substituted at carbon 3 and carbon 6 is It may have a structure in which a substituent of Formula 4 is substituted on an atom.
  • Ar 6 when Ar 6 is phenylene, the carbon atom bonded to L 5 is 1, and when the carbon atom is numbered clockwise, the alkyl group is substituted on carbon 5, and 2 is It may have a structure in which a substituent of Formula 2 is substituted on a carbon atom.
  • Such a structure may be advantageous to maintain a suitable process temperature and a wide process window in the course of preparing the phthalonitrile resin.
  • L 6 in Formula 4 is an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom, and may be, for example, an oxygen atom.
  • the polymerizable composition of the present application may determine the content ratio of the first monomer and the second monomer in consideration of the physical properties of the phthalonitrile resin formed from the polymerizable composition.
  • the polymerizable composition of the present application may include 5 to 150 moles or 30 to 120 moles of the second monomer relative to 100 moles of the first monomer.
  • the polymerizable composition of the present application may include 5 to 250 parts by weight or 60 to 220 parts by weight of the second monomer relative to 100 parts by weight of the first monomer.
  • a second monomer of the present application may have a glass transition temperature of the homopolymer (T g) higher than the glass transition temperature (T g) is a homopolymer formed from the first monomer formed from the second monomer.
  • the polymerizable composition of the present application may blend a second monomer having excellent heat resistance to a first monomer having relatively low heat resistance, thereby forming a phthalonitrile resin having excellent heat resistance, and may have a wide process window.
  • a second monomer of the present application may be a homopolymer formed from the first monomer having a first single high melting temperature (T m) than the melting temperature (T m) of the polymer formed from the monomer.
  • the polymerizable composition of the present application may blend a second monomer having excellent heat resistance to a first monomer having relatively low heat resistance, thereby forming a phthalonitrile resin having excellent heat resistance, and may have a wide process window.
  • the glass transition temperature (T g ) of the homopolymer formed from the first monomer may be 30C to 300 ° C.
  • the first monomer may have a glass transition temperature (T g ) of a homopolymer formed from the first monomer of 300 ° C or less, 250 ° C or less, or 200 ° C or less.
  • the first monomer may have a glass transition temperature (T g ) of a homopolymer formed from the first monomer of at least 30 ° C, at least 40 ° C, or at least 50 ° C.
  • the first monomer of the present application may have a melting temperature (T m ) of the homopolymer formed from the first monomer is 30 ° C to 300 ° C.
  • the first monomer may have a melting temperature (T m ) of a homopolymer formed from the first monomer of 300 ° C or less, 250 ° C or less, or 200 ° C or less.
  • the first monomer may have a melting temperature (T m ) of the homopolymer formed from the first monomer of at least 30 ° C, at least 40 ° C or at least 50 ° C.
  • the glass transition temperature (T g ) of the homopolymer formed from the second monomer may be 50 ° C to 300 ° C.
  • the second monomer may have a glass transition temperature (T g ) of at least 50 ° C, at least 70 ° C or at least 80 ° C of the homopolymer formed from the second monomer.
  • the second monomer may have a glass transition temperature (T g ) of the homopolymer formed from the second monomer of 300 ° C or less, 280 ° C or less, or 250 ° C or less.
  • the polymerizable composition which can form the phthalonitrile resin excellent in heat resistance can be provided.
  • the melting temperature (T m ) of the homopolymer formed from the second monomer may be 50 ° C to 300 ° C.
  • the second monomer may have a melting temperature (T m ) of at least 50 ° C., at least 70 ° C. or at least 80 ° C. of the homopolymer formed from the second monomer.
  • the second monomer may have a melting temperature (T m ) of a homopolymer formed from the second monomer of 300 ° C or less, 280 ° C or less, or 250 ° C or less.
  • the polymerizable composition which can form the phthalonitrile resin excellent in heat resistance can be provided.
  • the polymerizable composition of the present application may further include a curing agent.
  • the type of curing agent that can be used is not particularly limited as long as it can react with the first and second monomers of the present application to form a polymer.
  • the compound is known to be useful for forming a so-called phthalonitrile resin, Any compound can be used.
  • an amine compound or a hydroxy compound such as an aromatic amine compound may be used as a curing agent.
  • a hydroxy compound may mean a compound including at least one or two hydroxy groups in a molecule.
  • a compound of formula 1 may be used as a curing agent.
  • the curing agent of the following formula has an imide structure in the molecular structure, and thereby exhibits excellent heat resistance, thereby adversely affecting physical properties even when excessively contained in the polymerizable composition or when the polymerizable composition is processed or cured at a high temperature. It is possible to form a polymerizable composition that does not produce voids or the like.
  • M is a tetravalent radical
  • X 1 and X 2 are each independently an alkylene group, an alkylidene group or an aromatic divalent radical.
  • n-valent radical may mean an n-valent moiety derived from a predetermined compound, unless otherwise specified.
  • M may be a tetravalent radical derived from an aliphatic, cycloaliphatic or aromatic compound.
  • M may be selected from four aliphatic, cycloaliphatic or aromatic compounds.
  • the radicals formed by the departure of the hydrogen atoms may each have a structure in which the carbon atom of the carbonyl group of Formula 5 is connected.
  • alkane alkenes or alkynes which are linear or branched.
  • alkanes, alkenes or alkynes having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms may be used.
  • the alkanes, alkenes or alkynes may be optionally substituted by one or more substituents.
  • a hydrocarbon compound containing a non-aromatic ring structure having 3 to 20 carbon atoms, 3 to 16 carbon atoms, 3 to 12 carbon atoms, 3 to 8 carbon atoms or 3 to 4 carbon atoms.
  • Such an alicyclic hydrocarbon compound may include at least one hetero atom such as oxygen or nitrogen as a ring constituent atom, and may be optionally substituted with one or more substituents if necessary.
  • the aromatic compound may be benzene, a compound containing benzene, or a derivative of any one of the above.
  • the compound including benzene it may mean a compound having a structure in which two or more benzene rings are condensed while sharing one or two carbon atoms, or connected by a directly linked structure or an appropriate linker.
  • the aromatic compound may include, for example, 6 to 25, 6 to 20, or 6 to 12 carbon atoms, and may be substituted by one or more substituents if necessary.
  • a compound represented by one of the following Chemical Formulas 6 to 11 may be exemplified.
  • R 1 to R 6 each independently is hydrogen, an alkyl group or an aryl group.
  • R 1 to R 8 in Formula 7 are each independently hydrogen, an alkyl group, an alkoxy group, or an aryl group.
  • a 1 and A 2 may be each independently a single bond or an alkylene group.
  • the term single bond means a case where no separate atom is present at a corresponding site, and, for example, when X is a single bond in formula (8), it means a case where no separate atom exists at that part.
  • the benzene rings on both sides of X may be directly connected to form a biphenyl structure.
  • R 1 to R 4 are each independently hydrogen, an alkyl group or an alkoxy group, and A is an alkylene group or an alkenylene group.
  • two of R 1 to R 4 may be connected to each other to form an alkylene group, and the alkylene group or alkenylene group of A may include one or more oxygen atoms as a hetero atom.
  • R 1 to R 4 are each independently hydrogen, an alkyl group, or an alkoxy group, and A is an alkylene group.
  • R 1 to R 10 in Formula 11 are each independently hydrogen, an alkyl group or an alkoxy group.
  • alkyl group may be an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkyl group may be linear, branched or cyclic and may be substituted by one or more substituents if necessary.
  • alkoxy group in the present application may be an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkoxy group may be linear, branched or cyclic and may be substituted by one or more substituents if necessary.
  • aryl group in the present application may refer to monovalent residues derived from the aromatic compounds described above, unless otherwise specified.
  • the term aryl group in the present application may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group.
  • alkylene group or alkylidene group in the present application means an alkylene group or alkylidene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, unless otherwise specified. can do.
  • the alkylene group or alkylidene group may be linear, branched or cyclic.
  • the alkylene group or alkylidene group may be optionally substituted with one or more substituents.
  • substituents that may be optionally substituted with an aliphatic compound, an alicyclic compound, an aromatic compound, an alkyl group, an alkoxy group, an aryl group, an alkylene group, or an alkylidene group include halogen, glycidyl groups such as chlorine or fluorine, Epoxy groups such as epoxyalkyl groups, glycidoxyalkyl groups, or alicyclic epoxy groups, acryloyl groups, methacryloyl groups, isocyanate groups, thiol groups, alkyl groups, alkoxy groups, or aryl groups may be exemplified, but are not limited thereto.
  • benzene, alkylbenzene, or dialkylbenzene may be exemplified, but is not limited thereto.
  • cycloalkane having 4 to 8 carbon atoms such as cyclohexane, cyclohexene which may be substituted with one or more alkyl groups, or the like represented by the formula of any one of formulas G to I
  • the compound to be exemplified can be exemplified, but is not limited thereto.
  • a compound represented by the following Formula J which may be substituted with one or more alkyl groups, may be exemplified, but is not limited thereto.
  • Such radicals are formed by directly leaving R 1 to R 10 substituents of Formulas 6 to 11, or belonging to an alkyl group, alkoxy group, aryl group, alkylene group or alkenylene group, which is a substituent which may be present in R 1 to R 10 .
  • the hydrogen atom may be separated and formed.
  • the radical when the radical is derived from a compound of Formula 6, at least one, at least two, at least three or four of R 1 to R 6 of Formula 6 may form a radical, or R 1 to R Hydrogen atoms of the alkyl, alkoxy or aryl groups present in 6 may be released to form the radical.
  • Forming a radical in the above may mean that the site is connected to the carbon atom of the carbonyl group of Formula 5 as described above.
  • R 2 , R 3 , R 5, and R 6 in Formula 6 form a radical linked to Formula 5, the same core structure as Compound CA1 may be formed in the following Examples.
  • the tetravalent radical of Formula 5 may be a tetravalent radical derived from a compound represented by any one of Formulas 6 to 8.
  • R 1 to R 6 of Formula 6 , R 1 to R 8 of Formula 7 or R 1 to R 11 of Formula 8 each independently represent a hydrogen, an alkyl group, an alkoxy group or an aryl group, each of four or more of them. May form a radical linked to formula (5).
  • Each of which does not form a radical in the above may be hydrogen, an alkyl group or an alkoxy group, or may be hydrogen or an alkyl group.
  • R 2 , R 3 , R 5, and R 6 may form the radical, and R 1 and R 4 are each independently hydrogen, an alkyl group, an alkoxy group, or an aryl group, or hydrogen, It may be an alkyl group or an alkoxy group, or may be a hydrogen or an alkyl group.
  • R 3 , R 4 , R 8 and R 7 may form the radical, and R 1 , R 2 , R 5 and R 6 are each independently hydrogen, an alkyl group, an alkoxy group or an aryl group. It may be a hydrogen, an alkyl group, or an alkoxy group, or may be a hydrogen or an alkyl group.
  • R 2 , R 3 , R 8 and R 9 may form the radical, and R 1 , R 4 , R 5 , R 6 , R 7 and R 10 are each independently hydrogen, an alkyl group. , An alkoxy group or an aryl group, hydrogen, an alkyl group or an alkoxy group, or may be a hydrogen or alkyl group.
  • X may be an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom.
  • X in Formula 8 may be an alkylene group, an alkylidene group, an oxygen atom, or an oxygen atom.
  • X 1 and X 2 are each independently an alkylene group, an alkylidene group, or an aromatic divalent radical, and in another example, they may be the same or different aromatic divalent radicals.
  • the aromatic divalent radical may be a divalent radical derived from the aforementioned aromatic compound.
  • X 1 and X 2 of Formula 5 may each independently be a divalent radical derived from a compound represented by any one of Formulas 12 to 14.
  • R 1 to R 6 in Formula 12 are each independently hydrogen, an alkyl group, an alkoxy group, an aryl group, a hydroxy group, or a carboxyl group.
  • R 1 to R 10 are each independently hydrogen, an alkyl group, an alkoxy group, a hydroxy group, a carboxyl group or an aryl group, and X is a single bond, an alkylene group, an alkylidene group, an oxygen atom, a sulfur atom, a carbonyl group, —NR 11 —, —S ( ⁇ O) — or —S ( ⁇ O) 2 —, wherein R 11 is hydrogen, an alkyl group, an alkoxy group, or an aryl group.
  • R 1 to R 10 in Formula 14 are each independently hydrogen, an alkyl group, an alkoxy group, a hydroxy group, a carboxyl group, or an aryl group.
  • benzene which may be substituted with at least one hydroxy group or carboxyl group may be exemplified, but is not limited thereto.
  • At least one hydroxy group while being represented by any one of the compounds represented by any one of the above-mentioned formulas A to F or biphenyl which may be substituted with at least one hydroxy group or a carboxyl group Or a compound which may be substituted with a carboxyl group or a compound represented by the following formulas K to N, or a compound that may be substituted with at least one hydroxy group or a carboxyl group represented by the following formulas K to N, but is not limited thereto. It is not.
  • a compound represented by the following Formula O or a compound which may be substituted with at least one hydroxyl group or carboxyl group while being represented by the above Formula O may be exemplified, but is not limited thereto.
  • the aromatic divalent radical may be a radical derived from the compound of Formula 12, and examples thereof include phenylene, but are not limited thereto.
  • the divalent radical is phenylene
  • the substitution position of the amine group based on the site linked to N in X 1 of Formula 5 may be an ortho, meta, or para position
  • the substitution position of the amine group based on the site linked to N in X 2 of Formula 5 may also be an ortho, meta, or para position.
  • the compound of the formula (5) can be synthesized according to a known method for synthesizing an organic compound, and the specific manner thereof is not particularly limited.
  • the compound of Formula 5 can be formed by dehydration condensation reaction of a dianhydride compound and a diamine compound.
  • Compound (5) has a high boiling point, does not volatilize or decompose at high temperatures, thereby maintaining a stable curability of the polymerizable composition, a void that may adversely affect the physical properties of the composite during high temperature processing or curing ( void).
  • the compound may have a decomposition temperature of 300 ° C. or more, 350 ° C. or more, 400 ° C. or more, or 500 ° C. or more.
  • the term decomposition temperature in the present application may mean a temperature at which the decomposition rate of the compound of Formula 5 is maintained in the range of 10% or less, 5% or less, or 1% or less.
  • the upper limit of the decomposition temperature in the above is not particularly limited, and may be, for example, about 1,000 ° C. or less.
  • the compound of the formula (5) is a process window of the reactive or polymerizable composition itself, by selecting the M or the linker X 1 or X 2 of the core, that is, the melting temperature and curing temperature of the polymerizable composition or prepolymer formed therefrom The difference can be easily adjusted, and can act as a curing agent of various physical properties depending on the use.
  • a compound of Formula 15 may be used as a curing agent.
  • R 22 to R 27 in Formula 15 may each independently represent a hydrogen, an alkyl group, an alkoxy group, an aryl group, an amine group, or a substituent of Formula 16, provided that at least two of R 22 to R 27 may be an amine group or It is a substituent.
  • L 7 is an alkylene group, an alkylidene group, an oxygen atom or a sulfur atom
  • R 28 to R 32 are hydrogen, an alkyl group, an alkoxy group, an aryl group or an amine group, and at least one of R 28 to R 32 is It is an amine group.
  • L 7 in the structure may be linked to the benzene ring of Formula 15.
  • the curing agent may be a compound in which two of R 22 to R 27 in Formula 15 are substituents of Formula 16.
  • the substituents of the two formulas 16 in Formula 15 may be a structure in which the other is present in the ortho, meta, or para position, and particularly in the meta position.
  • any one of R 28 to R 32 in the substituent of Formula 16 may be an amine group, and in particular, R 30 may be an amine group.
  • the proportion of the curing agent in the polymerizable composition is not particularly limited.
  • the ratio may be adjusted in consideration of the ratio or type of the curable component such as the first monomer and the second monomer included in the composition to ensure the desired curability.
  • the curing agent may be included in an amount of about 0.02 to 1.5 mol per mol of the second monomer included in the polymerizable composition.
  • the ratio is only an example of the present application. In general, when the ratio of the curing agent is high in the polymerizable composition, the process window tends to be narrowed, and when the ratio of the curing agent is low, the curing property tends to be insufficient. Therefore, an appropriate ratio of curing agent may be selected in consideration of such a point. have.
  • the processing temperature of the polymerizable composition may be in the range of 100 °C to 300 °C.
  • the absolute value of the process window of the polymerizable composition that is, the difference (To-Tp) between the processing temperature (Tp) and the curing reaction initiation temperature (To) of the compound of Formula 1 or the like, is 50 ° C or more and 70 ° C. Or at least 100 ° C.
  • the term "curing reaction start temperature" in the present application may mean a temperature at which the polymerization or curing of the polymerizable composition or the prepolymer described later starts. In one example, the curing reaction start temperature (To) may be higher than the processing temperature.
  • the upper limit of the process window is not particularly limited, but, for example, the absolute value of the difference (To-Tp) between the processing temperature Tp and the curing reaction start temperature To may be 300 ° C or less or 200 ° C or less. have.
  • the polymerizable composition may further include various additives.
  • additives can be exemplified by various fillers.
  • the kind of material that can be used as the filler is not particularly limited, and all known fillers suitable for the intended use can be used.
  • Exemplary fillers include, but are not limited to, metal materials, ceramic materials, glass, metal oxides, metal nitrides, or carbon-based materials.
  • the form of the filler is not particularly limited, and particulates, polygons including fibrous materials such as aramid fibers, glass fibers, carbon fibers or ceramic fibers, or woven fabrics, nonwoven fabrics, strings or strings, and nanoparticles formed by the materials. Or other amorphous forms.
  • Examples of the carbon-based material may include graphite, graphene, carbon nanotubes, derivatives, isomers, and the like, such as oxides thereof.
  • the present application also relates to a prepolymer formed by the reaction of the polymerizable composition, ie, the polymerizable composition comprising the compound of Formula 1.
  • prepolymer state refers to a state in which a reaction of a first monomer and a second monomer with a curing agent occurs in the polymerizable composition to some extent (for example, a state in which polymerization of the so-called A or B stage stage occurs), It can mean the state which can process a composite_body
  • the prepolymer may also exhibit good curability, suitable processing temperatures and a wide process window.
  • the prepolymer may exhibit stability over time even when stored at room temperature for a long time.
  • the processing temperature of the prepolymer may be in the range of 100 °C to 300 °C.
  • the absolute value of the process window of the prepolymer i.e., the difference between the processing temperature (Tp) and the curing reaction start temperature (To) of the prepolymer (To-Tp) may be 50 ° C or more, 70 ° C or more, or 100 ° C or more.
  • the curing reaction start temperature (To) may be higher than the processing temperature. This range may be advantageous to ensure appropriate processability using a prepolymer, for example, in the preparation of the composite described below.
  • the upper limit of the process window is not particularly limited, but, for example, the absolute value of the difference (To-Tp) between the processing temperature Tp and the curing reaction start temperature To may be 300 ° C or less or 200 ° C or less. have.
  • the prepolymer may further comprise any known additive in addition to the above components.
  • examples of such an additive may include, but are not limited to, the aforementioned fillers.
  • the present application also relates to composites.
  • the composite may include the phthalonitrile resin and filler described above.
  • the present application enables the achievement of excellent curability, low melting temperature and wide process window through the first monomer and the second monomer, thus enhancing the so-called physical properties including various fillers.
  • Reinforced polymer composite can be easily formed.
  • the composite formed as described above may include the phthalonitrile resin and the filler, and may be applied to various applications including, for example, durable materials such as automobiles, airplanes, or ships.
  • filler is not particularly limited and may be appropriately selected in consideration of the intended use.
  • Fillers that can be used include fibrous materials such as carbon fibers, aramid fibers, glass fibers or ceramic fibers, or carbon nanomaterials such as woven fabrics, nonwovens, strings or strings or carbon nanotubes or graphemes formed by the materials. Etc. may be exemplified, but is not limited thereto.
  • the proportion of the filler is also not particularly limited and may be set in an appropriate range depending on the intended use.
  • the method of forming the prepolymer and the like, the method of blending such a prepolymer and the like, processing and curing to prepare a composite, and the like can be carried out according to a known method.
  • the present application can provide polymerizable compositions, prepolymers, phthalonitrile resins and composites.
  • NMR analysis was performed according to the manufacturer's manual using Agilent's 500 MHz NMR equipment. Samples for the measurement of NMR were prepared by dissolving the compound in dimethyl sulfoxide (dSO) -d6.
  • DSC analysis was carried out in a N2 flow atmosphere using a TA instrument Q20 system while raising the temperature at a rate of temperature rise of 10 ° C./minute from 35 ° C. to 450 ° C.
  • TGA analysis was performed using a TGA e850 instrument from Mettler-Toledo.
  • the compound prepared in Preparation Example was analyzed in an N2 flow atmosphere while raising the temperature at a temperature increase rate of 10 °C / min from 25 °C to 800 °C.
  • the compound of formula P was synthesized in the following manner. 32.7 g of the compound of Formula Q and 120 g of DMF (dimethyl formamide) were added to a three neck round bottom flask (RBF), followed by stirring at room temperature to dissolve. Then 51.9 g of compound of formula R were added, 50 g of DMF was added, followed by stirring to dissolve. Subsequently, 62.2 g of potassium carbonate and 50 g of DMF were added together, and the temperature was raised to 85 ° C while stirring. After reacting for about 5 hours in the above state, the mixture was cooled to room temperature. The cooled reaction solution was poured into 0.2N aqueous hydrochloric acid solution to neutralize precipitate, and washed with water after filtering.
  • DMF dimethyl formamide
  • the compound of formula S was synthesized in the following manner. 103.09 g of 4,4'-methylenebis [2-[(2-hydroxy-5-methylphenyl) methyl] -6-methyl-phenol and 152.39 g of 4-nitrophthalonitrile with 145.95 g of potassium carbonate and 605.9 g of dimethyl formamide (DMF)
  • the flask was charged into a three-neck reaction flask.
  • a 1000 mL volume equipped with a mechanical stirrer, a distillation apparatus, and a nitrogen inlet was used. Subsequently, a nitrogen stream was passed through the reaction flask and heated and stirred for about 5 hours at a temperature of about 85 ° C.
  • the mixture in the flask was cooled to room temperature (about 20 ° C. to 25 ° C.), and the mixture was precipitated in 4 L of an aqueous hydrochloric acid solution (concentration: 0.2 N), followed by filtration to remove residual inorganic salts and DMF.
  • the powder obtained after filtration was again dispersed in methanol (1 L), filtered again to remove organics, and the reaction was dried in vacuo at 50 ° C. to obtain the desired product.
  • the NMR analysis result performed on the target was attached to FIG.
  • the compound of formula T was synthesized in the following manner. In a 100 mL volumetric flask connected with a nitrogen line and a mechanical stirrer, 88.11 g of 4,4'-oxybisbenzenamine and 34.12 g of 4,4'-oxydi (phthalicunhydr) Ride) (4,4'-Oxydi (phthalic anhydride) was stirred with 500 ml of N-Methyl-2-pyrrolidone. When the powder was completely dissolved, an additional 115.4 g of toluene was added.
  • a Dean-Stark trap is placed in the Dean-Stark trap, which is also filled with toluene to maintain a certain amount of toluene, followed by 11.5ml of pyridine and ⁇ - in the flask. 6.8 ml of valerolactone ( ⁇ -Valerolactone) were added sequentially using a syringe (syringe), followed by stirring for 3 hours at 175 ° C. After removing the toluene and water of the Dean-Stark trap 2 Heat for an additional time to completely remove toluene present in the flask.
  • valerolactone ⁇ -Valerolactone
  • the curing agent (CA) of Preparation Example 3 was mixed with a mixture of Compound (PN1) of Preparation Example 1 and Compound (PN2) of Preparation Example 2 such that PN1: PN2 became a molar ratio of 95: 5 (weight ratio 1: 0.11).
  • the polymerizable composition was prepared by mixing 0.18 mole per mole to evaluate the physical properties.
  • the curing agent (CA) of Preparation Example 3 was mixed with a mixture of Compound (PN1) of Preparation Example 1 and Compound (PN2) of Preparation Example 2 such that PN1: PN2 was a molar ratio of 3: 1 (weight ratio 1: 0.69).
  • the polymerizable composition was prepared by mixing 0.18 mole per mole to evaluate the physical properties.
  • the curing agent (CA) of Preparation Example 3 was mixed with a mixture of Compound (PN1) of Preparation Example 1 and Compound (PN2) of Preparation Example 2 such that PN1: PN2 became a molar ratio of 1: 1 (weight ratio 1: 2.07).
  • the polymerizable composition was prepared by mixing 0.18 mole per mole to evaluate the physical properties.
  • the polymeric composition was prepared by mix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Emergency Medicine (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 출원의 중합성 조성물은 넓은 프로세스 윈도우(process window)를 나타내 우수한 가공성을 가지며, 내열성이 우수한 프탈로니트릴 수지 또는 그 프리폴리머를 형성할 수 있다. [대표도] 도 2

Description

중합성 조성물
본 출원은 중합성 조성물, 프리폴리머, 프탈로니트릴 수지 및 복합체에 관한 것이다.
관련 출원들과의 상호 인용
본 출원은 2016년 11월 4일자 한국 특허 출원 제10-2016-0146686호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
프탈로니트릴 수지는, 다양한 용도에 사용될 수 있다. 예를 들면, 프탈로니트릴 수지를 유리 섬유나 탄소 섬유 등과 같은 충전제에 함침시켜 형성되는 복합체(composite)는, 자동차, 비행기 또는 선박 등의 소재로 사용될 수 있다. 상기 복합체의 제조 과정은, 예를 들면, 프탈로니트릴과 경화제의 혼합물 또는 그 혼합물의 반응에 의해 형성되는 프리폴리머와 충전제를 혼합한 후에 경화시키는 과정을 포함할 수 있다(예를 들면, 특허문헌 1 참조).
(특허문헌 1) 한국등록특허 제0558158호
본 출원은 중합성 조성물, 프탈로니트릴 수지, 복합체 및 프리폴리머를 제공한다.
본 출원에서 용어 알킬기 또는 알콕시기는 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기 또는 알콕시기일 수 있다. 상기 알킬기 또는 알콕시기는 직쇄형, 분지쇄형 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다. 또한, 본 출원에서 용어 알킬기의 범위에는 후술하는 할로알킬기도 포함될 수 있다.
본 출원에서 용어 알케닐기 또는 알키닐기는 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기 또는 알키닐기일 수 있다. 상기 알케닐기 또는 알키닐기는 직쇄형, 분지쇄형 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 아릴기는, 특별히 달리 규정하지 않는 한, 벤젠, 벤젠 구조를 포함하는 화합물 또는 상기 중 어느 하나의 유도체로부터 유래된 1가 잔기를 의미할 수 있다. 아릴기는, 예를 들면, 6개 내지 25개, 6개 내지 20개, 6개 내지 15개 또는 6개 내지 12개의 탄소 원자를 포함할 수 있다. 아릴기의 구체적인 종류로는 페닐기, 벤질기, 비페닐기 또는 나프탈레닐기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 또한, 본 출원에서 아릴기의 범주에는 통상적으로 아릴기로 호칭되는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다.
본 출원에서 용어 단일 결합은, 해당 부위에 원자가 존재하지 않는 경우를 의미한다. 예를 들어, X-Y-Z의 구조에서 Y가 단일 결합인 경우에 X 및 Z는 직접 연결되어 X-Z의 구조를 형성한다.
본 출원에서 용어 알킬렌기 또는 알킬리덴기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기를 의미할 수 있다. 상기 알킬렌기 또는 알킬리덴기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬렌기 또는 알킬리덴기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 용어 알케닐기 또는 알키닐렌기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기 또는 알키닐렌기를 의미할 수 있다. 상기 알케닐기 또는 알키닐렌기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알케닐기 또는 알키닐렌기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 상기 알킬기 등에 임의적으로 치환되어 있을 수 있는 치환기로는, 염소 또는 불소 등의 할로겐, 할로알킬기, 글리시딜기, 글리시딜알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기, 알킬기, 알콕시기 또는 아릴기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
본 출원은 중합성 조성물에 대한 것이다. 본 출원의 중합성 조성물은 프탈로니트릴로부터 유래한 관능기를 2개 포함하는 제 1 단량체를 포함한다.
본 출원의 제 1 단량체는 프탈로니트릴로부터 유래한 관능기를 2개 포함한다. 프타롤니트릴로부터 유래한 관능기는 후술할 화학식 4로 표시되는 치환기를 의미할 수 있다. 제 1 단량체가 프탈로니트릴로부터 유래한 관능기를 2개 포함함으로써, 중합성 조성물의 가공성을 향상시킬 수 있다.
본 출원의 제 1 단량체는 분자량이 250 내지 3000 또는 300 내지 2500 일 수 있다. 제 1 단량체의 분자량이 상술한 범위에 해당하도록 하여, 제 1 단량체가 포함되는 중합성 조성물이 낮은 용융 온도를 나타내고, 넓은 프로세스 윈도우(process window)를 나타내어 중합성 조성물의 가공성을 향상시킬 수 있다.
본 출원의 제 1 단량체는 하기 화학식 1의 화합물일 수 있다.
[화학식 1]
Figure PCTKR2017011515-appb-I000001
화학식 1에서 Ar1 및 Ar2는 각각 독립적인 방향족 2가 라디칼이고, L, L1 및 L2는 각각 독립적으로 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이며, R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기 또는 시아노기이되, R1 내지 R5 중 적어도 2개는 시아노기이고, R6 내지 R10 중 적어도 2개는 시아노기이다.
상기에서 Ar1 및 Ar2는 서로 동일한 것이거나 상이한 것일 수 있고, L, L1 및 L2도 서로 동일한 것이거나 상이한 것일 수 있다.
본 출원에서 용어 방향족 2가 라디칼은, 특별히 달리 규정하지 않는 한, 벤젠, 벤젠을 포함하는 화합물 또는 상기 중 어느 하나의 유도체로부터 유래된 2가 잔기를 의미할 수 있다. 상기에서 벤젠을 포함하는 화합물로는, 2개 이상의 벤젠 고리가 2개의 탄소 원자를 공유하면서 축합되거나, 적절한 링커에 의해 연결되어 있는 구조를 가지는 화합물을 의미할 수 있다. 방향족 2가 라디칼은, 예를 들면, 6개 내지 25개, 6개 내지 20개, 6개 내지 15개 또는 6개 내지 12개의 탄소 원자를 포함할 수 있다.
하나의 예시에서 방향족 2가 라디칼은, 하기 화학식 2의 방향족 화합물로부터 유래되는 라디칼일 수 있다.
[화학식 2]
Figure PCTKR2017011515-appb-I000002
화학식 2에서 R11 내지 R16은 각각 독립적으로 수소, 알킬기, 알콕시기, 또는 아릴기이되, R11 내지 R16 중 적어도 2개는 라디칼을 형성한다.
상기에서 라디칼을 형성한다는 것은 그 부위가 화학식 1의 다른 요소와 연결되는 것을 의미할 수 있다. 예를 들어, 화학식 1에서 Ar1의 경우, 상기 라디칼을 형성하는 부위 중 어느 한 부위는 화학식 1의 L1에 직접 연결되어 공유 결합을 형성하고, 다른 부위는 화학식 1의 L에 직접 연결되어 공유 결합을 형성할 수 있다. 화학식 1에서 Ar2의 경우, 상기 라디칼을 형성하는 부위 중 어느 한 부위는 화학식 1의 L2에 직접 연결되어 공유 결합을 형성하고, 다른 부위는 화학식 1의 L에 직접 연결되어 공유 결합을 형성할 수 있다. 라디칼을 형성하지 않는 상기 각각의 치환기는 수소, 알킬기 또는 알콕시기; 수소 또는 알킬기일 수 있다. 하나의 예시에서 화학식 2에서는 R11 및 R14 또는 R11 및 R13이 상기 라디칼을 형성할 수 있다. 이러한 경우, 라디칼을 형성하지 않는 치환기는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기; 수소, 알킬기 또는 알콕시기; 또는 수소 또는 알킬기일 수 있다.
화학식 1에서 L, L1, 및 L2는 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자일 수 있다.
하나의 예시에서 화학식 1의 L은, 단일 결합, 알킬렌기 또는 알킬리덴기이거나, 황 원자일 수 있다. 상기에서 알킬렌기 또는 알킬리덴기는 필요한 경우에 적어도 하나의 할로겐 원자 또는 할로알킬기, 즉 할로겐원자로 치환된 알킬기로 치환되어 있을 수 있고, 경우에 따라서는 할로겐 원자 외에도 다른 치환기에 의해 임의적으로 치환되어 있을 수 있다. 한편, 상기에서 용어 단일 결합은 해당 부위에 별도의 원자가 존재하지 않는 경우이고, 예를 들면, L이 단일 결합이라면, Ar1과 Ar2가 직접 연결된 구조가 도출될 수 있다.
화학식 1에서 L1 및 L2는 알킬렌기, 알킬리덴기 또는 산소 원자일 수 있고, 하나의 예시에서 산소 원자일 수 있다.
화학식 1에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기 또는 시아노기이되, R1 내지 R5 중 적어도 2개는 시아노기이고, R6 내지 R10 중 적어도 2개는 시아노기이다. 다른 예시에서 시아노기가 아닌 R1 내지 R10은, 각각 독립적으로 수소, 알킬기 또는 알콕시기; 또는 수소 또는 알킬기일 수 있다. 하나의 예시에서 화학식 1에서는 R2 내지 R4 중 어느 2개와 R7 내지 R9 중 어느 2개가 시아노기이고, 나머지 치환기는, 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기; 수소, 알킬기 또는 알콕시기; 또는 수소 또는 알킬기일 수 있다.
화학식 1의 화합물은, 소위 프탈로니트릴 화합물이 적용될 수 있는 것으로 공지되어 있는 다양한 용도에서 효과적으로 사용될 수 있다. 예를 들면, 상기 프탈로니트릴 화합물은, 소위 프탈로니트릴 수지를 제조할 수 있는 원료 내지는 전구체로서 효과적으로 사용될 수 있다. 상기 화합물은, 낮은 용융 온도를 나타내고, 경화제와의 반응성이 우수하며, 넓은 프로세스 윈도우(process window)를 나타내어, 상기 용도에 효과적으로 적용될 수 있다. 상기 화합물은, 상기 용도 외에도 프탈로시아닌 염료(phthalocyanine pigment) 등과 같은 염료의 전구체, 형광 증백제(fluorescent brightener), 포토그래피 증감제(photographic sensitizer) 또는 산무수물의 전구체 내지 원료 등으로 적용될 수 있다.
화학식 1의 화합물은 공지의 유기 화합물의 합성법에 따라 합성할 수 있다. 예를 들면, 화학식 1의 화합물은, 페놀성 히드록시기를 가지는 방향족 화합물과 적어도 2개의 시아노기를 가지는 방향족 화합물을 반응시키는 방법(ex. nitro displacement method) 등으로 합성할 수 있다. 유기 화학 분야에는 상기 화학식 1의 화합물의 구조를 형성할 수 있는 상기 방향족 화합물들이 알려져 있고, 이러한 화합물은 목적하는 구조를 고려하여 모두 상기 화합물의 제조에 적용될 수 있다.
본 출원의 중합성 조성물은 프탈로니트릴로부터 유래한 관능기를 3개 이상 포함하는 제 2 단량체를 포함한다.
본 출원의 제 2 단량체는 프탈로니트릴로부터 유래한 관능기를 3개 이상 포함한다. 본 출원의 프탈로니트릴로부터 유래한 관능기는 후술할 화학식 4로 표시되는 치환기일 수 있다. 본 출원의 제 2 단량체는, 바람직하게는 프탈로니트릴로부터 유래한 관능기를 3개 이상, 4개 이상, 5개 이상 또는 6개 이상 포함할 수 있다. 제 2 단량체가 포함하는 프탈로니트릴로부터 유래한 관능기의 상한은 9개 이하, 8개 이하 또는 7개 이하일 수 있다. 본 출원의 제 2 단량체가 프탈로니트릴로부터 유래한 관능기를 상술한 범위를 만족하게 포함함으로써, 중합성 조성물이 내열성이 우수한 프탈로니트릴 수지를 형성할 수 있다.
본 출원의 제 2 단량체는 분자량이 600 내지 5000, 또는 800 내지 4000 일 수 있다. 제 2 단량체의 분자량이 상술한 범위에 해당하도록 하여, 제 2 단량체가 포함되는 중합성 조성물이 내열성이 우수한 프탈로니트릴 수지를 형성하게 할 수 있다.
본 출원의 제 2 단량체는 하기 화학식 3의 화합물일 수 있다.
[화학식 3]
Ar3-L3-Ar4-L4-Ar5-L5-Ar6
화학식 3에서 Ar3 및 Ar6은 서로 동일하거나 상이한 아릴기이고, Ar4 및 Ar5는 서로 동일하거나 상이한 아릴렌기이며, L3 내지 L5는 각각 독립적으로 알킬렌기, 알킬리덴기, 알케닐렌기 또는 알키닐렌기이고, 상기 Ar3 내지 Ar6에는 각각 하기 화학식 4로 표시되는 치환기가 적어도 1개 치환되어 있다.
[화학식 4]
Figure PCTKR2017011515-appb-I000003
화학식 4에서 L6는 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이고, R17 내지 R21는 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기 또는 시아노기이되, R17 내지 R21 중 적어도 2개는 시아노기이다.
화학식 3의 화합물에서 L3 내지 L5는 각각 독립적으로 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기일 수 있고, 예를 들면, 메틸렌기 또는 에틸렌기일 수 있다.
화학식 3의 화합물에서 Ar3 내지 Ar6는 전술한 바와 같이 아릴기 또는 아릴렌기인데, 이들 각각에는 적어도 1개 이상의 상기 화학식 2의 치환기가 치환되어 있을 수 있다.
상기 Ar3 내지 Ar6에는 화학식 4의 치환기에 추가로 다른 치환기가 존재할 수 있는데, 그 예에는 전술한 할로겐, 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기, 알킬기, 알콕시기 또는 아릴기 등이 있고, 적절한 예시에서는 알킬기가 치환되어 있을 수 있다.
즉, 상기 Ar3 내지 Ar6 각각에는 상기 화학식 4의 치환기 및 알킬기가 적어도 1개씩 치환되어 있을 수 있다.
화학식 3에서 Ar4 및 Ar5는 탄소수 6 내지 25, 6 내지 20, 6 내지 15 또는 6 내지 12의 아릴렌기일 수 있고, 예를 들면, 페닐렌기일 수 있다.
Ar4 및 Ar5가 페닐렌기인 경우에 그 양자에 연결되어 있는 L3 내지 L5의 위치는 특별히 제한되지 않는다. 예를 들면, Ar4의 경우 L4와 결합된 위치를 기준으로 오소(ortho), 메타(meta) 또는 파라(para) 위치에 L3이 결합되어 있을 수 있다. 또한, Ar5의 경우도 L4와 결합된 위치를 기준으로 오소(ortho), 메타(meta) 또는 파라(para) 위치에 L5가 결합되어 있을 수 있다.
하나의 예시에서, Ar4의 경우 L4와 결합된 위치를 기준으로 메타(meta) 위치에 L3이 결합되어 있을 수 있다. 또한, Ar5의 경우 L4와 결합된 위치를 기준으로 메타(meta) 위치에 L5가 결합되어 있을 수 있다. 이와 같은 구조는, 프탈로니트릴 수지를 제조하는 과정에서 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 유지하는 것을 용이하게 할 수 있다.
Ar4 및 Ar5가 페닐렌기인 경우에 각각에 치환되어 있는 상기 화학식 4의 치환기의 위치가 조절될 수 있다. 예를 들면, Ar4의 경우 L4와 결합된 위치를 기준으로 오소(ortho), 메타(meta) 또는 파라(para) 위치에 화학식 2의 치환기기 치환되어 있을 수 있다. 또한, Ar5의 경우도 L4와 결합된 위치를 기준으로 오소(ortho), 메타(meta) 또는 파라(para) 위치에 화학식 2의 치환기기 치환되어 있을 수 있다.
하나의 예시에서, Ar4의 경우 L4와 결합된 위치를 기준으로 파라(para) 위치에 화학식 4의 치환기가 결합되어 있을 수 있다. 또한, Ar5의 경우 L4와 결합된 위치를 기준으로 파라(para) 위치에 화학식 2의 치환기가 결합되어 있을 수 있다. 이와 같은 구조는, 프탈로니트릴 수지를 제조하는 과정에서 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 유지하는 것을 용이하게 할 수 있다.
페닐렌기인 Ar4 및 Ar5에는 다른 치환기가 존재할 수 있고, 그 예로는 알킬기, 구체적으로는 탄소수 1 내지 4의 알킬기나 메틸기 또는 에틸기가 예시될 수 있다. 예를 들면, Ar4의 경우 L4와 결합된 위치를 기준으로 오소(ortho), 메타(meta) 또는 파라(para) 위치에 상기 알킬기가 치환되어 있을 수 있다. 또한, Ar5의 경우도 L4와 결합된 위치를 기준으로 오소(ortho), 메타(meta) 또는 파라(para) 위치에 상기 알킬기가 치환되어 있을 수 있다.
하나의 예시에서, Ar4의 경우 L4와 결합된 위치를 기준으로 메타(meta) 위치에 상기 알킬기가 치환되어 있을 수 있다. 또한, Ar5의 경우 L4와 결합된 위치를 기준으로 메타(meta) 위치에 상기 알킬기가 치환되어 있을 수 있다. 이와 같은 구조는, 프탈로니트릴 수지를 제조하는 과정에서 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 유지하는 것을 용이하게 할 수 있다.
하나의 예시에서 Ar4가 페닐렌인 경우, L4에 결합되어 있는 탄소 원자를 1번으로 하고, 시계 방향으로 탄소 원자를 넘버링하는 경우에 3번 탄소 원자에 상기 알킬기가 치환되어 있고, 4번 탄소 원자에 상기 화학식 2의 치환기가 치환되어 있으며, 5번 탄소 원자가 상기 L3과 결합되어 있는 구조일 수 있다.
하나의 예시에서 Ar5가 페닐렌인 경우, L4에 결합되어 있는 탄소 원자를 1번으로 하고, 시계 방향으로 탄소 원자를 넘버링하는 경우에 5번 탄소 원자에 상기 알킬기가 치환되어 있고, 4번 탄소 원자에 상기 화학식 2의 치환기가 치환되어 있으며, 3번 탄소 원자가 상기 L5와 결합되어 있는 구조일 수 있다. 이와 같은 구조는, 프탈로니트릴 수지를 제조하는 과정에서 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 유지하는 것을 용이하게 할 수 있다.
화학식 3에서 Ar3 및 Ar6는 탄소수 6 내지 25, 6 내지 20, 6 내지 15 또는 6 내지 12의 아릴기일 수 있고, 예를 들면, 페닐기일 수 있다.
Ar3 및 Ar6가 페닐기인 경우에 각각에 치환되어 있는 상기 화학식 4의 치환기의 위치가 조절될 수 있다. 예를 들면, Ar3의 경우 L3과 결합된 위치를 기준으로 오소(ortho), 메타(meta) 또는 파라(para) 위치에 화학식 4의 치환기기 치환되어 있을 수 있다. 또한, Ar6의 경우도 L5와 결합된 위치를 기준으로 오소(ortho), 메타(meta) 또는 파라(para) 위치에 화학식 4의 치환기기 치환되어 있을 수 있다.
하나의 예시에서, Ar3의 경우 L3와 결합된 위치를 기준으로 오소(ortho) 위치에 화학식 4의 치환기가 결합되어 있을 수 있다. 또한, Ar6의 경우 L5와 결합된 위치를 기준으로 오소(ortho) 위치에 화학식 4의 치환기가 결합되어 있을 수 있다. 이와 같은 구조는, 프탈로니트릴 수지를 제조하는 과정에서 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 유지하는 것을 용이하게 할 수 있다.
페닐렌기인 Ar3 및 Ar6에는 다른 치환기가 존재할 수 있고, 그 예로는 알킬기, 구체적으로는 탄소수 1 내지 4의 알킬기나 메틸기 또는 에틸기가 예시될 수 있다. 예를 들면, Ar3의 경우 L3과 결합된 위치를 기준으로 오소(ortho), 메타(meta) 또는 파라(para) 위치에 상기 알킬기가 치환되어 있을 수 있다. 또한, Ar6의 경우도 L5와 결합된 위치를 기준으로 오소(ortho), 메타(meta) 또는 파라(para) 위치에 상기 알킬기가 치환되어 있을 수 있다.
하나의 예시에서, Ar3의 경우 L3과 결합된 위치를 기준으로 메타(meta) 위치에 상기 알킬기가 치환되어 있을 수 있다. 또한, Ar6의 경우 L1과 결합된 위치를 기준으로 메타(meta) 위치에 상기 알킬기가 치환되어 있을 수 있다. 이와 같은 구조는, 프탈로니트릴 수지를 제조하는 과정에서 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 유지하는 것을 용이하게 할 수 있다.
하나의 예시에서 Ar3이 페닐기인 경우, L3에 결합되어 있는 탄소 원자를 1번으로 하고, 시계 방향으로 탄소 원자를 넘버링하는 경우에 3번 탄소 원자에 상기 알킬기가 치환되어 있고, 6번 탄소 원자에 상기 화학식 4의 치환기가 치환되어 있는 구조일 수 있다.
하나의 예시에서 Ar6가 페닐렌인 경우, L5에 결합되어 있는 탄소 원자를 1번으로 하고, 시계 방향으로 탄소 원자를 넘버링하는 경우에 5번 탄소 원자에 상기 알킬기가 치환되어 있고, 2번 탄소 원자에 상기 화학식 2의 치환기가 치환되어 있는 구조일 수 있다.
이와 같은 구조는, 프탈로니트릴 수지를 제조하는 과정에서 적절한 가공 온도와 넓은 프로세스 윈도우(process window)를 유지하는 것이 유리할 수 있다.
화학식 4에서 L6는 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이고, 예를 들면, 산소 원자일 수 있다.
본 출원의 중합성 조성물은, 중합성 조성물로부터 형성되는 프탈로니트릴 수지의 물성을 고려하여 제 1 단량체 및 제 2 단량체 함량 비율을 결정할 수 있다. 하나의 예시에서, 본 출원의 중합성 조성물은 제 1 단량체 100몰 대비 제 2 단량체 5몰 내지 150몰 또는 30몰 내지 120몰을 포함할 수 있다. 하나의 예시에서, 본 출원의 중합성 조성물은 제 1 단량체 100 중량부 대비 5 내지 250 중량부 또는 60 내지 220 중량부의 제 2 단량체를 포함할 수 있다. 상대적으로 우수한 가공성을 가지나 상대적으로 내열성이 떨어지는 제 1 단량체와, 상대적으로 우수한 내열성을 가지나 상대적으로 가공성이 떨어지는 제 2 단량체를 블렌딩하는 비율을 조절함으로써, 중합성 조성물이 넓은 프로세스 윈도우(process window)를 가지는 한편, 중합성 조성물이 우수한 내열성을 가지는 프탈로니트릴 수지를 형성할 수 있다.
본 출원의 제 2 단량체는 제 2 단량체로부터 형성된 단일중합체가 제 1 단량체로부터 형성된 단일중합체의 유리전이온도(Tg)보다 높은 유리전이온도(Tg)를 가질 수 있다. 본 출원의 중합성 조성물은 내열성이 상대적으로 떨어지는 제 1 단량체에 내열성이 우수한 제 2 단량체를 블렌딩하여, 우수한 내열성을 가지는 프탈로니트릴 수지를 형성할 수 있고, 넓은 프로세스 윈도우를 가질 수 있다.
본 출원의 제 2 단량체는 제 2 단량체로부터 형성된 단일중합체가 제 1 단량체로부터 형성된 단일중합체의 용융온도(Tm)보다 높은 용융온도(Tm)를 가질 수 있다. 본 출원의 중합성 조성물은 내열성이 상대적으로 떨어지는 제 1 단량체에 내열성이 우수한 제 2 단량체를 블렌딩하여, 우수한 내열성을 가지는 프탈로니트릴 수지를 형성할 수 있고, 넓은 프로세스 윈도우를 가질 수 있다.
본 출원의 제 1 단량체는 제 1 단량체로부터 형성된 단일중합체의 유리전이온도(Tg)가 30C 내지 300°C 일 수 있다. 하나의 예시에서, 제 1 단량체는 제 1 단량체로부터 형성된 단일중합체의 유리전이온도(Tg)가 300°C 이하, 250°C 이하 또는 200°C 이하일 수 있다. 또 다른 예시에서, 제 1 단량체는 제 1 단량체로부터 형성된 단일중합체의 유리전이온도(Tg)가 30°C 이상, 40°C 이상 또는 50°C 이상일 수 있다. 제 1 단량체로부터 형성된 단일중합체의 유리전이온도의 상한 및 하한이 상기 범위를 만족하는 제 1 단량체를 사용함으로써, 넓은 프로세스 윈도우(process window)를 가져 가공성이 우수한 중합성 조성물을 제공할 수 있다.
본 출원의 제 1 단량체는 제 1 단량체로부터 형성된 단일중합체의 용융온도(Tm)가 30°C 내지 300°C 일 수 있다. 하나의 예시에서, 제 1 단량체는 제 1 단량체로부터 형성된 단일중합체의 용융온도(Tm)가 300°C 이하, 250°C 이하 또는 200°C 이하일 수 있다. 또 다른 예시에서, 제 1 단량체는 제 1 단량체로부터 형성된 단일중합체의 용융온도(Tm)가 30°C 이상, 40°C 이상 또는 50°C 이상일 수 있다. 제 1 단량체로부터 형성된 단일중합체의 용융온도의 상한 및 하한이 상기 범위를 만족하는 제 1 단량체를 사용함으로써, 넓은 프로세스 윈도우(process window)를 가져 가공성이 우수한 중합성 조성물을 제공할 수 있다.
본 출원의 제 2 단량체는 제 2 단량체로부터 형성된 단일중합체의 유리전이온도(Tg)가 50°C 내지 300°C일 수 있다. 하나의 예시에서, 제 2 단량체는 제 2 단량체로부터 형성된 단일중합체의 유리전이온도(Tg)가 50°C 이상, 70°C 이상 또는 80°C 이상일 수 있다. 또 다른 예시에서, 제 2 단량체는 제 2 단량체로부터 형성된 단일중합체의 유리전이온도(Tg)가 300°C 이하, 280°C 이하 또는 250°C 이하일 수 있다. 제 2 단량체로부터 형성된 단일중합체의 유리전이온도의 상한 및 하한이 상기 범위를 만족하는 제 2 단량체를 사용함으로써, 내열성이 우수한 프탈로니트릴 수지를 형성할 수 있는 중합성 조성물을 제공할 수 있다.
본 출원의 제 2 단량체는 제 2 단량체로부터 형성된 단일중합체의 용융온도(Tm)가 50°C 내지 300°C 일 수 있다. 하나의 예시에서, 제 2 단량체는 제 2 단량체로부터 형성된 단일중합체의 용융온도(Tm)가 50°C 이상, 70°C 이상 또는 80°C 이상일 수 있다. 또 다른 예시에서, 제 2 단량체는 제 2 단량체로부터 형성된 단일중합체의 용융온도(Tm)가 300°C 이하, 280°C 이하 또는 250°C 이하일 수 있다. 제 2 단량체로부터 형성된 단일중합체의 용융온도의 상한 및 하한이 상기 범위를 만족하는 제 1 단량체를 사용함으로써, 내열성이 우수한 프탈로니트릴 수지를 형성할 수 있는 중합성 조성물을 제공할 수 있다.
본 출원의 중합성 조성물은 경화제를 추가로 포함할 수 있다. 사용될 수 있는 경화제의 종류는 본 출원의 제 1 단량체 및 제 2 단량체와 반응하여 고분자를 형성할 수 있는 것이라면 특별히 제한되지는 않으며, 예를 들면, 소위 프탈로니트릴 수지의 형성에 유용한 것으로 알려진 화합물이라면 어떠한 화합물도 사용할 수 있다.
하나의 예시에서는 경화제로서 방향족 아민 화합물과 같은 아민 화합물 또는 히드록시 화합물을 사용할 수 있다. 본 출원에서 히드록시 화합물은, 분자 내에 적어도 하나 또는 두 개의 히드록시기를 포함하는 화합물을 의미할 수 있다.
하나의 예시에서, 경화제로는 하기 화학식 1의 화합물이 사용될 수 있다. 하기와 같은 화학식의 경화제는 분자 구조 내에 이미드 구조를 가지고, 이에 의해 우수한 내열성을 나타내어, 중합성 조성물에 과량 포함되거나, 혹은 중합성 조성물이 높은 온도에서 가공 또는 경화되는 경우에도 물성에 악영향을 줄 수 있는 보이드 등을 생성시키지 않는 중합성 조성물을 형성할 수 있다.
[화학식 5]
Figure PCTKR2017011515-appb-I000004
화학식 5에서 M은 4가 라디칼이고, X1 및 X2는 각각 독립적으로 알킬렌기, 알킬리덴기 또는 방향족 2가 라디칼이다.
본 출원에서 용어 n가 라디칼(상기에서 n은 임의의 수)은, 특별히 달리 규정하지 않는 한, 소정 화합물로부터 유래되는 n가의 잔기를 의미할 수 있다. 예를 들면, 상기 화학식 5에서 M은, 지방족, 지환족 또는 방향족 화합물 유래의 4가 라디칼일 수 있으며, 이러한 경우는, 예를 들면, 상기 M은, 상기 지방족, 지환족 또는 방향족 화합물에서 4개의 수소 원자가 이탈되어 형성되는 라디칼이 각각 화학식 5의 카보닐기의 탄소 원자와 연결되는 구조를 가질 수 있다.
상기에서 지방족 화합물로는, 직쇄형 또는 분지쇄형인 알칸, 알켄 또는 알킨이 예시될 수 있다. 상기 지방족 화합물로는, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알칸, 알켄 또는 알킨이 사용될 수 있다. 이러한 경우에 상기 알칸, 알켄 또는 알킨은 임의로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
상기에서 지환족 화합물로는, 탄소수 3 내지 20, 탄소수 3 내지 16, 탄소수 3 내지 12, 탄소수 3 내지 8 또는 탄소수 3 내지 4의 비방향족 고리 구조를 포함하는 탄화수소 화합물이 예시될 수 있다. 이러한 지환족 탄화수소 화합물은 고리 구성 원자로서, 산소 또는 질소와 같은 헤테로 원자를 적어도 하나 포함할 수도 있으며, 필요한 경우에 임의로 하나 이상의 치환기로 치환되어 있을 수 있다.
또한, 상기에서 방향족 화합물은, 벤젠, 벤젠을 포함하는 화합물 또는 상기 중 어느 하나의 유도체가 예시될 수 있다. 상기에서 벤젠을 포함하는 화합물로는, 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 축합되어 있거나, 직접 연결된 구조 또는 적절한 링커에 의해 연결되어 있는 구조의 화합물을 의미할 수 있다. 상기 방향족 화합물은, 예를 들면, 6개 내지 25개, 6개 내지 20개 또는 6개 내지 12개의 탄소 원자를 포함할 수 있고, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
하나의 예시에서 상기 4가 라디칼을 형성하는 지환족 또는 방향족 화합물로는, 하기 화학식 6 내지 11 중 어느 하나로 표시되는 화합물이 예시될 수 있다.
[화학식 6]
Figure PCTKR2017011515-appb-I000005
화학식 6에서 R1 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이다.
[화학식 7]
Figure PCTKR2017011515-appb-I000006
화학식 7에서 R1 내지 R8은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이다.
[화학식 8]
Figure PCTKR2017011515-appb-I000007
화학식 8에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이고, X는, 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자, 황 원자, 카보닐기, -A1-O-C(=O)-A2-, -A1-C(=O)-O-A2-, -S(=O)- 또는 -S(=O)2-이다. 상기에서 A1 및 A2는 각각 독립적으로 단일 결합이거나 알킬렌기일 수 있다.
본 명세서에서 용어 단일 결합은, 해당 부위에 별도의 원자가 존재하지 않는 경우를 의미하고, 예를 들어, 화학식 8에서 X가 단일 결합인 경우는, 그 부분에 별도의 원자가 존재하지 않는 경우를 의미하고, 이 경우 X의 양측의 벤젠 고리는 직접 연결되어 비페닐 구조를 형성할 수 있다.
[화학식 9]
Figure PCTKR2017011515-appb-I000008
화학식 9에서 R1 내지 R4는 각각 독립적으로 수소, 알킬기 또는 알콕시기이고, A는 알킬렌기 또는 알케닐렌기이다.
화학식 9에서 R1 내지 R4 중 2개는 서로 연결되어 알킬렌기를 형성할 수도 있고, A의 알킬렌기 또는 알케닐렌기는 헤테로 원자로서 하나 이상의 산소 원자를 포함할 수 있다.
[화학식 10]
Figure PCTKR2017011515-appb-I000009
화학식 10에서 R1 내지 R4는 각각 독립적으로 수소, 알킬기 또는 알콕시기이고, A는 알킬렌기이다.
[화학식 11]
Figure PCTKR2017011515-appb-I000010
화학식 11에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기 또는 알콕시기이다.
본 출원에서 용어 알킬기는 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기일 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 알콕시기는 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기일 수 있다. 상기 알콕시기는 직쇄형, 분지쇄형 또는 고리형일 수 있으며, 필요한 경우에 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 아릴기는, 특별히 달리 규정하지 않는 한, 상기 기술한 방향족 화합물로부터 유래된 1가 잔기를 의미할 수 있다. 본 출원에서 용어 아릴기의 범주에는 통상적으로 아릴기로 호칭되는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다.
본 출원에서 용어 알킬렌기 또는 알킬리덴기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기를 의미할 수 있다. 상기 알킬렌기 또는 알킬리덴기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬렌기 또는 알킬리덴기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 출원에서 지방족 화합물, 지환족 화합물, 방향족 화합물, 알킬기, 알콕시기, 아릴기, 알킬렌기 또는 알킬리덴기 등에 임의적으로 치환되어 있을 수 있는 치환기로는, 염소 또는 불소 등의 할로겐, 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기, 알킬기, 알콕시기 또는 아릴기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기에서 화학식 6의 화합물로는, 벤젠, 알킬벤젠 또는 디알킬벤젠 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기에서 화학식 8의 화합물로는, 비페닐이나 하기 화학식 A 내지 F 중 어느 하나의 화학식으로 표시되는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 A]
Figure PCTKR2017011515-appb-I000011
[화학식 B]
Figure PCTKR2017011515-appb-I000012
[화학식 C]
Figure PCTKR2017011515-appb-I000013
[화학식 D]
Figure PCTKR2017011515-appb-I000014
[화학식 E]
Figure PCTKR2017011515-appb-I000015
[화학식 F]
Figure PCTKR2017011515-appb-I000016
상기에서 화학식 9의 화합물로는, 예를 들면, 사이클로헥산 등과 같은 탄소수 4 내지 8의 사이클로알칸 또는 하나 이상의 알킬기로 치환되어 있을 수 있는 사이클로헥센 등이나, 화학식 G 내지 I 중 어느 하나의 화학식으로 표시되는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 G]
Figure PCTKR2017011515-appb-I000017
[화학식 H]
Figure PCTKR2017011515-appb-I000018
[화학식 I]
Figure PCTKR2017011515-appb-I000019
상기에서 화학식 10의 화합물로는, 하나 이상의 알킬기로 치환되어 있을 수 있는 하기 화학식 J로 표시되는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 J]
Figure PCTKR2017011515-appb-I000020
상기와 같은 화합물에서, 예를 들면, 4개의 수소 원자가 이탈되어 라디칼이 형성되고, 그 라디칼이 화학식 5의 구조 내에 포함될 수 있다.
이러한 라디칼은 상기 화학식 6 내지 11의 치환기인 R1 내지 R10이 직접 이탈되어 형성되거나, 혹은 R1 내지 R10에 존재할 수 있는 치환기인 알킬기, 알콕시기, 아릴기, 알킬렌기 또는 알케닐렌기에 속하는 수소 원자가 이탈되어 형성될 수도 있다.
예를 들어, 상기 라디칼이 화학식 6의 화합물로부터 유래하는 경우, 화학식 6의 R1 내지 R6 중 1개 이상, 2개 이상, 3개 이상 또는 4개가 라디칼을 형성하거나, 혹은 상기 R1 내지 R6에 존재하는 알킬기, 알콕시기 또는 아릴기의 수소 원자가 이탈되어 상기 라디칼이 형성될 수 있다. 상기에서 라디칼을 형성한다는 것은, 상기 기술한 바와 같이 그 부위가 화학식 5의 카보닐기의 탄소 원자에 연결되는 것을 의미할 수 있다. 예를 들어, 상기 화학식 6에서 R2, R3, R5 및 R6가 화학식 5에 연결되는 라디칼을 형성하는 경우에는 후술하는 실시예에서의 화합물 CA1과 같은 코어 구조가 형성될 수 있다.
하나의 예시에서 화학식 5의 4가 라디칼은 상기 화학식 6 내지 8 중 어느 하나로 표시되는 화합물로부터 유래하는 4가 라디칼일 수 있다. 이러한 경우에 화학식 6의 R1 내지 R6, 화학식 7의 R1 내지 R8 또는 화학식 8의 R1 내지 R11은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이되, 상기 각각의 4개 이상은 화학식 5에 연결되는 라디칼을 형성할 수 있다. 상기에서 라디칼을 형성하지 않는 각각은 수소, 알킬기 또는 알콕시기이거나, 수소 또는 알킬기일 수 있다. 하나의 예시에서 화학식 6에서는 R2, R3, R5 및 R6이 상기 라디칼을 형성할 수 있고, R1 및 R4는, 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이거나, 수소, 알킬기 또는 알콕시기이거나, 또는 수소 또는 알킬기일 수 있다. 또한, 화학식 7에서는 R3, R4, R8 및 R7이 상기 라디칼을 형성할 수 있고, R1, R2, R5 및 R6는, 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이거나, 수소, 알킬기 또는 알콕시기이거나, 또는 수소 또는 알킬기일 수 있다. 또한, 화학식 8에서는 R2, R3, R8 및 R9가 상기 라디칼을 형성할 수 있고, R1, R4, R5, R6, R7 및 R10는, 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이거나, 수소, 알킬기 또는 알콕시기이거나, 또는 수소 또는 알킬기일 수 있다.
화학식 8에서 X는 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자일 수 있다. 다른 예시에서 화학식 8의 X는, 알킬렌기, 알킬리덴기 또는 산소 원자이거나, 산소 원자일 수 있다.
화학식 5에서 X1 및 X2는 각각 독립적으로 알킬렌기, 알킬리덴기 또는 방향족 2가 라디칼이고, 다른 예시에서 상기는 동일하거나 상이한 방향족 2가 라디칼일 수 있다. 상기에서 방향족 2가 라디칼은 전술한 방향족 화합물로부터 유래하는 2가 라디칼일 수 있다.
하나의 예시에서 상기 화학식 5의 X1 및 X2는 각각 독립적으로 하기 화학식 12 내지 14 중 어느 하나로 표시되는 화합물로부터 유래하는 2가 라디칼일 수 있다.
[화학식 12]
Figure PCTKR2017011515-appb-I000021
화학식 12에서 R1 내지 R6는 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기, 히드록시기 또는 카복실기이다.
[화학식 13]
Figure PCTKR2017011515-appb-I000022
화학식 13에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 카복실기 또는 아릴기이고, X는, 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자, 황 원자, 카보닐기, -NR11-, -S(=O)- 또는 -S(=O)2-이며, 상기에서 R11은 수소, 알킬기, 알콕시기 또는 아릴기이다.
상기에서 단일 결합의 의미는 화학식 4에서 정의된 바와 같다.
[화학식 14]
Figure PCTKR2017011515-appb-I000023
화학식 14에서 R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 히드록시기, 카복실기 또는 아릴기이다.
화학식 12의 화합물로는, 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 벤젠이 예시될 수 있으나, 이에 제한되는 것은 아니다.
또한, 화학식 13의 화합물로는, 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 비페닐 또는 상기 화학식 A 내지 F 중 어느 하나로 표시되는 화합물 또는 상기 화학식 A 내지 F 중 어느 하나로 표시되면서 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 화합물 또는 하기 화학식 K 내지 N으로 표시되는 화합물 또는 하기 화학식 K 내지 N으로 표시되면서 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 K]
Figure PCTKR2017011515-appb-I000024
[화학식 L]
Figure PCTKR2017011515-appb-I000025
[화학식 M]
Figure PCTKR2017011515-appb-I000026
[화학식 N]
Figure PCTKR2017011515-appb-I000027
화학식 14의 화합물로는, 하기 화학식 O로 표시되는 화합물 또는 상기 화학식 O로 표시되면서 적어도 하나의 히드록시기 또는 카복실기로 치환되어 있을 수 있는 화합물이 예시될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 O]
Figure PCTKR2017011515-appb-I000028
하나의 예시에서 상기 방향족 2가 라디칼은 상기 화학식 12의 화합물 유래의 라디칼일 수 있고, 그 예로는, 페닐렌을 들 수 있지만, 이에 제한되는 것은 아니다. 2가 라디칼이 페닐렌인 경우에, 화학식 5의 X1에서 N에 연결되는 부위를 기준으로 한 아민기의 치환 위치는 오소(ortho), 메타(meta) 또는 파라(para) 위치일 수 있고, 화학식 5의 X2에서 N에 연결되는 부위를 기준으로 한 아민기의 치환 위치는 역시 오소(ortho), 메타(meta) 또는 파라(para) 위치일 수 있다.
화학식 5의 화합물은, 공지의 유기 화합물의 합성법에 따라 합성할 수 있으며, 그 구체적인 방식은 특별히 제한되지 않는다. 예를 들면, 화학식 5의 화합물은, 디언하이드라이드(dianhydride) 화합물과 디아민 화합물의 탈수 축합 반응 등에 의해 형성할 수 있다.
화학식 5의 화합물은, 높은 비점을 가져서, 고온에서 휘발 내지는 분해되지 않으며, 이에 따라 중합성 조성물의 경화성이 안정적으로 유지되면서, 고온의 가공 내지는 경화 과정에서 복합체의 물성에 악영향을 줄 수 있는 보이드(void)를 형성하지 않는다. 이에 따라 하나의 예시에서 상기 화합물은, 분해 온도가 300℃ 이상, 350℃ 이상, 400℃ 이상 또는 500℃ 이상일 수 있다. 본 출원에서 용어 분해 온도는, 상기 화학식 5의 화합물의 분해율이 10% 이하, 5% 이하 또는 1% 이하의 범위로 유지되는 온도를 의미할 수 있다. 상기에서 분해 온도의 상한은 특별히 제한되지 않고, 예를 들면, 약 1,000℃ 이하일 수 있다.
또한, 화학식 5의 화합물은, 코어의 M이나 링커인 X1 또는 X2의 선택에 의하여 반응성 내지는 중합성 조성물 자체의 프로세스 윈도우, 즉 상기 중합성 조성물 또는 그로부터 형성되는 프리폴리머의 용융 온도와 경화 온도의 차이를 용이하게 조절할 수 있어서, 용도에 따라 다양한 물성의 경화제로서 작용할 수 있다.
하나의 예시에서 경화제로는 하기 화학식 15의 화합물이 사용될 수 있다.
[화학식 15]
Figure PCTKR2017011515-appb-I000029
화학식 15에서 R22 내지 R27은 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기, 아민기 또는 하기 화학식 16의 치환기이고, 단 R22 내지 R27 중 2개 이상은 아민기 또는 하기 화학식 16의 치환기이다.
[화학식 16]
Figure PCTKR2017011515-appb-I000030
화학식 16에서 L7은, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이고, R28 내지 R32은 수소, 알킬기, 알콕시기, 아릴기 또는 아민기이되, R28 내지 R32 중 적어도 하나는 아민기다.
화학식 16의 치환기가 존재하는 경우, 상기 구조에서 L7이 화학식 15의 벤젠 고리에 연결될 수 있다.
하나의 예시에서 상기 경화제는 화학식 15에서 R22 내지 R27 중 2개가 상기 화학식 16의 치환기인 화합물일 수 있다. 이러한 경우에 화학식 15에서 상기 2개의 화학식 16의 치환기는, 그 중 어느 하나를 기준으로 다른 하나가 오소, 메타 또는 파라 위치에 존재하는 구조일 수 있으며, 특히 메타 위치에 존재할 수 있다. 또한, 이러한 경우에 상기 화학식 16의 치환기에서 R28 내지 R32 중 어느 하나가 아민기일 수 있으며, 특히 R30이 아민기일 수 있다.
중합성 조성물에서 경화제의 비율은 특별히 제한되지 않는다. 상기 비율은, 예를 들면, 조성물에 포함되어 있는 제 1 단량체 및 제 2 단량체 등의 경화성 성분의 비율이나 종류 등을 고려하여 목적하는 경화성이 확보될 수 있도록 조절될 수 있다. 예를 들면, 경화제는 중합성 조성물에 포함되어 있는 제 2 단량체 1몰 당 약 0.02몰 내지 1.5몰 정도로 포함되어 있을 수 있다. 그렇지만, 상기 비율은 본 출원의 예시에 불과하다. 통상 중합성 조성물에서 경화제의 비율이 높아지면, 프로세스 윈도우가 좁아지는 경향이 있고, 경화제의 비율이 낮아지면, 경화성이 불충분해지는 경향이 있으므로, 이러한 점 등을 고려하여 적절한 경화제의 비율이 선택될 수 있다.
하나의 예시에서 상기 중합성 조성물의 가공 온도, 즉 용융 온도 또는 유리전이온도는, 100℃ 내지 300℃의 범위 내에 있을 수 있다. 이러한 경우에 상기 중합성 조성물의 프로세스 원도우, 즉 상기 가공 온도(Tp)와 상기 화학식 1의 화합물 등의 경화 반응 개시 온도(To)의 차이(To - Tp)의 절대값은 50℃ 이상, 70℃ 이상 또는 100℃ 이상일 수 있다. 본 출원에서 용어 경화 반응 개시 온도는, 중합성 조성물이나 후술하는 프리폴리머의 중합 내지는 경화가 시작되는 시점의 온도를 의미할 수 있다. 하나의 예시에서 상기 경화 반응 개시 온도(To)가 상기 가공 온도에 비하여 높을 수 있다. 이러한 범위는 중합성 조성물을 사용하여, 예를 들어 후술하는 복합체를 제조하는 과정에서 적절한 가공성을 확보하는 것에 유리할 수 있다. 상기에서 프로세스 윈도우의 상한은 특별히 제한되는 것은 아니나, 예를 들면, 상기 가공 온도(Tp)와 경화 반응 개시 온도(To)의 차이(To - Tp)의 절대값은 300℃ 이하 또는 200℃ 이하일 수 있다.
중합성 조성물은 다양한 첨가제를 추가로 포함할 수 있다. 이러한 첨가제의 예로는 다양한 충전제가 예시될 수 있다. 충전제로 사용될 수 있는 물질의 종류는 특별히 제한되지 않고, 목적하는 용도에 따라 적합한 공지의 충전제가 모두 사용될 수 있다. 예시적인 충전제로는 금속 물질, 세라믹 물질, 유리, 금속 산화물, 금속 질화물 또는 탄소계 물질 등이 있지만 이에 제한되는 것은 아니다. 또한, 상기 충전제의 형태도 특별히 제한되지 않고, 아라미드 섬유, 유리 섬유, 탄소 섬유 또는 세라믹 섬유 등과 같은 섬유상 물질, 또는 그 물질에 의해 형성된 직포, 부직포, 끈 또는 줄, 나노 입자를 포함하는 입자상, 다각형 또는 기타 무정형 등 다양한 형태일 수 있다. 상기에서 탄소계 물질로는, 그래파이트(graphite), 그래핀(graphene) 또는 탄소 나노튜브 등이나 그들의 산화물 등과 같은 유도체 내지는 이성질체 등이 예시될 수 있다.
본 출원은 또한, 상기 중합성 조성물, 즉 상기 화학식 1의 화합물을 포함하는 중합성 조성물의 반응에 의해 형성되는 프리폴리머(prepolymer)에 대한 것이다.
본 출원에서 용어 프리폴리머 상태는, 상기 중합성 조성물 내에서 제 1 단량체 및 제 2 단량체와 경화제의 반응이 어느 정도의 일어난 상태(예를 들면, 소위 A 또는 B 스테이지 단계의 중합이 일어난 상태)이나, 완전히 중합된 상태에는 이르지 않고, 적절한 유동성을 나타내어, 예를 들면, 후술하는 바와 같은 복합체의 가공이 가능한 상태를 의미할 수 있다.
상기 프리폴리머 역시 우수한 경화성, 적절한 가공 온도 및 넓은 프로세스 윈도우(process window)를 나타낼 수 있다. 또한, 상기 프리폴리머는 상온에서 장기간 보관되는 경우에도 경시적으로 안정성을 나타낼 수 있다.
하나의 예시에서 상기 프리폴리머의 가공 온도, 즉 용융 온도 또는 유리전이온도는, 100℃ 내지 300℃의 범위 내에 있을 수 있다. 이러한 경우에 상기 프리폴리머의 프로세스 원도우, 즉 상기 가공 온도(Tp)와 상기 프리폴리머의 경화 반응 개시 온도(To)의 차이(To - Tp)의 절대값은 50℃ 이상, 70℃ 이상 또는 100℃ 이상일 수 있다. 하나의 예시에서 상기 경화 반응 개시 온도(To)가 상기 가공 온도에 비하여 높을 수 있다. 이러한 범위는 프리폴리머를 사용하여, 예를 들어 후술하는 복합체를 제조하는 과정에서 적절한 가공성을 확보하는 것에 유리할 수 있다. 상기에서 프로세스 윈도우의 상한은 특별히 제한되는 것은 아니나, 예를 들면, 상기 가공 온도(Tp)와 경화 반응 개시 온도(To)의 차이(To - Tp)의 절대값은 300℃ 이하 또는 200℃ 이하일 수 있다.
프리폴리머는 상기 성분 외에 공지의 임의의 첨가제를 추가로 포함할 수 있다. 이러한 첨가제의 예로는 전술한 충전제 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
본 출원은 또한 복합체(composite)에 대한 것이다. 상기 복합체는 상기 기술한 프탈로니트릴 수지 및 충전제를 포함할 수 있다. 상기 기술한 바와 같이, 본 출원은 제 1 단량체 및 제 2 단량체를 통해 우수한 경화성, 낮은 용융 온도와 넓은 프로세스 윈도우(process window)의 달성이 가능하며, 이에 따라 다양한 충전제를 포함하는 우수한 물성의 소위 강화 수지 복합체(reinforced polymer composite)를 용이하게 형성할 수 있다. 이와 같이 형성된 복합체는 상기 프탈로니트릴 수지와 충전제를 포함할 수 있고, 예를 들면, 자동차, 비행기 또는 선박 등의 내구재 등을 포함한 다양한 용도에 적용될 수 있다.
충전제의 종류는 특별히 제한되지 않으며, 목적하는 용도를 고려하여 적절하게 선택될 수 있다. 사용될 수 있는 충전제로는 탄소 섬유, 아라미드 섬유, 유리 섬유 또는 세라믹 섬유 등과 같은 섬유상 물질, 또는 그 물질에 의해 형성된 직포, 부직포, 끈 또는 줄이나 탄소 나노튜브 또는 그래핀(grapheme)과 같은 탄소 나노 물질 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
충전제의 비율도 특별히 제한되는 것은 아니며, 목적하는 용도에 따라 적정 범위로 설정될 수 있다.
상기 프리폴리머 등을 형성하는 방법, 그러한 프리폴리머 등과 충전제를 배합하고, 가공 및 경화시켜 복합체를 제조하는 방법 등은 공지된 방식에 따라 진행될 수 있다.
본 출원은 중합성 조성물, 프리폴리머, 프탈로니트릴 수지 및 복합체를 제공할 수 있다.
도 1 내지 도 3은 각각 제조예 1 내지 3에서 제조한 화합물의 NMR(Nuclear magnetic resonance) 분석 결과이다.
이하 실시예 및 비교예를 통하여 본 출원의 프탈로니트릴 수지 등을 구체적으로 설명하지만, 상기 수지 등의 범위가 하기 실시예에 제한되는 것은 아니다.
1. NMR(Nuclear magnetic resonance) 분석
NMR 분석은 Agilent사의 500 MHz NMR 장비를 사용하여 제조사의 매뉴얼대로 수행하였다. NMR의 측정을 위한 샘플은 화합물을 DMSO(dimethyl sulfoxide)-d6에 용해시켜 제조하였다.
2. DSC(Differential scanning calorimetry) 분석
DSC 분석은, TA instrument사의 Q20 시스템을 사용하여 35℃에서 450℃까지 10℃/분의 승온 속도로 승온하면서 N2 flow 분위기에서 수행하였다.
3. TGA(Thermogravimetric Analysis) 분석
TGA 분석은 Mettler-Toledo사의 TGA e850 장비를 사용하여 수행하였다. 제조예에서 제조된 화합물의 경우 25℃에서 800℃까지 10℃/분의 승온 속도로 승온하면서 N2 flow 분위기에서 분석하였다.
제조예 1. 화합물(PN1)의 합성
하기 화학식 P의 화합물은 다음의 방식으로 합성하였다. 하기 화학식 Q의 화합물 32.7 g 및 120 g의 DMF(Dimethyl Formamide)를 3넥 RBF(3 neck round bottom flask)에 투입하고, 상온에서 교반하여 용해시켰다. 이어서 화학식 R의 화합물 51.9 g을 추가하고, DMF 50 g을 추가한 후에 교반하여 용해시켰다. 이어서 탄산칼륨 62.2 g 및 DMF 50 g을 함께 투입하고, 교반하면서 온도를 85℃까지 승온시켰다. 상기 상태에서 약 5 시간 정도 반응시킨 후에 상온까지 냉각시켰다. 냉각된 반응 용액을 0.2N 농도의 염산 수용액에 부어 중화 침전시키고, 필터링 후에 물로 세척하였다. 그 후, 필터링된 반응물을 100℃의 진공 오븐에서 1일 건조하고, 물과 잔류 용매를 제거한 후에 하기 화학식 L의 화합물(PN6)을 약 80중량%의 수율로 수득하였다. 상기 화학식 P의 화합물에 대한 NMR 결과는 도 1에 기재하였다.
[화학식 P]
Figure PCTKR2017011515-appb-I000031
[화학식 Q]
Figure PCTKR2017011515-appb-I000032
[화학식 R]
Figure PCTKR2017011515-appb-I000033
제조예 2. 화합물(PN2)의 합성
하기 화학식 S의 화합물은 다음의 방식으로 합성하였다. 4,4'-methylenebis[2-[(2-hydroxy-5-methylphenyl)methyl]-6-methyl-phenol 103.09 g 및 4-nitrophthalonitrile 152.39 g을 탄산 칼륨 145.95g 및 DMF(dimethyl formamide) 605.9 g과 함께 3구 반응용 플라스크에 투입하였다. 상기 반응용 플라스크로는 기계식 교반기, 증류 기구 및 질소 주입구를 구비한 1000 mL 용량의 것을 사용하였다. 이어서 질소 기류를 상기 반응용 플라스크에 통과시키고, 85℃ 정도의 온도에서 약 5 시간 정도 가열 교반하였다. 이어서, 플라스크 내의 혼합물을 상온(약 20℃ 내지 25℃)으로 냉각시키고, 염산 수용액(농도: 0.2N) 4L에 상기 혼합물을 침전 후 여과시켜서 잔존하는 무기염과 DMF를 제거하였다. 여과 후 얻어진 분말을 다시 메탄올(1L)에 분산시키고, 다시 여과하여 유기물을 제거하고, 반응물을 50℃의 오븐에서 진공 건조시켜서 목적물을 수득하였다. 목적물에 대하여 수행한 NMR 분석 결과는 도 2에 첨부하였다.
[화학식 S]
Figure PCTKR2017011515-appb-I000034
제조예 3. 경화제(CA)의 합성
하기 화학식 T의 화합물은 다음의 방식으로 합성하였다. 질소라인과 기계적 교반기가 연결된 100 mL 용량의 둥근 플라스크에, 4,4'-옥시비스벤젠아민(4,4'-oxybisbenzenamine) 88.11g 및 34.12g의 4,4'-옥시디(프탈릭언하이드라이드)(4,4'-Oxydi(phthalic anhydride)를 500ml의 N-메틸-2-피롤리돈(N-Methyl-2-pyrrolidone)과 함께 교반하였다. 분말이 완전히 용해되면 톨루엔 115.4g을 추가로 투입한 후, 딘 스타크 트랩(Dean-Stark trap)을 설치한다. 딘 스타크 트랩(Den-Stark trap)에도 톨루엔을 채워넣어 톨루엔이 일정량 유지되도록 한다. 이후 플라스크에 피리딘(pyridine) 11.5ml와 γ-발레로락톤(γ-Valerolactone) 6.8ml를 차례로 시린지(syringe)를 이용하여 투입한 후, 175°C에서 3시간 동안 교반하였다. 딘 스타크 트랩(Dean-Stark trap)의 톨루엔과 물을 제거한 후 2시간 정도 더 가열하여 플라스크 안에 존재하는 톨루엔을 완전히 제거한다. 반응 종결 후 상온 냉각한 용액을 4,4'-디아미노디페닐에터(4,4'-Diaminodiphenylether, ODA)와 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP)을 제거하기 위하여 메탄올 3L에 천천히 떨어뜨려 침전시킨 후, 여과를 하여 목적물을 포함하는 파우더를 얻었으며, 목적물에 대하여 수행한 NMR(Nuclear Magnetic Resonance) 분석 결과는 도 3에 첨부하였다.
[화학식 T]
Figure PCTKR2017011515-appb-I000035
실시예 1.
제조예 1의 화합물(PN1) 및 제조예 2의 화합물(PN2)을 PN1:PN2가95:5의 몰비(중량비 1:0.11)가 되도록 혼합한 혼합물에 제조예 3의 경화제(CA)를 상기 혼합물 1몰 당 0.18몰이 존재하도록 배합하여 중합성 조성물을 제조하고, 물성을 평가하였다.
실시예 2.
제조예 1의 화합물(PN1) 및 제조예 2의 화합물(PN2)을 PN1:PN2가3:1의 몰비(중량비 1:0.69)가 되도록 혼합한 혼합물에 제조예 3의 경화제(CA)를 상기 혼합물 1몰 당 0.18몰이 존재하도록 배합하여 중합성 조성물을 제조하고, 물성을 평가하였다.
실시예 3.
제조예 1의 화합물(PN1) 및 제조예 2의 화합물(PN2)을 PN1:PN2가1:1의 몰비(중량비 1:2.07)가 되도록 혼합한 혼합물에 제조예 3의 경화제(CA)를 상기 혼합물 1몰 당 0.18몰이 존재하도록 배합하여 중합성 조성물을 제조하고, 물성을 평가하였다.
비교예 1.
제조예 1의 화합물(PN1) 에 제조예 3의 경화제(CA)를 상기 화합물(PN1) 1몰 당 약 0.18몰이 존재하도록 배합하여 중합성 조성물을 제조하고, 물성을 평가하였다.
실시예 및 비교예의 조성물에 대하여 분석을 수행한 결과는 하기 표 1에 기재되어 있다.
PN2의 몰비(mol%) PN2의 중량비(wt%) 열변형온도(HDT, ASTM D648) 800°C에서의 잔류물(%)
실시예 1 5 9.9 257°C 69.9
실시예 2 25 40.8 310°C 74.7
실시예 3 50 67.4 342°C 74.9
비교예 0 0 240°C 67.7

Claims (25)

  1. 프탈로니트릴로부터 유래한 관능기를 2개 포함하는 제 1 단량체 및 프탈로니트릴로부터 유래한 관능기를 3개 이상 포함하는 제 2 단량체를 포함하는 중합성 조성물.
  2. 제 1항에 있어서, 제 1 단량체는 하기 화학식 1의 화합물인 중합성 조성물:
    [화학식 1]
    Figure PCTKR2017011515-appb-I000036
    화학식 1에서 Ar1 및 Ar2는 각각 독립적인 방향족 2가 라디칼이고, L, L1 및 L2는 각각 독립적으로 단일 결합, 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이며, R1 내지 R10은 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기 또는 시아노기이되, R1 내지 R5 중 적어도 2개는 시아노기이고, R6 내지 R10 중 적어도 2개는 시아노기이다.
  3. 제 2항에 있어서, 화학식 1에서 방향족 2가 라디칼은 하기 화학식 2로 표시되는 방향족 화합물로부터 유래되는 2가 라디칼인 중합성 조성물:
    [화학식 2]
    Figure PCTKR2017011515-appb-I000037
    화학식 2에서 R11 내지 R16은 각각 독립적으로 수소, 알킬기, 알콕시기 또는 아릴기이되, R11 내지 R16 중 적어도 2개는 라디칼을 형성한다.
  4. 제 3항에 있어서, 화학식 2에서 R11 및 R14가 라디칼을 형성하는 중합성 조성물.
  5. 제 2항에 있어서, L1 및 L2는 산소 원자이고, L은 황 원자인 중합성 조성물.
  6. 제 1항에 있어서, 제 2 단량체는 하기 화학식 3의 화합물인 중합성 조성물:
    [화학식 3]
    Ar3-L3-Ar4-L4-Ar5-L5-Ar6
    화학식 3에서 Ar3 및 Ar6는 서로 동일하거나 상이한 아릴기이고, Ar4 및 Ar5는 서로 동일하거나 상이한 아릴렌기이며, L3 내지 L5는 각각 독립적으로 알킬렌기,알킬리덴기, 알케닐렌기 또는 알키닐렌기이고, 상기 Ar3 내지 Ar6에는 각각 하기 화학식 4로 표시되는 치환기가 적어도 1개 치환되어 있다:
    [화학식 4]
    Figure PCTKR2017011515-appb-I000038
    화학식 4에서 L6는 알킬렌기, 알킬리덴기, 산소 원자 또는 황 원자이고, R17 내지 R21은 각각 독립적으로 수소, 알킬기, 알콕시기, 아릴기 또는 시아노기이되, R17 내지 R21 중 적어도 2개는 시아노기이다.
  7. 제 6항에 있어서, L3 내지 L5는 각각 독립적으로 탄소수 1 내지 4의 알킬렌기 또는 알킬리덴기인 중합성 조성물.
  8. 제 6항에 있어서, Ar3 내지 Ar6에는 각각 적어도 1개의 알킬기가 치환되어 있는 중합성 조성물.
  9. 제 6항에 있어서, Ar4 및 Ar5는 페닐렌기인 중합성 조성물.
  10. 제 9항에 있어서, Ar4에서 Ar4가 L4와 결합된 위치를 기준으로 메타 위치에 L3가 결합되어 있고, Ar5에서 Ar5가 L4와 결합된 위치를 기준으로 메타 위치에 L5가 결합되어 있는 중합성 조성물.
  11. 제 9항에 있어서, Ar4에서 Ar4가 L4와 결합된 위치를 기준으로 메타 또는 파라 위치에 화학식 4의 치환기가 치환되어 있고, Ar5에서 Ar5가 L4와 결합된 위치를 기준으로 메타 또는 파라 위치에 화학식 4의 치환기가 치환되어 있는 중합성 조성물.
  12. 제 9항에 있어서, Ar4에서 Ar4가 L4와 결합된 위치를 기준으로 메타 또는 파라 위치에 탄소수 1 내지 4의 알킬기가 치환되어 있고, Ar5에서 Ar5가 L4와 결합된 위치를 기준으로 메타 또는 파라 위치에 탄소수 1 내지 4의 알킬기가 치환되어 있는 중합성 조성물.
  13. 제 6항에 있어서, Ar3 및 Ar6는 페닐기인 중합성 조성물.
  14. 제 13항에 있어서, Ar3에서 Ar3가 L3와 결합된 위치를 기준으로 오소 또는 메타 위치에 화학식 3의 치환기가 치환되어 있고, Ar6에서 Ar6가 L5와 결합된 위치를 기준으로 오소 또는 메타 위치에 화학식 3의 치환기가 치환되어 있는 중합성 조성물.
  15. 제 13항에 있어서, Ar3에서 Ar3가 L3와 결합된 위치를 기준으로 오소 또는 메타 위치에 탄소수 1 내지 4의 알킬기가 치환되어 있고, Ar6에서 Ar6가 L5와 결합된 위치를 기준으로 오소 또는 메타 위치에 탄소수 1 내지 4의 알킬기가 치환되어 있는 중합성 조성물.
  16. 제 1항에 있어서, 제 1 단량체 100 중량부 대비 5 내지 250 중량부의 제 2 단량체를 포함하는 중합성 조성물.
  17. 제 1항에 있어서, 제 1 단량체는 그 단일중합체의 유리전이온도(Tg)가 30°C 내지 300°C이고, 용융온도(Tm)가 30°C 내지 300°C인 중합성 조성물.
  18. 제 1항에 있어서, 제 2 단량체는 그 단일중합체의 유리전이온도(Tg)가 50 °C 내지 300 °C 이고, 용융온도(Tm)가 50 °C 내지 300 °C 인 중합성 조성물.
  19. 제 1항에 있어서, 제 1 단량체의 단일중합체의 용융온도(Tm) 보다 제 2 단량체의 단일중합체의 용융온도(Tm)가 더 높은 중합성 조성물.
  20. 제 1항에 있어서, 경화제를 추가로 포함하는 중합성 조성물.
  21. 제 20항에 있어서, 경화제는 방향족 아민 화합물, 페놀 화합물, 무기산, 유기산, 금속 또는 금속염인 중합성 조성물.
  22. 제 1항의 중합성 조성물의 반응물인 프리폴리머.
  23. 제 1항의 제 1 단량체 및 제 2 단량체로부터 유래한 중합 단위를 포함하는 프탈로니트릴 수지.
  24. 제 23항에 있어서, 저분자량 단량체 100 중량부 대비 고분자량 단량체 5 내지 200 중량부에서 유래된 중합 단위를 포함하는 프탈로니트릴 수지.
  25. 제 23항의 프탈로니트릴 수지 및 충전제를 포함하는 복합체.
PCT/KR2017/011515 2016-11-04 2017-10-18 중합성 조성물 WO2018084465A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/347,031 US11091592B2 (en) 2016-11-04 2017-10-18 Polymerizable composition
JP2019522494A JP6900103B2 (ja) 2016-11-04 2017-10-18 重合性組成物
EP17866948.7A EP3536734B1 (en) 2016-11-04 2017-10-18 Polymerizable composition
CN201780068149.5A CN109923149B (zh) 2016-11-04 2017-10-18 可聚合组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160146686 2016-11-04
KR10-2016-0146686 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018084465A1 true WO2018084465A1 (ko) 2018-05-11

Family

ID=62076151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011515 WO2018084465A1 (ko) 2016-11-04 2017-10-18 중합성 조성물

Country Status (6)

Country Link
US (1) US11091592B2 (ko)
EP (1) EP3536734B1 (ko)
JP (1) JP6900103B2 (ko)
KR (1) KR101932861B1 (ko)
CN (1) CN109923149B (ko)
WO (1) WO2018084465A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101959462B1 (ko) * 2015-09-24 2019-03-18 주식회사 엘지화학 프탈로니트릴 화합물
CN109563266B (zh) * 2016-08-08 2021-11-30 株式会社Lg化学 可聚合组合物
KR102071909B1 (ko) * 2016-11-29 2020-01-31 주식회사 엘지화학 중합성 조성물
WO2020060266A1 (ko) * 2018-09-21 2020-03-26 주식회사 엘지화학 프탈로니트릴 올리고머를 포함하는 3차원 프린팅용 잉크
KR102323553B1 (ko) * 2018-09-21 2021-11-05 주식회사 엘지화학 프탈로니트릴 올리고머를 포함하는 3차원 프린팅용 잉크
KR102340253B1 (ko) * 2018-09-21 2021-12-15 주식회사 엘지화학 프탈로니트릴 올리고머를 포함하는 경화성 수지 조성물 및 이의 프리폴리머
KR102395758B1 (ko) * 2018-09-28 2022-05-06 주식회사 엘지화학 브레이크 패드 마찰재용 수지 조성물 및 상기 수지 조성물로 제조된 브레이크 패드 마찰재
KR102340924B1 (ko) * 2018-09-28 2021-12-16 주식회사 엘지화학 향상된 충격 강도를 갖는 수지 조성물
CN113105599B (zh) * 2020-01-13 2022-05-27 中国科学院化学研究所 一种热熔邻苯二甲腈树脂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036446A1 (en) * 1998-01-15 1999-07-22 The Government Of The United States As Represented By The Secretary Of The Navy Phthalonitrile prepolymerization composition
KR100558158B1 (ko) 1997-10-02 2006-03-10 더 거번먼트 오브 더 유나이티드 스테이츠 오브 아메리카, 애즈 레프리젠티드 바이 더 세크러테리 오브 더 네이비 네이벌 리서치 래보러토리 낮은 반응성을 지닌 방향족 아민 경화제로 경화시킨섬유-강화 프탈로니트릴 조성물
CN102976972A (zh) * 2012-12-03 2013-03-20 电子科技大学 一种腈基树脂单体和聚合物及其制备方法
CN103408755A (zh) * 2013-07-09 2013-11-27 中国船舶重工集团公司第七二五研究所 一种低粘度腈基树脂单体和聚合物及其制备方法
US8981036B2 (en) * 2012-08-02 2015-03-17 The United States Of America, As Represented By The Secretary Of The Navy Synthesis of and curing additives for phthalonitriles
WO2016080762A1 (ko) * 2014-11-18 2016-05-26 주식회사 엘지화학 프탈로니트릴 수지
US20160311976A1 (en) * 2015-04-23 2016-10-27 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Phthalonitriles derived from polyphenols
KR20160146686A (ko) 2015-05-08 2016-12-21 펭 리 내장 모자이크식 광원 패키지 구조

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965268A (en) 1998-06-26 1999-10-12 The United States Of America As Represented By The Secretary Of The Navy Carbon-based composites derived from phthalonitrile resins
KR101772287B1 (ko) 2014-11-18 2017-08-29 주식회사 엘지화학 프탈로니트릴 수지
WO2016099667A1 (en) 2014-12-15 2016-06-23 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Controlling crosslinking density and processing parameters of phthalonitriles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100558158B1 (ko) 1997-10-02 2006-03-10 더 거번먼트 오브 더 유나이티드 스테이츠 오브 아메리카, 애즈 레프리젠티드 바이 더 세크러테리 오브 더 네이비 네이벌 리서치 래보러토리 낮은 반응성을 지닌 방향족 아민 경화제로 경화시킨섬유-강화 프탈로니트릴 조성물
WO1999036446A1 (en) * 1998-01-15 1999-07-22 The Government Of The United States As Represented By The Secretary Of The Navy Phthalonitrile prepolymerization composition
US8981036B2 (en) * 2012-08-02 2015-03-17 The United States Of America, As Represented By The Secretary Of The Navy Synthesis of and curing additives for phthalonitriles
CN102976972A (zh) * 2012-12-03 2013-03-20 电子科技大学 一种腈基树脂单体和聚合物及其制备方法
CN103408755A (zh) * 2013-07-09 2013-11-27 中国船舶重工集团公司第七二五研究所 一种低粘度腈基树脂单体和聚合物及其制备方法
WO2016080762A1 (ko) * 2014-11-18 2016-05-26 주식회사 엘지화학 프탈로니트릴 수지
US20160311976A1 (en) * 2015-04-23 2016-10-27 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Phthalonitriles derived from polyphenols
KR20160146686A (ko) 2015-05-08 2016-12-21 펭 리 내장 모자이크식 광원 패키지 구조

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OZER, L. M. ET AL.: "Synthesis, Characterization, OFET and Electrochemical Properties of Novel Dimeric Metallophthalocyanines", DALTON TRANSACTIONS, vol. 42, no. 18, 19 February 2013 (2013-02-19), pages 6633 - 6644, XP055421001, DOI: doi:10.1039/c3dt50212k *
See also references of EP3536734A4

Also Published As

Publication number Publication date
CN109923149B (zh) 2021-08-17
KR20180050213A (ko) 2018-05-14
EP3536734A1 (en) 2019-09-11
US20190276605A1 (en) 2019-09-12
EP3536734B1 (en) 2022-05-11
CN109923149A (zh) 2019-06-21
KR101932861B1 (ko) 2018-12-26
EP3536734A4 (en) 2019-10-30
JP6900103B2 (ja) 2021-07-07
JP2019533063A (ja) 2019-11-14
US11091592B2 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
WO2018084465A1 (ko) 중합성 조성물
WO2017095174A1 (ko) 중합성 조성물
WO2017052323A1 (ko) 프탈로니트릴 화합물
WO2018030552A1 (ko) 중합성 조성물
WO2018080088A1 (ko) 화합물
WO2017119793A2 (ko) 프탈로니트릴 수지
WO2016190621A1 (ko) 프탈로니트릴 화합물
WO2017003250A1 (ko) 프탈로니트릴 수지
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2018097496A9 (ko) 화합물
WO2017095177A2 (ko) 프탈로니트릴 화합물
WO2014200249A1 (ko) 나프탈렌 다이이미드 유도체 화합물 및 제조방법과 이를 포함하는 유기전자소자
WO2020130261A1 (ko) 가교제 화합물, 이를 포함하는 감광성 조성물, 및 이를 이용한 감광 재료
WO2016080762A1 (ko) 프탈로니트릴 수지
WO2020159193A1 (ko) 폴리이미드 전구체 조성물 및 이로부터 제조된 폴리이미드 필름, 디스플레이 장치용 기판, 및 광학 장치
WO2020045897A1 (ko) 향상된 충격 강도를 갖는 프탈로니트릴계 수지
WO2020060266A1 (ko) 프탈로니트릴 올리고머를 포함하는 3차원 프린팅용 잉크
WO2018101703A1 (ko) 중합성 조성물
WO2024049140A1 (ko) 재가공 또는 재활용이 가능한 액정성 에폭시 수지 경화물, 이의 재경화물 및 이의 제조방법
WO2020153771A1 (ko) 디아민 화합물, 및 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2015133876A1 (ko) 실세스퀴옥산 복합 고분자를 이용한 섬유코팅방법
WO2014200314A1 (ko) 고효율의 탄소 소재 원료용 고순도 피치의 제조 방법
WO2022010311A1 (ko) 폴리아릴렌 설파이드 공중합체, 이의 제조방법, 및 이로부터 제조된 성형품
WO2020204342A1 (ko) 내충격성을 갖는 내열성 에폭시 구조용 접착제 조성물 제조방법 및 이를 이용한 에폭시 구조용 접착제 조성물
WO2016060340A1 (ko) 가압 조건 하에서 수행되는 폴리이미드 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866948

Country of ref document: EP

Effective date: 20190604