WO2014200249A1 - 나프탈렌 다이이미드 유도체 화합물 및 제조방법과 이를 포함하는 유기전자소자 - Google Patents

나프탈렌 다이이미드 유도체 화합물 및 제조방법과 이를 포함하는 유기전자소자 Download PDF

Info

Publication number
WO2014200249A1
WO2014200249A1 PCT/KR2014/005096 KR2014005096W WO2014200249A1 WO 2014200249 A1 WO2014200249 A1 WO 2014200249A1 KR 2014005096 W KR2014005096 W KR 2014005096W WO 2014200249 A1 WO2014200249 A1 WO 2014200249A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
alkyl
organic semiconductor
halogen
independently
Prior art date
Application number
PCT/KR2014/005096
Other languages
English (en)
French (fr)
Inventor
김윤희
권순기
김란
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2014200249A1 publication Critical patent/WO2014200249A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]

Definitions

  • the present invention relates to an organic semiconductor compound, a method for manufacturing the same, and an organic electronic device including the same, and more particularly, to an organic semiconductor compound including a naphthalene diimide, a method for manufacturing the same, and an organic electronic device including the same.
  • Organic thin film transistors are currently the subject of intensive research due to their low manufacturing cost, large size, and the possibility of manufacturing flexible electronic devices.
  • the components of the organic thin film transistor include electrodes (source and drain), substrates and gate electrodes requiring high thermal stability, insulators having high insulation and dielectric constant, and semiconductors that transfer charges well.
  • electrodes source and drain
  • substrates and gate electrodes requiring high thermal stability
  • insulators having high insulation and dielectric constant
  • semiconductors that transfer charges well There are many problems to overcome, and the key material is organic semiconductor.
  • Organic semiconductors can be classified into low molecular organic semiconductors and high molecular organic semiconductors according to molecular weight, and are classified into n-type organic semiconductors or p-type organic semiconductors according to whether electrons or holes are transferred.
  • the low molecular organic semiconductor in general, in the case of using a low molecular organic semiconductor when forming the organic semiconductor layer, the low molecular organic semiconductor is easy to purify and can almost remove impurities, and thus has excellent charge transfer characteristics.
  • Korean Patent Laid-Open Publication No. 2008-0063803 various 1,4,5,8-naphthalene tetracarboxylic acid diimides have been prepared and used for n-type semiconductors.
  • naphthalene tetracarboxylic acid diimide derivative compounds for transistor materials with good electrical properties.
  • the present invention is to provide an organic semiconductor compound having solubility and excellent electrical properties.
  • the present invention is to provide a method for producing the organic semiconductor compound of the present invention.
  • the present invention is to provide an organic electronic device comprising an organic semiconductor compound of the present invention.
  • the present invention relates to a novel organic polymer semiconductor compound characterized by a naphthalene diimide compound and an organic electronic device including the same, wherein the organic semiconductor compound according to the present invention is represented by the following formula (1).
  • R 1 and R 2 are each independently selected from (C 1 -C 50) hydroxyalkyl, (C 1 -C 50) alkoxy and (C 1 -C 50) alkyl;
  • Z 1 to Z 4 independently of one another, hydrogen, halogen, (C 1 -C 50) hydroxyalkyl, (C 1 -C 50) alkyl, (C 1 -C 50) alkoxy, (C 6 -C 50) aryl, (C 2 -C 50) hetero Aryl, (C6-C50) ar (C1-C50) alkyl and (C6-C50) aryloxy;
  • alkoxy, aryl and heteroaryl are independently of each other halogen, (C2-C50) hetero aryl, cyano, It may be further substituted with one or more substituents selected from, and A 1 and A 2 may be further substituted with one or more substituents independently selected from halogen, cyano group and (C 1 -C 10) alkyl.
  • the present invention relates to organic semiconductor compounds for organic electronic devices such as organic thin film transistors (OTFTs) and their use. More specifically, the present invention is a novel p-type and n-type organic semiconductor compound naphthalene diimide derivative compound through the reaction of naphthalene diimide derivative and electron donor or electron drag compound and organic electron using the same as an organic semiconductor layer It relates to an element.
  • OFTs organic thin film transistors
  • aryl described in the present invention is an organic radical derived from an aromatic hydrocarbon by one hydrogen removal, and is a single or fused ring containing 4 to 7 ring atoms, preferably 5 or 6 ring atoms, as appropriate. It includes a ring system, a form in which a plurality of aryl is connected by a single bond. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, and the like.
  • heteroaryl in the present invention also includes a form in which one or more heteroaryl is connected by a single bond. For example, benzothiophene is also included in heteroaryl.
  • Z 2 and Z 3 is hydrogen
  • Z 1 and Z 4 may be an organic semiconductor compound selected from the following structures independently of each other.
  • Y is O, S, or Se
  • X is hydrogen, halogen, cyano group, ego,
  • a 1 and A 2 may be independently substituted with one or more substituents selected from halogen, cyano group and (C 1 -C 10) alkyl;
  • n is an integer of 1-3.
  • the organic semiconductor compound of the present invention can improve the electron density of the naphthalene diimide by substitution with a derivative such as the above structural formula to increase the intermolecular interaction and exhibit high mobility.
  • R 1 and R 2 of Formula 1 may be an organic semiconductor compound that is independently (C5-C30) hydroxyalkyl, (C5-C30) alkoxy or (C5-C30) alkyl.
  • the organic semiconductor compound of the present invention was able to improve solubility and improve electronic properties by substituting an alkyl group rather than an aryl group for an imide group.
  • the organic semiconductor compound according to the embodiment of the present invention may be selected from the following structures.
  • R 1 and R 2 are independently of each other selected from (C5-C30) hydroxyalkyl, (C5-C30) alkoxy and (C5-C30) alkyl;
  • X is hydrogen, halogen or cyano group
  • n is an integer of 1-3.
  • the organic semiconductor compound according to the embodiment of the present invention may be selected from the following structures.
  • the final compound may be prepared through an alkylation reaction, various coupling reactions, and the like.
  • the organic semiconductor compound according to the present invention is not limited to the following preparation method, and may be prepared by a conventional organic chemical reaction in addition to the following preparation method.
  • the solvent used in the preparation method of the present invention may be any organic solvent, but may be chloroform, chloroform, dichloromethane (DCM), dichloroethane (DCE), toluene, acetonitrile (MeCN), Nitromethane, tetrahydrofuran (THF), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA), benzene (Benzene), 1,4-dioxane (1 , 4-dioxane). Preference is given to using at least one member selected from the group consisting of acetic acid (AcOH) and oleum.
  • DCM dichloromethane
  • DCE dichloroethane
  • MeCN acetonitrile
  • Nitromethane tetrahydrofuran
  • DMF N-dimethylformamide
  • DMA N-dimethylacetamide
  • Benzene Benzene
  • Formula 11 according to an embodiment of the present invention may be a method for preparing Formula 12 by reacting with CuCN.
  • R 1 and R 2 are independently of each other selected from (C5-C30) hydroxyalkyl, (C5-C30) alkoxy and (C5-C30) alkyl;
  • Y is O, S or Se.
  • the organic semiconductor compound according to an embodiment of the present invention may be a method of preparing Chemical Formula 5 by reacting Chemical Formula 3 with Chemical Formula 4 and then preparing Chemical Formula 11 after halogenation.
  • R 1, R 2, and R 101 is Independently from each other are selected from (C5-C30) hydroxyalkyl, (C5-C30) alkoxy and (C5-C30) alkyl;
  • Y is O, S or Se.
  • the organic semiconductor compound according to the embodiment of the present invention may be a method of preparing Chemical Formula 22 by reacting Chemical Formula 3 with Chemical Formula 21.
  • R 1 and R 2 is Independently from each other are selected from (C5-C30) hydroxyalkyl, (C5-C30) alkoxy and (C5-C30) alkyl;
  • Y is O, S or Se
  • X is hydrogen, halogen, (C2-C50) hetero aryl, cyano, aldehyde, May be further substituted with one or more substituents selected from A 1 and A 2 may be further independently substituted with one or more substituents selected from halogen, cyano group and (C 1 -C 10) alkyl;
  • n is an integer from 1 to 3;
  • E is -B (OH) 2, BFK 3, , or to be.
  • the organic semiconductor compound according to the embodiment of the present invention may be a method of preparing Chemical Formula 31 by reacting Chemical Formula 22 with Chemical Formula 23.
  • R 1 and R 2 is Independently from each other are selected from (C5-C30) hydroxyalkyl, (C5-C30) alkoxy and (C5-C30) alkyl;
  • X is hydrogen, halogen, (C2-C50) hetero aryl, cyano, carboxylic acid group, May be further substituted with one or more substituents selected from A 1 and A 2 may be further independently substituted with one or more substituents selected from halogen, cyano group and (C 1 -C 10) alkyl;
  • n is an integer from 1 to 3;
  • R 5 is (C1-C10) alkyl
  • Y is O, S or Se.
  • the present invention also provides an organic electronic device comprising the organic semiconductor compound of the present invention.
  • the organic semiconductor compound of the present invention was able to prepare a novel naphthalene diimide derivative compound through the reaction of the naphthalene diimide derivative and the electron donor or electron drag compound.
  • the organic semiconductor compound of the present invention is a compound prepared by synthesizing with an unsubstituted or substituted thiophene containing a naphthalene diimide derivative and sulfur (S) has a low band gap, the organic electronic device comprising the Has efficiency.
  • the organic semiconductor compound of the present invention may be an organic semiconductor material having excellent thermal characteristics and high electrical properties while having excellent thermal stability and physical properties.
  • the organic semiconductor compound of the present invention has an advantage that can be used in various organic electronic devices in addition to the organic thin film transistor.
  • 11- is a graph showing the UV absorption in the liquid state and the UV spectrum in the solid state of the organic semiconductor compound prepared in Example 3
  • 4,9-dibromoisochromeno [6,5,4-def] isochromene-1,3,6,8-tetraone (9.50 g, 22.30 mmol) was added to a 500 mL three-neck round bottom flask, and dissolved in 200 mL of acetic acid, glacial. Octylamine (14.78 mL, 89.21 mmol) was added thereto. After reacting at 130 ° C. for 1 hour, water was added to the reaction vessel, stirred, washed with water, and filtered.
  • the prepared compound showed physical properties as shown in the table below.
  • the prepared compound showed physical properties as shown in the table below.
  • the prepared compound showed physical properties as shown in the table below.
  • the prepared compound showed physical properties as shown in the table below.
  • the prepared compound showed physical properties as shown in the table below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

본 발명의 유기 반도체 화합물은 나프탈렌 다이이미드 유도체와 전자 주게 또는 전자 끌게 화합물과 반응을 통하여 신규한 나프탈렌 다이이미드 유도체 화합물을 제조 할 수 있었다. 또한 본 발명의 유기 반도체 화합물은 나프탈렌 다이이미드 유도체와 황(S)을 포함하고 있는 비치환 또는 치환 된 티오펜과 합성하여 제조 된 화합물은 낮은 밴드갭을 나타내므로, 이를 포함하는 유기전자소자는 높은 효율을 가진다. 또한 본 발명의 유기 반도체 화합물은 열적 안정성과 물리적 특성이 우수하면서 분자간 상호작용이 높아 전기적 특성이 우수한 유기 반도체 재료가 될 수 있다. 따라서, 본 발명의 유기 반도체 화합물은 유기박막 트랜지스터 외에도 다양한 유기전자소자 전반에 사용이 가능한 장점이 있다.

Description

나프탈렌 다이이미드 유도체 화합물 및 제조방법과 이를 포함하는 유기전자소자
본 발명은 유기 반도체 화합물, 이의 제조방법 및 이를 포함하는 유기전자소자에 관한 것으로, 보다 상세하게는 나프탈렌 다이이미드를 포함하는 유기 반도체 화합물, 이의 제조방법 및 이를 포함하는 유기전자소자에 관한 것이다.
유기 박막 트랜지스터(OTFT)는 현재 특히 저렴한 제조 비용, 대형화, 플렉서블한 전자 소자의 제작 가능성으로 인해 집중 연구 활동의 대상이 되고 있다. 유기 박막 트랜지스터의 구성 요소로는 전극(소스, 드레인), 높은 열안정성이 요구되는 기판 및 게이트전극, 높은 절연성과 유전상수를 가져야 하는 절연체, 그리고 전하를 잘 이동시키는 반도체 등이 있으나, 이 중에서 가장 극복해야 할 문제점이 많으며, 핵심적인 재료는 유기반도체이다. 유기반도체는 분자량에 따라 저분자 유기반도체 및 고분자 유기반도체로 나눌 수 있으며, 전자 또는 정공전달 여부에 따라 n-형 유기반도체 또는 p-형 유기반도체로 분류한다. 일반적으로, 유기반도체층 형성시 저분자 유기반도체를 이용하는 경우, 저분자 유기반도체는 정제하기가 용이하여 불순물을 거의 제거할 수 있으므로 전하이동특성이 우수하다. 한국 공개특허 2008-0063803와 같이, 다양한 1,4,5,8-나프탈렌 테트라카복실산 다이이미드가 제조되고 n 형 반도체에 사용되고 있다. 그러나 전기적 특성이 우수한 트랜지스터 물질을 위한 신규하고 개선된 나프탈렌 테트라카복실산 다이이미드 유도체 화합물의 개발에 대한 필요성이 여전히 요구되어 지고 있다.
본 발명은 용해도와 우수한 전기 특성을 가지는 유기 반도체 화합물을 제공하고자 한다.
또한 본 발명은 본 발명의 유기 반도체 화합물을 제조하는 방법을 제공하고자 한다.
또한 본 발명은 본발명의 유기반도체 화합물을 포함하는 유기전자소자를 제공하고자 한다.
본 발명은 나프탈렌 다이이미드 화합물을 특징으로 하는 신규한 유기 고분자 반도체 화합물 및 이를 포함한 유기 전자 소자에 관한 것으로, 본 발명에 따른 유기 반도체 화합물은 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2014005096-appb-I000001
상기 화학식 1에서,
R1 및 R2는 서로 독립적으로 (C1-C50)하이드록시알킬, (C1-C50)알콕시 및 (C1-C50)알킬로부터 선택되며;
Z1 내지 Z4는 서로 독립적으로, 수소, 할로겐, (C1-C50)하이드록시알킬, (C1-C50)알킬, (C1-C50)알콕시, (C6-C50)아릴, (C2-C50)헤테로아릴, (C6-C50)아르(C1-C50)알킬 및 (C6-C50)아릴옥시로부터 선택되며;
상기 Z1 내지 Z4 알킬, 알콕시, 아릴 및 헤테로 아릴은 서로 독립적으로, 할로겐, (C2-C50)헤테로 아릴, 시아노,
Figure PCTKR2014005096-appb-I000002
으로 선택되는 하나이상의 치환기로 더 치환될 수 있으며, A1 및 A2는 서로 독립적으로 할로겐, 시아노기 및 (C1-C10)알킬로부터 선택되는 하나이상의 치환기로 더 치환될 수 있다.
본 발명은 유기박막트랜지스터(organic thin film transistors:OTFTs)등 유기 전자 소자용 유기 반도체 화합물 및 그의 용도에 관한 것이다. 보다 더 구체적으로, 본 발명은 나프탈렌 다이이미드 유도체와 전자주게 또는 전자끌게 화합물과의 반응을 통하여 신규한 p형과 n형 유기 반도체 화합물인 나프탈렌 다이이미드 유도체 화합물 및 이를 유기 반도체 층으로 사용하는 유기 전자 소자에 관한 것이다.
본 발명에 기재된 「알킬」, 「알콕시」 및 그 외 「알킬」부분을 포함하는치환체는 직쇄 또는 분쇄 형태를 모두 포함한다. 또한 본 발명에 기재된 「아릴」은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함하며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 인데닐(indenyl), 플루오레닐 등을 포함하지만, 이에 한정되지 않는다. 본 발명에 기재된 「헤테로아릴」은 방향족 고리 골격 원자로서 B, N, O, S, P(=O), Si 및 P로부터 선택되는 1 내지 4개의 헤테로원자를 포함하고, 나머지 방향족 고리 골격 원자가 탄소인 아릴 그룹을 의미하는 것으로, 5 내지 6원 단환 헤테로아릴, 및 하나 이상의 벤젠환과 축합된 다환식 헤테로아릴이며, 부분적으로 포화될 수도 있다. 또한, 본 발명에서의 헤테로아릴은 하나 이상의 헤테로아릴이 단일결합으로 연결된형태도 포함한다. 예를 들어 벤조싸이오펜도 헤테로아릴에 포함된다.
본 발명의 일 실시예에 따른 화학식 1에서 Z2 및 Z3는 수소이며, Z1 및 Z4 는 서로 독립적으로 하기 구조에서 선택되어진 유기 반도체 화합물 일 수 있다.
Figure PCTKR2014005096-appb-I000003
상기 구조식에서,
Y는 O,S, 또는 Se이며;
X는 수소, 할로겐, 시아노기,
Figure PCTKR2014005096-appb-I000004
이고,
A1 및 A2는 서로 독립적으로 할로겐, 시아노기 및 (C1-C10)알킬로부터 선택되는 하나이상의 치환기로 더 치환될 수 있으며;
n은 1 내지 3의 정수이다.
본 발명의 유기 반도체 화합물은 상기 구조식과 같은 유도체로 치환함으로써 나프탈렌 다이이미드의 전자밀도를 향상시켜 분자간 상호작용을 높여주며 높은 이동도를 나타내게 할 수 있다.
보다 더 구체적으로, 상기 화학식 1의 R1 및 R2는 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 또는 (C5-C30)알킬인 유기 반도체 화합물 일 수 있다.
본 발명의 유기 반도체 화합물은 보다 구체적으로 이미드기에 아릴기보다 알킬기를 치환함으로써 용해도를 높이고 전자특성을 향상시킬 수 있었다.
본 발명의 일 실시예에 따른 유기 반도체 화합물은 하기 구조에서 선택 될 수 있다.
Figure PCTKR2014005096-appb-I000005
상기 구조식에서,
R1 및 R2는 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 및 (C5-C30)알킬 로부터 선택되며;
X는 수소, 할로겐 또는 시아노기 이며;
n은 1 내지 3의 정수이다.
본 발명의 일 실시예에 따른 유기 반도체 화합물은 하기 구조에서 선택 될 수 있다.
Figure PCTKR2014005096-appb-I000006
Figure PCTKR2014005096-appb-I000007
Figure PCTKR2014005096-appb-I000008
Figure PCTKR2014005096-appb-I000009
Figure PCTKR2014005096-appb-I000010
본 발명에 따른 유기 반도체 화합물을 제조하기 위한 방법으로 알킬화 반응, 다양한 커플링 반응 등을 통하여 최종 화합물을 제조할 수 있다. 본 발명에 따른 유기 반도체 화합물은 하기의 제조방법으로 한정하는 것은 아니며, 하기의 제조방법 이외에도 통상의 유기 화학 반응에 의하여 제조 될 수 있다.
본 발명의 제조방법에서 사용되는 용매는 통상의 유기용매이면 모두 가능하나, 클로로포름(Chloroform), 다이클로로메탄(DCM), 다이클로로에탄(DCE), 톨루엔(Toluene), 아세토나이트릴(MeCN), 나이트로 메탄(Nitromethan), 테트라하이드로퓨란(THF), N,N-다이메틸포름아마이드 (DMF), N,N-다이메틸아세트아마이드(DMA), 벤젠(Benzene),1,4-다이옥산(1,4-dioxane). acetic acid(AcOH) 및 올렘(oleum) 으로 이루어진 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하다.
본 발명의 일 실시예에 따른 하기 화학식 11은 CuCN과 반응시켜 화학식 12를 제조하는 방법일 수 있다.
[화학식 11]
Figure PCTKR2014005096-appb-I000011
[화학식 12]
Figure PCTKR2014005096-appb-I000012
상기 화학식 11 및 12에서,
R1 및 R2는 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 및 (C5-C30)알킬로부터 선택되며;
D는 할로겐이며;
Y는 O,S 또는 Se이다.
본 발명의 일 실시예에 따른 유기 반도체 화합물은 화학식 3과 화학식 4를 반응시켜 화학식 5를 제조 후 할로겐화 반응 후 화학식 11을 제조하는 방법일 수 있다.
[화학식 3]
Figure PCTKR2014005096-appb-I000013
[화학식 4]
Figure PCTKR2014005096-appb-I000014
[화학식 5]
Figure PCTKR2014005096-appb-I000015
[화학식 11]
Figure PCTKR2014005096-appb-I000016
상기 화학식 3 , 4, 5 및 11에서,
R1, R2, R101 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 및 (C5-C30)알킬 로부터 선택되며;
D는 할로겐이며;
Y는 O,S 또는 Se이다.
본 발명의 일 실시예에 따른 유기 반도체 화합물은 화학식 3과 화학식 21을 반응시켜 화학식 22를 제조하는 방법일 수 있다.
[화학식 3]
Figure PCTKR2014005096-appb-I000017
[화학식 21]
Figure PCTKR2014005096-appb-I000018
[화학식 22]
Figure PCTKR2014005096-appb-I000019
상기 화학식 3, 화학식 21 및 화학식 22에서 ,
R1 R2 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 및 (C5-C30)알킬 로부터 선택되며;
D는 할로겐이며;
Y는 O,S 또는 Se이며;
X는 수소, 할로겐, (C2-C50)헤테로 아릴, 시아노 ,알데하이드,
Figure PCTKR2014005096-appb-I000020
으로 선택되는 하나이상의 치환기로 더 치환될 수 있으며, A1 및 A2는 서로 독립적으로 할로겐, 시아노기 및 (C1-C10)알킬로부터 선택되는 하나이상의 치환기로 더 치환될 수 있으며;
n은 1 내지 3의 정수이며;
E는 -B(OH)2, BFK3,
Figure PCTKR2014005096-appb-I000021
,
Figure PCTKR2014005096-appb-I000022
또는
Figure PCTKR2014005096-appb-I000023
이다.
본 발명의 일 실시예에 따른 유기 반도체 화합물은 하기 화학식 22와 화학식 23을 반응시켜 화학식 31을 제조하는 방법일 수 있다.
[화학식 22]
Figure PCTKR2014005096-appb-I000024
[화학식 23]
Figure PCTKR2014005096-appb-I000025
[화학식 31]
Figure PCTKR2014005096-appb-I000026
상기 화학식 22 및 31에 있어서,
R1 R2 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 및 (C5-C30)알킬 로부터 선택되며;
X는 수소, 할로겐, (C2-C50)헤테로 아릴, 시아노 ,카르복실산기,
Figure PCTKR2014005096-appb-I000027
으로 선택되는 하나이상의 치환기로 더 치환될 수 있으며, A1 및 A2는 서로 독립적으로 할로겐, 시아노기 및 (C1-C10)알킬로부터 선택되는 하나이상의 치환기로 더 치환될 수 있으며;
n은 1 내지 3의 정수이며;
화학식 23에 있어서,
R5는 (C1-C10)알킬이며;
Y는 O,S 또는 Se 이다.
또한 본 발명은 본 발명의 유기 반도체 화합물을 포함하는 유기 전자 소자를 제공한다.
본 발명의 유기 반도체 화합물은 나프탈렌 다이이미드 유도체와 전자 주게 또는 전자끌게 화합물과 반응을 통하여 신규한 나프탈렌 다이이미드 유도체 화합물을 제조 할 수 있었다.
또한 본 발명의 유기 반도체 화합물은 나프탈렌 다이이미드 유도체와 황(S)을 포함하고 있는 비치환 또는 치환 된 티오펜과 합성하여 제조 된 화합물은 낮은 밴드갭을 나타내므로, 이를 포함하는 유기전자소자는 높은 효율을 가진다.
또한 본 발명의 유기 반도체 화합물은 열적 안정성과 물리적 특성이 우수하면서 분자간 상호작용이 높아 전기적 특성이 우수한 유기 반도체 재료가 될 수 있다.
따라서, 본 발명의 유기 반도체 화합물은 유기박막 트랜지스터 외에도 다양한 유기전자소자 전반에 사용이 가능한 장점이 있다.
도 1- 실시예 1에서 제조된 유기 반도체 화합물 의 열중량분석(TGA)
도 2- 실시예 1에서 제조된 유기 반도체 화합물의 시차열량분석(DSC)
도 3- 실시예 1에서 제조 된 유기 반도체 화합물의 액체상태의 UV 흡수 및 고체 상태의 UV 스펙트럼을 나타낸 그래프
도 4- 실시예 1에서 제조 된 유기 반도체 화합물의 순환식 전압전류법(cyclic voltammetry) 곡선
도 5- 실시예 2에서 제조된 유기 반도체 화합물 의 열중량분석(TGA)
도 6- 실시예 2에서 제조된 유기 반도체 화합물의 시차열량분석(DSC)
도 7- 실시예 2에서 제조 된 유기 반도체 화합물의 액체상태의 UV 흡수 및 고체 상태의 UV 스펙트럼을 나타낸 그래프
도 8- 실시예 2에서 제조 된 유기 반도체 화합물의 순환식 전압전류법(cyclic voltammetry) 곡선
도 9- 실시예 3에서 제조된 유기 반도체 화합물 의 열중량분석(TGA)
도 10- 실시예 3에서 제조된 유기 반도체 화합물의 시차열량분석(DSC)
도 11- 실시예 3에서 제조 된 유기 반도체 화합물의 액체상태의 UV 흡수 및 고체 상태의 UV 스펙트럼을 나타낸 그래프
도 12- 실시예 3에서 제조 된 유기 반도체 화합물의 순환식 전압전류법(cyclic voltammetry) 곡선
도 13- 실시예 4에서 제조된 유기 반도체 화합물 의 열중량분석(TGA)
도 14- 실시예 4에서 제조된 유기 반도체 화합물의 시차열량분석(DSC)
도 15- 실시예 4에서 제조 된 유기 반도체 화합물의 액체상태의 UV 흡수 및 고체 상태의 UV 스펙트럼을 나타낸 그래프
도 16- 실시예 4에서 제조 된 유기 반도체 화합물의 순환식 전압전류법(cyclic voltammetry) 곡선
도 17- 실시예 5에서 제조된 유기 반도체 화합물 의 열중량분석(TGA)
도 18- 실시예 5에서 제조된 유기 반도체 화합물의 시차열량분석(DSC)
도 19- 실시예 5에서 제조 된 유기 반도체 화합물의 액체상태의 UV 흡수 및 고체 상태의 UV 스펙트럼을 나타낸 그래프
도 20- 실시예 5에서 제조 된 유기 반도체 화합물의 순환식 전압전류법(cyclic voltammetry) 곡선이다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 제조예 및 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다. 또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.
[제조예 1]
4,9-dibromoisochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone 합성
Figure PCTKR2014005096-appb-I000028
500 mL 3구 둥근 바닥 플라스크에 isochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone (17.60 g, 65.64 mmol)을 넣고 oleum 100mL로 녹인다. 또 다른 500 mL 3구 둥근 바닥 플라스크에 1,3-dibromo-1,3,5-triazinane-2,4,6-trione (18.83 g, 65.64 mmol)을 넣고 oleum (50mL)로 녹인다. 각각 1시간 동안 상온에서 교반시킨 후 oleum에 녹인 1,3-dibromo-1,3,5-triazinane-2,4,6-trione을 isochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone 용액이 들어있는 플라스크에 붓고, 40 ℃에서 5시간 동안 반응시킨다. 1000mL 비커에 얼음물을 넣고 반응물을 부은 뒤 1시간 이상 교반한다. 물로 여러 번 씻은 뒤 메탄올로 씻어 필터하여 건조시켜 연두색 고체인 4,9-dibromoisochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone을 얻었다 (26 g, 94%). 제조 된 화합물을 1H NMR 과 IR로 분석할 수 있었다.
1H NMR(300MHz,CDCl3,δ):8.71(s,2H);IR(KBr,cm-1): 1786,1746.
[제조예 2]
4,9-dibromo-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2 H ,7 H )-tetraone 합성
Figure PCTKR2014005096-appb-I000029
500 mL 3구 둥근 바닥 플라스크에 4,9-dibromoisochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone (9.50 g, 22.30 mmol)을 넣고 acetic acid, glacial 200 mL로 녹인 후 Octylamine (14.78 mL, 89.21 mmol)을 넣는다. 130 ℃에서 1시간 동안 반응시킨 후 반응 용기에 물을 넣고 교반한 뒤 물로 씻으며 필터한다. 컬럼 크로마토그래피(eluent: dichloromethane/hexane = 1/1)로 상아색 고체인 4,9-dibromo-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone를 얻었다 (2.9 g, 20%). 제조 된 화합물을 1H NMR로 분석 할 수 있었다. 1H NMR(300MHz,CDCl3,δ):9.02(s,2H), 4.23-4.18(t,4H), 1.78-1.73(m,4H), 1.44-1.30(m,20H), 0.92-0.88(t,6H)
[제조예 3]
2,7-dioctyl-4,9-di(thiophen-2-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2 H ,7 H )-tetraone의 합성
Figure PCTKR2014005096-appb-I000030
100mL 2구 둥근 바닥 플라스크에 tributyl(thiophen-2-yl)stannane (1.99 g, 5.33 mmol), 4,9-dibromo-2,7-dioctylbenzo[lmn] [3,8]phenanthroline- 1,3,6,8(2H,7H)-tetraone(1.38g,2.13mmol), tetrakis (triphenylphosphino) palladium[Pd(PPh3)4] (0.07g,0.06mmol), toluene(25mL)를 넣고 질소 기류하에서 85 ℃로 24시간 동안 반응시킨다. 반응이 끝나면 dichloromethane으로 추출하고, 컬럼 크로마토그래피로 분리(eluent: dichloromethane/hexane=2/1)하여 붉은색 고체 2,7-dioctyl-4,9-di(thiophen-2-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone을 얻었다(0.96 g, 69%). 제조 된 화합물을 1H NMR로 분석할 수 있었다. 1H NMR (300MHz,CD2Cl2,δ):8.74(s,2H), 7.62-7.61(d,2H), 7.33-7.31(d,2H), 7.25-7.22(t,2H), 4.31-4.08(t,4H), 1.75-1.63(m,4H), 1.37-1.30(m,20H), 0.92-0.88(t,6H).
[제조예 4]
4,9-bis(5-bromothiophen-2-yl)-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2 H ,7H)-tetraone의 합성
Figure PCTKR2014005096-appb-I000031
250mL 3구 둥근 바닥 플라스크에 2,7-dioctyl-4,9-di(thiophen-2-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone(0.67g,1.02mmol),N-bromosuccinimide(0.38g,2.15mmol)를 넣고 클로로포름 20 mL, 아세트산 20 mL를 넣은 다음 24시간 동안 상온에서 반응시킨다. 반응이 끝나면 용매를 제거하고 컬럼 크로마토그래피로 분리(eluent: dichloromethane/hexane=2/1)하여 붉은색 고체 4,9-bis(5-bromothiophen-2-yl)-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone을 얻었다 (0.58 g, 70%). 제조 된 화합물을 1H NMR로 분석 할 수 있었다.
1H NMR(300MHz,CD2Cl2,δ):8.72(s,2H), 7.21-7.20(d,2H), 7.11-7.10(d,2H), 4.14-4.09(t,4H), 1.73-1.65(m,4H),1.38-1.31(m,20H),0.93-0.88(t,6H).
[제조예 5]
4,9-dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2 H ,7 H )-tetraone의 합성
Figure PCTKR2014005096-appb-I000032
500 mL 3구 둥근 바닥 플라스크에 4,9-dibromoisochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone (10 g, 23.47 mmol)을 넣고 acetic acid, glacial 200 mL로 녹인 후 2-decyltetradecan-1-amine (20.75 g, 58.68 mmol)을 넣는다. 130 ℃에서 1시간 동안 반응시킨 후 반응 용기에 물을 넣고 교반한 뒤 물로 씻으며 필터한다. 컬럼 크로마토그래피(eluent: dichloromethane/hexane = 1/1)로 연어살색 고체인 4,9-dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone을 얻었다 (10.36 g, 40%). 제조 된 화합물을 1H NMR과 IR로 분석 할 수 있었다.
1H NMR(300MHz,CDCl3,δ):9.01(s,2H), 4.16-4.14(t,4H), 2.15-2.00(m,2H), 1.27(m,80H), 0.92-0.88(t,12H); IR(KBr,cm-1): 3048,2926,2846,1710,1655.
[제조예 6]
2,7-bis(2-decyltetradecyl)-4,9-di(thiophen-2-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2 H ,7 H )-tetraone의 합성
Figure PCTKR2014005096-appb-I000033
100mL 2구 둥근 바닥 플라스크에 2-tributylstannylthiophene (3.31 g, 8.86 mmol), 4,9-dibromo-2,7-bis(2-decyltetradecyl) benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H) -tetraone(3.89g,3.55mmol), tetrakis(triphenylphosphino) palladium[Pd(PPh3)4](0.12g,0.11mmol), toluene(70mL) 를 넣고 질소 기류하에서 85 ℃로 24시간 동안 반응시킨다. 반응이 끝나면 dichloromethane으로 추출하고, 컬럼 크로마토그래피로 분리(eluent: dichloromethane/hexane=1/1)하여 다홍색 고체 2,7-bis(2-decyltetradecyl)-4,9-di(thiophen-2-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone을 얻었다 (2.52 g, 71%). 제조 된 화합물을 1H NMR로 분석 할 수 있었다.
1H NMR(300MHz,CD2Cl2,δ): 8.77 (s, 2H), 7.62-7.60 (d, 2H), 7.33-7.32 (d, 2H), 7.25-7.22 (t, 2H), 4.08-4.06 (d, 4H), 1.97-1.94 (m, 2H), 1.26 (m, 80H), 0.92-0.88 (m, 12H).
[제조예 7]
4,9-bis(5-bromothiophen-2-yl)-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2 H ,7 H )-tetraone의 합성
Figure PCTKR2014005096-appb-I000034
250mL 3구 둥근 바닥 플라스크에 2,7-bis(2-decyltetradecyl)-4,9-di(thiophen-2-yl)benzo [lmn][3,8]phenanthroline- 1,3,6,8(2H,7H)- tetraone(2.00g,1.81mmol), N-bromosuccinimide(0.65g,3.62mmol) 를 넣고 클로로포름 10 mL, 아세트산 10 mL를 넣은 다음 24시간 동안 상온에서 반응시킨다. 반응이 끝나면 용매를 제거하고 컬럼 크로마토그래피로 분리(eluent: dichloromethane/hexane=1/1)하여 붉은색 고체 4,9-bis(5-bromothiophen-2-yl)-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone를 얻었다 (0.61 g, 87%). 제조 된 화합물을 1H NMR로 분석 할 수 있었다.
1H NMR(300MHz,CD2Cl2,δ):8.72(s,2H), 7.21-7.20(d,2H), 7.12-7.11(d,2H), 4.10-4.07(d,4H), 2.04(m,2H), 1.27(m,80H), 0.92-0.88(m,12H).
[제조예 8]
5,5'-(2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-2-carbaldehyde)의 합성
Figure PCTKR2014005096-appb-I000035
100mL 2구 둥근 바닥 플라스크에 4,9-dibromo-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone(0.88g,1.36mmol),(5-formylthiophen-2-yl)boronicacid(0.53g,3.4mmol),toluene15mL,2MK2CO3 2.72 mL를 천천히 주입하고 질소 기류하에서 30분 동안 교반한 다음, tetrakis(triphenylphosphino) palladium [Pd(PPh3)4](0.01g,0.01mmol)를 넣고, 85 ℃에서 24시간 동안 반응시킨다. 반응이 끝나면 용매를 제거하고, 클로로포름으로 추출한 뒤 컬럼 크로마토그래피로 분리(eluent: dichloromethane/hexane=5/1)하여 5,5'-(2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-2-carbaldehyde)를 얻었다 (0.49 g, 51%). 제조 된 화합물을 1H NMR로 분석 할 수 있었다.
1H NMR(300MHz,CD2Cl2,δ):10.04(s,2H), 8.74(s,2H), 7.95-7.90(d,2H), 7.36-7.35(d,2H), 4.19-4.07(t,4H), 1.73-1.65(m,4H), 1.48-1.30(m,20H), 0.92-0.90(t,6H).
[실시예 1]
4,9-di([2,2'-bithiophen]-5-yl)-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2 H ,7 H )-tetraone의 합성
Figure PCTKR2014005096-appb-I000036
100mL 2구 둥근 바닥 플라스크에 4,9-dibromo-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (1 g, 1.54 mmol), 2-([2,2'-bithiophen]-5-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.13 g, 3.85 mmol), tetrakis(triphenylphosphino) palladium [Pd(PPh3)4](0.05g,0.05mmol),toluene(20mL)을 넣고 질소 기류하에서 30분 동안 교반한 다음, 2M K2CO34mL를 천천히 주입하고 85 ℃로 24시간 동안 반응시킨다. 반응이 끝나면 dichloromethane으로 추출하고, 컬럼 크로마토그래피로 분리(eluent: dichloromethane/hexane=3/1)하여 남색 고체 4,9-di([2,2'-bithiophen]-5-yl)-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone을 얻었다 (1.08 g, 86%). 제조 된 화합물을 1H NMR과 질량스펙트럼으로 분석 할 수 있었다.
1H NMR(300MHz,CD2Cl2,δ):8.78(s,2H), 7.37-7.31(m,8H), 7.14-7.11(m,2H), 4.16-4.11(t,4H), 1.77-1.65(m,4H), 1.41-1.30(m,20H), 0.92-0.91(t,6H); HR-MS(EI)m/z calcd for C46H46N2O4S4(M+):818.2340;found 818.2342.
제조 된 화합물은 하기의 표와 같은 물리적특성을 나타내었다.
표 1
Td(℃) HOMO(eV) LUMO(eV) Eg(eV)
428 -5.61 -4.10 1.48
[실시예 2]
4,9-bis(benzo[ b ]thiophen-2-yl)-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2 H ,7 H )-tetraone의 합성
Figure PCTKR2014005096-appb-I000037
100mL 2구 둥근 바닥 플라스크에 4,9-dibromo-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (1 g, 1.54 mmol), benzo[b]thiophen-2-ylboronicacid(0.69g,3.86mmol),tetrakis(triphenylphosphino)palladium[Pd(PPh3)4](0.05g,0.05mmol),toluene(20mL)을 넣고 질소 기류하에서 30분 동안 교반한 다음, 2M K2CO34mL를 천천히 주입하고 85 ℃로 24시간 동안 반응시킨다. 반응이 끝나면 dichloromethane으로 추출하고, 컬럼 크로마토그래피로 분리(eluent: dichloromethane/hexane=2/1)하여 남색 고체 4,9-bis(benzo[b]thiophen-2-yl)-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone을 얻었다 (0.99 g, 85%). 제조 된 화합물을 1H NMR과 질량스펙트럼으로 분석 할 수 있었다.
1H NMR(300MHz,CD2Cl2,δ): 8.84(s,2H), 7.98-7.92(m,4H), 7.50-7.46(m,6H), 4.13-4.08(t,4H), 1.74-1.64(m,4H), 1.36-1.29(m,20H), 0.91-0.86(t,6H); HR-MS(EI)m/z calcd forC46H46N2O4S2(M+):754.2899;found 754.2898.
제조 된 화합물은 하기의 표와 같은 물리적특성을 나타내었다.
표 2
Td(℃) HOMO(eV) LUMO(eV) Eg(eV)
395 -5.85 -4.04 1.81
[실시예 3]
5,5'-(2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-2-carbonitrile)의 합성
Figure PCTKR2014005096-appb-I000038
100mL 2구 둥근 바닥 플라스크에 4,9-bis(5-bromothiophen-2-yl)-2,7-dioctylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone(0.58g,0.71mmol),cyanocopper(0.64g,7.14mmol),DMF20mL를 넣고 150 ℃로 환류시킨다. 반응이 종료되면 용매를 제거하고, 클로로포름으로 추출한 뒤, 컬럼 크로마토그래피로 분리(eluent: dichloromethane)하여 노란색 고체 5,5'-(2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-2-carbonitrile)을 얻었다 (0.4g, 80%). 제조 된 화합물을 1H NMR로 분석 할 수 있었다.
1HNMR(300MHz,CD2Cl2,δ):8.73(s,2H), 7.78-7.76(d,2H), 7.27-7.26(d,2H), 4.13-4.08(t,4H), 1.69-1.67(m,4H), 1.36-1.30(m,20H), 0.91-0.88(t,6H).
제조 된 화합물은 하기의 표와 같은 물리적 특성을 나타내었다.
표 3
Td(℃) HOMO(eV) LUMO(eV) Eg(eV)
403 -6.46 -4.13 2.48
[실시예 4]
5,5'-(2,7-bis(2-decyltetradecyl)-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-2-carbonitrile)의 합성
Figure PCTKR2014005096-appb-I000039
100mL 2구 둥근 바닥 플라스크에 4,9-bis(5-bromothiophen-2-yl)-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone(1g,0.79mmol),cyanocopper(0.21g,2.38mmol),DMF20mL를 넣고 150 ℃로 환류시킨다. 반응이 종료되면 용매를 제거하고, dichloromethane으로 추출한 뒤, 컬럼 크로마토그래피로 분리(eluent: dichloromethane/hexane=2/1)하여 노란색 고체 5,5'-(2,7-bis(2-decyltetradecyl)-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-2-carbonitrile)을 얻었다 (0.6 g, 66%). 제조 된 화합물을 1H NMR로 분석 할 수 있었다.
1H NMR(300MHz,CD2Cl2,δ):8.83(s,2H), 7.77-7.75(d,2H), 7.27-7.26(d,2H), 4.19-4.05(d,4H), 1.93(m,2H), 1.26(m,80H), 0.92-0.88(t,12H).
제조 된 화합물은 하기의 표와 같은 물리적 특성을 나타내었다.
표 4
Td(℃) HOMO(eV) LUMO(eV) Eg(eV)
402 -6.45 -4.17 2.28
[실시예 5]
2,2'-((5,5'-(2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-5,2-diyl))bis(methanylylidene))dimalononitrile의 합성
Figure PCTKR2014005096-appb-I000040
100mL 2구 둥근 바닥 플라스크에 5,5'-(2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-2-carbaldehyde) (0.49 g, 0.69 mmol), malononitile (0.11 g, 1.66 mmol), dichloromethane 10 mL, piperidine 1방울을 넣고 상온에서 3시간 동안 반응시킨다. Dichloromethane로 추출한 뒤 컬럼 크로마토그래피로 분리(eluent: hexane/ethyl acetate=5/1)하여 2,2'-((5,5'-(2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-5,2-diyl))bis(methanylylidene))dimalononitrile을 얻었다 (0.22 g, 40%). 제조 된 화합물을 1H NMR로 분석 할 수 있었다. 1HNMR(300MHz,CD2Cl2,δ):8.74(s,2H),7.72(s,2H),7.63-7.61(d,2H),7.33-7.31(d,2H), 4.13-4.08 (t, 4H), 1.72-1.67 (m, 4H), 1.37-1.30 (m, 20H), 0.92-0.88 (6H).
제조 된 화합물은 하기의 표와 같은 물리적 특성을 나타내었다.
표 5
Td(℃) HOMO(eV) LUMO(eV) Eg(eV)
429 -5.58 -4.09 1.49

Claims (10)

  1. 하기 화학식 1로 표시되는 유기 반도체 화합물.
    [화학식 1]
    Figure PCTKR2014005096-appb-I000041
    상기 화학식 1에서,
    R1 및 R2는 서로 독립적으로 (C1-C50)하이드록시알킬, (C1-C50)알콕시 및 (C1-C50)알킬로부터 선택되며;
    Z1 내지 Z4는 서로 독립적으로, 수소, 할로겐, (C1-C50)하이드록시알킬, (C1-C50)알킬, (C1-C50)알콕시, (C6-C50)아릴, (C2-C50)헤테로아릴, (C6-C50)아르(C1-C50)알킬 및 (C6-C50)아릴옥시로부터 선택되며;
    상기 Z1 내지 Z4 알킬, 알콕시, 아릴 및 헤테로 아릴은 서로 독립적으로, 할로겐, (C2-C50)헤테로 아릴, 시아노,
    Figure PCTKR2014005096-appb-I000042
    으로 선택되는 하나이상의 치환기로 더 치환될 수 있으며, A1 및 A2는 서로 독립적으로 할로겐, 시아노기 및 (C1-C10)알킬로부터 선택되는 하나이상의 치환기로 더 치환될 수 있다.
  2. 제 1항에 있어서,
    상기 화학식 1에서 Z2 및 Z3는 수소이며, Z1 및 Z4 는 서로 독립적으로 하기 구조에서 선택되어진 유기 반도체 화합물.
    Figure PCTKR2014005096-appb-I000043
    상기 구조식에서,
    Y는 O,S, 또는 Se이며;
    X는 수소, 할로겐, 시아노기,
    Figure PCTKR2014005096-appb-I000044
    이고,
    A1 및 A2는 서로 독립적으로 할로겐, 시아노기 및 (C1-C10)알킬로부터 선택되는 하나이상의 치환기로 더 치환될 수 있으며;
    n은 1 내지 3의 정수이다.
  3. 제 1항에 있어서,
    화학식 1의 R1 및 R2는 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 또는 (C5-C30)알킬인 유기 반도체 화합물.
  4. 제 1항에 있어서,
    하기 구조에서 선택되는 유기 반도체 화합물.
    Figure PCTKR2014005096-appb-I000045
    상기 구조식에서,
    R1 및 R2는 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 및 (C5-C30)알킬로부터 선택되며;
    X는 수소, 할로겐 또는 시아노기 이며;
    n은 1 내지 3의 정수이다.
  5. 제 1항에 있어서,
    하기 구조에서 선택되어진 유기 반도체 화합물.
    Figure PCTKR2014005096-appb-I000046
    Figure PCTKR2014005096-appb-I000047
    Figure PCTKR2014005096-appb-I000048
    Figure PCTKR2014005096-appb-I000049
    Figure PCTKR2014005096-appb-I000050
  6. 하기 화학식 11을 CuCN과 반응시켜 화학식 12를 제조하는 방법.
    [화학식 11]
    Figure PCTKR2014005096-appb-I000051
    [화학식 12]
    Figure PCTKR2014005096-appb-I000052
    상기 화학식 11 및 12에서,
    R1 및 R2는 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 및 (C5-C30)알킬로부터 선택되며;
    D는 할로겐이며;
    Y는 O,S 또는 Se이다.
  7. 제 6항에 있어서,
    하기 화학식 3과 화학식 4를 반응시켜 화학식 5를 제조 후 할로겐화 반응 후
    화학식 11을 제조하는 방법.
    [화학식 3]
    Figure PCTKR2014005096-appb-I000053
    [화학식 4]
    Figure PCTKR2014005096-appb-I000054
    [화학식 5]
    Figure PCTKR2014005096-appb-I000055
    [화학식 11]
    Figure PCTKR2014005096-appb-I000056
    상기 화학식 3 , 4, 5 및 11에서,
    R1, R2, R101 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 및 (C5-C30)알킬 로부터 선택되며;
    D는 할로겐이며;
    Y는 O,S 또는 Se이다.
  8. 화학식 3과 화학식 21을 반응시켜 화학식 22를 제조하는 방법.
    [화학식 3]
    Figure PCTKR2014005096-appb-I000057
    [화학식 21]
    Figure PCTKR2014005096-appb-I000058
    [화학식 22]
    Figure PCTKR2014005096-appb-I000059
    상기 화학식 3, 화학식 21 및 화학식 22에서 ,
    R1 R2 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 및 (C5-C30)알킬 로부터 선택되며;
    D는 할로겐이며;
    Y는 O,S 또는 Se이며;
    X는 수소, 할로겐, (C2-C50)헤테로 아릴, 시아노 ,알데하이드,
    Figure PCTKR2014005096-appb-I000060
    으로 선택되는 하나이상의 치환기로 더 치환될 수 있으며, A1 및 A2는 서로 독립적으로 할로겐, 시아노기 및 (C1-C10)알킬로부터 선택되는 하나이상의 치환기로 더 치환될 수 있으며;
    n은 1 내지 3의 정수이며;
    E는 -B(OH)2, BFK3,
    Figure PCTKR2014005096-appb-I000061
    ,
    Figure PCTKR2014005096-appb-I000062
    또는
    Figure PCTKR2014005096-appb-I000063
    이다.
  9. 하기 화학식 22와 화학식 23을 반응시켜 화학식 31을 제조하는 방법.
    [화학식 22]
    Figure PCTKR2014005096-appb-I000064
    [화학식 23]
    Figure PCTKR2014005096-appb-I000065
    [화학식 31]
    상기 화학식 22, 화학식 23 및 31에 있어서,
    R1 R2 서로 독립적으로 (C5-C30)하이드록시알킬, (C5-C30)알콕시 및 (C5-C30)알킬 로부터 선택되며;
    X는 수소, 할로겐, (C2-C50)헤테로 아릴, 시아노 ,카르복실산기,
    Figure PCTKR2014005096-appb-I000067
    으로 선택되는 하나이상의 치환기로 더 치환될 수 있으며, A1 및 A2는 서로 독립적으로 할로겐, 시아노기 및 (C1-C10)알킬로부터 선택되는 하나이상의 치환기로 더 치환될 수 있으며;
    n은 1 내지 3의 정수이며;
    R5는 (C1-C10)알킬이며;
    Y는 O,S 또는 Se 이다.
  10. 제 1항 내지 제 5항에서 선택되는 어느 한 항에 의한 유기반도체 화합물을 포함하는 유기전자소자.
PCT/KR2014/005096 2013-06-12 2014-06-11 나프탈렌 다이이미드 유도체 화합물 및 제조방법과 이를 포함하는 유기전자소자 WO2014200249A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0066924 2013-06-12
KR1020130066924A KR101490104B1 (ko) 2013-06-12 2013-06-12 나프탈렌 다이이미드 유도체 화합물 및 제조방법과 이를 포함하는 유기전자소자

Publications (1)

Publication Number Publication Date
WO2014200249A1 true WO2014200249A1 (ko) 2014-12-18

Family

ID=52022479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005096 WO2014200249A1 (ko) 2013-06-12 2014-06-11 나프탈렌 다이이미드 유도체 화합물 및 제조방법과 이를 포함하는 유기전자소자

Country Status (2)

Country Link
KR (1) KR101490104B1 (ko)
WO (1) WO2014200249A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105602551A (zh) * 2016-01-30 2016-05-25 武汉大学 一种以萘酰亚胺为核的近红外荧光传感分子
WO2016156546A1 (en) * 2015-03-31 2016-10-06 Sony Corporation Specific n and p active materials for organic photoelectric conversion layers in organic photodiodes
CN107531637A (zh) * 2015-03-31 2018-01-02 索尼公司 用于在有机光电二极管中的有机光电转换层的n和p活性材料
CN114188534A (zh) * 2021-12-16 2022-03-15 郑州轻工业大学 一种含硫原子的萘二酰亚胺正极材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080063803A (ko) * 2005-10-31 2008-07-07 이스트맨 코닥 캄파니 박막 트랜지스터용 n-형 반도체 물질
KR20080073303A (ko) * 2005-11-22 2008-08-08 이스트맨 코닥 캄파니 반도체 물질로서의 나프탈렌계 테트라카복실릭 다이이미드

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080063803A (ko) * 2005-10-31 2008-07-07 이스트맨 코닥 캄파니 박막 트랜지스터용 n-형 반도체 물질
KR20080073303A (ko) * 2005-11-22 2008-08-08 이스트맨 코닥 캄파니 반도체 물질로서의 나프탈렌계 테트라카복실릭 다이이미드

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUGANG GUO ET AL.: "Naphthalene Diimide-Based Polymer Semiconductors : Synthesis, Structure-Property Correlations, and n-Channel and Ambipolar Field-Effect Transistors.", CHEMISTRY OF MATERIALS., vol. 24, 2012, pages 1434 - 1442, XP055034782, DOI: doi:10.1021/cm2034273 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016156546A1 (en) * 2015-03-31 2016-10-06 Sony Corporation Specific n and p active materials for organic photoelectric conversion layers in organic photodiodes
CN107531637A (zh) * 2015-03-31 2018-01-02 索尼公司 用于在有机光电二极管中的有机光电转换层的n和p活性材料
CN107548395A (zh) * 2015-03-31 2018-01-05 索尼公司 用于有机光电二极管中的有机光电转换层的特定n和p活性材料
US10464935B2 (en) 2015-03-31 2019-11-05 Sony Corporation Specific N and P active materials for organic photoelectric conversion layers in organic photodiodes
CN107548395B (zh) * 2015-03-31 2021-05-04 索尼公司 用于有机光电二极管中的有机光电转换层的特定n和p活性材料
CN107531637B (zh) * 2015-03-31 2021-10-22 索尼公司 用于在有机光电二极管中的有机光电转换层的n和p活性材料
US11968895B2 (en) 2015-03-31 2024-04-23 Sony Corporation N and P active materials for organic photoelectric conversion layers in organic photodiodes
CN105602551A (zh) * 2016-01-30 2016-05-25 武汉大学 一种以萘酰亚胺为核的近红外荧光传感分子
CN105602551B (zh) * 2016-01-30 2017-12-26 武汉大学 一种以萘酰亚胺为核的近红外荧光传感分子
CN114188534A (zh) * 2021-12-16 2022-03-15 郑州轻工业大学 一种含硫原子的萘二酰亚胺正极材料及其制备方法和应用
CN114188534B (zh) * 2021-12-16 2024-02-02 郑州轻工业大学 一种含硫原子的萘二酰亚胺正极材料及其制备方法和应用

Also Published As

Publication number Publication date
KR20140144845A (ko) 2014-12-22
KR101490104B1 (ko) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2018062778A1 (en) Organic electroluminescent device comprising electrontransport layer and electron buffer layer
WO2019107822A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2013191404A1 (ko) 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017095174A1 (ko) 중합성 조성물
WO2013055132A2 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2022015084A1 (ko) 유기 발광 소자
WO2017052129A1 (ko) 유기전기소자용 신규 화합물, 이를 이용한 유기전기소자 및 그 전자장치
WO2011010844A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2014200249A1 (ko) 나프탈렌 다이이미드 유도체 화합물 및 제조방법과 이를 포함하는 유기전자소자
WO2013066065A1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
WO2021085969A1 (ko) 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
WO2020067800A1 (ko) 유기 발광 소자용 잉크 조성물
WO2013089443A1 (ko) 신규한 다이케토피롤로피롤 중합체 및 이를 이용한 유기 전자 소자
WO2019124903A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021060723A1 (ko) 유기전기 소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2015099450A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014061867A1 (ko) 신규한 유기 반도체 화합물 및 이의 제조방법
WO2022145775A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2015020348A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2017043797A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2012093862A2 (ko) 페나진계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2012148090A2 (ko) 터피리딘 또는 페난쓰롤린 기능기를 함유하는 새로운 구조의 디아민의 제조와 이의 응용
WO2018199699A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021080254A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2015012456A1 (ko) 신규한 전자 끌게-주게-끌게 형의 나프탈렌 다이이미드 저분자 및 이를 이용한 유기전자소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810396

Country of ref document: EP

Kind code of ref document: A1