WO2016060340A1 - 가압 조건 하에서 수행되는 폴리이미드 제조방법 - Google Patents

가압 조건 하에서 수행되는 폴리이미드 제조방법 Download PDF

Info

Publication number
WO2016060340A1
WO2016060340A1 PCT/KR2015/002006 KR2015002006W WO2016060340A1 WO 2016060340 A1 WO2016060340 A1 WO 2016060340A1 KR 2015002006 W KR2015002006 W KR 2015002006W WO 2016060340 A1 WO2016060340 A1 WO 2016060340A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
group
compound
dianhydride
prepared
Prior art date
Application number
PCT/KR2015/002006
Other languages
English (en)
French (fr)
Inventor
정찬문
유환철
이웅희
이재희
Original Assignee
연세대학교 원주산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140138973A external-priority patent/KR101709378B1/ko
Priority claimed from KR1020150015912A external-priority patent/KR101780447B1/ko
Application filed by 연세대학교 원주산학협력단 filed Critical 연세대학교 원주산학협력단
Publication of WO2016060340A1 publication Critical patent/WO2016060340A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for producing polyimide which is carried out under pressurized conditions.
  • High heat-resistant polymer material is an essential material for miniaturization, high performance, and high reliability of products according to the development of advanced technology. It can be used in space, aviation, electricity / electronics, automobile, etc. in the form of film, molded product, fiber, paint, adhesive, and composite material. And a wide range of industrial fields such as precision instruments.
  • Representative high heat-resistant polymer polyimide (PI) has excellent mechanical strength, chemical resistance, weather resistance and heat resistance based on the chemical stability of the imide ring.
  • PI polymer polyimide
  • it is easy to synthesize can be made into a thin film, has the advantage of not needing a crosslinking group for curing, and due to its excellent electrical properties, it has been spotlighted as a high functional polymer material from microelectronics to optical.
  • organic and inorganic composite materials prepared by dispersing organic materials or inorganic materials in polymer materials exhibit unique properties along with synergistic effects of the dispersing materials themselves in addition to enhancing the performance of the polymer materials themselves. .
  • polyimide prepared in the form of a composite by dispersing organic materials or inorganic materials in the polyimide shows higher mechanical and thermal properties and can adjust light transmittance, gas permeability or permittivity depending on the dispersion materials used. have.
  • a dispersing material to increase the dielectric constant of the polyimide it may be used in new fields such as organic thin film transistors that have not been used at low permittivity other than the conventional polyimide.
  • the present inventors confirmed that when the precursor material is reacted by pressing in an organic solvent for the production of polyimide, a high molecular weight polyimide having excellent mechanical properties and the like is synthesized, and a dispersion material is mixed with the high molecular weight polyimide.
  • a polyimide in the form of a composite it was confirmed that the industrial application can be further expanded because the function of the polyimide can be further diversified and improved.
  • the present invention is to produce a high molecular weight colorless transparent polyimide under relatively low temperature conditions by using a pressure vessel in the production of polyimide under a pressurized condition as described above, furthermore, Dispersion in the polyimide was intended to prepare a polyimide in the form of a composite with significantly improved physical properties.
  • a polyimide manufacturing method further comprising the step of injecting a dispersion material during or after the step a) or after the step b).
  • the polyimide prepared according to the method is fully aromatic, partially aliphatic or fully aliphatic, the number average molecular weight It provides a polyimide of 50,000 to 2,000,000.
  • the polyimide prepared according to the method wherein the polyimide is a dispersion material in a fully aromatic, partially aliphatic or fully aliphatic polyimide
  • a polyimide having a number average molecular weight of 50,000 to 2,000,000 is provided.
  • the polyimide molded article which is a polyimide film which shows 80% or more of light transmittance with respect to the light of wavelength 450nm is provided.
  • a polyimide molded article prepared in the form of a film for display by applying the polyimide composition to the substrate and then evaporating the solvent, the molded article has a yellow index of 5 or less, at a thickness of 20 ⁇ m
  • a polyimide molded article which is a polyimide film in a composite form exhibiting a light transmittance of 80% or more with respect to light having a wavelength of 450 nm.
  • the polyimide prepared by molding the polyimide by at least one method selected from the group consisting of film molding, compression molding, injection molding, slush molding, blow molding, extrusion molding and spinning methods Provide molded articles.
  • the polyimide produced is colorless and transparent, thus the industrial application range is wide.
  • fully aromatic, partially aliphatic, or fully aliphatic polyimide can be prepared, and since the polyimide has high molecular weight, excellent mechanical properties and high thermal properties Has characteristics. Furthermore, the polyimide in the form of a composite prepared by dispersing the dispersing material in the polyimide has further characteristics of improving physical properties.
  • FIG. 1 is an FT-IR spectrum of a pyromellitic dianhydride and 4,4′-oxydianiline polyimide according to Example 1.
  • FIG. 1 is an FT-IR spectrum of a pyromellitic dianhydride and 4,4′-oxydianiline polyimide according to Example 1.
  • Example 2 is an FT-IR spectrum of 1,2,4,5-cyclocyclotetracarboxylic dianhydride and 4,4′-oxydianiline polyimide according to Example 1-1.
  • Figure 8 shows the UV-Vis absorption spectrum of the polyimide composite film prepared according to Example 2-2.
  • the present invention relates to a method for producing polyimide which is carried out under pressurized conditions.
  • an imidation reaction is carried out under a pressurized condition using a pressure vessel in the production of polyimide, and the imide reaction proceeds under a relatively low temperature condition compared to the prior art. Colorless and transparent, wide range of industrial applications.
  • both fully aromatic, partially aliphatic or fully aliphatic polyimide can be prepared.
  • the prepared polyimide has high molecular weight and thus has excellent mechanical and high thermal properties.
  • the polyimide in the form of a composite prepared by dispersing the dispersing material in the polyimide has further characteristics of improving physical properties.
  • Polyimide manufacturing method is a) dianhydride compound and diamine compound, monomer salt of dianhydride compound and diamine compound, or polyamic acid compound dispersed in an organic solvent Preparing a dispersion prepared in a pressure vessel; And b) preparing a polyimide composition by subjecting the inside of the pressure vessel to pressurized conditions and carrying out an imidization reaction.
  • step a) or after the end or after the step b) may further comprise the step of introducing a dispersion material.
  • the polyimide composition obtained in the step b) may be filtered to produce a polyimide, or the polyimide composition obtained by reprecipitating and filtering may further comprise the step of producing a polyimide.
  • the method may further include evaporating the solvent of the polyimide composition obtained in step b).
  • the discharge of the solvent vapor generated in the step b) from the pressure vessel may further comprise the step of recovering by cooling and condensing it.
  • a dispersion prepared by dispersing a dianhydride compound and a diamine compound, a monomer salt of a dianhydride compound and a diamine compound, or a polyamic acid compound in an organic solvent is prepared in a pressure vessel (step a).
  • the dispersion may be prepared by dispersing a dianhydride compound and a diamine compound in an organic solvent, and according to another embodiment, the dispersion is a dianhydride compound and a diamine It may be prepared by dispersing the monomer salt of the compound in an organic solvent, according to another embodiment, the dispersion may be prepared by dispersing the polyamic acid compound in an organic solvent.
  • the step a) may be proceeded in the form of preparing a dispersion first, and then put in a pressure vessel, the dianhydride compound and diamine compound, monomer salts of dianhydride compound and diamine compound, or polyamic acid compound , And the organic solvent may be directly added to the pressure vessel, respectively, to prepare a dispersion in the pressure vessel.
  • the dianhydride compound, the diamine compound, the monomer salt of these compounds, or the polyamic acid compound may be prepared according to a general technique in the art, and the preparation method thereof is not particularly limited.
  • the dianhydride may be one or more dianhydrides selected from the group consisting of aromatic and aliphatic.
  • the dianhydride may be a dianhydride of the formula (1).
  • R 1 is the chemical structure of
  • the diamine may be at least one diamine selected from the group consisting of aromatic and aliphatic.
  • the diamine may be a diamine of the formula (2).
  • x is an integer satisfying 1 ⁇ x ⁇ 50
  • n is a natural number in the range of 1 to 20
  • W, X, Y are each an alkyl group or an aryl group having 1 to 30 carbon atoms
  • Z is an ester group , Amide group, imide group and ether group.
  • the organic solvent is N -methylpyrrolidone, N, N -dimethylacetamide, N, N -dimethylformamide, N -vinylpyrrolidone, N -methylcaprolactam , Dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, meta-cresol, gamma-butyrolactone, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol It may be one single solvent selected from the group consisting of acetate, butyl carbitol acetate, ethylene glycol, ethyl lactate, butyl lactate, cyclohexanone and cyclopentanone or two or more mixed solvents.
  • the dianhydride compound and the diamine compound, the monomer salt of the dianhydride compound and the diamine compound, or the polyamic acid compound are dispersed in an organic solvent, the dianhydride compound, the diamine compound, and the dianhydride compound
  • the amount of the monomer salt of the diamine compound, and the polyamic acid compound may be 1 to 90% by weight of the total weight of the dispersion prepared, specifically 1 to 60% by weight, more specifically 1 to 40% by weight. . If the amount is less than 1% by weight, the manufacturing cost may rise, and if it exceeds 90% by weight, stirring may be difficult.
  • the pressure vessel used may be a pressure vessel generally used in the art, the material or shape thereof is not particularly limited, the size may be changed as necessary.
  • step b the inside of the pressure vessel in which the dispersion is prepared is subjected to pressurization conditions, and an imidization reaction is performed to prepare a polyimide composition.
  • the dispersion material is added during or after the step a) or after the step b).
  • the dispersion material may be one or two or more materials selected from the group consisting of organic materials and inorganic materials.
  • the organic material or inorganic material may be processed by one or more methods selected from chemical methods that react with chemicals and physical methods including immersion in water to disperse or pulverize.
  • the organic material may be at least one selected from the group consisting of polyether ether ketone and polypropylene sulfide.
  • the inorganic material may be one or more selected from the group consisting of graphite, zinc oxide, silicate, kaolinite, smectite, graphene oxide, zirconium dioxide and carbon nanotubes.
  • the amount of the dispersion material may be 0.05 to 90% by weight based on the amount of the dianhydride compound and the diamine compound, the monomer salt of the dianhydride compound and the diamine compound, or the polyamic acid compound, in detail, 1 to 70 It may be weight percent, more specifically may be 1 to 50% by weight.
  • the amount of the dispersion is less than 0.05% by weight, it may be difficult to express the characteristics of the dispersion material in the polyimide, and when it is more than 90% by weight, the mechanical properties of the polyimide may be greatly reduced.
  • step b) may be carried out under a pressurized condition in the range of 1.1 to 1000 bar, in detail may be carried out under a pressurizing condition in the range of 1.1 to 500 bar, more specifically in a pressurizing condition in the range of 2 to 200 bar It can be performed as. If the pressure vessel is pressurized to a pressure less than 1.1 bar, it is difficult to carry out the reaction at relatively low temperature conditions, and if the pressure vessel is pressurized to a pressure higher than 1000 bar, damage to the pressure vessel may occur.
  • the pressurized condition may be achieved by a vapor pressure formed inside the pressure vessel, by an inert gas injected into the pressure vessel, or by compression of the pressure vessel, may be achieved by a combination of the above factors It may be.
  • the inert gas may be at least one gas selected from the group consisting of oxygen, argon, helium, neon, krypton and xenon.
  • the step b) may be carried out at a temperature condition in the range of 20 to 350 °C, in detail may be carried out at a temperature condition in the range of 40 to 250 °C, more specifically in the temperature conditions of 60 to 230 °C range It can be performed in.
  • the reaction time of step b) may be 10 minutes to 3 days, specifically 10 minutes to 10 hours, more specifically 10 minutes to 5 hours. If the reaction time is less than 10 minutes there may be a problem that the reaction does not proceed well, if the reaction time exceeds 3 days may be a gelation (gelation), it may be undesirable in terms of economics.
  • the polyimide composition obtained in step b) may be filtered to produce a polyimide, or the polyimide composition may be reprecipitated and filtered to prepare a polyimide.
  • the solvent used for washing the reprecipitation and filtration is selected from the group consisting of water, ethanol, methanol, isopropanol, n-butanol, n-hexane, acetone, ether, ethyl acetate, tetrahydrofuran and chloroform. It may be one or more single solvents or two or more mixed solvents.
  • step b) solvent vapor may be generated, and after the solvent vapor is discharged from the pressure vessel, the solvent vapor may be further cooled and condensed. Since the organic solvent can be recovered through the above steps, economic efficiency can be improved.
  • the polyimide prepared through the series of processes is fully aromatic, partially aliphatic or fully aliphatic, and has a number average molecular weight of 50,000 to 2,000,000. Phosphorus polyimide.
  • the polyimide prepared through the series of processes is a dispersion material in a fully aromatic, partially aliphatic or fully aliphatic polyimide
  • a polyimide in the form of a composite uniformly dispersed it may be a polyimide having a number average molecular weight of 50,000 to 2,000,000.
  • the polyimide prepared according to the present invention corresponds to a polyimide having a higher molecular weight than the polyimide prepared according to the prior art.
  • the polyimide or polyimide composition prepared above is molded by one or more methods selected from the group consisting of film molding, compression molding, injection molding, slush molding, blow molding, extrusion molding, and spinning method to produce a desired polyimide molded article. can do.
  • the manufactured polyimide molded article is a polyimide film, high heat resistance engineering plastics, adhesives, tapes, fibers, liquid crystal alignment layer, interlayer insulator, coating film resin, printed circuit board, secondary battery electrode binder or flexible display It may be a substrate.
  • a polyimide film may be prepared by applying a polyimide composition prepared according to the above method to a substrate and evaporating the solvent.
  • a polyimide composition prepared according to the above method
  • an organic solvent can be added further.
  • a polyimide film may be prepared by adding a solvent to the prepared polyimide to prepare a polyimide composition, and then coating the substrate and evaporating the solvent.
  • a small amount of additives such as a wettability improving agent, can be added to the said polyimide composition as needed.
  • the additive may be added in an amount of 0.1 to 5% by weight, and specifically 0.1 to 2% by weight, based on the polyimide composition.
  • a method of applying the polyimide composition on a substrate may include spin coating, dipping, flexo printing, inkjet printing, spraying, potting, or screen printing. Can be used. Among these methods, a bar coat coating method, a slit coating coating method, a screen printing method, a spin coating method, or the like may be preferable as a method of obtaining a thick film of 10 ⁇ m or more.
  • the polyimide film for display produced according to an embodiment of the present invention has a yellow index (Yellow Index) of 5 or less, and exhibits a light transmittance of 80% or more with respect to light having a wavelength of 450 nm at a thickness of 20 ⁇ m.
  • Yellow Index Yellow Index
  • the polyimide film for display in composite form prepared according to another embodiment of the present invention has a yellow index of 5 or less, and exhibits a light transmittance of 80% or more with respect to light having a wavelength of 450 nm at a thickness of 20 ⁇ m.
  • the yellow index and the light transmittance of the polyimide film can be adjusted according to the control of specific reaction conditions, such as the chemical structure of dianhydride and diamine, the imidization temperature in the step b) or the dosage of the dispersion material.
  • specific reaction conditions such as the chemical structure of dianhydride and diamine, the imidization temperature in the step b) or the dosage of the dispersion material.
  • the transparency is increased at lower temperatures, the yellow index is lower, and the light transmittance is further increased.
  • the reaction is carried out under pressurized conditions using a pressure vessel, so that the reaction proceeds at a relatively low temperature condition compared to the prior art, and thus the polyimide prepared is colorless and transparent and industrially.
  • a pressure vessel so that the reaction proceeds at a relatively low temperature condition compared to the prior art, and thus the polyimide prepared is colorless and transparent and industrially.
  • the solvent used in the polyimide manufacturing process can be recovered and recycled, it is economical and environmentally friendly.
  • the polyimide prepared according to the method since the polyimide prepared according to the method has a high molecular weight, it has excellent mechanical properties and high thermal properties compared to the polyimide prepared according to the conventional method.
  • the polyimide produced according to the above method is used in a wide range of industries such as aerospace, aviation, electric / electronic, semiconductor, transparent / flexible display, liquid crystal alignment film, automobile, precision instrument, packaging, medical material, separator, fuel cell and secondary battery High value for use in the field.
  • industries such as aerospace, aviation, electric / electronic, semiconductor, transparent / flexible display, liquid crystal alignment film, automobile, precision instrument, packaging, medical material, separator, fuel cell and secondary battery High value for use in the field.
  • the organic solvent vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the organic solvent vapor to recover about 180 mL of N -methylpyrrolidone.
  • Nuclear magnetic resonance analysis (NMR) of the recovered N -methylpyrrolidone confirmed that no impurities were present.
  • the organic solvent vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the organic solvent vapor to recover about 180 mL of N -methylpyrrolidone.
  • Nuclear magnetic resonance analysis (NMR) of the recovered N -methylpyrrolidone confirmed that no impurities were present.
  • the organic solvent vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the organic solvent vapor to recover about 180 mL of N -methylpyrrolidone.
  • Nuclear magnetic resonance analysis (NMR) of the recovered N -methylpyrrolidone confirmed that no impurities were present.
  • a cleaning process of a silicon wafer to be used as a substrate was performed prior to thin film fabrication. This process removes various contaminants such as particles, organic contaminants, metal contaminants and natural oxide films. Contaminants were removed by heating at 120 ° C. for 3 hours using a Piranha solution in which sulfuric acid and hydrogen peroxide were mixed at a ratio of 7: 3.
  • polyimide composition 0.20 g of the full-aliphatic polyimide synthesized according to Example 1-2 was added to 2.0 mL of N, N -dimethylacetamide or N, N -dimethylformamide to prepare a polyimide composition (or after the polyimide production reaction The obtained polyimide composition may be used as it is without undergoing reprecipitation or filtration).
  • the polyimide composition was filtered with a fine filter having a pore size of 0.2 ⁇ m, and the substrate was subjected to two-stage spin coating of 10 seconds at 500 rpm and 50 seconds at 1500 rpm, followed by annealing to remove the solvent, followed by polyimide.
  • a thin film was prepared (as another method, the polyimide composition may be cast on a substrate, and a polyimide thin film may be prepared through solvent removal and annealing).
  • Example 2 Preparation of a wholly aromatic polyimide in the form of a composite
  • the dispersion was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • the polyimide composition was cast on a substrate, heated at 100 ° C. for 2 hours to remove the solvent, and then subjected to an annealing process to prepare a polyimide film.
  • the steam was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the steam to recover about 100 mL of N -methylpyrrolidone.
  • Nuclear magnetic resonance analysis (NMR) of the recovered N -methylpyrrolidone confirmed that no impurities were present.
  • the dispersion was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • the polyimide composition was cast on a substrate, heated at 100 ° C. for 2 hours to remove the solvent, and then subjected to an annealing process to prepare a polyimide film.
  • the dispersion was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • the polyimide composition was cast on a substrate, heated at 100 ° C. for 2 hours to remove the solvent, and then subjected to an annealing process to prepare a polyimide film (FIGS. 8 and 9).
  • the dispersion was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • the polyimide composition was cast on a substrate, heated at 100 ° C. for 2 hours to remove the solvent, and then subjected to an annealing process to prepare a polyimide film.
  • the dispersion was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • the polyimide composition was cast on a substrate, heated at 100 ° C. for 2 hours to remove the solvent, and then subjected to an annealing process to prepare a polyimide film.
  • the dispersion was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller, and then the air of the pressure vessel was replaced with a nitrogen gas, the temperature was adjusted to 220 ° C., and stirred at a pressure of 20 bar for 3 hours to form a polyimide composition.
  • the polyimide composition was cast on a substrate, heated at 100 ° C. for 2 hours to remove the solvent, and then subjected to an annealing process to prepare a polyimide film.
  • the synthesized polyamic acid solution was cast on a substrate.
  • the polyimide may be obtained by heating the step by step with a hot plate and heating at this temperature for 12 hours.
  • the synthesized polyimide-siloxane was reprecipitated using distilled water. After filtration and vacuum drying, a polyamic acid was synthesized.
  • the synthesized polyamic acid solution was cast on a substrate.
  • the polyimide may be obtained by heating step by step with a hot plate and then heating at this temperature for 12 hours.
  • the C O absorption band of the imide group was observed at 1778 cm ⁇ 1 and 1714cm ⁇ 1 , and the CN absorption band of the imide group was observed at 1368 cm ⁇ 1 .
  • NMP N -methyl-2-pyrrolidone
  • the C O absorption band of the imide group was observed at 1776 cm ⁇ 1 and 1714cm ⁇ 1 , and the CN absorption band of the imide group was observed at 1367 cm ⁇ 1 .
  • N -methylpyrrolidone 10 mL N -methylpyrrolidone was added to a 50-mL two-necked round bottom flask with nitrogen gas, followed by 2.24 g (1.00 mmol) of 1,2,4,5-cyclocyclohexane carboxylic hydride and 4,4. 2.38 g (1.00 mmol) of methylenebis (2-methylcyclohexylamine) and 0.5 g of graphene oxide were added and reacted at room temperature for 24 hours.
  • the synthesized polyamic acid composition was cast on a substrate, and then stepped up to 300 ° C. in an oven or a hot plate, and then heated at this temperature for 12 hours to prepare a polyimide film.
  • the dispersion was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller. Substitute the air of the pressure vessel with a nitrogen gas, adjust the temperature to 220 ° C, and stir at a pressure of 20 bar for 3 hours to obtain polyimide. Synthesized.
  • the maximum imidization temperature is lower, the reaction time is shorter, and the reaction step is less than that of Comparative Examples 1 to 1-3, which is a conventional method.
  • the polyimide synthesis method of the present invention is simple, inexpensive and environmentally friendly compared to the conventional method.
  • the polyimide produced is colorless and transparent, thus the industrial application range is wide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 a) 다이안하이드라이드 화합물 및 다이아민 화합물, 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염, 또는 폴리아믹산 화합물을 유기용매에 분산시켜 제조한 분산액을 압력용기에 준비하는 단계; 및 b) 상기 압력용기 내부를 가압 조건으로 하고 이미드화 반응을 진행시켜 폴리이미드 조성물을 제조하는 단계를 포함하는 폴리이미드 제조방법에 관한 것으로서, 상기 방법에 따르면 폴리이미드 제조 시 종래의 기술 대비 상대적인 저온 조건에서 이미드화 반응이 진행되므로, 제조되는 폴리이미드가 무색 투명하여 산업적 응용 범위가 넓고, 높은 분자량을 가지므로 우수한 기계적 물성 및 열적 특성을 가진다.

Description

가압 조건 하에서 수행되는 폴리이미드 제조방법
본 발명은 가압 조건 하에서 수행되는 폴리이미드 제조방법에 관한 것이다.
고내열성 고분자 재료는 첨단 기술의 발달에 따라 제품의 소형경박화, 고성능화, 고신뢰화를 위한 필수적인 소재로서 필름, 성형품, 섬유, 도료, 접착제 및 복합재 등의 형태로 우주, 항공, 전기/전자, 자동차 및 정밀기기 등 광범위한 산업분야에 이용되고 있다.
대표적인 고내열성 고분자 폴리이미드(polyimide, PI)는 이미드 고리의 화학적 안정성을 기초로 하여 우수한 기계적 강도, 내화학성, 내후성, 내열성을 가진다. 뿐만 아니라 합성이 용이하고, 박막형 필름으로도 만들 수 있으며, 경화를 위한 가교기가 필요없는 장점을 가지고 있고, 뛰어난 전기적 특성으로 인해 미소전자 분야, 광학 분야 등에 이르기까지 고기능성 고분자 재료로 각광받고 있다.
한편, 최근에는 고분자 재료들 또한 연구 개발을 통해 기존의 장점을 살리고, 단점을 극복한 새로운 재료들이 개발되고 있다. 특히 이러한 연구들 중에서 고분자 재료에 유기물질 또는 무기물질 등을 분산시켜 제조한 유기·무기 복합체 재료는 고분자 재료 자체의 성능을 높여주는 효과 외에도 분산시키는 재료 자체의 시너지 효과와 함께 독특한 성질을 나타내기도 한다.
이러한 방법을 통해 폴리이미드에 유기물질 또는 무기물질 등을 분산시켜 복합체 형태로 제조된 폴리이미드는 사용되는 분산물질에 따라 더 높은 기계적, 열적 성질을 보여주기도 하고 광투과도, 기체투과도 또는 유전율을 조절할 수 있다. 예를 들어 분산물질을 첨가하여 폴리이미드의 유전율을 높임으로써 기존의 폴리이미드가 사용되었던 분야 이외에도 낮은 유전율로 사용되지 못했던 유기박막트랜지스터등과 같은 새로운 분야에 사용이 가능할 수 있다.
한편, 본 발명자들은 폴리이미드 제조를 위하여 전구체 물질을 유기용매 중에서 가압하여 반응시키면 기계적 특성 등이 매우 우수한 고분자량의 폴리이미드가 합성되는 점을 확인하였으며, 이러한 고분자량의 폴리이미드에 분산물질을 혼합하여 복합체 형태의 폴리이미드를 제조하는 경우 폴리이미드의 기능을 더욱 다양화하고 성능을 향상시킬 수 있어 산업적 응용이 보다 확대될 수 있다는 점을 확인하였다.
본 발명은 상기한 바와 같이 폴리이미드 제조 시 압력용기를 사용하여 가압 조건 하에서 이미드화 반응을 진행함으로써, 종래의 기술 대비 상대적인 저온 조건 하에서 고분자량의 무색 투명한 폴리이미드를 제조하고자 하였으며, 나아가 분산물질을 폴리이미드 내에 분산시켜 물성이 현저히 향상된 복합체 형태의 폴리이미드를 제조하고자 하였다.
상기와 같은 과제를 달성하기 위한 본 발명의 일실시예에서는, a) 다이안하이드라이드 화합물 및 다이아민 화합물, 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염, 또는 폴리아믹산 화합물을 유기용매에 분산시켜 제조한 분산액을 압력용기에 준비하는 단계; 및 b) 상기 압력용기 내부를 가압 조건으로 하고 이미드화 반응을 진행시켜 폴리이미드 조성물을 제조하는 단계를 포함하는 폴리이미드 제조방법을 제공한다.
한편, 본 발명의 일실시예에서, 상기 a) 단계 도중이나 종료 후 또는 b) 단계 종료 후에 분산물질을 투입하는 단계를 더 포함하는 폴리이미드 제조방법을 제공한다.
한편, 본 발명의 일실시예에서, 상기 방법에 따라 제조된 폴리이미드로서, 상기 폴리이미드는 전방향족(fully aromatic), 부분지방족(partially aliphatic) 또는 전지방족(fully aliphatic)이고, 수평균 분자량이 50,000 내지 2,000,000인 폴리이미드를 제공한다.
한편, 본 발명의 일실시예에서, 상기 방법에 따라 제조된 폴리이미드로서, 상기 폴리이미드는 전방향족(fully aromatic), 부분지방족(partially aliphatic) 또는 전지방족(fully aliphatic) 폴리이미드 내에 분산물질이 균일하게 분산되어 있는 복합체 형태의 폴리이미드로서, 수평균 분자량이 50,000 내지 2,000,000인 폴리이미드를 제공한다.
한편, 본 발명의 일실시예에서, 상기 폴리이미드 조성물을 기판에 도포한 후 용매를 증발시켜 디스플레이용 필름 형태로 제조한 폴리이미드 성형품으로서, 상기 성형품은 황색지수가 5이하이며, 20㎛ 두께에서 파장 450㎚의 빛에 대하여 80% 이상의 광투과율을 나타내는 폴리이미드 필름인 폴리이미드 성형품을 제공한다.
한편, 본 발명의 일실시예에서, 상기 폴리이미드 조성물을 기판에 도포한 후 용매를 증발시켜 디스플레이용 필름 형태로 제조한 폴리이미드 성형품으로서, 상기 성형품은 황색지수가 5이하이며, 20㎛ 두께에서 파장 450㎚의 빛에 대하여 80% 이상의 광투과율을 나타내는 복합체 형태의 폴리이미드 필름인 폴리이미드 성형품을 제공한다.
한편, 본 발명의 일실시예에서, 상기 폴리이미드를 필름성형, 압축성형, 사출성형, 슬러시성형, 중공성형, 압출성형 및 방적방법으로 이루어지는 군에서 선택되는 하나 이상의 방법으로 성형하여 제조한 폴리이미드 성형품을 제공한다.
본 발명에 따르면 이미드화 반응이 종래의 기술 대비 상대적인 저온 조건에서 수행되기 때문에 제조되는 폴리이미드가 무색 투명하여 산업적 응용 범위가 넓다.
또한, 본 발명에 따르면 폴리이미드 제조에 있어 다른 제조 방법과 달리 제조 단계가 적으며 제조 시간이 짧고, 촉매를 사용하지 않아 매우 경제적이다.
또한, 본 발명에 따른 방법으로 폴리이미드를 제조할 때, 제조된 조성물을 그대로 사용하여 필름과 같은 성형품을 별도의 단계를 거치지 않고 제조할 수 있으므로 매우 경제적이다.
또한, 본 발명에 따르면 전방향족(fully aromatic), 부분지방족(partially aliphatic) 또는 전지방족(fully aliphatic) 폴리이미드를 모두 제조할 수 있으며, 상기 폴리이미드는 높은 분자량을 가지기 때문에 우수한 기계적 물성 및 높은 열적 특성을 가진다. 나아가 분산물질을 폴리이미드 내에 분산시켜 제조한 복합체 형태의 폴리이미드는 물성이 더욱 향상되는 특징이 있다.
또한, 본 발명에 따르면 폴리이미드 제조 과정에서 사용된 용매를 회수하여 재활용할 수 있게 되므로 경제적이고 친환경적이다.
도 1은 실시예 1에 따른 피로멜리틱 다이안하이드라이드와 4,4′-옥시다이아닐린 폴리이미드의 FT-IR 스펙트럼이다.
도 2는 실시예 1-1에 따른 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 4,4′-옥시다이아닐린 폴리이미드의 FT-IR 스펙트럼이다.
도 3은 실시예 1-2에 따른 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 폴리이미드의 FT-IR 스펙트럼이다.
도 4는 비교예 1에 따른 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드와 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼이다.
도 5는 비교예 1-1에 따른 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼이다.
도 6은 비교예 1-2에 따른 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼이다.
도 7은 비교예 1-3에 따른 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드와 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼이다.
도 8은 실시예 2-2에 따라 제조된 폴리이미드 복합체 필름의 UV-Vis 흡수 스펙트럼을 나타낸 것이다.
도 9는 실시예 2-2에 따라 제조된 폴리이미드 복합체 필름의 사진을 나타낸 것이다.
본 발명은 가압 조건 하에서 수행되는 폴리이미드 제조방법에 관한 것이다.
본 발명에 따른 폴리이미드 제조방법은 폴리이미드 제조 시 압력용기를 사용하여 가압 조건 하에서 이미드화 반응을 진행함으로써, 종래의 기술 대비 상대적인 저온 조건 하에서 이미드 반응이 진행되고, 이에 따라 제조되는 폴리이미드는 무색 투명하여 산업적 응용 범위가 넓다.
또한, 본 발명에 따르면 전방향족(fully aromatic), 부분지방족(partially aliphatic) 또는 전지방족(fully aliphatic) 폴리이미드를 모두 제조할 수 있다. 또한, 제조된 폴리이미드는 높은 분자량을 가지기 때문에 우수한 기계적 물성 및 높은 열적 특성을 가진다. 나아가 분산물질을 폴리이미드 내에 분산시켜 제조한 복합체 형태의 폴리이미드는 물성이 더욱 향상되는 특징이 있다.
또한, 본 발명에 따르면 폴리이미드 제조 과정에서 사용된 용매를 회수하여 재활용할 수 있게 되므로 경제적이고 친환경적이다.
이하, 본 발명을 더욱 상세히 설명한다.
폴리이미드 제조
본 발명의 목적을 달성하기 위한 일실시예에 따른 폴리이미드 제조방법은 a) 다이안하이드라이드 화합물 및 다이아민 화합물, 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염, 또는 폴리아믹산 화합물을 유기용매에 분산시켜 제조한 분산액을 압력용기에 준비하는 단계; 및 b) 상기 압력용기 내부를 가압 조건으로 하고 이미드화 반응을 진행시켜 폴리이미드 조성물을 제조하는 단계를 포함한다.
한편, 상기 a) 단계 도중이나 종료 후 또는 b) 단계 종료 후에 분산물질을 투입하는 단계를 더 포함할 수 있다.
한편, 상기 b) 단계에서 얻어진 폴리이미드 조성물을 여과하여 폴리이미드를 제조하거나, 또는 상기 얻어진 폴리이미드 조성물을 재침전하고 여과하여 폴리이미드를 제조하는 단계를 더 포함할 수 있다.
한편, 상기 b) 단계에서 얻어진 폴리이미드 조성물의 용매를 증발시키는 단계를 더 포함할 수 있다.
한편, 상기 b) 단계에서 생성된 용매 증기를 상기 압력용기로부터 배출시킨 후 이를 냉각 및 응축하여 회수하는 단계를 더 포함할 수 있다.
상세하게 설명하면, 우선 다이안하이드라이드 화합물 및 다이아민 화합물, 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염, 또는 폴리아믹산 화합물을 유기용매에 분산시켜 제조한 분산액을 압력용기에 준비한다(단계 a).
본 발명의 일실시예에서 따르면, 상기 분산액은 다이안하이드라이드 화합물 및 다이아민 화합물을 유기용매에 분산시켜 제조한 것일 수 있고, 또 다른 일실시예에 따르면, 상기 분산액은 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염을 유기용매에 분산시켜 제조한 것일 수 있으며, 또 다른 일실시예에 따르면, 상기 분산액은 폴리아믹산 화합물을 유기용매에 분산시켜 제조한 것일 수 있다.
한편, 상기 a) 단계는 먼저 분산액을 제조한 다음 압력용기에 투입하는 형태로 진행될 수도 있고, 상기 다이안하이드라이드 화합물 및 다이아민 화합물, 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염, 또는 폴리아믹산 화합물, 및 유기용매를 압력용기에 각각 직접 투입하여 압력용기 내에서 분산액을 제조하는 형태로 진행될 수도 있다.
상기 다이안하이드라이드 화합물, 다이아민 화합물, 이들 화합물의 단량체 염, 또는 폴리아믹산 화합물은 당해 기술분야에서 일반적인 기술에 따라 제조된 것일 수 있으며, 그 제조방법이 특별히 제한되는 것은 아니다.
본 발명의 일실시예에서 상기 다이안하이드라이드는 방향족 및 지방족으로 이루어지는 군에서 선택되는 1종 이상의 다이안하이드라이드일 수 있다.
한편, 본 발명의 일실시예에서 상기 다이안하이드라이드는 하기 화학식 1의 다이안하이드라이드일 수 있다.
Figure PCTKR2015002006-appb-I000001
<화학식 1>
(상기 화학식 1에서 R1은 아래의 화학구조
Figure PCTKR2015002006-appb-I000002
Figure PCTKR2015002006-appb-I000003
Figure PCTKR2015002006-appb-I000004
Figure PCTKR2015002006-appb-I000005
로 이루어지는 군에서 선택된다.)
본 발명의 일실시예에서 상기 다이아민은 방향족 및 지방족으로 이루어지는 군에서 선택되는 1종 이상의 다이아민일 수 있다.
한편, 본 발명의 일실시예에서 상기 다이아민은 하기 화학식 2의 다이아민일 수 있다.
Figure PCTKR2015002006-appb-I000006
<화학식 2>
(상기 화학식 2에서 R2는 아래의 화학구조
Figure PCTKR2015002006-appb-I000007
Figure PCTKR2015002006-appb-I000008
Figure PCTKR2015002006-appb-I000009
Figure PCTKR2015002006-appb-I000010
Figure PCTKR2015002006-appb-I000011
Figure PCTKR2015002006-appb-I000012
Figure PCTKR2015002006-appb-I000013
Figure PCTKR2015002006-appb-I000014
Figure PCTKR2015002006-appb-I000015
Figure PCTKR2015002006-appb-I000016
Figure PCTKR2015002006-appb-I000017
Figure PCTKR2015002006-appb-I000018
로 이루어지는 군에서 선택된다. 한편, 상기 x는 1≤x≤50을 만족하는 정수이고, 상기 n은 1 내지 20 범위의 자연수이며, W, X, Y는 각각 탄소수 1 내지 30 사이의 알킬기 또는 아릴기이고, Z는 에스테르기, 아미드기, 이미드기 및 에테르기로 이루어지는 군에서 선택된다.)
한편, 본 발명의 일실시예에서 상기 유기용매는 N-메틸피롤리돈, N,N-다이메틸아세트아미드, N,N-다이메틸포름아미드, N-비닐피롤리돈, N-메틸카프로락탐, 디메틸술폭시드, 테트라메틸요소, 피리딘, 디메틸술폰, 헥사메틸술폭시드, 메타-크레졸, 감마-부티로락톤, 에틸셀로솔브, 부틸셀로솔브, 에틸카르비톨, 부틸카르비톨, 에틸카르비톨 아세테이트, 부틸카르비톨 아세테이트, 에틸렌글리콜, 젖산에틸, 젖산부틸, 시클로헥사논 및 시클로펜타논으로 이루어지는 군에서 선택되는 1종의 단일 용매 또는 2종 이상의 혼합 용매일 수 있다.
한편, 상기 다이안하이드라이드 화합물 및 다이아민 화합물, 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염, 또는 폴리아믹산 화합물을 유기용매에 분산시킬 때, 상기 다이안하이드라이드 화합물 및 다이아민 화합물, 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염, 또는 폴리아믹산 화합물의 양은 제조되는 분산액 총 중량의 1 내지 90 중량%일 수 있으며, 상세하게는 1 내지 60 중량%, 더욱 상세하게는 1 내지 40 중량%일 수 있다. 상기 양이 1 중량% 미만인 경우 제조 원가가 상승할 수 있고, 90 중량%를 초과하는 경우 교반이 어려울 수 있다.
한편, 상기 사용되는 압력용기는 당해 기술분야에서 일반적으로 사용하는 압력용기일 수 있으며, 그 재질 또는 형상 등이 특별히 제한되는 것은 아니며, 필요에 따라 그 크기는 달라질 수 있다.
다음으로, 상기 분산액이 준비된 압력용기의 내부를 가압 조건으로 하고 이미드화 반응을 진행시켜 폴리이미드 조성물을 제조한다(단계 b).
한편, 상기 a) 단계 도중이나 종료 후 또는 b) 단계 종료 후에 분산물질을 투입한다.
본 발명의 일실시예에서, 상기 분산물질은 유기계 물질 및 무기계 물질로 이루어지는 군에서 선택되는 1종 또는 2종 이상의 물질일 수 있다. 한편, 상기 유기계 물질 또는 무기계 물질은 화학약품과 반응시키는 화학적 방법 및 물에 침지시켜 분산하거나 또는 분쇄하는 방법을 포함하는 물리적 방법 중 선택되는 하나 이상의 방법에 의해 처리된 것일 수 있다.
한편, 본 발명의 일실시예에서, 상기 유기계 물질은 폴리에테르 에테르케톤 및 폴리프로필렌 설파이드로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
한편, 본 발명의 일실시예에서, 상기 무기계 물질은 그라파이트, 산화아연, 실리케이트, 카올리나이트, 스멕타이트, 그래핀 옥사이드, 이산화 지르코늄 및 탄소 나노튜브로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
상기 분산물질의 투입량은 상기 다이안하이드라이드 화합물 및 다이아민 화합물, 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염, 또는 폴리아믹산 화합물의 양 대비 0.05 내지 90 중량%일 수 있으며, 상세하게는 1 내지 70 중량%일 수 있으며, 더욱 상세하게는 1 내지 50 중량%일 수 있다. 상기 분산물질의 투입량이 0.05 중량% 미만인 경우 폴리이미드 내에서 분산물질 고유의 특성을 발현하기 어려울 수 있고, 90 중량% 초과인 경우 폴리이미드의 기계적 물성이 크게 감소할 수 있다.
한편, 상기 b) 단계는 1.1 내지 1000 bar 범위의 가압 조건에서 수행될 수 있고, 상세하게는 1.1 내지 500 bar 범위의 가압 조건에서 수행될 수 있으며, 더욱 상세하게는 2 내지 200 bar 범위의 가압 조건으로 수행될 수 있다. 압력용기를 1.1 bar 미만의 압력으로 가압하는 경우 상대적인 저온 조건에서 반응이 수행되기 어려우며, 1000 bar 초과의 압력으로 가압하는 경우 압력용기의 손상이 일어날 수 있다.
한편, 상기 가압 조건은 압력용기 내부에서 형성된 증기압에 의해 달성되거나, 압력용기 내부에 주입된 불활성 기체에 의해 달성되거나, 또는 압력용기의 압축에 의해 달성될 수 있으며, 상기 요인들의 조합에 의해 달성될 수도 있다. 한편, 상기 불활성 기체는 산소, 아르곤, 헬륨, 네온, 크립톤 및 크세논으로 이루어지는 군에서 선택되는 하나 이상의 기체일 수 있다.
한편, 상기 b)단계는 20 내지 350℃ 범위의 온도 조건에서 수행될 수 있고, 상세하게는 40 내지 250 ℃ 범위의 온도 조건에서 수행될 수 있으며, 더욱 상세하게는 60 내지 230℃ 범위의 온도 조건에서 수행될 수 있다. 상기 단계의 온도를 20℃ 미만으로 하는 경우, 반응 속도가 지나치게 느려 폴리이미드 제조가 사실상 어려워지며, 온도를 350℃ 초과로 한 경우, 폴리이미드 제조에 있어 제조비용이 지나치게 상승할 수 있으며, 단량체 및 제조되는 폴리이미드의 열분해가 일어날 수 있다. 한편, 본 발명의 일실시예에서, 상기 b)단계의 반응 시간은 10분 내지 3일일 수 있으며, 상세하게는 10분 내지 10시간, 더욱 상세하게는 10분 내지 5시간일 수 있다. 반응 시간이 10분 미만인 경우에는 반응이 잘 진행되지 않는 문제점이 있을 수 있고, 반응 시간이 3일을 초과하는 경우에는 겔화(gelation)가 일어날 수 있으며, 경제성 면에서도 바람직하지 못할 수 있다.
한편, 상기 b) 단계에서 얻어진 폴리이미드 조성물로부터 용매를 증발시키게 되면 폴리이미드가 제조된다.
한편, 상기 b) 단계에서 얻어진 폴리이미드 조성물을 여과하여 폴리이미드를 제조하거나, 또는 상기 얻어진 폴리이미드 조성물을 재침전하고 여과하여 폴리이미드를 제조할 수도 있다.
상기 재침전, 및 여과 시 세정에 사용되는 용매는 물, 에탄올, 메탄올, 아이소프로판올, n-부탄올, n-헥세인, 아세톤, 에테르, 에틸아세테이트, 테트라하이드로퓨란 및 클로로폼으로 이루어지는 군에서 선택되는 1종 이상의 단일 용매 또는 2종 이상의 혼합 용매일 수 있다.
한편, 상기 b) 단계에서 용매 증기가 생성될 수 있는데, 상기 용매 증기를 압력용기로부터 배출시킨 후, 이를 냉각 및 응축하여 회수하는 단계를 더 포함할 수 있다. 상기 단계를 통하여 유기용매를 회수할 수 있게 되므로, 경제성이 향상될 수 있다.
본 발명의 일실시예에 따르면, 상기 일련의 과정을 거쳐 제조되는 폴리이미드는, 전방향족(fully aromatic), 부분지방족(partially aliphatic) 또는 전지방족(fully aliphatic)이고, 수평균 분자량이 50,000 내지 2,000,000인 폴리이미드일 수 있다.
한편, 본 발명의 또 다른 일실시예에 따르면, 상기 일련의 과정을 거쳐 제조되는 폴리이미드는 전방향족(fully aromatic), 부분지방족(partially aliphatic) 또는 전지방족(fully aliphatic) 폴리이미드 내에 분산물질이 균일하게 분산되어 있는 복합체 형태의 폴리이미드로서, 수평균 분자량이 50,000 내지 2,000,000인 폴리이미드일 수 있다.
상기 본 발명에 따라 제조된 폴리이미드는 종래의 기술에 따라 제조된 폴리이미드 대비 높은 분자량을 가진 폴리이미드에 해당한다.
폴리이미드 성형품 제조
한편, 상기 제조된 폴리이미드 또는 폴리이미드 조성물을 필름성형, 압축성형, 사출성형, 슬러시성형, 중공성형, 압출성형 및 방적방법으로 이루어지는 군에서 선택되는 하나 이상의 방법으로 성형하여 원하는 폴리이미드 성형품을 제조할 수 있다.
본 발명의 일실시예에서, 상기 제조된 폴리이미드 성형품은 폴리이미드 필름, 고내열성 엔지니어링 플라스틱, 접착제, 테이프, 섬유, 액정 배향막, 층간 절연체, 코팅막 수지, 인쇄회로 기판, 이차전지용 전극 바인더 또는 플렉서블 디스플레이 기판일 수 있다.
폴리이미드 필름 제조
본 발명의 일실시예에 따르면 상기 방법에 따라 제조된 폴리이미드 조성물을 기판에 도포하고 용매를 증발시킴으로써 폴리이미드 필름을 제조할 수 있다. 단, 폴리이미드 조성물의 점도를 낮추어야 할 필요가 있는 경우에는 유기용매를 추가로 투입할 수 있다.
한편, 본 발명의 또 다른 일실시예에서는 상기 제조된 폴리이미드에 용매를 투입하여 폴리이미드 조성물을 제조한 후 기판에 도포하고 용매를 증발시킴으로써 폴리이미드 필름을 제조할 수도 있다.
상기 폴리이미드 조성물에는 필요에 따라 젖음성 향상제 등의 첨가제를 소량 첨가할 수 있다. 첨가제는 폴리이미드 조성물에 대하여 0.1 내지 5중량% 첨가할 수 있으며, 상세하게는 0.1 내지 2중량% 첨가할 수 있다.
한편, 본 발명의 일실시예에서, 상기 폴리이미드 조성물을 기판 상에 도포하는 방법으로는 스핀 도포법, 침지법, 프렉소 인쇄법, 잉크젯 인쇄법, 분사법, 포팅법 또는 스크린 인쇄법 등이 사용될 수 있다. 이들 방법 중 10㎛ 이상의 두꺼운 막을 얻는 방법으로는 바코트 도포법, 슬릿코팅 도포법, 스크린 인쇄법, 스핀 도포법 등이 바람직할 수 있다.
본 발명의 일실시예에 따라 제조되는 디스플레이용 폴리이미드 필름은 황색지수(Yellow Index)가 5 이하이며, 20㎛ 두께에서 파장 450㎚의 빛에 대하여 80% 이상의 광투과율을 나타낸다.
또한, 본 발명의 또 다른 일실시예에 따라 제조되는 복합체 형태의 디스플레이용 폴리이미드 필름은 황색지수가 5이하이며, 20㎛ 두께에서 파장 450㎚의 빛에 대하여 80% 이상의 광투과율을 나타낸다.
한편, 상기 폴리이미드 필름의 황색지수 및 광투과율은 다이안하이드라이드 및 다이아민의 화학구조, 상기 b) 단계에서의 이미드화 온도 또는 분산물질의 투입량 등과 같은 구체적인 반응 조건의 제어에 따라 조절이 가능하다. 예를 들어, 상기 이미드화 온도 범위 내에서도 보다 저온 조건인 경우 투명도가 증가하여, 황색지수는 더 낮아지며, 광투과율은 더욱 증가한다.
이상 설명한 바와 같이 가압 조건 하에서 폴리이미드를 제조하는 본 발명에 따르면 압력용기를 사용한 가압 조건에서 반응을 시키므로, 종래 기술 대비 상대적인 저온 조건에서 반응이 진행되고, 이에 따라 제조되는 폴리이미드는 무색 투명하여 산업적 응용 범위가 넓다.
한편, 본 발명에 따르면 폴리이미드 제조 과정에서 사용된 용매를 회수하여 재활용할 수 있게 되므로 경제적이고 친환경적이다.
또한, 상기 방법에 따라 제조되는 폴리이미드는 높은 분자량을 가지기 때문에, 종래의 방법에 따라 제조된 폴리이미드 대비 우수한 기계적 물성 및 높은 열적 특성을 가진다.
특히, 상기 방법에 따라 제조되는 폴리이미드는 우주, 항공, 전기/전자, 반도체, 투명/유연 디스플레이, 액정 배향막, 자동차, 정밀기기, 패키징, 의료용 소재, 분리막, 연료전지 및 2차전지 등 광범위한 산업분야에 이용 가치가 높다.
이하, 본 발명의 실시예 및 실험예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예 및 실험예는 본 발명의 이해를 돕기 위한 것이고 본 발명의 권리범위를 이로 한정하는 것을 의도하지 않는다.
실시예
실시예 1: 전방향족 폴리이미드의 제조
피로멜리틱 다이안하이드라이드 22.6 g과 4,4’-옥시다이아닐린 21.1g을 N-메틸피롤리돈 200mL에 분산시켰다. 상기 분산액을 교반기, 질소주입장치, 온도조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다. 반응 혼합물을 여과하여 고체를 얻은 후 건조하여 중합체 분말을 얻었다.
합성된 중합체의 적외선흡수스펙트럼(도 1)에서는 1777cm-1와 1725cm-1에서 이미드기의 C=O 흡수띠, 1378cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
상기 폴리이미드 제조반응이 종료한 후 압력용기로부터 유기용매 증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 유기용매 증기를 냉각 및 응축시켜 약 180mL의 N-메틸피롤리돈을 회수하였다. 회수된 N-메틸피롤리돈의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다.
실시예 1-1: 부분지방족 폴리이미드의 제조
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.60g과 4,4’-옥시다이아닐린 5.00g을 N-메틸피롤리돈 200mL에 분산시켰다. 상기 분산액을 교반기, 질소주입장치, 온도조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다. 반응 혼합물을 물에 넣어 재침전하고 여과하여 고체를 얻은 후 건조하여 중합체 분말을 얻었다.
합성된 중합체의 적외선흡수스펙트럼(도 2)에서는 1785cm-1와 1718cm-1에서 이미드기의 C=O 흡수띠, 1394cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
상기 폴리이미드 제조반응이 종료한 후 압력용기로부터 유기용매 증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 유기용매 증기를 냉각 및 응축시켜 약 180mL의 N-메틸피롤리돈을 회수하였다. 회수된 N-메틸피롤리돈의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다.
실시예 1-2: 전지방족 폴리이미드의 제조
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.96g와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 5.60g을 N-메틸피롤리돈 200mL에 넣고 분산시켰다. 상기 분산액을 교반기, 질소주입장치, 온도조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다. 반응 혼합물을 물에 넣어 재침전하고 여과하여 고체를 얻은 후 건조하여 중합체 분말을 얻었다.
합성된 중합체의 적외선흡수스펙트럼(도 3)에서는 1782cm-1와 1700cm-1에서 이미드기의 C=O 흡수띠, 1377cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
상기 폴리이미드 제조반응이 종료한 후 압력용기로부터 유기용매 증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 유기용매 증기를 냉각 및 응축시켜 약 180mL의 N-메틸피롤리돈을 회수하였다. 회수된 N-메틸피롤리돈의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다.
실시예 1-3: 폴리이미드 박막 제조
박막 제조에 앞서 기판으로 사용할 실리콘 웨이퍼의 세정 공정을 실시하였다. 이 공정을 통하여 파티클(particle)이나 유기 오염물, 금속 오염물 그리고 자연 산화막 등의 다양한 오염물들이 제거된다. 황산과 과산화수소를 7:3의 비로 혼합한 피라나(Piranha)용액을 이용하여 120℃로 3시간 가열하여 오염물을 제거해 주었다.
실시예 1-2에 따라 합성된 전지방족 폴리이미드 0.20g을 2.0 mL의 N,N-디메틸아세트아마이드 또는 N,N-디메틸포름아마이드에 넣어 폴리이미드 조성물을 제조하였다(또는, 폴리이미드 제조 반응 후 얻어지는 폴리이미드 조성물을 재침전 또는 여과를 거치지 않고 그대로 사용할 수도 있다). 상기 폴리이미드 조성물을 0.2㎛의 세공 크기를 갖고 있는 미세필터로 여과하고 기판에 500rpm으로 10초, 1500rpm으로 50초의 2단계 회전도포(spin coating)한 뒤 용매를 제거한 후 아닐링 과정을 거쳐 폴리이미드 박막을 제조하였다(또 다른 방법으로서, 기판 위에 폴리이미드 조성물을 캐스팅(casting)하고, 용매 제거와 아닐링 과정을 거쳐 폴리이미드 박막을 제조할 수도 있다).
실시예 2: 복합체 형태의 전방향족 폴리이미드 제조
2,2'-비스-(3,4-다이카르복시페닐)헥사플루오로프로판 다이안하이드라이드 4.44 g (1.00 mmol) 과 4,4’-옥시다이아닐린 2.00 g (1.00 mmol) 과 그래핀 옥사이드 0.7 g 을 N-메틸피롤리돈 200mL에 분산시켰다.
상기 분산액을 교반기, 질소주입장치, 온도조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 220℃로 맞춘 후 20 bar의 압력에서 3시간 동안 교반하여 폴리이미드 조성물을 제조하였다.
상기 폴리이미드 조성물을 기판 위에 캐스팅(casting)하고, 100℃에서 2시간 가열하여 용매를 제거한 후 아닐링 과정을 거쳐 폴리이미드 필름을 제조하였다.
한편, 상기 폴리이미드 조성물 제조반응이 종료한 후 압력용기로부터 증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 증기를 냉각 및 응축시켜 약 100mL의 N-메틸피롤리돈을 회수하였다. 회수된 N-메틸피롤리돈의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다.
실시예 2-1: 복합체 형태의 부분지방족 폴리이미드 제조
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 2.24 g (1.00 mmol) 과 4,4’-옥시다이아닐린 2.00 g (1.00 mmol) 과 그래핀 옥사이드 0.4 g 을 N-메틸피롤리돈 200mL에 분산시켰다.
상기 분산액을 교반기, 질소주입장치, 온도조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 220℃로 맞춘 후 20 bar의 압력에서 3시간 동안 교반하여 폴리이미드 조성물을 제조하였다.
상기 폴리이미드 조성물을 기판 위에 캐스팅(casting)하고, 100℃에서 2시간 가열하여 용매를 제거한 후 아닐링 과정을 거쳐 폴리이미드 필름을 제조하였다.
실시예 2-2: 복합체 형태의 전지방족 폴리이미드 제조
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 2.24 g (1.00 mmol) 와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 2.38 g (1.00 mmol) 과 그래핀 옥사이드 0.5 g 을 N-메틸피롤리돈 200mL에 분산시켰다.
상기 분산액을 교반기, 질소주입장치, 온도조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 220℃로 맞춘 후 20 bar의 압력에서 3시간 동안 교반하여 폴리이미드 조성물을 제조하였다.
상기 폴리이미드 조성물을 기판 위에 캐스팅(casting)하고, 100℃에서 2시간 가열하여 용매를 제거한 후 아닐링 과정을 거쳐 폴리이미드 필름을 제조하였다(도 8 및 9).
실시예 2-3: 복합체 형태의 전지방족 폴리이미드 제조
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 2.24 g (1.00 mmol) 와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 2.38 g (1.00 mmol) 과 탄소 나노튜브 0.5 g 을 N-메틸피롤리돈 200mL에 분산시켰다.
상기 분산액을 교반기, 질소주입장치, 온도조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 220℃로 맞춘 후 20 bar의 압력에서 3시간 동안 교반하여 폴리이미드 조성물을 제조하였다.
상기 폴리이미드 조성물을 기판 위에 캐스팅(casting)하고, 100℃에서 2시간 가열하여 용매를 제거한 후 아닐링 과정을 거쳐 폴리이미드 필름을 제조하였다.
실시예 2-4: 복합체 형태의 전지방족 폴리이미드 제조
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 2.24 g (1.00 mmol)와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 2.38 g (1.00 mmol) 과 이산화 세슘 0.5 g 을 N-메틸피롤리돈 200mL에 분산시켰다.
상기 분산액을 교반기, 질소주입장치, 온도조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 220℃로 맞춘 후 20 bar의 압력에서 3시간 동안 교반하여 폴리이미드 조성물을 제조하였다.
상기 폴리이미드 조성물을 기판 위에 캐스팅(casting)하고, 100℃에서 2시간 가열하여 용매를 제거한 후 아닐링 과정을 거쳐 폴리이미드 필름을 제조하였다.
실시예 2-5: 복합체 형태의 전지방족 폴리이미드 제조
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 2.24 g (1.00 mmol)와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 2.38 g (1.00 mmol) 을 N-메틸피롤리돈 200mL에 분산시켰다.
상기 분산액을 교반기, 질소주입장치, 온도조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 220℃로 맞춘 후 20 bar의 압력에서 3시간 동안 교반하여 폴리이미드 조성물을 제조하였다.
상기 폴리이미드 제조반응이 종료한 후 상기 조성물에 그래핀 옥사이드 0.5 g 을 넣은 후 교반하여 폴리이미드 조성물을 제조하였다.
상기 폴리이미드 조성물을 기판 위에 캐스팅(casting)하고, 100℃에서 2시간 가열하여 용매를 제거한 후 아닐링 과정을 거쳐 폴리이미드 필름을 제조하였다.
비교예 1: 전지방족 폴리이미드의 2단계 제조
질소 가스로 치환한 50-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈 10 mL을 넣고 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.20g (2.00 mmol)과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 3.41g (2.00 mmol)을 넣고 실온에서 24시간 반응시켰다.
화학적 이미드화 방법으로 상기 용액에 5mL의 아세틱안하이드라이드와 3mL의 피리딘을 넣고 170℃ 에서 5시간 동안 환류 시킨 후 상온까지 온도를 내린 후 과량의 얼음물을 사용하여 재침전을 하였다. 여과를 통해 얻은 고체를 물 100mL와 메틸알콜 100mL로 세척 후 진공 건조하여 전지방족 폴리이미드를 합성하였다(한편, 열적이미드화 방법으로는 합성된 폴리아믹산 용액을 기판 위에 캐스팅한 후 300℃까지 오븐 또는 핫플레이트로 단계별로 승온한 후 이 온도에서 12시간 가열하는 방법을 사용하여 폴리이미드를 얻을 수도 있다).
합성된 중합체의 적외선흡수스펙트럼(도 4)에서는 1774cm-1와 1713cm-1에서이미드기의 C=O 흡수띠, 1368cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
비교예 1-1: 전지방족 폴리이미드의 N-실릴레이션 방법에 의한 제조
지방족 디아미노폴리실록산을 합성하는 방법은 질소 가스로 치환한 100mL 3구 둥근바닥 플라스크에 정제한 톨루엔 25mL을 넣고 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 8.52g (5.00 mmol)와 클로로트리메틸실레인 1.09g (10.0 mmol)을 넣고 5℃에서 30분간 반응시켰다. 이 용액에 트리메틸아민 0.591g (10.0 mmol) 을 천천히 적가하였다. 5℃ 에서 2시간 동안 반응 시킨 후 60℃까지 온도를 올려 24시간 동안 반응 시킨 후 진공 건조하여 아미노기가 보호된 지방족 디아미노폴리실록산을 합성하였다.
질소 가스로 치환한 50-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈 10mL을 넣고 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.20g (2.00 mmol)과 위에서 합성된 지방족 다이아미노폴리실록산을 넣고 실온에서 24시간 반응시켰다.
합성된 폴리이미드-실록산을 증류수를 사용하여 재침전을 하였다. 그리고 여과 후 진공 건조하여 폴리아믹산을 합성하였다.
화학적 이미드화 방법으로 상기 용액에 5mL의 아세틱안하이드라이드와 3mL의 피리딘을 넣고 170℃ 에서 5시간 동안 환류 시킨 후 상온까지 온도를 내린 후 과량의 얼음물을 사용하여 재침전을 하였다. 여과를 통해 얻은 고체를 물 100mL와 메틸알콜 100mL로 세척 후 진공 건조하여 전지방족 폴리이미드를 합성하였다(한편, 열적이미드화 방법으로는 합성된 폴리아믹산 용액을 기판 위에 캐스팅한 후 300℃까지 오븐 또는 핫플레이트로 단계별로 승온한 후 이 온도에서 12시간 동안 가열하는 방법을 사용하여 폴리이미드를 얻을 수도 있다).
합성된 중합체의 적외선흡수스펙트럼(도 5)에서는 1778cm-1와 1714cm-1에서 이미드기의 C=O 흡수띠, 1368cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
비교예 1-2: 전지방족 폴리이미드의 in-situ 실릴레이션 방법에 의한 제조
질소 가스로 치환한 50-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈 (NMP) 10 mL을 넣고 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 3.406g (2.00 mmol)를 넣은 후 0℃ 에서 클로로트리메틸실레인 0.435g (4.00 mmol)을 넣어준 후 2시간 동안 교반하였다. 그 후 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.20g (2.00 mmol)을 넣고 실온에서 24시간 반응시켰다. 합성된 다이아미노폴리실록산을 증류수를 사용하여 재침전을 하였다. 그리고 여과 후 진공 건조하여 폴리아믹산을 합성하였다.
화학적 이미드화로 상기 용액에 5mL의 아세틱안하이드라이드와 3mL의 피리딘을 넣고 170℃ 에서 5시간 동안 환류 시킨 후 상온까지 온도를 내린 후 과량의 얼음물을 사용하여 재침전을 하였다. 여과를 통해 얻은 고체를 물 100mL와 메틸알콜 100mL로 세척 후 진공 건조하여 전지방족 폴리이미드를 합성하였다(한편, 열적 이미드화 방법으로는 합성된 폴리아믹산 용액을 기판 위에 캐스팅한 후 300℃까지 오븐 또는 핫플레이트로 단계별로 승온한 후 이 온도에서 12시간 동안 가열하는 방법을 사용하여 폴리이미드를 얻을 수도 있다).
합성된 중합체의 적외선흡수스펙트럼(도 6)에서는 1776cm-1와 1714cm-1에서 이미드기의 C=O 흡수띠, 1367cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
비교예 1-3: 전지방족 폴리이미드의 메타-크레졸 합성방법에 의한 제조
질소 가스로 치환한 50mL-2구 둥근바닥 플라스크에 메타-크레졸 10mL 을 넣고 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.20g (2.00 mmol)과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 3.41g (2.00 mmol)을 넣고 60℃ 에서 8시간 100℃ 에서 12시간 150℃에서 4시간 그리고 200℃에서 48시간 동안 반응시켰다. 합성된 용액을 상온까지 온도를 내린 후 메타 크레졸 100mL과 메틸알콜 100mL로 세척과 필터를 한 후 60℃에서 진공 건조하여 전지방족 폴리이미드를 합성하였다.
합성된 중합체의 적외선흡수스펙트럼(도 7)에서는 1773cm-1와 1712cm-1에서 이미드기의 C=O 흡수띠, 1367cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
비교예 2: 가압 조건을 사용하지 않은 복합체 형태의 전지방족 폴리이미드 제조
질소 가스로 치환한 50-mL 2구 둥근바닥 플라스크에 N-메틸피롤리돈 10 mL을 넣고 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 2.24 g (1.00 mmol)과 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 2.38 g (1.00 mmol)과 그래핀 옥사이드 0.5 g 을 넣고 실온에서 24시간 반응시켰다.
합성된 폴리아믹산 조성물을 기판 위에 캐스팅한 후 300℃까지 오븐 또는 핫플레이트로 단계별로 승온한 후 이 온도에서 12시간 가열하여 폴리이미드 필름을 제조했다.
비교예 2-1: 분산물질을 첨가하지 않은 전지방족 폴리이미드 합성
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 2.24 g (1.00 mmol) 와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 2.38 g (1.00 mmol) 을 N-메틸피롤리돈 200mL에 분산시켰다.
상기 분산액을 교반기, 질소주입장치, 온도조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 220℃로 맞춘 후 20 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다.
표 1
Figure PCTKR2015002006-appb-T000001
상기의 표 1에 나타내었듯이 본 발명의 실시예 1 내지 1-2에서는 종래의 방법인 비교예 1 내지 1-3에 비하여 이미드화 최고온도가 낮고, 반응시간이 짧으며, 반응단계가 적다. 또한 촉매를 사용하지 않는 장점이 있으며 폴리이미드 제조에 사용된 용매를 회수하여 재활용 할 수 있다. 따라서 본 발명의 폴리이미드 합성방법은 종래의 방법에 비하여 간편하고 저렴하며 친환경적이다.
표 2
Figure PCTKR2015002006-appb-T000002
또한, 상기 표 2의 결과를 참조하면, 본 발명의 실시예 2 내지 2-5에 따르면 복합체 형태의 폴리이미드 필름을 용이하게 제조할 수 있고, 또한, 제조된 복합체 형태의 폴리이미드 필름이 높은 열분해온도와 높은 인장강도를 가지게 되는 것을 확인할 수 있었다.
반면, 종래의 기술에 따라 가압 조건 없이 복합체 형태의 폴리이미드를 제조하는 경우 필름 형성이 용이하지 않고(비교예 2), 가압 조건 하에서 반응을 진행하더라도 분산물질을 투입하지 않은 경우(비교예 2-1), 본 발명의 실시예 2 내지 2-5에 따라 제조된 복합체 형태의 폴리이미드 대비 낮은 인장강도와 낮은 열분해 온도를 가지게 되는 것을 확인할 수 있었다.
본 발명에 따르면 이미드화 반응이 종래의 기술 대비 상대적인 저온 조건에서 수행되기 때문에 제조되는 폴리이미드가 무색 투명하여 산업적 응용 범위가 넓다.

Claims (23)

  1. a) 다이안하이드라이드 화합물 및 다이아민 화합물, 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염, 또는 폴리아믹산 화합물을 유기용매에 분산시켜 제조한 분산액을 압력용기에 준비하는 단계; 및
    b) 상기 압력용기 내부를 가압 조건으로 하고 이미드화 반응을 진행시켜 폴리이미드 조성물을 제조하는 단계를 포함하는 폴리이미드 제조방법.
  2. 제 1 항에 있어서,
    상기 a) 단계 도중이나 종료 후 또는 b) 단계 종료 후에 분산물질을 투입하는 단계를 더 포함하는 폴리이미드 제조방법.
  3. 제 1 항에 있어서,
    상기 b) 단계에서 얻어진 폴리이미드 조성물을 여과하여 폴리이미드를 제조하거나, 또는 상기 얻어진 폴리이미드 조성물을 재침전하고 여과하여 폴리이미드를 제조하는 단계를 더 포함하는 폴리이미드 제조방법.
  4. 제 1 항에 있어서,
    상기 b) 단계에서 얻어진 폴리이미드 조성물의 용매를 증발시키는 단계를 더 포함하는 폴리이미드 제조방법.
  5. 제 1 항에 있어서,
    상기 b) 단계에서 생성된 용매 증기를 상기 압력용기로부터 배출시킨 후 이를 냉각 및 응축하여 회수하는 단계를 더 포함하는 폴리이미드 제조방법.
  6. 제 1 항에 있어서,
    상기 다이안하이드라이드는 방향족 및 지방족으로 이루어지는 군에서 선택되는 1종 이상의 다이안하이드라이드인 폴리이미드 제조방법.
  7. 제 1 항에 있어서,
    상기 다이안하이드라이드는 하기 화학식 1의 다이안하이드라이드인 폴리이미드 제조방법.
    Figure PCTKR2015002006-appb-I000019
    <화학식 1>
    (상기 화학식 1에서 R1은 아래의 화학구조
    Figure PCTKR2015002006-appb-I000020
    Figure PCTKR2015002006-appb-I000021
    Figure PCTKR2015002006-appb-I000022
    Figure PCTKR2015002006-appb-I000023
    로 이루어지는 군에서 선택된다.)
  8. 제 1 항에 있어서,
    상기 다이아민은 방향족 및 지방족으로 이루어지는 군에서 선택되는 1종 이상의 다이아민인 폴리이미드 제조방법.
  9. 제 1 항에 있어서,
    상기 다이아민은 하기 화학식 2의 다이아민인 폴리이미드 제조방법.
    Figure PCTKR2015002006-appb-I000024
    <화학식 2>
    (상기 화학식 2에서 R2는 아래의 화학구조
    Figure PCTKR2015002006-appb-I000025
    Figure PCTKR2015002006-appb-I000026
    Figure PCTKR2015002006-appb-I000027
    Figure PCTKR2015002006-appb-I000028
    Figure PCTKR2015002006-appb-I000029
    Figure PCTKR2015002006-appb-I000030
    Figure PCTKR2015002006-appb-I000031
    Figure PCTKR2015002006-appb-I000032
    Figure PCTKR2015002006-appb-I000033
    Figure PCTKR2015002006-appb-I000034
    Figure PCTKR2015002006-appb-I000035
    Figure PCTKR2015002006-appb-I000036
    로 이루어지는 군에서 선택된다. 한편, 상기 x는 1≤x≤50을 만족하는 정수이고, 상기 n은 1 내지 20 범위의 자연수이며, W, X, Y는 각각 탄소수 1 내지 30 사이의 알킬기 또는 아릴기이고, Z는 에스테르기, 아미드기, 이미드기 및 에테르기로 이루어지는 군에서 선택된다.)
  10. 제 1 항에 있어서,
    상기 유기용매는 N-메틸피롤리돈, N,N-다이메틸아세트아미드, N,N-다이메틸포름아미드, N-비닐피롤리돈, N-메틸카프로락탐, 디메틸술폭시드, 테트라메틸요소, 피리딘, 디메틸술폰, 헥사메틸술폭시드, 메타-크레졸, 감마-부티로락톤, 에틸셀로솔브, 부틸셀로솔브, 에틸카르비톨, 부틸카르비톨, 에틸카르비톨 아세테이트, 부틸카르비톨 아세테이트, 에틸렌글리콜, 젖산에틸, 젖산부틸, 시클로헥사논 및 시클로펜타논으로 이루어지는 군에서 선택되는 1종의 단일 용매 또는 2종 이상의 혼합 용매인 폴리이미드 제조방법.
  11. 제 2 항에 있어서,
    상기 분산물질은 유기계 물질 및 무기계 물질로 이루어지는 군에서 선택되는 1종 또는 2종 이상의 물질인 폴리이미드 제조방법.
  12. 제 11 항에 있어서,
    상기 유기계 물질은 폴리에테르 에테르케톤 및 폴리프로필렌 설파이드로 이루어지는 군에서 선택되는 1종 이상인 폴리이미드 제조방법.
  13. 제 11 항에 있어서,
    상기 무기계 물질은 그라파이트, 산화아연, 실리케이트, 카올리나이트, 스멕타이트, 그래핀 옥사이드, 이산화 지르코늄 및 탄소 나노튜브로 이루어지는 군에서 선택되는 1종 이상인 폴리이미드 제조방법.
  14. 제 1 항에 있어서,
    상기 a) 단계에서 다이안하이드라이드 화합물 및 다이아민 화합물, 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염, 또는 폴리아믹산 화합물의 양은 상기 제조된 분산액 총 중량의 1 내지 90 중량%인 폴리이미드 제조방법.
  15. 제 1 항에 있어서,
    상기 b) 단계는 1.1 내지 1000 bar 범위의 가압 조건에서 수행되는 폴리이미드 제조방법.
  16. 제 1 항에 있어서,
    상기 b) 단계는 20 내지 350 ℃ 범위의 온도 조건에서 수행되는 폴리이미드 제조방법.
  17. 제 1 항에 있어서,
    상기 b) 단계는 10분 내지 3일 동안 수행되는 폴리이미드 제조방법.
  18. 제 2 항에 있어서,
    상기 분산물질의 투입량은 상기 다이안하이드라이드 화합물 및 다이아민 화합물, 다이안하이드라이드 화합물과 다이아민 화합물의 단량체 염, 또는 폴리아믹산 화합물의 양 대비 0.05 내지 90 중량% 인 폴리이미드 제조방법.
  19. 제 1 항의 방법에 따라 제조된 폴리이미드로서, 상기 폴리이미드는 전방향족(fully aromatic), 부분지방족(partially aliphatic) 또는 전지방족(fully aliphatic)이고, 수평균 분자량이 50,000 내지 2,000,000인 폴리이미드.
  20. 제 2 항의 방법에 따라 제조된 폴리이미드로서, 상기 폴리이미드는 전방향족(fully aromatic), 부분지방족(partially aliphatic) 또는 전지방족(fully aliphatic) 폴리이미드 내에 분산물질이 균일하게 분산되어 있는 복합체 형태의 폴리이미드로서, 수평균 분자량이 50,000 내지 2,000,000인 폴리이미드.
  21. 제 1 항의 폴리이미드 조성물을 기판에 도포한 후 용매를 증발시켜 디스플레이용 필름 형태로 제조한 폴리이미드 성형품으로서, 상기 성형품은 황색지수가 5이하이며, 20㎛ 두께에서 파장 450㎚의 빛에 대하여 80% 이상의 광투과율을 나타내는 폴리이미드 필름인 폴리이미드 성형품.
  22. 제 2 항의 폴리이미드 조성물을 기판에 도포한 후 용매를 증발시켜 디스플레이용 필름 형태로 제조한 폴리이미드 성형품으로서, 상기 성형품은 황색지수가 5이하이며, 20㎛ 두께에서 파장 450㎚의 빛에 대하여 80% 이상의 광투과율을 나타내는 복합체 형태의 폴리이미드 필름인 폴리이미드 성형품.
  23. 제 19 항 또는 제 20 항의 폴리이미드를 필름성형, 압축성형, 사출성형, 슬러시성형, 중공성형, 압출성형 및 방적방법으로 이루어지는 군에서 선택되는 하나 이상의 방법으로 성형하여 제조한 폴리이미드 성형품.
PCT/KR2015/002006 2014-10-15 2015-03-02 가압 조건 하에서 수행되는 폴리이미드 제조방법 WO2016060340A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020140138973A KR101709378B1 (ko) 2014-10-15 2014-10-15 가압 조건 하에서 수행되는 폴리이미드 제조방법
KR10-2014-0138973 2014-10-15
KR1020150015912A KR101780447B1 (ko) 2015-02-02 2015-02-02 가압 조건 하에서 수행되는 폴리이미드 복합체 제조방법
KR10-2015-0015912 2015-02-02

Publications (1)

Publication Number Publication Date
WO2016060340A1 true WO2016060340A1 (ko) 2016-04-21

Family

ID=55746856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002006 WO2016060340A1 (ko) 2014-10-15 2015-03-02 가압 조건 하에서 수행되는 폴리이미드 제조방법

Country Status (1)

Country Link
WO (1) WO2016060340A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020104587A1 (de) * 2019-02-22 2020-08-27 Dupont Electronics, Inc. Polyimidfilme und elektronische vorrichtungen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060052077A (ko) * 2004-10-07 2006-05-19 신에쓰 가가꾸 고교 가부시끼가이샤 폴리이미드계 광경화성 수지 조성물 및 패턴 형성 방법 및기판 보호용 피막
JP2010001337A (ja) * 2008-06-18 2010-01-07 National Institute Of Advanced Industrial & Technology ポリイミド微粒子凝集体の製造方法
KR20100080425A (ko) * 2008-12-30 2010-07-08 주식회사 코오롱 폴리이미드 필름
JP2010189524A (ja) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology ポリイミド微粒子分散液、ポリイミド微粒子及びそれらの製造方法
KR20140063701A (ko) * 2011-09-20 2014-05-27 로디아 오퍼레이션스 열가소성 (코)폴리이미드 및 그의 합성 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060052077A (ko) * 2004-10-07 2006-05-19 신에쓰 가가꾸 고교 가부시끼가이샤 폴리이미드계 광경화성 수지 조성물 및 패턴 형성 방법 및기판 보호용 피막
JP2010001337A (ja) * 2008-06-18 2010-01-07 National Institute Of Advanced Industrial & Technology ポリイミド微粒子凝集体の製造方法
KR20100080425A (ko) * 2008-12-30 2010-07-08 주식회사 코오롱 폴리이미드 필름
JP2010189524A (ja) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology ポリイミド微粒子分散液、ポリイミド微粒子及びそれらの製造方法
KR20140063701A (ko) * 2011-09-20 2014-05-27 로디아 오퍼레이션스 열가소성 (코)폴리이미드 및 그의 합성 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020104587A1 (de) * 2019-02-22 2020-08-27 Dupont Electronics, Inc. Polyimidfilme und elektronische vorrichtungen
US11359061B2 (en) 2019-02-22 2022-06-14 Dupont Electronics, Inc. Polyimide films and electronic devices
US11643515B2 (en) 2019-02-22 2023-05-09 Dupont Electronics, Inc. Polyimide compositions and polyimide solutions

Similar Documents

Publication Publication Date Title
WO2017095174A1 (ko) 중합성 조성물
WO2017209413A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2013133508A1 (ko) 두 개의 치환기를 비대칭 구조로 포함하는 디아민 화합물, 이를 사용하여 제조된 중합체
WO2019054612A1 (ko) 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2017188630A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2018030552A1 (ko) 중합성 조성물
WO2015190645A1 (ko) 물을 분산매로 사용한 폴리이미드의 제조방법 및 물의 회수방법
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2020159085A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2019103274A1 (ko) 디스플레이 기판용 폴리이미드 필름
WO2021054513A1 (ko) 폴리이미드 분말의 제조방법 및 이를 통해 제조된 폴리이미드 분말
WO2021015360A1 (ko) 폴리이미드 분말의 제조방법 및 이를 통해 제조된 폴리이미드 분말
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2018021747A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2018143588A1 (ko) 가요성 기판 제조용 적층체 및 이를 이용한 가요성 기판의 제조방법
WO2016060340A1 (ko) 가압 조건 하에서 수행되는 폴리이미드 제조방법
WO2020159193A1 (ko) 폴리이미드 전구체 조성물 및 이로부터 제조된 폴리이미드 필름, 디스플레이 장치용 기판, 및 광학 장치
WO2020130261A1 (ko) 가교제 화합물, 이를 포함하는 감광성 조성물, 및 이를 이용한 감광 재료
WO2016021746A1 (ko) 고투과성 저위상차 무색 투명 폴리이미드 박막 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850700

Country of ref document: EP

Kind code of ref document: A1