WO2016140559A1 - 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물 - Google Patents

광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물 Download PDF

Info

Publication number
WO2016140559A1
WO2016140559A1 PCT/KR2016/002263 KR2016002263W WO2016140559A1 WO 2016140559 A1 WO2016140559 A1 WO 2016140559A1 KR 2016002263 W KR2016002263 W KR 2016002263W WO 2016140559 A1 WO2016140559 A1 WO 2016140559A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
group
polyimide precursor
formula
less
Prior art date
Application number
PCT/KR2016/002263
Other languages
English (en)
French (fr)
Inventor
윤철민
신보라
정혜원
김경준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16745600.3A priority Critical patent/EP3266808B1/en
Priority to US15/126,416 priority patent/US10544266B2/en
Priority to JP2016551162A priority patent/JP6501312B2/ja
Priority to CN201680000859.XA priority patent/CN106133025B/zh
Priority claimed from KR1020160027035A external-priority patent/KR101993652B1/ko
Publication of WO2016140559A1 publication Critical patent/WO2016140559A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a composition for a polyimide film for flexible substrates of an optoelectronic device, and more particularly to a composition for producing polyimide film excellent in dimensional stability that does not increase the stress of the substrate even at high heat treatment.
  • polyimide (PI) resin is easy to synthesize, can make thin film, and has the advantage of not needing a crosslinker for curing.
  • PI polyimide
  • a polyimide (PI) film prepared by filming the polyimide resin is generally a polyimide resin.
  • a polyimide resin is prepared by solution polymerization of an aromatic dianhydride and an aromatic diamine or an aromatic diisocyanate to prepare a polyamic acid derivative, and then, at a high temperature. It refers to a high heat resistant resin produced by imidation by ring closure dehydration.
  • the substrate for a flexible display is manufactured through a process of forming a film by coating a polyimide resin solution on a glass substrate and then subjecting it to high temperature heat treatment. At this time, due to the difference in the coefficient of thermal expansion (CTE) between the lower glass substrate and the polyimide film layer, there is a problem that the organic glass pin is bent after film formation. If the substrate is bent, it becomes difficult to stack the elements on the film and subsequent processing may become impossible.
  • CTE coefficient of thermal expansion
  • the present invention is to provide a composition for forming a polyimide film, which has high transparency and isotropy and is excellent in heat resistance and can improve warpage due to a difference in thermal expansion coefficient with a lower substrate.
  • the present invention also provides a polyimide film having high transparency and isotropy and heat resistance from the polyimide composition.
  • the present invention also provides a laminate in which the polyimide film is formed on a substrate and the stress is reduced even after high temperature heat treatment.
  • the present invention also provides an optoelectronic device comprising the polyimide film as a flexible substrate.
  • a polyimide precursor composition for a flexible substrate of a photovoltaic device containing a polyimide precursor derived from a diamine or an acid dianhydride comprising the structure of Formula 1:
  • R 1 and R 2 are each independently a single bond, an alkylene group having 1 to 5 carbon atoms, or a divalent aromatic group having 6 or more carbon atoms,
  • R 3 and Each R 4 is independently an alkyl group of 1 to 5,
  • R 5 and R 6 are each independently an aryl group having 4 to 10 carbon atoms
  • At least one of R 7 and R 8 is an alkenyl group having 2 to 10 carbon atoms
  • n1, m2 and m3 are each independently an integer of 1 or more.
  • the polyimide precursor derived from diamine or acid dianhydride including the structure of Formula 1 may be 50% by weight or less based on the total weight of the polyimide precursor.
  • the polyimide precursor derived from the diamine or acid dianhydride including the structure of Formula 1 may have a molecular weight of 600 or more and 7,000 or less.
  • m1, m2, m3 in Formula 1 may be an integer of 1 to 10.
  • the composition may be a polyimide precursor is dissolved in a solvent having a positive partition coefficient.
  • the solvent may include an amine-based first solvent and a non-amine-based second solvent.
  • the volume ratio of the amine-based first solvent and the non-amine-based second solvent may be 50 to 90:10 to 50.
  • the amine-based first solvent may be a tertiary amine substituted with an alkyl group of 2 or more carbon atoms.
  • non-amine solvent may be toluene or tetrahydrofuran.
  • the polyimide precursor composition may further include silica-based particles.
  • a polyimide film for a flexible substrate of a photoelectric device obtained by applying the composition on a glass substrate and then curing.
  • the film may have an average transmittance of 80% or more with respect to light having a wavelength of 350 nm to 760 nm.
  • the polyimide film may have a modulus of 4 GPa or less and a tensile stress of 150 MPa or less.
  • the coefficient of thermal expansion (CTE) of the polyimide film may be 30 ppm or more and 200 ppm or less at 100 to 250 ° C.
  • a laminate in which a polyimide film is formed on a glass substrate which is obtained by applying the composition on a glass substrate and then curing the composition.
  • the laminate may be less than 60 MPa stress received by the substrate after the heat treatment process of 100 ⁇ 350 °C.
  • the present invention also provides an optoelectronic device comprising the polyimide film as a flexible substrate.
  • the present invention also provides a flexible display comprising the polyimide film as a flexible substrate.
  • the polyimide film obtained by applying and curing the precursor composition according to the present invention on a substrate has high transparency and heat resistance, and the stress of the substrate does not rise even in high heat treatment, and thus the dimensional stability is excellent.
  • the polyimide precursor composition according to the present invention may be applied to an organic light emitting diode (OLED) or a liquid crystal display (LCD), an electronic paper, or a flexible display substrate in an electronic device such as a solar cell. It is useful for manufacturing.
  • 1 is a graph showing the principle of stress reduction after the high temperature process of the polyimide structure according to the present invention.
  • the carbocyclic group includes both an alicyclic ring group and an aromatic ring group, and is meant to include their hetero rings.
  • the "hetero” refers to a functional group containing 1 to 3 hetero atoms selected from the group consisting of N, O, S, P, and Si.
  • C4 to C20 condensed polycyclic carbon ring group means a form in which two or more carbon rings are condensed with each other.
  • C6 to C30 non-condensed polycyclic carbon ring group interconnected by a linker means a form in which two or more carbon rings are connected by a linker.
  • the linker is a single bond, -O-, -CO-, -S-, -SO 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -CONH-, -COO-,- (CH 2) n1 -, and -O (CH 2) and the like n2 O-, -OCO (CH 2) n3 OCO-.
  • substituted means a substituent selected from the group consisting of halogen, C1 to C15 haloalkyl group, nitro group, cyano group, C1 to C15 alkoxy group and C1 to C10 lower alkylamino group. It means substituted.
  • * denotes a bonding position
  • the elastic modulus Young's modulus or modulus
  • the coefficient of thermal expansion of the polyimide film formed on the substrate were adjusted to an appropriate range, and as a result, the elastic modulus of 4 GPa or less and 30 to By having a thermal expansion coefficient of 200 ppm, the warpage after the high temperature heat treatment of the substrate could be improved.
  • the polyimide precursor composition for a flexible substrate of an optoelectronic device is characterized by containing a polyimide precursor derived from a diamine or an acid dianhydride containing the structure of the following formula (1).
  • R 1 and R 2 are each independently a single bond, an alkylene group having 1 to 5 carbon atoms, or a divalent aromatic group having 6 or more carbon atoms,
  • R 3 and Each R 4 is independently an alkyl group of 1 to 5,
  • R 5 and R 6 are each independently an aryl group having 4 to 10 carbon atoms
  • At least one of R 7 and R 8 is an alkenyl group having 2 to 10 carbon atoms
  • n1, m2 and m3 are each independently an integer of 1 or more.
  • the repeating unit having the structure of Formula 1 includes a repeating unit substituted with an alkyl group, a siloxane repeating unit substituted with an aryl group, and a siloxane repeating unit substituted with an alkenyl group together, thereby producing a polyimide film having an elastic modulus of 4 GPa or less and 30 It can be made to have a thermal expansion coefficient of 200ppm.
  • the order of the repeating unit substituted with the alkyl group, the siloxane repeating unit substituted with the aryl group, and the siloxane repeating unit substituted with the alkenyl group may be arbitrarily changed, or may be alternately positioned.
  • a highly heat-resistant elastic polyimide by having a repeating unit substituted with an alkenyl group, and when applied to a display substrate, as shown in FIG.
  • reducing the stress caused by thermal expansion-contraction of the mead can improve the substrate warpage phenomenon caused by the difference in thermal expansion coefficient with the substrate.
  • a polyimide precursor derived from a diamine or an acid dianhydride comprising the structure of Formula 1 above, It can be used up to 50% by weight based on the weight.
  • the content may be included 10 wt% or more and 40 wt% or less, and in another embodiment 10 wt% or more and 30 wt% or less.
  • the molecular weight of the polyimide precursor may be 500 or more and 7,000 or less, preferably 500 or more and 5,000 or less.
  • R 1 and R 2 may each independently be a single bond, an alkylene group having 1 to 5 carbon atoms, or a divalent aromatic group having 6 or more carbon atoms, and preferably an alkylene group having 3 or more carbon atoms. have.
  • R 3 and R 4 is each independently an alkyl group of 1 to 5, and preferably may be a methyl or ethyl group.
  • R 5 and R 6 are each independently an aryl group having 4 to 10 carbon atoms, preferably a phenyl group.
  • At least one of R 7 and R 8 is an alkenyl group having 2 to 10 carbon atoms, preferably an ethenyl or propenyl group.
  • the other alkenyl group may be an alkyl group having 1 to 5 carbon atoms.
  • m1, m2, m3 in Formula 1 may be each independently an integer of 1 to 10, specifically m1 may be 3 to 9, m2 is 2 to 9, m3 may be an integer of 1 to 5. .
  • the polyimide precursor may be formed from a mixture of a precursor of a polyimide having a structure of Formula 2 and a precursor of a polyimide having a structure of Formula 3.
  • X 1 is a tetravalent organic group containing an aromatic, alicyclic or aliphatic group derived from an acid dianhydride
  • Y 1 is a divalent organic group including a divalent organic group derived from a diamine represented by the following Formula 1a,
  • p is an integer of 1 or more indicating a repeating unit.
  • R 1 to R 8 and m1 to m3 are the same as those described in Chemical Formula 1.
  • X 2 is a tetravalent organic group containing an aromatic, alicyclic or aliphatic group derived from an acid dianhydride
  • Y 2 is a divalent organic comprising an aromatic, cycloaliphatic or aliphatic group derived from diamine,
  • q is an integer of 1 or more indicating a repeating unit.
  • At least one of Y 1 and Y 2 is a divalent organic group selected from the group consisting of aromatic, alicyclic and aliphatic groups derived from diamine, and has a substituent containing one or more fluoro atoms Can be.
  • X 1 and X 2 are tetravalent organic groups represented by the following Formula 4, respectively, and Y 1 and Y 2 are represented by Formula 5 or Formula 6, respectively. May include one or more structures selected from organic groups.
  • R 7 , R 8 , R 9 , and R 10 are each independently selected from a hydrogen atom, a halogen atom, or a hydroxy group,
  • A is a single bond, -O-, -NH-, -CO-, -S-, -SO 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -CONH-, -COO -,-(CH 2 ) n 1- , -O (CH 2 ) n 2 O-, or -OCO (CH 2 ) n 3 OCO-, n 1 , n 2 and n 3 are each an integer from 1 to 10 ego,
  • R 11 , R 12 , R 13 , R 14 , R 15 , and R 16 are each independently selected from a hydrogen atom, a halogen atom, or a hydroxy group.
  • the content of the monomer including the siloxane structure of Formula 1 may be 5 mol% or more or 50 mol% or less, preferably 5 to 40 mol%. If less than 5 mol%, the warpage prevention effect of the substrate of the polyimide film is lowered, and if more than 50 mol%, the molecular weight decrease and heat resistance of the polyimide may be lowered, which means that the polyimide precursor is not less than 350 °C In the heat treatment process under high temperature conditions, the mechanical and thermal properties of the polyimide film may be reduced.
  • the precursor including the polyimide structure of Formula 2 may further include a monomer having a tetravalent organic group of Formula 4 and a divalent organic group selected from Formula 5 or 6, the content of which is at least 10 mol% or at most 50 mol%, respectively. , Preferably 25 mol% to 50 mol%, more preferably 35 mol% to 50 mol%.
  • the content of the monomer having a tetravalent organic group of Formula 4 and a divalent organic group of Formula 5 or 6 is 5 mol% or more or 50 mol% or less, preferably 20 to 50 mol%, More preferably, it may be included in an amount of 40 mol% to 50 mol%. According to the content ratio of the compounds of Formulas 4 to 6, the flexibility of the polyimide and the flowability during the high temperature process may be improved, and the heat resistance of the polyimide molecule may be improved during the high temperature process.
  • X 1 , X 2 is a substituted or unsubstituted C4 to C20 carbocyclic group; Substituted or unsubstituted C4 to C20 condensed polycyclic carbocyclic group; And C6 to C30 non-condensed polycyclic carbon ring group interconnected by a substituted or unsubstituted linker; may further include one tetravalent organic group selected from the group consisting of.
  • X 1 and X 2 may be one tetravalent organic group selected from the group consisting of Formulas 7a to 7d.
  • R 31 to R 35 each independently represent an alkyl group having 1 to 10 carbon atoms (eg, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, etc.) or 1 to 10 carbon atoms.
  • Fluoroalkyl group for example, fluoromethyl group, perfluoroethyl group, trifluoromethyl group, etc.
  • a 1 may be an integer of 0 or 2
  • b 1 may be an integer of 0 to 4
  • c 1 may be an integer of 0 to 8
  • d 1 and e 1 may be each independently an integer of 0 to 3
  • a 1 is a single bond, —O—, —CR 46 R 47 —, —C ( ⁇ O) —, —C ( ⁇ O) NH—, —S—, —SO 2 —, a phenylene group, or a combination thereof It may be selected from the group consisting of, wherein R 46 and R 47 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group) , Pentyl group, hexyl group, etc.) and a fluoroalkyl group having 1 to 10 carbon atoms (for example, fluoromethyl group, fluoroethyl group, trifluoromethyl group, etc.).
  • R 46 and R 47 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (for example, methyl group, ethyl group, propy
  • X 1 and X 2 may be each independently selected from the group consisting of tetravalent organic groups of the formula 8a to 8t.
  • x is an integer of 1 to 3.
  • the aromatic tetravalent organic groups represented by Formulas 8a to 8n have one or more hydrogen atoms in the tetravalent organic group having 1 to 10 carbon atoms (eg, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group). Or a pentyl group, hexyl group, or the like) or a fluoroalkyl group having 1 to 10 carbon atoms (for example, a fluoromethyl group, a perfluoroethyl group, a trifluoromethyl group, and the like).
  • 1 to 10 carbon atoms eg, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group.
  • a pentyl group, hexyl group, or the like or a fluoroalkyl group having 1 to 10 carbon atoms (for example, a fluoromethyl group, a perfluoroe
  • the tetravalent organic group derived from the acid dianhydride is butanetetracarboxylic dione hydride, pentanetetracarboxylic dione hydride, hexanetetracarboxylic dione hydride, cyclopentanetetracarboxylic dione hydride , Bicyclopentanetetracarboxylic dianhydride, cyclopropanetetracarboxylic dianhydride, methylcyclohexanetetracarboxylic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dione Hydride, 3,4,9,10-perylenetetracarboxylic dione hydride, 4,4'-sulfonyldiphthalic dione hydride, 3,3 ', 4,4'-biphenyltetracarboxylic Dionhydride, 1,2,5,6-naphthalenetetracarboxylic dionehydride,
  • Y 1 and Y 2 are substituted or unsubstituted C1 to C20 alkylene groups, substituted or unsubstituted C5 to C40 arylene groups, It further includes one divalent organic group selected from the group consisting of a substituted or unsubstituted C3 to C40 heteroarylene group, a substituted or unsubstituted C5 to C40 cycloalkylene group, and a substituted or unsubstituted C5 to C40 heterocycloalkylene group. can do.
  • the Y 2 may be one divalent organic group selected from the group consisting of Formulas 9a to 9d.
  • L 1 is a single bond, -O-, -CO-, -S-, -SO 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -CONH-, -COO-,-(CH 2 ) n 1- , -O (CH 2 ) n 2 O-, -OCH 2 -C (CH 3 ) 2 -CH 2 O- or COO (CH 2 ) n 3 OCO- , N 1 , n 2 and n 3 are each an integer of 1 to 10.
  • L 2 and L 3 may be the same as or different from each other, and each of a single bond, -O-, -CO-, -S-, -SO 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -CONH-, -COO-,-(CH 2 ) n 1- , -O (CH 2 ) n 2 O-, -OCH 2 -C (CH 3 ) 2 -CH 2 O- Or COO (CH 2 ) n 3 OCO—, wherein n 1 , n 2 and n 3 are each an integer from 1 to 10.
  • L 4 , L 5, and L 6 may be the same as or different from each other, and each single bond, —O—, —CO—, —S—, —SO 2 —, —C (CH 3 ) 2 ⁇ , -C (CF 3 ) 2- , -CONH-, -COO-,-(CH 2 ) n 1- , -O (CH 2 ) n 2 O-, -OCH 2 -C (CH 3 ) 2 -CH 2 O- or COO (CH 2 ) n 3 OCO-, wherein n 1 , n 2 and n 3 are each an integer of 1 to 10.
  • Y 2 may be selected from the group consisting of divalent organic groups of Formulas 10a to 10q.
  • At least one hydrogen atom in the divalent functional group of Formulas 10a to 10q is an alkyl group having 1 to 10 carbon atoms (eg, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, etc.).
  • a fluoroalkyl group having 1 to 10 carbon atoms e.g., a fluoromethyl group, a perfluoroethyl group, a trifluoromethyl group, etc.
  • an aryl group having 6 to 12 carbon atoms e.g., a phenyl group, naphthalenyl group, etc. It may be substituted with a substituent selected from the group consisting of a sulfonic acid group and a carboxylic acid group.
  • diamine which has the said divalent organic group 4,4'- diamino diphenyl ether, 4,4'- diamino diphenyl sulfide, 4,4'- diamino diphenyl sulfone, 4, 4'-diaminobenzophenone, bis [4- (4-aminophenoxy) phenyl] methane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 1,3-bis (4-aminophenoxy) benzene, 4,4'-bis (4- Aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] sulfoxide, bis [4- (4-aminophenoxy) phen
  • Production of polyamic acid through the polymerization reaction of the above acid dianhydride and diamine can be carried out according to a conventional polyamic acid polymerization production method such as solution polymerization. Specifically, it can be prepared by dissolving the diamine in an organic solvent, followed by polymerization by adding an acid dianhydride to the resulting mixed solution. At this time, the reaction may be carried out in anhydrous conditions, the temperature during the polymerization reaction may be carried out at 25 to 50 °C, preferably 40 to 45 °C.
  • the composition may be a polyimide precursor is dissolved in a hydrophobic solvent exhibiting a positive partition coefficient.
  • the distribution coefficient is calculated using an ACD / LogP module of ACD / Percepta platform of ACD / Labs (where ACD / LogP module is based on Quantitative Structure-Property Relationship (QSPR) methodology using a molecular 2D structure).
  • QSPR Quantitative Structure-Property Relationship
  • the distribution coefficient LogP value may be 0.01 to 3, or 0.01 to 2, or 0.01 to 1.
  • the solution of the polyimide or its precursor is prepared using a hydrophobic solvent having a positive distribution coefficient value
  • the dispersibility of the polyimide precursor is increased in the solvent, making it easy to prepare an amorphous polyimide polymer.
  • a hydrophobic solvent having a positive value of the partition coefficient may be a mixed solvent of a two-component solvent of an amine-based first solvent and a non-amine-based second solvent.
  • the polyimide precursor of Formula 1 tends to dissolve better when a non-amine hydrophobic solvent is present because of its high hydrophobicity.
  • the first solvent and the second solvent can be used in a volume ratio of 50 to 90:10 to 50.
  • the amine hydrophobic solvent may be a tertiary amine substituted with an alkyl group having 2 or more carbon atoms, and more preferably, a tertiary amine having two or more alkyl groups having 2 to 6 carbon atoms. More specifically, for example, N, N-diethylacetamide, N, N-diethylformamide, N-ethylpyrrolidone Or a mixture thereof. According to the researches of the present inventors, in particular, it was confirmed that the transparency of the film is improved when using N, N-diethylformamide.
  • non-amine hydrophobic solvent examples include, but are not limited to, toluene and tetrahydrofuran.
  • the content of the organic solvent may be 100 to 1000 parts by weight based on 100 parts by weight of tetracarboxylic dianhydride and diamine solids in the polyimide resin precursor composition.
  • the content of the organic solvent is too small, the viscosity of the composition may be too high to reduce the coating property, when the content is too high, the drying of the composition may not be easy, and the mechanical properties of the film to be produced may be reduced. Can be.
  • a polyamic acid which is a precursor of the polyimide is produced.
  • the polyamic acid is an acid or a derivative of the acid including a -CO-NH- group and a CO-OR group (wherein R is a hydrogen atom or an alkyl group) according to the reaction of an acid anhydride group and an amino group, and another embodiment of the present invention.
  • R is a hydrogen atom or an alkyl group
  • X 1 and Y 1 are the same as defined above.
  • the imidation process is performed with respect to the polyamic acid obtained as a result of the said polymerization reaction.
  • the imidization process may be specifically carried out by a chemical imidization or thermal imidization method.
  • chemical imidization includes acid anhydrides such as acetic anhydride, propionic anhydride, benzoic anhydride or acid chlorides thereof; It can be implemented using dehydrating agents, such as carbodiimide compounds, such as dicyclohexyl carbodiimide. At this time, the dehydrating agent may be preferably used in an amount of 0.1 to 10 moles with respect to 1 mole of the acid dianhydride.
  • the heating step at a temperature of 60 to 120 °C at the time of the chemical imidization may be carried out together.
  • thermal imidization it may be carried out by heat treatment at a temperature of 80 to 400 ° C, wherein the azeotropic removal of water generated as a result of the dehydration reaction using benzene, toluene, xylene, etc. is also performed. More preferred.
  • the chemical or thermal imidization process is carried out under a base catalyst such as pyridine, isoquinoline, trimethylamine, triethyl amine, N, N-dimethylaminopyridine, imidazole, 1-methylpiperidine, 1-methylpiperazine, etc.
  • a base catalyst such as pyridine, isoquinoline, trimethylamine, triethyl amine, N, N-dimethylaminopyridine, imidazole, 1-methylpiperidine, 1-methylpiperazine, etc.
  • the base catalyst may be used in an amount of 0.1 to 5 moles per 1 mole of the acid dianhydride.
  • the polyimide resin precursor composition may further include a thermal crosslinking agent, a curing accelerator, a phosphorus-based flame retardant, an antifoaming agent, a leveling agent, a gel inhibitor, or a mixture thereof.
  • a thermal crosslinking agent such as a curing accelerator, a phosphorus-based flame retardant, an antifoaming agent, a leveling agent, a gel inhibitor, or a mixture thereof.
  • additives may be used without limitation as long as they are known to be used in the polyimide resin precursor composition, and may be used in appropriate amounts in consideration of physical properties of the polyimide resin precursor composition or film obtained therefrom.
  • the polyimide precursor composition may comprise silica-based particles.
  • the polyamic acid and the silica-based particles as described above are mixed and then reacted, or the polyamic acid and the silane-based compound are reacted to produce a polyamic acid polymer, and then the alkoxysilane is reacted to react the polyamic acid polymer and the silica-based particle.
  • Composites comprising particles can be prepared.
  • the silica-based particles may be chemically bonded to one or more substituents of R1 to R8 of the formula (1). When the silica-based particles are included, mechanical properties are improved and thermal stability is excellent, thereby preventing warpage of the substrate and chemical resistance may be improved.
  • the acid dianhydride and the diamine react to form a polyamic acid, and the polyamic acid thus formed may be imidized to provide a polyimide resin.
  • the viscosity of the polyimide precursor composition according to the invention may be 10,000 to 20,000 cP.
  • the composite material which consists of a glass substrate, a metal substrate, a plastic substrate, or these 2 or more types is also mentioned as said board
  • Plastic substrates include polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic acid alkyl ester, poly (meth) acrylic acid ester copolymer, polyvinyl chloride, polyvinyl alcohol, And various plastic films such as polycarbonate, polystyrene, cellophane, polyvinylidene chloride copolymer, polyamide, polyimide, vinyl chloride / vinyl acetate copolymer, polytetrafluoroethylene, and polytrifluoroethylene.
  • plastic films such as polycarbonate, polystyrene, cellophane, polyvinylidene chloride copolymer, polyamide, polyimide, vinyl chloride / vinyl acetate copolymer, polytetrafluoroethylene, and polytrifluoroethylene.
  • the thickness of the substrate is preferably from 5 to 150 ⁇ m, among them excellent in thermal and chemical stability during the curing process for the polyimide precursor, and easily separated without damage to the polyimide film formed after curing, without a separate release agent treatment Glass substrates that may be desirable.
  • a drying step for removing the solvent present in the polyimide-based solution prior to the curing process may be optionally further performed.
  • the coating method of the polyimide resin precursor composition is not particularly limited, and for example, a spray method, a roll coating method, a rotary coating method, a slit coating method, an extrusion coating method, a curtain coating method, a die coating method, a wire bar coating method or Methods such as the knife coating method can be used.
  • drying of the said polyimide resin precursor composition changes with each component, the kind of organic solvent, and content ratio, it is preferable to carry out for 30 second-15 minutes at 60-100 degreeC. Specifically, it may be carried out at a temperature of 140 ° C or less, or 80 to 140 ° C.
  • the implementation temperature of a drying process is less than 80 degreeC, a drying process becomes long, and when it exceeds 140 degreeC, imidation advances rapidly and it is difficult to form polyimide film of uniform thickness.
  • the curing process may be carried out by heat treatment at a temperature of 80 to 500 °C, it may also be carried out by a multi-stage heat treatment at various temperatures within the temperature range.
  • the polyimide precursor composite may be cured at a temperature of 400 to 500 °C, preferably 450 to 500 °C.
  • the curing process may be carried out by a multi-step heat treatment at various temperatures within the above temperature range.
  • the curing time in the curing process is not particularly limited, and may be carried out for 30 minutes to 6 hours as an example.
  • the film thickness of the polyimide film after drying and hardening is 5-95 micrometers, Preferably it is 10-50 micrometers, More preferably, it is 10-20 micrometers. If the film thickness of the film is 5 ⁇ m or less, the insulation is not good, and if the film thickness exceeds 95 ⁇ m, the transmittance and resolution may decrease.
  • a subsequent heat treatment step may be optionally further performed to increase the imidation ratio of the polyimide resin in the polyimide film to form a polyimide film having the above-described physical properties.
  • the subsequent heat treatment process is preferably carried out at 200 ° C. or higher, or at 200 to 500 ° C., preferably at 400 ° C. to 500 ° C. for 1 to 30 minutes.
  • the subsequent heat treatment process may be performed once or may be performed in multiple stages two or more times. Specifically, it may be carried out in three steps including a first heat treatment at 200 to 220 ° C., a second heat treatment at 300 to 450 ° C., and a third heat treatment at 400 to 550 ° C.
  • the laminate in which the polyimide film is formed on the substrate may have a stress of 60 MPa or less after the heat treatment at 100 to 350 ° C. That is, the stress applied to the substrate during the high temperature heat treatment may be reduced due to the difference in thermal expansion coefficient with the film, and thus the substrate warpage may be improved.
  • the thermal expansion coefficient (CTE) of the polyimide film may be 30 ppm or more and 200 ppm or less, 100 ppm or less according to another embodiment, or 100 ppm or less according to another embodiment at 100 to 250 ° C.
  • the polyimide film can be produced by peeling the polyimide film formed on the substrate from the substrate according to a conventional method.
  • the step of preparing the display and the solar cell substrate from the polyimide film prepared as described above may be carried out by peeling the polyimide film formed on the support according to a conventional method.
  • the resulting polyimide film has an average transmittance of 80% or more for light with a wavelength of 350 nm to 760 nm, a modulus of 4 GPa or less, a tensile stress of 150 MPa or less, and a coefficient of thermal expansion (CTE) of 30 ppm at 100 to 250 ° C. It may be more than 200 ppm.
  • the polyimide precursor composition of the present invention having the thermal expansion coefficient and elastic modulus adjusted as described above can significantly improve the warpage of the substrate in a high temperature heat treatment process, thereby providing a flexible substrate in an electronic device such as an OLED or LCD, electronic paper, or solar cell. It may be particularly useful for manufacturing.
  • the ACD / LogP module of the ACD / Percepta platform of ACD / Labs (where ACD / LogP module is calculated based on the Quantitative Structure-Property Relationship (QSPR) methodology based on the molecular 2D structure) is calculated.
  • the partition coefficient (LogP value) at °C is as follows.
  • P_PDMS_V The structure of P_PDMS_V is represented by the following Chemical Formula 13.
  • x repeating units may increase intramolecular flexibility
  • y repeating units may improve intermolecular compatibility
  • z repeating units may affect improving chemical resistance.
  • the order of the x, y, z repeating units may be arbitrarily changed and may be alternately positioned.
  • the molecular structure of the polyimide precursor is as shown in the following formula (14).
  • a precursor composition was prepared in the same manner as in Example 1, except that the precursor (P_PDMS_V) content of Formula 2 was 30 wt%.
  • a precursor composition was prepared in the same manner as in Example 1, except that the precursor (P_PDMS_V) content of Formula 2 was 50% by weight.
  • Oxydiphthalic anhydride (ODPA) was used instead of BPDA, and the precursor composition was prepared in the same manner as in Example 1 except that the precursor (P_PDMS_V) content of Chemical Formula 2 was 30% by weight.
  • a precursor composition was prepared in the same manner as in Comparative Example 1 except that Oxydiphthalic anhydride (ODPA) was used instead of BPDA.
  • ODPA Oxydiphthalic anhydride
  • a precursor composition was prepared in the same manner as in Comparative Example 1 except that 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluropropane (BAPP) was used instead of TFMB.
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluropropane
  • the prepared polyimide precursor solution was spin coated onto a glass substrate to a thickness of about 10 microns.
  • the glass substrate coated with the polyimide precursor solution was placed in an oven and heated at a rate of 3 ° C./min, and the curing process was performed by maintaining the mixture at 80, 120, 180, and 250 ° C. for 30 minutes to 1 hour.
  • Yellowness (YI) was measured by Color Eye 7000A.
  • CTE coefficient of thermal expansion
  • Zwick's UTM was used to measure the mechanical properties of the film (modulus, maximum stress, maximum elongation). After the film was cut to 5 mm horizontally and 60 mm or longer, the distance between the grips was set to 40 mm, and the value measured while pulling the sample at a speed of 20 mm / min was confirmed.
  • Thickness direction retardation was measured using Axoscan. The film was cut to a certain size to measure the thickness, and then the thickness was measured while calibrating in the direction of the C-plate to compensate for the phase difference value by measuring the phase difference with Axoscan.
  • Example 1 Example 2
  • Example 3 Thickness ( ⁇ m) 11.2 11.5 10.8 10.3 YI 5 4 3.3 2.4 CTE (ppm / K) / 250 ⁇ 100 °C 23 92 148 158 Modulus (GPa) 5.0 3.5 1.8 0.5
  • the polyimide film made of the polyimide composition according to the present invention has a coefficient of thermal expansion of 30 or more and 200 or less and a modulus of 4 GPa or less, and compared to Comparative Example 1 in a glass substrate. It can be seen that the stress applied is greatly reduced. In addition, it can be confirmed that other physical properties such as transparency and isotropy are also good. In addition, as shown in Table 3, in Comparative Example 3 has a soft segment has a low modulus value, but it can be confirmed that the stress value is higher than the embodiment using the structure according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 화학식 1의 구조를 포함하는 다이아민 또는 산이무수물로부터 유래된 폴리이미드 전구체를 함유하는 광전소자의 플렉시블 기판용 폴리이미드 전구체 조성물 및 이로부터 제조된 폴리이미드 필름에 관한 것으로서, 본 발명에 따른 전구체 조성물을 기판에 도포 및 경화시켜 얻은 폴리이미드 필름은 높은 투명성과 내열성을 가지며, 높은 열처리에도 기판의 스트레스가 상승하지 않아 치수안정성이 우수하다.

Description

광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
본 출원은 2015.03.05.자 한국 특허 출원 제10-2015-0030737호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물에 관한 것으로, 보다 상세하게는 높은 열처리에도 기판의 스트레스를 상승시키지 않는 치수안정성이 우수한 폴리이미드 필름 제조용 조성물에 관한 것이다.
최근 디스플레이 분야에서 제품의 경량화 및 소형화가 중요시 되고 있으며, 현재 사용되고 있는 유리 기판의 경우 무겁고 잘 깨지며 연속공정이 어렵다는 한계가 있기 때문에 유리 기판을 대체하여 가볍고 유연하며 연속공정이 가능한 장점을 갖는 플라스틱 기판을 핸드폰, 노트북, PDA 등에 적용하기 위한 연구가 활발히 진행되고 있다.
특히, 폴리이미드(PI) 수지는 합성이 용이하고 박막형 필름을 만들 수 있으며 경화를 위한 가교기가 필요 없는 장점을 가지고 있어, 최근에 전자 제품의 경량 및 정밀화 현상으로 LCD, PDP, OLED, 태양전지, 및 전자종이 등의 반도체 소재 및 가볍고 유연한 성질을 지니는 플렉시블 디스플레이 기판(flexible plastic display board)에 사용하려는 많은 연구가 진행되고 있다.
상기 폴리이미드 수지를 필름화하여 제조한 것이 폴리이미드(PI) 필름이며, 일반적으로 폴리이미드 수지는 방향족 다이안하이드라이드와 방향족 디아민 또는 방향족 디이소시아네이트를 용액 중합하여 폴리아믹산 유도체를 제조한 후, 고온에서 폐환탈수시켜 이미드화하여 제조되는 고내열 수지를 일컫는다.
플렉시블 디스플레이용 기판은 유리 기판 상에 폴리이미드 수지 용액을 코팅한 후 고온 열처리하려 필름을 형성하는 공정을 거쳐 제조된다. 이 때, 하부 유리기판과 폴리이미드 필름 층의 열팽창계수(CTE) 차이로 인해 필름 제막 후 유 유리기핀이 휘어지는 문제점이 발생한다. 기판이 휘어지면 필름 상에 소자를 적층하기 어려워 지므로 후속 공정이 불가능해질 수 있다.
따라서, 하부기판과의 CTE 차이로 인한 기판 휨 현상을 개선할 수 있는 폴리이미드 필름 형성용 조성물 개발이 필요하다.
본 발명은, 높은 투명성 및 등방성을 가지면서도 내열성이 우수하고, 하부 기판과의 열팽창계수 차이로 인한 휨 현상을 개선할 수 있는 폴리이미드 필름 형성용 조성물을 제공하고자 한다.
본 발명은 또한, 상기 폴리이미드 조성물로부터 높은 투명성 및 등방성과 내열성을 갖는 폴리이미드 필름을 제공하고자 한다.
본 발명은 또한, 상기 폴리이미드 필름이 기판 상에 형성되어 있으며 고온 열처리 후에도 스트레스가 감소된 적층체를 제공하고자 한다.
본 발명은 또한, 상기 폴리이미드 필름을 플렉시블 기판으로 포함하는 광전소자를 제공하고자 한다.
본 발명의 일 태양에 따르면, 화학식 1의 구조를 포함하는 다이아민 또는 산이무수물로부터 유래된 폴리이미드 전구체를 함유하는 광전소자의 플렉시블 기판용 폴리이미드 전구체 조성물이 제공된다:
[화학식 1]
Figure PCTKR2016002263-appb-I000001
상기 식에서, 상기 R1 및 R2는 각각 독립적으로 단일 결합, 탄소수 1 내지 5의 알킬렌기 또는 탄소수 6 이상의 2가 방향족기이고,
R3 R4는 각각 독립적으로 1 내지 5의 알킬기이며,
R5 및 R6는 각각 독립적으로 탄소수 4 내지 10의 아릴기이고,
R7 및 R8 중 적어도 하나는 탄소수 2 내지 10의 알케닐기이며,
m1, m2 및 m3은 각각 독립적으로 1 이상의 정수이다.
일 구현예에 따르면, 상기 화학식 1의 구조를 포함하는 다이아민 또는 산이무수물로부터 유래된 폴리이미드 전구체를, 폴리이미드 전구체 총 중량을 기준으로 50중량% 이하 함유하는 것일 수 있다.
일 구현예에 따르면, 상기 화학식 1의 구조를 포함하는 다이아민 또는 산이무수물로부터 유래된 폴리이미드 전구체는 분자량이 600 이상 7,000 이하인 것일 수 있다.
일 구현예에 따르면, 상기 화학식 1에서 m1, m2, m3는 1 내지 10의 정수일 수 있다.
일 구현예에 따르면, 상기 조성물은 분배계수가 양수인 값을 나타내는 용매에 폴리이미드 전구체가 용해되어 있는 것일 수 있다.
상기 용매는 아민계 제1 용매와 비아민계 제2 용매를 포함하는 것일 수 있다.
또한, 상기 아민계 제1 용매와 비아민계 제2 용매의 부피비가 50~90 : 10~50 일 수 있다.
일 구현예에 따르면, 상기 아민계 제1 용매가 탄소수 2 이상의 알킬기로 치환된 3차아민 일 수 있다.
또한, 상기 비아민계 용매는 톨루엔 또는 테트라하이드로퓨란 일 수 있다.
일 구현예에 따르면, 상기 폴리이미드 전구체 조성물은 실리카계 입자를 더 포함하는 것일 수 있다.
본 발명의 다른 특징에 따르면, 상기 조성물을 유리 기판 상에 도포한 후 경화시켜 얻은 광전소자의 플렉시블 기판용 폴리이미드 필름이 제공된다.
일 구현예에 따르면, 상기 필름은 350nm~760nm 파장의 빛에 대한 평균투과도가 80% 이상인 것일 수 있다.
일 구현예에 따르면, 상기 폴리이미드 필름은 탄성율(modulus) 4GPa 이하, 인장스트레스 150 MPa 이하인 것일 수 있다.
일 구현예에 따르면, 상기 폴리이미드 필름의 열팽창계수(CTE)가 100 내지 250℃에서 30ppm 이상 200ppm 이하일 수 있다.
본 발명의 또 다른 태양에 따르면, 상기 조성물을 유리 기판 상에 도포한 후 경화시켜 얻은, 유리 기판 상에 폴리이미드 필름이 형성된 적층체가 제공된다.
일 구현예에 따르면, 상기 적층체는 100~350℃의 열처리 공정 후 기판이 받는 스트레스가 60 MPa 이하일 수 있다.
본 발명은 또한 상기 폴리이미드 필름을 플렉시블 기판으로 포함하는 광전소자를 제공한다.
본 발명은 또한 상기 폴리이미드 필름을 플렉시블 기판으로 포함하는 플렉시블 디스플레이를 제공한다.
본 발명에 따른 전구체 조성물을 기판에 도포 및 경화시켜 얻은 폴리이미드 필름은 높은 투명성과 내열성을 가지며, 높은 열처리에도 기판의 스트레스가 상승하지 않아 치수안정성이 우수하다. 그 결과, 본 발명에 따른 폴리이미드 전구체 조성물은 유기발광다이오드(organic light emitting diode; OLED) 또는 액정표시장치(Liquid Crystal Display; LCD), 전자종이, 태양전지와 같은 전자기기에서의 플렉시블 디스플레이 기판의 제조에 유용하다.
도 1은 본 발명에 따른 폴리이미드 구조의 고온 공정 후 스트레스 감소 원리를 나타내는 그래프이다.
도 2는 실시예 및 비교예에 따른 폴리이미드 필름의 열팽창계수, 모듈러스 및 글래스 스트레스를 보여주는 그래프이다.
본 명세서에서 탄소고리기는 지환족 고리기 및 방향족 고리기를 모두 포함하며, 이들의 헤테로 고리도 포함하는 의미이다. 상기 "헤테로"란 N, O, S, P 및 Si로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 포함하는 작용기를 의미한다.
그리고, 본 명세서에서 "C4 내지 C20 축합 다고리식 탄소고리기"는 2 이상의 탄소고리들이 서로 축합된 형태를 의미한다.
또한, 본 명세서에서 "링커에 의하여 상호 연결된 C6 내지 C30 비축합 다고리식 탄소고리기"는 2 이상의 탄소고리가 링커에 의하여 연결된 형태를 의미한다. 상기 링커는 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCO(CH2)n3OCO- 등을 포함한다.
본 명세서에서 별도의 정의가 없는 한, "치환"의 의미는 할로겐, C1 내지 C15 할로알킬기, 니트로기, 시아노기, C1 내지 C15 알콕시기 및 C1 내지 C10 저급 알킬아미노기로 이루어진 군에서 선택되는 치환기로 치환된 것을 의미한다.
본 명세서에서 화학식에 표시된 *는 결합 위치를 의미한다.
이하, 발명의 구체적인 구현예에 따른 광전소자의 플렉시블 기판용 폴리이미드 전구체 조성물에 관하여 보다 상세하게 설명하기로 한다.
본 발명에서는, 고온 열처리 공정 후 기판의 스트레스를 감소시키기 위하여 기판 상에 형성되는 폴리이미드 필름의 탄성율(영률 또는 모듈러스)과 열팽창계수를 적정 범위로 조절하고자 하였으며, 그 결과 4GPa 이하의 탄성율과 30 내지 200ppm의 열팽창계수를 가지도록 함으로써 기판의 고온 열처리 후 휨 현상을 개선시킬 수 있었다.
본 발명의 일 태양에 따른 광전소자의 플렉시블 기판용 폴리이미드 전구체 조성물은, 하기 화학식 1의 구조를 포함하는 다이아민 또는 산이무수물로부터 유래된 폴리이미드 전구체를 함유하는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2016002263-appb-I000002
상기 식에서, 상기 R1 및 R2는 각각 독립적으로 단일 결합, 탄소수 1 내지 5의 알킬렌기 또는 탄소수 6 이상의 2가 방향족기이고,
R3 R4는 각각 독립적으로 1 내지 5의 알킬기이며,
R5 및 R6는 각각 독립적으로 탄소수 4 내지 10의 아릴기이고,
R7 및 R8은 중 적어도 하나는 탄소수 2 내지 10의 알케닐기이며,
m1, m2 및 m3은 각각 독립적으로 1 이상의 정수이다.
상기 화학식 1의 구조를 갖는 반복단위는 알킬기로 치환된 반복단위, 아릴기로 치환된 실록산 반복단위 및 알케닐기로 치환된 실록산 반복단위를 함께 포함함으로써 그로부터 제조되는 폴리이미드 필름이 4GPa 이하의 탄성율과 30 내지 200ppm의 열팽창계수를 가지도록 할 수 있다.
상기 알킬기로 치환된 반복단위, 아릴기로 치환된 실록산 반복단위 및 알케닐기로 치환된 실록산 반복단위의 순서는 임의로 바뀔 수 있고, 상호 교대로 위치할 수도 있다.
본 발명에 따르면, 알케닐기로 치환된 반복단위를 가짐으로써 고내열성 탄성 폴리이미드를 제공할 수 있으며, 이를 디스플레이 기판에 적용하게 되면 도 1에 도시된 바와 같이, 고온 공정 후 기판 상에 적층된 폴리이미드의 열 팽창-수축으로 인한 스트레스를 완화시켜 기판과의 열팽창계수 차이로 인해 발생하는 기판 휨 현상을 개선할 수 있다.
본 발명의 바람직한 구현예에 따르면, 4GPa 이하의 탄성율과 30 내지 200ppm의 열팽창계수를 가지도록 하기 위하여 상기 화학식 1의 구조를 포함하는 다이아민 또는 산이무수물로부터 유래된 폴리이미드 전구체를, 폴리이미드 전구체 총 중량을 기준으로 50중량% 이하 사용할 수 있다. 다른 실시예에 따르면, 상기 함량은 10중량% 이상 40중량% 이하, 다른 실시예에 따르면 10중량% 이상 30 중량% 이하 포함될 수 있다.
특정 치환기를 갖는 실록산 반복단위를 갖는 폴리이미드 일정비율 혼합하여 폴리이미드 전구체 조성물을 제조함으로써, 기존의 실록산이 포함된 폴리이미드 전구체 조성물의 450℃ 이상의 고온에서 경화될 경우 기계적, 열적 특성이 저하되는 문제점을 개선시켜, 500℃ 이상의 열처리공정에서도 고내열성을 확보할 수 있다.
상기 폴리이미드 전구체의 분자량은 500 이상 7,000 이하, 바람직하게는 500 이상 5,000 이하일 수 있다.
일 구현예에 따르면, 상기 화학식 1에서 R1 및 R2는 각각 독립적으로 단일 결합, 탄소수 1 내지 5의 알킬렌기 또는 탄소수 6 이상의 2가 방향족기일 수 있고, 바람직하게는 탄소수 3 이상의 알킬렌기일 수 있다.
R3 R4는 각각 독립적으로 1 내지 5의 알킬기이며, 바람직하게는 메틸 또는 에틸기일 수 있다.
R5 및 R6는 각각 독립적으로 탄소수 4 내지 10의 아릴기이고, 바람직하게는 페닐기일 수 있다.
R7 및 R8은 중 적어도 하나는 탄소수 2 내지 10의 알케닐기이며, 바람직하게는 에테닐 또는 프로페닐기일 수 있다. 또한, 알케닐기가 아닌 다른 하나는 탄소수 1 내지 5의 알킬기일 수 있다.
일 구현예에 따르면, 상기 화학식 1에서 m1, m2, m3는 각각 독립적으로 1 내지 10의 정수일 수 있으며, 구체적으로 m1는 3 내지 9, m2는 2 내지 9, m3은 1 내지 5의 정수일 수 있다.
본 발명의 일 실시예에 따르면, 상기 폴리이미드 전구체는 하기 화학식 2의 구조를 갖는 폴리이미드의 전구체 및 화학식 3의 구조를 갖는 폴리이미드의 전구체의 혼합물로부터 형성되는 것일 수 있다.
[화학식 2]
Figure PCTKR2016002263-appb-I000003
상기 화학식 2에서,
X1은 산 이무수물로부터 유도된 방향족, 지환족 또는 지방족기를 포함하는 4가 유기기이며,
Y1은 하기 화학식 1a로 표현되는 디아민으로부터 유도되는 2가 유기기를 포함하는 2가 유기기이고,
p는 반복단위를 나타내는 1 이상의 정수이다.
[화학식 1a]
Figure PCTKR2016002263-appb-I000004
상기 화학식 1a에서,
상기 R1 내지 R8 및 m1 내지 m3은 화학식 1에서 설명한 바와 같다.
[화학식 3]
Figure PCTKR2016002263-appb-I000005
상기 화학식 3에서,
X2는 산이무수물로부터 유도된 방향족, 지환족 또는 지방족기를 포함하는 4가 유기기이며,
Y2는 디아민으로부터 유도된 방향족, 지환족 또는 지방족기를 포함하는 2가 유기이고,
q는 반복단위를 나타내는 1 이상의 정수이다.
본 발명의 일 구현예에 따르면 Y1 및 Y2 중 적어도 하나는 다이아민으로부터 유도된 방향족, 지환족 및 지방족기로 이루어진 군에서 선택된 2가 유기기이되, 하나 이상의 플루오로 원자를 함유하는 치환기를 가질 수 있다.
구체적으로, 본 발명에 따른 전구체 조성물은 화학식 2 및 3에 있어서 X1 및 X2가 각각 하기 화학식 4로 표시되는 4가 유기기, Y1 및 Y2가 각각 화학식 5 또는 화학식 6으로 표시되는 2가 유기기에서 선택되는 구조를 하나 이상 포함하는 것일 수 있다.
[화학식 4]
Figure PCTKR2016002263-appb-I000006
상기 R7, R8, R9, R10은 각각 독립적으로 수소원자, 할로겐원자, 또는 하이드록시기에서 선택되는 것이고,
[화학식 5]
Figure PCTKR2016002263-appb-I000007
[화학식 6]
Figure PCTKR2016002263-appb-I000008
상기 화학식 5 및 화학식 6에 있어서,
A는 단일결합, -O-, -NH-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, 또는 -OCO(CH2)n3OCO-이고, n1, n2 및 n3는 각각 1 내지 10의 정수이고,
R11, R12, R13, R14, R15, R16 은 각각 독립적으로 수소원자, 할로겐원자, 또는 하이드록시기에서 선택되는 것이다.
화학식 2의 폴리이미드 구조에 있어서, 상기 화학식 1의 실록산 구조를 포함하는 단량체의 함량이 5 mol% 이상 또는 50 mol% 이하, 바람직하게는 5 내지 40 mol%일 수 있다. 5 mol%보다 적게 포함되면 폴리이미드 필름의 기판의 휨 방지 효과가 저하되며, 50 mol% 보다 초과하여 포함되면, 폴리이미드의 분자량 감소 및 내열성이 저하될 수 있으며, 이는 폴리이미드 전구체가 350℃ 이상의 고온 조건의 열처리공정에서 폴리이미드 필름의 기계적, 열적 특성을 저하시킬 수 있다.
화학식 2의 폴리이미드 구조를 포함하는 전구체는 상기 화학식 4의 4가 유기기와 화학식 5 또는 6에서 선택되는 2가 유기기를 갖는 단량체를 더 포함할 수 있는데, 그 함량은 각각 10mol% 이상 또는 50mol% 이하, 바람직하게는 25mol% 내지 50mol%, 보다 바람직하게는 35mol% 내지 50mol%의 함량을 포함하고 있을 수 있다.
또한, 화학식 3의 폴리이미드 구조에 있어서, 상기 화학식 4의 4가 유기기와 화학식 5 또는 6의 2가 유기기를 갖는 단량체의 함량이 각각 5mol% 이상 또는 50mol% 이하, 바람직하게는 20 내지 50mol%, 보다 바람직하게는 40mol% 내지 50mol%의 함량으로 포함될 수 있다. 상기한 화학식 4 내지 화학식 6의 화합물의 함량비에 따라 폴리이미드의 유연성 및 고온공정시의 흐름성 등을 개선시킬 수 있고, 또한 고온 공정시 폴리이미드 분자의 내열특성이 개선될 수 있다.
본 발명에 따르면, 상기 화학식 2 및 화학식 3의 반복구조를 갖는 폴리이미드에서 X1, X2는 치환 또는 비치환된 C4 내지 C20 탄소고리기; 치환 또는 비치환된 C4 내지 C20 축합 다고리식 탄소고리기; 및 치환 또는 비치환된 링커에 의하여 상호 연결된 C6 내지 C30 비축합 다고리식 탄소고리기;로 이루어진 군에서 선택된 하나의 4가 유기기를 더 포함하는 것일 수 있다.
또는, 상기 X1, X2는 하기 화학식 7a 내지 7d로 이루어진 군에서 선택된 하나의 4가 유기기일 수 있다.
[화학식 7a]
Figure PCTKR2016002263-appb-I000009
[화학식 7b]
Figure PCTKR2016002263-appb-I000010
[화학식 7c]
Figure PCTKR2016002263-appb-I000011
[화학식 7d]
Figure PCTKR2016002263-appb-I000012
상기 화학식 7a 내지 7d에서,
상기 R31 내지 R35는 각각 독립적으로 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 또는 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등)일 수 있고,
상기 a1은 0 또는 2의 정수, b1은 0 내지 4의 정수, c1은 0 내지 8의 정수, d1 및 e1은 각각 독립적으로 0 내지 3의 정수일 수 있으며,
상기 A1은 단일결합, -O-, -CR46R47-, -C(=O)-, -C(=O)NH-, -S-, -SO2-, 페닐렌기 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있으며, 이때 상기 R46 및 R47은 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 및 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 플루오로에틸기, 트리플루오로메틸기 등)로 이루어진 군으로부터 선택되는 것일 수 있다.
바람직하게는 상기 X1 및 X2는 각각 독립적으로 하기 화학식 8a 내지 8t의 4가 유기기로 이루어진 군에서 선택되는 것일 수 있다.
Figure PCTKR2016002263-appb-I000013
상기 화학식 8t에서 x는 1 내지 3의 정수이다.
또, 상기 화학식 8a 내지 8n의 방향족 4가 유기기는 4가 유기기 내에 존재하는 1 이상의 수소 원자가 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 또는 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등)의 치환기로 치환될 수도 있다.
보다 구체적으로, 상기 산이무수물로부터 유도되는 4가의 유기기는 부탄테트라카르복실릭 다이언하이드라이드, 펜탄테트라카르복실릭 다이언하이드라이드, 헥산테트라카르복실릭 다이언하이드라이드, 시클로펜탄테트라카르복실릭 다이언하이드라이드, 바이시클로펜탄테트라카르복실릭 다이언하이드라이드, 시클로프로판테트라카르복실릭 다이언하이드라이드, 메틸시클로헥산테트라카르복실릭 다이언하이드라이드, 3,3',4,4'-벤조페논테트라카르복실릭 다이언하이드라이드, 3,4,9,10-페릴렌테트라카르복실릭 다이언하이드라이드, 4,4'-술포닐디프탈릭 다이언하이드라이드, 3,3',4,4'-바이페닐테트라카르복실릭 다이언하이드라이드, 1,2,5,6-나프탈렌테트라카르복실릭 다이언하이드라이드, 2,3,6,7-나프탈렌테트라카르복실릭 다이언하이드라이드, 1,4,5,8-나프탈렌테트라카르복실릭 다이언하이드라이드, 2,3,5,6,-피리딘테트라카르복실릭 다이언하이드라이드, m-터페닐-3,3',4,4'-테트라카르복실릭 다이언하이드라이드, p-터페닐-3,3',4,4'-테트라카르복실릭 다이언하이드라이드, 4,4'-옥시디프탈릭다이언하이드라이드, 1,1,1,3,3,3-헥사플루오로-2,2-비스[(2,3 또는 3,4-디카르복시페녹시)페닐프로판 다이언하이드라이드, 2,2-비스[4-(2,3- 또는 3,4-디카르복시페녹시)페닐]프로판 다이언하이드라이드, 1,1,1,3,3,3-헥사플루오로-2,2-비스[4-(2,3- 또는 4-디카르복시페녹시)페닐]프로판 다이언하이드라이드 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것일 수 있다.
본 발명에 따르면, 상기 화학식 2 및 화학식 3의 반복구조를 갖는 폴리이미드의 구조에서 Y1 및 Y2는 각각 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C5 내지 C40 아릴렌기, 치환 또는 비치환된 C3 내지 C40 헤테로아릴렌기, 치환 또는 비치환된 C5 내지 C40 사이클로알킬렌기, 및 치환 또는 비치환된 C5 내지 C40 헤테로사이클로알킬렌기로 이루어진 군에서 선택된 하나의 2가 유기기를 더 포함할 수 있다.
상기 Y2는 하기 화학식 9a 내지 9d로 이루어진 군에서 선택된 하나의 2가 유기기일 수 있다.
[화학식 9a]
Figure PCTKR2016002263-appb-I000014
[화학식 9b]
Figure PCTKR2016002263-appb-I000015
상기 화학식 9b에서, L1 은 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이다.
[화학식 9c]
Figure PCTKR2016002263-appb-I000016
상기 화학식 9c에서, L2 및 L3는 서로 같거나 다를 수 있으며, 각각 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이다.
[화학식 9d]
Figure PCTKR2016002263-appb-I000017
상기 화학식 9d에서, L4, L5 및 L6는 서로 같거나 다를 수 있으며, 각각 단일결합, -O-, -CO-, -S-, -SO2-, -C(CH3)2-, -C(CF3)2-, -CONH-, -COO-, -(CH2)n1-, -O(CH2)n2O-, -OCH2-C(CH3)2-CH2O- 또는 COO(CH2)n3OCO-이고, 상기 n1, n2 및 n3는 각각 1 내지 10의 정수이다.
구체적으로, 상기 Y2는 하기 화학식 10a 내지 10q의 2가 유기기로 이루어진 군에서 선택되는 것일 수 있다.
Figure PCTKR2016002263-appb-I000018
상기 화학식 10a 내지 10q에서, 상기 A2는 단일결합, -O-, -C(=O)-, -C(=O)NH-, -S-, -SO2-, 페닐렌기 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있으며, v는 0 또는 1의 정수이다.
또, 상기 화학식 10a 내지 10q의 2가 작용기 내 1 이상의 수소 원자는 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등), 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등), 탄소수 6 내지 12의 아릴기(예를 들면, 페닐기, 나프탈레닐기 등), 술폰산기 및 카르복실산기로 이루어진 군에서 선택되는 치환기로 치환될 수도 있다.
구체적으로, 상기 2가 유기기를 갖는 다이아민으로는, 4,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐술파이드, 4,4'-디아미노디페닐술폰, 4,4'-디아미노벤조페논, 비스[4-(4-아미노페녹시)페닐]메탄, 2,2-비스[4-(4-아미노페녹시)페닐]프로판, 2,2-비스[4-(4-아미노페녹시)페닐]-1,1,1,3,3,3-헥사플루오로프로판, 1,3-비스(4-아미노페녹시)벤젠, 4,4'-비스(4-아미노페녹시) 비페닐, 비스[4-(4-아미노페녹시)페닐]케톤, 비스[4-(4-아미노페녹시)페닐]술폭사이드, 비스 [4-(4-아미노페녹시)페닐]술폰, 비스[4-(4-아미노페녹시)페닐]에테르, 4,4'-비스 (4-아미노페닐술포닐)디페닐에테르, 4,4'-비스(4-아미노티오페녹시)디페닐술폰, 1,4-비스[4-(4-아미노페녹시)벤조일]벤젠, 3,3'-디아미노 디페닐에테르, 3,3-디아미노 디페닐술파이드, 3,3'-디아미노디페닐술폰, 3,3'-디아미노 벤조페논, 비스[4-(3-아미노페녹시)-페닐]메탄, 2,2-비스[4-(3-아미노페녹시)페닐]프로판, 2,2-비스[4-(3-아미노페녹시)페닐-1,1,1,3,3,3-헥사플루오로프로판, 1,3-비스(3-아미노페녹시)벤젠, 4,4'-비스(3-아미노페녹시)비페닐, 비스[4-(3-아미노페녹시)페닐] 케톤, 비스[4-(3-아미노페녹시)페닐]술파이드, 비스 [4-(3-아미노페녹시)페닐]술폰, 비스[4-(3-아미노페녹시)페닐]에테르, 4,4'-비스(3-아미노페닐술포닐)디페닐에테르, 4,4'-비스(3-아미노티오페녹시)디페닐술폰, 1,4-비스[4-(3-아미노페녹시)벤조일]벤젠 및 이들의 혼합물로 이루어진 군에서 선택되는 것일 수 있다.
상기한 산이무수물 및 다이아민의 중합 반응을 통한 폴리아믹산의 제조는, 용액 중합 등 통상의 폴리아믹산 중합 제조방법에 따라 실시할 수 있다. 구체적으로는, 상기한 다이아민을 유기 용매 중에 용해시킨 후, 결과로 수득된 혼합용액에 산이무수물을 첨가하여 중합반응시킴으로써 제조될 수 있다. 이때 반응은 무수 조건에서 실시될 수 있으며, 상기 중합반응시 온도는 25 내지 50℃, 바람직하게는 40 내지 45℃에서 실시될 수 있다.
일 구현예에 따르면, 상기 조성물은 분배계수가 양수인 값을 나타내는 소수성 용매에 폴리이미드 전구체가 용해되어 있는 것일 수 있다.
상기 분배계수는 ACD/Labs 사의 ACD/Percepta platform의 ACD/LogP module (여기서, ACD/LogP module은 분자의 2D 구조를 이용하여 QSPR (Quantitative Structure-Property Relationship)방법론 기반의 알고리즘법) 을 사용하여 계산된 것으로서, 25℃에서의 분배계수(LogP 값)가 양수인 용매를 사용하는 것이 바람직하다. 보다 구체적으로 분배계수 LogP 값은 0.01 내지 3, 또는 0.01 내지 2, 또는 0.01 내지 1일 수 있다.
본 발명자들의 연구에 따르면 상기 분배계수 값이 양수인 소수성 용매를 사용하여 폴리이미드 또는 그 전구체의 용액을 제조하면, 용매 상에서 폴리이미드 전구체의 분산성이 높아지게 되어 비정질의 폴리이미드계 고분자가 제조되기에 용이해짐으로써, 결과적으로 제조되는 필름의 접착력이 향상되는 효과가 나타날 수 있다. 따라서, 상기한 용매를 사용하는 폴리이미드계 용액을 이용하여 제조된 폴리이미드는 높은 내열성과 기계적 특성과 함께, 우수한 접착력을 가짐으로써 유리기판 및 무기 희생층과 필름간의 접착력이 향상된 기판을 제조할 수 있다.
본 발명의 바람직한 실시예에 따르면, 상기 분배계수가 양수인 값을 소수성 용매는 아민계 제1 용매와 비 아민계 제2 용매의 2성분계 용매의 혼합용매일 수 있다. 화학식 1의 폴리이미드 전구체는 소수성이 강하기 때문에 비아민계 소수성 용매가 존재하는 경우 더 잘 용해되는 경향이 있다. 2성분계 용매를 사용하는 경우에는 제1 용매와 제2 용매를 50~90 : 10~50의 부피비로 사용할 수 있다.
아민계 소수성 용매(제1 용매)는 탄소수 2 이상의 알킬기로 치환된 3차아민일 수 있고, 더욱 바람직하게는 탄소수 2 내지 6의 알킬기를 2개 이상 갖는 3차아민일 수 있다. 더욱 구체적으로 예를 들면, N,N-디에틸아세트아마이드(N,N-diethylacetamide), N,N-디에틸포름아마이드(N,N-diethylformamide), N-에틸피롤리돈(N-ethylpyrrolidone) 또는 이들의 혼합물을 포함하는 것일 수 있다. 본 발명자들의 연구에 따르면 특히, N,N-디에틸포름아마이드를 사용하는 경우 필름의 투명성이 향상됨을 확인할 수 있었다.
비아민계 소수성 용매(제2 용매)로는 톨루엔과 테트라하이드로퓨란을 예로 들 수 있으나 이들로 한정되는 것은 아니다.
상기 유기 용매의 함량은 상기 폴리이미드 수지 전구체 조성물 중 테트라카르복실릭 다이안하이드라이드 및 다이아민 고형분 100중량부에 대하여 100 내지 1000 중량부 일 수 있다. 상기 유기 용매의 함량이 너무 적은 경우에는 조성물의 점도가 지나치게 높아져서 코팅성이 저하될 수 있으며, 상기 함량이 너무 높은 경우 조성물의 건조가 용이하지 않을 수 있으며, 제조되는 필름의 기계적 물성 등이 저하될 수 있다.
상기 중합 반응의 결과로, 폴리이미드의 전구체인 폴리아믹산이 제조된다. 상기 폴리아믹산은 산무수물기와 아미노기의 반응에 따른 -CO-NH-기 및 CO-OR기(이때 R은 수소원자 또는 알킬기임)를 포함하는 산 또는 상기 산의 유도체로서, 본 발명의 다른 일 구현예에 따르면 하기 화학식 11 및 화학식 12의 구조를 갖는 폴리아믹산이 제공된다:
[화학식 11]
Figure PCTKR2016002263-appb-I000019
상기 화학식 11에서 X1 및 Y1 은 앞에서 정의한 바와 동일하다.
[화학식 12]
Figure PCTKR2016002263-appb-I000020
상기 화학식 12에서 X2 및 Y2는 앞서 정의한 바와 동일하다.
이어서, 상기 중합 반응의 결과로 수득된 폴리아믹산에 대해 이미드화 공정이 실시된다. 이때, 상기 이미드화 공정은 구체적으로 화학 이미드화 또는 열 이미드화 방법으로 실시될 수 있다.
구체적으로, 화학 이미드화는 무수 아세트산, 무수 프로피온산, 무수 안식향산 등의 산 무수물 또는 이의 산 클로라이드류; 디시클로헥실 카르보디이미드 등의 카르보디이미드 화합물 등의 탈수제를 사용하여 실시될 수 있다. 이때, 상기 탈수제는 상기한 산 이무수물 1몰에 대해, 0.1 내지 10몰의 함량으로 사용되는 것이 바람직할 수 있다.
또, 상기 화학 이미드화시 60 내지 120℃의 온도에서의 가열 공정이 함께 실시될 수도 있다.
또, 열 이미드화의 경우 80 내지 400℃의 온도에서의 열처리에 의해 실시될 수 있으며, 이때 탈수 반응의 결과로 생기는 물을 벤젠, 톨루엔, 크실렌 등을 이용하여 공비 제거하는 공정이 함께 실시되는 것이 보다 바람직할 수 있다.
한편, 상기 화학 또는 열 이미드화 공정은 피리딘, 이소퀴놀린, 트리메틸아민, 트리에틸 아민, N,N-디메틸아미노피리딘, 이미다졸, 1-메틸피페리딘, 1-메틸피페라진 등의 염기 촉매 하에서 실시될 수 있다. 이때 상기 염기 촉매는 상기한 산 이무수물 1몰에 대해 0.1 내지 5몰의 함량으로 사용될 수 있다.
상기와 같은 이미드화 공정에 의해 폴리아믹산 분자내 -CO-NH-의 H와 -CO-OH의 OH가 탈수하여, 환형 화학 구조(-CO-N-CO-)를 갖는 상기 화학식 1의 폴리이미드가 제조된다.
상기 폴리이미드 수지 전구체 조성물은 열가교제, 경화 촉진제, 인계 난연제, 소포제, 레벨링제, 겔 방지제 또는 이들의 혼합물을 더 포함할 수 있다. 이러한 첨가제로는 폴리이미드 수지 전구체 조성물에 사용될 수 있는 것으로 알려진 것이면 별 다른 제한 없이 사용할 수 있으며, 제조되는 폴리이미드 수지 전구체 조성물 또는 이로부터 얻어지는 필름의 물성 등을 고려하여 적절한 양으로 사용할 수 있다.
일 구현예에 따르면, 폴리이미드 전구체 조성물은 실리카계 입자를 포함하고 있을 수 있다. 예를 들어, 전술한 바와 같은 폴리아믹산과 실리카계 입자를 혼합한 후 반응시키거나, 또는 폴리아믹산과 실란계 화합물을 반응시켜 폴리아믹산 고분자를 제조한 다음 알콕시실란을 반응시켜 폴리아믹산 고분자와 실리카계 입자를 포함하는 복합체를 제조할 수 있다. 또한, 화학식 1의 R1 내지 R8 중 하나 이상의 치환기에 실리카계 입자가 화학적으로 결합되어 있을 수도 있다. 실리카계 입자를 포함하는 경우, 기계적 물성이 향상되며 열안정성이 우수해서 기판의 휨을 방지할 수 있으며 내화학성이 향상될 수 있다.
또한, 본 발명의 다른 태양에 따르면, 화학식 1의 구조를 포함하는 다이아민 또는 산이무수물로부터 유래된 폴리이미드의 전구체 조성물을 50중량% 이하 함유하는 전구체 조성물을 준비하는 단계; 상기 폴리이미드 전구체 조성물을 기판의 일면에 도포한 후 경화하여 폴리이미드 필름을 제조하는 단계; 그리고, 상기 폴리이미드 필름을 지지체로부터 분리하는 단계를 포함하는 광전소자의 플렉시블 기판용 폴리이미드 필름의 제조방법이 제공된다.
상기 산이무수물 및 디아민이 반응함으로써 폴리아믹산을 형성할 수 있고, 상기 형성된 폴리아믹산은 이미드화되어 폴리이미드 수지를 제공할 수 있다.
본 발명에 따른 폴리이미드 전구체 조성물의 점도는 10,000 내지 20,000 cP 일 수 있다.
이때, 상기 기판으로는, 유리 기판, 금속 기판, 플라스틱 기판 또는 이들의 2종 이상으로 이루어지는 복합재료도 예로 들 수 있다.
플라스틱 기판으로는 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리프로필렌, 폴리에틸렌, 3초산 셀룰로오스, 2초산 셀룰로오스, 폴리(메타)아크릴산 알킬에스테르, 폴리(메타)아크릴산 에스테르공중합체, 폴리염화비닐, 폴리비닐알콜, 폴리카보네이트, 폴리스티렌, 셀로판, 폴리염화비닐리덴 공중합체, 폴리아미드, 폴리이미드, 염화비닐·초산비닐공중합체, 폴리테트라플루오로에틸렌, 및 폴리트리플루오로에틸렌 등의 각종의 플라스틱 필름일 수 있다.
상기 기판의 두께는 5 내지 150㎛가 바람직하고, 이 중에서도 폴리이미드 전구체에 대한 경화 공정 중 열 및 화학적 안정성이 우수하고, 별도의 이형제 처리 없이도, 경화 후 형성된 폴리이미드 필름에 대해 손상 없이 용이하게 분리될 수 있는 유리 기판이 바람직할 수 있다.
보다 구체적으로, 상기 폴리이미드계 용액의 도포 후, 경화 공정에 앞서 폴리이미드계 용액 내에 존재하는 용매를 제거하기 위한 건조공정이 선택적으로 더 실시될 수 있다.
상기 폴리이미드 수지 전구체 조성물의 도포방법은 특별히 한정되지 않고, 예를 들어 스프레이법, 롤코팅법, 회전도포법, 슬릿코팅법, 압출코팅법, 커튼코팅법, 다이코팅법, 와이어바코팅법 또는 나이프코팅법 등의 방법을 사용할 수 있다. 상기 폴리이미드 수지 전구체 조성물의 건조는 각 구성 성분이나 유기 용매의 종류, 및 함량비에 따라 다르지만 60 내지 100℃에서 30초 내지 15분간 수행하는 것이 바람직하다. 구체적으로 140℃ 이하, 혹은 80 내지 140℃의 온도에서 실시될 수 있다. 건조 공정의 실시 온도가 80℃ 미만이면 건조 공정이 길어지고, 140℃를 초과할 경우 이미드화가 급격히 진행되어 균일한 두께의 폴리이미드계 필름 형성이 어렵다.
또한, 상기 경화 공정은 80 내지 500℃ 온도에서의 열처리에 의해 진행될 수 있으며, 또한 상기 온도범위 내에서 다양한 온도에서의 다단계 가열처리로 진행될 수도 있다. 일 실시예에 따르면, 상기 폴리이미드 전구체 복합물은 400 내지 500℃의 온도에서 경화될 수 있으며, 바람직하게는 450 내지 500℃일 수 있다. 상기 경화 공정은 상기한 온도범위 내에서 다양한 온도에서의 다단계 가열처리로 진행될 수도 있다. 상기 경화 공정시 경화 시간은 특별히 한정되지 않으며, 일 예로서 30 분 내지 6시간 동안 실시될 수 있다.
건조 및 경화 후의 폴리이미드 필름의 막 두께는 5 내지 95 ㎛, 바람직하게는 10 내지 50 ㎛, 더욱 바람직하게는 10 내지 20 ㎛이다. 상기 필름의 막 두께가 5 ㎛ 이하이면 절연성이 좋지 못하며, 95 ㎛를 초과하면 투과도 및 해상도가 저하될 수 있다.
또, 상기 경화 공정 후에 폴리이미드계 필름내 폴리이미드계 수지의 이미드화율을 높여 상술한 물성적 특징을 갖는 폴리이미드계 필름을 형성하기 위해 후속의 열처리 공정이 선택적으로 더 실시될 수도 있다.
상기 후속의 열처리 공정은 200℃ 이상, 혹은 200 내지 500℃에서 바람직하게는 400℃ 내지 500℃에서 1분 내지 30분 동안 실시되는 것이 바람직하다. 또, 상기 후속의 열처리 공정은 1회 실시될 수도 있고 또는 2회 이상 다단계로 실시될 수도 있다. 구체적으로는, 200 내지 220℃에서의 제1열처리, 300 내지 450℃에서의 제2열처리 및 400 내지 550℃에서의 제3열처리를 포함하는 3단계로 실시될 수 있다.
상기와 같은 방법으로 기판 위에 폴리이미드 필름이 형성된 적층체는 100~350℃의 열처리 공정 후 기판이 받는 스트레스가 60 MPa 이하로 될 수 있다. 즉, 필름과의 열팽창계수 차이로 인해 고온 열처리시 기판이 가해지는 스트레스가 감소될 수 있고 이에 따라 기판 휨 현상도 개선될 수 있다. 구체적으로, 폴리이미드 필름의 열팽창계수(CTE)가 100 내지 250℃에서 30ppm 이상 200ppm 이하, 다른 실시예에 따르면 160ppm 이하, 또 다른 실시예에 따르면 100ppm 이하일 수 있다.
이후, 기판 위에 형성된 폴리이미드계 필름을 통상의 방법에 따라 기판으로부터 박리함으로써 폴리이미드계 필름이 제조될 수 있다.
상기와 같이 제조한 폴리이미드 필름으로부터 디스플레이 및 태양전지용 기판을 제조하는 단계는, 지지체 위에 형성된 폴리이미드 필름을 통상의 방법에 따라 박리함으로써 실시될 수 있다.
결과적으로 제조되는 폴리이미드 필름은 350nm~760nm 파장의 빛에 대한 평균투과도가 80% 이상이며, 탄성율(modulus) 4GPa 이하, 인장스트레스 150 MPa 이하이고, 열팽창계수(CTE)가 100 내지 250℃에서 30ppm 이상 200ppm 이하일 수 있다.
이와 같이 조절된 열팽창계수 및 탄성율을 갖는 본 발명의 폴리이미드 전구체 조성물은 고온 열처리 공정에서 기판의 휨 현상을 현저히 개선할 수 있어 OLED 또는 LCD, 전자종이, 태양전지와 같은 전자기기에서의 플렉시블 기판의 제조에 특히 유용하게 사용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
분배계수
먼저, ACD/Labs 사의 ACD/Percepta platform의 ACD/LogP module (여기서, ACD/LogP module은 분자의 2D 구조를 이용하여 QSPR (Quantitative Structure-Property Relationship)방법론 기반의 알고리즘법)을 사용하여 계산된 25℃에서의 분배계수(LogP 값)는 다음과 같다.
용매 DEF DMF DEAc DMAc NMP NEP
LogP (25℃) 0.05 -1.01 0.32 -0.75 -0.28 0.22
비점(℃) 176-177 152-154 182-186 165 202-204 97
상기 표 1에서, 영문 약어는 아래와 같은 의미이다:
DMAc: N,N-디메틸아세트아마이드(N,N-Dimethylacetamide)
DEAc: N,N-디에틸아세트아마이드(N,N-Diethylacetamide)
DEF: N,N-디에틸포름아마이드(N,N-diethyl formamide)
DMF: N,N-디메틸포름아마이드(N,N-dimethyl formamide)
NMP: N-메틸피롤리돈(N-methylpyrrolidone)
NEP: N-에틸피롤리돈(N-ethylpyrrolidone)
실시예 1
화학식 2 전구체
2,2'-비스(트리플루오로메틸)-벤지딘(2,2'-bis(trifluoromethyl)benzidine; TFMB) 0.061mol과 Amino modified organopolysiloxane (P_PDMS_V, 분자량;1070Mw, Shin-Etsu Chemical에서 입수) 0.0068mol DEF: Toluene (vol/vol 7:3) 150g에 녹이고, BPDA 0.068mol과 용매(DEF) 100g을 첨가하여 15℃에서 2시간 교반한 후, 25℃에서 10시간 교반하였다. 이때 반응은 무수조건 하에서 진행하였다. 결과로 수득된 반응 용액에 DEF를 첨가하여 반응용액의 점도가 5,000cP가 되도록 고형분 25 중량%로 조절한 후, 24시간 동안 균일하게 혼합하여 폴리이미드 전구체 용액을 제조하였다.
상기P_PDMS_V의 구조는 하기 화학식 13과 같다.
[화학식 13]
Figure PCTKR2016002263-appb-I000021
상기 화학식 13에서, x 반복단위는 분자 내 유연성을 증가시킬 수 있고, y 반복단위는 분자 간 상용성을 개선시킬 수 있으며, z 반복단위는 내화학성을 개선시키는 데 영향을 줄 수 있다. 상기 x, y, z 반복단위의 순서는 임의로 바뀔수 있고, 상호 교대로 위치할 수도 있다.
상기 폴리이미드 전구체의 분자구조는 하기 화학식 14와 같다.
[화학식 14]
Figure PCTKR2016002263-appb-I000022
실시예 2
화학식 2의 전구체(P_PDMS_V) 함량이 30 중량%가 되도록 한 것을 제외하고는 실시예 1과 동일한 방법으로 전구체 조성물을 제조하였다.
실시예 3
화학식 2의 전구체(P_PDMS_V) 함량이 50 중량%가 되도록 한 것을 제외하고는 실시예 1과 동일한 방법으로 전구체 조성물을 제조하였다.
실시예 4
BPDA 대신 Oxydiphthalic anhydride(ODPA)을 사용하고, 화학식 2의 전구체(P_PDMS_V) 함량이 30중량%가 되도록 한 것을 제외하고는 실시예 1과 동일한 방법으로 전구체 조성물을 제조하였다.
비교예 1
화학식 3 전구체 (BPDA-TFMB)
3,3',4,4'-비페닐테트라카르복실릭 디안하이드라이드 (3,3',4,4'-Biphenyltetracarboxylic dianhydride) 20g을 질소 분위기하에서 디에틸포름아마이드(diethylformamide, DEF) 150g에 20분 동안에 걸쳐 용해시켰다. 결과로 수득된 BPDA/DEF 용액에 다이아민계 화합물로서 2,2'-비스(트리플루오로메틸)-벤지딘(2,2'-bis(trifluoromethyl)benzidine; TFMB) 32.6g을 DEF 110g에 용해시켜 제조한 TFMB/DEF 용액을 첨가하고 25℃에서 2시간 동안 반응시킨 후, 온도를 40℃로 증가시켜 24시간 동안 반응시켰다. 결과로 수득된 반응 용액에 DEF를 첨가하여 반응용액의 점도가 5,000cP가 되도록 고형분 10 중량%로 조절한 후, 24시간 동안 균일하게 혼합하여 폴리이미드 전구체 용액을 제조하였다.
비교예 2
BPDA 대신 Oxydiphthalic anhydride(ODPA)을 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 전구체 조성물을 제조하였다.
비교예 3
TFMB 대신 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluropropane(BAPP)을 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 전구체 조성물을 제조하였다.
제조예
제조한 폴리이미드 전구체 용액을 약 10 미크론의 두께로 유리 기판에 스핀코팅하였다. 폴리이미드 전구체 용액이 도포된 유리 기판을 오븐에 넣고 3℃/min의 속도로 가열하였으며, 80, 120, 180, 250℃에서 30분~1시간을 유지하여 경화 공정을 진행하였다.
시험예 1
글래스 스트레스는 보우(Bow) 값으로 나타내었으며 측정방법은 다음과 같다.
10cm x 10cm의 글라스를 스트레스 측정기(TENCOR사의 FLX2320)에 설치하고, 레이저로 중앙을 스캔한 다음, 양쪽 1cm를 제외한 총 8cm의 센터부분에서 좌우 양쪽 4cm 간의 거리에서 글라스가 휘어진 정도(높이) 편차를 측정하였다.
시험예 2
상기 제조예에 따라 제조된 각각의 폴리이미드 필름들에 대하여 최대 연신율, 모듈러스, 최대 스트레스 및 열팽창계수를 각각 측정하였다.
황색도(YI)는 Color Eye 7000A 로 측정하였다.
또, 필름의 열팽창계수(CTE)는 TA사의 Q400을 이용하여 측정하였다.
필름을 5x20mm 크기로 준비한 뒤 악세서리를 이용하여 시료를 로딩한다. 실제 측정되는 필름의 길이는 16mm로 동일하게 하였다. 필름을 당기는 힘을 0.02N으로 설정하고, 측정시작 온도는 30℃에서 5/min의 속도로 350℃까지 가열하여 1st cooling에서의 선열팽창 계수를 측정하였다.
또, 필름의 기계적 물성(모듈러스, 최대 스트레스, 최대연신율)을 측정하기 위해 Zwick사의 UTM을 사용하였다. 필름을 가로 5mm, 세로 60mm 이상으로 자른 후 그립 간의 간격은 40mm로 설정하여 20mm/min의 속도로 샘플을 당기면서 측정되는 값을 확인하였다.
시험예 3: C.R. test (Chemical Resistance test)
필름 경화 조건: 250℃ multi-step
O: 필름 변형이 없음, Δ: 부분적으로 필름 변형이 발생, X: 필름 변형이 발생
시험예 4: 두께방향 위상차(Rth, nm)
두께 방향 위상차(Rth)는 Axoscan을 이용하여 측정하였다. 필름을 일정한 크기로 잘라 두께를 측정한 다음 Axoscan 으로 위상차를 측정하여 위상차 값을 보상하기 위하여 C-plate 방향으로 보정하면서 측정한 두께를 입력하였다.
상기와 같이 수행된 시험 결과를 하기 표 2, 3 및 도 1에 정리하여 기재하였다.
구분 비교예 1 실시예 1 실시예 2 실시예 3
두께(μm) 11.2 11.5 10.8 10.3
YI 5 4 3.3 2.4
CTE(ppm/K)/250~100℃ 23 92 148 158
모듈러스(GPa) 5.0 3.5 1.8 0.5
최대인장강도(MPa) 200 105 40 20
최대연신율(%) 25 30 12 70
글래스스트레스(Bow), μm 66 55 39 7.5
C.R. test Stripper
Developer
구분 두께(μm) 최대인장강도(MPa) C.R. test(r.t. 30min) 모듈러스(GPa) Rth, nm
Stripper Developer
비교예 2 11.3 82.6 4.1 225
실시예 4 11.2 43.8 2.2 40
비교예 3 16.0 63.1 - - 2.3 15
상기 표 2 및 도 1에서 나타난 바와 같이 본 발명에 따른 폴리이미드 조성물로 제조된 폴리이미드 필름은 30 이상 200 이하의 열팽창계수와 4 GPa 이하의 모듈러스를 가지며, 비교예 1과 비교하였을 때 유리 기판에 가해지는 스트레스가 대폭 감소되었음을 알 수 있다. 또한, 투명도, 등방성 등 기타 물성도 양호함을 확인할 수 있다. 아울러, 상기 표 3에 나타난 바와 같이, 비교예 3의 경우 소프트한 세그먼트를 가져 모듈러스 값은 낮지만, 본 발명에 따른 구조를 사용한 실시예보다 스트레스 값이 높은 것을 확인할 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (18)

  1. 화학식 1의 구조를 포함하는 다이아민 또는 산이무수물로부터 유래된 폴리이미드 전구체를 함유하는 광전소자의 플렉시블 기판용 폴리이미드 전구체 조성물:
    [화학식 1]
    Figure PCTKR2016002263-appb-I000023
    상기 식에서, 상기 R1 및 R2는 각각 독립적으로 단일 결합, 탄소수 1 내지 5의 알킬렌기 또는 탄소수 6 이상의 2가 방향족기이고,
    R3 R4는 각각 독립적으로 1 내지 5의 알킬기이며,
    R5 및 R6는 각각 독립적으로 탄소수 4 내지 10의 아릴기이고,
    R7 및 R8 중 적어도 하나는 탄소수 2 내지 10의 알케닐기이며,
    m1, m2 및 m3은 각각 독립적으로 1 이상의 정수이다.
  2. 제1항에 있어서,
    상기 화학식 1의 구조를 포함하는 다이아민 또는 산이무수물로부터 유래된 폴리이미드 전구체를, 폴리이미드 전구체 총중량을 기준으로 50중량% 이하 함유하는 것인 폴리이미드 플렉시블 기판용 폴리이미드 전구체 조성물.
  3. 제1항에 있어서,
    상기 화학식 1의 구조를 포함하는 다이아민 또는 산이무수물로부터 유래된 폴리이미드 전구체는 분자량이 600 이상 7,000 이하인 것인 폴리이미드 전구체 조성물.
  4. 제1항에 있어서,
    상기 화학식 1에서 m1, m2 및 m3은 각각 독립적으로 1 내지 10의 정수인 것인 폴리이미드 전구체 조성물.
  5. 제1항에 있어서,
    상기 조성물은 분배계수가 양수인 값을 나타내는 용매에 폴리이미드 전구체가 용해되어 있는 것인 폴리이미드 전구체 조성물.
  6. 제5항에 있어서,
    상기 용매는 아민계 제1 용매와 비아민계 제2 용매를 포함하는 것인 폴리이미드 전구체 조성물.
  7. 제6항에 있어서,
    상기 아민계 제1 용매와 비아민계 제2 용매의 부피비가 50~90 : 10~50 인 것인 폴리이미드 전구체 조성물.
  8. 제6항에 있어서,
    상기 아민계 제1 용매가 탄소수 2 이상의 알킬기로 치환된 3차아민인 것인 폴리이미드 전구체 조성물.
  9. 제6항에 있어서,
    상기 비아민계 용매는 톨루엔 또는 테트라하이드로퓨란인 것인 폴리이미드 전구체 조성물.
  10. 제1항에 있어서, 실리카계 입자를 더 포함하는 폴리이미드 전구체 조성물.
  11. 제1항 내지 제10항 중 어느 한 항의 조성물을 유리기판 상에 도포한 후 경화시켜 얻은 광전소자의 플렉시블 기판용 폴리이미드 필름.
  12. 제11항에 있어서, 모듈러스 4GPa 이하, 인장스트레스 150 MPa 이하, 열팽창계수(CTE)가 100 내지 250℃에서 30ppm 이상 200pm 이하인 광전소자의 플렉시블 기판용 폴리이미드 필름.
  13. 제11항에 있어서, 상기 필름은 350nm~760nm 파장의 빛에 대한 평균투과도가 80% 이상인 것인 폴리이미드 필름.
  14. 제1항 내지 제10항 중 어느 한 항의 조성물을 유리기판 상에 도포한 후 경화시켜 얻은, 유리 기판 상에 폴리이미드 필름이 형성된 적층체.
  15. 제14항에 있어서, 상기 적층체는 100~350℃의 열처리 공정 후 기판이 받는 스트레스가 60 MPa 이하인 것인 적층체.
  16. 제14항에 있어서, 상기 폴리이미드 필름은 모듈러스 4GPa 이하, 인장스트레스 150 MPa 이하, 열팽창계수(CTE)가 100 내지 250℃에서 30ppm 이상 200ppm 이하인 것인 적층체.
  17. 제11항에 따른 폴리이미드 필름을 플렉시블 기판으로 포함하는 광전소자.
  18. 제11항에 따른 폴리이미드 필름으로 제조된 플렉시블 기판을 포함하는 플렉시블 디스플레이.
PCT/KR2016/002263 2015-03-05 2016-03-07 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물 WO2016140559A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16745600.3A EP3266808B1 (en) 2015-03-05 2016-03-07 Composition for polyimide film for flexible substrate of optoelectronic device
US15/126,416 US10544266B2 (en) 2015-03-05 2016-03-07 Composition for the production of polyimide film for flexible board of photoelectronic device
JP2016551162A JP6501312B2 (ja) 2015-03-05 2016-03-07 光電素子のフレキシブル基板用ポリイミドフィルム用組成物
CN201680000859.XA CN106133025B (zh) 2015-03-05 2016-03-07 用于生产光电器件的柔性板的聚酰亚胺膜的组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150030737 2015-03-05
KR10-2015-0030737 2015-03-05
KR10-2016-0027035 2016-03-07
KR1020160027035A KR101993652B1 (ko) 2015-03-05 2016-03-07 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물

Publications (1)

Publication Number Publication Date
WO2016140559A1 true WO2016140559A1 (ko) 2016-09-09

Family

ID=56848394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002263 WO2016140559A1 (ko) 2015-03-05 2016-03-07 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물

Country Status (1)

Country Link
WO (1) WO2016140559A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618980B (zh) * 2017-06-30 2018-03-21 律勝科技股份有限公司 導熱型感光性樹脂
TWI618979B (zh) * 2017-06-30 2018-03-21 律勝科技股份有限公司 導熱型聚醯亞胺基板
JP2019503412A (ja) * 2016-09-23 2019-02-07 エルジー・ケム・リミテッド ポリイミド前駆体溶液及びその製造方法
EP3536731A4 (en) * 2017-09-14 2020-02-19 LG Chem, Ltd. POLYIMIDE COPOLYMERS AND POLYIMIDE FILMS THEREFOR
US11466124B2 (en) * 2017-09-14 2022-10-11 Lg Chem, Ltd. Polyimide precursor composition and polyimide film using same
US11479643B2 (en) * 2017-09-29 2022-10-25 Lg Chem, Ltd. Polyimide precursor solution and polyimide film produced using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990069076A (ko) * 1998-02-04 1999-09-06 유현식 실록산 폴리이미드 전구체 조성물
KR20010037632A (ko) * 1999-10-19 2001-05-15 윤종용 테입리스 loc 패키징용 폴리(이미드-실록산) 화합물
JP2011213853A (ja) * 2010-03-31 2011-10-27 Toyobo Co Ltd ポリイミド及びポリイミド溶液
KR20120069382A (ko) * 2010-12-20 2012-06-28 삼성전자주식회사 폴리이미드 전구체 조성물, 폴리이미드의 제조 방법, 상기 제조 방법에 따라 제조한 폴리이미드 및 상기 폴리이미드를 포함하는 필름
KR101236256B1 (ko) * 2008-05-20 2013-02-22 우베 고산 가부시키가이샤 방향족 폴리이미드 필름, 적층체 및 태양전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990069076A (ko) * 1998-02-04 1999-09-06 유현식 실록산 폴리이미드 전구체 조성물
KR20010037632A (ko) * 1999-10-19 2001-05-15 윤종용 테입리스 loc 패키징용 폴리(이미드-실록산) 화합물
KR101236256B1 (ko) * 2008-05-20 2013-02-22 우베 고산 가부시키가이샤 방향족 폴리이미드 필름, 적층체 및 태양전지
JP2011213853A (ja) * 2010-03-31 2011-10-27 Toyobo Co Ltd ポリイミド及びポリイミド溶液
KR20120069382A (ko) * 2010-12-20 2012-06-28 삼성전자주식회사 폴리이미드 전구체 조성물, 폴리이미드의 제조 방법, 상기 제조 방법에 따라 제조한 폴리이미드 및 상기 폴리이미드를 포함하는 필름

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019503412A (ja) * 2016-09-23 2019-02-07 エルジー・ケム・リミテッド ポリイミド前駆体溶液及びその製造方法
EP3486270A4 (en) * 2016-09-23 2019-10-02 LG Chem, Ltd. POLYAMIDE PROCESSING SOLUTION AND METHOD FOR THE PRODUCTION THEREOF
US10899886B2 (en) 2016-09-23 2021-01-26 Lg Chem, Ltd. Polyimide precursor solution and method for producing same
TWI618980B (zh) * 2017-06-30 2018-03-21 律勝科技股份有限公司 導熱型感光性樹脂
TWI618979B (zh) * 2017-06-30 2018-03-21 律勝科技股份有限公司 導熱型聚醯亞胺基板
EP3536731A4 (en) * 2017-09-14 2020-02-19 LG Chem, Ltd. POLYIMIDE COPOLYMERS AND POLYIMIDE FILMS THEREFOR
US11466124B2 (en) * 2017-09-14 2022-10-11 Lg Chem, Ltd. Polyimide precursor composition and polyimide film using same
US11549013B2 (en) 2017-09-14 2023-01-10 Lg Chem, Ltd. Polyimide copolymer and polyimide film using same
US11479643B2 (en) * 2017-09-29 2022-10-25 Lg Chem, Ltd. Polyimide precursor solution and polyimide film produced using same

Similar Documents

Publication Publication Date Title
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2017209413A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2019054612A1 (ko) 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2017188630A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2017111289A1 (ko) 지환족 모노머가 적용된 폴리아믹산 조성물 및 이를 이용한 투명 폴리이미드 필름
WO2017176000A1 (ko) 내열성이 개선된 폴리이미드 필름 및 그 제조방법
WO2017204462A1 (ko) 폴리아미드이미드, 이의 제조방법 및 이를 이용한 폴리아미드이미드 필름
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2019103274A1 (ko) 디스플레이 기판용 폴리이미드 필름
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2018021747A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2018143588A1 (ko) 가요성 기판 제조용 적층체 및 이를 이용한 가요성 기판의 제조방법
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2020130261A1 (ko) 가교제 화합물, 이를 포함하는 감광성 조성물, 및 이를 이용한 감광 재료
WO2018147617A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2020055182A1 (ko) 플렉서블 디스플레이 제조용 적층체 및 이를 이용한 플렉서블 디스플레이 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016551162

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016745600

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016745600

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15126416

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16745600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE