WO2018117551A1 - 투명 폴리이미드 필름 - Google Patents

투명 폴리이미드 필름 Download PDF

Info

Publication number
WO2018117551A1
WO2018117551A1 PCT/KR2017/014883 KR2017014883W WO2018117551A1 WO 2018117551 A1 WO2018117551 A1 WO 2018117551A1 KR 2017014883 W KR2017014883 W KR 2017014883W WO 2018117551 A1 WO2018117551 A1 WO 2018117551A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeating unit
polyimide film
transparent polyimide
acid dianhydride
diamine
Prior art date
Application number
PCT/KR2017/014883
Other languages
English (en)
French (fr)
Inventor
김선영
송중호
김동연
오현석
안경일
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Priority to CN201780078415.2A priority Critical patent/CN110099946B/zh
Publication of WO2018117551A1 publication Critical patent/WO2018117551A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1014Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)anhydrid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention relates to a transparent polyimide film applicable to a flexible display protective film or a substrate.
  • polyimide (PI) is a high heat-resistant resin prepared by solution polymerization of aromatic dianhydride and aromatic diamine or aromatic diisocyanate to prepare a polyamic acid derivative, and then imidization by ring closure dehydration at high temperature.
  • the aromatic diamine component is oxydianiline (ODA), p-phenylene diamine (p-PDA), m-phenylene diamine (m-PDA), m-methylene diamine (m- MDA), methylene diamine (MDA), bisaminophenylhexafluoropropane (HFDA) and the like are used.
  • ODA oxydianiline
  • p-PDA p-phenylene diamine
  • m-PDA m-phenylene diamine
  • m- MDA m-methylene diamine
  • MDA methylene diamine
  • HFDA bisaminophenylhexafluoropropane
  • Such polyimide is an insoluble and insoluble ultra high heat resistant resin, and has excellent properties such as heat oxidation resistance, heat resistance, radiation resistance, low temperature property, chemical resistance, and the like; It has been used in a wide range of fields such as insulating coatings, insulating films, electronic materials such as semiconductors and electrode
  • the conventional polyimide has a limitation in showing high transparency like a glass substrate because the polyimide is colored brown or yellow under the influence of a charge-transfer complex (CTC) and thus has low transmittance in the visible light region.
  • CTC charge-transfer complex
  • a colorless, transparent polyimide film was used as a 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl [2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl ]
  • a transparent polyimide obtained by polymerizing 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride [2,2-bis (3,4-dicarboxyphenyl) Hexa fluoropropane dianhydride] .
  • the film has a high coefficient of thermal expansion (CTE), which is liable to cause warpage and kinks, and also lowers heat resistance.
  • CTE coefficient of thermal expansion
  • the present invention aims to provide a transparent polyimide film having not only excellent optical properties and low thermal expansion, but also excellent mechanical properties.
  • the present invention provides a second repeating unit (A) derived from 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (2,2'-TFDB) and an acid dianhydride; Transparent polyimide formed of a polyimide comprising at least one repeating unit (B) selected from the group consisting of a second repeating unit derived from an ether-based diamine and an acid dianhydride and a third repeating unit derived from a non-fluorinated diamine and an acid dianhydride
  • the tensile modulus (E A + B ) of the transparent polyimide film according to ASTM D882 standard is a ratio (E A + B / to the tensile modulus of elasticity (E A ) of the polyimide composed of the first repeating unit.
  • E A provides a transparent polyimide film characterized by a range of 1.3 to 1.8.
  • the tensile modulus of elasticity (E A + B ) of the transparent polyimide film according to the ASTM D882 standard is preferably 5.5 to 6.5 GPa.
  • the tensile strength according to ASTM D882 standard is 155 MPa or more, and the elongation according to ASTM D882 standard is in the range of 4 to 8%.
  • the present invention provides a second repeating unit (A) derived from 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (2,2'-TFDB) and an acid dianhydride; Transparent polyimide formed of a polyimide comprising at least one repeating unit (B) selected from the group consisting of a second repeating unit derived from an ether-based diamine and an acid dianhydride and a third repeating unit derived from a non-fluorinated diamine and an acid dianhydride
  • a transparent polyimide film having a tensile strength of 155 MPa or more according to ASTM D882 standard is provided.
  • the present invention comprises a first repeating unit (A) derived from 2,2'-bis (trifluoro methyl) -4,4'-diaminobiphenyl (2,2'-TFDB) and an acid dianhydride; Transparent polyimide formed of a polyimide comprising at least one repeating unit (B) selected from the group consisting of a second repeating unit derived from an ether-based diamine and an acid dianhydride and a third repeating unit derived from a non-fluorinated diamine and an acid dianhydride
  • a transparent polyimide film having an elongation in the range of 4 to 8% by ASTM D882 standard is provided.
  • the present invention relates to ether-based diamines and acid dianhydrides, with repeating units derived from 2,2'-bis (trifluoro methyl) -4,4'-diaminobiphenyl (2,2'-TFDB) and acid dianhydrides.
  • repeating units derived from and / or repeating units derived from non-fluorinated diamines and acid dianhydrides they can be used as a substrate or protective film for flexible displays because of their excellent optical and mechanical properties.
  • the polyamic acid composition of the present invention is a diamine component, 2,2'-bis (trifluoro methyl) -4,4'-diaminobiphenyl (2,2'-TFDB) and ether-based diamine and / or It is characterized by including a non-fluorinated diamine together.
  • the polyamic acid composition comprises (a) 2,2'-bis (trifluoro methyl) -4,4'-diaminobiphenyl (2,2'-TFDB); (b) at least one diamine selected from the group consisting of ether-based diamines and non-fluorinated diamines; (c) acid dianhydrides; And (d) an organic solvent.
  • the 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (hereinafter referred to as 2,2'-TFDB) is an aromatic diamine containing fluorine, which induces linear polymerization. can do. Accordingly, the 2,2'-TFDB may form a repeating unit capable of polymerizing with an acid dianhydride, particularly an alicyclic acid dianhydride and / or a non-fluorinated aromatic acid dianhydride having a rigid structure to improve optical properties. have.
  • the content of this 2,2'-TFDB is in the range of about 50 to 90 mol%, preferably in the range of about 50 to 80 mol%, based on 100 mol% of the total diamine component. If the content of 2,2'-TFDB is out of the above range, an increase in yellowness and a decrease in permeability may occur.
  • diamine components include ether-based diamines and / or non-fluorinated diamines together with 2,2'-TFDB.
  • Ether-based diamine of the present invention is a diamine-based compound containing an ether group in the molecule, not only improves the mechanical properties of the polyimide film, but also because it can induce linear polymerization like 2,2'-TFDB, optical It does not cause deterioration of properties.
  • ether-based diamines include one or more selected from the group consisting of fluorinated ether-based aromatic diamines and non-fluorinated ether-based aromatic diamines. Of these, in view of high transparency, high glass transition temperature and low yellowness, fluorinated ether aromatic diamines are preferred.
  • the non-fluorinated diamine of the present invention is an aromatic diamine compound which does not contain fluorine and ether groups in the molecule, and not only improves the mechanical properties of the polyimide film but also induces linear polymerization like 2,2'-TFDB. It does not cause deterioration of optical characteristics.
  • examples of the ether-based diamine and non-fluorinated diamine include aromatic diamine represented by the following Chemical Formula 1, but are not limited thereto.
  • R 1 is — (CH 2 ) —, —SO 2 —, , And Is selected from the group consisting of
  • W is selected from the group consisting of a C 1 to C 20 alkylene group unsubstituted or substituted with fluorine and -SO 2- , preferably-(CH 2 )-, -C (CH 3 ) 2- , -C ( CF 3 ) 2 -and -SO 2 -may be selected from the group consisting of;
  • a and b are each an integer of 0 to 4, preferably an integer of 0 to 2;
  • R 2 and R 3 are the same or different and each is independently selected from the group consisting of an alkyl group a substituted or unsubstituted C 1 ⁇ C 20 ring together with fluorine, preferably -CF 3 or - (CH 2) n -CH 3 , n is an integer of 0 to 6, preferably n may be an integer of 0 to 4).
  • R 1 in the formula (1)
  • R 1 is-(CH 2 )-or -SO 2- .
  • ether-based diamines include 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether (2,2'-Bis (trifluoromethyl) -4,4'-diaminodiphenyl ether, 6FODA), 1,4-bis (4-amino) -2-trifluoromethylphenoxy) benzene (1,4-bis (4-amino-2-Trifluoromethylphenoxy) benzene, 6FAPB), 4,4'-dia Minodiphenyl ether (4,4'-Diaminodiphenyl ether, 4,4'-ODA), 1,3-bis (4'-aminophenoxyl) benzene (1,3-Bis (4'-aminophenoxyl) benzene, TPE -R) and 4,4'-bis (4-aminophenoxy) biphenyl (4,4'-Bis (4-aminophenoxy) biphenyl) and the like,
  • non-fluorinated diamine examples include 4,4'-diamino-2,2'-dimethylbiphenyl (4,4'-Diamino-2,2'-dimethylbiphenyl, m-Tolidine). It is not limited.
  • the content of the etheric diamine and the non-fluorinated diamine may be in the range of about 5 to 50 mol%, preferably about 5 to 40 mol%, more preferably about 10 to 30 mol%, based on 100 mol% of the total diamine component, respectively. Can be. If the content of the ether-based diamine and the non-fluorinated diamine is out of the above range, the rigidity of the polymer structure is lowered and mechanical properties may be reduced.
  • the total content of the ether-based diamine and non-fluorinated diamine is in the range of about 10 to 50 mol% based on 100 mol% of the total diamine component, preferably about 0.5 It may range from ⁇ 50 mol%.
  • the mixing ratio (b1: b2) of the ether-based diamine (b1) and the non-fluorinated diamine (b2) is not particularly limited, but is 30:70 to 70:30 molar ratio, preferably 40:60 to 60:40 mol In the ratio range, both optical and mechanical properties can be improved.
  • the present invention may optionally include conventional diamine compounds known in the art, together with (a) 2,2′-TFDB, and (b) ether-based diamines and / or non-fluorinated diamines, as described above. It may further include one or more selected from the group consisting of fluorinated diamine (ie, diamine containing fluorine), hydroxy-based diamine and sulfone-based diamine. However, it is preferable to select a monomer having a rigid structure in order to improve optical and mechanical properties.
  • Acid dianhydrides that can be used in the present invention is a compound having an acid dianhydride structure in the molecule, acid dianhydrides such as fluorinated, non-fluorinated, cycloaliphatic and the like known in the art can be used without limitation.
  • the acid dianhydride may be an acid dianhydride represented by Formula 2, but is not limited thereto.
  • Ar is selected from the group consisting of a C 4 to C 20 tetravalent hydrocarbon ring group and a C 6 to C 40 tetravalent aromatic group, preferably , , , , , And May be selected from the group consisting of).
  • the alicyclic acid dianhydride and the aromatic acid dianhydride may be used alone or in a mixed form of two or more kinds as the acid dianhydride.
  • the present invention may include an acid dianhydride having a rigid structure or an acid dianhydride containing no fluorine in order to improve mechanical properties without deteriorating optical properties.
  • the acid dianhydride may include an alicyclic acid dianhydride (preferably, a non-fluorinated alicyclic acid dianhydride) and a non-fluorinated aromatic acid dianhydride.
  • the alicyclic acid dianhydride that can be used in the present invention is not particularly limited as long as the compound has an alicyclic ring and not an aromatic ring in the compound and has an acid dianhydride structure.
  • 1,2,3,4-cyclobutane tetracarboxylic dianhydride (1,2,3,4-Cyclobutane tetracarboxylic dianhydride (CBDA), 1,2,3,4-cyclopentane tetracarboxyl Ric dianhydride (1,2,3,4-cyclopentanetetra-carboxylic dianhydride, CPDA), bicyclo [2,2,2] -7-octene-2,3,5,6-tetracarboxylic dianhydride (bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, BCDA), but is not limited thereto. These may be used alone or in combination of two or more thereof.
  • the non-fluorinated aromatic acid dianhydride that can be used in the present invention is not particularly limited as long as it is a compound having an aromatic ring and an acid dianhydride structure in the compound and containing no fluorine.
  • 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (3,3', 4,4'-Biphenyltetracarboxylic dianhydride (BPDA), pyromellitic dianhydride, PMDA), benzophenone tetracarboxylic dianhydride (BTDA), oxydiphthalic dianhydride (ODPA), and the like, but are not limited thereto.
  • BPDA 4,4'-biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • BTDA pyromellitic dianhydride
  • ODPA oxydiphthalic dianhydride
  • the acid dianhydride when the acid dianhydride includes one or more selected from the group consisting of cycloaliphatic acid dianhydrides and non-fluorinated aromatic acid dianhydrides, their contents are not particularly limited. For example, they may each range from about 10 to 100 mol%, preferably from about 10 to 90 mol%, more preferably from about 20 to 80 mol%, based on 100 mol% of the total acid dianhydride component.
  • the use ratio is 10:90 to 90:10 molar ratio, preferably 40:60 to 80:20 molar ratio, More preferably, the molar ratio may be 50:50 to 70:30.
  • mechanical properties can be improved without degrading the optical properties of the polyimide film.
  • the ratio (a / b) of the number of moles (a) of the diamine component to the number of moles (b) of the acid dianhydride component may be 0.7 to 1.3, preferably 0.8 to 1.2, further Preferably it may range from 0.9 to 1.1.
  • the polyamic acid composition of the present invention includes a solvent.
  • the solvent is for solution polymerization of the diamine component and the acid dianhydride component described above, and organic solvents known in the art may be used without limitation.
  • organic solvents known in the art may be used without limitation.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • DMSO dimethyl sulfoxide
  • acetone diethyl acetate
  • a low boiling point solution such as tetrahydrofuran (THF), chloroform or the like, or a low absorbing solvent such as ⁇ -butyrolactone may be used.
  • the diamine component and the acid dianhydride component described above may be added to a solvent and reacted to form a transparent polyamic acid composition.
  • diamines and acid dianhydrides and solvents are included, and the diamines include at least one diamine selected from the group consisting of (a) 2,2'-TFDB, and (b) ether-based diamines and non-fluorinated diamines.
  • the diamine and the acid dianhydride may be mixed in an equivalent ratio of about 1: 1 to form a transparent polyamic acid composition.
  • the composition of the polyamic acid composition is not particularly limited.
  • the polyamic acid composition may include 2.5 to 25 wt% of a diamine component, about 2.5 to 25 wt% of an acid dianhydride component based on 100 wt% of the composition, and a residual amount of an organic solvent satisfying 100 wt%.
  • the polyamic acid composition may comprise about 5-15 wt% of the diamine component, about 5-15 wt% of the acid dianhydride component, and 70-90 wt% of the organic solvent, based on 100 wt% of the composition.
  • the acid dianhydride may be in the range of 10 to 80% by weight, diamine 10 to 80% by weight, but is not limited thereto.
  • Such transparent polyamic acid compositions of the present invention may have a viscosity in the range of about 1,000 to 50,000 cPs, preferably about 2,000 to 35,000 cPs.
  • the viscosity of the polyamic acid composition falls within the above-mentioned range, the thickness of the polyamic acid composition may be easily adjusted during coating, and a uniform coating surface may be formed.
  • the polyamic acid composition of the present invention may contain a small amount of additives such as plasticizers, antioxidants, flame retardants, dispersants, viscosity regulators, leveling agents and the like within the range of not lowering the optical and mechanical properties of the polyimide film, if necessary. have.
  • additives such as plasticizers, antioxidants, flame retardants, dispersants, viscosity regulators, leveling agents and the like within the range of not lowering the optical and mechanical properties of the polyimide film, if necessary. have.
  • the transparent polyimide film according to the present invention is a film of the transparent polyimide prepared by imidizing and heat-treating the polyamic acid composition described above at high temperature.
  • the transparent polyimide is a polymer material containing an imide ring, wherein 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (2,2'-TFDB) and an acid are A first repeating unit (A) derived from anhydride; And at least one repeating unit (B) selected from the group consisting of second repeating units derived from ether-based diamines and acid dianhydrides and third repeating units derived from non-fluorinated diamines and acid dianhydrides.
  • the transparent polyimide may be a random copolymer or a block copolymer.
  • the first repeating unit (A) is formed from 2,2'-bis (trifluoro methyl) -4,4'-diaminobiphenyl (2,2'-TFDB) and an acid dianhydride. It is a derived part.
  • the 2,2'-TFDB is an aromatic diamine containing fluorine, and can induce linear polymerization. Accordingly, the 2,2'-TFDB is a repeating unit capable of polymerizing with an acid dianhydride, particularly an alicyclic acid dianhydride having a rigid structure and / or an acid dianhydride containing no fluorine to improve optical properties of the film. To form.
  • the first repeating unit (A) may be a repeating unit represented by the following Chemical Formula 3, but is not limited thereto.
  • Ar is selected from the group consisting of a C 4 to C 20 tetravalent hydrocarbon ring group and a C 6 to C 40 tetravalent aromatic group, preferably , , , , , And May be selected from the group consisting of).
  • the content rate of this 1st repeating unit is not specifically limited, If it is the range of 50-90 mol% based on 100 mol% of all the repeating units, a mechanical property can be improved without the optical characteristic of a film deteriorating.
  • the content rate of the first repeating unit may range from about 50 to 70 mol%.
  • At least one repeating unit (B) is a second repeating unit (B1) derived from etheric diamine and acid dianhydride and / or a third repeating unit derived from non-fluorinated diamine and acid dianhydride ( B2).
  • Ether-based diamines and non-fluorinated diamines are polymerized with acid dianhydrides, especially acid dianhydrides, especially alicyclic dianhydrides with rigid structures and / or acid dianhydrides that do not contain fluorine to provide mechanical properties without degrading the optical properties of the film.
  • Form repeatable units that can be improved.
  • the at least one repeating unit (B) may be a repeating unit represented by the following Formula 4, but is not limited thereto.
  • R 1 is — (CH 2 ) —, —SO 2 —, , And Is selected from the group consisting of
  • W is selected from the group consisting of a C 1 to C 20 alkylene group unsubstituted or substituted with fluorine and -SO 2- , preferably-(CH 2 )-, -C (CH 3 ) 2- , -C ( CF 3 ) 2 -and -SO 2 -may be selected from the group consisting of;
  • a and b are each an integer of 0 to 4, preferably an integer of 0 to 2;
  • R 2 and R 3 are the same as or different from each other, and each independently selected from the group consisting of a C 1 to C 20 alkyl group unsubstituted or substituted with fluorine, preferably -CF 3 or-(CH 2 ) n -CH May be 3 , n is an integer of 0 to 6, preferably an integer of 0 to 4;
  • Ar is selected from the group consisting of a C 4 to C 20 tetravalent hydrocarbon ring group and a C 6 to C 40 tetravalent aromatic group, preferably , , , , , And May be selected from the group consisting of).
  • R 1 is , and
  • R 1 is-(CH 2 )-or -SO 2- .
  • the content rate of the at least one repeating unit (B) is not particularly limited, the optical and mechanical properties of the film may be improved when the content is in the range of about 10 to 50 mol% based on 100 mol% of the total repeating units.
  • the mixing ratio (B1: B2) of the second repeating unit and the third repeating unit is 30: 70 to 70:30 molar ratio, preferably 40:60 to 60:40 molar ratio.
  • the transparent polyimide film of the present invention includes the first repeating unit (A) and the at least one repeating unit (b), thereby having not only excellent optical properties and low thermal expansion but also excellent mechanical properties.
  • F A + B shows the bend resistance of the transparent polyimide film according to the present invention according to the ASTM D2176 standard
  • F A is a conventional transparent polyimide consisting of the first repeating unit (A) according to the ASTM D2176 standard It shows the bending resistance of the film.
  • the transparent polyimide film of the present invention is a tension of the transparent polyimide film according to the present invention with respect to the tensile modulus of elasticity (E A ) of the polyimide consisting of the first repeating unit (A) according to ASTM D882 standard
  • the ratio of modulus of elasticity (E A + B ) (E A + B / E A ) is in the range of about 1.3 to 1.8 (preferably in the range of about 1.4 to 1.8).
  • the tensile modulus of elasticity (E A + B ) according to ASTM D882 standard is about 1.3 to that of the tensile modulus of elasticity (E A ) of the polyimide consisting of the first repeating unit (A). 1.8 times bigger.
  • the transparent polyimide film of the present invention has a tensile modulus of elasticity (E A + B ) in the range of 5.5 to 6.5 GPa according to the ASTM D882 standard, excellent in deformation resistance and mechanical properties compared to the conventional transparent polyimide film.
  • E A + B represents the tensile elastic modulus of the transparent polyimide film according to the present invention according to the ASTM D882 standard
  • E A is a conventional transparent poly consisting of the first repeating unit (A) according to the ASTM D882 standard
  • the tensile modulus of elasticity of the mid film is shown.
  • the transparent polyimide film of the present invention has a tensile strength of 155 MPa or more according to the ASTM D882 standard, and has excellent mechanical properties compared to the conventional transparent polyimide film.
  • the transparent polyimide film of the present invention has an elongation in the range of 4 to 8% according to ASTM D882 standard, which is superior in mechanical properties to conventional polyimide films.
  • the transparent polyimide film of the present invention described above has high transparency and low yellowness. Specifically, light transmittance of 550 nm at a film thickness of 10 ⁇ m is 89% or more, and yellowness (YI, Yellow Index) according to ASTM E313 standard is 2.5 or less (thickness 10 ⁇ m).
  • the polyimide film according to the present invention may be prepared according to conventional methods known in the art. For example, after coating (casting) the transparent polyamic acid composition on a glass substrate, it may be prepared by inducing an imide cyclization reaction (Imidazation) for about 0.5 to 8 hours while gradually raising the temperature in the range of 30 to 350 ° C. .
  • Imazation imide cyclization reaction
  • the coating method of the polyamic acid composition can be used without limitation conventional methods known in the art. For example, spin coating, dip coating, solvent casting, slot die coating, spray coating, and the like, but are not limited thereto. At this time, it can be performed alone or in combination of two or more coating methods.
  • the application amount of the said polyamic acid composition is not specifically limited, It is preferable to adjust according to the thickness of a final polyimide film.
  • the polyamic acid composition may be coated one or more times so that the transparent polyimide film has a thickness in the range of 8 to 20 ⁇ m.
  • the transparent polyimide film can be used in various fields, and in particular, displays for organic EL devices (OLEDs), displays for liquid crystal devices, TFT substrates, flexible printed circuit boards, and flexible OLEDs, which require high transparency and heat resistance. It can be used as a flexible display substrate and a protective film such as surface lighting substrate, substrate material for electronic paper.
  • OLEDs organic EL devices
  • TFT substrates TFT substrates
  • flexible printed circuit boards flexible OLEDs
  • 1,4-bis (4-amino) -2-trifluoromethylphenoxy) benzene hereinafter referred to as 1,4-bis (4-amino-2-Trifluoromethylphenoxy) benzene, hereinafter referred to as 6FAPB
  • 6FAPB 1,4-bis (4-amino-2-Trifluoromethylphenoxy) benzene
  • CBDA 1,2,3,4-Cyclobutane tetracarboxylic dianhydride
  • BPDA 3,3 ', 4,4'-bifelatetetracarboxylic dianhydride 0.13 g of a lide (3,3 ', 4,4'-Biphenyltetracarboxylic dianhydride, hereinafter referred to as BPDA) was sequentially added, followed by cooling to 30 deg. Solid content at this time was 20%, and it stirred after 3 hours. After the reaction of the monomer was completed, it was naturally cooled to obtain a transparent polyamic acid composition having a solution viscosity of 105 poise (10500 CPs) at 25 °C.
  • the transparent polyamic acid solution on the glass for LCD After spin-coating the transparent polyamic acid solution on the glass for LCD, gradually raising the temperature stepwise at 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, 200 ° C. for 1 hour, and 300 ° C. for 1 hour in a nitrogen convection oven. Drying and imidization were performed. Thereby, the transparent polyimide film (film thickness: 10 micrometers) whose imidation ratio is 85% or more was manufactured. Thereafter, the glass was etched with hydrofluoric acid to take a polyimide film.
  • a transparent polyimide film was prepared in the same manner as in Example 1-2, except that the transparent polyamic acid composition obtained in Example 2-1 was used.
  • a transparent polyimide film was prepared in the same manner as in Example 1-2, except that the transparent polyamic acid composition obtained in Example 3-1 was used.
  • a transparent polyimide film was prepared in the same manner as in Example 1-2, except that the transparent polyamic acid composition obtained in Example 4-1 was used.
  • a transparent polyimide film was prepared in the same manner as in Example 1-2, except that the transparent polyamic acid composition obtained in Example 5-1 was used.
  • a transparent polyimide film was prepared in the same manner as in Example 1-2, except that the transparent polyamic acid composition obtained in Example 6-1 was used.
  • a transparent polyimide film was prepared in the same manner as in Example 1-2, except that the transparent polyamic acid composition obtained in Example 7-1 was used.
  • a transparent polyimide film was prepared in the same manner as in Example 1-2, except that the transparent polyamic acid composition obtained in Example 8-1 was used.
  • a transparent polyimide film was prepared in the same manner as in Example 1-2, except that the transparent polyamic acid composition obtained in Example 9-1 was used.
  • a transparent polyimide film was prepared in the same manner as in Example 1-2, except that the transparent polyamic acid composition obtained in Comparative Example 1-1 was used.
  • a transparent polyimide film was prepared in the same manner as in Example 1-2, except that the transparent polyamic acid composition obtained in Comparative Example 2-1 was used.
  • a transparent polyimide film was prepared in the same manner as in Example 1-2, except that the transparent polyamic acid composition obtained in Comparative Example 3-1 was used.
  • compositions of the polyamic acid compositions prepared in Examples 1 to 9 and Comparative Examples 1 to 3 are shown in Table 1 below.
  • the transparent polyamic acid composition After coating the transparent polyamic acid composition on the silicon wafer with a film thickness of 20 ⁇ m or less, it was dried and an imide ring closure reaction was performed to form a polyimide film. Then, the thickness of the polyimide film was measured using a non-contact refractive index measuring device (Elli-RP of Ellipso technology) at 550nm wavelength.
  • a non-contact refractive index measuring device Elli-RP of Ellipso technology
  • the UV-Vis NIR Spectrophotometer was used at 550nm wavelength and measured at C angle and viewing angle of 2 degrees according to ASTM E313-73.
  • Yellowness at 550 nm was measured according to ASTM E313 using a UV spectrometer (Cotica Minolta CM-3700d).
  • ⁇ YI represents a yellowness change before and after exposure after exposing the film to a UV-B lamp for 72 hours, and can be calculated and obtained according to Equation 1 below.
  • YI 1 is the yellowness before 72 hours of exposure of the film to a UV-B lamp
  • YI 2 is the yellowness after 72 hours exposure of the film to a UV-B lamp.
  • Example 1 9.8 89.8 1.8 2.0 0.2
  • Example 2 10.1 89.9 1.7 2.2 0.5
  • Example 3 10.3 89.7 2.1 2.5 0.4
  • Example 4 9.9 89.9 1.7 2.0 0.3
  • Example 5 10.0 90.0 2.2 2.3 0.1
  • Example 6 10.5 90.1 2.0 2.2 0.2
  • Example 7 10.3 89.5 1.9 2.4
  • Example 8 10.5 89.2 2.1 2.5 0.4
  • Example 9 10.3 89.2 2.3 2.4 0.1 Comparative Example 1 10.5 88.7 1.5 2.2 0.7
  • Comparative Example 2 10.3 88.9 1.2 2.0 0.8 Comparative Example 3 9.7 88.8 1.3 2.0 0.7
  • the polyimide films of Examples 1 to 9 had a low yellowness of 2.5 or less at a wavelength of 550 nm, and a yellowness change rate of less than 0.7 even when exposed to a UV-B lamp for 72 hours. There was little change in color.
  • the polyimide films of Examples 1 to 9 had a transmittance of 89% or more at a wavelength of 550 nm.
  • the polyimide film according to the present invention can be applied to a flexible display material and a substrate because of excellent optical properties compared to the conventional polyimide film.
  • the bending resistance (times / R @ 2.5mm) of the film was measured by using a folding endurance tester (D-2).
  • Example 1 Tensile Modulus of Elasticity (GPa) Tensile Strength (MPa) Elongation (%) Flex resistance (ten thousand times)
  • Example 1 5.8 162 7 20.8
  • Example 2 5.7 160 8 20.7
  • Example 3 5.9 161 5 20.1
  • Example 4 5.7 163 7 20.6
  • Example 5 6.0 169 6 21.3
  • Example 6 5.6 167 7 22.5
  • Example 7 6.1 165 4 22.0
  • Example 9 5.9 165 4 20.5 Comparative Example 1 3.9 142 13 0.6 Comparative Example 2 3.8 139 15 0.5 Comparative Example 3 4.2 149 12 0.7
  • the polyimide films of Examples 1 to 9 had a tensile strength of 160 MPa or more, an elongation of 8% or less, and a tensile modulus of elasticity of 5.6 GPa or more.
  • the polyimide films of Examples 1 to 9 were larger in tensile modulus of elasticity and more excellent in deformation resistance than the polyimide films of Comparative Examples 1 to 3.
  • the tensile modulus of elasticity (E A + B ) of the polyimide films of Examples 1 to 9 with respect to the tensile modulus of elasticity (E A ) of the films of Comparative Examples 1-3 prepared using TFDB 100 mol% as the diamine.
  • the ratio (E A + B / E A ) ranged from 1.3 to 1.8.
  • the polyimide films of Examples 1 to 9 were 200,000 times or more in flex resistance, and were excellent in flex resistance compared to the polyimide films of Comparative Examples 1-3.
  • the polyimide films of Examples 1 to 9 were about 28 to 46 times more bent than the polyimide films of Comparative Examples 1 to 3, which were prepared using 100 mol% of TFDB as the diamine.
  • the polyimide film according to the present invention has excellent mechanical properties compared to the conventional polyimide film, and thus can be usefully applied to a flexible display material and a substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 22,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)와 산이무수물로부터 유도된 제1 반복단위(A)와; 에테르계 디아민과 산이무수물로부터 유도된 제2 반복단위 및 비불소화 디아민과 산이무수물로부터 유도된 제3 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위(B)를 포함하는 폴리이미드로 형성된 투명 폴리이미드 필름에 대한 것이다.

Description

투명 폴리이미드 필름
본 발명은 플렉서블 디스플레이 보호막이나 기판으로 적용 가능한 투명 폴리이미드 필름에 관한 것이다.
일반적으로 폴리이미드(polyimide, PI)는 방향족 디안하이드라이드와 방향족 디아민 또는 방향족 디이소시아네이트를 용액 중합하여 폴리아믹산 유도체를 제조한 후, 고온에서 폐환 탈수시켜 이미드화하여 제조되는 고내열성 수지이다.
상기 폴리이미드를 제조함에 있어, 상기 방향족 디아민 성분으로는 옥시디아닐린(ODA), p-페닐렌 디아민(p-PDA), m-페닐렌 디아민(m-PDA), m-메틸렌 디아민(m-MDA), 메틸렌 디아민(MDA), 비스아미노페닐헥사플로오로프로판(HFDA) 등을 사용하고 있다. 이러한 폴리이미드는 불용 및 불융의 초고내열성 수지로서, 내열산화성, 내열특성, 내방사선성, 저온특성, 내약품성 등의 특성이 우수하기 때문에, 자동차 재료, 항공 및 우주선 소재 등과 같은 내열 첨단소재; 절연 코팅제, 절연막, 반도체 및 LCD의 전극보호막 등과 같은 전자 재료 등의 광범위한 분야에서 사용되어 왔다.
그러나, 종래 폴리이미드는 전하이동착물(charge-transfer complex, CTC)에 의한 영향으로 갈색 또는 황색으로 착색되어 가시광선 영역에서의 투과도가 낮기 때문에, 유리 기판과 같은 고투명성을 나타내는 데 한계가 있었다. 이를 해결하고자, 최근 무색, 투명한 폴리이미드 필름으로 2,2'-비스(트리플루오르메틸)-4,4'- 디아미노바이페닐[2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl]과 2,2-비스 (3,4- 디카르복시페닐) 헥사플루오로프로판 디안하이드라이드[2,2-bis(3,4- dicarboxyphenyl)Hexa fluoropropane dianhydride]를 중합하여 얻은 투명 폴리이미드가 개발되었다. 그러나, 상기 필름은 열팽창계수(Coefficient of Thermal Expansion, CTE)가 높아 휨이나 꼬임이 발생하기 쉬웠고, 내열성도 저하되었다. 게다가, 폴리이미드 필름이 디스플레이용 투명 기판이나 보호막으로 사용되기 위해서는 낮은 열팽창성, 우수한 광학적 특성과 내열 특성뿐만 아니라, 우수한 기계적 특성도 요구된다. 그런데, 종래 폴리이미드 필름은 내굴곡성(R=2.5 ㎜)이 90,000회 미만이고, 인장강도도 130 MPa 이하로 기계적 특성이 우수하지 못한 결과를 보였다.
본 발명은 우수한 광학적 특성과 낮은 열팽창성뿐만 아니라, 우수한 기계적 특성을 갖는 투명 폴리이미드 필름을 제공하는 것을 목적으로 한다.
본 발명은 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)와 산이무수물로부터 유도된 제1 반복단위(A)와; 에테르계 디아민과 산이무수물로부터 유도된 제2 반복단위 및 비불소화 디아민과 산이무수물로부터 유도된 제3 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위(B)를 포함하는 폴리이미드로 형성된 투명 폴리이미드 필름으로서, ASTM D2176 규격에 의한 상기 투명 폴리이미드 필름의 내굴곡성(FA+B, 단 R=2.5 ㎜)은 상기 제1 반복단위(A)로 이루어진 투명 폴리이미드 필름의 내굴곡성(FA, 단 R=2.5 ㎜)에 대한 비율(FA+B/FA)이 28 내지 46 범위인 투명 폴리이미드 필름을 제공한다. 이때, 상기 투명 폴리이미드 필름의 ASTM D2176 규격에 의한 내굴곡성(FA+B, 단 R=2.5 ㎜)은 200,000 내지 250,000회 범위인 것이 바람직하다.
또, 본 발명은 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)와 산이무수물로부터 유도된 제1 반복단위(A)와; 에테르계 디아민과 산이무수물로부터 유도된 제2 반복단위 및 비불소화 디아민과 산이무수물로부터 유도된 제3 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위(B)를 포함하는 폴리이미드로 형성된 투명 폴리이미드 필름으로서, ASTM D882 규격에 의한 상기 투명 폴리이미드 필름의 인장 탄성계수(EA +B)는 상기 제1 반복단위로 이루어진 폴리이미드의 인장 탄성계수(EA)에 대한 비율(EA +B/EA)이 1.3 내지 1.8 범위인 것이 특징인 투명 폴리이미드 필름을 제공한다. 이때, 상기 ASTM D882 규격에 의한 상기 투명 폴리이미드 필름의 인장 탄성계수(EA +B)는 5.5 내지 6.5 GPa인 것이 바람직하다. 또, ASTM D882 규격에 의한 인장강도가 155 MPa 이상이고, ASTM D882 규격에 의한 연신율이 4 내지 8 % 범위인 것이 바람직하다.
또한, 본 발명은 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)와 산이무수물로부터 유도된 제1 반복단위(A)와; 에테르계 디아민과 산이무수물로부터 유도된 제2 반복단위 및 비불소화 디아민과 산이무수물로부터 유도된 제3 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위(B)를 포함하는 폴리이미드로 형성된 투명 폴리이미드 필름으로서, ASTM D882 규격에 의한 인장강도가 155 MPa 이상인 투명 폴리이미드 필름을 제공한다.
아울러, 본 발명은 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)와 산이무수물로부터 유도된 제1 반복단위(A)와; 에테르계 디아민과 산이무수물로부터 유도된 제2 반복단위 및 비불소화 디아민과 산이무수물로부터 유도된 제3 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위(B)를 포함하는 폴리이미드로 형성된 투명 폴리이미드 필름으로서, ASTM D882 규격에 의한 연신율이 4 내지 8 % 범위인 투명 폴리이미드 필름을 제공한다.
본 발명은 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)과 산이무수물로부터 유도된 반복단위와 함께, 에테르계 디아민과 산이무수물로부터 유도된 반복단위 및/또는 비불소화 디아민과 산이무수물로부터 유도된 반복단위를 포함함으로써, 광학적 특성이 우수할 뿐만 아니라 기계적 특성도 우수하기 때문에, 플렉서블 디스플레이용 기판이나 보호막으로 사용될 수 있다.
이하, 본 발명을 상세한 설명한다.
<폴리아믹산 조성물>
본 발명의 폴리아믹산 조성물은 디아민(diamine) 성분으로 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)과 에테르계 디아민 및/또는 비(非)불소화 디아민을 함께 포함하는 것을 특징으로 한다.
구체적으로, 상기 폴리아믹산 조성물은 (a) 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB); (b) 에테르계 디아민 및 비불소화 디아민으로 이루어진 군에서 선택된 1종 이상의 디아민; (c) 산이무수물; 및 (d) 유기용매를 포함한다.
상기 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(이하, 2,2'-TFDB라 함)은 불소를 함유하는 방향족 디아민으로, 직선형의 고분자화를 유도할 수 있다. 따라서, 상기 2,2'-TFDB은 산이무수물, 특히 강직한(rigid) 구조의 지환족 산이무수물 및/또는 비불소화 방향족 산이무수물과 중합반응하여 광학적 특성을 개선시킬 수 있는 반복단위를 형성할 수 있다.
이러한 2,2'-TFDB의 함량은 전체 디아민 성분 100 몰%를 기준으로 하여 약 50~90 몰% 범위이며, 바람직하게 약 50~80 몰% 범위일 수 있다. 만약, 상기 2,2'-TFDB의 함량이 상기 범위를 벗어날 경우, 황색도의 증가 및 투과도 감소 현상이 일어날 수 있다.
다만, 본 발명에서는 전술한 바와 같이, 광학적 특성 및 내열 특성뿐만 아니라 기계적 특성을 향상시키기 위해서, 디아민 성분으로 2,2'-TFDB와 함께 에테르계 디아민 및/또는 비불소화 디아민을 포함한다.
본 발명의 에테르계 디아민은 분자 내 에테르기를 함유하는 디아민계 화합물로, 폴리이미드 필름의 기계적 특성을 향상시킬 뿐만 아니라, 2,2'-TFDB와 마찬가지로 직선형의 고분자화를 유도할 수 있기 때문에, 광학적 특성의 저하를 초래하지 않는다. 이러한 에테르계 디아민은 불소화 에테르계 방향족 디아민 및 비불소화 에테르계 방향족 디아민으로 이루어진 군에서 선택된 1종 이상을 포함한다. 이 중에서 고투명성, 높은 유리전이온도, 낮은 황색도를 고려할 때, 불소화 에테르계 방향족 디아민이 바람직하다.
본 발명의 비불소화 디아민은 분자 내 불소 및 에테르기를 함유하지 않는 방향족 디아민계 화합물로, 폴리이미드 필름의 기계적 특성을 향상시킬 뿐만 아니라, 2,2'-TFDB와 마찬가지로 직선형의 고분자화를 유도할 수 있기 때문에, 광학적 특성의 저하를 초래하지 않는다.
구체적으로, 상기 에테르계 디아민 및 비불소화 디아민의 예로는 하기 화학식 1로 표시되는 방향족 디아민이 있는데, 이에 한정되지 않는다.
Figure PCTKR2017014883-appb-C000001
(상기 화학식 1에서,
R1은 -(CH2)-, -SO2-,
Figure PCTKR2017014883-appb-I000001
,
Figure PCTKR2017014883-appb-I000002
Figure PCTKR2017014883-appb-I000003
로 이루어진 군에서 선택되고,
W는 불소로 치환 또는 비치환된 C1~C20의 알킬렌기 및 -SO2-로 이루어진 군에서 선택되며, 바람직하게 -(CH2)-, -C(CH3)2-, -C(CF3)2- 및 -SO2-로 이루어진 군에서 선택될 수 있고;
a 및 b는 각각 0 ~ 4의 정수이고, 바람직하게 0 ~ 2의 정수일 수 있으며;
R2 및 R3는 서로 동일하거나 상이하고, 각각 독립적으로 불소로 치환 또는 비치환된 C1~C20의 알킬기로 이루어진 군에서 선택되며, 바람직하게 -CF3 또는 -(CH2)n-CH3일 수 있고, n은 0~6의 정수이며, 바람직하게 n은 0~4의 정수일 수 있음).
다만, 상기 화학식 1로 표시되는 방향족 디아민이 에테르계 디아민인 경우, 상기 화학식 1에서 R1
Figure PCTKR2017014883-appb-I000004
,
Figure PCTKR2017014883-appb-I000005
Figure PCTKR2017014883-appb-I000006
로 이루어진 군에서 선택되고, 상기 화학식 1로 표시되는 방향족 디아민이 비불소화 디아민인 경우, 상기 화학식 1에서 R1은 -(CH2)- 또는 -SO2-이다.
상기 에테르계 디아민의 구체적인 예로는 2,2'-비스(트리플루오로메틸)-4,4'-디아미노디페닐 에테르(2,2'-Bis(trifluoromethyl)-4,4'-diaminodiphenyl ether, 6FODA), 1,4-비스(4-아미노)-2-트리플루오로메틸페녹시)벤젠(1,4-bis(4-amino-2-Trifluoromethylphenoxy)benzene, 6FAPB), 4,4'-디아미노디페닐에테르(4,4'-Diaminodiphenyl ether, 4,4'-ODA), 1,3-비스(4'-아미노페녹실)벤젠(1,3-Bis(4'-aminophenoxyl)benzene, TPE-R), 4,4'-비스(4-아미노페녹시)비페닐(4,4'-Bis(4-aminophenoxy)biphenyl) 등이 있는데, 이에 한정되지 않는다.
상기 비(非)불소화 디아민의 예로는 4,4'-디아미노-2,2'-디메틸바이페닐(4,4'-Diamino-2,2'-dimethylbiphenyl, m-Tolidine) 등이 있는데, 이에 한정되지 않는다.
상기 에테르계 디아민 및 비불소화 디아민의 함량은 각각 전체 디아민 성분 100 몰%를 기준으로 약 5~50 몰%, 바람직하게 약 5~40 몰% 범위이며, 더 바람직하게 약 10~30 몰% 범위일 수 있다. 만약, 상기 에테르계 디아민 및 비불소화 디아민의 각 함량이 상기 범위를 벗어날 경우, 고분자 구조의 강직함이 저하되어 기계적 특성이 감소될 수 있다. 다만, 상기 에테르계 디아민과 비불소화 디아민을 모두 포함할 경우, 상기 에테르계 디아민과 비불소화 디아민의 총 함량은 전체 디아민 성분 100 몰%를 기준으로 약 10~50 몰% 범위이고, 바람직하게 약 0.5~50 몰% 범위일 수 있다. 이때, 상기 에테르계 디아민(b1)과 비불소화 디아민(b2)의 혼합 비율(b1:b2)은 특별히 한정되지 않으나, 30:70 ~ 70:30 몰비율, 바람직하게 40:60 ~ 60:40 몰비율 범위일 경우, 광학적 특성 및 기계적 특성을 모두 향상시킬 수 있다.
한편, 본 발명에서는 선택적으로 전술한 (a) 2,2'-TFDB, 및 (b) 에테르계 디아민 및/또는 비불소화 디아민과 함께, 당 업계에 알려진 통상적인 디아민 화합물을 포함할 수 있고, 바람하게 불소화 디아민(즉, 불소를 함유하는 디아민), 히드록시계 디아민 및 설폰계 디아민으로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있다. 다만, 광학적 특성 및 기계적 특성의 향상을 위해서 강직한 구조의 모노머를 선택하는 것이 바람직하다. 예를 들어, 2,2-비스(3-아미노-4-하이드록시페닐)헥사플루오로프로판(2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane), 비스(4-아미노페닐) 설폰(bis(4-aminophenyl) sulfone, 4,4'-DDS), 비스(3-아미노페닐) 설폰(bis(3-aminophenyl) sulfone, 3,3'-DDS), 술포닐디프탈릭안하이드라이드(SO2DPA), 비스(카르복시페닐) 디메틸실란 등에서 선택된 1종 또는 2종 이상이 혼합된 형태로 적용이 가능하나, 이에 제한하는 것은 아니다.
본 발명에서 사용 가능한 산이무수물은 분자 내 산이무수물 구조를 갖는 화합물로, 당 분야에서 알려진 통상적인 불소화, 비불소화, 지환족 등의 산이무수물 등을 제한 없이 사용할 수 있다. 예컨대, 상기 산이무수물은 하기 화학식 2로 표시되는 산이무수물일 수 있는데, 이에 한정되지 않는다.
Figure PCTKR2017014883-appb-C000002
(상기 화학식 2에서,
Ar은 C4~C20의 4가의 탄화수소 고리기 및 C6~C40의 4가의 방향족기로 이루어진 군에서 선택되고, 바람직하게는
Figure PCTKR2017014883-appb-I000007
,
Figure PCTKR2017014883-appb-I000008
,
Figure PCTKR2017014883-appb-I000009
,
Figure PCTKR2017014883-appb-I000010
,
Figure PCTKR2017014883-appb-I000011
,
Figure PCTKR2017014883-appb-I000012
Figure PCTKR2017014883-appb-I000013
로 이루어진 군에서 선택될 수 있음).
본 발명의 일례에 따르면, 상기 산이무수물로 지환족 산이무수물 및 방향족 산이무수물을 각각 단독으로 또는 2종 이상이 혼합된 혼합 형태로 사용할 수 있다.
특히, 본 발명에서는 광학적 특성의 저하 없이 기계적 특성을 향상시키기 위해서, 강직한(rigid) 구조를 갖는 산이무수물이나 불소를 포함하지 않는 산이무수물을 포함할 수 있다. 일례로, 상기 산이무수물은 지환족 산이무수물(바람직하게, 비불소화 지환족 산이무수물) 및 비불소화 방향족 산이무수물을 포함할 수 있다.
본 발명에서 사용 가능한 지환족(alicyclic) 산이무수물은 화합물 내 방향족 고리가 아닌 지환족 고리를 가지면서 산이무수물 구조를 갖는 화합물이라면 특별히 제한되지 않는다. 예를 들면, 1,2,3,4-사이클로부탄 테트라카르복실릭 디안하이드라이드(1,2,3,4-Cyclobutane tetracarboxylic dianhydride, CBDA), 1,2,3,4-사이클로펜탄 테트라카르복실릭 디안하이드라이드(1,2,3,4-cyclopentanetetra-carboxylic dianhydride, CPDA), 비사이클로[2,2,2]-7-옥텐-2,3,5,6-테트라카르복실산 디안하이드라이드(bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, BCDA) 등이 있는데, 이에 한정되는 것은 아니다. 이들은 단독으로 사용되거나, 또는 2종 이상이 혼합되어 사용될 수 있다.
본 발명에서 사용 가능한 비불소화 방향족 산이무수물은 화합물 내 방향족 고리와 산이무수물 구조를 가지면서 불소를 함유하지 않는 화합물이라면 특별히 제한되지 않는다. 예를 들면, 3,3', 4,4'-비페닐테트라카르복실릭 디안하이드라이드(3,3′, 4,4′-Biphenyltetracarboxylic dianhydride, BPDA), 피로멜리틱산 디안하이드라이드(Pyromellitic Dianhydride, PMDA), 벤조페논 테트라카르복실릭 디안하이드라이드(Benzophenone tetracarboxylic dianhydride, BTDA), 옥시디프탈릭 디안하이드라이드(ODPA) 등이 있는데, 이에 한정되지 않는다. 이들은 단독으로 사용되거나, 또는 2종 이상이 혼합되어 사용될 수 있다
본 발명에서, 산이무수물이 지환족 산이무수물 및 비불소화 방향족 산이무수물로 이루어진 군에서 선택된 1종 이상을 포함할 경우, 이들의 함량은 특별히 한정되지 않는다. 예컨대, 이들은 각각 전체 산이무수물 성분 100 몰%를 기준으로 약 10 ~ 100 몰% 범위, 바람직하게 약 10 ~ 90 몰% 범위, 더 바람직하게 약 20 ~ 80 몰%일 수 있다.
일례에 따르면, 상기 산이무수물로 지환족 산이무수물과 비불소화 방향족 산이무수물을 혼용하는 경우, 이들의 사용 비율은 10:90 ~ 90:10 몰비율, 바람직하게 40:60 ~ 80:20 몰비율, 더 바람직하게 50:50 ~ 70:30 몰비율일 수 있다. 이 경우, 폴리이미드 필름의 광학적 특성 저하 없이 기계적 특성을 향상시킬 수 있다.
본 발명의 폴리아믹산 조성물에 있어서, 상기 디아민 성분의 몰수(a)와 상기 산이무수물 성분의 몰수(b)의 비율(a/b)은 0.7~1.3 일 수 있으며, 바람직하게 0.8~1.2이며, 더 바람직하게 0.9~1.1 범위일 수 있다.
본 발명의 폴리아믹산 조성물은 용매를 포함한다. 상기 용매는 전술한 디아민 성분과 산이무수물 성분의 용액 중합반응을 위한 것으로, 당 분야에 공지된 유기용매를 제한 없이 사용할 수 있다. 예를 들면, m-크레졸, N-메틸-2-피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 디메틸설폭사이드(DMSO), 아세톤, 디에틸아세테이트, 디메틸 프탈레이트(DMP) 중에서 선택된 하나 이상의 극성용매를 사용할 수 있다. 이외에도, 테트라하이드로퓨란(THF), 클로로포름 등과 같은 저 비점 용액이나, γ-부티로락톤 등과 같은 저 흡수성 용매를 사용할 수 있다.
본 발명에서는 전술한 디아민 성분과 산이무수물 성분을 용매에 투입한 후 반응시켜 투명 폴리아믹산 조성물을 형성할 수 있다. 구체적으로, 디아민 및 산이무수물 및 용매를 포함하되, 상기 디아민으로 (a) 2,2'-TFDB와 (b) 에테르계 디아민 및 비불소화 디아민로 이루어진 군에서 선택된 1종 이상의 디아민을 포함한다. 이때, 유리전이온도 및 황색도를 개선하기 위해, 상기 디아민과 산이무수물을 대략 1:1의 당량비로 혼합하여 투명 폴리아믹산 조성물을 형성할 수 있다.
상기 폴리아믹산 조성물의 조성은 특별히 한정하지 않는다. 일례로, 상기 폴리아믹산 조성물은 조성물의 100 중량%를 기준으로 2.5~25 중량%의 디아민 성분, 약 2.5~25 중량%의 산이무수물 성분과, 100 중량%를 만족시키는 잔량의 유기용매를 포함할 수 있다. 다른 일례로, 상기 폴리아믹산 조성물은 조성물의 100 중량%를 기준으로 약 5~15 중량%의 디아민 성분, 약 5~15 중량%의 산이무수물 성분, 및 70~90 중량%의 유기용매를 포함할 수 있다. 또한, 본 발명에서 고형분 100 중량%를 기준으로 할 경우, 산이무수물 10~80 중량%, 디아민 10~80 중량% 범위일 수 있는데, 이에 한정되지 않는다.
이러한 본 발명의 투명 폴리아믹산 조성물은 약 1,000 내지 50,000 cPs, 바람직하게는 약 2,000 내지 35,000 cPs 범위의 점도를 가질 수 있다. 폴리아믹산 조성물의 점도가 전술한 범위에 해당되는 경우, 폴리아믹산 조성물의 코팅시 두께 조절이 용이하며, 균일한 코팅 표면이 형성될 수 있다.
또한, 본 발명의 폴리아믹산 조성물은 필요에 따라 폴리이미드 필름의 광학적, 기계적 특성을 저하시키지 않는 범위 내에서 가소제, 산화방지제, 난연화제, 분산제, 점도 조절제, 레벨링제 등의 첨가제를 소량 포함할 수 있다.
<투명 폴리이미드 필름>
본 발명에 따른 투명 폴리이미드 필름은 전술한 폴리아믹산 조성물을 고온에서 이미드화 및 열처리하여 제조된 투명 폴리이미드를 필름화한 것이다.
상기 투명 폴리이미드는 이미드(imide)고리를 함유하는 고분자 물질로서, 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)와 산이무수물로부터 유도된 제1 반복단위(A)와; 에테르계 디아민과 산이무수물로부터 유도된 제2 반복단위 및 비불소화 디아민과 산이무수물로부터 유도된 제3 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위(B)를 포함하는 것을 특징으로 한다. 이때, 상기 투명 폴리이미드는 랜덤 공중합체(random copolymer)이거나 블록 공중합체(block copolymer) 형태일 수 있다.
본 발명의 투명 폴리이미드에서, 제1 반복단위(A)는 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)와 산이무수물로부터 유도된 부분이다. 여기서, 상기 2,2'-TFDB은 불소를 함유하는 방향족 디아민으로서, 직선형의 고분자화를 유도할 수 있다. 따라서, 상기 2,2'-TFDB은 산이무수물, 특히 강직한(rigid) 구조의 지환족 산이무수물 및/또는 불소를 포함하지 않는 산이무수물과 중합반응하여 필름의 광학적 특성을 개선시킬 수 있는 반복단위를 형성한다.
상기 제1 반복단위(A)는 하기 화학식 3으로 표시되는 반복단위일 수 있는데, 이에 한정되지 않는다.
Figure PCTKR2017014883-appb-C000003
(상기 화학식 3에서,
Ar은 C4~C20의 4가의 탄화수소 고리기 및 C6~C40의 4가의 방향족기로 이루어진 군에서 선택되고, 바람직하게는
Figure PCTKR2017014883-appb-I000014
,
Figure PCTKR2017014883-appb-I000015
,
Figure PCTKR2017014883-appb-I000016
,
Figure PCTKR2017014883-appb-I000017
,
Figure PCTKR2017014883-appb-I000018
,
Figure PCTKR2017014883-appb-I000019
Figure PCTKR2017014883-appb-I000020
로 이루어진 군에서 선택될 수 있음).
이러한 제1 반복단위의 함유율은 특별히 한정되지 않으나, 전체 반복단위 100 몰%를 기준으로 50~90 몰% 범위일 경우, 필름의 광학적 특성 저하 없이 기계적 특성을 향상시킬 수 있다. 일례로, 상기 제1 반복단위의 함유율은 약 50 내지 70 몰% 범위일 수 있다.
본 발명의 투명 폴리이미드에서, 1종 이상의 반복단위(B)는 에테르계 디아민과 산이무수물로부터 유도된 제2 반복단위(B1) 및/또는 비불소화 디아민과 산이무수물로부터 유도된 제3 반복단위(B2)를 포함한다. 에테르계 디아민 및 비불소화 디아민은 산이무수물, 특히 산이무수물, 특히 강직한(rigid) 구조의 지환족 산이무수물 및/또는 불소를 포함하지 않는 산이무수물과 중합반응하여 필름의 광학적 특성 저하 없이 기계적 특성을 개선시킬 수 있는 반복단위를 형성한다.
상기 1종 이상의 반복단위(B)는 하기 화학식 4로 표시되는 반복단위 등일 수 있는데, 이에 한정되지 않는다.
Figure PCTKR2017014883-appb-C000004
(상기 화학식 4에서,
R1은 -(CH2)-, -SO2-,
Figure PCTKR2017014883-appb-I000021
,
Figure PCTKR2017014883-appb-I000022
Figure PCTKR2017014883-appb-I000023
로 이루어진 군에서 선택되고,
W는 불소로 치환 또는 비치환된 C1~C20의 알킬렌기 및 -SO2-로 이루어진 군에서 선택되며, 바람직하게 -(CH2)-, -C(CH3)2-, -C(CF3)2- 및 -SO2-로 이루어진 군에서 선택될 수 있고;
a 및 b는 각각 0 ~ 4의 정수이고, 바람직하게 0 ~ 2의 정수일 수 있으며;
R2 및 R3는 서로 동일하거나 상이하고, 각각 독립적으로 불소로 치환 또는 비치환된 C1~C20의 알킬기로 이루어진 군에서 선택되며, 바람직하게 -CF3 또는 -(CH2)n-CH3일 수 있고, n은 0~6의 정수이며, 바람직하게 0~4의 정수일 수 있고;
Ar은 C4~C20의 4가의 탄화수소 고리기 및 C6~C40의 4가의 방향족기로 이루어진 군에서 선택되고, 바람직하게는
Figure PCTKR2017014883-appb-I000024
,
Figure PCTKR2017014883-appb-I000025
, ,
Figure PCTKR2017014883-appb-I000027
,
Figure PCTKR2017014883-appb-I000028
,
Figure PCTKR2017014883-appb-I000029
Figure PCTKR2017014883-appb-I000030
로 이루어진 군에서 선택될 수 있음).
다만, 상기 화학식 4로 표시되는 반복단위가 상기 제2 반복단위(B1)인 경우, 상기 화학식 4에서, R1
Figure PCTKR2017014883-appb-I000031
,
Figure PCTKR2017014883-appb-I000032
Figure PCTKR2017014883-appb-I000033
로 이루어진 군에서 선택되고, 상기 화학식 4로 표시되는 반복단위가 상기 제3 반복단위(B2)인 경우, 상기 화학식 4에서, R1은 -(CH2)- 또는 -SO2-이다.
상기 1종 이상의 반복단위(B)의 함유율은 특별히 한정하지 않으나, 전체 반복단위 100 몰%를 기준으로 약 10~50 몰% 범위일 경우, 필름의 광학적 특성 및 기계적 특성을 향상시킬 수 있다. 또, 상기 1종 이상의 반복단위가 제2 반복단위(B1) 및 제3 반복단위(B2)를 포함할 경우, 상기 제2 반복단위와 제3 반복단위의 혼합 비율(B1 : B2)은 30:70 ~ 70:30 몰비율, 바람직하게 40:60 ~ 60:40 몰비율일 수 있다.
본 발명의 투명 폴리이미드 필름은 상기 제1 반복단위(A)와 상기 1종 이상의 반복단위(b)를 포함함으로써, 우수한 광학적 특성과 낮은 열팽창성뿐만 아니라, 우수한 기계적 특성을 갖는다.
일례에 따르면, 본 발명의 투명 폴리이미드 필름은 ASTM D2176 규격에 의한 상기 제1 반복단위(A)로 이루어진 투명 폴리이미드 필름의 내굴곡성(FA, 단 R=2.5 ㎜)에 대한 본 발명에 따른 투명 폴리이미드 필름의 내굴곡성(FA+B, 단 R=2.5 ㎜)의 비율(FA+B/FA)이 약 28 내지 46 범위이다. 즉, ASTM D2176 규격에 의한 본 발명의 투명 폴리이미드 필름의 내굴곡성(FA+B, 단 R=2.5 ㎜)은 상기 제1 반복단위(A)로 이루어진 투명 폴리이미드 필름의 내굴곡성(FA, 단 R=2.5 ㎜)보다 약 28 ~ 46 배 더 높다. 이때, 본 발명의 투명 폴리이미드 필름은 ASTM D2176 규격에 의한 내굴곡성(FA+B, 단 R=2.5 ㎜)이 약 200,000 내지 250,000회 범위로, 종래 투명 폴리이미드 필름에 비해 내굴곡성이 우수하다. 여기서, 상기 FA+B는 ASTM D2176 규격에 의한 본 발명에 따른 투명 폴리이미드 필름의 내굴곡성을 나타낸 것이고, FA는 ASTM D2176 규격에 의한 상기 제1 반복단위(A)로 이루어진 종래 투명 폴리이미드 필름의 내굴곡성을 나타낸 것이다.
다른 일례에 따르면, 본 발명의 투명 폴리이미드 필름은 ASTM D882 규격에 의한 상기 제1 반복단위(A)로 이루어진 폴리이미드의 인장 탄성계수(EA)에 대한 본 발명에 따른 투명 폴리이미드 필름의 인장 탄성계수(EA +B)의 비율(EA +B/EA)이 약 1.3 내지 1.8 범위(바람직하게 약 1.4 내지 1.8 범위)이다. 즉, 본 발명에 따른 투명 폴리이미드 필름은 ASTM D882 규격에 의한 인장 탄성계수(EA +B)가 상기 제1 반복단위(A)로 이루어진 폴리이미드의 인장 탄성계수(EA)보다 약 1.3 내지 1.8 배 더 크다. 이때, 본 발명의 투명 폴리이미드 필름은 상기 ASTM D882 규격에 의한 인장 탄성계수(EA+B)가 5.5 내지 6.5 GPa 범위로, 종래 투명 폴리이미드 필름에 비해 내변형성 및 기계적 특성이 우수하다. 여기서, 상기 EA +B는 ASTM D882 규격에 의한 본 발명에 따른 투명 폴리이미드 필름의 인장 탄성계수를 나타낸 것이고, EA는 ASTM D882 규격에 의한 상기 제1 반복단위(A)로 이루어진 종래 투명 폴리이미드 필름의 인장 탄성계수를 나타낸 것이다.
또 다른 일례에 따르면, 본 발명의 투명 폴리이미드 필름은 ASTM D882 규격에 의한 인장강도가 155 MPa 이상으로, 종래 투명 폴리이미드 필름에 비해 기계적 특성이 우수하다.
또 다른 일례에 따르면, 본 발명의 투명 폴리이미드 필름은 ASTM D882 규격에 의한 연신율이 4 내지 8 % 범위로, 종래 폴리이미드 필름에 비해 기계적 특성이 우수하다.
전술한 본 발명의 투명 폴리이미드 필름은 고투명성을 가지면서 낮은 황색도를 가진다. 구체적으로, 막 두께 10 ㎛에서 550 ㎚의 광선 투과율이 89 % 이상이고, ASTM E313 규격에 의한 황색도(YI, Yellow Index)가 2.5 이하(두께 10 ㎛)이다.
본 발명에 따른 폴리이미드 필름은 당 분야에서 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 상기 투명 폴리아믹산 조성물을 유리기판에 코팅(캐스팅)한 후 30~350 ℃의 범위에서 온도를 서서히 승온시키면서 약 0.5 ~ 8시간 동안 이미드 폐환반응(Imidazation)을 유도시켜 제조될 수 있다.
상기 폴리아믹산 조성물의 코팅 방법은 당 업계에 알려진 통상적인 방법을 제한 없이 사용할 수 있다. 예컨대, 스핀 코팅(Spin coating), 딥 코팅(Dip coating), 용매 캐스팅(Solvent casting), 슬롯 다이 코팅(Slot die coating), 스프레이 코팅 등이 있는데, 이에 한정되지 않는다. 이때, 단독으로 또는 2가지 이상의 코팅법을 조합하여 실시할 수 있다.
또, 상기 폴리아믹산 조성물의 도포량은 특별히 한정되지 않으며, 최종 폴리이미드 필름의 두께에 따라 조절하는 것이 바람직하다. 예컨대, 투명 폴리이미드 필름이 8 내지 20 ㎛ 범위의 두께를 갖도록 상기 폴리아믹산 조성물을 1회 이상 코팅할 수 있다.
이와 같이 투명 폴리이미드 필름은 다양한 분야에 사용될 수 있으며, 특히, 고투명성 및 내열성이 요구되는 유기 EL 소자(OLED)용 디스플레이, 액정 소자용 디스플레이, TFT 기판, 플렉서블 인쇄회로기판, 플렉서블(Flexible) OLED 면조명 기판, 전자 종이용 기판소재와 같은 Flexible 디스플레이용 기판 및 보호막으로 활용될 수 있다.
이하, 본 발명을 실시예 및 비교예에 의거하여 더욱 상세히 설명하나, 하기 실시예 및 비교예에 의하여 본 발명이 한정되는 것은 아니다.
[ 실시예 1]
1-1. 투명 폴리아믹산 조성물의 제조
100ml 3구 둥근바닥 플라스크에 N,N-디메틸아세타아미드(이하, DMAc라 함) 42.86g을 채운 후, 반응기의 온도를 50℃로 승온하여, 2,2'-비스(트리플루오르메틸)-4,4'- 디아미노바이페닐(이하, 2,2'-TFDB라 함) 6g을 가하고, 30분 후, 4,4'-디아미노-2,2'-디메틸바이페닐(4,4'-Diamino-2,2'-dimethylbiphenyl, 이하 m-Tolidine라 함) 0.49g을 가하였다. 30분 후, 추가적으로 1,4-비스(4-아미노)-2-트리플루오로메틸페녹시)벤젠(1,4-bis(4-amino-2-Trifluoromethylphenoxy)benzene, 이하 6FAPB라 함) 1g을 가한 후에, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB, m-Tolidine 및 6FAPB를 완전히 용해시켰다. 이후, 사이클로부탄 테트라카르복실릭 디안하이드라이드(1,2,3,4-Cyclobutane tetracarboxylic dianhydride, 이하 CBDA라 함) 3.21g과 3,3', 4,4'-비페일테트라카르복실릭 디안하이드라이드(3,3′, 4,4′-Biphenyltetracarboxylic dianhydride, 이하 BPDA라 함) 0.13g을 각각 순차적으로 가한 후, 30 ℃로 냉각하여 용해시켰다. 이 때의 고형분은 20%였으며, 이후 3시간 교반하였다. 모노머의 반응이 완료된 후, 자연 냉각하여 25 ℃에서의 용액점도 105 poise(10500 CPs)의 투명 폴리아믹산 조성물을 얻었다.
1-2. 투명 폴리이미드 필름의 제조
상기 투명 폴리아믹산 용액을 LCD용 유리에 스핀 코팅한 후, 질소 분위기의 컨벡션 오븐에서 80℃에서 30분, 150℃에서 30분, 200℃에서 1시간, 300℃에서 1시간으로 단계적으로 서서히 승온시키면서 건조 및 이미드 폐환반응(Imidization)을 진행하였다. 이로써, 이미드화율이 85% 이상인 투명 폴리이미드 필름(막 두께: 10㎛)을 제조하였다. 이후, 불산으로 유리를 에칭하여 폴리이미드 필름을 취하였다.
[ 실시예 2]
2-1. 투명 폴리아믹산 조성물의 제조
상기 실시예 1에서 언급한 것과 동일한 조건으로 둥근바닥 플라스크에 DMAc 42.83g을 채운 후, 반응기의 온도를 50 ℃로 승온하여, 2,2'-TFDB 4.9g을 가하고, 30분 후, 6FAPB 2.81g을 가하였다. 이후, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB 및 6FAPB를 완전히 용해시켰다. 그 후, BPDA 0.12g과 CBDA 3g을 각각 순차적으로 가한 후, 30℃로 냉각하여 용해시켰다. 이 때의 고형분은 20%였으며, 이후 3시간 교반하였다. 모노머의 반응이 완료된 후, 자연 냉각하여 25℃에서의 용액점도 90 poise(9000 CPs)의 투명 폴리아믹산 조성물을 얻었다.
2-2. 투명 폴리이미드 필름의 제조
상기 실시예 2-1에서 얻은 투명 폴리아믹산 조성물을 사용하는 것을 제외하고는, 실시예 1-2와 동일하게 수행하여 투명 폴리이미드 필름을 제조하였다.
[ 실시예 3]
3-1. 투명 폴리아믹산 조성물의 제조
상기 실시예 1에서 언급한 것과 동일한 조건으로 둥근바닥 플라스크에 DMAc 42.93g을 채운 후, 반응기의 온도를 50℃로 승온하여, 2,2'-TFDB 3.9g을 가하고, 30분 후, m-Tolidine 1.03g을 가하였다. 30분 후, 추가적으로 2,2'-비스(트리플루오로메틸)-4,4'-디아미노디페닐 에테르(2,2'-Bis(trifluoromethyl)-4,4'-diaminodiphenyl ether, 이하 6FODA라 함) 2.45g을 가한 후, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB, m-Tolidine 및 6FODA를 완전히 용해시켰다. 이후, CBDA 3.34g과 BPDA 0.14g을 각각 순차적으로 가한 후, 30℃로 냉각하여 용해시켰다.
3-2. 투명 폴리이미드 필름의 제조
상기 실시예 3-1에서 얻은 투명 폴리아믹산 조성물을 사용하는 것을 제외하고는, 실시예 1-2와 동일하게 수행하여 투명 폴리이미드 필름을 제조하였다.
[ 실시예 4]
4-1. 투명 폴리아믹산 조성물의 제조
상기 실시예 1에서 언급한 것과 동일한 조건으로 둥근바닥 플라스크에 DMAc 43.35g을 채운 후, 반응기의 온도를 50℃로 승온하여, 2,2'-TFDB 5.4g을 가하고, 30분 후, 6FODA 1.62g을 가하였다. 이후, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB 및 6FODA를 완전히 용해시켰다. 이후, CBDA 3.3g 및 BPDA 0.14g을 각각 순차적으로 가한 후, 30℃로 냉각하여 용해시켰다. 이 때의 고형분은 20%였으며, 이후 3시간 교반하였다. 모노머의 반응이 완료된 후, 자연 냉각하여 25℃에서의 용액점도 85 poise(8500 CPs)의 투명 폴리아믹산 조성물을 얻었다.
4-2. 투명 폴리이미드 필름의 제조
상기 실시예 4-1에서 얻은 투명 폴리아믹산 조성물을 사용하는 것을 제외하고는, 실시예 1-2와 동일하게 수행하여 투명 폴리이미드 필름을 제조하였다.
[ 실시예 5]
5-1. 투명 폴리아믹산 조성물의 제조
상기 실시예 1에서 언급한 것과 동일한 조건으로 둥근바닥 플라스크에 DMAc 43.24g을 채운 후, 반응기의 온도를 50℃로 승온하여, 2,2'-TFDB 5.7g을 가하고, 30분 후, m-Tolidine 1.61g을 가하였다. 이후, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB 및 m-Tolidine을 완전히 용해시켰다. 이어서, CBDA 3.49g과 피로멜리틱산 디안하이드라이드(Pyromellitic Dianhydride, 이하 PMDA라 함) 0.11g을 각각 순차적으로 가한 후, 30℃로 냉각하여 용해시켰다. 이 때의 고형분은 20%였으며, 이후 3시간 교반하였다. 모노머의 반응이 완료된 후, 자연 냉각하여 25℃에서의 용액점도 93 poise(9300 CPs)의 투명 폴리아믹산 조성물을 얻었다.
5-2. 투명 폴리이미드 필름의 제조
상기 실시예 5-1에서 얻은 투명 폴리아믹산 조성물을 사용하는 것을 제외하고는, 실시예 1-2와 동일하게 수행하여 투명 폴리이미드 필름을 제조하였다.
[ 실시예 6]
6-1. 투명 폴리아믹산 조성물의 제조
상기 실시예 1에서 언급한 것과 동일한 조건으로 둥근바닥 플라스크에 DMAc 43.24g을 채운 후, 반응기의 온도를 50℃로 승온하여, 2,2'-TFDB 5.7g을 가하고, 30분 후, m-Tolidine 1.61g을 가하였다. 이후, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB 및 m-Tolidine을 완전히 용해시켰다. 이어서, CBDA 3.49g과 BPDA 0.15g을 각각 순차적으로 가한 후, 30℃로 냉각하여 용해시켰다. 이 때의 고형분은 20%였으며, 이후 3시간 동안 교반하였다. 모노머의 반응이 완료된 후, 자연 냉각하여 25℃에서의 용액점도 98 poise(9800 CPs)의 투명 폴리아믹산 조성물을 얻었다.
6-2. 투명 폴리이미드 필름의 제조
상기 실시예 6-1에서 얻은 투명 폴리아믹산 조성물을 사용하는 것을 제외하고는, 실시예 1-2와 동일하게 수행하여 투명 폴리이미드 필름을 제조하였다.
[ 실시예 7]
7-1. 투명 폴리아믹산 조성물의 제조
상기 실시예 1에서 언급한 것과 동일한 조건으로 둥근바닥 플라스크에 DMAc 43.08g을 채운 후, 반응기의 온도를 50℃로 승온하여, 2,2'-TFDB 3.1g을 가하고, 30분 후, 6FAPB 1.77g을 가하였다. 이후, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB 및 6FAPB를 완전히 용해시켰다. 이어서, CBDA 4.53g과 TA-TFDB(Tetracarboxylic acid dianhydride, KANEKA사, 이하 TA-TFDB이라 함) 1.35g을 각각 순차적으로 가한 후, 30℃로 냉각하여 용해시켰다. 이 때의 고형분은 20%였으며, 이후 3시간 동안 교반하였다. 모노머의 반응이 완료된 후, 자연 냉각하여 25℃에서의 용액점도 60 poise(6000 CPs)의 투명 폴리아믹산 조성물을 얻었다.
7-2. 투명 폴리이미드 필름의 제조
상기 실시예 7-1에서 얻은 투명 폴리아믹산 조성물을 사용하는 것을 제외하고는, 실시예 1-2와 동일하게 수행하여 투명 폴리이미드 필름을 제조하였다.
[ 실시예 8]
8-1. 투명 폴리아믹산 조성물의 제조
상기 실시예 1에서 언급한 것과 동일한 조건으로 둥근바닥 플라스크에 DMAc 42.97g을 채운 후, 반응기의 온도를 50℃로 승온하여, 2,2'-TFDB 2.2g을 가하고, 30분 후, 6FAPB 1.76g을 가하였다. 30분 후, 추가적으로 6FODA 0.92g을 첨가하고, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB, 6FAPB 및 6FODA를 완전히 용해시켰다. 이어서, CBDA 1.34g과 TA-TFDB 4.51g을 각각 순차적으로 가한 후, 30℃로 냉각하여 용해시켰다. 이 때의 고형분은 20%였으며, 이후 3시간 동안 교반하였다. 모노머의 반응이 완료된 후, 자연 냉각하여 25℃에서의 용액점도 62 poise(6200 CPs)의 투명 폴리아믹산 조성물을 얻었다.
8-2. 투명 폴리이미드 필름의 제조
상기 실시예 8-1에서 얻은 투명 폴리아믹산 조성물을 사용하는 것을 제외하고는, 실시예 1-2와 동일하게 수행하여 투명 폴리이미드 필름을 제조하였다.
[ 실시예 9]
9-1. 투명 폴리아믹산 조성물의 제조
상기 실시예 1에서 언급한 것과 동일한 조건으로 둥근바닥 플라스크에 DMAc 42.93g을 채운 후, 반응기의 온도를 50℃로 승온하여, 2,2'-TFDB 3.9g을 가하고, 30분 후, m-Tolidine 1.03g을 가하였다. 30분 후, 추가적으로 6FODA 2.45g을 첨가하고, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB, m-Tolidine 및 6FODA를 완전히 용해시켰다. 이후, CBDA 3.34g과 PMDA 0.11g을 각각 순차적으로 가한 후, 30℃로 냉각하여 용해시켰다. 이때의 고형분은 20%였으며, 이후 3시간 교반하였다. 모노머의 반응이 완료된 후, 자연 냉각하여 25℃에서의 용액점도 78 poise(7800 CPs)의 투명 폴리아믹산 조성물을 얻었다.
9-2. 투명 폴리이미드 필름의 제조
상기 실시예 9-1에서 얻은 투명 폴리아믹산 조성물을 사용하는 것을 제외하고는, 실시예 1-2와 동일하게 수행하여 투명 폴리이미드 필름을 제조하였다.
[ 비교예 1]
1-1. 투명 폴리아믹산 조성물의 제조
상기 실시예 1에서 언급한 것과 동일한 조건으로 둥근바닥 플라스크에 DMAc 43.09g을 채운 후, 반응기의 온도를 50℃로 승온하여, 2,2'-TFDB 5g을 가하였다. 이후, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB를 완전히 용해시켰다. 이어서, 2,2-비스 (3,4- 디카르복시페닐) 헥사플루오로프로판 디안하이드라이드 [2,2-bis(3,4- dicarboxyphenyl)Hexa fluoropropane dianhydride, 이하 6FDA라 함] 4.85g와 PMDA 0.91g을 각각 순차적으로 가한 후, 30℃로 냉각하여 용해시켰다. 이때의 고형분은 20%였으며, 이후 3시간 교반하였다. 모노머의 반응이 완료된 후, 자연 냉각하여 25℃에서의 용액점도 45 poise(4500 CPs)의 투명 폴리아믹산 조성물을 얻었다.
1-2. 투명 폴리이미드 필름의 제조
상기 비교예 1-1에서 얻은 투명 폴리아믹산 조성물을 사용하는 것을 제외하고는, 실시예 1-2와 동일하게 수행하여 투명 폴리이미드 필름을 제조하였다.
[ 비교예 2]
2-1. 투명 폴리아믹산 조성물의 제조
상기 실시예 1에서 언급한 것과 동일한 조건으로 둥근바닥 플라스크에 DMAc 42.43g을 채운 후, 반응기의 온도를 50℃로 승온하여, 2,2'-TFDB 4.72g을 가하였다. 이후, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB를 완전히 용해시켰다. 6FDA 4.58g과 BPDA 1.3g을 각각 순차적으로 가한 후, 30℃로 냉각하여 용해시켰다. 이때의 고형분은 20%였으며, 이후 3시간 교반하였다. 모노머의 반응이 완료된 후, 자연 냉각하여 25℃에서의 용액점도 37 poise(3700 CPs)의 투명 폴리아믹산 조성물을 얻었다.
2-2. 투명 폴리이미드 필름의 제조
상기 비교예 2-1에서 얻은 투명 폴리아믹산 조성물을 사용하는 것을 제외하고는, 실시예 1-2와 동일하게 수행하여 투명 폴리이미드 필름을 제조하였다.
[ 비교예 3]
3-1. 투명 폴리아믹산 조성물의 제조
상기 실시예 1에서 언급한 것과 동일한 조건으로 둥근바닥 플라스크에 DMAc 43.17g을 채운 후, 반응기의 온도를 50℃로 승온하여, 2,2'-TFDB 7.55g을 가하였다. 이후, 1시간 동안 해당 모노머를 교반하여 2,2'-TFDB를 완전히 용해시켰다. 이어서, CBDA 3.23g과 PMDA 0.1g을 각각 순차적으로 가한 후, 30℃로 냉각하여 용해시켰다. 이때의 고형분은 20%였으며, 이후 3시간 교반하였다. 모노머의 반응이 완료된 후, 자연 냉각하여 25℃에서의 용액점도 76poise(7600 CPs)의 투명 폴리아믹산 조성물을 얻었다.
3-2. 투명 폴리이미드 필름의 제조
상기 비교예 3-1에서 얻은 투명 폴리아믹산 조성물을 사용하는 것을 제외하고는, 실시예 1-2와 동일하게 수행하여 투명 폴리이미드 필름을 제조하였다.
상기 실시예 1~9, 및 비교예 1~3에서 각각 제조된 폴리아믹산 조성물의 조성은 하기 표 1과 같다.
디아민(몰%) 산이무수물(몰%)
제1모노머 제2모노머 제3모노머 제1모노머 제2모노머
실시예 1 TFDB 80 6FAPB 10 m-Tol 10 CBDA 70 BPDA 30
실시예 2 TFDB 70 6FAPB 30 - CBDA 70 BPDA 30
실시예 3 TFDB 50 6FODA 30 m-Tol 20 CBDA 70 BPDA 30
실시예 4 TFDB 70 6FODA 20 m-Tol 10 CBDA 70 BPDA 30
실시예 5 TFDB 70 - m-Tol 30 CBDA 70 PMDA 30
실시예 6 TFDB 70 - m-Tol 30 CBDA 70 BPDA 30
실시예 7 TFDB 70 6FAPB 30 - CBDA 50 TA-TFDB 50
실시예 8 TFDB 50 6FODA 20 6FAPB 30 CBDA 50 TA-TFDB 50
실시예 9 TFDB 50 6FODA 30 m-Tol 20 CBDA 70 PMDA 30
비교예 1 TFDB 100 - - 6FDA 70 PMDA 30
비교예 2 TFDB 100 - - 6FDA 70 BPDA 30
비교예 3 TFDB 100 - - CBDA 70 PMDA 30
[ 실험예 1] - 광학적 특성 평가
실시예 1~9 및 비교예 1~3에서 각각 제조된 투명 폴리이미드 필름의 광학적 특성을 하기와 같은 방법으로 평가하였으며, 그 결과를 하기 표 2에 나타내었다.
(1) 두께 측정
실리콘 웨이퍼에 투명 폴리아믹산 조성물을 막 두께 20㎛ 이하로 코팅한 후, 건조하고 이미드 폐환 반응을 진행하여 폴리이미드 필름을 형성하였다. 이후, 550nm 파장에서 비접촉식 굴절율 측정 장비(Ellipso technology의 Elli-RP)를 이용하여 상기 폴리이미드 필름의 두께를 측정하였다.
(2) 광투과도 측정
550nm 파장에서 UV-Vis NIR Spectrophotometer를 이용하여 ASTM E313-73의 규격인 C광원과 시야각 2도에서 측정하였다.
(3) 황색도 및 황색도 변화율(△YI) 측정
UV 분광계(코티카 미놀타 CM-3700d)를 이용하여 550nm에서의 황색도를 ASTM E313 규격으로 측정하였다. △YI는 필름을 UV-B 램프에 72 시간 노출시킨 후, 노출 전과 노출 후의 황색도 변화를 나타낸 것으로, 하기 수학식 1에 따라 계산하여 얻을 수 있다.
[수학식 1]
Figure PCTKR2017014883-appb-I000034
(상기 수학식 1에서,
YI1은 UV-B 램프에 필름을 72시간 노출하기 전의 황색도이고,
YI2는 UV-B 램프에 필름을 72시간 노출한 후의 황색도임).
두께(㎛) 투과도(%) UV-B 노출 전 황색도(YI) UV-B 노출 후 황색도(YI) 황색도 변화율(ΔYI)
실시예 1 9.8 89.8 1.8 2.0 0.2
실시예 2 10.1 89.9 1.7 2.2 0.5
실시예 3 10.3 89.7 2.1 2.5 0.4
실시예 4 9.9 89.9 1.7 2.0 0.3
실시예 5 10.0 90.0 2.2 2.3 0.1
실시예 6 10.5 90.1 2.0 2.2 0.2
실시예 7 10.3 89.5 1.9 2.4 0.5
실시예 8 10.5 89.2 2.1 2.5 0.4
실시예 9 10.3 89.2 2.3 2.4 0.1
비교예 1 10.5 88.7 1.5 2.2 0.7
비교예 2 10.3 88.9 1.2 2.0 0.8
비교예 3 9.7 88.8 1.3 2.0 0.7
상기 표 3에서 알 수 있는 바와 같이, 실시예 1~9의 폴리이미드 필름은 파장 550 ㎚에서의 황색도가 2.5 이하로 낮았으며, UV-B 램프에 72 시간 동안 노출되더라도 황색도 변화율이 0.7 미만으로, 색의 변화가 거의 없었다. 또한, 실시예 1~9의 폴리이미드 필름은 파장 550 ㎚에서의 투과도가 89 % 이상이었다.
이와 같이, 본 발명에 따른 폴리이미드 필름은 종래 폴리이미드 필름에 비해 광학적 특성이 우수하기 때문에, 플렉서블 디스플레이 소재 및 기판에 적용될 수 있다는 것을 확인할 수 있었다.
[ 실험예 2] - 기계적 특성 평가
실시예 1~9 및 비교예 1~3에서 각각 제조된 투명 폴리이미드 필름의 기계적 특성을 하기와 같은 방법으로 평가하였으며, 그 결과를 하기 표 3에 나타내었다.
(1) 인장 탄성률, 인장강도 및 연신율 측정
ASTM D882 규격에 따라 Instron 장비를 사용하여 필름의 인장 탄성률(Modulus), 인장강도(Strength) 및 연신율(Elonga tion)을 측정하였다.
(2) 내굴곡성 측정
ASTM D2176 규격에 따라 MIT(Folding Endurance Tester, D-2) 장비를 이용하여 필름의 내굴곡성(회/R@ 2.5mm)을 측정하였다.
인장탄성계수(GPa) 인장강도(MPa) 연신율 (%) 내굴곡성(만 회)
실시예 1 5.8 162 7 20.8
실시예 2 5.7 160 8 20.7
실시예 3 5.9 161 5 20.1
실시예 4 5.7 163 7 20.6
실시예 5 6.0 169 6 21.3
실시예 6 5.6 167 7 22.5
실시예 7 6.1 165 4 22.0
실시예 8 6.3 163 5 21.9
실시예 9 5.9 165 4 20.5
비교예 1 3.9 142 13 0.6
비교예 2 3.8 139 15 0.5
비교예 3 4.2 149 12 0.7
(1) 실시예 1~9의 폴리이미드 필름은 인장강도가 160 MPa 이상이었고, 연신율이 8 % 이하로, 인장탄성계수가 5.6 GPa 이상이었다. 이러한 실시예 1~9의 폴리이미드 필름은 비교예 1~3의 폴리이미드 필름에 비해 인장탄성계수가 크고, 나아가 내변형성이 우수하였다. 또한, 디아민으로 TFDB 100 몰%를 사용하여 제조된 비교예 1~3의 필름의 인장탄성계수(EA)에 대한 실시예 1~9의 폴리이미드 필름의 인장탄성계수(EA+B)의 비율(EA +B/EA)은 1.3~1.8 범위였다.
(2) 실시예 1~9의 폴리이미드 필름은 내굴곡성이 200,000회 이상으로, 비교예 1~3의 폴리이미드 필름에 비해 내굴곡성이 우수하였다. 특히, 실시예 1~9의 폴리이미드 필름은 굽힘 횟수가 디아민으로 TFDB 100 몰%를 사용하여 제조된 비교예 1~3의 폴리이미드 필름보다 약 28~46배 더 많았다.
이와 같이, 본 발명에 따른 폴리이미드 필름은 종래 폴리이미드 필름에 비해 기계적 특성이 우수하며, 따라서 플렉서블 디스플레이 소재 및 기판에 유용하게 적용될 수 있음을 확인할 수 있었다.

Claims (13)

  1. 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)와 산이무수물로부터 유도된 제1 반복단위(A)와;
    에테르계 디아민과 산이무수물로부터 유도된 제2 반복단위 및 비불소화 디아민과 산이무수물로부터 유도된 제3 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위(B)
    를 포함하는 폴리이미드로 형성된 투명 폴리이미드 필름으로서,
    ASTM D2176 규격에 의한 상기 투명 폴리이미드 필름의 내굴곡성(FA+B, 단 R=2.5 ㎜)은 상기 제1 반복단위(A)로 이루어진 투명 폴리이미드 필름의 내굴곡성(FA, 단 R=2.5 ㎜)에 대한 비율(FA+B/FA)이 28 내지 46 범위인 투명 폴리이미드 필름.
  2. 제2항에 있어서,
    상기 투명 폴리이미드 필름의 ASTM D2176 규격에 의한 내굴곡성(FA+B, 단 R=2.5 ㎜)은 200,000 내지 250,000회 범위인 것이 특징인 투명 폴리이미드 필름.
  3. 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)와 산이무수물로부터 유도된 제1 반복단위(A)와;
    에테르계 디아민과 산이무수물로부터 유도된 제2 반복단위 및 비불소화 디아민과 산이무수물로부터 유도된 제3 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위(B)
    를 포함하는 폴리이미드로 형성된 투명 폴리이미드 필름으로서,
    ASTM D882 규격에 의한 상기 투명 폴리이미드 필름의 인장 탄성계수(EA +B)는 상기 제1 반복단위로 이루어진 폴리이미드의 인장 탄성계수(EA)에 대한 비율(EA+B/EA)이 1.3 내지 1.8 범위인 것이 특징인 투명 폴리이미드 필름.
  4. 제3항에 있어서,
    상기 ASTM D882 규격에 의한 상기 투명 폴리이미드 필름의 인장 탄성계수(EA+B)는 5.5 내지 6.5 GPa인 것이 특징인 투명 폴리이미드 필름.
  5. 제4항에 있어서,
    ASTM D882 규격에 의한 인장강도가 155 MPa 이상이고, ASTM D882 규격에 의한 연신율이 4 내지 8 % 범위인 투명 폴리이미드 필름.
  6. 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)와 산이무수물로부터 유도된 제1 반복단위(A)와;
    에테르계 디아민과 산이무수물로부터 유도된 제2 반복단위 및 비불소화 디아민과 산이무수물로부터 유도된 제3 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위(B)
    를 포함하는 폴리이미드로 형성된 투명 폴리이미드 필름으로서,
    ASTM D882 규격에 의한 인장강도가 155 MPa 이상인 투명 폴리이미드 필름.
  7. 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐(2,2'-TFDB)와 산이무수물로부터 유도된 제1 반복단위(A)와;
    에테르계 디아민과 산이무수물로부터 유도된 제2 반복단위 및 비불소화 디아민과 산이무수물로부터 유도된 제3 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위(B)
    를 포함하는 폴리이미드로 형성된 투명 폴리이미드 필름으로서,
    ASTM D882 규격에 의한 연신율이 4 내지 8 % 범위인 투명 폴리이미드 필름.
  8. 제1항, 제3항, 제6항 및 제7항 중 어느 한 항에 있어서,
    파장 550 ㎚ 에서의 광투과율이 89 % 이상이고, ASTM E313 규격에 의한 황색도(YI)가 2.5 이하인 것이 특징인 투명 폴리이미드 필름.
  9. 제1항, 제3항, 제6항 및 제7항 중 어느 한 항에 있어서,
    상기 제1 반복단위(A)의 함유율은 전체 반복단위 100 몰%를 기준으로 50~90 몰% 범위인 것이 투명 폴리이미드 필름.
  10. 제1항, 제3항, 제6항 및 제7항 중 어느 한 항에 있어서,
    상기 1종 이상의 반복단위(B)의 함유율은 전체 반복단위 100 몰%를 기준으로 10~50 몰% 범위인 것이 특징인 투명 폴리이미드 필름.
  11. 제1항, 제3항, 제6항 및 제7항 중 어느 한 항에 있어서,
    상기 1종 이상의 반복단위(B)는 제2 반복단위 및 제3 반복단위를 포함하고,
    상기 제2 반복단위와 제3 반복단위의 혼합 비율은 40:60 ~ 60:40 몰비율인 것이 특징인 투명 폴리이미드 필름.
  12. 제1항, 제3항, 제6항 및 제7항 중 어느 한 항에 있어서,
    상기 산이무수물은 지환족 산이무수물 및 방향족 산이무수물로 이루어진 군에서 선택된 1종 이상을 포함하는 것이 특징인 투명 폴리이미드 필름.
  13. 제1항, 제3항, 제6항 및 제7항 중 어느 한 항에 있어서,
    플렉서블 디스플레이용 기판 또는 보호막으로 사용되는 것이 특징인 투명 폴리이미드 필름.
PCT/KR2017/014883 2016-12-19 2017-12-15 투명 폴리이미드 필름 WO2018117551A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780078415.2A CN110099946B (zh) 2016-12-19 2017-12-15 透明聚酰亚胺膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0173685 2016-12-19
KR1020160173685A KR20180071007A (ko) 2016-12-19 2016-12-19 투명 폴리이미드 필름

Publications (1)

Publication Number Publication Date
WO2018117551A1 true WO2018117551A1 (ko) 2018-06-28

Family

ID=62627713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014883 WO2018117551A1 (ko) 2016-12-19 2017-12-15 투명 폴리이미드 필름

Country Status (3)

Country Link
KR (1) KR20180071007A (ko)
CN (1) CN110099946B (ko)
WO (1) WO2018117551A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113906086A (zh) * 2019-05-31 2022-01-07 Sk新技术株式会社 聚酰胺酰亚胺膜

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210033567A (ko) * 2019-09-18 2021-03-29 삼성디스플레이 주식회사 윈도우 및 이를 포함하는 표시 장치
CN111363354A (zh) * 2020-03-27 2020-07-03 中天电子材料有限公司 聚酰亚胺无色透明薄膜及其制备方法、光学pi膜
KR102247146B1 (ko) * 2020-04-20 2021-05-04 에스케이이노베이션 주식회사 폴리아미드이미드 필름 및 이를 포함하는 플렉서블 디스플레이 패널
CN112500803B (zh) * 2020-04-21 2023-01-06 中天电子材料有限公司 聚酰亚胺胶膜及其制备方法及应用
KR102493648B1 (ko) * 2021-03-04 2023-01-31 주식회사 두산 우수한 복원 특성을 갖는 폴리이미드 필름
EP4321563A1 (en) * 2022-03-10 2024-02-14 LG Chem, Ltd. Polyimide-based resin film, display device substrate using same, and optical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114685A1 (ja) * 2012-02-01 2013-08-08 東洋紡株式会社 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
US20140378588A1 (en) * 2013-06-21 2014-12-25 Chi Mei Corporation Composition for flexible substrate and flexible substrate
CN105218814A (zh) * 2015-09-24 2016-01-06 苏州华辉材料科技有限公司 含氟共聚聚酰亚胺及其制备方法
WO2016060213A1 (ja) * 2014-10-17 2016-04-21 三菱瓦斯化学株式会社 ポリイミド樹脂組成物、ポリイミドフィルム及び積層体
WO2016063993A1 (ja) * 2014-10-23 2016-04-28 宇部興産株式会社 ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
CN105860520A (zh) * 2015-02-09 2016-08-17 奇美实业股份有限公司 软性基板用组成物及软性基板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225842B1 (ko) * 2007-08-27 2013-01-23 코오롱인더스트리 주식회사 무색투명한 폴리이미드 필름
KR101543478B1 (ko) * 2010-12-31 2015-08-10 코오롱인더스트리 주식회사 투명 폴리이미드 필름 및 그 제조방법
EP2690124B1 (en) * 2012-07-27 2015-09-16 Samsung Electronics Co., Ltd Composition Comprising Polyimide Block Copolymer And Inorganic Particles, Method Of Preparing The Same, Article Including The Same, And Display Device Including The Article
JP6257302B2 (ja) * 2012-12-20 2018-01-10 旭化成株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物、ポリイミドフィルム及びその製造方法、並びに、積層体及びその製造方法
CN105283487B (zh) * 2013-07-05 2017-12-19 三菱瓦斯化学株式会社 聚酰亚胺树脂
WO2015099478A1 (ko) * 2013-12-26 2015-07-02 코오롱인더스트리 주식회사 투명 폴리아마이드-이미드 수지 및 이를 이용한 필름
WO2016108631A1 (ko) * 2014-12-30 2016-07-07 코오롱인더스트리 주식회사 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114685A1 (ja) * 2012-02-01 2013-08-08 東洋紡株式会社 積層体とその製造方法及びそれを用いたデバイス構造体の製造方法
US20140378588A1 (en) * 2013-06-21 2014-12-25 Chi Mei Corporation Composition for flexible substrate and flexible substrate
WO2016060213A1 (ja) * 2014-10-17 2016-04-21 三菱瓦斯化学株式会社 ポリイミド樹脂組成物、ポリイミドフィルム及び積層体
WO2016063993A1 (ja) * 2014-10-23 2016-04-28 宇部興産株式会社 ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
CN105860520A (zh) * 2015-02-09 2016-08-17 奇美实业股份有限公司 软性基板用组成物及软性基板
CN105218814A (zh) * 2015-09-24 2016-01-06 苏州华辉材料科技有限公司 含氟共聚聚酰亚胺及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113906086A (zh) * 2019-05-31 2022-01-07 Sk新技术株式会社 聚酰胺酰亚胺膜

Also Published As

Publication number Publication date
CN110099946A (zh) 2019-08-06
KR20180071007A (ko) 2018-06-27
CN110099946B (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2017179877A1 (ko) 무색 투명한 폴리아마이드-이미드 필름 및 이의 제조방법
WO2017111289A1 (ko) 지환족 모노머가 적용된 폴리아믹산 조성물 및 이를 이용한 투명 폴리이미드 필름
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2017209413A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2017188630A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2018038309A1 (ko) 수지안정성, 내열성이 향상되고 투명성을 갖는 폴리이미드 전구체 수지 조성물, 이를 이용한 폴리이미드 필름 제조방법, 및 이에 의해 제조된 폴리이미드 필름
WO2018147602A1 (ko) 폴리아마이드-이미드 필름
WO2013133508A1 (ko) 두 개의 치환기를 비대칭 구조로 포함하는 디아민 화합물, 이를 사용하여 제조된 중합체
WO2017204462A1 (ko) 폴리아미드이미드, 이의 제조방법 및 이를 이용한 폴리아미드이미드 필름
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2019054612A1 (ko) 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2017003173A1 (ko) 폴리이미드-폴리벤조옥사졸 전구체 용액, 폴리이미드-폴리벤조옥사졸 필름, 및 이의 제조방법
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2015099478A1 (ko) 투명 폴리아마이드-이미드 수지 및 이를 이용한 필름
WO2016175344A1 (ko) 폴리이미드 수지 및 이를 이용한 필름
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2016108631A1 (ko) 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2018147611A1 (ko) 폴리아마이드-이미드 필름의 제조방법
WO2022145891A1 (ko) 우수한 중합도를 갖는 고분자 수지를 포함하는 광학 필름 및 이를 포함하는 표시장치
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 17883584

Country of ref document: EP

Kind code of ref document: A1