WO2019235712A1 - 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물 - Google Patents

실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물 Download PDF

Info

Publication number
WO2019235712A1
WO2019235712A1 PCT/KR2019/000877 KR2019000877W WO2019235712A1 WO 2019235712 A1 WO2019235712 A1 WO 2019235712A1 KR 2019000877 W KR2019000877 W KR 2019000877W WO 2019235712 A1 WO2019235712 A1 WO 2019235712A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
carbon atoms
siloxane compound
independently
Prior art date
Application number
PCT/KR2019/000877
Other languages
English (en)
French (fr)
Inventor
윤철민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19815299.3A priority Critical patent/EP3666780B1/en
Priority to US16/757,539 priority patent/US11820785B2/en
Priority to CN201980004480.XA priority patent/CN111094305B/zh
Priority to JP2020516434A priority patent/JP6950143B2/ja
Publication of WO2019235712A1 publication Critical patent/WO2019235712A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • C07F7/0872Preparation and treatment thereof
    • C07F7/0889Reactions not involving the Si atom of the Si-O-Si sequence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/123Unsaturated polyimide precursors the unsaturated precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/125Unsaturated polyimide precursors the unsaturated precursors containing atoms other than carbon, hydrogen, oxygen or nitrogen in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0063Optical properties, e.g. absorption, reflection or birefringence
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/103Materials and properties semiconductor a-Si

Definitions

  • the present invention relates to a siloxane compound having a novel structure and a polyimide precursor composition comprising the same.
  • polyimide (PI) resin is easy to synthesize, can make a thin film, and has the advantage of not needing a crosslinker for curing.
  • PI polyimide
  • the polyimide resin is formed by filming a polyimide (PI) film.
  • PI polyimide
  • a polyimide film is prepared by solution polymerization of an aromatic dianhydride and an aromatic diamine or an aromatic diisocyanate to prepare a polyamic acid derivative solution. It is manufactured by coating on a silicon wafer or glass and curing by heat treatment.
  • an adhesion promoter such as a silane compound is used to improve the adhesion between the polyimide film and the glass or metal surface.
  • an adhesion promoter is applied to the surface to improve the adhesion, foreign substances are generated due to the application of the adhesion promoter.
  • the substrate may not be smoothly formed, and the coating process may need to be performed once more after application, thereby decreasing economic efficiency.
  • the adhesion promoter when added directly to the polyamic acid, the problem caused by the coating may be minimized. However, since the amino group of the silane compound is precipitated as the carboxylic acid and the salt of the polyamic acid, foreign substances may be formed on the substrate.
  • the problem to be solved by the present invention is to provide a siloxane compound of a novel structure that is not reactive with the polyamic acid structure.
  • the present invention is to provide a polyimide precursor composition comprising the siloxane compound.
  • Another object of the present invention is to provide a polyimide film prepared from the polyimide precursor composition.
  • the present invention is to provide a display substrate comprising the polyimide film.
  • Q 2 , Q 3 and Q 4 are each independently selected from a hydrogen atom, an alkyl group having 1 to 5 carbon atoms and an alkoxy group having 1 to 5 carbon atoms,
  • R 1, R 2, R 11 and R 12 are each independently a single bond or an organic group having 1 to 20 carbon atoms,
  • R 3 to R 10 are each independently an aliphatic group having 1 to 3 carbon atoms or an aromatic group having 6 to 12 carbon atoms,
  • n1 and m2 are each independently an integer of 0 or more.
  • m1 or m2 is an integer of 1 or more, the molecular weight of Formula 1, Formula 2 or Formula 3 may be 10000 or less.
  • Formula 1 or Formula 2 may be represented by the following Formula 1-1 or Formula 2-1, respectively.
  • R 1, R 2, R 11 and R 12 may each independently be a single bond or an alkylene group having 1 to 10 carbon atoms.
  • any one or more of R 3 to R 10 may include an aromatic group having 6 to 12 carbon atoms.
  • a method for preparing the compound of Formula 1 or Formula 2 is provided by reacting a compound of Formula a with a compound of Formula b-1 or b-2.
  • X 1 and X 2 are each independently selected from anhydride group, amine group, carboxyl group and ester group,
  • R 1, R 2, R 11 and R 12 are each independently a single bond or an organic group having 1 to 20 carbon atoms.
  • R 3 to R 10 are each independently an aliphatic group having 1 to 3 carbon atoms or an aromatic group having 6 to 12 carbon atoms,
  • n1 and m2 are each independently an integer of 0 or more.
  • Formulas b-1 and b-2 may be represented by the following Formula b.
  • Q 1, Q 2 , Q 3 and Q 4 are as defined for Formulas b-1 and b-2.
  • polyimide precursor composition comprising the siloxane compound and polyamic acid described above.
  • the polyimide precursor composition may include the siloxane compound in an amount of 1 to 15% by weight based on the total weight of the polyimide precursor composition.
  • the present invention provides a polyimide film prepared from the polyimide precursor composition.
  • the polyimide film may have a residual stress of 35 MPa or less with the inorganic material substrate.
  • the polyimide film may have a Real Bow value of less than 35 ⁇ m.
  • the thickness direction retardation of the polyimide film may be 420 nm or less.
  • the present invention also provides a display substrate comprising the polyimide film.
  • the present invention provides a novel siloxane compound, which can be added to a polyimide precursor composition comprising a polyamic acid in the form of a single molecule, thereby providing a polyimide precursor composition having improved storage stability.
  • a multifunctional polyimide film having improved optical isotropic characteristics and reduced residual stress with a substrate, while improving adhesion with an inorganic material substrate.
  • FIG. 1 is a 1 H-NMR spectrum of a siloxane compound synthesized according to Example 1.
  • FIG. 2 is a COSY NMR (Correlation Spectroscopy Nuclear Magnetic Resonance) spectrum of a siloxane compound synthesized according to Example 1.
  • FIG. 2 is a COSY NMR (Correlation Spectroscopy Nuclear Magnetic Resonance) spectrum of a siloxane compound synthesized according to Example 1.
  • FIG. 3 is a 1 H-NMR spectrum of a siloxane compound synthesized according to Example 2.
  • FIG. 4 is a COSY NMR spectrum of a siloxane compound synthesized according to Example 2.
  • FIG. 4 is a COSY NMR spectrum of a siloxane compound synthesized according to Example 2.
  • FIG. 5 is a 1 H-NMR spectrum of a siloxane compound synthesized according to Example 3.
  • FIG. 5 is a 1 H-NMR spectrum of a siloxane compound synthesized according to Example 3.
  • FIG. 6 is a COSY NMR spectrum of a siloxane compound synthesized according to Example 3.
  • FIG. 6 is a COSY NMR spectrum of a siloxane compound synthesized according to Example 3.
  • FIG. 7 is a 1 H-NMR spectrum of a siloxane compound synthesized according to Example 4.
  • FIG. 8 is a COSY NMR spectrum of the siloxane compound synthesized according to Example 4.
  • substituted means that at least one hydrogen contained in the compound or the organic group is a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group, a cycloalkyl group having 3 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, and a hydroxy group And substituted with a substituent selected from the group consisting of alkoxy groups, carboxylic acid groups, aldehyde groups, epoxy groups, cyano groups, nitro groups, amino groups, sulfonic acid groups and derivatives thereof having 1 to 10 carbon atoms.
  • the most important thing in the flexible display process is an organic substrate that replaces a glass substrate capable of high temperature processing.
  • a substrate material of an organic material polyimide which is excellent in heat resistance typically is used widely in an organic material.
  • a substrate may be manufactured in a multilayer or an inorganic layer may be formed between an organic layer and an organic layer. That is, after coating and curing the polyimide on a carrier substrate, the inorganic layer is deposited, and the polyimide is coated and cured again on the carrier substrate.
  • the adhesive strength between the inorganic layer and the heterogeneous layer such as the polyimide layer generally shows a low tendency, and the above-mentioned substrate manufacturing method using the double curing method may cause a lifting phenomenon in the process due to the decrease in the adhesive force between the organic layer and the inorganic layer. .
  • Q 2 , Q 3 and Q 4 are each independently selected from a hydrogen atom, an alkyl group having 1 to 5 carbon atoms and an alkoxy group having 1 to 5 carbon atoms
  • R 1, R 2, R 11 and R 12 are each independently a single bond or an organic group having 1 to 20 carbon atoms, for example, may be a single bond or an alkylene group having 1 to 20 carbon atoms, preferably a single bond Or an alkylene group having 1 to 10 carbon atoms, more preferably a single bond or an alkylene group having 1 to 5 carbon atoms,
  • R 3 to R 10 are each independently an aliphatic group having 1 to 3 carbon atoms or an aromatic group having 6 to 12 carbon atoms, and preferably at least one of R 3 to R 10 may be an aromatic group having 6 to 12 carbon atoms. .
  • n1 and m2 are integers of 0 or more, preferably integers of 1 or more.
  • the molecular weight of the siloxane compound of Formula 1 or Formula 2 may be 10000 or less, preferably 8000 or less, more preferably 6000 or less, for example, 1000 to 10000.
  • the siloxane compound having the structure of Formula 1 or Formula 2 according to the present invention does not have reactivity with a polyamic acid, which is a polyimide precursor, and thus may provide a polyimide precursor composition having improved storage stability at room temperature.
  • the siloxane compound according to the present invention may be prepared by reacting a compound of Formula a with a compound of Formulas b-1 and b-2.
  • the compounds of Formulas b-1 and b-2 may be the same, for example, the compounds of Formula b.
  • X 1 and X 2 are each independently selected from anhydride group, amine group, carboxyl group and ester group,
  • R 1 and R 2 are each independently a single bond or an organic group having 1 to 20 carbon atoms, for example, may be a single bond or an alkylene group having 1 to 20 carbon atoms, preferably a single bond or 1 to 10 carbon atoms.
  • Organic group more preferably a single bond or an organic group having 1 to 5 carbon atoms,
  • R 3 to R 10 are each independently an aliphatic group having 1 to 3 carbon atoms or an aromatic group having 6 to 12 carbon atoms, for example, any one of R 3 to R 10 may be an aromatic group having 6 to 12 carbon atoms,
  • n1 and m2 are each independently an integer of 0 or more. Preferably it is an integer of 1 or more,
  • Q 1 is selected from an amine group, an isocyanate group and an anhydride group, preferably may be selected from an amine group and an anhydride group.
  • Q 2 , Q 3 and Q 4 are each independently selected from a hydrogen atom, an alkyl group having 1 to 5 carbon atoms and an alkoxy group having 1 to 5 carbon atoms.
  • the compound of Formula 1 may be a compound represented by Formula 1-1
  • the compound of Formula 2 may be a compound represented by Formula 2-1.
  • the present invention provides a polyimide precursor composition comprising the siloxane compound.
  • the present invention can provide a polyimide precursor composition having improved storage stability at room temperature by providing a polyimide precursor composition to which a siloxane compound which does not react with a polyamic acid as a polyimide precursor is added.
  • the polyimide precursor composition may have a viscosity change of 10% or less when left at room temperature for 5 days. That is, since a side reaction between the polyamic acid and the siloxane compound does not occur, the viscosity change of the composition hardly occurs, and thus the storage stability of the solution may be improved.
  • the siloxane compound according to the present invention as the adhesion promoter of the polyimide film, it is possible to improve the adhesion between the polyimide film and the inorganic substrate, from which the inorganic substrate and the polyimide film in the subsequent step of the panel process It can reduce the lifting phenomenon by reducing the adhesive strength with.
  • the siloxane compound according to the present invention may exhibit an isotropic property by reducing the thickness direction retardation of the polyimide film, it is possible to reduce the residual stress on the inorganic material substrate.
  • the siloxane compound may be added to the polyimide resin composition in 0.5 to 15% by weight, based on the total weight of the composition, preferably 1 to 10% by weight, more preferably 1 to 5% by weight Can be added in%.
  • the siloxane compound is added in less than 0.5% by weight, the adhesion may not be improved, and when added in excess of 15% by weight, haze may increase.
  • the polyimide film prepared from the polyimide precursor composition may have a residual stress of 35 MPa or less with an inorganic material substrate, and a Real Bow value indicating glass stress may be 35 ⁇ m or less, so that the substrate after coating-curing This warpage phenomenon can be reduced to provide a flat polyimide film.
  • the thickness direction retardation of the polyimide film may be 420 nm or less.
  • the polyimide precursor may include a polyamic acid prepared by reacting at least one tetracarboxylic dianhydride and diamine.
  • Tetracarboxylic dianhydrides that can be used to prepare the polyamic acid according to the present invention are tetravalent organic groups selected from intramolecular aromatic, alicyclic, or aliphatic, or combinations thereof, and aliphatic, alicyclic, or aromatic single bonds.
  • Tetracar comprising a tetravalent organic group connected to each other via a crosslinking structure, preferably a monovalent or polycyclic aromatic, monocyclic or polycyclic alicyclic, or a tetravalent organic group selected from a combination of two or more thereof. It may be one or more selected from acid dianhydrides.
  • the tetracarboxylic dianhydride may include a tetravalent organic group selected from the group consisting of Formulas 4a to 4g.
  • R 31 to R 42 each independently represent an alkyl group having 1 to 10 carbon atoms (for example, a methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, etc.) or fluorine having 1 to 10 carbon atoms.
  • Roalkyl group eg, fluoromethyl group, perfluoroethyl group, trifluoromethyl group, etc.
  • a 1 is an integer of 0 to 2
  • b 1 is an integer of 0 to 4
  • c 1 is an integer of 0 to 8
  • d 1 and e 1 are each independently an integer of 0 to 3
  • f 1 and g 1 are each independently And an integer of 0 to 4
  • h 1 and j 1 are each independently an integer of 0 to 3
  • i 1 is an integer of 0 to 4
  • k 1 and l 1 are each independently an integer of 0 to 4,
  • methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group and the like and fluoroalkyl group having 1 to 10 carbon atoms for example, fluoromethyl group, fluoroethyl group, trifluoro Methyl group and the like.
  • the tetracarboxylic dianhydride may include a tetravalent organic group selected from Chemical Formulas 5a to 5s.
  • the tetravalent organic groups represented by the formulas 5a to 5s have one or more hydrogen atoms in the tetravalent organic group having an alkyl group having 1 to 10 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pen).
  • an alkyl group having 1 to 10 carbon atoms for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pen.
  • a fluoroalkyl group having 1 to 10 carbon atoms for example, a fluoromethyl group, a perfluoroethyl group, a trifluoromethyl group, etc.
  • a hydroxyl group, a sulfonic acid group, and a carboxylic acid group It may also be substituted with a substituent selected.
  • Diamines that can be used in the preparation of the polyamic acid according to the present invention are divalent organic groups of an aromatic, cycloaliphatic, or aliphatic divalent organic group, or a combination thereof, in which aliphatic, cycloaliphatic or aromatic is linked to each other through a crosslinked structure.
  • the device may be one or more selected from diamines comprising a divalent organic group in the molecular structure, preferably a structure selected from monocyclic or polycyclic aromatics, monocyclic or polycyclic alicyclics, or a combination thereof.
  • the diamine according to the present invention may include a divalent organic group selected from the group consisting of Chemical Formulas 6a to 6d.
  • L 1 is a single bond, -O-, -CO-, -S-, -SO 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -CONH-, -COO-,-(CH 2 ) n 1- , -O (CH 2 ) n 2 O-, -OCH 2 -C (CH 3 ) 2 -CH 2 O- or -COO (CH 2 ) n 3 OCO- And n 1 , n 2 and n 3 are each independently an integer of 1 to 10.
  • L 2 and L 3 may be the same as or different from each other, and each single bond, -O-, -CO-, -S-, -SO 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -CONH-, -COO-,-(CH 2 ) n 1- , -O (CH 2 ) n 2 O-, -OCH 2 -C (CH 3 ) 2 -CH 2 O- Or —COO (CH 2 ) n 3 OCO—, wherein n 1 , n 2 and n 3 are each independently an integer of 1 to 10.
  • L 4 , L 5, and L 6 may be the same as or different from each other, and each single bond, -O-, -CO-, -S-, -SO 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -CONH-, -COO-,-(CH 2 ) n 1- , -O (CH 2 ) n 2 O-, -OCH 2 -C (CH 3 ) 2 -CH 2 O- or -COO (CH 2 ) n 3 OCO-, wherein n 1 , n 2 and n 3 are each independently an integer of 1 to 10.
  • the diamine may include a divalent organic group selected from the group consisting of Formulas 7a to 7r.
  • A represents a single bond, -O-, -CO-, -S-, -SO 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -CONH -, -COO-,-(CH 2 ) n 1- , -O (CH 2 ) n 2 O-, -OCH 2 -C (CH 3 ) 2 -CH 2 O- or -COO (CH 2 ) n 3 OCO-, and v and z are each independently 0 or 1.
  • At least one hydrogen atom present in the tetravalent organic group of Formulas 7a to 7r may be selected from the group consisting of -F, -Cl, -Br and -I, a halogen atom, a hydroxyl group (-OH), a thiol group ( -SH), a nitro group (-NO 2 ), a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenoalkoxy having 1 to 4 carbon atoms, a halogenoalkyl having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms It may be substituted with a substituent.
  • the diamine may include at least one diamine containing a divalent organic group of the formula (8) in the molecular structure.
  • R a and R b are each independently a hydrogen atom, a halogen atom selected from the group consisting of -F, -Cl, -Br, and -I, a hydroxyl group (-OH), a thiol group (- A substituent selected from SH), a nitro group (-NO 2 ), a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenoalkoxy having 1 to 4 carbon atoms, a halogenoalkyl having 1 to 10 carbon atoms, and an aryl group having 6 to 20 carbon atoms And preferably, a substituent selected from a halogen atom, a halogenoalkyl group, an alkyl group, an aryl group and a cyano group.
  • the halogen atom may be fluoro (-F)
  • the halogenoalkyl group is a fluoroalkyl group having 1 to 10 carbon atoms containing a fluoro atom, fluoromethyl group, perfluoroethyl group, trifluoro It may be selected from a methyl group
  • the alkyl group may be selected from methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group
  • the aryl group is selected from phenyl group, naphthalenyl group It may be, and more preferably may be a substituent containing a fluoro atom, such as a fluoro atom and a fluoroalkyl group.
  • fluoro-based substituent means not only a “fluoro atom substituent” but also a “substituent containing a fluoro atom”.
  • the tetracarboxylic dianhydride may include a tetracarboxylic dianhydride comprising a structure of the formula (9), the tetracarboxylic dianhydride of the formula (9) is a total tetracarboxylic 10 mol% or more, preferably 30 mol% or more in the acid dianhydride.
  • tetracarboxylic dianhydride and diamine can be reacted in a 1: 1.1 to 1.1: 1 molar ratio, and in order to improve reactivity and processability, the total content of tetracarboxylic dianhydride is It is preferred that the reaction is carried out in excess relative to the diamine, or the content of the diamine is reacted in excess relative to the total content of the tetracarboxylic dianhydride.
  • the molar ratio of the total content of tetracarboxylic dianhydride and the content of diamine may be preferably 1: 0.98 to 0.98: 1, preferably 1: 0.99 to 0.99: 1. .
  • Organic solvents usable in the polyamic acid polymerization reaction include gamma-butyrolactone, 1,3-dimethyl-2-imidazolidinone, methylethylketone, cyclohexanone, cyclopentanone, 4-hydroxy-4- Ketones such as methyl-2-pentanone; Aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Glycol ethers (cellosolve) such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Ethyl acetate, butyl acetate,
  • the organic solvent that may be used in the polymerization reaction may have a partition coefficient at 25 ° C. (LogP value) and a boiling point of 300 ° C. or lower, more specifically, a partition coefficient LogP value of 0.01 to 3, or 0.01 to 2, or 0.1 to 2.
  • the distribution coefficient can be calculated using ACD / LogP module of ACD / Percepta platform of ACD / Labs, and ACD / LogP module uses QSPR (Quantitative Structure-Property Relationship) methodology based algorithm using molecular 2D structure. I use it.
  • QSPR Quadrature Structure-Property Relationship
  • the solvent having a positive distribution coefficient (Log P) may be an amide-based solvent, and the amide-based solvent may include dimethylpropanamide (DMPA), diethylpropanamide (DEethyl), N, N-diethylacetamide (N, N-diethylacetamide, DEAc), N, N-diethylformamide (N, N-diethylformamide, DEF), N-ethylpyrrolidone (NEP) may be one or more selected from.
  • DMPA dimethylpropanamide
  • DEethyl diethylpropanamide
  • N, N-diethylacetamide N, N-diethylacetamide, DEAc
  • N, N-diethylformamide N, N-diethylformamide, DEF
  • N-ethylpyrrolidone N-ethylpyrrolidone
  • An organic solvent having a positive partition coefficient can reduce the clouding caused by phase separation due to the polarity difference between the flexible polyimide repeat structure and other polyimide structures.
  • two kinds of organic solvents are used to solve phase separation, but by using only one organic solvent having a partition coefficient, the cloudiness may be reduced, and thus a more transparent polyimide film may be manufactured.
  • a positive value of the distribution coefficient of the solvent means that the polarity of the solvent is hydrophobic. According to the researches of the present inventors, when the polyimide precursor composition is prepared using a specific solvent having a positive distribution coefficient value, the curling characteristics of the solution It was found that this is improved.
  • the present invention by using a solvent having a positive log P as described above, it is possible to control the liquid curling phenomenon of the solution without using an additive to adjust the surface tension of the material, such as leveling agent and the smoothness of the coating film, Since it does not use additional additives such as additives, it is possible not only to eliminate the quality and process problems such as the low molecular material contained in the final product, but also to form a polyimide film having more uniform properties more efficiently. There is.
  • curling of the solution may occur due to shrinkage of the coating layer during curing or when the coating solution is left in a humidified condition.
  • the phenomenon of the liquid curling of the coating solution may cause a variation in the thickness of the film, thereby causing a phenomenon in which the film breaks or the edges are broken during cutting due to the lack of bending resistance of the film, resulting in poor workability and lower yield. Problems may arise.
  • the polyimide precursor composition including a solvent in which Log P is positive may have a dewetting ratio of 0% to 0.1% or less defined by Equation 1 below.
  • A the area in the state where the polyimide precursor composition is completely coated on the substrate (100mm ⁇ 100mm),
  • This phenomenon of dewetting of the polyimide precursor composition and the film may occur within 30 minutes after coating the polyimide precursor composition solution, and in particular, the thickness of the edge may be thickened by starting to curl from the edge.
  • the curling rate of the coated resin composition solution after being left in humidity conditions is 0.1 It may be up to%, for example, at a temperature of 20 to 30 °C, humidity conditions of 40% or more, more specifically 40%, 50%, 60%, 70% humidity conditions in the range of 40% to 80% , 80% at each humidity condition, for example, even after 10 to 50 minutes at 50% humidity conditions can exhibit a very small curl rate of 0.1% or less, preferably 0.05%, more preferably almost A curling rate close to 0% can be seen.
  • the curl rate is maintained even after curing, for example, at least 10 minutes after coating the polyimide precursor composition on the substrate, for example, at a temperature of 20 to 30 °C, humidity conditions of 40% or more, more specifically Is cured after 10 to 50 minutes of humidity in the range of 40% to 80%, ie 40%, 50%, 60%, 70%, 80%, respectively, for example at 50% humidity.
  • the curling rate of the polyimide film thus obtained may be 0.1% or less. In other words, even in the curing process by heat treatment, there may be little or no curling, specifically, it may exhibit a curling ratio close to 0.05%, more preferably almost 0%.
  • the polyimide precursor composition according to the present invention can obtain a polyimide film having more uniform properties by solving such a liquid phenomena, thereby further improving the yield of the manufacturing process.
  • the method for reacting tetracarboxylic dianhydride with diamine can be carried out according to a conventional polyimide precursor polymerization production method such as solution polymerization. Specifically, it can be prepared by dissolving diamine in an organic solvent, followed by polymerization by adding tetracarboxylic dianhydride to the resulting mixed solution.
  • the polymerization reaction can be carried out under inert gas or nitrogen stream, and can be carried out under anhydrous conditions.
  • reaction temperature during the polymerization reaction may be carried out at -20 to 80 °C, preferably 0 to 80 °C. If the reaction temperature is too high, the reactivity may be increased to increase the molecular weight, it may be disadvantageous in terms of the process by increasing the viscosity of the precursor composition.
  • the polyimide precursor composition manufactured by the said manufacturing method contains solid content in the quantity which makes the said composition have appropriate viscosity in consideration of processability, such as applicability
  • the content of the total polyimide precursor may be adjusted to 8 to 25% by weight, preferably 10 to 25% by weight, more preferably 10 to 20% by weight or less.
  • the polyimide precursor composition may be adjusted to have a viscosity of 3,000 cP or more, or 4,000 cP or more, and the viscosity of the polyimide precursor composition is 10,000 cP or less, preferably 9,000 cP or less, more preferably 8,000 cP or less. It is preferable to adjust to have a viscosity of.
  • the viscosity of the polyimide precursor composition exceeds 10,000 cP, the efficiency of degassing during polyimide film processing decreases, so that not only the efficiency of the process but also the produced film has poor surface roughness due to bubble generation, resulting in electrical, optical and mechanical properties. Can be degraded.
  • the molecular weight of the polyimide according to the present invention may have a weight average molecular weight of 10,000 to 200,000 g / mol, or 20,000 to 100,000 g / mol, or 30,000 to 100,000 g / mol.
  • the molecular weight distribution (Mw / Mn) of the mead is preferably 1.1 to 2.5.
  • the polyimide precursor obtained as a result of the polymerization reaction is imidated, whereby a transparent polyimide film can be produced.
  • the imidization process may specifically include a chemical imidization method or a thermal imidization method.
  • a dehydrating agent and an imidization catalyst are added to the polymerized polyimide precursor composition, and then heated to a temperature of 50 to 100 ° C. to imidize by chemical reaction, or the alcohol is removed while refluxing the solution.
  • Polyimide can be obtained by the method of drawing.
  • pyridine triethylamine, picoline or quinoline and the like can be used as the imidization catalyst, and in addition, N-oxides of substituted or unsubstituted nitrogen-containing heterocyclic compounds and nitrogen-containing heterocyclic compounds
  • N-oxides of substituted or unsubstituted nitrogen-containing heterocyclic compounds and nitrogen-containing heterocyclic compounds Compounds, substituted or unsubstituted amino acid compounds, aromatic hydrocarbon compounds having a hydroxyl group or aromatic heterocyclic compounds, especially 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methyl Imidazole derivatives such as lower alkylimidazoles such as midazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, and 5-methylbenzimidazole, and N-benzyl-2-methylimidazole
  • Substituted pyridine such as isoquinoline, 3,5-dimethylpyridine, 3,4-dimethylpyr
  • acid anhydrides such as acetic anhydride can be used.
  • the polyimide precursor composition may be imidized by applying a heat treatment after coating the substrate.
  • the polyimide precursor composition may be in the form of a solution dissolved in an organic solvent, and in the case of having such a form, for example, when a polyimide precursor is synthesized in an organic solvent, the solution may be the reaction solution itself obtained. The reaction solution may be diluted with another solvent. Moreover, when a polyimide precursor is obtained as a solid powder, it may be made to melt
  • the present invention provides a polyimide precursor composition comprising at least one siloxane compound represented by Formula 1 or Formula 2 in the polyimide precursor solution.
  • the siloxane compound may be added to the polyimide precursor composition based on 0.5 total weight to 15% by weight, preferably 1 to 10% by weight, more preferably 1 to It may be added at 5% by weight.
  • the siloxane compound may be added in less than 0.5% by weight, the adhesion may not be improved, and when added in excess of 15% by weight, haze may occur.
  • the present invention comprises applying the polyimide precursor composition on a substrate;
  • It provides a method for producing a polyimide film comprising the step of heat-treating the applied polyimide precursor composition.
  • a glass, a metal substrate or a plastic substrate may be used as the substrate without particular limitation.
  • the thermal and chemical stability is excellent during the imidization and curing process for the polyimide precursor, and without curing the release agent, It may be desirable for the glass substrate to be easily separated without damage to the polyimide-based film formed afterwards.
  • the coating process may be carried out according to a conventional coating method, and specifically, the spin coating method, the bar coating method, the roll coating method, the air-knife method, the gravure method, the reverse roll method, the kiss roll method, the doctor blade method, the spray method, Dipping or brushing may be used.
  • the continuous process is possible, and it may be more preferable to be carried out by a casting method that can increase the imidation ratio of the polyimide.
  • the polyimide precursor composition may be applied over the substrate in a thickness range such that the polyimide film to be produced has a thickness suitable for the display substrate. Specifically, it may be applied in an amount such that it becomes a thickness of 10 to 30 ⁇ m.
  • a drying step for removing the solvent present in the polyimide precursor composition may be optionally further performed before the curing process.
  • the drying process may be carried out in accordance with a conventional method, specifically may be carried out at a temperature of 140 °C or less, or 80 °C to 140 °C.
  • a temperature of 140 °C or less or 80 °C to 140 °C.
  • the implementation temperature of a drying process is less than 80 degreeC, a drying process becomes long, and when it exceeds 140 degreeC, imidation advances rapidly and it is difficult to form polyimide film of uniform thickness.
  • the polyimide precursor composition is applied to a substrate and heat treated on an IR oven, a hot air oven or a hot plate, wherein the heat treatment temperature may be in a temperature range of 300 to 500 ° C., preferably 320 to 480 ° C. It may also proceed with a multi-step heat treatment within the temperature range.
  • the heat treatment process may be performed for 20 minutes to 70 minutes, preferably 20 minutes to 60 minutes or so.
  • the polyimide film can be produced by peeling the polyimide film formed on the substrate from the substrate according to a conventional method.
  • the organic solvent contained in the polyimide precursor composition of the present invention may be the same as the organic solvent used in the polymerization reaction.
  • the present invention provides a display substrate comprising a polyimide film prepared from the polyimide precursor composition.
  • the polyimide film may have a haze value of 2 or less, preferably 1 or less, or 0.9 or less, for example, a very low haze value of 0.2 or less.
  • a colorless transparent polyimide film can be provided.
  • the thickness of the polyimide film may be 8 to 15 ⁇ m, preferably 10 to 12 ⁇ m.
  • the transmittance of light with a wavelength of 380 to 760 nm in the film thickness range of 5 to 30 ⁇ m is 80% or more, and the yellowness (YI) is about 15 or less, preferably about 10 or less, and more preferably about 8 or less. It may be a colorless transparent polyimide film having a value of, for example, may have a YI value of 7 or less. By having excellent light transmittance and low yellowness as described above, it is possible to provide a colorless transparent polyimide film.
  • the polyimide film may have a phase difference value R th in the thickness direction of about 1000 nm or less, or 0 to 700 nm, preferably 0 to 600 nm, more preferably 0 to 500 nm, for example, 420 nm or less.
  • R th phase difference value
  • the polyimide film included in the display substrate may be formed on an inorganic material substrate.
  • the display substrate the display substrate
  • An inorganic substrate including an inorganic material
  • It may include an organic-inorganic composite layer formed on the inorganic layer and having a second polyimide layer comprising the polyimide film, the moisture of the organic material and the inorganic material from the inorganic layer formed between the polyimide film It is possible to solve the problem of deterioration of device characteristics due to differences in permeability and electrical properties.
  • the polyimide film according to the present invention may be made of a polyimide precursor composition containing the siloxane compound, thereby not only significantly increasing the adhesion between the inorganic substrate and the inorganic layer and the polyimide film including the inorganic material, By reducing the residual stress of the polyimide film, it is possible to solve the defect caused by the lifting phenomenon during the panel process.
  • the polyimide film according to the present invention can be used in a protective film for a circuit board, a base film of a circuit board, an insulating layer of a circuit board, an interlayer insulating film of a semiconductor, a solder resist, a flexible circuit board, or a flexible display substrate, and particularly a high temperature process.
  • Oxide TFT and low temperature polysilicon (LTPS) process that requires a may be suitable for OLED devices using, but is not limited thereto.
  • Acetone-d 6 solvent was added to the insert tube and the NMR tube was filled with NMR samples.
  • Example 2 except that X22-9049 was changed to X22-1660B (MW 4200, Shin-Etsu Silicone), the siloxane compound 3 was prepared by the same reaction as in Scheme 2.
  • siloxane compound 4 was prepared by reacting in the same manner as in Scheme 2.
  • TFMB 0.178 mol and DDS 0.076 mol were added and dissolved at the same temperature while maintaining the reactor temperature at 25 ° C.
  • 0.229 mol of PMDA and 0.025 mol of 6FDA were added at the same temperature and stirred for 48 hours to obtain a polyamic acid solution.
  • Example Polyamic acid Siloxane compound Amount Example 5 Preparation Example 1 Example 3 1-10 wt% Example 6 Preparation Example 1 Example 1 1-10 wt% Example 7 Preparation Example 1 Example 2 1-10 wt% Example 8 Preparation Example 1 Example 4 1-10 wt% Example 9 Preparation Example 2 Example 3 1-10 wt% Example 10 Preparation Example 3 Example 3 1-10 wt% Example 11 Preparation Example 4 Example 3 1-10 wt% Example 12 Preparation Example 5 Example 3 1-10 wt% Comparative Example 1 Preparation Example 1 - - Comparative Example 2 Preparation Example 2 - - Comparative Example 3 Preparation Example 3 - - Comparative Example 4 Preparation Example 4 - - Comparative Example 5 Preparation Example 5 - - -
  • each of the polyimide precursor compositions was spin coated on a glass substrate.
  • the glass substrate to which the polyimide precursor composition was applied was placed in an oven and heated at a rate of 5 ° C./min, and a curing process was performed by maintaining a 30 minute at 80 ° C. and 30 minutes at 400 ° C. to prepare a polyimide film.
  • Haze was measured by the method according to ASTM D1003 using Haze Meter HM-150.
  • Yellowness (YI) was measured by Color Eye 7000A.
  • Thickness direction retardation was measured using Axoscan.
  • the film was cut to a certain size to measure the thickness, and then the thickness was measured while calibrating in the direction of the C-plate to compensate for the phase difference value by measuring the phase difference with Axoscan.
  • the film is prepared in a size of 5 x 20 mm, and then the sample is loaded using the accessory.
  • the length of the film actually measured was made equal to 16 mm.
  • the film pulling force was set to 0.02N and the first temperature rising step was performed at a temperature rising rate of 5 ° C./min at a temperature range of 100 to 400 ° C., and then at a cooling rate of 4 ° C./min at a temperature range of 400 to 100 ° C. After the cooling (cooling) again in the temperature range of 100 °C to 5 °C / min at a temperature increase rate of the second step of the temperature rising process was measured by TMA (TA Q400).
  • the resin composition was applied by a spin coater on a 6 inch silicon wafer having a thickness of 525 um in which the [warping amount] of the wafer was measured in advance using a residual stress gauge (FLX2320 of Tencor). Heat treatment was performed at 250 ° C. for 30 min and 400 ° C. for 60 min under a nitrogen atmosphere to prepare a silicon wafer having a resin thickness of 10 ⁇ m after curing. At this time, the warpage amount of the wafer was represented by a Real Bow value measured by a residual stress meter, and the residual stress generated between the silicon wafer and the resin film was measured.
  • the polyimide precursor solution prepared in Example was spin-coated so as to have a final film thickness of 10 ⁇ m after curing on a glass substrate on which a-Si was deposited.
  • the glass substrate coated with the polyimide precursor solution was placed in an oven and heated at a rate of 4 ° C./min, and a curing process was performed by maintaining the mixture at 250 ° C. for 30 minutes and at 410 ° C. for 60 minutes.
  • the peel strength of the sample having a film width of 25.4 mm and a measuring length of 10 mm was measured at 10 mm / sec at 180 ° C. using a Peel strength tester (TA-XT Plus, Texture Analyser).
  • Siloxane compound content wt% 0 (Comparative Example 1) One 3 5 7 10 Thickness, um 10 10 10 10 10 10 10 YI 7.3 6.8 6.6 6.3 5.9 5.7 Rth, nm 420 410 392 365 335 298 Real bow, ⁇ m 35.9 33.4 32.1 30.9 29.7 27.5 Residual stress, MPa 35.9 33.4 32.1 31.0 29.8 27.8 Tg @ 450 °C 425 425 422 415 411 406 Peel strength gf / in 10 105 150 189 250 N.D.
  • N.D. means that no measurement was possible.
  • Siloxane compound content wt% 0 (Comparative Example 1) One 5 10 Thickness, um 10 10 10 10 YI 7.3 6.8 6.4 6.0 Rth, nm 420 408 360 301 Real bow, ⁇ m 35.9 33.7 30.2 28.4 Residual stress, MPa 35.9 34.1 30.2 28.6 Tg @ 450 °C 425 415 411 404 Peel strength gf / in 10 110 194 N.D.
  • Siloxane compound content wt% 0 (Comparative Example 1) One 5 10 Thickness, um 10 10 10 10 YI 7.3 6.5 6.2 5.9 Rth, nm 420 398 355 291 Real bow, ⁇ m 35.9 32.8 28.7 26.3 Residual stress, MPa 35.9 32.5 28.2 25.7 Tg @ 450 °C 425 413 408 398 Peel strength gf / in 10 150 230 N.D.
  • Siloxane compound content wt% 0 (Comparative Example 1) One 5 10 Thickness, um 10 10 10 10 YI 7.3 7.0 6.8 6.4 Rth, nm 420 415 380 320 Real bow, ⁇ m 35.9 35.0 31.0 30.5 Residual stress, MPa 35.9 34.9 31.0 30.2 Tg @ 450 °C 425 420 417 410 Peel strength gf / in 10 92 139 N.D.
  • Siloxane compound content wt% 0 (Comparative Example 2) One 5 10 Thickness, um 10 10 10 10 YI 14.4 13.5 13.2 12.5 Rth, nm 148 135 123 112 Real bow, ⁇ m 44.4 42.3 40.2 35.6 Residual stress, MPa 44.4 42.3 40.2 35.6 Tg @ 450 °C N.D. N.D 440 425 Peel strength gf / in 25 180 N.D N.D.
  • Siloxane compound content wt% 0 (Comparative Example 3) One 5 10 Thickness, um 10 10 10 10 YI 3.9 3.8 3.3 2.7 Rth, nm 71.4 70.5 68.6 65.3 Real bow, ⁇ m 45.0 44.3 41.5 37.8 Residual stress, MPa 45.0 44.3 41.5 37.8 Tg @ 450 °C 381 380 375 368 Peel strength gf / in 10 187 N.D N.D.
  • Siloxane compound content wt% 0 (Comparative Example 4) One 5 10 Thickness, um 10 10 10 10 YI 3.2 3.2 2.8 2.3 Rth, nm 21 20 18 15 Real bow, ⁇ m 50.4 49.1 46.5 42.2 Residual stress, MPa 50.4 49.1 46.5 42.2 Tg @ 450 °C 356 355 348 339 Peel strength gf / in 13 126 260 N.D.
  • Siloxane compound content wt% 0 (Comparative Example 5) One 5 10 Thickness, um 10 10 10 10 YI 2.7 2.7 2.1 2.0 Rth, nm 100 96 87 80 Real bow, ⁇ m 44.2 42.9 41.3 39.6 Residual stress, MPa 44.2 42.9 41.3 39.6 Tg @ 450 °C 363 360 357 349 Peel strength gf / in 53 230 N.D. N.D.
  • the polyimide film prepared by adding the siloxane compound of Examples 1 to 4 to the polyamic acid solution prepared in the production examples has a yellowness, haze value and thickness direction retardation. Not only the value but also the residual stress and the Real Bow value are lowered.
  • the Peel strength is much improved compared to the film of the comparative examples. This shows that the adhesion of the polyimide film was improved due to the addition of the siloxane compound.
  • Figure 9 is a photograph showing the change in the haze of the polyimide precursor composition (Example 7) according to the content of the siloxane compound 1
  • Figure 10 shows the haze after coating the polyimide precursor composition on a-Si substrate It is a photograph. 9 and 10, the polyimide precursor composition including the siloxane compound can be visually observed that haze occurs from 5 wt% or more in the varnish state.
  • the siloxane compound is added in more than 15wt% in Figure 9 it can be observed that the haze increases sharply. As such, solution haze was observed slightly but the film did not show haze. Haze of the film is shown in Table 10.
  • the present invention can provide a polyimide precursor composition having improved storage stability by adding a siloxane compound having a novel structure that does not react with the polyamic acid to the polyimide precursor composition.
  • a multifunctional polyimide film having improved optical isotropic characteristics and reduced residual stress with a substrate, while improving adhesion with an inorganic material substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 폴리이미드의 전구체인 폴리아믹산과의 반응성이 없는 신규한 구조의 실록산 화합물을 제공한다. 또한, 상기 실록산 화합물을 폴리이미드와 무기 소재 기판간에 접착 증진제로서 첨가함으로써, 저장안정성이 향상된 폴리이미드 전구체 조성물을 제공한다. 본 발명에 따르면, 광등방성 특성 향상 및 기판과의 잔류응력 저감 특성을 가지면서, 무기 소재 기판과의 접착력이 향상된 다기능성 폴리이미드 필름을 제공할 수 있다.

Description

실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
본 출원은 2018.06.07. 출원된 한국특허출원 10-2018-0065244호 및 2018.10.17. 출원된 한국특허출원 10-2018-0123538호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 구조를 갖는 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물에 관한 것이다.
최근 디스플레이 분야에서 제품의 경량화 및 소형화가 중요시 되고 있으며, 현재 사용되고 있는 유리 기판의 경우 무겁고 잘 깨지며 연속공정이 어렵다는 한계가 있기 때문에 유리 기판을 대체하여 가볍고 유연하며 연속공정이 가능한 장점을 갖는 플라스틱 기판을 핸드폰, 노트북, PDA 등에 적용하기 위한 연구가 활발히 진행되고 있다.
특히, 폴리이미드(PI) 수지는 합성이 용이하고 박막형 필름을 만들 수 있으며 경화를 위한 가교기가 필요 없는 장점을 가지고 있어, 최근에 전자 제품의 경량 및 정밀화 현상으로 LCD, PDP 등 반도체 재료에 집적화 소재로 많이 적용되고 있으며, PI를 가볍고 유연한 성질을 지니는 플렉시블 디스플레이 기판(flexible plastic display board)에 사용하려는 많은 연구가 진행되고 있다.
상기 폴리이미드 수지를 필름화하여 제조한 것이 폴리이미드(PI) 필름이며, 일반적으로 폴리이미드 필름은 방향족 다이안하이드라이드와 방향족 디아민 또는 방향족 디이소시아네이트를 용액 중합하여 폴리아믹산 유도체 용액을 제조한 후, 이를 실리콘 웨이퍼나 유리 등에 코팅하고 열처리에 의해 경화시키는 방법으로 제조된다.
상기 폴리이미드 수지가 회로 기판, 반도체 기판, 플렉시블 디스플레이 기판 등에 사용되기 위해서는 내열산화성, 내열특성, 내방사선성, 저온특성, 내약품성 등의 물성 이외에도, 실리콘 웨이퍼나 유리 또는 금속과의 접착력이 우수하여야 한다.
일반적으로 폴리이미드 필름과 유리 또는 금속 표면과의 접착력을 개선하기 위해서 실란 화합물과 같은 접착 증진제를 사용하는데, 상기 접착 증진제를 표면에 도포하여 접착력을 개선하는 경우, 접착 증진제의 도포로 인해 이물이 발생하여 기판이 매끄럽게 형성되지 않을 수 있고, 도포 후 코팅 공정을 한번 더 거쳐야 하여 경제성이 떨어질 수 있다.
그리고, 폴리아믹산에 접착 증진제를 직접 첨가하는 경우, 상기 도포로 인한 문제점은 최소화 할 수 있으나, 실란 화합물의 아미노기가 폴리아믹산의 카복실산과 염으로 석출되어 기판에 이물이 생성될 수 있어 바람직하지 못하다.
이에, 최종 제품의 접착력 부가를 위한 단계를 생략하여 생산성 및 공정의 효율성을 높일 수 있으며, 폴리이미드 수지의 외관 특성의 저하 없이 우수한 기계적 물성을 확보하면서도 표면 접착력을 현저하게 개선할 수 있는 폴리이미드 수지의 접착 증진제의 개발이 필요하다.
본 발명이 해결하고자 하는 과제는 폴리아믹산 구조와 반응성이 없는 신규한 구조의 실록산 화합물을 제공하는 것이다.
본 발명은 상기 실록산 화합물을 포함하는 폴리이미드 전구체 조성물을 제공하고자 하는 것이다.
또한, 본 발명의 다른 과제는 상기 폴리이미드 전구체 조성물로 제조된 폴리이미드 필름을 제공하는 것이다.
또한, 본 발명은 상기 폴리이미드 필름을 포함하는 디스플레이 기판을 제공하고하 하는 것이다.
본 발명의 과제를 해결하기 위해,하기 화학식 1 또는 화학식 2로 표시되는 실록산 화합물을 제공한다.
[화학식 1]
Figure PCTKR2019000877-appb-img-000001
[화학식 2]
Figure PCTKR2019000877-appb-img-000002
상기 화학식 1 및 화학식 2에 있어서,
Q 2, Q 3 및 Q 4는 각각 독립적으로 수소원자, 탄소수 1 내지 5의 알킬기 및 탄소수 1 내지 5의 알콕시기에서 선택되는 것이고,
R 1, R 2, R 11 및 R 12는 각각 독립적으로 단일결합 또는 탄소수 1 내지 20의 유기기이며,
R 3 내지 R 10은 각각 독립적으로 탄소수 1 내지 3의 지방족기 또는 탄소수 6 내지 12의 방향족기이고,
m1 및 m2는 각각 독립적으로 0 이상의 정수이다.
일 실시예에 따르면, 상기 m1 또는 m2가 1 이상의 정수이고, 상기 화학식 1, 화학식 2 또는 화학식 3의 분자량이 10000 이하일 수 있다.
일 실시예에 따르면, 상기 화학식 1 또는 화학식 2가 각각 하기 화학식 1-1 또는 화학식 2-1로 표시되는 것일 수 있다.
[화학식 1-1]
Figure PCTKR2019000877-appb-img-000003
[화학식 2-1]
Figure PCTKR2019000877-appb-img-000004
일 실시예에 따르면, R 1, R 2, R 11 및 R 12는 각각 독립적으로 단일결합 또는 탄소수 1 내지 10의 알킬렌기일 수 있다.
일 실시예에 따르면, 상기 R 3 내지 R 10 중 어느 하나 이상이 탄소수 6 내지 12의 방향족기를 포함하는 것일 수 있다.
본 발명의 일 태양에 따르면, 하기 화학식 a의 화합물과 하기 화학식 b-1 또는 b-2의 화합물을 반응시켜 상기 화학식 1 또는 화학식 2의 화합물을 제조하는 방법이 제공된다.
[화학식 a]
Figure PCTKR2019000877-appb-img-000005
[화학식 b-1]
Figure PCTKR2019000877-appb-img-000006
[화학식 b-2]
Figure PCTKR2019000877-appb-img-000007
상기 화학식 a, 화학식 b-1 및 화학식 b-2에 있어서,
X 1 및 X 2는 각각 독립적으로 안하이드라이드기, 아민기, 카르복실기 및 에스터기에서 선택되는 것이고,
R 1, R 2, R 11 및 R 12는 각각 독립적으로 단일결합 또는 탄소수 1 내지 20의 유기기이며
R 3 내지 R 10은 각각 독립적으로 탄소수 1 내지 3의 지방족기 또는 탄소수 6 내지 12의 방향족기이고,
m1 및 m2는 각각 독립적으로 0 이상의 정수이다.
일 실시예에 따르면, 상기 화학식 b-1 및 b-2 는 하기 화학식 b로 표시되는 것일 수 있다.
[화학식 b]
Figure PCTKR2019000877-appb-img-000008
또한, 상기 화학식 b에 있어서,
Q 1, Q 2, Q 3 및 Q 4는 화학식 b-1 및 b-2에 대해 정의한 바와 같다.
본 발명의 다른 태양에 따르면,
전술한 실록산 화합물 및 폴리아믹산을 포함하는 폴리이미드 전구체 조성물을 제공한다.
일 실시예에 따르면, 상기 폴리이미드 전구체 조성물은 상기 실록산 화합물을 상기 폴리이미드 전구체 조성물 총중량을 기준으로 1 내지 15 중량%로 포함할 수 있다.
또한, 본 발명은, 상기 폴리이미드 전구체 조성물로부터 제조된 폴리이미드 필름을 제공한다.
일 실시예에 따르면, 상기 폴리이미드 필름은 무기소재 기판과의 잔류응력이 35MPa 이하일 수 있다.
일 실시예에 따르면, 상기 폴리이미드 필름은 Real Bow 값이 35㎛ 이하일 수 있다.
일 실시예에 따르면, 상기 폴리이미드 필름의 두께방향 위상차가 420 nm 이하일 수 있다.
본 발명은 또한, 상기 폴리이미드 필름을 포함하는 디스플레이 기판을 제공한다.
본 발명은 신규한 실록산 화합물을 제공하며, 이를 폴리아믹산을 포함하는 폴리이미드 전구체 조성물에 단분자 형태로 첨가함으로써, 저장안정성이 향상된 폴리이미드 전구체 조성물을 제공할 수 있다. 또한, 이로부터 광등방성 특성 향상 및 기판과의 잔류응력 저감특성을 가지면서, 무기 소재 기판과의 접착력이 향상된 다기능성 폴리이미드 필름을 제공할 수 있다.
도 1은 실시예 1에 따라 합성된 실록산 화합물의 1H-NMR 스펙트럼이다.
도 2는 실시예 1에 따라 합성된 실록산 화합물의 COSY NMR (Correlation Spectroscopy Nuclear Magnetic Resonance) 스펙트럼이다.
도 3은 실시예 2에 따라 합성된 실록산 화합물의 1H-NMR 스펙트럼이다.
도 4는 실시예 2에 따라 합성된 실록산 화합물의 COSY NMR 스펙트럼이다.
도 5는 실시예 3에 따라 합성된 실록산 화합물의 1H-NMR 스펙트럼이다.
도 6은 실시예 3에 따라 합성된 실록산 화합물의 COSY NMR 스펙트럼이다.
도 7은 실시예 4에 따라 합성된 실록산 화합물의 1H-NMR 스펙트럼이다.
도 8은 실시예 4에 따라 합성된 실록산 화합물의 COSY NMR 스펙트럼이다.
도 9는 실록산 화합물 첨가량에 따른 폴리이미드 전구체 조성물의 헤이즈 현상을 관찰한 사진이다.
도 10은 a-Si 기판 상에 코팅된 폴리이미드 전구체 조성물의 실록산 화합물 첨가량에 따른 헤이즈 현상을 관찰한 사진이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 명세서에서 모든 화합물 또는 유기기는 특별한 언급이 없는 한 치환되거나 비치환된 것일 수 있다. 여기서, '치환된'이란 화합물 또는 유기기에 포함된 적어도 하나의 수소가 할로겐 원자, 탄소수 1 내지 10의 알킬기, 할로겐화알킬기, 탄소수 3 내지 30의 사이클로알킬기, 탄소수 6 내지 30의 아릴기, 하이드록시기, 탄소수 1 내지 10의 알콕시기, 카르복실산기, 알데히드기, 에폭시기, 시아노기, 니트로기, 아미노기, 술폰산기 및 이들의 유도체로 이루어진 군에서 선택되는 치환기로 대체된 것을 의미한다.
플랙서블 디스플레이의 공정에서 가장 중요한 것은 고온공정이 가능한 유리기판을 대체하는 유기소재의 기판재료이다. 유기소재의 기판재료로는 대표적으로 유기소재 중에 내열성이 우수한 폴리이미드가 널리 사용되고 있다.
하지만, 유리기판에서 폴리이미드 기판으로 대체되면서 패널(panel) 공정 후 소자특성이 달라지는 경향이 있으며, 이는 유기소재와 무기소재의 수분투과성 및 전기적 특성 차이로부터 발생할 수 있다.
이러한 현상을 개선하기 위해서 기판 제작시 다층으로 제작하거나 유기층과 유기층 사이에 무기층을 형성시켜 제작하기도 한다. 즉, 캐리어(carrier) 기판 상에 폴리이미드를 코팅 및 경화한 다음 무기층을 증착시키고 그 위에 다시 폴리이미드를 코팅 및 경화하는 방식이다.
그러나, 무기층과 폴리이미드층과 같은 이종층 간의 접착력은 일반적으로 낮은 경향을 나타내며, 상기한 이중경화 방식에 의한 기판 제조방식은 유기층과 무기층 간의 접착력 저하로 인해 공정상 들뜸 현상이 발생할 수 있다.
따라서, 후속 공정을 진행하기 위해서는 필수적으로 이종층 간의 접착력을 개선해야 만 한다. 이러한, 이종층 간의 접착력 개선을 위해 종래에는 이종층 간에 가교 역할을 할 수 있는 첨가제를 도입하는 방법을 사용하여왔다. 하지만, 반응성 첨가제를 도입하는 경우 폴리아믹산과의 부반응이 발생할 수 있으며, 이로 인해 용액의 점도가 변화가 되어 폴리아믹산 용액의 저장안정성이 떨어지는 현상이 발생할 수 있다.
이러한 종래의 문제를 해결하기 위해, 본 발명은,
하기 화학식 1 또는 화학식 2로 표시되는 실록산 화합물을 제공한다.
[화학식 1]
Figure PCTKR2019000877-appb-img-000009
[화학식 2]
Figure PCTKR2019000877-appb-img-000010
상기 화학식 1 및 화학식 2에 있어서,
Q 2, Q 3 및 Q 4는 각각 독립적으로 수소원자, 탄소수 1 내지 5의 알킬기 및 탄소수 1 내지 5의 알콕시기에서 선택되는 것이고
R 1, R 2, R 11 및 R 12는 각각 독립적으로 단일결합 또는 탄소수 1 내지 20의 유기기이며, 예를 들면, 단일결합 또는 탄소수 1 내지 20의 알킬렌기일 수 있으며, 바람직하게는 단일결합 또는 탄소수 1 내지 10의 알킬렌기, 보다 바람직하게는 단일결합 또는 탄소수 1 내지 5의 알킬렌기일 수 있고,
R 3 내지 R 10은 각각 독립적으로 탄소수 1 내지 3의 지방족기 또는 탄소수 6 내지 12의 방향족기이고, 바람직하게는 상기 R 3 내지 R 10 중 어느 하나 이상이 탄소수 6 내지 12의 방향족기 일 수 있다.
m1 및 m2는 0 이상의 정수이며, 바람직하게는 1 이상의 정수일 수 있다.
일 실시예에 따르면, 상기 화학식 1 또는 화학식 2의 실록산 화합물의 분자량은 10000 이하 일 수 있으며, 바람직하게는 8000 이하, 보다 바람직하게는 6000 이하일 수 있고, 예를 들면, 1000 내지 10000 일 수 있다.
본 발명에 따른 상기 상기 화학식 1 또는 화학식 2와 같은 구조의 실록산 화합물은, 폴리이미드 전구체인 폴리아믹산과의 반응성이 없어, 상온 저장안정성이 향상된 폴리이미드 전구체 조성물을 제공할 수 있다.
본 발명에 따른 실록산 화합물은 하기 화학식 a의 화합물과 하기 화학식 b-1및 b-2의 화합물을 반응시켜 제조될 수 있다.
[화학식 a]
Figure PCTKR2019000877-appb-img-000011
[화학식 b-1]
Figure PCTKR2019000877-appb-img-000012
[화학식 b-2]
Figure PCTKR2019000877-appb-img-000013
상기 화학식 b-1 및 b-2의 화합물은 동일할 수 있으며, 예를 들면 하기 화학식 b의 화합물 일 수 있다.
[화학식 b]
Figure PCTKR2019000877-appb-img-000014
상기 화학식 a, b-1, b-2 및 b에 있어서,
X 1 및 X 2는 각각 독립적으로 안하이드라이드기, 아민기, 카르복실기 및 에스터기에서 선택되는 것이고,
R 1 및 R 2는 각각 독립적으로 단일결합 또는 탄소수 1 내지 20의 유기기이며, 예를 들면, 단일결합 또는 탄소수 1 내지 20의 알킬렌기일 수 있으며, 바람직하게는 단일결합 또는 탄소수 1 내지 10의 유기기, 보다 바람직하게는 단일결합 또는 탄소수 1 내지 5의 유기기일 수 있고,
R 3 내지 R 10은 각각 독립적으로 탄소수 1 내지 3의 지방족기 또는 탄소수 6 내지 12의 방향족기이고, 예를 들면 상기 R 3 내지 R 10 중 어느 하나는 탄소수 6 내지 12의 방향족기일 수 있고,
m1 및 m2는 각각 독립적으로 0 이상의 정수이며. 바람직하게는 1 이상의 정수이고,
Q 1은 아민기, 이소시아네이트기 및 안하이드라이드기 중에서 선택되는 것이고, 바람직하게는 아민기 및 안하이드라이드기 중에서 선택되는 것일 수 있다.
Q 2, Q 3 및 Q 4는 각각 독립적으로 수소원자, 탄소수 1 내지 5의 알킬기 및 탄소수 1 내지 5의 알콕시기에서 선택되는 것이다.
일 실시예에 따르면, 화학식 1의 화합물은 하기 화학식 1-1로 표시되는 화합물일 수 있고, 화학식 2의 화합물은 화학식 2-1로 표시되는 화합물일 수 있다.
[화학식 1-1]
Figure PCTKR2019000877-appb-img-000015
[화학식 2-1]
Figure PCTKR2019000877-appb-img-000016
본 발명은 상기 실록산 화합물을 포함하는 폴리이미드 전구체 조성물을 제공한다.
본 발명은 폴리이미드 전구체인 폴리아믹산과 반응하지 않는 실록산 화합물이 첨가된 폴리이미드 전구체 조성물을 제공함으로써, 상온에서의 저장안정성이 향상된 폴리이미드 전구체 조성물을 제공할 수 있다. 예를 들면, 상기 폴리이미드 전구체 조성물은 상온에서 5일간 방치할 경우 점도변화가 10% 이하일 수 있다. 즉, 폴리아믹산과 상기 실록산 화합물간의 부반응이 발생하지 않으므로, 조성물의 점도변화가 거의 일어나지 않으며, 이로 인해 용액의 저장안정성이 향상될 수 있다.
또한, 본 발명에 따른 실록산 화합물을 폴리이미드 필름의 접착 증진제로 사용함으로써, 폴리이미드 필름과 무기소재 기판과의 접착력을 향상시킬 수 있으며, 이로부터 패널 공정의 후속공정에서 무기소재 기판과 폴리이미드 필름과의 접착력 감소에 의한 들뜸현상을 저하시킬 수 있다. 또한, 본 발명에 따른 실록산 화합물은 폴리이미드 필름의 두께 방향 위상차를 감소시켜 광등방성을 나타낼 수 있으며, 무기소재 기판에 대한 잔류응력을 감소시킬 수 있다.
일 실시예에 따르면, 상기 실록산 화합물은 상기 폴리이미드 수지조성물에 조성물 총 중량을 기준으로 0.5 내지 15 중량%로 첨가될 수 있으며, 바람직하게는 1 내지 10 중량%, 보다 바람직하게는 1 내지 5 중량%로 첨가될 수 있다. 상기 실록산 화합물을 0.5 중량% 미만으로 첨가하는 경우 접착력이 향상 효과가 나타나지 않을 수 있으며, 15 중량% 보다 초과하여 첨가하는 경우에는 헤이즈(Haze)가 증가할 수 있다.
일 실시예에 따르면, 상기 폴리이미드 전구체 조성물로부터 제조된 폴리이미드필름은 무기소재 기판과의 잔류응력이 35MPa 이하일 수 있고, 글라스 스트레스를 나타내는 Real Bow 값이 35㎛ 이하일 수 있어, 코팅-경화 후 기판이 휘어지는 현상이 감소하여 평평한 폴리이미드 필름을 제공할 수 있다.
일 실시예에 따르면, 상기 폴리이미드 필름의 두께방향 위상차가 420 nm 이하일 수 있다.
상기 폴리이미드 전구체는 하나 이상의 테트라카르복실산 이무수물 및 디아민을 반응시켜 제조된 폴리아믹산을 포함하는 것일 수 있다.
본 발명에 따른 폴리아믹산 제조에 사용될 수 있는 테트라카르복실산 이무수물은 분자내 방향족, 지환족, 또는 지방족으로부터 선택되는 4가 유기기, 또는 이들의 조합기로서, 지방족, 지환족 또는 방향족이 단일결합이나 가교구조를 통해 서로 연결된 4가 유기기, 바람직하게는 일환식 또는 다환식 방향족, 일환식 또는 다환식 지환족, 또는 이들 중 둘 이상의 조합으로부터 선택되는 4가의 유기기를 분자구조내에 포함하는 테트라카르복실산 이무수물로부터 선택되는 하나 이상일 수 있다.
예를 들면, 상기 테트라카르복실산 이무수물은 하기 화학식 4a 내지 4g로 이루어진 군에서 선택되는 4가 유기기를 포함할 수 있다.
[화학식 4a]
Figure PCTKR2019000877-appb-img-000017
[화학식 4b]
Figure PCTKR2019000877-appb-img-000018
[화학식 4c]
Figure PCTKR2019000877-appb-img-000019
[화학식 4d]
Figure PCTKR2019000877-appb-img-000020
[화학식 4e]
Figure PCTKR2019000877-appb-img-000021
[화학식 4f]
Figure PCTKR2019000877-appb-img-000022
[화학식 4g]
Figure PCTKR2019000877-appb-img-000023
상기 화학식 4a 내지 4g에서,
R 31 내지 R 42는 각각 독립적으로 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 또는 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등)일 수 있고,
a 1은 0 내지 2의 정수, b 1은 0 내지 4의 정수, c 1은 0 내지 8의 정수, d 1 및 e 1은 각각 독립적으로 0 내지 3의 정수, f 1 및 g 1은 각각 독립적으로 0 내지 4의 정수, h 1 및 j 1은 각각 독립적으로 0 내지 3의 정수, i 1은 0 내지 4의 정수, k 1 및 l 1은 각각 독립적으로 0 내지 4의 정수이며,
A 1, A 2 및 A 3는 각각 독립적으로 단일결합, -O-, -CR 46R 47-, -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO 2-, 페닐렌기 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있으며, 이때 상기 R 46 및 R 47은 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 및 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 플루오로에틸기, 트리플루오로메틸기 등)로 이루어진 군으로부터 선택되는 것일 수 있다.
또는, 상기 테트라카르복실산 이무수물은 하기 화학식 5a 내지 5s 에서 선택되는 4가 유기기를 포함하는 것일 수 있다.
Figure PCTKR2019000877-appb-img-000024
또, 화학식 5a 내지 5s의 4가 유기기는 4가 유기기 내에 존재하는 1 이상의 수소 원자가 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기 등) 또는 탄소수 1 내지 10의 플루오로알킬기(예를 들면, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등), 히드록실기, 술폰산기 및 카르복실산기로 이루어진 군에서 선택되는 치환기로 치환될 수도 있다.
본 발명에 따른 폴리아믹산 제조에 사용될 수 있는 디아민은 분자내 방향족, 지환족, 또는 지방족의 2가 유기기나, 또는 이들의 조합기로서, 지방족, 지환족 또는 방향족이 가교구조를 통해 서로 연결된 2가 유기기, 바람직하게는 일환식 또는 다환식 방향족, 일환식 또는 다환식 지환족, 또는 이들의 조합으로부터 선택되는 구조를 포함하는 2가의 유기기를 분자구조내에 포함하는 디아민로부터 선택되는 하나 이상일 수 있다.
예를 들면, 본 발명에 따른 디아민은 하기 화학식 6a 내지 6d로 이루어진 군에서 선택되는 2가의 유기기를 포함하는 것일 수 있다.
[화학식6a]
Figure PCTKR2019000877-appb-img-000025
[화학식6b]
Figure PCTKR2019000877-appb-img-000026
상기 화학식 6b에서, L 1 은 단일결합, -O-, -CO-, -S-, -SO 2-, -C(CH 3) 2-, -C(CF 3) 2-, -CONH-, -COO-, -(CH 2)n 1-, -O(CH 2)n 2O-, -OCH 2-C(CH 3) 2-CH 2O- 또는 -COO(CH 2)n 3OCO-이고, 상기 n 1, n 2 및 n 3는 각각 독립적으로 1 내지 10의 정수이다.
[화학식 6c]
Figure PCTKR2019000877-appb-img-000027
상기 화학식 6c에서, L 2 및 L 3는 서로 같거나 다를 수 있으며, 각각 단일결합, -O-, -CO-, -S-, -SO 2-, -C(CH 3) 2-, -C(CF 3) 2-, -CONH-, -COO-, -(CH 2)n 1-, -O(CH 2)n 2O-, -OCH 2-C(CH 3) 2-CH 2O- 또는 -COO(CH 2)n 3OCO-이고, 상기 n 1, n 2 및 n 3는 각각 독립적으로 1 내지 10의 정수이다.
[화학식 6d]
Figure PCTKR2019000877-appb-img-000028
상기 화학식 6d에서, L 4, L 5 및 L 6는 서로 같거나 다를 수 있으며, 각각 단일결합, -O-, -CO-, -S-, -SO 2-, -C(CH 3) 2-, -C(CF 3) 2-, -CONH-, -COO-, -(CH 2)n 1-, -O(CH 2)n 2O-, -OCH 2-C(CH 3) 2-CH 2O- 또는 -COO(CH 2)n 3OCO-이고, 상기 n 1, n 2 및 n 3는 각각 독립적으로 1 내지 10의 정수이다.
또는, 상기 디아민은 하기 화학식 7a 내지 7r로 이루어진 군으로부터 선택되는 2가 유기기를 포함할 수 있다.
Figure PCTKR2019000877-appb-img-000029
상기 화학식 7q 및 7r에 있어서, A는 단일결합, -O-, -CO-, -S-, -SO 2-, -C(CH 3) 2-, -C(CF 3) 2-, -CONH-, -COO-, -(CH 2)n 1-, -O(CH 2)n 2O-, -OCH 2-C(CH 3) 2-CH 2O- 또는 -COO(CH 2)n 3OCO-이고, v 및 z는 각각 독립적으로 0 또는 1 이다.
또한, 화학식 7a 내지 7r의 4가 유기기 내에 존재하는 1이상의 수소원자는 -F, -Cl, -Br 및 -I로 이루어진 군에서 선택되는 할로겐 원자, 하이드록실기(-OH), 티올기(-SH), 니트로기(-NO 2), 시아노기, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 4의 할로게노알콕시, 탄소수 1 내지 10의 할로게노알킬, 탄소수 6 내지 20의 아릴기에서 선택되는 치환기로 치환될 수 있다.
일 실시예에 따르면, 상기 디아민은 하기 화학식 8의 2가 유기기를 분자구조 내에 포함하는 디아민을 반드시 하나 이상 포함할 수 있다.
[화학식 8]
Figure PCTKR2019000877-appb-img-000030
상기 화학식 8에 있어서, R a 및 R b는 각각 독립적으로 수소원자, -F, -Cl, -Br 및 -I로 이루어진 군에서 선택되는 할로겐 원자, 하이드록실기(-OH), 티올기(-SH), 니트로기(-NO 2), 시아노기, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 4의 할로게노알콕시, 탄소수 1 내지 10의 할로게노알킬, 탄소수 6 내지 20의 아릴기에서 선택되는 치환체이고, 바람직하게는, 할로겐원자, 할로게노알킬기, 알킬기, 아릴기 및 시아노기에서 선택되는 치환기 일 수 있다. 예를 들면, 상기 할로겐원자는 플루오로(-F)일 수 있으며, 할로게노알킬기는 플루오로 원자를 포함하는 탄소수 1 내지 10의 플루오로알킬기로서, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등에서 선택되는 것일 수 있으며, 상기 알킬기는 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기에서 선택되는 것일 수 있고, 상기 아릴기는 페닐기, 나프탈레닐기에서 선택되는 것 일 수 있으며, 보다 바람직하게는 플루오로원자 및 플로오로알킬기 등의 플루오로 원자를 포함하는 치환기일 수 있다.
Q는 단일결합, -O-, -CR'R"-, -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO 2-, 페닐렌기 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있으며, 이때 상기 R' 및 R"는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기 및 탄소수 1 내지 10의 플루오로알킬기로 이루어진 군으로부터 선택되는 것이다.
이때, 본 발명의 '플루오로계 치환기'란 '플루오로 원자 치환기' 뿐만 아니라 '플루오로 원자를 함유하는 치환기'를 모두 의미하는 것이다.
일 실시예에 따르면, 상기 테트라카르복실산 이무수물은, 하기 화학식 9의 구조를 포함하는 테트라카르복실산 이무수물을 포함할 수 있으며, 상기 화학식 9의 테트라카르복실산 이무수물을 전체 테트라카르복실산 이무수물 중에 10 몰% 이상, 바람직하게는 30몰% 이상 포함할 수 있다.
[화학식 9]
Figure PCTKR2019000877-appb-img-000031
본 발명의 일 실시예에 따르면, 테트라카르복실산 이무수물과 디아민은, 1:1.1~1.1:1 몰비로 반응될 수 있으며, 반응성 향상 및 공정성 향상을 위해, 테트라카르복실산 이무수물의 총 함량이 디아민에 비해 과량으로 반응되거나, 또는 디아민의 함량이 테트라카르복실산 이무수물의 총 함량에 비해 과량으로 반응되는 것이 바람직하다.
본 발명의 일 실시예에 따르면, 테트라카르복실산 이무수물의 총 함량과 디아민의 함량의 몰비는 1:0.98 내지 0.98:1, 바람직하게는 1:0.99 내지 0.99:1으로 반응되는 것이 바람직할 수 있다.
폴리아믹산 중합반응시 사용가능한 유기용매로는, 감마-부티로락톤, 1,3-디메틸-2-이미다졸리디논, 메틸에틸케톤, 시클로헥사논, 시클로펜타논, 4-하이드록시-4-메틸-2-펜타논 등의 케톤류; 톨루엔, 크실렌, 테트라메틸벤젠 등의 방향족 탄화수소류; 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 디프로필렌글리콜디에틸에테르, 트리에틸렌글리콜모노에틸에테르 등의 글리콜에테르류(셀로솔브); 아세트산에틸, 아세트산부틸, 에틸렌글리콜모노에틸에테르아세테이트, 에틸렌글리콜모노부틸에테르아세테이트, 디에틸렌글리콜모노에틸에테르아세테이트, 디프로필렌글리콜모노메틸에테르아세테이트, 에탄올, 프로판올, 에틸렌글리콜, 프로필렌글리콜, 카르비톨, 디메틸아세트아미드(DMAc), N,N-디에틸아세트아미드, 디메틸포름아미드(DMF), 디에틸포름아미드(DEF), N-메틸피롤리돈(NMP), N-에틸피롤리돈(NEP), N,N-디메틸메톡시아세트아미드, 디메틸술폭사이드, 피리딘, 디메틸술폰, 헥사메틸포스포르아미드, 테트라메틸우레아, N-메틸카프로락탐, 테트라히드로퓨란, m-디옥산, P-디옥산, 1,2-디메톡시에탄, 비스(2-메톡시에틸)에테르, 1,2-비스(2-메톡시에톡시)에탄, 비스[2-(2-메톡시에톡시)]에테르, 에크아마이드(Equamide)M100, 에크아마이드(Equamide)B100 등일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
예를 들면, 상기 중합반응에 사용될 수 있는 유기용매로는 25℃에서의 분배계수(LogP 값)가 양수이며 비점이 300℃ 이하인 것일 수 있으며, 보다 구체적으로 분배계수 LogP 값은 0.01 내지 3, 또는 0.01 내지 2, 또는 0.1 내지 2 일 수 있다.
상기 분배계수는 ACD/Labs 사의 ACD/Percepta platform의 ACD/LogP module을 사용하여 계산될 수 있으며, ACD/LogP module은 분자의 2D 구조를 이용하여 QSPR (Quantitative Structure-Property Relationship) 방법론 기반의 알고리즘을 이용한다.
상기 분배계수(Log P) 양수인 용매가 아마이드계 용매일 수 있으며, 상기 아마이드계 용매는, 디메틸프로판아마이드(dimethylpropanamide, DMPA), 디에틸프로판아마이드(diethylpropanamide, DEPA), N,N-디에틸아세트아마이드(N,N-diethylacetamide, DEAc), N,N-디에틸포름아마이드(N,N-diethylformamide, DEF), N-에틸피롤리돈(N-ethylpyrrolidone, NEP)에서 선택되는 하나 이상일 수 있다.
분배계수가 양수인 유기용매는 플렉서블(flexible)한 폴리이미드 반복구조와 다른 폴리이미드 구조의 극성 차이로 인한 상분리가 야기하는 백탁현상을 감소시킬 수 있다. 종래에는 상분리를 해결하기 위해 2종의 유기용매를 사용하였으나, 분배계수 양수인 유기용매를 하나만 사용하는 것만으로도 백탁현상을 감소시킬 수 있어, 보다 투명한 폴리이미드 필름을 제조할 수 있다.
상기한 문제를 해결하기 위해 극성 용매와 비극성 용매를 혼합하여 사용하는 방법도 있으나, 극성 용매의 경우 휘발성이 높은 경향이 있다. 따라서 제조공정상에서 미리 휘발되는 등의 문제가 발생할 수 있으며, 이 때문에 공정의 재현성이 저하되는 등의 문제가 발생할 수 있을 뿐만 아니라, 상분리 문제를 완전히 개선하지 못할 수 있어, 제조된 폴리이미드 필름의 헤이즈가 높아져 투명도가 저하될 수 있다. 보다 구체적으로는 용매의 분자가 양쪽친매성을 갖는 구조를 포함하는 용매를 사용함으로써, 극성 용매를 사용함에 따른 공정상의 문제를 해결할 수 있을 뿐만 아니라, 양쪽친매성을 갖는 분자구조로 인해 1종류의 용매만을 사용하더라도 폴리이미드를 고르게 분포시킬 수 있어 상분리로 인한 문제를 해결할 수 있으며, 이로 인해 헤이즈 특성이 현저히 개선된 폴리이미드를 제공할 수 있다.
용매의 분배계수(Log P) 값이 양수라는 것은 용매의 극성이 소수성임을 의미하는데, 본 발명자들의 연구에 따르면 분배계수 값이 양수인 특정 용매를 사용하여 폴리이미드 전구체 조성물을 제조하면, 용액의 말림특성이 개선되는 것을 알 수 있었다. 또한, 본 발명은 상기와 같이 Log P가 양수를 갖는 용매를 사용함으로써, 레벨링제와 같은 소재의 표면장력 및 도막의 평활성을 조절하는 첨가제를 사용하지 않고도 용액의 액 말림 현상을 제어할 수 있으며, 이는 첨가제 등의 부가적인 첨가제를 사용하지 않으므로 최종 생성물에 저분자 물질이 함유되는 등의 품질 및 공정상의 문제를 제거할 수 있을 뿐만 아니라 보다 효율적으로 균일한 특성을 갖는 폴리이미드 필름을 형성할 수 있는 효과가 있다.
예를 들면, 폴리이미드 전구체 조성물을 유리기판에 코팅하는 공정에 있어서, 경화시 또는 가습조건에서 코팅액의 방치시 코팅층의 수축으로 인한 용액의 말림현상이 발생할 수 있다. 이러한 코팅 용액의 액말림 현상은 필름의 두께의 편차를 초래할 수 있어, 이에 의한 필름의 내굴곡성의 부족으로 필름이 끊어지거나 컷팅시 모서리가 부스러지는 현상이 나타나 공정상의 작업성이 나쁘고 수율이 저하되는 문제가 발생할 수 있다.
또한, 기판상에 도포된 폴리이미드 전구체 조성물에 극성을 갖는 미세 이물질이 유입되는 경우, Log P가 음수인 극성의 용매를 포함하는 폴리이미드 전구체 조성물에서는 상기 이물질이 갖는 극성에 의해 이물질의 위치를 기준으로 산발적인 코팅의 균열 또는 두께변화가 일어날 수 있으나, Log P가 양수인 소수성의 용매를 사용하는 경우에는 극성을 갖는 미세 이물질이 유입되는 경우에도 코팅의 균열로 인한 두께변화 등의 발생이 감소 또는 억제될 수 있다.
구체적으로, Log P가 양수인 용매를 포함하는 폴리이미드 전구체 조성물은, 하기 식 1로 정의되는 말림율(dewetting ratio)이 0% 내지 0.1% 이하일 수 있다.
[식 1]
말림율(%) = [(A-B)/A]Х100
상기 식 1에 있어서,
A: 기판 (100mmХ100mm) 상에 폴리이미드 전구체 조성물이 완전히 코팅된 상태에서의 면적이고,
B: 폴리이미드 전구체 조성물 또는 PI 필름이 코팅된 기판의 가장자리 끝단에서부터 말림 현상이 발생한 후의 면적이다.
이러한 폴리이미드 전구체 조성물 및 필름의 액말림(dewetting) 현상은 폴리이미드 전구체 조성물 용액을 코팅한 후 30분 이내에 발생될 수 있으며, 특히, 가장자리부터 말려 들어가기 시작함으로써 가장자리의 두께를 두껍게 만들 수 있다.
본 발명에 따른 폴리이미드 전구체 조성물을 기판에 코팅한 후 10분 이상, 예를 들면 10분 이상, 예를 들면 40분 이상의 시간 동안 습도조건에서 방치한 후의 상기 코팅된 수지 조성물 용액의 말림율이 0.1% 이하일 수 있으며, 예를 들면, 20 ~ 30℃의 온도에서, 40% 이상의 습도조건, 보다 구체적으로는 40% 내지 80% 범위의 습도조건, 즉, 40%, 50%, 60%, 70%, 80% 각각의 습도 조건에서, 예를 들면, 50%의 습도조건에서 10 내지 50분간 방치된 이후에도 0.1% 이하의 매우 작은 말림율을 나타낼 수 있으며, 바람직하게는 0.05%, 보다 바람직하게는 거의 0%에 가까운 말림율을 나타낼 수 있다.
상기와 같은 말림율은 경화 이후에도 유지되는 것이며, 예를 들면, 폴리이미드 전구체 조성물을 기판에 코팅한 후 10분 이상, 예를 들면 20 ~ 30℃의 온도에서, 40% 이상의 습도조건, 보다 구체적으로는 40% ~ 80% 범위의 습도조건, 즉, 40%, 50%, 60%, 70%, 80% 각각의 습도 조건에서, 예를 들면 50%의 습도조건에서 10 내지 50분간 방치한 후 경화된 폴리이미드 필름의 말림율이 0.1% 이하일 수 있다. 즉, 열처리에 의한 경화 공정에서도 말림이 거의 일어나지 않거나 없을 수 있으며, 구체적으로는, 0.05%, 보다 바람직하게는 거의 0%에 가까운 말림율을 나타낼 수 있다.
본 발명에 따른 폴리이미드 전구체 조성물은 이러한 액말림 현상을 해결함으로써, 보다 균일한 특성을 갖는 폴리이미드 필름을 수득할 수 있어 제조공정의 수율을 보다 향상시킬 수 있다.
테트라카르복실산 이무수물을 디아민과 반응시키는 방법은 용액 중합 등 통상의 폴리이미드 전구체 중합 제조방법에 따라 실시할 수 있으며. 구체적으로는, 디아민을 유기 용매 중에 용해시킨 후, 결과로 수득된 혼합용액에 테트라카르복실산 이무수물을 첨가하여 중합반응시킴으로써 제조될 수 있다.
상기 중합반응은 비활성 기체 또는 질소 기류 하에 실시될 수 있으며, 무수조건에서 실행될 수 있다.
또한, 상기 중합반응시 반응온도는 -20 내지 80℃, 바람직하게는 0 내지 80℃에서 실시될 수 있다. 반응온도가 너무 높을 경우 반응성이 높아져 분자량이 커질 수 있으며, 전구체 조성물의 점도가 상승함으로써 공정상으로 불리할 수 있다.
상기한 제조방법에 따라 제조된 폴리이미드 전구체 조성물은 필름 형성 공정시의 도포성 등의 공정성을 고려하여 상기 조성물이 적절한 점도를 갖도록 하는 양으로 고형분을 포함하는 것이 바람직하다. 일 실시예에 따르면, 전체 폴리이미드 전구체의 함량이 8 내지 25 중량%가 되도록 함량을 조절할 수 있으며, 바람직하게는 10 내지 25 중량%, 보다 바람직하게는 10 내지 20 중량% 이하로 조절할 수 있다.
또는, 상기 폴리이미드 전구체 조성물이 3,000cP 이상, 혹은 4,000cP 이상의 점도를 갖도록 조절하는 것일 수 있으며, 상기 폴리이미드 전구체 조성물의 점도는 10,000cP 이하, 바람직하게는 9,000cP 이하 보다 바람직하게는 8,000cP 이하의 점도를 갖도록 조절하는 것이 바람직하다. 폴리이미드 전구체 조성물의 점도가 10,000cP를 초과할 경우 폴리이미드 필름 가공시 탈포의 효율성이 저하되므로, 공정상의 효율뿐만 아니라, 제조된 필름은 기포 발생으로 표면조도가 좋지 않아 전기적, 광학적, 기계적 특성이 저하될 수 있다.
또, 본 발명에 따른 폴리이미드의 분자량은 10,000 내지 200,000g/mol, 혹은 20,000 내지 100,000g/mol, 혹은 30,000 내지 100,000g/mol의 중량평균 분자량을 갖는 것일 수 있다.또한, 본 발명에 따른 폴리이미드의 분자량 분포(Mw/Mn)는 1.1 내지 2.5 인 것이 바람직하다. 폴리이미드의 중량평균 분자량 또는 분자량 분포가 상기한 범위를 벗어날 경우 필름 형성이 어려울 수 있거나 또는 투과도, 내열성 및 기계적 특성 등 폴리이미드계 필름의 특성이 저하될 우려가 있다.
이어서 상기 중합반응의 결과로 수득된 폴리이미드 전구체를 이미드화 시킴으로써, 투명 폴리이미드 필름을 제조할 수 있다. 이때, 상기 이미드화 공정은 구체적으로 화학 이미드화 또는 열 이미드화 방법이 있을 수 있다.
예를 들면, 상기 중합된 폴리이미드 전구체 조성물에 탈수제 및 이미드화 촉매를 첨가한 후 50 내지 100℃의 온도로 가열하여 화학적 반응에 의해 이미드화 시키거나, 또는 상기 용액을 환류시키면서 알코올을 제거하여 이미드화 시키는 방법으로 폴리이미드를 얻을 수 있다.
화학 이미드화 방법에서, 이미드화 촉매로서, 피리딘, 트리에틸아민, 피콜린 또는 퀴놀린 등을 사용될 수 있으며, 그 외에도, 치환 또는 비치환의 질소 함유 복소환 화합물, 질소 함유 복소환 화합물의 N-옥시드 화합물, 치환 또는 비치환의 아미노산 화합물, 하이드록실기를 가지는 방향족 탄화수소 화합물 또는 방향족 복소환상 화합물이 있으며, 특히 1,2-디메틸이미다졸, N-메틸이미다졸, N-벤질-2-메틸이미다졸, 2-메틸이미다졸, 2-에틸-4-메틸이미다졸, 5-메틸벤즈이미다졸 등의 저급 알킬이미다졸, N-벤질-2-메틸이미다졸 등의 이미다졸 유도체, 이소퀴놀린, 3,5-디메틸피리딘, 3,4-디메틸피리딘, 2,5-디메틸피리딘, 2,4-디메틸피리딘, 4-n-프로필피리딘 등의 치환 피리딘, p-톨루엔술폰산 등이 사용될 수도 있다.
상기 탈수제로서는 아세틱산 무수물 등의 산무수물을 사용할 수 있다.
또는, 상기 폴리이미드 전구체 조성물을 기판상에 도포한 후 열처리하는 방법으로 이미드화 할 수 있다.
상기 폴리이미드 전구체 조성물은 유기용매 중에 용해된 용액의 형태일 수 있으며, 이러한 형태를 갖는 경우, 예를 들어 폴리이미드 전구체를 유기용매 중에서 합성한 경우에는, 용액은 얻어지는 반응용액 그 자체여도 되고, 또 이 반응 용액을 다른 용매로 희석한 것이어도 된다. 또, 폴리이미드 전구체를 고형 분말로서 얻은 경우에는, 이것을 유기 용매에 용해시켜 용액으로 한 것이어도 된다.
본 발명은 상기 폴리이미드 전구체 용액에 상기 화학식 1 또는 화학식 2로 표시되는 하나 이상의 실록산 화합물을 포함하는 폴리이미드 전구체 조성물을 제공한다.
일 실시예에 따르면, 상기 실록산 화합물은 폴리이미드 전구체 조성물에 0.5 총중량을 기준으로 내지 15 중량%로 첨가될 수 있으며, 바람직하게는 1 내지 10 중량%로 첨가될 수 있고, 보다 바람직하게는 1 내지 5 중량%로 첨가될 수 있다. 상기 실록산 화합물을 0.5 중량% 미만으로 첨가하는 경우 접착력이 향상되지 않을 수 있으며, 15 중량% 보다 초과하여 첨가하는 경우에는 헤이즈(Haze)가 발생할 수 있다.
본 발명은 상기 폴리이미드 전구체 조성물을 기판상에 도포하는 단계;
상기 도포된 폴리이미드 전구체 조성물을 열처리하는 단계를 포함하는 폴리이미드 필름의 제조방법을 제공한다.
이때, 상기 기판으로는 유리, 금속기판 또는 플라스틱 기판 등이 특별한 제한없이 사용될 수 있으며, 이 중에서도 폴리이미드 전구체에 대한 이미드화 및 경화공정 중 열 및 화학적 안정성이 우수하고, 별도의 이형제 처리 없이도, 경화 후 형성된 폴리이미드계 필름에 대해 손상 없이 용이하게 분리될 수 있는 유리 기판이 바람직할 수 있다.
도포 공정은 통상의 도포 방법에 따라 실시될 수 있으며, 구체적으로는 스핀코팅법, 바코팅법, 롤코팅법, 에어-나이프법, 그라비아법, 리버스 롤법, 키스 롤법, 닥터 블레이드법, 스프레이법, 침지법 또는 솔질법 등이 이용될 수 있다. 이중에서도 연속 공정이 가능하며, 폴리이미드의 이미드화율을 증가시킬 수 있는 캐스팅법에 의해 실시되는 것이 보다 바람직할 수 있다.
또한, 상기 폴리이미드 전구체 조성물은 최종 제조되는 폴리이미드 필름이 디스플레이 기판용으로 적합한 두께를 갖도록 하는 두께 범위로 기판 위에 도포될 수 있다. 구체적으로는 10 내지 30㎛의 두께가 되도록 하는 양으로 도포될 수 있다.
상기 폴리이미드 전구체 조성물 도포 후, 경화 공정에 앞서 폴리이미드 전구체 조성물 내에 존재하는 용매를 제거하기 위한 건조공정이 선택적으로 더 실시될 수 있다.
상기 건조공정은 통상의 방법에 따라 실시될 수 있으며, 구체적으로 140℃ 이하, 혹은 80℃ 내지 140℃의 온도에서 실시될 수 있다. 건조 공정의 실시 온도가 80℃ 미만이면 건조 공정이 길어지고, 140℃를 초과할 경우 이미드화가 급격히 진행되어 균일한 두께의 폴리이미드 필름 형성이 어렵다.
이어서, 상기 폴리이미드 전구체 조성물을 기판에 도포하고, IR오븐, 열풍오븐이나 핫 플레이트 위에서 열처리되며, 이때, 상기 열처리 온도는 300 내지 500℃, 바람직하게는 320 내지 480℃ 온도범위일 수 있으며, 상기 온도범위 내에서 다단계 가열처리로 진행될 수도 있다. 상기 열처리 공정은 20분 내지 70분 동안 진행될 수 있으며, 바람직하게는 20분 내지 60분 정도의 시간 동안 진행될 수 있다.
이후, 기판 위에 형성된 폴리이미드 필름을 통상의 방법에 따라 기판으로부터 박리함으로써 폴리이미드 필름이 제조될 수 있다.
본 발명의 폴리이미드 전구체 조성물에 함유되는 유기용매는, 상기 중합 반응시 사용되는 유기용매와 동일한 것이 사용될 수 있다.
또한, 효과에 손상되지 않는 범위이면 실란 커플링제, 가교성 화합물, 이미드화를 효율적으로 진행시킬 목적의 이미드화 촉진제 등을 첨가해도 된다.
본 발명은 상기 폴리이미드 전구체 조성물로부터 제조된 폴리이미드 필름을 포함하는 디스플레이 기판을 제공한다.
일 실시예에 따르면, 상기 폴리이미드 필름은 헤이즈(Haze)가 2 이하, 바람직하게는 1 이하, 또는 0.9 이하의 헤이즈 값을 가질 수 있으며, 예를 들면, 0.2 이하의 매우 낮은 헤이즈 값을 가질 수 있어, 무색투명한 폴리이미드 필름을 제공할 수 있다. 이때, 상기 폴리이미드 필름의 두께는 8 내지 15㎛일 수 있으며, 바람직하게는 10 내지 12㎛일 수 있다.
또한, 5 내지 30㎛의 필름 두께 범위에서 380 내지 760nm 파장의 빛에 대한 투과도가 80% 이상이며, 황색도(YI)가 약 15 이하, 바람직하게는 약 10 이하, 보다 바람직하게는 약 8 이하의 값을 갖는 무색 투명 폴리이미드 필름일 수 있으며, 예를 들면 7 이하의 YI값을 가질 수 있다. 상기와 같이 우수한 광 투과도 및 낮은 황색도를 가짐으로써 무색 투명한 폴리이미드 필름을 제공할 수 있다.
또한, 상기 폴리이미드 필름은 두께 방향의 위상차값(R th)이 약 1000nm 이하, 또는 0 내지 700nm, 바람직하게는 0 내지 600nm, 보다 바람직하게는 0 내지 500nm 일 수 있으며, 예를 들면 420 nm 이하의 R th를 가짐으로써 빛의 왜곡이 적어 시감성이 우수한 디스플레이를 제공할 수 있다.
일 실시예에 따르면, 상기 디스플레이 기판에 포함된 폴리이미드 필름은 무기소재 기판 상에 형성된 것일 수 있다.
또한, 일 실시예에 따르면, 상기 디스플레이 기판은,
무기소재를 포함하는 무기 기판;
상기 무기기판 상에 형성되며 상기 폴리이미드 필름을 포함하는 제1 폴리이미드층;
상기 제1 폴리이미드 필름 상에 형성되며, 무기소재를 포함하는 무기층; 및
상기 무기층 상에 형성되며 상기 폴리이미드 필름을 포함하는 제2 폴리이미드층을 구비하는 유-무기 복합층을 포함할 수 있으며, 상기 폴리이미드 필름 사이에 형성된 무기층으로부터 유기소재와 무기소재의 수분투과성 및 전기적 특성 차이에 의한 소자특성의 저하 문제를 해결할 수 있다.
또한, 본 발명에 따른 폴리이미드 필름은 상기 실록산 화합물을 포함하는 폴리이미드 전구체 조성물로 제조됨으로써, 상기 무기소재를 포함하는 무기기판 및 무기층과 폴리이미드 필름의 접착력을 현저히 상승시킬 수 있을 뿐만 아니라, 폴리이미드 필름의 잔류응력을 감소시킴으로써 패널공정시 들뜸현상에 의한 불량을 해결할 수 있다.
본 발명에 따른 폴리이미드 필름은 회로 기판용 보호 필름, 회로 기판의 베이스 필름, 회로 기판의 절연층, 반도체의 층간 절연막, 솔더 레지스트, 연성 회로 기판, 또는 플렉시블 디스플레이 기판에 사용될 수 있으며, 특히 고온 공정을 필요로 하는 Oxide TFT 그리고 LTPS(low temperature polysilicon) 공정을 사용하는 OLED 디바이스에 적합할 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<실시예 1>
질소 기류가 흐르는 교반기 내에 DEAc(Diethylaceteamide), 1000g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 한쪽 말단 아민 변성 APTEOS(3-Aminopropyl)triethoxysilane), 0.121mol을 같은 온도에서 첨가하여 용해시켰다. 상기 APTEOS가 첨가된 용액에 X-22-168-P5-B (Shin-Etsu Silicone) 0.06mol을 같은 온도에서 첨가하고 24시간 동안 교반하여, 화학식 1의 구조를 갖는 실록산 화합물 1을 제조하였다.
[반응식 1]
Figure PCTKR2019000877-appb-img-000032
상기 실록산 화합물 1의 1H-NMR 및 COSY NMR 분석결과를 도 1 및 도 2에 각각 나타내었다. 1H-NMR 및 COSY NMR 분석결과로부터 반응식 1의 amic acid 합성반응이 진행되어 실록산 화합물 1이 합성되었음을 알 수 있다.
<NMR 측정조건>
- 사용기기
Bruker 700MHz NMR
- 실험과정
Acetone-d 6 용매를 insert tube에 넣은 후 NMR tube에 시료를 채워 NMR을 측정하였다.
- parameter
1H-NMR
pulse program: zg30, d1: 3.0 sec, ns: 64, temperature: 298K
COSY NMR
pulse program: cosygpppqf, d1: 2.0 sec, ns: 8, temperature: 298K
<실시예 2>
질소 기류가 흐르는 교반기 내에 DEAc 1000g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 한쪽 말단 안하이드라이드 변성 X-12-967C(Shin-Etsu Silicone) 0.302mol를 같은 온도에서 첨가하여 용해시켰다. 상기 X-12-967C가 첨가된 용액에 X-22-9409(Shin-Etsu Silicone) 0.151mol을 같은 온도에서 첨가하고 24시간 동안 교반하여, 화학식 2의 구조를 갖는 실록산 화합물 2를 제조하였다.
[반응식 2]
Figure PCTKR2019000877-appb-img-000033
<실시예 3>
실시예 2에서 X22-9049를 X22-1660B(MW 4200, Shin-Etsu Silicone)으로 변경한 것을 제외하고는 반응식 2와 동일하게 반응시켜 실록산 화합물 3을 제조하였다.
<실시예 4>
실시예 2에서 X22-9049를 X22-9668(MW 5640)으로 변경한 것을 제외하고는 반응식 2와 동일하게 반응시켜 실록산 화합물 4를 제조하였다.
상기 실록산 화합물 2 내지 4의 1H-NMR 및 COSY NMR 분석결과를 도 3 내지 도 8에 각각 나타내었다. 1H-NMR 및 COSY NMR 분석결과로부터 반응식 2의 amic acid 합성 반응이 진행되어 화학식 2의 구조를 갖는 실록산 화합물이 합성되었음을 알 수 있다.
<제조예>
PMDA : Pyromellitic Dianhydride
6FDA : 4,4'-(Hexafluoroisopropylidene)diphthalic anhydride
TFMB : 2,2'-bis(trifluoromethyl)benzidine
DDS : 4,4'-Diaminodiphenyl sulfone
BPDA: 3,3',4,4'-Biphenyltetracarboxylic dianhydride
<제조예 1: PMDA-6FDA-TFMB-DDS(8:2:7:3)>
질소 기류가 흐르는 교반기 내에 DEAc 800g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 TFMB 0.178mol 및 DDS 0.076mol을 같은 온도에서 첨가하여 용해시켰다. 상기 TFMB 및 DDS가 첨가된 용액에 PMDA 0.229mol 및 6FDA 0.025mol을 같은 온도에서 첨가하여 48시간 동안 교반하여 폴리아믹산 용액을 얻었다.
<제조예 2: PMDA-DDS (1:1)>
질소 기류가 흐르는 교반기 내에 DEAc 498g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 DDS 0.458mol을 같은 온도에서 첨가하여 용해시켰다. 상기 DDS가 첨가된 용액에 PMDA 0.458mol을 같은 온도에서 첨가하고 48시간 동안 교반하여 폴리이미드 전구체를 합성하였다. 중합 후 점도가 3,000~4,000 cP가 되도록 DEAc를 첨가하여 폴리아믹산 용액을 얻었다.
<제조예 3: BPDA-DDS (1:1)>
질소 기류가 흐르는 교반기 내에 DEAc 430g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 DDS 0.339mol을 같은 온도에서 첨가하여 용해시켰다. 상기 DDS가 첨가된 용액에 BPDA 0.339 mol을 같은 온도에서 첨가하고 48시간 동안 교반하여 폴리이미드 전구체를 합성하였다. 중합 후 점도가 3,000~4,000 cP가 되도록 DEAc를 첨가하여 폴리아믹산 용액을 얻었다.
<제조예 4: 6FDA-DDS (1:1)>
질소 기류가 흐르는 교반기 내에 DEAc 363g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 DDS 0.225mol을 같은 온도에서 첨가하여 용해시켰다. 상기 DDS가 첨가된 용액에 6FDA 0.339 mol을 같은 온도에서 첨가하고 48시간 동안 교반하여 폴리이미드 전구체를 합성하였다. 중합 후 점도가 3,000~4,000 cP가 되도록 DEAc를 첨가하여 폴리아믹산 용액을 얻었다.
<제조예 5: 6FDA-TFMB (1:1) >
질소 기류가 흐르는 교반기 내에 DEAc 715g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 DDS 0.339mol을 같은 온도에서 첨가하여 용해시켰다. 상기 DDS가 첨가된 용액에 BPDA 0.339 mol을 같은 온도에서 첨가하고 48시간 동안 교반하여 폴리이미드 전구체를 합성하였다. 중합 후 점도가 3,000~4,000 cP가 되도록 DEAc를 첨가하여 폴리아믹산 용액을 얻었다.
<실시예 5 ~ 12 및 비교예 1 ~ 4>
제조예 1 ~ 5에서 제조된 폴리아믹산 용액에 상기 실시예 1 ~ 4에서 제조된 실록산 화합물을 첨가하여 폴리이미드 전구체 조성물을 제조하였다.
실시예 폴리아믹산 실록산 화합물 첨가량
실시예 5 제조예 1 실시예 3 1~10 wt%
실시예 6 제조예 1 실시예 1 1~10 wt%
실시예 7 제조예 1 실시예 2 1~10 wt%
실시예 8 제조예 1 실시예 4 1~10 wt%
실시예 9 제조예 2 실시예 3 1~10 wt%
실시예 10 제조예 3 실시예 3 1~10 wt%
실시예 11 제조예 4 실시예 3 1~10 wt%
실시예 12 제조예 5 실시예 3 1~10 wt%
비교예 1 제조예 1 - -
비교예 2 제조예 2 - -
비교예 3 제조예 3 - -
비교예 4 제조예 4 - -
비교예 5 제조예 5 - -
실험예
실시예 5 ~ 12의 폴리이미드 전구체 조성물에 대하여 물성 평가를 실시하였다. 먼저, 폴리이미드 전구체 조성물을 각각 유리기판 상에 스핀 코팅하였다. 상기 폴리이미드 전구체 조성물이 도포된 유리 기판을 오븐에 넣고 5℃/min의 속도로 가열하였으며, 80℃에서 30분, 400℃에서 30분을 유지하여 경화 공정을 진행하여 폴리이미드 필름을 제조하였다.
상기한 방법으로 제조된 각각의 폴리이미드 필름의 헤이즈, 황색도(YI), 두께방향위상차(Rth), 유리전이온도(Tg), 글라스스트레스(Real Bow), 잔류응력(Residual stress), Peel 강도를 측정하였다.
<헤이즈(Haze)>
Haze Meter HM-150을 사용하여 ASTM D1003 에 따른 방법으로 헤이즈를 측정하였다.
<황색도(YI)>
황색도(YI)는 Color Eye 7000A 로 측정하였다.
<두께방향 위상차>
두께 방향 위상차(R th)는 Axoscan을 이용하여 측정하였다. 필름을 일정한 크기로 잘라 두께를 측정한 다음 Axoscan 으로 위상차를 측정하여 위상차 값을 보상하기 위하여 C-plate 방향으로 보정하면서 측정한 두께를 입력하였다.
<유리전이온도(Tg)>
상기 필름을 5 x 20 mm 크기로 준비한 뒤 악세서리를 이용하여 시료를 로딩한다. 실제 측정되는 필름의 길이는 16mm로 동일하게 하였다. 필름을 당기는 힘을 0.02N으로 설정하고 100 내지 400℃ 온도 범위에서 5℃/min 의 승온 속도로 1차 승온 공정을 진행한 후, 400 내지 100℃의 온도 범위에서 4℃/min 의 냉각 속도로 냉각(cooling)후 다시 100 내지 450℃ 온도범위에서 5℃/min의 승온속도로 2차 승온 공정을 진행하여 열팽창 변화 양상을 TMA(TA 사의 Q400)로 측정하였다.
이때, 2차 승온 공정에서 승온 구간에서 보여지는 변곡점을 Tg로 하였다.
<잔류응력 측정>
잔류응력 측정기(TENCOR사의 FLX2320)를 사용하여 미리 wafer의 [휨량]을 측정해 둔, 두께 525um의 6in 실리콘 웨이퍼 상에, 수지 조성물을 스핀코터에 의해 도포하고 (코요 린드버그사 제조) 오븐을 사용하여, 질소 분위기하 250oC 30min 400oC 60min시간의 가열경화 처리를 실시하고 경화 후 막 두께 10um의 수지막이 부착된 실리콘웨이퍼를 제조 하였다. 이때 웨이퍼의 휨량을 잔류응력 측정기로 측정한 Real Bow 값으로 나타내었으며, 실리콘웨이퍼와 수지막 사이에 발생한 잔류응력을 측정하였다.
<Peel 강도 측정>
실시예에서 제조된 폴리이미드 전구체 용액을 a-Si을 증착한 유리 기판 상에 경화 후 최종 필름의 두께가 10um이 되도록 스핀 코팅하였다. 폴리이미드 전구체 용액이 도포된 유리 기판을 오븐에 넣고 4℃/min의 속도로 가열하였으며, 250℃에서 30분, 410℃에서 60분을 유지하여 경화공정을 진행하였다. 필름 폭 25.4 mm, 측정 길이 10mm의 샘플에 대해 Peel 강도 측정계(TA-XT Plus, Texture Analyser)로 180℃에서 10mm/sec로 박리시 강도를 측정하였다.
측정결과
<실시예 5>
실시예 5 및 비교예 1의 폴리이미드 전구체 조성물을 사용하여 제조한 필름에 대한 측정결과를 하기 표 2에 나타내었다.
실록산 화합물함유량 wt% 0(비교예1) 1 3 5 7 10
Thickness, um 10 10 10 10 10 10
YI 7.3 6.8 6.6 6.3 5.9 5.7
Rth, nm 420 410 392 365 335 298
Real bow, ㎛ 35.9 33.4 32.1 30.9 29.7 27.5
Residual stress, MPa 35.9 33.4 32.1 31.0 29.8 27.8
Tg @ 450℃ 425 425 422 415 411 406
Peel 강도 gf/in 10 105 150 189 250 N.D.
표에서 N.D.는 측정이 불가능하였음을 의미한다.
<실시예 6>
실시예 6 및 비교예 1의 폴리이미드 전구체 조성물을 사용하여 제조한 필름에 대한 측정결과를 하기 표 3에 나타내었다.
실록산 화합물함유량 wt% 0(비교예1) 1 5 10
Thickness, um 10 10 10 10
YI 7.3 6.8 6.4 6.0
Rth, nm 420 408 360 301
Real bow, ㎛ 35.9 33.7 30.2 28.4
Residual stress, MPa 35.9 34.1 30.2 28.6
Tg @ 450℃ 425 415 411 404
Peel 강도 gf/in 10 110 194 N.D.
<실시예 7>
실시예 7 및 비교예 1의 폴리이미드 전구체 조성물을 사용하여 제조한 필름에 대한 측정결과를 하기 표 4에 나타내었다.
실록산 화합물함유량 wt% 0(비교예1) 1 5 10
Thickness, um 10 10 10 10
YI 7.3 6.5 6.2 5.9
Rth, nm 420 398 355 291
Real bow, ㎛ 35.9 32.8 28.7 26.3
Residual stress, MPa 35.9 32.5 28.2 25.7
Tg @ 450℃ 425 413 408 398
Peel 강도 gf/in 10 150 230 N.D.
<실시예 8>
실시예 8 및 비교예 1의 폴리이미드 전구체 조성물을 사용하여 제조한 필름에 대한 측정결과를 하기 표 5에 나타내었다.
실록산 화합물함유량 wt% 0(비교예1) 1 5 10
Thickness, um 10 10 10 10
YI 7.3 7.0 6.8 6.4
Rth, nm 420 415 380 320
Real bow, ㎛ 35.9 35.0 31.0 30.5
Residual stress, MPa 35.9 34.9 31.0 30.2
Tg @ 450℃ 425 420 417 410
Peel 강도 gf/in 10 92 139 N.D.
<실시예 9>
실시예 9 및 비교예 2의 폴리이미드 전구체 조성물을 사용하여 제조한 필름에 대한 측정결과를 하기 표 6에 나타내었다.
실록산 화합물함유량 wt% 0(비교예2) 1 5 10
Thickness, um 10 10 10 10
YI 14.4 13.5 13.2 12.5
Rth, nm 148 135 123 112
Real bow, ㎛ 44.4 42.3 40.2 35.6
Residual stress, MPa 44.4 42.3 40.2 35.6
Tg @ 450℃ N.D. N.D 440 425
Peel 강도 gf/in 25 180 N.D N.D.
<실시예 10>
실시예 10 및 비교예 3의 폴리이미드 전구체 조성물을 사용하여 제조한 필름에 대한 측정결과를 하기 표 7에 나타내었다.
실록산 화합물함유량 wt% 0(비교예3) 1 5 10
Thickness, um 10 10 10 10
YI 3.9 3.8 3.3 2.7
Rth, nm 71.4 70.5 68.6 65.3
Real bow, ㎛ 45.0 44.3 41.5 37.8
Residual stress, MPa 45.0 44.3 41.5 37.8
Tg @ 450℃ 381 380 375 368
Peel 강도 gf/in 10 187 N.D N.D.
<실시예 11>
실시예 11 및 비교예 4의 폴리이미드 전구체 조성물을 사용하여 제조한 필름에 대한 측정결과를 하기 표 8에 나타내었다.
실록산 화합물함유량 wt% 0(비교예4) 1 5 10
Thickness, um 10 10 10 10
YI 3.2 3.2 2.8 2.3
Rth, nm 21 20 18 15
Real bow, ㎛ 50.4 49.1 46.5 42.2
Residual stress, MPa 50.4 49.1 46.5 42.2
Tg @ 450℃ 356 355 348 339
Peel 강도 gf/in 13 126 260 N.D.
<실시예 12>
실시예 12 및 비교예 5의 폴리이미드 전구체 조성물을 사용하여 제조한 필름에 대한 측정결과를 하기 표 9에 나타내었다.
실록산 화합물함유량 wt% 0(비교예5) 1 5 10
Thickness, um 10 10 10 10
YI 2.7 2.7 2.1 2.0
Rth, nm 100 96 87 80
Real bow, ㎛ 44.2 42.9 41.3 39.6
Residual stress, MPa 44.2 42.9 41.3 39.6
Tg @ 450℃ 363 360 357 349
Peel 강도 gf/in 53 230 N.D. N.D.
상기 표 2부터 표 9까지의 결과로부터 알 수 있듯이, 제조예들에서 제조된 폴리아믹산 용액에 실시예 1~4의 실록산 화합물을 첨가하여 제조된 폴리이미드 필름은 황색도, 헤이즈 값 및 두께방향 위상차 값뿐만 아니라 잔류응력 및 Real Bow값 또한 낮아짐을 확인할 수 있다. 반면 Peel 강도는 비교예들의 필름에 비해 훨씬 개선하는 것도 확인할 수 있다. 이는 실록산 화합물 첨가로 인해 폴리이미드 필름의 접착력이 개선되었음을 보여주는 것이다.
한편, 도 9는 실록산 화합물 1의 함량에 따른 폴리이미드 전구체 조성물(실시예 7) 의 헤이즈 변화를 나타내는 사진이며, 도 10은 a-Si 기판상에 폴리이미드 전구체 조성물을 코팅한 후의 헤이즈 현상을 보여주는 사진이다. 도 9 및 도 10으로부터 실록산 화합물을 포함하는 폴리이미드 전구체 조성물은 바니쉬 상태에서는 5 wt% 이상부터 헤이즈가 발생하는 것을 육안으로 관찰할 수 있다. 또한, 도 9에서 실록산화합물이 15wt% 이상으로 첨가되는 경우 헤이즈가 급격히 증가하는 것을 관찰할 수 있다. 이와 같이, 용액 헤이즈는 미미하게 관찰되지만 필름은 헤이즈가 나타나지 않았다. 필름의 헤이즈는 표 10에 나타내었다.
비교예1 실시예 7
첨가제 함량 wt% 0 1 5 10
Haze 0.2 0.12 0.11 0.13
상기 표 10의 결과로부터 실시예 7에서 제조된 폴리이미드 필름은 헤이즈 특성도 개선됨을 알 수 있다. 따라서, 본 발명은 폴리아믹산과 반응하지 않는 신규한 구조를 갖는 실록산 화합물을 폴리이미드 전구체 조성물에 첨가함으로써, 저장안정성이 향상된 폴리이미드 전구체 조성물을 제공할 수 있다. 또한, 이로부터 광등방성 특성 향상 및 기판과의 잔류응력 저감특성을 가지면서, 무기 소재 기판과의 접착력이 향상된 다기능성 폴리이미드 필름을 제공할 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (14)

  1. 하기 화학식 1 또는 화학식 2로 표시되는 실록산 화합물:
    [화학식 1]
    Figure PCTKR2019000877-appb-img-000034
    [화학식 2]
    Figure PCTKR2019000877-appb-img-000035
    상기 화학식 1 및 화학식 2에 있어서,
    Q 2, Q 3 및 Q 4는 각각 독립적으로 수소원자, 탄소수 1 내지 5의 알킬기 및 탄소수 1 내지 5의 알콕시기에서 선택되는 것이고,
    R 1, R 2, R 11 및 R 12는 각각 독립적으로 단일결합 또는 탄소수 1 내지 20의 유기기이며,
    R 3 내지 R 10은 각각 독립적으로 탄소수 1 내지 3의 지방족기 또는 탄소수 6 내지 12의 방향족기이고,
    m1 및 m2는 각각 독립적으로 0 이상의 정수이다.
  2. 제1항에 있어서,
    상기 m1 및 m2 가 각각 독립적으로 1 이상의 정수이고, 상기 화학식 1 또는, 화학식 2 화합물의 분자량이 10000 이하인 실록산 화합물.
  3. 제1항에 있어서,
    상기 화학식 1 또는 화학식 2가 각각 하기 화학식 1-1 또는 화학식 2-1로 표시되는 것인 실록산 화합물:
    [화학식 1-1]
    Figure PCTKR2019000877-appb-img-000036
    [화학식 2-1]
    Figure PCTKR2019000877-appb-img-000037
    .
  4. 제1항에 있어서,
    상기 R 1, R 2, R 11 및 R 12는 각각 독립적으로 단일 결합 또는 탄소수 1 내지 10의 알킬렌기인 것일 실록산 화합물.
  5. 제1항에 있어서,
    상기 R 3 내지 R 10 중 어느 하나 이상이 탄소수 6 내지 12의 방향족기를 포함하는 것인 실록산 화합물.
  6. 하기 화학식 a의 화합물과, 하기 화학식 b-1 및 b-2의 화합물을 반응시켜 제1항의 실록산 화합물을 제조하는 방법:
    [화학식 a]
    Figure PCTKR2019000877-appb-img-000038
    [화학식 b-1]
    Figure PCTKR2019000877-appb-img-000039
    [화학식 b-2]
    Figure PCTKR2019000877-appb-img-000040
    상기 화학식 a, 화학식 b-1 및 화학식 b-2에 있어서,
    X 1 및 X 2는 각각 독립적으로 안하이드라이드기, 아민기, 카르복실기 및 에스터기에서 선택되는 것이고,
    R 1, R 2, R 11 및 R 12는 각각 독립적으로 단일결합 또는 탄소수 1 내지 20의 유기기이며
    R 3 내지 R 10은 각각 독립적으로 탄소수 1 내지 3의 지방족기 또는 탄소수 6 내지 12의 방향족기이고,
    m1 및 m2는 각각 독립적으로 0 이상의 정수이며,
    Q 1은 아민기, 이소시아네이트기 및 안하이드라이드기 중에서 선택되는 것이고,
    Q 2, Q 3, Q 4는 각각 독립적으로 수소원자, 탄소수 1 내지 5의 알킬기 및 탄소수 1 내지 5의 알콕시기에서 선택되는 것이다.
  7. 제6항에 있어서,
    상기 화학식 b-1 및 화학식 b-2가 하기 화학식 b로 표시되는 것인 제1항의 실록산 화합물을 제조하는 방법:
    [화학식 b]
    Figure PCTKR2019000877-appb-img-000041
    상기 화학식 b에 있어서,
    Q 1, Q 2, Q 3 및 Q 4는 제6항에 정의된 것과 동일하다.
  8. 제1항 내지 제5항 중 어느 한 항의 실록산 화합물 및 폴리아믹산을 포함하는 폴리이미드 전구체 조성물.
  9. 제8항에 있어서,
    상기 실록산 화합물을 상기 폴리이미드 전구체 조성물 총중량에 대해 1 내지 15 중량% 포함하는 것인 폴리이미드 전구체 조성물.
  10. 제8항에 따른 폴리이미드 전구체 조성물로부터 제조된 폴리이미드 필름.
  11. 제10항에 있어서,
    무기소재 기판과의 잔류응력이 35MPa 이하인 폴리이미드 필름.
  12. 제10항에 있어서,
    Real Bow 값이 35㎛ 이하인 폴리이미드 필름.
  13. 제12항에 있어서,
    상기 폴리이미드 필름의 두께방향 위상차가 420 nm 이하인 폴리이미드 필름.
  14. 제10항의 폴리이미드 필름을 포함하는 디스플레이 기판.
PCT/KR2019/000877 2018-06-07 2019-01-22 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물 WO2019235712A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19815299.3A EP3666780B1 (en) 2018-06-07 2019-01-22 Siloxane compound and polyimide precursor composition comprising same
US16/757,539 US11820785B2 (en) 2018-06-07 2019-01-22 Siloxane compound and polyimide precursor composition comprising same
CN201980004480.XA CN111094305B (zh) 2018-06-07 2019-01-22 硅氧烷化合物和包含其的聚酰亚胺前体组合物
JP2020516434A JP6950143B2 (ja) 2018-06-07 2019-01-22 シロキサン化合物及びそれを含むポリイミド前駆体組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0065244 2018-06-07
KR20180065244 2018-06-07
KR1020180123538A KR102040413B1 (ko) 2018-06-07 2018-10-17 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
KR10-2018-0123538 2018-10-17

Publications (1)

Publication Number Publication Date
WO2019235712A1 true WO2019235712A1 (ko) 2019-12-12

Family

ID=68578105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000877 WO2019235712A1 (ko) 2018-06-07 2019-01-22 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물

Country Status (7)

Country Link
US (1) US11820785B2 (ko)
EP (1) EP3666780B1 (ko)
JP (1) JP6950143B2 (ko)
KR (1) KR102040413B1 (ko)
CN (1) CN111094305B (ko)
TW (1) TWI691528B (ko)
WO (1) WO2019235712A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193531A1 (ja) * 2020-03-24 2021-09-30 東レ株式会社 樹脂組成物、それを用いた表示デバイスまたは受光デバイスの製造方法、基板ならびにデバイス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230125176A (ko) * 2020-12-24 2023-08-29 도레이 카부시키가이샤 수지 조성물, 시트상 조성물, 시트 경화물, 적층체, 적층 부재, 웨이퍼 유지체 및 반도체 제조 장치
CN115286656A (zh) * 2022-08-05 2022-11-04 广州华星光电半导体显示技术有限公司 添加剂及其制备方法、配向组合物和显示器件
CN116496501B (zh) * 2023-04-04 2024-03-29 浙江精一新材料科技有限公司 一种具有内酰胺基团的液态聚硅氧烷及光阀

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080004413A1 (en) * 2006-06-30 2008-01-03 Derek Schorzman Carboxylic M2Dx-like siloxanyl monomers
JP2011026485A (ja) * 2009-07-28 2011-02-10 Shin-Etsu Chemical Co Ltd アミド基と水酸基を有するオルガノポリシロキサン及びそれを含む化粧料
KR101787941B1 (ko) * 2017-01-06 2017-10-18 주식회사 엘지화학 폴리이미드 전구체 조성물 및 이를 이용하는 폴리이미드 필름
KR20180065244A (ko) 2016-12-07 2018-06-18 주식회사 포스코 이송장치
KR20180123538A (ko) 2016-03-18 2018-11-16 존슨 매티 데이비 테크놀로지스 리미티드 히드로포르밀화에 의해 수득된 알데히드를 증가하는 압력을 갖는 2개의 칼럼에서 회수하는 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617474B2 (ja) 1985-05-31 1994-03-09 チッソ株式会社 高接着性シリコン含有ポリアミド酸の製造法
JP2513096B2 (ja) * 1991-08-15 1996-07-03 信越化学工業株式会社 硬化性化合物、その製造方法、絶縁保護膜形成剤及び電子部品用保護剤
JP2574080B2 (ja) 1991-06-03 1997-01-22 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物およびその硬化物
US5254657A (en) 1991-05-30 1993-10-19 Shin-Etsu Chemical Co., Ltd. RTV silicone rubber compositions and cured products thereof
JP2764674B2 (ja) * 1993-03-24 1998-06-11 信越化学工業株式会社 ポリイミドシリコ−ン樹脂前駆体組成物
JP5380805B2 (ja) * 2006-08-31 2014-01-08 Jnc株式会社 インクジェット用インク
JP4590443B2 (ja) * 2007-09-05 2010-12-01 信越化学工業株式会社 熱硬化性ポリイミドシリコーン樹脂組成物
KR101505899B1 (ko) * 2007-10-23 2015-03-25 제이엔씨 주식회사 잉크젯용 잉크
JP5071135B2 (ja) * 2008-02-07 2012-11-14 Jnc株式会社 熱硬化性組成物
JP5282414B2 (ja) 2008-02-29 2013-09-04 Jnc株式会社 インクジェット用インク
EP2280040B1 (en) 2009-07-28 2015-04-15 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane having amide group, and cosmetic material containing same
JP5776516B2 (ja) 2011-11-29 2015-09-09 信越化学工業株式会社 オルガノポリシロキサン化合物の製造方法並びにその化合物を用いた硬化性組成物
KR102066385B1 (ko) * 2013-03-18 2020-01-15 아사히 가세이 가부시키가이샤 수지 전구체 및 그것을 함유하는 수지 조성물, 수지 필름 및 그 제조 방법, 그리고, 적층체 및 그 제조 방법
US10144847B2 (en) 2014-05-30 2018-12-04 Lg Chem, Ltd. Polyimide-based solution and polyimide-based film produced using same
JP2016047878A (ja) * 2014-08-27 2016-04-07 富士フイルム株式会社 熱硬化性樹脂組成物、加飾材、加飾材付き基材、転写材料、タッチパネル、及び、情報表示装置
US10508175B2 (en) 2015-03-27 2019-12-17 Samsung Electronics Co., Ltd. Composition and polyamideimide composite and polyamideimide film and electronic device
US9975997B2 (en) 2015-03-27 2018-05-22 Samsung Electronics Co., Ltd. Compositions, composites prepared therefrom, and films and electronic devices including the same
KR102502596B1 (ko) 2015-03-27 2023-02-22 삼성전자주식회사 조성물, 이로부터 제조된 복합체, 및 이를 포함하는 필름 및 전자 소자
KR102331157B1 (ko) * 2019-10-23 2021-11-26 (주)휴넷플러스 폴리실록산 공중합체, 이의 제조방법 및 이를 포함하는 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080004413A1 (en) * 2006-06-30 2008-01-03 Derek Schorzman Carboxylic M2Dx-like siloxanyl monomers
JP2011026485A (ja) * 2009-07-28 2011-02-10 Shin-Etsu Chemical Co Ltd アミド基と水酸基を有するオルガノポリシロキサン及びそれを含む化粧料
KR20180123538A (ko) 2016-03-18 2018-11-16 존슨 매티 데이비 테크놀로지스 리미티드 히드로포르밀화에 의해 수득된 알데히드를 증가하는 압력을 갖는 2개의 칼럼에서 회수하는 방법
KR20180065244A (ko) 2016-12-07 2018-06-18 주식회사 포스코 이송장치
KR101787941B1 (ko) * 2017-01-06 2017-10-18 주식회사 엘지화학 폴리이미드 전구체 조성물 및 이를 이용하는 폴리이미드 필름

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SCHRAMM, C.: "Synthesis and characterization of an aliphatic monoimide -bridged polysilsesquioxane by the sol?gel route", J. SOL-GEL SCI. TECHNOL., 2010, pages 579 - 586, XP019792494, ISSN: 1573-4846, DOI: 10.1007/s10971-009-2135-7 *
SCHRAMM, C.: "Synthesis and Characterization of Novel Ultrathin Polyimide Fibers via Sol-Gel Process and Electrospinning", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 128, no. 2, 15 April 2013 (2013-04-15), pages 1274 - 1281, XP055661274, ISSN: 0021-8995, DOI: 10.1002/app.38543 *
See also references of EP3666780A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193531A1 (ja) * 2020-03-24 2021-09-30 東レ株式会社 樹脂組成物、それを用いた表示デバイスまたは受光デバイスの製造方法、基板ならびにデバイス

Also Published As

Publication number Publication date
CN111094305B (zh) 2023-03-07
EP3666780A4 (en) 2020-08-19
EP3666780A1 (en) 2020-06-17
TWI691528B (zh) 2020-04-21
EP3666780B1 (en) 2022-10-26
JP2020534409A (ja) 2020-11-26
TW202000745A (zh) 2020-01-01
US11820785B2 (en) 2023-11-21
JP6950143B2 (ja) 2021-10-13
KR102040413B1 (ko) 2019-11-04
US20210188881A1 (en) 2021-06-24
CN111094305A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2017111300A1 (ko) 신규 구조의 디아민 모노머를 적용한 폴리아믹산 용액 및 이를 포함하는 폴리이미드 필름
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2018038436A1 (ko) 디아민 화합물 및 이의 제조방법
WO2017047917A1 (ko) 변성 폴리이미드 및 이를 포함하는 경화성 수지 조성물
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2019054612A1 (ko) 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2014168404A1 (ko) 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2019103274A1 (ko) 디스플레이 기판용 폴리이미드 필름
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2018021747A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2010008213A2 (en) Silane based compound, method for preparing the same, and surface treating agent composition for copper foil including the silane based compound
WO2020105933A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2020130261A1 (ko) 가교제 화합물, 이를 포함하는 감광성 조성물, 및 이를 이용한 감광 재료
WO2020159035A1 (ko) 폴리이미드 필름, 이를 이용한 플렉서블 기판 및 플렉서블 기판을 포함하는 플렉서블 디스플레이
WO2022045737A1 (ko) 포지티브형 감광성 수지 조성물
WO2020130552A1 (ko) 디아민 화합물, 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2018147617A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2018216890A1 (ko) 폴리이미드 적층필름 롤체 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019815299

Country of ref document: EP

Effective date: 20200311

ENP Entry into the national phase

Ref document number: 2020516434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE