WO2016021746A1 - 고투과성 저위상차 무색 투명 폴리이미드 박막 및 이의 제조방법 - Google Patents

고투과성 저위상차 무색 투명 폴리이미드 박막 및 이의 제조방법 Download PDF

Info

Publication number
WO2016021746A1
WO2016021746A1 PCT/KR2014/007241 KR2014007241W WO2016021746A1 WO 2016021746 A1 WO2016021746 A1 WO 2016021746A1 KR 2014007241 W KR2014007241 W KR 2014007241W WO 2016021746 A1 WO2016021746 A1 WO 2016021746A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
polyimide
polyamic acid
thin film
Prior art date
Application number
PCT/KR2014/007241
Other languages
English (en)
French (fr)
Inventor
한학수
남기호
이완수
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to PCT/KR2014/007241 priority Critical patent/WO2016021746A1/ko
Publication of WO2016021746A1 publication Critical patent/WO2016021746A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/30Polysulfonamides; Polysulfonimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyamic acid precursor, a high functional polyimide thin film and a method for producing the same.
  • Polyimides are polymers having a heteroimide ring and are mainly produced using dianhydrides and diamine monomers. In addition to excellent heat resistance, it exhibits excellent mechanical properties, chemical resistance, electrical properties, abrasion resistance, weather resistance, and dimensional stability, and is therefore widely used in high temperature adhesives, engineering plastics, aerospace, microelectronics, optics, coatings, molding, and composite materials. It is applied to a wide area. In addition, as the monomers and synthetic methods are variously and elaborately developed to suit specific purposes, their application range is gradually expanding.
  • the present invention is to provide a polyimide excellent in optical and thermal properties such as low phase delay characteristics, high transmittance, high decomposition temperature and glass transition temperature, and a polyamic acid precursor capable of producing the same, and a method of manufacturing the same.
  • One aspect of the present invention relates to a polyamic acid having a structure of Formula 1 below.
  • Ar1, Ar2, Ar3, Ar4, m, n are as defined herein.
  • Another aspect of the present invention relates to a polyamic acid composition
  • a polyamic acid composition comprising a polyamic acid and an inorganic additive according to various embodiments of the present invention.
  • Another aspect of the present invention relates to a polyamic acid preparation method of Chemical Formula 1.
  • Another aspect of the invention relates to a polyimide having the structure of formula (2).
  • Ar1, Ar2, Ar3, Ar4, m, n are as defined herein.
  • Another aspect of the present invention relates to a polyimide thin film comprising a polyimide according to various embodiments of the present invention.
  • Another aspect of the invention relates to a polyimide composition comprising polyimide and inorganic additives in accordance with various embodiments of the invention.
  • Another aspect of the present invention relates to a method for producing a polyimide according to various embodiments of the present invention.
  • Polyamic acid precursor according to the present invention is excellent in heat resistance, mechanical strength, chemical resistance, scratch resistance, low thermal expansion coefficient, high moisture and gas permeation prevention properties, low thickness direction phase delay, high optical transmittance, low yellowness And so on.
  • the polyimide resin according to the present invention is manufactured in the form of a thin film, thereby maintaining a clear transparency at various angles with low thickness direction phase delay, the next-generation transparent flexible display substrate material, semiconductor interlayer insulating material, flexible circuit requiring various functions and characteristics It can be applied to substrates, semiconductor devices and the like.
  • T d1% decomposition initiation temperature
  • TGA thermogravimetric analyzer
  • One aspect of the present invention relates to a polyamic acid having a structure of Formula 1 below.
  • Ar1 has a structure such that the compound of Formula 1A is one compound of Formulas 1a to 1m.
  • Ar2 has a structure such that the compound of Formula 2A is a compound of Formula 2a to Formula 2v.
  • a structure will be referred to as a "folding structure and a rigid structure” or a “folding structure” or a “rigid structure”.
  • Ar3 has a structure such that the compound of Formula 3A is a compound of Formula 1a to Formula 1m.
  • Ar4 has a structure such that the compound of Formula 4A is a compound of Formula 4a to Formula 4r.
  • a structure is referred to as a 'linear structure and a flexible structure' or 'linear structure' or 'flexible structure'.
  • n and n are the same as or different from each other, and each independently a natural number of 50 to 100,000.
  • Ar 1 has a structure such that the compound of Formula 1A is a compound of Formula 1c
  • Ar2 has a structure such that the compound of Formula 2A is a compound of Formula 2a
  • Ar3 has a structure such that the compound of Formula 3A is a compound of Formula 1c
  • Ar4 relates to a polyamic acid having a structure such that the compound of Formula 4A is a compound of Formula 4b.
  • Ar1 has a structure such that the compound of Formula 1A is a compound of Formula 1c
  • Ar2 has a structure such that the compound of Formula 2A is a compound of Formula 2i
  • Ar3 has a structure such that the compound of Formula 3A is a compound of Formula 1c
  • Ar4 relates to a polyamic acid having a structure such that the compound of Formula 4A is a compound of Formula 4c.
  • Ar1 has a structure such that the compound of Formula 1A is a compound of Formula 1c
  • Ar2 has a structure such that the compound of Formula 2A is a compound of Formula 2d
  • Ar3 has a structure such that the compound of Formula 3A is a compound of Formula 1c
  • Ar4 relates to a polyamic acid having a structure such that the compound of Formula 4A is a compound of Formula 4c.
  • the ratio of m: n is 0.1: 0.9 to 0.9: 0.1.
  • the ratio is less than the lower limit of the above numerical range with respect to the ratio of m: n, the degree of polymerization of the monomer forming the polymer mainly with the kink structure is lowered, so that the thermal stability and the decomposition initiation temperature are significantly lower than those in the above range. It is desirable to achieve a ratio.
  • the upper limit of the above numerical range for the ratio of m: n is exceeded, the flexible structure is dominant compared to the above numerical range, resulting in high thickness direction phase delay characteristics, thermal stability and decomposition initiation temperature. It is desirable to achieve a ratio within the above numerical range.
  • a polyamic acid composition comprising a polyamic acid and an inorganic additive according to various embodiments of the present invention is disclosed.
  • inorganic additives examples include calcium carbonate, silica, alumina, titanium oxide, manganese oxide, zirconium oxide, tetraethoxysilane, montmorillonite, mordenite, zirconium phosphoric acid, phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, Heteropolyacids and mixtures of two or more thereof.
  • calcium carbonate whose crystal form is calsite and the particle shape is cubic as the above inorganic filler, and in particular, the specific gravity is 23 to 25 g / cm 3 at 20 ° C, and the whiteness is 85% to It is most preferred to use calcium carbonate, calsite cubic with 95%, BET specific surface area of 60 to 85 m 2 / g, pH of 8 to 10, and water content of 0.1 to 4% by weight.
  • the inorganic additive may be included as 0.01 to 100 parts by weight, preferably 0.1 to 20 parts by weight, most preferably 0.1 to 5 parts by weight based on 100 parts by weight of the polyimide.
  • the inorganic additive has an average particle diameter of 1 to 300 nm.
  • the inorganic additive is a surface modified with a silane coupling agent.
  • the inorganic additive is added to the polyamic acid after the surface treatment with a silane coupling agent and dispersed, the polyamic acid or the polyimide obtained by dehydration and condensation thereof with the inorganic additive added and dispersed,
  • the interfacial adhesion can be improved to be physically and chemically uniformly bonded to the polyamic acid or the polyimide obtained by dehydrating it.
  • the resulting polyimide thin film not only exhibits higher mechanical and thermal properties than those added and dispersed without surface treatment, but also does not cause any deterioration in transparency unlike when added and dispersed without surface treatment. The effect can be obtained.
  • inorganic additives may be first dispersed in an organic solvent and then polyamic acid may be synthesized, and polyamic acid may be first synthesized and then added to an organic solvent together with an inorganic additive.
  • a polyamic acid in which the inorganic additive is dispersed may be prepared.
  • dispersing the inorganic additive in an organic solvent first and then synthesizing the polyamic acid is preferable because the inorganic additive may be dispersed through physical and chemical bonds inside and outside the polyamic acid chain.
  • Another aspect of the present invention relates to a method for preparing a polyamic acid of Chemical Formula 1 comprising reacting the compound of Chemical Formula 1A, the compound of Chemical Formula 2A, the compound of Chemical Formula 3A, and the compound of Chemical Formula 4A.
  • the molar sum of the compound of Formula 1A and the compound of Formula 3A is a ratio of the mole sum of the compound of Formula 2A and the compound of Formula 4A of 1: 0.0099 to 1.0001.
  • the degree of polymerization of the monomers forming the polymer is low, unlike in the above numerical range, and the thin film is produced and heat-treated due to the generation of unreacted substances of the anhydride or diamine. It is preferable to carbonize or oxidize at to achieve a ratio within the above numerical range.
  • the ratio of the above number of moles is 1: 1.
  • the reaction is carried out in N-methylpyrrolidone, N, N-dimethylacetamide, dimethylformamide, tetrahydrofuran, dimethylsulfoxide, acetonitrile, acetone, ethyl acetate and mixtures of two or more thereof.
  • N-methylpyrrolidone N, N-dimethylacetamide, dimethylformamide, tetrahydrofuran, dimethylsulfoxide, acetonitrile, acetone, ethyl acetate and mixtures of two or more thereof.
  • N-methylpyrrolidone, N, N-dimethylacetamide, dimethylformamide and two or more of these mixed solvents can be selected and used, in which case the inorganic filler is uniformly dispersed and the aromatic dianhydride Since the reactivity of water and aromatic diamine can be improved, the yield of a polyamic-acid precursor can be improved significantly, and it is preferable.
  • the reaction is carried out by stirring for 12 to 36 hours at -20 °C to 5 °C in a nitrogen atmosphere.
  • Another aspect of the invention relates to a polyimide having the structure of formula (2).
  • Ar1, Ar2, Ar3, Ar4, m, n are as defined above.
  • Ar 1 has a structure such that the compound of Formula 1A is a compound of Formula 1c
  • Ar2 has a structure such that the compound of Formula 2A is a compound of Formula 2a
  • Ar3 has a structure such that the compound of Formula 3A is a compound of Formula 1c
  • Ar4 relates to a polyimide having a structure such that the compound of Formula 4A is a compound of Formula 4b.
  • Ar1 has a structure such that the compound of Formula 1A is a compound of Formula 1c
  • Ar2 has a structure such that the compound of Formula 2A is a compound of Formula 2i
  • Ar3 has a structure such that the compound of Formula 3A is a compound of Formula 1c
  • Ar4 relates to a polyimide having a structure such that the compound of Formula 4A is a compound of Formula 4c .
  • Ar1 has a structure such that the compound of Formula 1A is a compound of Formula 1c
  • Ar2 has a structure such that the compound of Formula 2A is a compound of Formula 2d
  • Ar3 has a structure such that the compound of Formula 3A is a compound of Formula 1c
  • Ar4 relates to a polyimide having a structure such that the compound of Formula 4A is a compound of Formula 4c.
  • the ratio of m: n is 0.1: 0.9 to 0.9: 0.1.
  • the degree of polymerization of monomers constituting the polymer with a fold structure is lowered, thereby lowering thermal stability and decomposition initiation temperature. It is desirable to achieve a ratio within the numerical range.
  • the upper limit of the above numerical range for the ratio of m: n is exceeded, the flexible structure is mainly different from that in the above numerical range, resulting in high thickness direction phase delay characteristics as well as thermal stability and decomposition initiation temperature. It is desirable to achieve a ratio within the above numerical range.
  • Another aspect of the present invention relates to a polyimide thin film comprising a polyimide according to various embodiments of the present invention.
  • the thickness of the thin film is 10 to 70 ⁇ m.
  • the thickness direction phase delay is different from the case where the thickness is less than or above the lower limit of the numerical range.
  • the value is preferred since it can show 440 to 95 nm.
  • the light transmittance may be 98% to 60%
  • the 1% decomposition temperature may be 280 to 650 ° C
  • the glass transition temperature may be 270 to 400 ° C.
  • Another aspect of the invention relates to a polyimide composition comprising polyimide and inorganic additives in accordance with various embodiments of the invention.
  • inorganic additives examples include calcium carbonate, silica, alumina, titanium oxide, manganese oxide, zirconium oxide, tetraethoxysilane, montmorillonite, mordenite, zirconium phosphoric acid, phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, Heteropolyacids, mixtures of two or more thereof, and the like.
  • the inorganic additive may be included in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the polyimide.
  • the inorganic additive may have an average particle diameter of 1 to 300 nm.
  • the inorganic additive is a surface modified with a silane coupling agent.
  • Another aspect of the present invention relates to a method for preparing polyimide having the structure of Chemical Formula 2 including the step of dehydrating a polyamic acid according to various embodiments of the present invention.
  • the dehydration condensation reaction is carried out by thermal curing at 40 to 300 °C for 80 to 500 minutes.
  • the dehydration condensation reaction is carried out by first heat curing at 40 to 90 ° C. for 20 to 100 minutes and then second heat curing at 100 to 260 ° C. for 50 minutes to 300 minutes.
  • the prebaking process unlike the case of the thin film not undergoing the first thermosetting, that is, the prebaking process, the prebaking process not only increases the uniformity of the thin film and reduces the surface roughness, but also polyamic acid through prebaking in a vacuum state. It is preferable to obtain the above advantages through a prebaking process, such as minimizing thin film fine defects such as pores, pinholes, and cracks of the thin film by removing bubbles in the precursor.
  • Dehydration condensation reaction can be performed by hardening each sequentially for minutes.
  • the heat treatment curing process through the step temperature raising process is easy to secure the dimensional stability of the polyimide thin film, unlike the heat treatment curing process through the single temperature rising process, and has the advantage of suppressing the peeling of the thin film in the curing step, Compared to a single temperature increase process through the step-up process, low temperature curing is possible, and thus it is preferable to ensure transparency.
  • the dehydration condensation reaction is carried out by adding one selected from pyridine, acetic anhydride and mixtures thereof.
  • the dehydration condensation reaction is carried out by adding a mixture of pyridine and acetic anhydride, the cyclization reaction and water removal are different from the case where neither of the two substances is added or only one of the two substances is added. It is preferable in that it can perform effectively and can make a polyimide cyclization reaction occur.
  • the polyamic acid thus prepared was cast on soda-lime glass or silicon wafer substrate, and then 30 minutes at 80 ° C, 30 minutes at 110 ° C, 30 minutes at 130 ° C, 30 minutes at 160 ° C, 30 minutes at 190 ° C, and 220 ° C.
  • the polyimide thin film attached to the substrate was prepared by performing a dehydration condensation reaction at 30 ° C. for 30 minutes at 250 ° C. Thereafter, the substrate was immersed in ultrapure water to separate polyimide, and dried at 80 ° C. for 10 hours through a drying oven to prepare a polyimide thin film.
  • Test Example 1-1 2-Axis out of plane retardance measure
  • the thickness direction retardation value and the surface direction retardation value were calculated using an Axoscan system (Axometric Co., APM- 42H), and the results are shown in Table 1. Analysis conditions were 5 steps from -45 ° to 45 ° with 550 nm wavelength.
  • Example 1-1 1: 0: 1 45 0.21 440
  • Example 1-3 1: 0.5: 0.5 30 0.22 160
  • Example 1-4 1: 0.7: 0.3 30 0.14 167
  • Example 1-5 1: 0.9: 0.1 30 0.08 99 Comparative Example 1-2 1: 1: 0 30 0.27 95
  • the thickness direction retardation value of the polyimide thin film was significantly reduced from 440 nm to 95 nm with the increase of the bending structure and the rigid structure, but with the increase of the bending structure.
  • the decrease of was significantly reduced, and the maximum decrease was found to be close to the case of using only a bent structure (Comparative Example 1-2).
  • the planar phase delay value according to the structure of the polyimide thin film is in the range of several ohms, and due to the amorphous structure of the thin film, the difference was relatively smaller than the thickness direction phase delay value, and the thin film including only the bending structure (compare the Compared with Example 1-2, it was confirmed that the inclusion of a flexible structure is reduced to almost 40% as small as (Example 1-1), and the phase direction delay value is reduced to less than 30% at maximum ( Example 1-5).
  • the transmittance was analyzed using a UV-Vis transmittance spectrometer. Conditions were measured at 400 nm per minute from 200 nm to 800 nm.
  • the initial transmission wavelength for the polyimide thin film decreased from 420 nm to 372 nm as the bending structure and the rigid structure increased. It showed a higher initial transmission wavelength compared to the copolymer thin film.
  • the transmittance increased from 86% to 89% as the rigid and rigid structure increased.
  • the transmittance was 84% at 550 nm. Unlike the thin film, it was reduced. This is due to the high degree of polymerization obtained through the copolymerization of the folded structure and the flexible structure, thereby reducing the carbonization or oxidation of the unreacted material.
  • the polyimide thin films prepared in Examples 1-1 to 1-5 unlike the polyimide thin films prepared in Comparative Examples 1-1 and 1-2, have a low initial transmission wavelength and high transmittance at 550 nm through copolymerization. It was confirmed to have.
  • the decomposition initiation temperature (T d1 % ) of the copolymerized polyimide thin film having the bending structure and the flexible structure is 386 to 425 ° C.
  • the 5% decomposition temperature (T d5 % ) is 436 to 539 ° C. It showed high thermal stability.
  • the decomposition initiation temperature (T d1 % ) of the polyimide thin film using only the folded structure and the polyimide thin film using only the flexible structure was 257 and 253 °C, respectively
  • the 5% decomposition temperature (T d5 % ) was 310 and 511 °C, respectively. It showed poor thermal stability compared to Examples 1-1 to 1-5. This is due to the increased thermal stability of the polyimide thin film obtained by obtaining a high degree of polymerization through the copolymerization of the fold structure and the flexible structure.
  • Test Example 1-4 Differential Scanning Calorimeter Analysis
  • the glass transition temperature using a differential scanning calorimeter (DSC, TA Instrument Co., USA, Q10) (T g ) was analyzed and analyzed while increasing the temperature from 35 ° C. to 400 ° C. at a rate of 10 ° C./min.
  • the glass transition temperature of the polyimide thin film increased from 284 ° C to 353 ° C as the fold structure and the rigid structure increased.
  • the value was lower than that of the copolymer thin film using the structure. This is due to the high degree of polymerization obtained through copolymerization of the folded structure and the flexible structure.
  • Polya was prepared in the same manner as in Comparative Example 1-1 except that 0.004 mol of 2,2′-bis (trifluoromethyl) benzidine (TFDB) was used instead of 0.004 mol of 4,4′-oxyaniline. Mic acid and polyimide thin films were prepared.
  • TFDB 2,2′-bis (trifluoromethyl) benzidine
  • a polyamic acid and a polyimide thin film were prepared in the same manner as in Comparative Example 1-1, except that 0.004 mol of mBAPS was used instead of 0.004 mol of 4,4′-oxyaniline.
  • Test Example 2-1 2-Axis out of plane retardance measure
  • the thickness direction phase delay value and the surface direction phase delay in the same manner as in Test Example 1-1, except that the polyimide thin films prepared in Comparative Examples 2-1 and 2-2 and Example 2-1 were used. The value was analyzed.
  • Example 2-1 unlike the polyimide thin films prepared in Comparative Examples 2-1 and 2-2, when the birefringence on the plane was reduced through copolymerization of the bending structure and the flexible structure, the directional phase delay was observed. The decrease of the value and the phase delay value in the thickness direction was confirmed.
  • Test Example 2-2 Light Transmittance Measurement
  • the transmittance was analyzed in the same manner as in Test Example 1-2, except that the polyimide thin films prepared in Comparative Examples 2-1 and 2-2 and Example 2-1 were used.
  • Example 2-1 has a low initial transmission wavelength and high transmittance at 550 nm through copolymerization, unlike the polyimide thin films prepared in Comparative Examples 2-1 and 2-2. .
  • the decomposition temperature was analyzed in the same manner as in Test Example 1-3, except that the polyimide thin films prepared in Comparative Examples 2-1 and 2-2 and Example 2-1 were used.
  • the polyimide thin film prepared in Example 2-1 had a high degree of polymerization through copolymerization, unlike the polyimide thin films prepared in Comparative Examples 2-1 and 2-2, and exhibited high decomposition initiation temperature, thereby confirming high thermal stability. It was.
  • Test Example 2-4 Differential Scanning Calorimeter Analysis
  • the glass transition temperature was analyzed in the same manner as in Test Example 1-4, except that the polyimide thin films prepared in Comparative Examples 2-1 and 2-2 and Example 2-1 were used.
  • the polyimide thin film prepared in Example 2-1 had a high degree of polymerization through copolymerization, unlike the polyimide thin films prepared in Comparative Examples 2-1 and 2-2, and exhibited a high glass transition temperature (T g ). Thermal stability was confirmed.
  • a polyamic acid and a polyimide thin film were prepared in the same manner as in Comparative Example 1-1, except that 0.004 mol of APS was used instead of 0.004 mol of 4,4′-oxyaniline.
  • Test Example 3-1 2-Axis out of plane retardance measure
  • the thickness direction phase delay value and the surface direction phase delay in the same manner as in Test Example 1-1, except that the polyimide thin films prepared in Comparative Examples 3-1 and 3-2 and Example 3-1 were used. The value was analyzed.
  • Example 3-1 unlike the polyimide thin films prepared in Comparative Examples 3-1 and 3-2, when the birefringence on the plane was reduced through the copolymerization of the bending structure and the flexible structure, the directional phase delay was observed. The decrease of the phase delay value in the thickness direction was confirmed.
  • the transmittance was analyzed in the same manner as in Test Example 1-2, except that the polyimide thin films prepared in Comparative Examples 3-1 and 3-2 and Example 3-1 were used.
  • the polyimide thin film prepared in Example 3-1 has a low initial transmission wavelength and high transmittance at 550 nm through copolymerization, unlike the polyimide thin films prepared in Comparative Examples 3-1 and 3-2. .
  • the decomposition temperature was analyzed in the same manner as in Test Example 1-3, except that the polyimide thin films prepared in Comparative Examples 3-1 and 3-2 and Example 3-1 were used.
  • the polyimide thin film prepared in Example 3-1 had a high degree of polymerization through copolymerization, unlike the polyimide thin films prepared in Comparative Examples 3-1 and 3-2, and exhibited high decomposition initiation temperature, thereby confirming high thermal stability. It was.
  • Test Example 3-4 Differential Scanning Calorimeter Analysis
  • the glass transition temperature was analyzed in the same manner as in Test Example 1-4, except that the polyimide thin films prepared in Comparative Examples 3-1 and 3-2 and Example 3-1 were used.
  • the polyimide thin film prepared in Example 3-1 has a high degree of polymerization through copolymerization, unlike the polyimide thin films prepared in Comparative Examples 3-1 and 3-2, and exhibits a high glass transition temperature (T g ). Thermal stability was confirmed.
  • the polyimide resin according to the present invention is manufactured in the form of a thin film, thereby maintaining a clear transparency at various angles with low thickness direction phase delay, the next-generation transparent flexible display substrate material, semiconductor interlayer insulating material, flexible circuit requiring various functions and characteristics It can be applied to substrates, semiconductor devices and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 폴리아믹산 전구체, 고기능성 폴리이미드 박막 및 이의 제조방법에 관한 것이다. 본 발명에 따른 폴리아믹산 전구체는 내열성, 기계적 강도, 내화학성, 내스크래치성이 우수하며, 낮은 열팽창 계수, 높은 수분 및 기체 투과 방지 특성뿐만 아니라, 낮은 두께 방향 위상지연, 높은 광학적 투과도, 낮은 황색도 등을 보일 수 있다. 또한, 본 발명에 따른 폴리이미드 수지는 박막 형태로 제조되어, 낮은 두께 방향 위상지연으로 다양한 각도에서 선명한 투명성을 유지하여 차세대 투명 플렉서블 디스플레이용 기판 재료, 다양한 기능과 특성이 요구되는 반도체 층간 절연 물질, 연성 회로 기판, 반도체 소자 등에 적용이 가능하다.

Description

고투과성 저위상차 무색 투명 폴리이미드 박막 및 이의 제조방법
본 발명은 폴리아믹산 전구체, 고기능성 폴리이미드 박막 및 이의 제조방법에 관한 것이다.
폴리이미드는 헤테로이미드 고리를 가지는 폴리머로서 주로 이무수물과 디아민 단량체를 사용하여 제조된다. 우수한 내열성 이외에도 기계적 물성, 내화학성, 전기적 특성, 내마모성, 내후성 및 치수 안정성 등에 뛰어난 특성을 보여, 고온 접착제, 엔지니어링 플라스틱 소재, 우주 항공분야, 미소전자 분야, 광학 분야, 코팅, 성형, 복합재료 등 폭넓은 영역에 적용되고 있다. 또한, 세부 목적에 적합하도록 단량체와 합성법 등이 다양하고 정교하게 개발되면서 그 응용 범위가 점차 확대되고 있다.
그러나, 통상적인 폴리이미드 필름은 제조공정 중 열 이력 과정에 있어서 높은 방향족 고리 밀도가 형성되면서 갈색 또는 황색으로 착색되는데, 이에 의해서 색 변성뿐만 아니라 광투과성 저하까지 유발되어 광학 재료로는 이용하기에 어려운 점이 있다.
디스플레이 분야에서 제품의 경량화, 비파손화, 소형화가 중요시 되고 있어, 현재 사용되는 유리 기판보다 가벼울 뿐만 아니라 파손되지 않고, 합성이 용이하여, 박막형 필름의 제조가 가능한 무색 투명 플렉서블 디스플레이 기판용에 사용하려는 연구가 활발히 진행되고 있다.
따라서 최근에는 투명 플렉서블 디스플레이용 플라스틱 기판 후보로서 내열성 및 치수안정성이 우수한 폴리이미드 필름에 대한 관심이 증대되고 있다. 통상적인 폴리이미드의 색상은 갈색 또는 황색을 띠게 되므로, 색상 발현이 없는 무색 투명 폴리이미드를 개발하는 것이 필요하다.
본 발명은 낮은 위상지연 특성, 높은 투과도, 높은 분해 온도와 유리전이 온도도 등 광학 특성 및 열적 특성 등이 우수한 폴리이미드 및 이를 제조할 수 있는 폴리아믹산 전구체 및 그 제조방법을 제공하고자 한다.
본 발명의 일 측면 하기 화학식 1의 구조를 갖는 폴리아믹산에 관한 것이다.
[화학식 1]
Figure PCTKR2014007241-appb-I000001
위 화학식에서, Ar1, Ar2, Ar3, Ar4, m, n은 본 명세서에 정의된 바와 같다.
본 발명의 다른 측면은 본 발명의 여러 구현예에 따른 폴리아믹산 및 무기물 첨가제를 포함하는 폴리아믹산 조성물에 관한 것이다.
본 발명의 또 다른 측면은 상기 화학식 1의 폴리아믹산 제조방법에 관한 것이다.
본 발명의 또 다른 측면은 하기 화학식 2의 구조를 갖는 폴리이미드에 관한 것이다.
[화학식 2]
Figure PCTKR2014007241-appb-I000002
위 화학식에서, Ar1, Ar2, Ar3, Ar4, m, n은 본 명세서에 정의된 바와 같다.
본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 폴리이미드를 포함하는 폴리이미드 박막에 관한 것이다.
본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 폴리이미드 및 무기물 첨가제를 포함하는 폴리이미드 조성물에 관한 것이다.
본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 폴리이미드의 제조방법에 관한 것이다.
본 발명에 따른 폴리아믹산 전구체는 내열성, 기계적 강도, 내화학성, 내스크래치성이 우수하며, 낮은 열팽창 계수, 높은 수분 및 기체 투과 방지 특성뿐만 아니라, 낮은 두께 방향 위상지연, 높은 광학적 투과도, 낮은 황색도 등을 보일 수 있다.
본 발명에 따른 폴리이미드 수지는 박막 형태로 제조되어, 낮은 두께 방향 위상지연으로 다양한 각도에서 선명한 투명성을 유지하여 차세대 투명 플렉서블 디스플레이용 기판 재료, 다양한 기능과 특성이 요구되는 반도체 층간 절연 물질, 연성 회로 기판, 반도체 소자 등에 적용이 가능하다.
도 1은 본 발명의 일 실시예에 따라 제조된 폴리이미드 박막의 분해 개시 온도(Td1%)와 열적 안정성을 열중량 분석기(Thermogravimertric analyzer, TGA)를 이용하여 측정한 그래프이다.
이하에서, 본 발명의 여러 측면 및 다양한 구현예에 대해 더욱 구체적으로 살펴보도록 한다.
본 발명의 일 측면은 하기 화학식 1의 구조를 갖는 폴리아믹산에 관한 것이다.
[화학식 1]
Figure PCTKR2014007241-appb-I000003
이때, 상기 Ar1은 하기 화학식 1A의 화합물이 하기 화학식 1a 내지 화학식 1m 중 하나의 화합물이 되도록 하는 구조를 가진다.
[화학식 1A]
Figure PCTKR2014007241-appb-I000004
[화학식 1a]
Figure PCTKR2014007241-appb-I000005
[화학식 1b]
Figure PCTKR2014007241-appb-I000006
[화학식 1c]
Figure PCTKR2014007241-appb-I000007
[화학식 1d]
Figure PCTKR2014007241-appb-I000008
[화학식 1e]
Figure PCTKR2014007241-appb-I000009
[화학식 1f]
Figure PCTKR2014007241-appb-I000010
[화학식 1g]
Figure PCTKR2014007241-appb-I000011
[화학식 1h]
Figure PCTKR2014007241-appb-I000012
[화학식 1i]
Figure PCTKR2014007241-appb-I000013
[화학식 1j]
Figure PCTKR2014007241-appb-I000014
[화학식 1k]
Figure PCTKR2014007241-appb-I000015
[화학식 1l]
Figure PCTKR2014007241-appb-I000016
[화학식 1m]
Figure PCTKR2014007241-appb-I000017
또한, 상기 Ar2는 하기 화학식 2A의 화합물이 하기 화학식 2a 내지 화학식 2v의 화합물이 되도록 하는 구조를 가진다. 이하에서는 이러한 구조를 '꺾임 구조이면서 강직한 구조' 또는 '꺾임 구조' 또는 '강직한 구조'로 칭한다.
[화학식 2A]
Figure PCTKR2014007241-appb-I000018
[화학식 2a]
Figure PCTKR2014007241-appb-I000019
[화학식 2b]
Figure PCTKR2014007241-appb-I000020
[화학식 2c]
Figure PCTKR2014007241-appb-I000021
[화학식 2d]
Figure PCTKR2014007241-appb-I000022
[화학식 2e]
Figure PCTKR2014007241-appb-I000023
[화학식 2f]
Figure PCTKR2014007241-appb-I000024
[화학식 2g]
Figure PCTKR2014007241-appb-I000025
[화학식 2h]
Figure PCTKR2014007241-appb-I000026
[화학식 2i]
Figure PCTKR2014007241-appb-I000027
[화학식 2j]
Figure PCTKR2014007241-appb-I000028
[화학식 2k]
Figure PCTKR2014007241-appb-I000029
[화학식 2l]
Figure PCTKR2014007241-appb-I000030
[화학식 2m]
Figure PCTKR2014007241-appb-I000031
[화학식 2n]
Figure PCTKR2014007241-appb-I000032
[화학식 2o]
Figure PCTKR2014007241-appb-I000033
[화학식 2p]
Figure PCTKR2014007241-appb-I000034
[화학식 2q]
Figure PCTKR2014007241-appb-I000035
[화학식 2r]
Figure PCTKR2014007241-appb-I000036
[화학식 2s]
Figure PCTKR2014007241-appb-I000037
[화학식 2t]
Figure PCTKR2014007241-appb-I000038
[화학식 2u]
Figure PCTKR2014007241-appb-I000039
[화학식 2v]
Figure PCTKR2014007241-appb-I000040
또한, 상기 Ar3은 하기 화학식 3A의 화합물이 상기 화학식 1a 내지 화학식 1m 중 하나의 화합물이 되도록 하는 구조를 가진다.
[화학식 3A]
Figure PCTKR2014007241-appb-I000041
또한, 상기 Ar4는 하기 화학식 4A의 화합물이 하기 화학식 4a 내지 화학식 4r 중 하나의 화합물이 되도록 하는 구조를 가진다. 이하에서는 이러한 구조를 '선형 구조이면서 유연한 구조' 또는 '선형 구조' 또는 '유연한 구조'로 칭한다.
[화학식 4A]
Figure PCTKR2014007241-appb-I000042
[화학식 4a]
Figure PCTKR2014007241-appb-I000043
[화학식 4b]
Figure PCTKR2014007241-appb-I000044
[화학식 4c]
Figure PCTKR2014007241-appb-I000045
[화학식 4d]
Figure PCTKR2014007241-appb-I000046
[화학식 4e]
Figure PCTKR2014007241-appb-I000047
[화학식 4f]
Figure PCTKR2014007241-appb-I000048
[화학식 4g]
Figure PCTKR2014007241-appb-I000049
[화학식 4h]
Figure PCTKR2014007241-appb-I000050
[화학식 4i]
Figure PCTKR2014007241-appb-I000051
[화학식 4j]
Figure PCTKR2014007241-appb-I000052
[화학식 4k]
Figure PCTKR2014007241-appb-I000053
[화학식 4l]
Figure PCTKR2014007241-appb-I000054
[화학식 4m]
Figure PCTKR2014007241-appb-I000055
[화학식 4n]
Figure PCTKR2014007241-appb-I000056
[화학식 4o]
Figure PCTKR2014007241-appb-I000057
[화학식 4p]
Figure PCTKR2014007241-appb-I000058
[화학식 4q]
Figure PCTKR2014007241-appb-I000059
[화학식 4r]
Figure PCTKR2014007241-appb-I000060
또한, 상기 m과 상기 n은 서로 동일하거나 상이하고, 각각 독립적으로 50 내지 100,000의 자연수이다.
일 구현예에 따르면, (i) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2a의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4b의 화합물이 되도록 하는 구조를 가지는 폴리아믹산에 관한 것이다.
다른 구현예에 따르면, (ii) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2i의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4c의 화합물이 되도록 하는 구조를 가지는 폴리아믹산에 관한 것이다.
또 다른 구현예에 따르면, (iii) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2d의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4c의 화합물이 되도록 하는 구조를 가지는 폴리아믹산에 관한 것이다.
위에 열거된 여러 가지 조합 중에서도, 특히 바로 위 (i) 이나 (ii) 또는 (iii)과 같은 조합의 구조를 가지는 경우에, 다른 조합의 구조와 달리 꺾임 구조와 유연한 구조를 복합적으로 가질 수 있어 고분자를 이루는 단량체들의 높은 중합도를 나타내어 위상지연 특성 및 광학 특성뿐만 아니라 열적 특성 등도 향상되는 것을 확인하였다.
또 다른 구현예에 따르면, 상기 m : n의 비율이 0.1 : 0.9 내지 0.9 : 0.1이다. m : n의 비율에 대한 위 수치 범위의 하한 값 미만인 경우에는, 꺾임 구조가 주를 이루어 고분자를 이루는 단량체의 중합도가 낮아져 열적 안정성 및 분해 개시 온도가 위 범위에 비해 크게 저하되어, 위 수치 범위 내의 비율을 이루는 것이 바람직하다. 또한 m : n의 비율에 대한 위 수치 범위의 상한 값을 초과하는 경우에는, 위 수치 범위 내인 경우에 비해 유연한 구조가 주를 이루어 두께 방향 위상지연 특성이 높게 나올 뿐만 아니라 열적 안정성 및 분해 개시 온도가 낮아지게 되어, 위 수치 범위 내의 비율을 이루는 것이 바람직하다.
또 다른 구현예에 따르면, 본 발명의 여러 구현예에 따른 폴리아믹산 및 무기물 첨가제를 포함하는 폴리아믹산 조성물이 개시된다.
상기 무기물 첨가제의 예에는 탄산칼슘, 실리카, 알루미나, 티타늄 옥사이드, 망간 옥사이드, 지르코늄 옥사이드, 테트라에톡시실란, 몬모릴로나이트, 모데나이트, 지르코늄 인산, 포스포텅스틱산, 실리코텅스틱산, 포스포몰리브덴산, 헤테로다중산 및 이들 2종 이상의 혼합물이 포함되나, 이에 한정되지 않는다.
특히, 위 무기물 충전제로 결정형은 칼사이트(calsite)이고 입자 형상은 입방형인 탄산칼슘을 사용하는 것이 바람직하고, 그 중에서도 특히 20 ℃에서 비중이 23 내지 25 g/cm3이고, 백색도가 85% 내지 95%이며, BET 비표면적이 60 내지 85 m2/g이고, pH가 8 내지 10이며, 수분 함량이 0.1 내지 4 중량%인 칼사이트(calsite) 입방형인 탄산칼슘을 사용하는 것이 가장 바람직하다.
이때, 상기 무기물 첨가제는 상기 폴리이미드 100 중량부를 기준으로 0.01 내지 100 중량부, 바람직하게는 0.1 내지 20 중량부, 가장 바람직하게는 0.1 내지 5 중량부로 포함될 수 있다.
또 다른 구현예에 따르면, 상기 무기물 첨가제는 평균 입경이 1 내지 300 nm이다.
또 다른 구현예에 따르면, 상기 무기물 첨가제는 실란 커플링제로 표면이 개질된 것이다. 무기물 첨가제를 실란 커플링제로 표면 처리를 한 후에 폴리아믹산에 첨가하고 분산시키게 되면, 표면 처리 없이 첨가하고 분산시킨 경우에 비하여, 폴리아믹산 또는 이를 탈수축합시켜 얻은 폴리이미드와 첨가되어 분산된 무기물 첨가제와 계면 접착력이 향상되어 폴리아믹산 또는 이를 탈수축합시켜 얻은 폴리이미드에 물리적 및 화학적으로 균일하게 결합될 수 있다.
이에 의해서, 최종 얻어지는 폴리이미드 박막은 표면 처리 없이 첨가하고 분산시킨 경우에 비하여 더욱 높은 기계적 물성과 열적 물성을 보일 수 있을 뿐만 아니라, 표면 처리 없이 첨가하고 분산시킨 경우와 달리 투명성 저하가 전혀 발생하지 않게 되는 효과를 얻을 수 있다.
본 발명에 있어서, 무기물 첨가제를 폴리아믹산에 분산시키기 위해서 기계적 교반을 사용할 수도 있고 초음파 파쇄기를 이용할 수도 있으나, 이에 한정되지 않는다.
또한, 분산 시점에 대해서도 별도의 제한이 없는 바, 예를 들어 무기물 첨가제를 유기 용매에 먼저 분산시킨 후 폴리아믹산을 합성할 수도 있고, 폴리아믹산을 먼저 합성한 후 이를 무기물 첨가제와 함께 유기 용매에 투입하여 무기물 첨가제가 분산된 폴리아믹산을 제조할 수 있다. 다만, 무기물 첨가제를 유기 용매에 먼저 분산시킨 후 폴리아믹산을 합성하는 것이 무기물 첨가제가 폴리아믹산 사슬 내부 및 외부에 물리적 및 화학적 결합을 통해 분산될 수 있어 바람직하다.
본 발명의 다른 측면은 상기 화학식 1A의 화합물, 상기 화학식 2A의 화합물, 상기 화학식 3A의 화합물, 상기 화학식 4A의 화합물을 반응시키는 단계를 포함하는 상기 화학식 1의 폴리아믹산 제조방법에 관한 것이다.
일 구현예에 따르면, 상기 화학식 1A의 화합물과 상기 화학식 3A의 화합물의 몰수 합은 상기 화학식 2A의 화합물과 상기 화학식 4A의 화합물의 몰수 합이 비율이 1 : 0.0099 내지 1.0001이다.
위 몰수 합끼리의 비율에 대한 위 수치 범위의 하한 값 미만인 경우에는, 위 수치 범위 내의 경우와 달리 고분자를 이루는 단량체들의 중합도가 낮고, 이 무수물 또는 디아민의 미 반응 물질의 발생으로 박막 제조 및 열처리 과정에서 탄화 또는 산화하여, 위 수치 범위 내의 비율을 이루는 것이 바람직하다. 또한, 위 몰수 합끼리의 비율에 대한 위 수치 범위의 상한 값을 초과하는 경우에는, 위 수치 범위 내인 경우와 달리 고분자를 이루는 단량체들의 중합도가 낮고, 이 무수물 또는 디아민의 미 반응 물질의 발생으로 박막 제조 및 열처리 과정에서 탄화 또는 산화하여, 위 수치 범위 내의 비율을 이루는 것이 바람직하다. 다만, 가장 바람직하게는 위 몰수 합끼리의 비율이 1 :1이다.
다른 구현예에 따르면, 상기 반응은 N-메틸피롤리돈, N,N-디메틸아세트아미드, 디메틸포름아미드, 테트라하이드로퓨란, 디메틸설폭사이드, 아세토니트릴, 아세톤, 에틸아세테이트 및 이들 2종 이상의 혼합물 중에서 선택된 용매 내에서 수행된다. 위에 열거된 용매 중에서도, 특히 N-메틸피롤리돈, N,N-디메틸아세트아미드, 디메틸포름아미드 및 이들 2종 이상의 혼합 용매 중에서 선택해서 사용할 수 있는데, 이 경우 무기물 충전제를 균일하게 분산시키고 방향족 이무수물과 방향족 디아민의 반응성을 향상시켜 폴리아믹산 전구체의 수율을 크게 향상시킬 수 있어, 바람직하다.
또 다른 구현예에 따르면, 상기 반응은 질소 분위기에서 -20 ℃ 내지 5 ℃에서 12 내지 36 시간 동안 교반시킴으로써 수행된다.
본 발명의 또 다른 측면은 하기 화학식 2의 구조를 갖는 폴리이미드에 관한 것이다.
[화학식 2]
Figure PCTKR2014007241-appb-I000061
위 화학식에서, Ar1, Ar2, Ar3, Ar4, m, n은 위에서 정의한 바와 같다.
일 구현예에 따르면, (i) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2a의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4b의 화합물이 되도록 하는 구조를 가지는 폴리이미드에 관한 것이다.
다른 구현예에 따르면, (ii) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2i의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4c의 화합물이 되도록 하는 구조를 가지는 폴리이미드에 관한 것이다.
또 다른 구현예에 따르면, (iii) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2d의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4c의 화합물이 되도록 하는 구조를 가지는 폴리이미드에 관한 것이다.
위에 열거된 여러 가지 조합 중에서도, 특히 바로 위 (i)이나 (ii) 또는 (iii)과 같은 조합의 구조를 가지는 경우에, 꺾임 구조 또는 유연한 구조의 단량체만을 포함하는 구조와 달리 꺾임 구조와 유연한 구조를 복합적으로 가질 수 있어 고분자를 이루는 단량체들의 높은 중합도를 나타내어, 바람직하다.
또 다른 구현예에 따르면, 상기 m : n의 비율이 0.1 : 0.9 내지 0.9 : 0.1이다. m : n의 비율에 대한 위 수치 범위의 하한 값 미만인 경우에는, 위 수치 범위 내인 경우와 달리 꺾임 구조가 주를 이루어 고분자를 이루는 단량체의 중합도가 낮아져 열적 안정성 및 분해 개시 온도가 낮아지게 되어, 위 수치 범위 내의 비율을 이루는 것이 바람직하다. 또한 m : n의 비율에 대한 위 수치 범위의 상한 값을 초과하는 경우에는, 위 수치 범위 내인 경우와 달리 유연한 구조가 주를 이루어 두께 방향 위상지연 특성이 높게 나올 뿐만 아니라 열적 안정성 및 분해 개시 온도가 낮아지게 되어, 위 수치 범위 내의 비율을 이루는 것이 바람직하다.
본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 폴리이미드를 포함하는 폴리이미드 박막에 관한 것이다. 이때, 상기 박막의 두께는 10 내지 70 ㎛이다.
이와 같이, 본 발명의 여러 구현예에 따른 폴리이미드로 구성되고 두께가 10 내지 70 ㎛인 경우에, 위 두께에 대한 수치 범위의 하한 값 미만이거나 상한 값을 초과하는 경우와 달리, 두께 방향 위상지연 값은 440 내지 95 nm을 보일 수 있어 바람직하다. 또한, 이때 광 투과도는 98% 내지 60%일 수 있고, 1% 분해 온도는 280 내지 650 ℃일 수 있으며, 유리 전이 온도는 270 내지 400 ℃일 수 있다.
본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 폴리이미드 및 무기물 첨가제를 포함하는 폴리이미드 조성물에 관한 것이다.
상기 무기물 첨가제의 예에는 탄산칼슘, 실리카, 알루미나, 티타늄 옥사이드, 망간 옥사이드, 지르코늄 옥사이드, 테트라에톡시실란, 몬모릴로나이트, 모데나이트, 지르코늄 인산, 포스포텅스틱산, 실리코텅스틱산, 포스포몰리브덴산, 헤테로다중산 및 이들 2종 이상의 혼합물 등이 포함되나, 이에 한정되지 않는다.
상기 무기물 첨가제는 상기 폴리이미드 100 중량부를 기준으로 0.01 내지 10 중량부로 포함될 수 있다. 또한, 상기 무기물 첨가제는 평균 입경이 1 내지 300 nm일 수 있다.
일 구현예에 따르면, 상기 무기물 첨가제는 실란 커플링제로 표면이 개질된 것이다.
본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 폴리아믹산을 탈수축합 반응시키는 단계를 포함하는 상기 화학식 2 구조의 폴리이미드 제조방법에 관한 것이다.
일 구현예에 따르면, 상기 탈수축합 반응은 40 내지 300 ℃에서 80 내지 500 분간 열경화시켜 수행된다.
다른 구현예에 따르면, 상기 탈수축합 반응은 40 내지 90 ℃에서 20 내지 100 분간 제1 열경화시키고 나서, 100 내지 260 ℃에서 50분 내지 300 분간 제2 열경화시킴으로써 수행된다. 이와 같이, 제1 열경화, 즉 프리베이킹 공정을 거치지 않은 박막의 경우와 달리, 프리베이킹 공정을 통해 박막의 균일도를 높이고 표면 거칠기를 감소시킬 수 있을 뿐만 아니라, 진공 상태에서 프리베이킹을 통해 폴리아믹산 전구체 내부의 기포 제거를 통한 박막의 기공, 핀홀, 균열 등의 박막 미세 결함을 최소화하는 등, 프리베이킹 공정을 통해 위와 같은 이점을 얻을 수 있어 바람직하다.
더욱 구체적으로는, 진공 오븐을 이용하여 40 내지 60 ℃에서 10 내지 50분간, 70 내지 90 ℃에서 10 내지 50 분간 각각 순차적으로 프리베이킹 한 후, 경화오븐을 이용하여 100 내지 115 ℃에서 10 내지 50 분간, 120 내지 140 ℃에서 10 내지 50 분간, 150 내지 170 ℃에서 10 내지 50 분간, 180 내지 200 ℃에서 10 내지 50 분간, 210 내지 230 ℃에서 10 내지 50 분간, 240 내지 260 ℃에서 10 내지 50 분간 각각 순차적으로 경화시킴으로써 탈수축합 반응을 수행할 수 있다.
이와 같이, 단계 승온 과정을 통한 열처리 경화 과정은 단일 승온 과정을 통한 열처리 경화 과정과는 달리 폴리이미드 박막의 치수 안정성을 확보에 용이하며, 경화 단계에서 박막의 박리를 억제시키는 장점이 있을 뿐만 아니라, 단계 승온 과정을 통하여 단일 승온 과정에 비하여 저온 경화가 가능하여 투명성 확보에 용이하여 바람직하다.
또 다른 구현예에 따르면, 상기 탈수축합 반응은 피리딘, 아세트산 무수물 및 이들의 혼합물 중에서 선택된 것을 첨가하여 수행된다. 특히, 상기 탈수축합 반응을 피리딘과 아세트산 무수물의 혼합물을 첨가하여 수행하는 경우, 위 두 물질을 전혀 첨가하지 않거나, 위 두 물질 중 하나의 물질만 첨가하는 경우와 달리, 고리화 반응 및 물 제거를 효과적으로 수행할 수 있어, 폴리이미드 고리화 반응을 일어날 수 있게 할 수 있다는 점에서 바람직하다.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
실시예
비교예 1-1: 폴리아믹산 및 폴리이미드 박막의 제조
Figure PCTKR2014007241-appb-I000062
기계식 교반기 및 질소 유입관을 장치한 25 ℃ 질소 분위기의 50 mL의 삼각 플라스크에 4,4`-옥시아닐린(이하 ODA'라고도 함) 0.004 몰을 N,N-디메틸아세트아미드에 완전히 녹인 후, 이무수물인 3,3`,4,4`-벤조페논 테트라카르복실산 이무수물(benzophenone tetracarboxylic dianhydride, 이하 'BTDA'라고도 함) 0.004 몰을 추가로 넣고, 얼음물 중탕(ice bath)을 이용하여 0 ℃로 냉각시켜 저온으로 유지하면서, 72 시간 동안 교반하여 점성이 있는 폴리아믹산을 제조하였다.
이렇게 제조한 폴리아믹산을 소다라임 글라스 또는 실리콘 웨이퍼 기판에 캐스팅하고 나서, 80 ℃에서 30 분, 110 ℃에서 30 분, 130 ℃에서 30 분, 160 ℃에서 30 분, 190 ℃에서 30 분, 220 ℃에서 30 분, 250 ℃에서 30 분 동안 탈수축합 반응을 수행하여 기판에 부착되어 있는 폴리이미드 박막을 제조하였다. 그 후, 위 기판을 초순수에 침지시켜 폴리이미드를 분리하고, 건조 오븐을 통해 80 ℃에서 10 시간 동안 건조하여 폴리이미드 박막을 제조하였다.
실시예 1-1: 폴리아믹산 및 두께 방향 저위상지연 폴리이미드 박막의 제조
Figure PCTKR2014007241-appb-I000063
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 4,4-옥시아닐린 0.0036 몰과 2,2-비스(3-이미노-4-히드록시페닐)헥사플루오로프로판 0.0004 몰의 혼합물(몰비=9:1)을 사용하는 것을 제외하고는, 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
실시예 1-2: 폴리아믹산 및 두께 방향 저위상지연 폴리이미드 박막의 제조
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 4,4-옥시아닐린 0.0028 몰과 2,2-비스(3-이미노-4-히드록시페닐)헥사플루오로프로판(이하 AHHFP'라고도 함) 0.0012 몰의 혼합물(몰비=7:3)을 사용하는 것을 제외하고는, 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
실시예 1-3: 폴리아믹산 및 두께 방향 저위상지연 폴리이미드 박막의 제조
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 4,4-옥시아닐린 0.002 몰과 2,2-비스(3-이미노-4-히드록시페닐)헥사플루오로프로판 0.002 몰의 혼합물(몰비=5:5)을 사용하는 것을 제외하고는, 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
실시예 1-4: 폴리아믹산 및 두께 방향 저위상지연 폴리이미드 박막의 제조
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 4,4-옥시아닐린 0.0012 몰과 2,2-비스(3-이미노-4-히드록시페닐)헥사플루오로프로판 0.0028 몰의 혼합물(몰비=3:7)을 사용하는 것을 제외하고는, 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
실시예 1-5: 폴리아믹산 및 두께 방향 저위상지연 폴리이미드 박막의 제조
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 4,4-옥시아닐린 0.0004 몰과 2,2-비스(3-이미노-4-히드록시페닐)헥사플루오로프로판 0.0036 몰의 혼합물(몰비=1:9)을 사용하는 것을 제외하고는, 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
비교예 1-2: 폴리아믹산 및 폴리이미드 박막의 제조
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 2,2-비스(3-이미노-4-히드록시페닐)헥사플루오로프로판 0.004 몰을 사용하는 것을 제외하고는, 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
시험예 1-1: 위상지연 특성 분석(2-Axis out of plane retardance measure)
위 비교예 1-1과 1-2 및 실시예 1-1 내지 1-5에서 제조된 폴리이미드 박막에 대해, 두께 방향 위상지연 값과 면 방향 위상지연 값을 Axoscan system(Axometric Co., APM-42H)로 분석하였으며, 그 결과를 표 1에 나타내었다. 분석 조건은 550 nm 파장으로 -45°에서 45°까지 5 step으로 하였다.
표 1
BTDA:AHHFP:ODA 두께 (㎛) Ro (nm) Rth (nm)
비교예 1-1 1:0:1 45 0.21 440
실시예 1-1 1:0.1:0.3 40 0.11 412
실시예 1-2 1:0.3:0.7 35 0.31 300
실시예 1-3 1:0.5:0.5 30 0.22 160
실시예 1-4 1:0.7:0.3 30 0.14 167
실시예 1-5 1:0.9:0.1 30 0.08 99
비교예 1-2 1:1:0 30 0.27 95
표 1에 도시한 바와 같이, 폴리이미드 박막의 두께 방향 위상지연 값은 꺾임 구조이면서 강직한 구조의 증가에 따라 440 nm에서 95 nm로 현저하게 줄어들었지만, 꺾임 구조의 증가에 따라 두께 방향 위상지연 값의 감소폭은 현저하게 줄어들었고, 최대로는 거의 꺾임 구조만을 사용한 경우(비교예 1-2)에 근접하도록 감소함을 확인하였다.
또한, 폴리이미드 박막의 구조에 따른 면 방향 위상지연 값은 수 옴스트롱 내의 범위로, 박막의 비정질 구조에 기인하여 그 차이가 두께 방향 위상지연 값보다 상대적으로 작았고, 꺾임 구조만을 포함하는 박막(비교예 1-2)에 비해, 유연한 구조를 함께 포함하는 경우 작게는 거의 40% 수준으로 감소하고(실시예 1-1), 최대로는 30% 미만으로 면 방향 위상지연 값이 줄어드는 것을 확인하였다(실시예 1-5).
시험예 1-2: 광투과도 측정
위 비교예 1-1과 1-2 및 실시예 1-1 내지 1-5에서 제조된 폴리이미드 박막에 대해, UV-Vis 투과 분광기(UV-visible transmittance spectrometer)를 이용하여 투과도를 분석하였으며, 분석 조건은 200 nm에서 800 nm까지 분당 400 nm 속도로 측정하였다.
폴리이미드 박막에 대한 초기 투과 파장은 꺾임 구조이면서 강직한 구조가 증가하면서 420 nm에서 372 nm까지 감소하였지만, 꺾임 구조만 사용된 박막의 경우에는 초기 투과 파장이 425 nm로 꺾임 구조와 유연한 구조를 이용한 공중합 박막에 비해 더 높은 초기 투과 파장을 보였다.
또한 550 nm에서 투과도는 꺾임 구조이면서 강직한 구조가 증가함에 따라 86%에서 89%로 증가하였지만, 꺾임 구조만 사용된 박막의 경우에는 550 nm에서 투과도가 84%로 꺾임 구조와 유연한 구조를 이용한 공중합 박막과 달리 감소하였다. 이는 꺾임 구조와 유연한 구조의 공중합을 통하여 높은 중합도를 얻어, 미 반응물의 탄화 또는 산화가 줄어드는 것에 기인하는 것이다.
이와 같이, 실시예 1-1 내지 1-5에서 제조한 폴리이미드 박막은 비교예 1-1과 1-2에서 제조한 폴리이미드 박막과 달리 공중합을 통하여 낮아진 초기 투과 파장과 550 nm에서 높은 투과도를 갖는 것을 확인하였다.
시험예 1-3: 분해 온도 측정
위 비교예 1-1과 1-2 및 실시예 1-1 내지 1-5에서 제조된 폴리이미드 박막에 대해, 열중량 분석기(TGA, TA Instrument Co., USA, Q50)를 이용하여 분해 개시 온도(Td1%, Td5%)와 열적 안정성을 분석하였으며, 그 결과를 도 1에 나타내었다. 20 /분 속도로 35 ℃에서 800 ℃까지 승온하면서 분석하였다.
도 1에 도시한 바와 같이, 꺾임 구조와 유연한 구조의 공중합 폴리이미드 박막의 분해 개시 온도(Td1 %)는 386 내지 425 ℃이고, 5% 분해온도(Td5 %)는 436 내지 539 ℃로 매우 높은 열적 안정성을 보였다. 하지만, 꺾임 구조만을 사용한 폴리이미드 박막과 유연한 구조만을 사용한 폴리이미드 박막의 분해 개시 온도(Td1 %)는 각각 257 와 253 ℃이고, 5% 분해온도(Td5 %)는 각각 310 와 511 ℃로 실시예 1-1 내지 실시예 1-5에 비해 저조한 열적 안정성을 보였다. 이는 꺾임 구조와 유연한 구조의 공중합을 통하여 높은 중합도를 얻어 폴리이미드 박막의 열적 안정성이 증가함에 기인하는 것이다.
시험예 1-4: 시차 주사 열량계 분석
위 비교예 1-1과 1-2 및 실시예 1-1 내지 1-5에서 제조된 폴리이미드 박막에 대해, 시차 주사 열량계(DSC, TA Instrument Co., USA, Q10)를 이용하여 유리전이 온도(Tg)를 분석하였으며, 10 ℃/분의 속도로 35 ℃에서 400 ℃까지 승온하면서 분석하였다.
그 결과, 폴리이미드 박막의 유리전이 온도는 꺾임 구조이면서 강직한 구조가 증가함에 따라 284 ℃에서 353 ℃까지 증가하였지만, 꺾임 구조만 사용된 박막의 경우에는 유리전이 온도가 270 ℃로 꺾임 구조와 유연한 구조를 이용한 공중합 박막에 비해 낮은 값을 보였다. 이는 꺾임 구조와 유연한 구조의 공중합을 통하여 높은 중합도를 얻은 것에 기인한다.
비교예 2-1: 폴리아믹산 및 폴리이미드 박막의 제조
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 2,2`-비스(트리플루오로메틸)벤지딘 (TFDB) 0.004 몰을 사용하는 것을 제외하고는 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
실시예 2-1: 폴리아믹산 및 두께 방향 저위상지연 폴리이미드 박막의 제조
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 TFDB 0.002 몰과 비스[4-(3-아미노페녹시)페닐]설폰 (mBAPS) 0.002 몰의 혼합물(몰비=5:5)을 사용하는 것을 제외하고는, 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
비교예 2-2: 폴리아믹산 및 폴리이미드 박막의 제조
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 mBAPS 0.004 몰을 사용하는 것을 제외하고는, 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
시험예 2-1: 위상지연 특성 분석(2-Axis out of plane retardance measure)
위 비교예 2-1과 2-2 및 실시예 2-1에서 제조된 폴리이미드 박막을 사용하는 것을 제외하고는, 위 시험예 1-1과 동일한 방법으로 두께 방향 위상지연 값과 면 방향 위상지연 값을 분석하였다.
그 결과, 실시예 2-1에서 제조한 폴리이미드 박막은 비교예 2-1과 2-2에서 제조한 폴리이미드 박막과 달리 꺾임 구조와 유연한 구조의 공중합을 통해 평면상의 복굴절이 줄어 면 방향 위상지연 값과 두께 방향 위상지연 값의 감소를 확인하였다.
시험예 2-2: 광투과도 측정
위 비교예 2-1과 2-2 및 실시예 2-1에서 제조된 폴리이미드 박막을 사용하는 것을 제외하고는, 위 시험예 1-2과 동일한 방법으로 투과도를 분석하였다.
그 결과, 실시예 2-1에서 제조한 폴리이미드 박막은 비교예 2-1과 2-2에서 제조한 폴리이미드 박막과 달리 공중합을 통하여 낮은 초기 투과 파장과 550 nm에서 높은 투과도를 갖는 것을 확인하였다.
시험예 2-3: 분해 온도 측정
위 비교예 2-1과 2-2 및 실시예 2-1에서 제조된 폴리이미드 박막을 사용하는 것을 제외하고는, 위 시험예 1-3과 동일한 방법으로 분해 온도를 분석하였다.
그 결과, 실시예 2-1에서 제조한 폴리이미드 박막은 비교예 2-1과 2-2에서 제조한 폴리이미드 박막과 달리 공중합을 통하여 높은 중합도를 가져 높은 분해 개시 온도를 나타내어 높은 열적 안정성을 확인하였다.
시험예 2-4: 시차 주사 열량계 분석
위 비교예 2-1과 2-2 및 실시예 2-1에서 제조된 폴리이미드 박막을 사용하는 것을 제외하고는, 위 시험예 1-4과 동일한 방법으로 유리전이 온도를 분석하였다.
그 결과, 실시예 2-1에서 제조한 폴리이미드 박막은 비교예 2-1과 2-2에서 제조한 폴리이미드 박막과 달리 공중합을 통하여 높은 중합도를 가져 높은 유리전이 온도(Tg)를 나타내어 높은 열적 안정성을 확인하였다.
비교예 3-1: 폴리아믹산 및 폴리이미드 박막의 제조
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 2,2-비스[4-(4-아미노페녹시)페닐]헥사플루오로프로판 (6FBAPP) 0.004 몰을 사용하는 것을 제외하고는 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
실시예 3-1: 폴리아믹산 및 두께 방향 저위상지연 폴리이미드 박막의 제조
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 6FBAPP 0.002 몰과 비스(3-아미노페닐)설폰 (APS) 0.002 몰의 혼합물(몰비=5:5)을 사용하는 것을 제외하고는, 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
비교예 3-2: 폴리아믹산 및 폴리이미드 박막의 제조
4,4`-옥시아닐린 0.004 몰을 사용하는 대신에 APS 0.004 몰을 사용하는 것을 제외하고는, 위 비교예 1-1과 동일한 방법으로 폴리아믹산과 폴리이미드 박막을 제조하였다.
시험예 3-1: 위상지연 특성 분석(2-Axis out of plane retardance measure)
위 비교예 3-1과 3-2 및 실시예 3-1에서 제조된 폴리이미드 박막을 사용하는 것을 제외하고는, 위 시험예 1-1과 동일한 방법으로 두께 방향 위상지연 값과 면 방향 위상지연 값을 분석하였다.
그 결과, 실시예 3-1에서 제조한 폴리이미드 박막은 비교예 3-1과 3-2에서 제조한 폴리이미드 박막과 달리 꺾임 구조와 유연한 구조의 공중합을 통해 평면상의 복굴절이 줄어 면 방향 위상지연과 두께 방향 위상지연 값의 감소를 확인하였다.
시험예 3-2: 광투과도 측정
위 비교예 3-1과 3-2 및 실시예 3-1에서 제조된 폴리이미드 박막을 사용하는 것을 제외하고는, 위 시험예 1-2과 동일한 방법으로 투과도를 분석하였다.
그 결과, 실시예 3-1에서 제조한 폴리이미드 박막은 비교예 3-1과 3-2에서 제조한 폴리이미드 박막과 달리 공중합을 통하여 낮은 초기 투과 파장과 550 nm에서 높은 투과도를 갖는 것을 확인하였다.
시험예 3-3: 분해 온도 측정
위 비교예 3-1과 3-2 및 실시예 3-1에서 제조된 폴리이미드 박막을 사용하는 것을 제외하고는, 위 시험예 1-3과 동일한 방법으로 분해 온도를 분석하였다.
그 결과, 실시예 3-1에서 제조한 폴리이미드 박막은 비교예 3-1과 3-2에서 제조한 폴리이미드 박막과 달리 공중합을 통하여 높은 중합도를 가져 높은 분해 개시 온도를 나타내어 높은 열적 안정성을 확인하였다.
시험예 3-4: 시차 주사 열량계 분석
위 비교예 3-1과 3-2 및 실시예 3-1에서 제조된 폴리이미드 박막을 사용하는 것을 제외하고는, 위 시험예 1-4과 동일한 방법으로 유리전이 온도를 분석하였다.
그 결과, 실시예 3-1에서 제조한 폴리이미드 박막은 비교예 3-1과 3-2에서 제조한 폴리이미드 박막과 달리 공중합을 통하여 높은 중합도를 가져 높은 유리전이 온도(Tg)를 나타내어 높은 열적 안정성을 확인하였다.
본 발명에 따른 폴리이미드 수지는 박막 형태로 제조되어, 낮은 두께 방향 위상지연으로 다양한 각도에서 선명한 투명성을 유지하여 차세대 투명 플렉서블 디스플레이용 기판 재료, 다양한 기능과 특성이 요구되는 반도체 층간 절연 물질, 연성 회로 기판, 반도체 소자 등에 적용이 가능하다.

Claims (20)

  1. 하기 화학식 1의 구조를 갖는 폴리아믹산:
    [화학식 1]
    Figure PCTKR2014007241-appb-I000064
    상기 Ar1은 하기 화학식 1A의 화합물이 하기 화학식 1a 내지 화학식 1m 중 하나의 화합물이 되도록 하는 구조를 가지고;
    [화학식 1A]
    Figure PCTKR2014007241-appb-I000065
    [화학식 1a]
    Figure PCTKR2014007241-appb-I000066
    [화학식 1b]
    Figure PCTKR2014007241-appb-I000067
    [화학식 1c]
    Figure PCTKR2014007241-appb-I000068
    [화학식 1d]
    Figure PCTKR2014007241-appb-I000069
    [화학식 1e]
    Figure PCTKR2014007241-appb-I000070
    [화학식 1f]
    Figure PCTKR2014007241-appb-I000071
    [화학식 1g]
    Figure PCTKR2014007241-appb-I000072
    [화학식 1h]
    Figure PCTKR2014007241-appb-I000073
    [화학식 1i]
    Figure PCTKR2014007241-appb-I000074
    [화학식 1j]
    Figure PCTKR2014007241-appb-I000075
    [화학식 1k]
    Figure PCTKR2014007241-appb-I000076
    [화학식 1l]
    Figure PCTKR2014007241-appb-I000077
    [화학식 1m]
    Figure PCTKR2014007241-appb-I000078
    상기 Ar2는 하기 화학식 2A의 화합물이 하기 화학식 2a 내지 화학식 2v의 화합물이 되도록 하는 구조를 가지며;
    [화학식 2A]
    Figure PCTKR2014007241-appb-I000079
    [화학식 2a]
    Figure PCTKR2014007241-appb-I000080
    [화학식 2b]
    Figure PCTKR2014007241-appb-I000081
    [화학식 2c]
    Figure PCTKR2014007241-appb-I000082
    [화학식 2d]
    Figure PCTKR2014007241-appb-I000083
    [화학식 2e]
    Figure PCTKR2014007241-appb-I000084
    [화학식 2f]
    Figure PCTKR2014007241-appb-I000085
    [화학식 2g]
    Figure PCTKR2014007241-appb-I000086
    [화학식 2h]
    Figure PCTKR2014007241-appb-I000087
    [화학식 2i]
    Figure PCTKR2014007241-appb-I000088
    [화학식 2j]
    Figure PCTKR2014007241-appb-I000089
    [화학식 2k]
    Figure PCTKR2014007241-appb-I000090
    [화학식 2l]
    Figure PCTKR2014007241-appb-I000091
    [화학식 2m]
    Figure PCTKR2014007241-appb-I000092
    [화학식 2n]
    Figure PCTKR2014007241-appb-I000093
    [화학식 2o]
    Figure PCTKR2014007241-appb-I000094
    [화학식 2p]
    Figure PCTKR2014007241-appb-I000095
    [화학식 2q]
    Figure PCTKR2014007241-appb-I000096
    [화학식 2r]
    Figure PCTKR2014007241-appb-I000097
    [화학식 2s]
    Figure PCTKR2014007241-appb-I000098
    [화학식 2t]
    Figure PCTKR2014007241-appb-I000099
    [화학식 2u]
    Figure PCTKR2014007241-appb-I000100
    [화학식 2v]
    Figure PCTKR2014007241-appb-I000101
    상기 Ar3은 하기 화학식 3A의 화합물이 상기 화학식 1a 내지 화학식 1m 중 하나의 화합물이 되도록 하는 구조를 가지고;
    [화학식 3A]
    Figure PCTKR2014007241-appb-I000102
    상기 Ar4는 하기 화학식 4A의 화합물이 하기 화학식 4a 내지 화학식 4r 중 하나의 화합물이 되도록 하는 구조를 가지며;
    [화학식 4A]
    Figure PCTKR2014007241-appb-I000103
    [화학식 4a]
    Figure PCTKR2014007241-appb-I000104
    [화학식 4b]
    Figure PCTKR2014007241-appb-I000105
    [화학식 4c]
    Figure PCTKR2014007241-appb-I000106
    [화학식 4d]
    Figure PCTKR2014007241-appb-I000107
    [화학식 4e]
    Figure PCTKR2014007241-appb-I000108
    [화학식 4f]
    Figure PCTKR2014007241-appb-I000109
    [화학식 4g]
    Figure PCTKR2014007241-appb-I000110
    [화학식 4h]
    Figure PCTKR2014007241-appb-I000111
    [화학식 4i]
    Figure PCTKR2014007241-appb-I000112
    [화학식 4j]
    Figure PCTKR2014007241-appb-I000113
    [화학식 4k]
    Figure PCTKR2014007241-appb-I000114
    [화학식 4l]
    Figure PCTKR2014007241-appb-I000115
    [화학식 4m]
    Figure PCTKR2014007241-appb-I000116
    [화학식 4n]
    Figure PCTKR2014007241-appb-I000117
    [화학식 4o]
    Figure PCTKR2014007241-appb-I000118
    [화학식 4p]
    Figure PCTKR2014007241-appb-I000119
    [화학식 4q]
    Figure PCTKR2014007241-appb-I000120
    [화학식 4r]
    Figure PCTKR2014007241-appb-I000121
    상기 m과 상기 n은 서로 동일하거나 상이하고, 각각 독립적으로 50 내지 100,000의 자연수이다.
  2. 제1항에 있어서, (i) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2a의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4b의 화합물이 되도록 하는 구조를 가지며; 또는
    (ii) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2i의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4c의 화합물이 되도록 하는 구조를 가지며; 또는
    (iii) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2d의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4c의 화합물이 되도록 하는 구조를 가지는 것을 특징으로 하는 폴리아믹산.
  3. 제1항에 있어서, 상기 m : n의 비율이 0.1 : 0.9 내지 0.9 : 0.1인 것을 특징으로 하는 폴리아믹산.
  4. 제1항 내지 제3항 중 어느 한 항에 따른 폴리아믹산 및 무기물 첨가제를 포함하는 폴리아믹산 조성물로서,
    상기 무기물 첨가제는 탄산칼슘, 실리카, 알루미나, 티타늄 옥사이드, 망간 옥사이드, 지르코늄 옥사이드, 테트라에톡시실란, 몬모릴로나이트, 모데나이트, 지르코늄 인산, 포스포텅스틱산, 실리코텅스틱산, 포스포몰리브덴산, 헤테로다중산 및 이들 2종 이상의 혼합물 중에서 선택되고,
    상기 무기물 첨가제는 상기 폴리이미드 100 중량부를 기준으로 0.01 내지 20 중량부로 포함되는 것을 특징으로 하는 폴리아믹산 조성물.
  5. 제4항에 있어서, 상기 무기물 첨가제는 평균 입경이 1 내지 300 nm인 것을 특징으로 하는 폴리아믹산 조성물.
  6. 제8항에 있어서, 상기 무기물 첨가제는 실란 커플링제로 표면이 개질된 것을 특징으로 하는 폴리아믹산 조성물.
  7. 하기 화학식 1A의 화합물, 하기 화학식 2A의 화합물, 하기 화학식 3A의 화합물, 하기 화학식 4A의 화합물을 반응시키는 단계를 포함하는 하기 화학식 1의 폴리아믹산 제조방법:
    [화학식 1]
    Figure PCTKR2014007241-appb-I000122
    [화학식 1A]
    Figure PCTKR2014007241-appb-I000123
    [화학식 2A]
    Figure PCTKR2014007241-appb-I000124
    [화학식 3A]
    Figure PCTKR2014007241-appb-I000125
    [화학식 4A]
    Figure PCTKR2014007241-appb-I000126
    상기 화학식 1A의 화합물은 하기 화학식 1a 내지 화학식 1m 중 하나의 구조를 가지고;
    [화학식 1a]
    Figure PCTKR2014007241-appb-I000127
    [화학식 1b]
    Figure PCTKR2014007241-appb-I000128
    [화학식 1c]
    Figure PCTKR2014007241-appb-I000129
    [화학식 1d]
    Figure PCTKR2014007241-appb-I000130
    [화학식 1e]
    Figure PCTKR2014007241-appb-I000131
    [화학식 1f]
    Figure PCTKR2014007241-appb-I000132
    [화학식 1g]
    Figure PCTKR2014007241-appb-I000133
    [화학식 1h]
    Figure PCTKR2014007241-appb-I000134
    [화학식 1i]
    Figure PCTKR2014007241-appb-I000135
    [화학식 1j]
    Figure PCTKR2014007241-appb-I000136
    [화학식 1k]
    Figure PCTKR2014007241-appb-I000137
    [화학식 1l]
    Figure PCTKR2014007241-appb-I000138
    [화학식 1m]
    Figure PCTKR2014007241-appb-I000139
    상기 화학식 2A의 화합물은 하기 화학식 2a 내지 화학식 2v 중 하나의 구조를 가지며;
    [화학식 2a]
    Figure PCTKR2014007241-appb-I000140
    [화학식 2b]
    Figure PCTKR2014007241-appb-I000141
    [화학식 2c]
    Figure PCTKR2014007241-appb-I000142
    [화학식 2d]
    Figure PCTKR2014007241-appb-I000143
    [화학식 2e]
    Figure PCTKR2014007241-appb-I000144
    [화학식 2f]
    Figure PCTKR2014007241-appb-I000145
    [화학식 2g]
    Figure PCTKR2014007241-appb-I000146
    [화학식 2h]
    Figure PCTKR2014007241-appb-I000147
    [화학식 2i]
    Figure PCTKR2014007241-appb-I000148
    [화학식 2j]
    Figure PCTKR2014007241-appb-I000149
    [화학식 2k]
    Figure PCTKR2014007241-appb-I000150
    [화학식 2l]
    Figure PCTKR2014007241-appb-I000151
    [화학식 2m]
    Figure PCTKR2014007241-appb-I000152
    [화학식 2n]
    Figure PCTKR2014007241-appb-I000153
    [화학식 2o]
    Figure PCTKR2014007241-appb-I000154
    [화학식 2p]
    Figure PCTKR2014007241-appb-I000155
    [화학식 2q]
    Figure PCTKR2014007241-appb-I000156
    [화학식 2r]
    Figure PCTKR2014007241-appb-I000157
    [화학식 2s]
    Figure PCTKR2014007241-appb-I000158
    [화학식 2t]
    Figure PCTKR2014007241-appb-I000159
    [화학식 2u]
    Figure PCTKR2014007241-appb-I000160
    [화학식 2v]
    Figure PCTKR2014007241-appb-I000161
    상기 화학식 3A의 화합물은 상기 화학식 1a 내지 화학식 1m 중 하나의 구조를 가지고;
    상기 화학식 4A의 화합물은 하기 화학식 4a 내지 화학식 4r 중 하나의 구조를 가지며;
    [화학식 4a]
    Figure PCTKR2014007241-appb-I000162
    [화학식 4b]
    Figure PCTKR2014007241-appb-I000163
    [화학식 4c]
    Figure PCTKR2014007241-appb-I000164
    [화학식 4d]
    Figure PCTKR2014007241-appb-I000165
    [화학식 4e]
    Figure PCTKR2014007241-appb-I000166
    [화학식 4f]
    Figure PCTKR2014007241-appb-I000167
    [화학식 4g]
    Figure PCTKR2014007241-appb-I000168
    [화학식 4h]
    Figure PCTKR2014007241-appb-I000169
    [화학식 4i]
    Figure PCTKR2014007241-appb-I000170
    [화학식 4j]
    Figure PCTKR2014007241-appb-I000171
    [화학식 4k]
    Figure PCTKR2014007241-appb-I000172
    [화학식 4l]
    Figure PCTKR2014007241-appb-I000173
    [화학식 4m]
    Figure PCTKR2014007241-appb-I000174
    [화학식 4n]
    Figure PCTKR2014007241-appb-I000175
    [화학식 4o]
    Figure PCTKR2014007241-appb-I000176
    [화학식 4p]
    Figure PCTKR2014007241-appb-I000177
    [화학식 4q]
    Figure PCTKR2014007241-appb-I000178
    [화학식 4r]
    Figure PCTKR2014007241-appb-I000179
    상기 m과 상기 n은 서로 동일하거나 상이하고, 각각 독립적으로 50 내지 100,000의 자연수이다.
  8. 제7항에 있어서, 상기 화학식 1A의 화합물과 상기 화학식 3A의 화합물의 몰수 합은 상기 화학식 2A의 화합물과 상기 화학식 4A의 화합물의 몰수 합이 비율이 1 : 0.0099 내지 1.0001인 것을 특징으로 하는 폴리아믹산 제조방법.
  9. 제7항에 있어서, 상기 반응은 N-메틸피롤리돈, N,N-디메틸아세트아미드, 디메틸포름아미드, 테트라하이드로퓨란, 디메틸설폭사이드, 아세토니트릴, 아세톤, 에틸아세테이트 및 이들 2종 이상의 혼합물 중에서 선택된 용매 내에서 수행되는 것을 특징으로 하는 폴리아믹산 제조방법.
  10. 제7항에 있어서, 상기 반응은 질소 분위기에서 -20 내지 5 ℃에서 12 내지 36 시간 동안 교반시킴으로써 수행되는 것을 특징으로 하는 폴리아믹산 제조방법.
  11. 하기 화학식 2의 구조를 갖는 폴리이미드:
    [화학식 2]
    Figure PCTKR2014007241-appb-I000180
    상기 Ar1은 하기 화학식 1A의 화합물이 하기 화학식 1a 내지 화학식 1m 중 하나의 화합물이 되도록 하는 구조를 가지고;
    [화학식 1A]
    Figure PCTKR2014007241-appb-I000181
    [화학식 1a]
    Figure PCTKR2014007241-appb-I000182
    [화학식 1b]
    Figure PCTKR2014007241-appb-I000183
    [화학식 1c]
    Figure PCTKR2014007241-appb-I000184
    [화학식 1d]
    Figure PCTKR2014007241-appb-I000185
    [화학식 1e]
    Figure PCTKR2014007241-appb-I000186
    [화학식 1f]
    Figure PCTKR2014007241-appb-I000187
    [화학식 1g]
    Figure PCTKR2014007241-appb-I000188
    [화학식 1h]
    Figure PCTKR2014007241-appb-I000189
    [화학식 1i]
    Figure PCTKR2014007241-appb-I000190
    [화학식 1j]
    Figure PCTKR2014007241-appb-I000191
    [화학식 1k]
    Figure PCTKR2014007241-appb-I000192
    [화학식 1l]
    Figure PCTKR2014007241-appb-I000193
    [화학식 1m]
    Figure PCTKR2014007241-appb-I000194
    상기 Ar2는 하기 화학식 2A의 화합물이 하기 화학식 2a 내지 화학식 2v의 화합물이 되도록 하는 구조를 가지며;
    [화학식 2A]
    Figure PCTKR2014007241-appb-I000195
    [화학식 2a]
    Figure PCTKR2014007241-appb-I000196
    [화학식 2b]
    Figure PCTKR2014007241-appb-I000197
    [화학식 2c]
    Figure PCTKR2014007241-appb-I000198
    [화학식 2d]
    Figure PCTKR2014007241-appb-I000199
    [화학식 2e]
    Figure PCTKR2014007241-appb-I000200
    [화학식 2f]
    Figure PCTKR2014007241-appb-I000201
    [화학식 2g]
    Figure PCTKR2014007241-appb-I000202
    [화학식 2h]
    Figure PCTKR2014007241-appb-I000203
    [화학식 2i]
    Figure PCTKR2014007241-appb-I000204
    [화학식 2j]
    Figure PCTKR2014007241-appb-I000205
    [화학식 2k]
    Figure PCTKR2014007241-appb-I000206
    [화학식 2l]
    Figure PCTKR2014007241-appb-I000207
    [화학식 2m]
    Figure PCTKR2014007241-appb-I000208
    [화학식 2n]
    Figure PCTKR2014007241-appb-I000209
    [화학식 2o]
    Figure PCTKR2014007241-appb-I000210
    [화학식 2p]
    Figure PCTKR2014007241-appb-I000211
    [화학식 2q]
    Figure PCTKR2014007241-appb-I000212
    [화학식 2r]
    Figure PCTKR2014007241-appb-I000213
    [화학식 2s]
    Figure PCTKR2014007241-appb-I000214
    [화학식 2t]
    Figure PCTKR2014007241-appb-I000215
    [화학식 2u]
    Figure PCTKR2014007241-appb-I000216
    [화학식 2v]
    Figure PCTKR2014007241-appb-I000217
    상기 Ar3은 하기 화학식 3A의 화합물이 상기 화학식 1a 내지 화학식 1m 중 하나의 화합물이 되도록 하는 구조를 가지고;
    [화학식 3A]
    Figure PCTKR2014007241-appb-I000218
    상기 Ar4는 하기 화학식 4A의 화합물이 하기 화학식 4a 내지 화학식 4r 중 하나의 화합물이 되도록 하는 구조를 가지며;
    [화학식 4A]
    Figure PCTKR2014007241-appb-I000219
    [화학식 4a]
    Figure PCTKR2014007241-appb-I000220
    [화학식 4b]
    Figure PCTKR2014007241-appb-I000221
    [화학식 4c]
    Figure PCTKR2014007241-appb-I000222
    [화학식 4d]
    Figure PCTKR2014007241-appb-I000223
    [화학식 4e]
    Figure PCTKR2014007241-appb-I000224
    [화학식 4f]
    Figure PCTKR2014007241-appb-I000225
    [화학식 4g]
    Figure PCTKR2014007241-appb-I000226
    [화학식 4h]
    Figure PCTKR2014007241-appb-I000227
    [화학식 4i]
    Figure PCTKR2014007241-appb-I000228
    [화학식 4j]
    Figure PCTKR2014007241-appb-I000229
    [화학식 4k]
    Figure PCTKR2014007241-appb-I000230
    [화학식 4l]
    Figure PCTKR2014007241-appb-I000231
    [화학식 4m]
    Figure PCTKR2014007241-appb-I000232
    [화학식 4n]
    Figure PCTKR2014007241-appb-I000233
    [화학식 4o]
    Figure PCTKR2014007241-appb-I000234
    [화학식 4p]
    Figure PCTKR2014007241-appb-I000235
    [화학식 4q]
    Figure PCTKR2014007241-appb-I000236
    [화학식 4r]
    Figure PCTKR2014007241-appb-I000237
    상기 m과 상기 n은 서로 동일하거나 상이하고, 각각 독립적으로 50 내지 100,000의 자연수이다.
  12. 제11항에 있어서, (i) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2a의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4b의 화합물이 되도록 하는 구조를 가지며; 또는
    (ii) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2i의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4c의 화합물이 되도록 하는 구조를 가지며; 또는
    (iii) 상기 Ar1은 상기 화학식 1A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar2는 상기 화학식 2A의 화합물이 상기 화학식 2d의 화합물이 되도록 하는 구조를 가지며, 상기 Ar3은 상기 화학식 3A의 화합물이 상기 화학식 1c의 화합물이 되도록 하는 구조를 가지고, 상기 Ar4는 상기 화학식 4A의 화합물이 상기 화학식 4c의 화합물이 되도록 하는 구조를 가지는 것을 특징으로 하는 폴리이미드.
  13. 제11항에 있어서, 상기 m : n의 비율이 0.1 : 0.9 내지 0.9 : 0.1인 것을 특징으로 하는 폴리아믹산.
  14. 제11항 내지 제13항 중 어느 한 항에 따른 폴리이미드를 포함하는 폴리이미드 박막으로서:
    [화학식 2]
    Figure PCTKR2014007241-appb-I000238
    상기 박막의 두께는 10 내지 70 ㎛인 것을 특징으로 하는 폴리이미드 박막.
  15. 제11항 내지 제13항 중 어느 한 항에 따른 폴리이미드 및 무기물 첨가제를 포함하는 폴리이미드 조성물로서,
    상기 무기물 첨가제는 탄산칼슘, 실리카, 알루미나, 티타늄 옥사이드, 망간 옥사이드, 지르코늄 옥사이드, 테트라에톡시실란, 몬모릴로나이트, 모데나이트, 지르코늄 인산, 포스포텅스틱산, 실리코텅스틱산, 포스포몰리브덴산, 헤테로다중산 및 이들 2종 이상의 혼합물 중에서 선택되고,
    상기 무기물 첨가제는 상기 폴리이미드 100 중량부를 기준으로 0.01 내지 10 중량부로 포함되며,
    상기 무기물 첨가제는 평균 입경이 1 내지 300 nm인 것을 특징으로 하는 폴리이미드 조성물.
  16. 제항에 있어서, 상기 무기물 첨가제는 실란 커플링제로 표면이 개질된 것을 특징으로 하는 폴리이미드 조성물.
  17. 제1항 내지 제3항에 따른 폴리아믹산을 탈수축합 반응시키는 단계를 포함하는 것을 특징으로 하는 하기 화학식 2 구조의 폴리이미드 제조방법:
    [화학식 2]
    Figure PCTKR2014007241-appb-I000239
    상기 Ar1, 상기 Ar2, 상기 Ar3, 상기 Ar4는 제1항에 정의된 바와 같고,
    상기 m과 상기 n은 서로 동일하거나 상이하고, 각각 독립적으로 50 내지 100,000의 자연수이다.
  18. 제17항에 있어서, 상기 탈수축합 반응은 40 내지 300 ℃에서 80 내지 500 분간 열경화시켜 수행되는 것을 특징으로 하는 폴리이미드 제조방법.
  19. 제17항에 있어서, 상기 탈수축합 반응은 40 내지 90 ℃에서 20 내지 100 분간 제1 열경화시키고 나서, 100 내지 260 ℃에서 50분 내지 300 분간 제2 열경화시킴으로써 수행되는 것을 특징으로 하는 폴리이미드 제조방법.
  20. 제17항에 있어서, 상기 탈수축합 반응은 피리딘, 아세트산 무수물 및 이들의 혼합물 중에서 선택된 것을 첨가하여 수행되는 것을 특징으로 하는 폴리이미드 제조방법.
PCT/KR2014/007241 2014-08-05 2014-08-05 고투과성 저위상차 무색 투명 폴리이미드 박막 및 이의 제조방법 WO2016021746A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/007241 WO2016021746A1 (ko) 2014-08-05 2014-08-05 고투과성 저위상차 무색 투명 폴리이미드 박막 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/007241 WO2016021746A1 (ko) 2014-08-05 2014-08-05 고투과성 저위상차 무색 투명 폴리이미드 박막 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2016021746A1 true WO2016021746A1 (ko) 2016-02-11

Family

ID=55264002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007241 WO2016021746A1 (ko) 2014-08-05 2014-08-05 고투과성 저위상차 무색 투명 폴리이미드 박막 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2016021746A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111704719A (zh) * 2020-06-24 2020-09-25 中国科学院化学研究所 一种热固性聚酰亚胺树脂、预聚物、制备方法与应用
CN112708132A (zh) * 2020-11-30 2021-04-27 山东华夏神舟新材料有限公司 含苯并咪唑结构的高透明低膨胀聚酰亚胺薄膜及其制备方法
US11359061B2 (en) 2019-02-22 2022-06-14 Dupont Electronics, Inc. Polyimide films and electronic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007588A (ko) * 2009-07-16 2011-01-24 주식회사 엘지화학 폴리이미드 및 이를 포함하는 감광성 수지 조성물
WO2011089922A1 (ja) * 2010-01-25 2011-07-28 三井化学株式会社 ポリイミド樹脂組成物、それを含む接着剤、積層体およびデバイス
KR20130013202A (ko) * 2011-07-27 2013-02-06 주식회사 엘지화학 내 흡습성이 우수한 감광성 수지 조성물
KR101349119B1 (ko) * 2012-07-11 2014-01-09 연세대학교 산학협력단 폴리 에폭시이미드-아크릴레이트 변형 전자재료 소재용 접착제 조성물 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007588A (ko) * 2009-07-16 2011-01-24 주식회사 엘지화학 폴리이미드 및 이를 포함하는 감광성 수지 조성물
WO2011089922A1 (ja) * 2010-01-25 2011-07-28 三井化学株式会社 ポリイミド樹脂組成物、それを含む接着剤、積層体およびデバイス
KR20130013202A (ko) * 2011-07-27 2013-02-06 주식회사 엘지화학 내 흡습성이 우수한 감광성 수지 조성물
KR101349119B1 (ko) * 2012-07-11 2014-01-09 연세대학교 산학협력단 폴리 에폭시이미드-아크릴레이트 변형 전자재료 소재용 접착제 조성물 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, SEUNG-JIN ET AL.: "Synthesis and characterization of poly (epoxy-imide) crosslinked networks", JOURNAL OF POLYMER SCIENCE PART B: POLYMER PHYSICS, vol. 42, no. 23, 2004, pages 4293 - 4302 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11359061B2 (en) 2019-02-22 2022-06-14 Dupont Electronics, Inc. Polyimide films and electronic devices
US11643515B2 (en) 2019-02-22 2023-05-09 Dupont Electronics, Inc. Polyimide compositions and polyimide solutions
CN111704719A (zh) * 2020-06-24 2020-09-25 中国科学院化学研究所 一种热固性聚酰亚胺树脂、预聚物、制备方法与应用
CN111704719B (zh) * 2020-06-24 2021-07-20 中国科学院化学研究所 一种热固性聚酰亚胺树脂、预聚物、制备方法与应用
CN112708132A (zh) * 2020-11-30 2021-04-27 山东华夏神舟新材料有限公司 含苯并咪唑结构的高透明低膨胀聚酰亚胺薄膜及其制备方法

Similar Documents

Publication Publication Date Title
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2019054612A1 (ko) 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2017188630A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2020067800A1 (ko) 유기 발광 소자용 잉크 조성물
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2016021746A1 (ko) 고투과성 저위상차 무색 투명 폴리이미드 박막 및 이의 제조방법
WO2019103274A1 (ko) 디스플레이 기판용 폴리이미드 필름
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2018021747A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2010008213A2 (en) Silane based compound, method for preparing the same, and surface treating agent composition for copper foil including the silane based compound
WO2020130261A1 (ko) 가교제 화합물, 이를 포함하는 감광성 조성물, 및 이를 이용한 감광 재료
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2020130552A1 (ko) 디아민 화합물, 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2020209625A1 (ko) 폴리아미드-이미드 블록 공중합체, 이의 제조방법 및 이를 포함하는 폴리아미드-이미드 필름
WO2020055182A1 (ko) 플렉서블 디스플레이 제조용 적층체 및 이를 이용한 플렉서블 디스플레이 제조 방법
WO2020159035A1 (ko) 폴리이미드 필름, 이를 이용한 플렉서블 기판 및 플렉서블 기판을 포함하는 플렉서블 디스플레이
WO2020138644A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2020040493A1 (ko) 폴리이미드 필름 및 이를 이용하는 플렉서블 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899530

Country of ref document: EP

Kind code of ref document: A1