WO2014040365A1 - 一种具有含稀土的y型分子筛的催化裂化催化剂及其制备方法 - Google Patents

一种具有含稀土的y型分子筛的催化裂化催化剂及其制备方法 Download PDF

Info

Publication number
WO2014040365A1
WO2014040365A1 PCT/CN2013/000767 CN2013000767W WO2014040365A1 WO 2014040365 A1 WO2014040365 A1 WO 2014040365A1 CN 2013000767 W CN2013000767 W CN 2013000767W WO 2014040365 A1 WO2014040365 A1 WO 2014040365A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
weight
molecular sieve
type molecular
parts
Prior art date
Application number
PCT/CN2013/000767
Other languages
English (en)
French (fr)
Inventor
龙军
朱玉霞
罗一斌
邓景辉
郑金玉
任飞
杨雪
欧阳颖
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210341407.1A external-priority patent/CN103657700B/zh
Priority claimed from CN201210341383.XA external-priority patent/CN103657711B/zh
Priority claimed from CN201210341385.9A external-priority patent/CN103657712B/zh
Priority claimed from CN201210341738.5A external-priority patent/CN103657701B/zh
Priority claimed from CN201210341750.6A external-priority patent/CN103657702B/zh
Priority to KR1020157009020A priority Critical patent/KR102109395B1/ko
Priority to EP13837046.5A priority patent/EP2896456B1/en
Priority to JP2015531422A priority patent/JP6301336B2/ja
Priority to AU2013314978A priority patent/AU2013314978B2/en
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to SG11201501897RA priority patent/SG11201501897RA/en
Priority to RU2015113601A priority patent/RU2628071C2/ru
Publication of WO2014040365A1 publication Critical patent/WO2014040365A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • B01J35/77Compounds characterised by their crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/38Base treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/05Nuclear magnetic resonance [NMR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam

Definitions

  • the present invention relates to a catalytic cracking catalyst having a rare earth-containing cerium-type molecule and a preparation method thereof. Background technique
  • Catalytic cracking is an important secondary processing of crude oil and plays a pivotal role in the refining industry.
  • a heavy fraction such as a vacuum distillate or a heavy component residue is reacted in the presence of a catalyst to be converted into a high value-added product such as liquefied gas, gasoline, diesel, etc., which is usually required to be used in this process.
  • High cracking activity catalytic material Microporous zeolite catalyzed materials are widely used in the petroleum refining and processing industry due to their excellent shape-selective catalytic properties and high cracking reactivity.
  • ⁇ -type molecular sieves have been the main active component of catalytic cracking catalysts since they were first used in the 1960s.
  • rare earth-modified cerium-type molecular sieves have a significant effect on the improvement of molecular sieve acidity and structural stability.
  • the active components currently widely used to reduce the olefin content of gasoline are mostly cerium-containing molecular sieves containing rare earths, for example, see CN1317547A, CN1506161A, CN101537366A, CN1436727A, CN1382631A, CN101823726A, CN100344374C, CN1053808A, CN1069553C, CN1026225C, CN101147875A.
  • the rare earth-containing Y-type molecules may be one-by-one-baked (primary ion exchange and one-time high-temperature baking, see, for example, CN1436727A, CN101823726A and CN100344374C), or two-two-baked (ie, two liquid phase rare earth ion exchange and two high temperature baking) , see for example, two Second baking: CN1506161A and CN101537366A) Process preparation.
  • the rare earth content in the product is usually lower than the total rare earth input. Even if more rare earth ions are located in the small cage, it is inevitable that some rare earth ions will still be present in the super cage. The rare earth ions in the supercage will be backwashed in the subsequent washing process, resulting in the loss of rare earth, resulting in a decrease in the utilization of rare earth.
  • one of the objects of the present invention is to provide a higher utilization rate of rare earths, which is different from the prior art, has better structure and activity stability on the basis of the prior art.
  • Y type molecular sieve The second objective is to provide a method for preparing a rare earth-containing Y-type molecular sieve, which has more optimized production process and lower production cost, and the obtained rare earth-containing Y-type molecular sieve has better structure and activity stability, and higher utilization rate of rare earth.
  • a further object of the present invention is to provide a catalyst having a rare earth-containing Y-type molecular sieve and a process for the preparation thereof.
  • the inventors of the present invention found on the basis of preparation experiments of a large number of rare earth-containing Y-type molecular sieves, the two-crossing and two-baking of NaY molecular sieves and the process of depositing rare earths, the obtained rare earth-containing Y-type molecular sieve products have special physical and chemical properties, Rare earth utilization and molecular sieve structural stability are superior to the prior art.
  • the intensity of the peak is 1! and 2 ⁇ 2.3 ⁇ 0.1.
  • the ratio between (the content of rare earth (RE 2 0 3%) W and intensity of the peaks of the molecular sieve 12 is a specific relation, and is different from the prior art. Based on this, the present invention is formed.
  • the ratio of the intensity of the peak to 1 2 (1!/1 2 ) and the molecular sieve is greater than 48.
  • the rare earth-containing Y-type molecular sieve provided by the present invention is at 800. C.
  • the crystal retention after 17 hours of 100% steam aging treatment is greater than 40%, for example greater than 45%.
  • the invention provides a method of preparing a rare earth-containing Y-type molecular sieve.
  • the preparation method is a process of combining rare earth baking and combining deposition of rare earth.
  • the present invention provides a catalytic cracking catalyst having a cracking active component, an optional mesoporous silica-alumina material, a clay, and a binder, wherein the cracking activity
  • the components have: a rare earth-containing Y-type molecular sieve (hereinafter also referred to as a first Y-type molecular sieve), optionally other Y-type molecular sieves, and optionally a molecular sieve having an MFI structure.
  • the invention provides a method of preparing a catalytic cracking catalyst, the method comprising: mixing a cracking active component, an optional mesoporous silica material, a clay, and a binder, and then The steps of spray drying, washing, filtering, and drying are sequentially performed.
  • the present invention provides the following technical solutions.
  • the ratio of the intensity of the peak to the ratio of 1 2 to the weight percent of the rare earth in the molecular sieve as the rare earth oxide is greater than 48, preferably greater than 55.
  • the mesoporous silica-alumina material has a phase structure of pseudoboehmite, and the anhydrous chemical expression by weight of the oxide is: (0 ⁇ 0.3) Na 2 O'(40 ⁇ 90)Al 2 O 3 '(10 ⁇ 60) SiO 2 , having an average pore diameter of 5 to 25 nm, a maximum pore diameter of 5 to 15 nm, a specific surface area of 200 to 400 m 2 /g, and a pore volume of 0.5 to 2.0 ml/g;
  • the clay is selected from the group consisting of kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, soap One or more of stone, rector, sepiolite, attapulgite, hydrotalcite and bentonite; the binder is selected from one of silica sol, aluminum sol and pseudoboehmite or A variety.
  • catalytic cracking catalyst contains 10 to 60 parts by weight of a cracking active component, 10 to 70 parts by weight of clay per 100 parts by weight of the catalytic cracking catalyst, 10- 60 parts by weight of the binder, 0-20 parts by weight of the mesoporous silica-alumina material.
  • Y-type molecules are selected from the group consisting of: a rare earth-containing DASY molecular sieve, a rare earth-containing gas phase ultra-stable Y-type molecular sieve, and a magnesium-containing ultrastable Y-type molecular sieve.
  • the catalytic cracking catalyst comprises 10 to 40 parts by weight of a rare earth-containing Y-type molecular sieve, and 0 to 15 parts by weight per 100 parts by weight of the catalytic cracking catalyst.
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (2) is contacted with a mixture of an ammonium salt and a rare earth solution, and the pH of the mixture is adjusted to 6-10 to obtain a Y-type molecular sieve containing rare earth and sodium; (4) The rare earth and sodium-containing Y-type molecular sieve obtained in the step (3) is subjected to a second baking treatment to obtain a target rare earth-containing Y-type molecular sieve.
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (1) is filtered, washed with water, dried, and then subjected to a first calcination treatment to obtain a Y-type molecular sieve containing rare earth and sodium;
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (2) is contacted with an ammonium salt solution, and then mixed with the rare earth solution without filtration and the pH of the mixture is adjusted to 6-10.
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (2) is contacted with a mixture of an ammonium salt and a rare earth solution, and the pH of the mixture is adjusted to 6-10 to obtain a Y-type molecular sieve containing rare earth and sodium;
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (3) is filtered, washed with water, dried, and subjected to a second baking treatment to obtain a target rare earth-containing Y-type molecular sieve.
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (1) is filtered, washed with water, dried, and then subjected to a first calcination treatment to obtain a Y-type molecular sieve containing rare earth and sodium;
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (2) is contact-treated with an ammonium salt solution or an acid solution, filtered, and then mixed with the rare earth solution to adjust the pH of the mixture to 6-10, thereby obtaining Y-type molecular sieves of rare earth and sodium;
  • the rare earth- and sodium-containing Y-type molecular sieve obtained in the step (3) is optionally filtered and washed with water, dried, and subjected to a second baking treatment to obtain a target rare earth-containing Y-type molecular sieve.
  • ammonium salt is selected from the group consisting of any one or more of ammonium chloride, ammonium nitrate, ammonium carbonate, ammonium hydrogencarbonate.
  • the weight ratio of the rare earth solution to the dry base of the NaY molecular sieve is from 0.06 to 0.14, preferably from 0.07 to 0.12, and the weight of the ammonium salt (calculated as ammonium chloride) and the rare earth solution (calculated as rare earth oxide).
  • the ratio is 0-10, preferably 0-5, such as 0.2-3, and the ammonium salt is selected from the mixture of any one or more of ammonium chloride, ammonium nitrate, ammonium carbonate, ammonium hydrogencarbonate, and the pH is adjusted.
  • the water screen weight ratio is controlled at 5-30, preferably 7-15, and the contact treatment process is at room temperature (e.g., 18-26 C) to 100.
  • C preferably at 70-95 ° C for at least 0.3 hours, preferably 0.5-3 hours, such as 0.5-1.5 hours.
  • the first calcination treatment is at 500-650.
  • C for example 530-630.
  • C for example, at 550-620 ° C, calcined at 0-100% water vapor for at least 0.5 hours, preferably 0.5-4.0 hours, 1.0-4.0 hours or 1.5-3.0 hours.
  • the contact treatment is carried out at room temperature to 100. C, preferably at 60-80 ° C for at least 0.3 hours, such as 0.3-3.0 hours, 0.5-3 hours or 0.5-1.5 hours, wherein the ratio of Y-type molecular sieve containing rare earth and sodium to ammonium salt solution, according to molecular sieve (dry Base): ammonium salt: water weight ratio, is 1: (0.05-0.5): (5-30), preferably 1: (0.1-0.4): (8-15); subsequently added rare earth solution The amount is such that the rare earth element in the rare earth solution according to the rare earth oxide (RE 2 0 3 ) and the rare earth and sodium containing Y type molecular sieve according to the molecular sieve dry basis weight ratio of 0.01-0.2, for example, 0.02-0.12; Said ammonium salt is selected from the group consisting of ammonium chloride, ammonium nitrate
  • the contact treatment is at room temperature to 100. C, preferably 60-80. C is carried out for at least 0.3 hours, for example 0.3-3.0 hours, 0.5-3 hours or 0.5-1.5 hours, wherein the ratio of the rare earth and sodium-containing Y-type molecular sieve to the acid solution is based on the molecular sieve (dry basis): acid: water weight The ratio is 1: ( 0.03-0.2 ): ( 5-30 ), preferably 1: ( 0.05-0.1 ): ( 8-15 ); the amount of the rare earth solution added is such that the rare earth in the rare earth solution press rare earth element oxide (RE 2 0 3) gauge and rare earth-containing Y zeolite and sodium zeolite dry basis weight ratio of 0.01 to 0.2, e.g., 0.02-0.12; said acid may be an inorganic or organic acid, The inorganic acid may be selected from a mixture of one or more of
  • the contact treatment is carried out at room temperature to 100. C, preferably 60-80. C for at least 0.3 hours, For example, 0.3-3.0 hours, 0.5-3 hours or 0.5-1.5 hours, wherein the ratio of the rare earth and sodium-containing Y-type molecular sieve to the ammonium salt and the rare earth solution is determined by molecular sieve (dry basis): ammonium salt: rare earth oxide (RE 2 0 3 ):
  • the weight ratio of water is 1: (0.05-0.5): (0.01-0.2): (5-30), preferably 1: (0.1-0.4): (0.02-0.12): (8-15)
  • the ammonium salt is selected from the group consisting of any one or more of ammonium chloride, ammonium nitrate, ammonium carbonate, and ammonium hydrogencarbonate.
  • alkaline liquid is selected from the group consisting of ammonia water, water glass, sodium metaaluminate or sodium hydroxide.
  • the second calcination treatment is at 500 to 650. C, 0-100% water vapor treatment for 0.5-4 hours, preferably 1-3 hours.
  • the mesoporous silica-alumina material has a phase structure of pseudoboehmite, and the anhydrous chemical expression by weight of the oxide is: (0 ⁇ 0.3) Na 2 O'(40 ⁇ 90)Al 2 O 3 '(10 ⁇ 60) SiO 2, having an average pore diameter of 5 ⁇ 25nm, the most probable pore diameter 5 ⁇ 15nm, specific surface area 200 ⁇ 400m 2 / g, a pore volume of 0.5-2 Oml / g.;
  • the clay is selected from one or more of kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, saponite, rectorite, sepiolite, attapulgite, hydrotalcite and bentonite. ;
  • the binder is selected from one or more of a silica sol, an aluminum sol, and a pseudoboehmite. 20.
  • Y-type molecules are selected from: a rare earth-containing DASY molecular sieve, a rare earth-containing gas phase ultrastable Y type molecular sieve, and a magnesium containing super Stable Y molecular sieve.
  • the catalytic cracking catalyst of the present invention When the rare earth-containing Y-type molecular sieve contained in the catalytic cracking catalyst of the present invention is used alone or in combination with other molecular sieves, the catalytic cracking catalyst exhibits high activity and high conversion rate; and the rare earth-containing Y-type molecular sieve can also Combined with different molecular sieves to increase the production of gasoline, diesel, or liquefied gas, the catalytic cracking catalyst exhibits wide adaptability. Further, the catalytic cracking catalyst having a rare earth-containing Y-type molecular sieve exhibits good structural stability, either alone or in combination.
  • Example 1 is an X-ray diffraction spectrum of a rare earth-containing Y-type molecular sieve prepared according to Example 1.
  • 2 is an X-ray diffraction spectrum of a rare earth-containing Y-type molecular sieve prepared according to Comparative Example 1.
  • the utilization efficiency of the rare earth raw material can be indicated by the utilization ratio of the rare earth.
  • the rare earth utilization rate refers to the ratio (in percentage) of the amount of rare earth in terms of rare earth oxide (RE 2 O 3 ) to the theoretical rare earth charge based on rare earth oxide (RE 2 O 3 ) by weight.
  • the rare earth-containing Y-type molecular sieve provided by the invention has a rare earth utilization ratio of more than 98%.
  • the skeleton silicon-aluminum atomic ratio referred to in the present invention is an atomic molar ratio of silicon to aluminum in the rare earth-containing Y-type molecular sieve provided by the present invention.
  • the silicon-to-aluminum ratio is calculated by X-ray diffraction measurement of the unit cell parameters, or the silicon to aluminum ratio is determined by infrared spectroscopy, and the skeleton silicon aluminum can also be measured and calculated by nuclear magnetic resonance (NMR).
  • NMR nuclear magnetic resonance
  • Atomic ratio In the present invention, the skeletal silicon-aluminum atomic ratio is measured and calculated by NMR.
  • the silica-alumina ratio of the molecular sieve referred to in the present invention refers to the atomic silica-aluminum atomic ratio of the molecular sieve.
  • the peak intensity refers to the intensity of the peak deducted from the baseline (in other words, the peak intensity refers to the relative intensity with respect to the peak surface).
  • the upper limit of the product value is not limited, for example, the upper limit may be 200, such as 100.
  • the product value ranges from 48 to 200, such as 48-100. Still more preferably, the product value is greater than 55, greater than 60, greater than 70, such as 55-200, such as 55-. 90.
  • the crystal retention in the present invention is the ratio of the crystallinity of the sample after the aging treatment and the aging treatment, wherein the aging treatment comprises: mixing and displacing the molecular sieve with the ammonium chloride solution, and washing the Na 2 0 content to 0.3 weight. % or less, after filtration and drying, it is treated at 800 ° C and 100% steam for 17 hours; if the molecular sieve has a Na 2 0 content of less than 0.3% by weight, it is not exchanged, filtered and dried, directly at 800 ° C, 100% water vapor treatment for 17 hours.
  • the rare earth-containing Y-type molecular sieve provided by the invention
  • the rare earth content is 10-25 weights based on the rare earth oxide. /. , preferably 11 to 23% by weight, a unit cell constant of 2.440-2.472 nm, preferably 2.450-2.470 nm, a crystallinity of 35-65%, preferably 40-60%, and a skeleton silicon-aluminum atomic ratio of 2.5-5.0.
  • 2 ⁇ 11.8 soil 0.1.
  • the ratio of the intensity of the peak 1 2 (I2) to the weight percent of the rare earth in the molecular sieve as the rare earth oxide is greater than 48.
  • the rare earth-containing cerium-type molecular sieve provided by the present invention is at 800. C.
  • the crystal retention after 17 hours of 100% steam aging treatment is greater than 40%, for example greater than 45%.
  • the invention provides a method of preparing a rare earth-containing Y-type molecular sieve.
  • the preparation method is a process of combining rare earth baking and combining deposition of rare earth.
  • the method for preparing a rare earth-containing Y-type molecular sieve provided by the present invention comprises the following steps.
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (3) is subjected to a second baking treatment to obtain a target rare earth-containing Y-type molecular sieve.
  • the method for preparing a rare earth-containing Y-type molecular sieve provided by the present invention comprises the following steps:
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (1) is filtered, washed with water, dried, and then subjected to a first calcination treatment to obtain a Y-type molecular sieve containing rare earth and sodium;
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (2) is contacted with an ammonium salt solution, and then mixed with the rare earth solution without filtration and the pH of the mixture is adjusted to 6-10.
  • the rare earth- and sodium-containing Y-type molecular sieve obtained in the step (2) is contacted with a mixture of an ammonium salt and a rare earth solution, and the pH of the mixture is adjusted to 6-10 to obtain a rare earth and a sodium-containing solution.
  • the rare earth and sodium-containing cerium type molecular sieve obtained in the step (3) is subjected to filtration, water washing, and drying, and then subjected to a second baking treatment to obtain a target rare earth-containing cerium type molecular sieve.
  • the method for preparing a rare earth-containing cerium-type molecular sieve provided by the present invention comprises the following steps:
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (1) is filtered, washed with water, dried, and then subjected to a first calcination treatment to obtain a Y-type molecular sieve containing rare earth and sodium;
  • the rare earth and sodium-containing Y-type molecular sieve obtained in the step (2) is contact-treated with an ammonium salt solution or an acid solution, filtered, and then mixed with the rare earth solution to adjust the pH of the mixture to 6-10, thereby obtaining Y-type molecular sieves of rare earth and sodium;
  • the rare earth- and sodium-containing Y-type molecular sieve obtained in the step (3) is optionally filtered and washed with water, dried, and subjected to a second baking treatment to obtain a target rare earth-containing Y-type molecular sieve.
  • the raw material NaY molecular sieve has a framework silicon to aluminum atomic ratio of preferably more than 2.5 and a crystallinity of more than 80%.
  • the ammonium salt is selected from the group consisting of any one or more of ammonium chloride, ammonium nitrate, ammonium carbonate, and ammonium hydrogencarbonate.
  • the rare earth solution is used in a weight ratio of the rare earth oxide to the dry basis of the NaY molecular sieve of 0.06 to 0.14, preferably 0.07 to 0.12, and the ammonium salt (calculated as ammonium chloride)
  • the weight ratio of the rare earth solution (calculated as rare earth oxide) is 0-10, preferably 0-5, such as 0.2-3
  • the ammonium salt is selected from the group consisting of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium hydrogencarbonate.
  • the pH is adjusted to 3.0-5.0
  • the water sieve weight ratio is controlled at 5-30, preferably 7-15
  • the contact treatment process is at room temperature (eg 18-26 C) To 100 ° C, preferably 70-95. It is carried out at C for at least 0.3 hours, preferably 0.5 to 3 hours, for example 0.5 to 1.5 hours.
  • the first calcination treatment is at 500 to 650. C, for example 530-630. C, such as 550-620. C, 0-100% water steaming conditions are calcined for at least 0.5 hours, preferably 0.5-4.0 hours, 1.0-4.0 hours or 1.5-3.0 hours.
  • the calcination treatment promotes the migration of rare earth ions from the molecular sieve supercage to the small cage, wherein the preferred embodiment of the first calcination treatment is carried out at 1-100%, preferably 20-100%, more preferably 100% water vapor.
  • the contact treatment with the sodium Y-type molecular sieve with an ammonium salt solution is carried out at room temperature to ioo. c, preferably at 60-80 ° C for at least 0.3 hours, such as 0.3-3.0 hours, 0.5-3 hours or 0.5-1.5 hours, wherein the ratio of rare earth and sodium containing Y-type molecular sieve to ammonium salt solution, according to molecular sieve (dry Base): Ammonium salt: water by weight ratio, is 1: (0.05-0.5): (5-30), preferably 1: (0.1-0.4): (8-15); the amount of the rare earth solution added later is
  • the weight ratio of the rare earth element in the rare earth solution to the rare earth oxide (RE 2 O 3 ) and the rare earth and sodium containing Y type molecular sieve on a molecular sieve dry basis is 0.01 to 0.2, for example, 0.02 to 0.12;
  • the ammonium salt water by weight ratio
  • the contact treatment is at room temperature to 100. (:, preferably at 60-80 ° C for at least 0.3 hours, such as 0.3-3.0 hours, 0.5-3 hours or 0.5-1.5 hours, wherein the ratio of rare earth and sodium containing Y-type molecular sieve to acid solution, according to molecular sieve (dry Base: the weight ratio of acid: water is 1: (0.03-0.2): (5-30), preferably 1: (0.05-0.1): (8-15); the amount of the rare earth solution added subsequently is The weight ratio of the rare earth element in the rare earth solution to the rare earth element (RE 2 0 3 ) and the Y type molecular sieve containing the rare earth and sodium according to the molecular sieve dry basis is 0.01-0.2, for example, 0.02-0.12;
  • the acid may be an inorganic acid or an organic acid, and the inorganic acid may be selected from a mixture of one or more of sulfuric acid
  • the contact treatment is carried out at room temperature to 100 ° C:, preferably 60-80 ° C for at least 0.3 hours, for example 0.3 -3.0 hours, 0.5-3 hours or 0.5-1.5 hours, in which Y-type molecular sieves containing rare earth and sodium And the ratio of rare earth salt solution, according to the molecular sieve (dry basis): ammonium salt: rare earth oxide (RE 2 0 3): water weight ratio of 1: (0.05-0.5) :( 0.01-0.2) :( 5 -30), preferably 1: (0.1-0.4): (0.02-0.12): (8-15); the ammonium salt is selected from any one of ammonium chloride, ammonium nitrate, ammonium carbonate, and ammonium hydrogencarbonate. Or a mixture of multiples;
  • the pH of the mixture is adjusted to 6-10, preferably pH 7-9, more preferably 7.5-8.2 by adding an alkaline liquid, so that the rare earth ions are all precipitated to form a rare earth hydroxide, that is, a rare earth deposit is deposited.
  • the time is not particularly limited, and may be, for example, 5 minutes to 2 hours, for example, 0 minutes to 60 minutes, 10 minutes to 30 minutes.
  • the alkaline liquid may be selected from a mixture of any one or more of ammonia water, water glass, sodium metaaluminate or sodium hydroxide.
  • the second calcination treatment is at 500 to 650. (:, 0-100% water vapor treatment for 0.5-4 hours, preferably 1-3 hours.
  • the preferred embodiment of the second calcination treatment is 1-100%, preferably It is carried out at 20-100%, more preferably 100% steam.
  • the rare earth is selected from the group consisting of lanthanum (La), cerium (Ce), praseodymium (Pr), cerium (Nd), cerium (Pm), strontium (Sm), cerium (Eu), and cerium (Gd).
  • ⁇ (Tb), ⁇ (Dy), ⁇ (Ho), ⁇ (Er), ⁇ (Tm), ⁇ (Yb), ⁇ (Lu), ⁇ (Sc) and ⁇ (Y) preferably, rare earth It is selected from the group consisting of lanthanum (La) and cerium (Ce).
  • the rare earth raw materials are provided in the form of soluble salts such as nitrates and hydrochlorides.
  • the rare earth raw material may be a rare earth element or a rare earth nitrate composed of a single rare earth element, such as barium chloride, barium nitrate, barium chloride or barium nitrate, or a mixed rare earth having a ratio of different rare earth elements, such as a rich or rich type.
  • Type mixed rare earth may be a solution containing one or more selected from the group consisting of cerium nitrate, cerium nitrate, cerium chloride, cerium chloride, mixed rare earth nitrate, and mixed rare earth chloride.
  • RExn (N0 3 ) 3
  • RE xl , RE x2 RExn means a rare earth element, where n is an integer greater than or equal to 2, and the sum of xl+x2+... +xn is equal to 1 Chlorinated mixed rare earth (also REy 2
  • RE yn means a rare earth element, where n is an integer greater than or equal to 2, and the sum of yl+y2+... +yn is equal to 1.
  • the invention provides a preparation method for preparing a rare earth-containing Y-type molecular sieve by a primary liquid phase rare earth ion exchange and a primary solid phase rare earth ion migration process.
  • the rare earth exchange and rare earth deposition are combined with the secondary roasting process to ensure that the rare earth ions are not lost and the rare earth ions can be migrated from the super cage to the small cage.
  • the preparation process can be flexibly modulated and accurately controlled with rare earth content, and the operation is simple. Further, in the case of secondary exchange using an ammonium salt, filtration may be carried out after the contact treatment with the ammonium salt and before the rare earth deposition process, which shortens the preparation process and further reduces the loss of rare earth.
  • the rare earth utilization rate is as high as 98. /. Above, the rare earth resources are effectively saved, and the production cost is further reduced.
  • the rare earth-containing Y-type molecular sieve obtained by the prior art is 800. C.
  • the crystal retention after 17 hours of 100% steam aging treatment is less than 40°/. .
  • the rare earth-containing Y-type molecular sieve provided by the invention has a higher crystal retention after being treated at 800 ° C for 100 hours with 100% steam aging treatment, for example, more than 40%, such as more than 45%, indicating that the structure is stable. Good sex. Therefore, the rare earth-containing Y-type molecular sieve provided by the present invention has good structural stability as compared with the prior art.
  • the rare earth-containing Y-type molecular sieve provided by the invention has excellent activity stability (higher light oil micro-reverse MA value), and when used as a catalyst active component, the amount of molecular sieve in the catalyst can be reduced, and the catalyst production can be reduced. Ben.
  • the cracking active component may optionally further comprise other Y-type molecular sieves (second Y-type molecular sieve, third Y-type molecular sieve, etc.) and / Or a molecular sieve having an MFI structure.
  • the weight ratio of each component in the cracking active component is on a dry basis.
  • the dry basis weight is the weight measured by calcination at 800 ° C for 1 hour.
  • Y-type molecular sieves refer to a Y-type that does not have the characteristics of the first Y-type molecular sieve described above (including the above-mentioned characteristics of 11/12 and rare earth content multiplied by more than 48, such as greater than 55, greater than 60, and greater than 70). Molecular sieves.
  • the content of the other Y-type molecular sieve is 0-50% by weight on a dry basis, for example, 0-40% by weight, 0-30, based on the dry weight of the active component.
  • the weight %, 0-20% by weight, the content of the first Y-type molecular sieve is 50-100% by weight, for example, may be 60-100% by weight, 70-100% by weight or 80-100% by weight.
  • the content of the rare earth-containing Y-type molecular sieve (first Y-type molecular sieve) in the catalytic cracking catalyst is 10-60% based on the dry basis weight of the catalyst.
  • the content of other Y-type molecular sieves is not more than 35% by weight, for example, the content of other Y-type molecular sieves may be 0.5-30% by weight. /. 0-10% by weight or 0-5% by weight.
  • the other Y-type molecular sieve is a rare earth-containing DASY molecular sieve (a rare earth-containing hydrothermal ultra-stable Y-type molecular sieve), and the rare earth-containing DASY molecular sieve is based on RE 2 O 3 (ratric oxide)
  • the medium rare earth content is from 1.5 to 3.0% by weight.
  • the rare earth-containing DASY molecular sieve may be various commercially available products, such as DASY 2.0 molecular sieve of Sinopec Catalyst Qilu Branch.
  • the other Y-type molecular sieve is a rare earth-containing gas phase ultrastable Y type molecular sieve.
  • it can be prepared by contacting the rare earth-containing Y-type molecular sieve with silicon tetrachloride under stirring at a temperature of 100-50 (TC, contact time of 0.1-10 hours, including The weight ratio of the Y-type molecular sieve of the rare earth to the silicon tetrachloride is 1:0.05-0.5.
  • TC contact time of 0.1-10 hours
  • the other Y-type molecular sieve is a magnesium-containing ultra-stable Y-type molecular sieve
  • the magnesium-containing ultra-stable Y-type molecular sieve has a magnesium content of 0.1 to 25% by weight, preferably 0.5-25% by weight.
  • the magnesium-containing ultrastable Y type molecular sieve can be prepared according to a conventional method.
  • one of the preparation methods may include: dispersing a dissolved or sufficiently wet-ground magnesium compound (for example, at least one selected from the group consisting of magnesium oxide, magnesium chloride, magnesium sulfate, and magnesium nitrate) in an ultra-stable Y Type molecular sieve (USY molecular sieve) slurry, with or without ammonia water, uniformly mixed, dried and calcined; another preparation method may include, for example,: uniformly drying the ultra-stable Y-type molecular sieve (USY molecular sieve) after sufficient wet grinding In a solution of a magnesium compound (for example, at least one selected from the group consisting of magnesium chloride, magnesium sulfate, and magnesium nitrate), ammonia water is added and mixed, followed by filtration, washing, drying, and calcination.
  • a magnesium compound for example, at least one selected from the group consisting of magnesium chloride, magnesium sulfate, and magnesium nitrate
  • ammonia water is added
  • Molecular sieves having an MFI structure are commercially available or can be prepared according to existing methods.
  • Examples of the molecular sieve having the MFI structure include one or more of ZSM-5, ZRP and ZSP molecular sieves.
  • the anhydrous chemical composition of the molecular sieve having the MFI structure in terms of oxide weight ratio is: (0 ⁇ 0.3) Na 2 O'(0.5 ⁇ 5.5) Al 2 O 3 '( 1.3 ⁇ 10)P 2 O 5 '(0.7 ⁇ 15)
  • M1 ⁇ ⁇ ⁇ (0.01 ⁇ 5) M2 m O n -(70 ⁇ 97) SiO 2
  • M1 is Fe, Co or Ni
  • x represents the number of atoms of M1
  • y represents the oxygen required to satisfy the oxidation state of M1
  • M2 is selected from Zn, Mn, Ga or Sn
  • m represents the number of atoms of M2
  • n represents the number of oxygen required to satisfy the M2 oxidation state.
  • the molecular sieve having the MFI structure is (0 to 0.2) Na 2 O' (0.9 to 5.0) Al 2 O 3 '(1.5 to 7) P 2 in terms of oxide weight ratio.
  • O 5 '(0.9 ⁇ 10) Ml x O y '(0.5 ⁇ 2) M2 m O n '(82 ⁇ 92)Si0 2 .
  • M1 is Fe and M2 is Zn.
  • the specific preparation method of the molecular sieve having the MFI structure can be referred to the patent application CN1611299A, particularly the examples 1 to 11 thereof.
  • the mesoporous silica-alumina material has a phase structure of pseudoboehmite, and the anhydrous chemical expression by weight of the oxide is: (0 ⁇ 0.3) Na 2 O'(40 ⁇ 90)Al 2 O 3 '(10 ⁇ 60) SiO 2 having an average pore diameter of 5 to 25 nm, a maximum pore diameter of 5 to 15 nm, a specific surface area of 200 to 400 m 2 /g, and a pore volume of 0.5 to 2.0 ml/g.
  • the mesoporous silica-alumina material and its preparation method can be found in CN1565733A or CN 1854258A, for example, Examples 1 to 9 of CN 1854258A.
  • the clay may be a clay commonly used in catalytic cracking catalysts, for example, One or more of kaolin, kaolin, montmorillonite, diatomaceous earth, halloysite, saponite, rectorite, sepiolite, attapulgite, hydrotalcite and bentonite.
  • the binder may be various binders conventionally used in catalytic cracking catalysts, and may be, for example, one or more selected from the group consisting of silica sol, aluminum sol and pseudoboehmite, preferably It is a double aluminum binder for aluminum sol and pseudoboehmite.
  • the catalytic cracking catalyst comprises from 10 to 60% by weight of cracking active component, from 20 to 70% by weight of clay, and from 10 to 50% by weight, based on the dry basis weight of the catalytic cracking catalyst. Conjunction.
  • the cracking active component is present in an amount of from 10 to 50% by weight, based on the dry basis weight of the catalytic cracking catalyst, and the clay is present in an amount of 20 on a dry basis.
  • the binder is contained in an amount of 10 to 40% by weight on a dry basis. More preferably, the cracking active component is present in an amount of from 20 to 40% by weight on a dry basis, based on the dry basis weight of the catalytic cracking catalyst. /.
  • the catalytic cracking catalyst comprises from 10 to 60% by weight of cracking active component, from 1 to 20% by weight of mesoporous silica material, based on the dry basis weight of the catalytic cracking catalyst. - 60% by weight of clay and 10-50% by weight of binder.
  • the cracking active component is present in an amount of from 20 to 50% by weight on a dry basis, based on the dry basis weight of the catalytic cracking catalyst, and the mesoporous silica-alumina material is on a dry basis.
  • the content is from 1 to 18% by weight, for example, from 2 to 15% by weight.
  • the clay is contained in an amount of 10 to 50% by weight on a dry basis, and the binder is contained in an amount of 10 to 40% by weight on a dry basis. More preferably, the cracking active component is contained in an amount of 20 to 40% by weight on a dry basis, and the content of the mesoporous silica-aluminum material is based on a dry basis, based on the dry basis weight of the catalytic cracking catalyst. 1-15 weight. /.
  • the clay is contained in an amount of from 15 to 45 % by weight on a dry basis, and the binder is from 20 to 35 % by weight on a dry basis.
  • the catalytic cracking catalyst contains from 10 to 60 weights based on the dry basis weight of the catalytic cracking catalyst. /.
  • Cracking active component 10-60% by weight clay and 10-60% by weight binder, wherein the cracking active component comprises 25-70% by weight of the first Y-type molecular sieve, 10-70% by weight a second Y-type molecular sieve and 5-30% by weight of a third Y-type molecular sieve, wherein the second Y-type molecular sieve is a rare earth-containing gas phase ultra-stable Y-type molecular sieve; the third Y-type molecular sieve is The rare earth DASY molecular sieve preferably has a rare earth content of 1.5-3 weight%.
  • the cracking active component is present in an amount of from 20 to 50% by weight on a dry basis
  • the clay is present in an amount of from 20 on a dry basis, based on the dry basis weight of the catalytic cracking catalyst. -50 weight. /.
  • the binder is contained in an amount of 10 to 50% by weight on a dry basis.
  • the cracking active component is present in an amount of from 20 to 45% by weight, for example from 30 to 42% by weight, based on the dry basis weight of the catalytic cracking catalyst, the clay being on a dry basis
  • the content is from 30 to 45% by weight, for example from 35 to 45% by weight
  • the binder is contained in an amount of from 15 to 40% by weight, for example from 20 to 35% by weight or from 25 to 32% by weight, based on the dry basis.
  • the cracking active component comprises 25-70% by weight of the first Y-type molecular sieve, 10-70% by weight of the second Y-type molecular sieve, and 5-25% by weight of the third Y-type molecular sieve, for example
  • the cracking active component may include 30-65 wt% of the first Y-type molecular sieve, 15-65 wt% of the second Y-type molecular sieve, and 5-20 wt% of the third Y-type molecular sieve
  • the second Y-type molecular sieve is a gas-phase ultra-stable Y-type molecular sieve containing rare earth;
  • the third Y-type molecular sieve is a rare earth-containing DASY molecular sieve, and the rare earth content thereof is preferably 1.5 to 3% by weight.
  • the catalytic cracking catalyst comprises from 10 to 60% by weight of cracking active component, from 10 to 70% by weight of clay and from 10 to 60% by weight, based on the dry basis weight of the catalytic cracking catalyst.
  • the binder wherein the cracking active component comprises 35-70% by weight of the first Y-type molecular sieve, 20-60% by weight of the second Y-type molecular sieve, and 2-20% by weight of the third Y-type molecular sieve;
  • the second Y-type molecular sieve is a magnesium-containing ultra-stable Y-type molecular sieve
  • the third Y-type molecular sieve is a rare earth-containing DASY molecular sieve, preferably, the dry weight ratio of the first molecular sieve and the second molecular sieve
  • the ratio of the dry weight of the third Y-type molecular sieve to the first Y-type molecular sieve is 0.05:0.5-1, such as 0.1-0.3:1.
  • the first Y-type molecular sieve may account for 39-70% by weight
  • the second Y-type molecular sieve may account for 22-55 wt%
  • the third Y-type molecular sieve may account for 5-20% by weight
  • the second Y-type molecular sieve is a magnesium-containing ultra-stable Y-type molecular sieve
  • the third Y-type molecular sieve is a rare earth-containing DASY molecule.
  • the catalytic cracking catalyst provided by the present invention is based on the dry weight of the catalytic cracking catalyst, and the cracking active component is 20-50% by weight on a dry basis, and the clay is dried.
  • the basis weight is 20-50 weight ° /.
  • the binder is contained in an amount of from 10 to 50% by weight on a dry basis. More preferably, the cracking active component is contained in an amount of 30 to 45% by weight on a dry basis, and the clay is contained in an amount of 25 to 45% by weight on a dry basis, based on the dry basis weight of the catalytic cracking catalyst.
  • the binder is contained in an amount of 20 to 40% by weight on a dry basis.
  • the catalytic cracking catalyst comprises 20-60% by weight of cracking active component, 1-20% by weight of mesoporous silica aluminum material, 10-70% by weight of clay and 10-60% by weight of binder, said cracking active group
  • the element contains 70-90% by weight of Y-type molecular sieve and 10-30% by weight.
  • the Y-type molecular sieve comprises 70 to 99% by weight of the Y-type molecular sieve and 1 to 30% by weight of the second Y-type molecular sieve, based on the total weight of the Y-type molecular sieve.
  • the second Y-type molecular sieve is preferably a rare earth-containing DASY molecular sieve having a rare earth content of preferably 1.5 to 3 parts by weight. /. .
  • the cracking active component is present in an amount of from 20 to 45% by weight on a dry basis, based on the dry basis weight of the catalytic cracking catalyst, and the mesoporous silica aluminum material is on a dry basis.
  • the content is 2 to 10% by weight
  • the clay is contained in an amount of 20 to 40% by weight on a dry basis
  • the binder is contained in an amount of 20 to 35% by weight on a dry basis.
  • the catalytic cracking catalyst contains 10-60 parts by weight of cracking active component, 10-70 parts by weight of clay, 10-60 parts by weight of binder per 100 parts by weight of the catalytic cracking catalyst, 0- 20 parts by weight of mesoporous silica-alumina material. In a further embodiment, the catalytic cracking catalyst contains 28-38 parts by weight of cracking active component, 20-44 parts by weight of clay, 21-34 parts by weight of binder per 100 parts by weight of the catalytic cracking catalyst, 0- 12 parts by weight of mesoporous silica-alumina material.
  • the catalytic cracking catalyst consists essentially of: 10-60 parts by weight of cracking active component, 10-70 parts by weight of clay, 10-60 parts by weight of binder, 0-20 parts by weight Mesoporous silica-alumina material. In a further embodiment, the catalytic cracking catalyst consists essentially of: 28-38 parts by weight of cracking active component, 20-44 parts by weight of clay, 21-34 parts by weight of binder, 0-12 parts by weight Mesoporous silica-alumina material.
  • the catalytic cracking catalyst contains 10-60 parts by weight of cracking active component, 10-70 parts by weight of clay, 10-60 parts by weight of binder per 100 parts by weight of the catalytic cracking catalyst, 0- 20 parts by weight of a mesoporous silica-alumina material, wherein the cracking active component comprises or consists essentially of or consists of: 10-40 parts by weight of a rare earth-containing Y-type molecular sieve, 0-25 parts by weight Other Y-type molecular sieves are selected, and 0-12 parts by weight of an optional molecular sieve having an MFI structure.
  • the other Y-type molecules are selected from one or both of a rare earth-containing DASY molecular sieve, a rare earth-containing gas phase ultrastable Y type molecular sieve, and a magnesium containing ultrastable Y type molecular sieve.
  • the catalytic cracking catalyst contains 28-38 parts by weight of cracking active component, 20-44 parts by weight of clay, 21-34 parts by weight per 100 parts by weight of the catalytic cracking catalyst.
  • a binder 0-12 parts by weight of a mesoporous silica-alumina material, wherein the cracking active component comprises or consists essentially of or consists of: 10-34 parts by weight of a rare earth-containing Y-type molecular sieve, 0 -23 parts by weight of optional other Y-type molecular sieves, and 0-10 parts by weight of an optional molecular sieve having an MFI structure.
  • the other Y-type molecules are selected from one or both of a rare earth-containing DASY molecular sieve, a rare earth-containing gas phase ultrastable Y type molecular sieve, and a magnesium containing ultrastable Y type molecular sieve.
  • the cracking active component comprises or consists essentially of or consists of:
  • the catalytic cracking catalyst comprises or consists essentially of or consists of: per 100 parts by weight of the catalytic cracking catalyst:
  • the catalytic cracking catalyst comprises or consists essentially of or consists of: per 100 parts by weight of the catalytic cracking catalyst:
  • the cracking active component comprises or consists essentially of or consists of:
  • the rare earth-containing Y type molecular sieve of the present invention is the rare earth-containing Y type molecular sieve of the present invention.
  • a rare earth-containing DASY molecular sieve is optionally used.
  • the weight ratio of the rare earth-containing Y-type molecular sieve of the present invention to the rare earth-containing gas phase ultrastable Y type molecular sieve is from 0.1 to 10, preferably from 0.2 to 5, more preferably from 0.25 to 5, for example 0.5-5 or 0.5-1.
  • the catalytic cracking catalyst comprises or consists essentially of or consists of: per 100 parts by weight of the catalytic cracking catalyst:
  • the invention also provides a preparation method of the catalytic cracking catalyst, which comprises mixing a cracking active component, an optional mesoporous silica material, a clay and a binder, and then sequentially performing spray drying, washing, and The steps of filtration and drying.
  • the method of carrying out these processes can be carried out by a conventional method, and their specific implementation methods are described in detail in, for example, the patent applications CN1916166A, CN1362472A, CN1727442A, CN1132898C, CN1727445A and CN1098130A, which are incorporated herein by reference. .
  • Example 1 Example 1
  • the chemical composition of the molecular sieve is determined by X-ray fluorescence (see “Petroleum Chemical Analysis Method (RIPP Experimental Method)", edited by Yang Cuiding et al., Science Press, 1990).
  • the molecular phase (such as unit cell constant) and crystallinity data of the molecular sieve are determined by X-ray diffraction method, and the standard methods of RIPP145-90 and RIPP146-90 are used (see "Petrochemical Analysis Method (RIPP Test). Method), edited by Yang Cuiding, Science Press, 1990 edition).
  • the framework silica-aluminum atomic ratio of the molecular sieve is measured and calculated by nuclear magnetic resonance (NMR).
  • Light oil micro-reaction activity was determined by reference to the RIPP92-90 standard method.
  • the raw materials used were commercially available and the specifications were as follows: NaY molecular sieve: industrial grade, purchased from Sinopec Catalyst Branch, Qilu Catalyst Plant; rare earth chloride: industrial grade, purchased from Sinopec Qilu catalyst company company, lanthanum (La 2 0 3 by the meter), cerium (Ce 2 0 3 by count) mass ratio of 55:45;
  • Fig. 1 The X-ray diffraction spectrum of Y-A is shown in Fig. 1.
  • N C1: 3 ⁇ 40 1: 0.15: 12 ratio of beating and at 75.
  • C exchange for 1 hour then add 0.27 liters of 300g RE 2 O 3 /L rare earth chloride solution, stir the hook, add water glass to adjust the pH of the slurry to 8.0 and continue to stir for 10 minutes, filter washed, dried and then in air atmosphere at 570 .
  • a mixture of 2.6 kg of NaY molecular sieve and 20 kg of deionized water was mixed and beaten, and 1.5 liter of a rare earth chloride solution having a concentration of 160 g of RE 2 O 3 /L was added thereto, and the mixture was stirred and heated to 75°C.
  • C. Adjust the pH of the slurry to 3.5 with dilute hydrochloric acid, continue to exchange for 1 hour, filter, wash with water, and dry at 600% under 100% steam.
  • C calcined for 2 hours to obtain a Y-type molecular sieve Y-E1 containing rare earth and sodium.
  • YE has 1.3% by weight of sodium oxide and 17.9 by weight of rare earth oxide. /.
  • the crystallinity is 45.2%
  • the unit cell constant is 2.467 nm
  • the product of the intensity of the peak at a ratio of 1 2 to the weight percent of the rare earth in terms of rare earth oxide in the molecular sieve is 62.6.
  • a mixture of 2.6 kg of NaY molecular sieve and 20 kg of deionized water was mixed and beaten.
  • 1.5 liter of a solution of 160 g of La 2 O 3 /L cesium chloride was added, and the mixture was stirred to raise the temperature to 75.
  • C and adjust the pH of the slurry to 3.5 with dilute hydrochloric acid continue to exchange for 1 hour, filter, wash, dry, and then calcined at 620 ° C for 2 hours in an air atmosphere to obtain a Y-type molecular sieve Y-Fl containing rare earth and sodium.
  • the ammonium chloride and barium chloride solution was mixed and beaten at 65. C exchange for 1 hour, finally add ammonia to adjust the pH of the slurry to 8.2 and continue to stir for 10 minutes.
  • C was calcined for 3 hours to obtain a finished product of the rare earth-containing Y-type molecular sieve of the present invention, which was designated as YF.
  • the sodium oxide in YY-A is 1.5 heavy. /.
  • the crystallinity is 50.6%
  • the unit cell constant is 2.463 nm
  • the skeleton silicon to aluminum atomic ratio is 2.9.
  • the ratio of the intensity of the peak 1 2 (I 2 ) to the weight percent of the rare earth in the molecular sieve as the rare earth oxide is 48.8.
  • YY-C has 1.3% by weight of sodium oxide and 13.9 parts by weight of rare earth oxide. /.
  • the crystallinity is 48.8%
  • the unit cell constant is 2.465 nm
  • the ratio of the intensity of the peak 1 2 (1/1 2 ) to the weight percent of the rare earth in terms of rare earth oxide in the molecular sieve is 55.6.
  • YY-E 1.3 weight% sodium oxide, 17.9 weight of rare earth oxide 0 /.
  • the crystallinity is 45.2%
  • the unit cell constant is 2.467 nm
  • the ratio of the intensity of the peak 1 2 (1!/1 2 ) to the weight percent of the rare earth in terms of rare earth oxide in the molecular sieve is 62.6.
  • a mixture of 2.6 kg of NaY molecular sieve and 20 kg of deionized water was mixed and beaten.
  • 1.5 liter of a solution of 160 g of La 2 O 3 /L cerium chloride was added thereto, and the mixture was stirred and heated to 75.
  • C. Adjust the pH of the slurry to 3.5 with dilute hydrochloric acid, continue to exchange for 1 hour, filter, wash with water, and dry at 620 in an air atmosphere.
  • This comparative example is a rare earth-containing Y-type molecular master prepared in accordance with the method described in CN1053808A.
  • 2.6 kg of NaY molecular sieve was mixed with 1.75 liters of a rare earth chloride solution (160 g RE 2 O 3 /L) and 30 kg of deionized water to adjust the pH of the slurry to 3.5 and 90.
  • C was exchanged for 1 hour, filtered, washed with water, and the filter cake was placed in a tubular baking furnace to raise the temperature to 200.
  • water vapor was introduced, and the temperature was further raised to 550 ° C for 2 hours, and the obtained molecular sieve was beaten with (NH 4 ) 2 S0 4 and 0 at a ratio of 1: 0.2: 40 and at 60.
  • C was exchanged for 15 minutes, filtered and dried to obtain a comparative sample, which was designated as DB-1.
  • Fig. 2 The X-ray diffraction spectrum of DB-1 is shown in Fig. 2.
  • a rare earth-containing cerium-type molecular sieve was prepared according to a conventional two-two-bake method.
  • the chemical composition of DB-2 is 1.9 wt% of sodium oxide and 18.2 wt of rare earth oxide. /.
  • the crystallinity is 43.6%
  • the unit cell constant is 2.469 nm
  • Peak intensity I! With 2 ⁇ 12.3 ⁇ 0.1.
  • the ratio of the intensity of the peak of 1 2 ( ) to the weight percent of the rare earth in terms of the rare earth oxide in the molecular sieve is 16.4.
  • This comparative example is a rare earth-containing cerium type molecular sieve prepared in accordance with the method described in CN100344374C.
  • the chemical composition of DB-3 is 0.2% by weight of sodium oxide and 20.6 parts by weight of rare earth oxide. /.
  • the crystallinity is 50.7%
  • the unit cell constant is 2.472 nm
  • Peak intensity I! With 2 ⁇ 12.3 ⁇ 0.1.
  • the ratio of the intensity of the peak 1 2 (1!/1 2 ) to the weight percent of the rare earth in terms of rare earth oxide in the molecular sieve is 26.8.
  • This comparative example is a rare earth-containing cerium type molecular sieve prepared in accordance with the method described in CN100344374C.
  • the ratio of the intensity of the peak to 1 2 (I!/W and the molecular weight of the rare earth in terms of the rare earth oxide in the molecular sieve is 40.1.
  • This comparative example is a rare earth-containing cerium type molecular sieve prepared in accordance with the method described in CN100344374C.
  • the molecular sieves in the above examples and comparative examples were mixed and exchanged with an ammonium chloride solution, and the Na 2 0 content therein was washed to 0.3% by weight or less, and after filtration and dried, it was 800. C.
  • the aging treatment was carried out for 17 hours under 100% steam, and the physicochemical characterization was carried out and the light oil anti-active MA was determined.
  • the rare earth content of the molecules in the examples after the ammonium washing has not changed substantially, indicating that the rare earth ions are mainly located in the molecular sieve cage, and will not be reversely exchanged, and the rare earth ions in the small cages are molecular sieves.
  • the structure has a remarkable stabilizing effect, the crystal retention is more than 45%, and the light oil activity is higher than that of the rare earth content.
  • the aluminum sol is produced by Sinopec Catalyst Qilu Branch, and the A1 2 0 3 content of the aluminum sol is 21.5 wt%;
  • Kaolin was purchased from Suzhou China Kaolin Company
  • the pseudo-boehmite was purchased from Shandong Aluminum Plant;
  • Mesoporous silica-alumina material prepared according to the method of Example 1 of CN1854258A (SH-SA-1), a rare earth-containing gas phase ultrastable Y type molecular sieve was obtained according to the method of Example 5 of CN1683244A.
  • Ultra-stable Y-type molecular sieve containing magnesium is ultra-stable Y-type molecular sieve containing magnesium according to CN1297018A Prepared by the method of Example 1;
  • DASY2.0 molecular sieve produced by Sinopec Catalyst Qilu Branch, RE 2 0 3 content is 2% by weight, silicon to aluminum atom molar ratio is 4.1;
  • the sol was stirred for 20 minutes, and then 33 parts by weight of a molecular sieve YY-A slurry on a dry basis was added thereto, and stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • the sol was stirred for 20 minutes, and then 31 parts by weight of molecular sieve YY-A on a dry basis and 2 parts by weight of DASY 2.0 molecular sieve mixed slurry on a dry basis were added thereto, and stirred for 30 minutes to obtain a solid content of 30% by weight.
  • the slurry is spray dried to form a microsphere catalyst.
  • the sol was stirred for 20 minutes, and then a mixed slurry of 28 parts by weight of molecular sieve YY-D on a dry basis and 3 parts by weight of DASY 2.0 molecular sieve on a dry basis was added thereto, and stirred for 30 minutes to obtain a solid content of 30 parts by weight. % of the slurry, spray dried to make a microsphere catalyst.
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 42 parts by weight of kaolin on a dry basis and 9 parts by weight of aluminum on a dry basis were respectively added.
  • the sol was stirred for 20 minutes, and then a mixed slurry of 25 parts by weight of molecular sieve YY-E on a dry basis and 5 parts by weight of DASY 2.0 molecular sieve on a dry basis was added thereto, and stirred for 30 minutes to obtain a solid content of 30 parts by weight. % of the slurry, spray dried to make a microsphere catalyst.
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 43 parts by weight of kaolin on a dry basis and 10 parts by weight of aluminum on a dry basis were respectively added.
  • the sol was stirred for 20 minutes, and then a mixed slurry of 23 parts by weight of molecular sieve YY-F on a dry basis and 5 parts by weight of DASY 2.0 molecular sieve on a dry basis was added thereto, and stirred for 30 minutes to obtain a solid content of 30 parts by weight. % of the slurry, spray dried to make a microsphere catalyst.
  • the sol was stirred for 20 minutes, and then 33 parts by weight of a molecular sieve DB-1 slurry on a dry basis was added thereto, and stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 42 parts by weight of kaolin on a dry basis and 9 parts by weight of aluminum on a dry basis were respectively added.
  • the sol was stirred for 20 minutes, and then a mixed slurry of 25 parts by weight of molecular sieve DB-3 and 5 parts by weight of DASY 2.0 molecular sieve on a dry basis was added thereto, and stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, sprayed Dry to make a microsphere catalyst.
  • the sol was stirred for 20 minutes, and then 35 parts by weight of a molecular sieve DB-4 slurry on a dry basis was added thereto, and stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • a mixed slurry of 3 parts by weight of DASY molecular sieve was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • the catalytic cracking catalysts C1-C6 and DC1-DC5 prepared above were aged at 800 ° C and 100% steam for 12 hours, respectively, and then packed in a small fixed fluidized bed ACE unit (purchased from KTI Corporation, USA). In the middle, the filling amount is 9g each. Then, under the conditions of a reaction temperature of 510 ° C, a weight hourly space velocity of 12 h -1 , and a ratio of the ratio of the agent to the oil of 6, the catalytic feedstock oils shown in Table 3-1 were respectively injected into the catalytic cracking.
  • the catalytic cracking reaction was carried out in a fixed fluidized bed ACE apparatus of catalysts C1-C6 and DC1-DC5. The composition of the reaction product was analyzed, and the conversion rate was calculated according to the formula.
  • the catalytic cracking reaction performance of the catalyst is shown in Table 4-1 below:
  • 16 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 37 parts by weight of kaolin on a dry basis and 9 parts by weight of aluminum on a dry basis were respectively added.
  • the sol, and a slurry of 12 parts by weight of mesoporous silica-alumina material on a dry basis were stirred for 20 minutes, after which 26 parts by weight of molecular sieve YY-C on a dry basis and 9 weights on a dry basis were added thereto.
  • a mixed slurry of DASY 2.0 molecular sieves was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • 16 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 37 parts by weight of kaolin on a dry basis and 9 parts by weight of aluminum on a dry basis were respectively added.
  • 16 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 34 parts by weight of kaolin on a dry basis and 9 parts by weight of aluminum on a dry basis were respectively added.
  • the microsphere catalyst: H 2 0 by weight ratio 1:10, filtered and dried at 110 ° C to obtain a catalytic cracking catalyst DC-5.
  • the catalytic cracking catalysts C1 to C6 and DC1 to DC5 prepared above were aged at 800 ° C and 100% steam for 12 hours, respectively, and then packed in a small fixed fluidized bed ACE device (purchased from KTI Corporation, USA). In the middle, the filling amount is 9g each. Then, under the conditions of a reaction temperature of 510 ° C, a weight hourly space velocity of 12 h -1 , and a ratio of the ratio of the ratio of the agent to the oil of 6, the catalytic feedstock oils shown in Table 3-2 were respectively injected into the catalytic cracking.
  • the catalytic cracking reaction was carried out in a fixed fluidized bed ACE apparatus of catalysts C1 to C6 and DC1 to DC5. The composition of the reaction product was analyzed, and the conversion rate was calculated according to the formula.
  • the catalytic cracking reaction performance of the catalyst was as shown in Table 4-2 below.
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 40 parts by weight of kaolin on a dry basis and 8 parts by weight of aluminum on a dry basis were respectively added.
  • the sol was stirred for 20 minutes, and then 18 parts by weight of molecular sieve YY-A on a dry basis and 12 parts by weight of a rare earth-containing gas phase ultrastable Y type molecular sieve on a dry basis and 10 parts by weight on a dry basis were added thereto.
  • the DASY 2.0 molecular sieve mixed slurry was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • the sol was stirred for 20 minutes, and then 15 parts by weight of molecular sieve YY-A on a dry basis and 15 parts by weight of a rare earth-containing gas phase ultrastable Y type molecular sieve on a dry basis and 2 parts by weight on a dry basis were added thereto.
  • the DASY 2.0 molecular sieve mixed slurry was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • the sol was stirred for 20 minutes, and then 10 parts by weight of molecular sieve YY-C on a dry basis and 20 parts by weight of a rare earth-containing gas phase ultrastable Y type molecular sieve on a dry basis were added thereto and 2 weights on a dry basis.
  • the mixed DASY 2.0 molecularly mixed slurry was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 40 parts by weight of kaolin on a dry basis and 8 parts by weight of aluminum on a dry basis were respectively added.
  • the sol was stirred for 20 minutes, and then 18 parts by weight of molecular sieve DB-1 on a dry basis and 12 parts by weight of a rare earth-containing gas phase ultrastable Y type molecular sieve on a dry basis and 10 parts by weight on a dry basis were added thereto.
  • the DASY 2.0 molecular sieve mixed slurry was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • 19 parts by weight of pseudo-boehmite was mixed with deionized water on a dry basis, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of acid to aluminum (36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 38 parts by weight of kaolin on a dry basis and 8 parts by weight of aluminum on a dry basis were respectively added.
  • the sol was stirred for 20 minutes, and then 20 parts by weight of the molecule DB-4 on a dry basis and 12 parts by weight of the rare earth-containing gas phase ultrastable Y type molecular sieve on a dry basis and 3 parts by weight on a dry basis were further added thereto.
  • the DASY 2.0 molecular sieve mixed slurry was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • the sol was stirred for 20 minutes, and then 0 part by weight of molecular sieve YY-A on a dry basis and 30 parts by weight of a rare earth-containing gas phase ultrastable Y type molecular sieve on a dry basis and 2 parts by weight on a dry basis were added thereto.
  • the DASY 2.0 molecular sieve mixed slurry was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • the sol was stirred for 20 minutes, and then 30 parts by weight of molecular sieve YY-A on a dry basis and 0 parts by weight of a rare earth-containing gas phase ultrastable Y type molecular sieve on a dry basis and 2 parts by weight on a 1,000 basis basis were added thereto.
  • the DASY 2.0 molecular sieve mixed slurry was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • the microsphere catalyst was calcined at 500 ° C for 1 hour.
  • the catalytic cracking catalysts R1-R2, C1-C6 and DC1-DC5 prepared above were aged at 800 ° C and 100% steam for 12 hours, respectively, and then packed in a fixed fluidized bed FFB unit (by Sinopec).
  • the reaction performance of the catalytic cracking catalyst was evaluated in a company manufactured by Dadi Corporation of the Research Institute of Petroleum and Petrochemicals, and the catalyst was filled in an amount of 150 g.
  • the raw material oil shown in Table 3-3 was injected into the fixed fluidized bed FFB apparatus under the conditions of a reaction temperature of 520 ° C, a weight hourly space velocity of 16 h-1, and a ratio of the ratio of the agent to the oil of 6.
  • the catalytic cracking reaction is carried out.
  • the composition of the reaction product was analyzed, and the conversion rate was calculated according to the formula.
  • the catalytic cracking reaction performance of the catalyst is shown in Table 4-3 below:
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 37 parts by weight of kaolin on a dry basis and 7 parts by weight of aluminum on a kilobase basis were respectively added.
  • the sol was stirred for 20 minutes, and then 18 parts by weight of molecular sieve YY-A on a dry basis and 17 parts by weight of a magnesium-containing ultrastable Y-type molecular sieve on a dry basis and 2 parts by weight on a dry basis were added thereto.
  • the slurry was mixed with DASY 2.0 molecular sieve, stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • 16 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 39 parts by weight of kaolin on a dry basis and 9 parts by weight of aluminum on a kilobase basis were respectively added.
  • the sol was stirred for 20 minutes, and then 25 parts by weight of molecular sieve YY-A on a dry basis and 8 parts by weight of a magnesium-containing ultrastable Y-type molecular sieve on a dry basis and 2 parts by weight on a dry basis were added thereto.
  • the slurry was mixed with DASY 2.0 molecular sieve, stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • the sol was stirred for 20 minutes, and then 20 parts by weight of molecular sieve YY-C on a dry basis and 10 parts by weight of a magnesium-containing ultrastable Y-type molecular sieve on a dry basis and 7 parts by weight on a dry basis were added thereto.
  • the slurry was mixed with DASY 2.0 molecular sieve, stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • the content of Na 2 0 is less than 0.25% by weight, and finally rinsed with deionized water, the microsphere catalyst: H 2 0 weight ratio: 10, filtered and dried at 110 ° C to obtain catalytic cracking catalyst C3.
  • the sol was stirred for 20 minutes, and then 17 parts by weight of molecular sieve YY-D on a dry basis and 15 parts by weight of a magnesium-containing ultrastable Y-type molecular sieve on a dry basis and 5 parts by weight on a 1,000 basis basis were added thereto.
  • the slurry was mixed with DASY 2.0 molecular sieve, stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 34 parts by weight of kaolin on a dry basis and 9 parts by weight of aluminum on a dry basis were respectively added.
  • the sol was stirred for 20 minutes, and then 15 parts by weight of molecular sieve YY-E on a dry basis and 21 parts by weight of a magnesium-containing ultrastable Y-type molecular sieve on a dry basis and 2 parts by weight on a dry basis were added thereto.
  • the DASY 2.0 molecular sieve mixed slurry was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • a portion of the aluminum sol stirred for 20 minutes, and then added thereto 22 parts by weight of molecular sieve YY-F on a dry basis and 9 parts by weight of a magnesium-containing ultrastable Y type molecular sieve on a dry basis and on a dry basis
  • the slurry was mixed with a weight portion of DASY 2.0 molecular sieve, stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a concentration of 36% was added to the obtained slurry. /.
  • the hydrochloric acid peptized, the ratio of acid to aluminum was 0.20, and the temperature was raised to 65 ° C for 1 hour, respectively, and added to the dry basis.
  • the magnesium-containing ultrastable Y-type molecular sieve and 2 parts by weight of DASY 2.0 molecular sieve mixed slurry on a dry basis were stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • the C was dried under C to obtain a catalytic cracking catalyst DC-2.
  • 19 parts by weight of pseudo-boehmite on a 1000 basis basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 33 parts by weight of kaolin on a kilobase basis and 9 parts by weight of aluminum on a dry basis were respectively added.
  • the sol was stirred for 20 minutes, and then 16 parts by weight of molecular sieve DB-3 on a dry basis and 21 parts by weight of a magnesium-containing ultrastable Y-type molecular sieve on a dry basis and 2 parts by weight on a dry basis were added thereto.
  • the slurry was mixed with DASY 2.0 molecular sieve, stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and sprayed to form a microsphere catalyst.
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 35 parts by weight of kaolin on a dry basis and 7 parts by weight of aluminum on a dry basis were respectively added.
  • the sol was stirred for 20 minutes, and then 20 parts by weight of molecular sieve DB-4 on a dry basis and 17 parts by weight of a magnesium-containing ultrastable Y-type molecular sieve on a dry basis and 2 parts by weight on a dry basis were added thereto.
  • the slurry was mixed with DASY 2.0 molecular sieve and stirred for 30 minutes to obtain a solid content of 30% by weight. /.
  • the slurry is spray dried to form a microsphere catalyst.
  • the sol was stirred for 20 minutes, and then 21 parts by weight of the molecular sieve DB-5 on a dry basis and 10 parts by weight of the magnesium-containing ultrastable Y-type molecular sieve on a dry basis and 7 parts by weight on a dry basis were further added thereto.
  • the slurry was mixed with DASY 2.0 molecular sieve, stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • the catalytic cracking catalysts C1-C6 and DC1-DC5 prepared above were aged at 800 ° C and 100% steam for 17 hours, and then filled in a fixed fluidized bed FFB unit (by Sinopec Petrochemical Scientific Research).
  • the reaction performance of the catalytic cracking catalyst was evaluated in the company (manufactured by Dadi Corporation), and the amount of the catalyst charged was 150 g.
  • the raw material oil shown in Table 3-4 was injected into the fixed fluidized bed FFB apparatus under the conditions of a reaction temperature of 500 ° C, a weight hourly space velocity of 16 h-1, and a ratio of the ratio of the agent to the oil of 5.
  • the catalytic cracking reaction is carried out.
  • the composition of the reaction product was analyzed, and the conversion rate was calculated according to the formula.
  • Table 4-4 below:
  • a sol and a slurry of 8 parts by weight of mesoporous silica-alumina material on a dry basis were stirred for 20 minutes, and then 23 parts by weight of molecular sieve YY-A on a dry basis and 4 parts by weight on a dry basis were added thereto.
  • a mixed slurry of DASY 2.0 molecular sieve and 8 parts by weight of a molecular sieve having an MFI structure on a dry basis was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 34 parts by weight of kaolin on a dry basis and 9 parts by weight of aluminum on a dry basis were respectively added.
  • a sol and a slurry of 3 parts by weight of mesoporous silica-alumina material on a dry basis were stirred for 20 minutes, and then 28 parts by weight of molecular sieve YY-A on a dry basis and 2 parts by weight on a dry basis were added thereto.
  • a mixed slurry of DASY 2.0 molecular sieve and 5 parts by weight of a molecular sieve having an MFI structure on a dry basis was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • a slurry of 4 parts by weight of mesoporous silica-alumina material on a dry basis was stirred for 20 minutes, and then 27 parts by weight of molecular sieve YY-C on a dry basis and 2 parts by weight on a dry basis were added thereto.
  • a mixed slurry of DASY 2.0 molecular sieve and 6 parts by weight of a molecular sieve having an MFI structure on a dry basis was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • a sol and a slurry of 3 parts by weight of mesoporous silica-alumina material on a dry basis were stirred for 20 minutes, and then 24 parts by weight of molecular sieve YY-D on a dry basis and 3 parts by weight on a dry basis were added thereto.
  • a mixed slurry of DASY 2.0 molecular sieve and 8 parts by weight of a molecular sieve having an MFI structure on a dry basis was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 32 parts by weight of kaolin on a dry basis and 9 parts by weight of aluminum on a dry basis were respectively added.
  • a sol and a slurry of 5 parts by weight of mesoporous silica-alumina material on a dry basis were stirred for 20 minutes, and then 22 parts by weight of molecular sieve YY-E on a dry basis and 8 parts by weight on a dry basis were added thereto.
  • a mixed slurry of DASY 2.0 molecular sieve and 5 parts by weight of a molecular sieve having an MFI structure on a dry basis was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • a slurry of parts by weight of kaolin, 7 parts by weight of aluminum sol on a dry basis, and 4 parts by weight of a mesoporous silica-alumina material on a dry basis were stirred for 20 minutes, and then 20% by dry weight was added thereto.
  • a mixed slurry of molecular sieves YY-F and 5 parts by weight of DASY 2.0 molecular sieve on a dry basis and 10 parts by weight of a molecular sieve having an MFI structure on a dry basis and stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight.
  • a sol and a slurry of 8 parts by weight of mesoporous silica-alumina material on a dry basis were stirred for 20 minutes, and then 23 parts by weight of molecular sieve DB-1 on a dry basis and 4 parts by weight on a dry basis were added thereto.
  • a mixed slurry of DASY 2.0 molecular sieve and 8 parts by weight of a molecular sieve having an MFI structure on a dry basis was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • a slurry of 32 parts by weight of kaolin on a dry basis, 10 parts by weight of aluminum sol on a dry basis, and 3 parts by weight of a mesoporous silica-alumina material on a dry basis were added, and stirred for 20 minutes, and then A mixture of 24 parts by weight of molecular sieve DB-2 on a dry basis and 3 parts by weight of DASY 2.0 molecular sieve on a dry basis and 8 parts by weight of a molecular sieve having an MFI structure on a dry basis was added thereto, and stirred for 30 minutes.
  • a slurry having a solid content of 30% by weight was spray-dried to prepare a microsphere catalyst.
  • 19 parts by weight of pseudo-boehmite on a dry basis was mixed with deionized water and beaten, and a 36% by weight hydrochloric acid peptizing solution was added to the obtained slurry, and the ratio of aluminum to aluminum (the 36% by weight of hydrochloric acid and The weight ratio of the pseudoboehmite on a dry basis was 0.20, and the temperature was raised to 65 ° C for 1 hour, and a slurry of 32 parts by weight of kaolin on a dry basis and 9 parts by weight of aluminum on a dry basis were respectively added.
  • a sol and a slurry of 5 parts by weight of mesoporous silica-alumina material on a dry basis were stirred for 20 minutes, and then 22 parts by weight of molecular sieve DB-3 on a dry basis and 8 parts by weight on a dry basis were added thereto.
  • a mixed slurry of DASY 2.0 molecular sieve and 5 parts by weight of a molecular sieve having an MFI structure on a dry basis was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • a sol and a slurry of 8 parts by weight of mesoporous silica-alumina material on a dry basis were stirred for 20 minutes, and then 25 parts by weight of molecular sieve DB-4 on a dry basis and 4 parts by weight on a dry basis were added thereto.
  • a mixed slurry of DASY 2.0 molecular sieve and 8 parts by weight of a molecular sieve having an MFI structure on a dry basis was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • a sol and a slurry of 3 parts by weight of mesoporous silica-alumina material on a dry basis were stirred for 20 minutes, and then 26 parts by weight of molecular sieve DB-5 on a dry basis and 3 parts by weight on a dry basis were added thereto.
  • a mixed slurry of DASY 2.0 molecular sieve and 8 parts by weight of a molecular sieve having an MFI structure on a dry basis was stirred for 30 minutes to obtain a slurry having a solid content of 30% by weight, which was spray-dried to prepare a microsphere catalyst.
  • the catalytic cracking catalysts C1-C6 and DC1-DC5 prepared above were aged at 800 ° C and 100% steam for ⁇ hours, and then filled in a fixed fluidized bed FFB unit (by Sinopec Petrochemical Scientific Research).
  • the reaction performance of the catalytic cracking catalyst was evaluated in the company (manufactured by Dadi Corporation), and the amount of the catalyst charged was 150 g.
  • the raw material oils shown in Tables 3-5 were injected into the fixed fluidized bed FFB apparatus under the conditions of a reaction temperature of 51 (TC, a weight hourly space velocity of 12 h-1, and a ratio of the ratio of the agent to the oil of 6).
  • the catalytic cracking reaction is carried out.
  • the composition of the reaction product is analyzed, and the conversion rate is calculated according to the formula.
  • Table 4-5 The results are shown in Table 4-5 below:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种催化裂化催化剂及其制备方法,该催化裂化催化剂具有裂化活性组元、任选的介孔硅铝材料、粘土和粘结剂,其中,所述裂化活性组元包括或基本上由以下组成或由以下组成:含稀土的Y型分子筛,任选的其它Y型分子筛,和任选的具有MFI结构的分子筛,所述含稀土的Y型分子筛,其稀土含量以氧化稀土计为10-25重%,如11-23重%,晶胞常数为2.440-2.472nm,如2.450-2.470nm,结晶度为35-65%,如40-60%,骨架硅铝原子比为2.5-5.0,该分子筛X射线衍射谱图中2θ=11.8±0.1°峰的强度I1与2θ=12.3±0.1°峰的强度I2的比值与分子筛中以氧化稀土计的稀土重量百分含量的乘积值大于48,优选大于55。

Description

一种具有含稀土的 Y型分子筛的催化裂化催化剂及其制备方法 技术领域
本发明涉及一种具有含稀土的 Υ 型分子 的催化裂化催化剂及其制 备方法。 背景技术
催化裂化 (FCC)是重要的原油二次加工过程, 在炼油工业中占有举足 轻重的地位。 在催化裂化工艺中, 重质馏分如减压馏分油或更重组分的渣 油在催化剂存在下发生反应,转化为液化气、汽油、柴油等高附加值产品, 在这个过程中通常需要使用具有高裂化活性的催化材料。微孔沸石催化材 料由于具有优良的择形催化性能和很高的裂化反应活性 ,被广泛应用于石 油炼制和加工工业中。 其中 Υ型分子筛自上世纪 60年代首次使用以来, 就一直是催化裂化催化剂的主要活性组元。 尤其是经稀土改性的 Υ型分 子筛对分子筛酸性及结构稳定性的改善有显著作用。
为了有效利用稀土资源, 降低分子筛生产成本, 特别是高稀土含量的 分子筛生产成本, 必须提高改性过程中的稀土利用率, 减少稀土流失, 同 时还要保证分子筛的裂化性能, 尽量提高分子筛的活性稳定性。
目前广泛用于降低汽油烯烃含量的活性组元多为含稀土的 Υ 型分子 筛,例如参见 CN1317547A, CN1506161A, CN101537366A, CN1436727A, CN1382631A , CN101823726 A , CN100344374C , CN1053808A , CN1069553C, CN1026225C, CN101147875A。
CN101147875A公开了一种催化裂化催化剂,其包含高稀土超稳 Y型 分子筛, 所述高稀土超稳 Y型分子筛是这样制备的: 使用超稳 Y型沸石 作为原料, 将超稳 Y 型沸石与酸混合, 将混合物搅拌, 洗涤, 过滤后, 向其中加入稀土盐溶液进行交换, 再将混合物洗涤, 过滤并干燥; 所述高 稀土超稳 Y型分子筛的 X射线衍射谱图中 2Θ=11.8±0.1。峰的强度 I 与 2Θ=12.3±0.1 °峰的强度 12的比值 (VI2)与分子筛中的稀土含量的乘积值不大 于 40。
含稀土的 Y 型分子 可以采用一交一焙(一次离子交换和一次高温 焙烧, 例如参见, CN1436727A, CN101823726A和 CN100344374C ), 或 者二交二焙(即两次液相稀土离子交换和两次高温焙烧, 例如参见, 二交 二焙: CN1506161A和 CN101537366A ) 工艺制备。
无论采用现有技术中的二交二焙工艺还是一交一焙工艺,在制备含稀 土的 Y 型分子筛中, 产物中的稀土含量通常低于投入的总稀土量。 即使 有更多的稀土离子定位于小笼中,但不可避免的会有部分稀土离子仍存在 于超笼中。 超笼中的稀土离子会在后续的洗涤过程中被反洗下来, 造成稀 土流失, 导致稀土利用率的降低。
目前工业上为节约生产成本提高生产效率, 在制备高稀土含量的 Y 型分子筛时, 多采用二交一焙工艺, 即在一焙后再进行一次稀土交换但不 进行二次焙烧。 由于缺少二次焙烧过程, 稀土离子不能得到有效迁移, 大 部分仍处于超笼中, 在后续洗涤过程中易被反洗下来, 同样会导致稀土利 用率降低。 发明内容
因此, 本发明的目的之一是在现有技术的基础上, 针对现有技术的不 足, 提供一种有别于现有技术, 具有更好结构和活性稳定性的、 稀土利用 率更高的 Y型分子筛。 目的之二是提供一种制备含稀土的 Y型分子筛的 方法, 生产流程更加优化、 生产成本更低, 得到的含稀土的 Y型分子筛 结构和活性稳定性更好、 稀土利用率更高。
本发明的进一步的目的在于提供一种具有含稀土的 Y 型分子筛的催 化剂以及其制备方法。
本发明发明人在大量含稀土的 Y 型分子筛制备试验的基础上发现, 对 NaY分子筛进行两交两焙并且结合沉积稀土的工艺, 所得含稀土的 Y 型分子筛产品, 具有特别的物化性能, 其稀土利用率和分子筛结构稳定性 优于现有技术。 特别是在大量的实验数据基础上意外发现, 所得的含稀土 的 Y 型分子筛产品的 X 射线衍射谱图中 2Θ=11.8±0.1。峰的强度 1!与 2Θ 2.3±0.1。峰的强度 12的比值 ( W与分子筛中的稀土含量 (RE203%)之 间存在特定关系, 且有别于现有技术。 基于此, 形成本发明。
在本发明的一个方面中, 本发明提供的含稀土的 Y 型分子筛, 其特 征在于, 稀土含量以氧化稀土计为 10-25重%, 优选地 11-23重%, 晶胞 常数为 2.440-2.472nm, 优选地 2.450-2.470nm, 结晶度为 35-65%, 优选地 40-60% , 骨架硅铝原子比为 2.5-5.0 , 该分子筛 X 射线衍射语图中 2Θ= 11.8士0.1。峰的强度 I,与 2Θ= 12.3士 0.1。峰的强度 12的比值 (1!/12)与分子筛 中以氧化稀土计的稀土重量百分含量的乘积值大于 48。 本发明提供的含 稀土的 Y型分子筛在 800。C、 100%水蒸气老化处理 17小时后的结晶保留 度大于 40%, 例如大于 45%。
在本发明的另一个方面中, 本发明提供了一种制备含稀土的 Y型分 子筛的方法。 该制备方法是经过二交二焙, 结合沉积稀土的过程。
在本发明的另一个方面中, 本发明提供了一种催化裂化催化剂, 该催 化裂化催化剂具有裂化活性组元、 任选的介孔硅铝材料、 粘土和粘结剂, 其中, 所述裂化活性组元具有: 含稀土的 Y型分子筛 (在下文中也称为 第一 Y型分子筛), 任选的其它 Y型分子筛, 和任选的具有 MFI结构的 分子筛。
在本发明的另一个方面中,本发明提供了一种制备催化裂化催化剂的 方法, 该方法包括: 将裂化活性组元、 任选的介孔硅铝材料、 粘土和粘结 剂混合打浆, 然后依次进行喷雾干燥、 洗涤、 过滤和干燥的步骤。
具体来说, 本发明提供了下述技术方案
1. 一种催化裂化催化剂, 该催化裂化催化剂具有裂化活性组元、 任 选的介孔硅铝材料、 粘土和粘结剂, 其中, 所述裂化活性组元包括或基本 上由以下组成或由以下组成: 含稀土的 Y型分子筛, 任选的其它 Y型分 子筛, 和任选的具有 MFI结构的分子筛, 所述含稀土的 Y型分子筛, 其 稀土含量以氧化稀土计为 10-25 重%, 如 11-23 重%, 晶胞常数为 2.440-2.472nm, 如 2.450-2.470細, 结晶度为 35-65%, 如 40-60%, 骨架 硅铝原子比为 2.5-5.0,该分子筛 X射线衍射谱图中 2Θ=11.8±0.1。峰的强度 I]与 2Θ=12.3±0.1。峰的强度 12的比值与分子筛中以氧化稀土计的稀土重量 百分含量的乘积值大于 48, 优选大于 55。
2. 按照前述技术方案中任一项的催化裂化催化剂, 其中所述含稀土 的 Υ型分子筛在经过 800。 (:、 100%水蒸气老化处理 17小时后的结晶保留 度大于 40%, 优选 45%。
3. 按照前述技术方案中任一项的催化裂化催化剂, 其中
所述的介孔硅铝材料具有拟薄水铝石的物相结构, 以氧化物重量计的 无水化学表达式为: (0~0.3)Na2O'(40~90)Al2O3'(10〜60)SiO2, 其平均孔径 为 5〜25nm, 最可几孔径为 5~15nm, 比表面积为 200~400m2/g , 孔容为 0.5〜2.0ml/g;
所述的粘土选自高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂 石、 累托土、 海泡石、 凹凸棒石、 水滑石和膨润土中的一种或多种; 所述的粘结剂选自硅溶胶、 铝溶胶和拟薄水铝石中的一种或多种。
4. 按照前述技术方案中任一项的催化裂化催化剂, 其中每 100 重量 份的催化裂化催化剂, 所述催化裂化催化剂含有 10-60重量份裂化活性组 元、 10-70重量份粘土, 10-60重量份粘结剂, 0-20重量份的介孔硅铝材 料。
5. 按照前述技术方案中任一项的催化裂化催化剂, 其中所述其它 Y 型分子筛选自: 含稀土的 DASY分子筛, 含稀土的气相超稳 Y型分子筛 和含镁的超稳 Y型分子筛。
6. 按照前述技术方案中任一项的催化裂化催化剂, 其中所述裂化活 性组元包括或基本上由以下组成或由以下组成:
含稀土的 Y型分子筛,
任选地,
含稀土的 DASY分子筛, 和
任选地, 含稀土的气相超稳 Y型分子筛、 含镁的超稳 Y型分子 筛和具有 MFI结构的分子筛中的仅仅一种。
7. 按照前述技术方案中任一项的催化裂化催化剂, 其中每 100 重量 份的催化裂化催化剂, 所述催化裂化催化剂包含 10-40重量份的含稀土的 Y型分子筛, 0-15重量份的含稀土的 DASY分子筛, 和 0-25重量份的含 稀土的气相超稳 Y型分子筛、 含镁的超稳 Y型分子筛和具有 MFI结构的 分子筛中的仅仅一种。
8. 按照前述技术方案中任一项的催化裂化催化剂, 其中所述含稀土 的 Y型分子筛是通过下述方法制备的, 包括以下步骤:
(1 )将 NaY分子筛与稀土溶液或稀土溶液与铵盐的混合溶液进行接触 处理而得到含稀土和钠的 Y型分子筛;
(2)对步骤 (1)中获得的含稀土和钠的 Y 型分子筛进行笫一次焙烧处 理, 得到含稀土和钠的 Y型分子筛;
(3)然后或者将步骤 (2)中得到的含稀土和钠的 Y型分子筛用铵盐溶液 或酸溶液接触处理后, 再与稀土溶液混合并调节混合物的 pH值为 6-10, 或者将步骤 (2)中得到的含稀土和钠的 Y型分子筛用铵盐和稀土溶液的混 合液接触处理, 再调节混合物的 pH值为 6-10, 得到含稀土和钠的 Y型分 子筛; (4)对步骤 (3)中获得的含稀土和钠的 Y 型分子筛进行第二次焙烧处 理, 得到目标的含稀土的 Y型分子筛。
9. 按照前述技术方案中任一项的催化裂化催化剂, 其中所述含稀土 的 Y型分子筛是通过下述方法制备的, 包括以下步骤:
(1)将 NaY分子筛与稀土溶液或稀土溶液与铵盐的混合溶液进行接触 处理而得到含稀土和钠的 Y型分子筛;
(2)使步骤 (1)中获得的含稀土和钠的 Y型分子筛经过滤、 水洗、 干燥 后, 进行第一次焙烧处理, 得到含稀土和钠的 Y型分子筛;
(3)然后或者将步骤 (2)中得到的含稀土和钠的 Y型分子筛用铵盐溶液 接触处理后在不过滤的情况下再与稀土溶液混合并调节混合物的 pH值为 6-10, 或者将步骤 (2)中得到的含稀土和钠的 Y型分子筛用铵盐和稀土溶 液的混合液接触处理, 再调节混合物的 pH值为 6-10, 得到含稀土和钠的 Y型分子筛;
(4)使步骤 (3)中获得的含稀土和钠的 Y型分子筛经过滤和水洗、 干燥 后, 进行第二次焙烧处理, 得到目标的含稀土的 Y型分子筛。
10. 按照前述技术方案中任一项的催化裂化催化剂, 其中所述含稀土 的 Y型分子筛是通过下述方法制备的, 包括以下步骤:
(1)将 NaY分子筛与稀土溶液或稀土溶液与铵盐的混合溶液进行接触 处理而得到含稀土和钠的 Y型分子筛;
(2)使步骤 (1)中获得的含稀土和钠的 Y型分子筛经过滤、 水洗、 干燥 后, 进行第一次焙烧处理, 得到含稀土和钠的 Y型分子筛;
(3)然后将步骤 (2)中获得的含稀土和钠的 Y型分子筛用铵盐溶液或酸 溶液接触处理, 过滤后再与稀土溶液混合并调节混合物的 pH值为 6-10, 得到含稀土和钠的 Y型分子筛;
(4)使步骤 (3)中获得的含稀土和钠的 Y 型分子筛被任选地过滤和水 洗, 干燥, 进行第二次焙烧处理, 得到目标的含稀土的 Y型分子筛。
11. 按照技术方案 8-10中任一项的催化裂化催化剂,其中铵盐选自氯 化铵、 硝酸铵、 碳酸铵、 碳酸氢铵中的任一种或多种的混合物。
12. 按照技术方案 8-10 中任一项的催化裂化催化剂, 其中在步骤 (1) 中,
稀土溶液以氧化稀土计与 NaY分子筛干基的重量比例为 0.06-0.14、 优选 0.07-0.12, 铵盐(以氯化铵计)与稀土溶液(以氧化稀土计)的重量 比例为 0-10, 优选 0-5, 例如 0.2-3, 所说的铵盐选自氯化铵、 硝酸铵、 碳 酸铵、 碳酸氢铵中的任一种或多种的混合物, pH被调节为 3.0-5.0, 水筛 重量比控制在 5-30、 优选 7-15, 所说的接触处理的过程是在室温(如 18-26。C)至 100。C、 优选 70-95°C下进行至少 0.3小时、 优选 0.5-3小时, 例如 0.5-1.5小时。
13. 按照技术方案 8-10 中任一项的催化裂化催化剂, 其中在步骤 (2) 中,
所说的第一次焙烧处理, 是在 500-650。C , 例如 530-630。C, 如 550-620°C, 0-100%水蒸气条件下焙烧处理至少 0.5小时、 优选 0.5-4.0小 时、 1.0-4.0小时或 1.5-3.0小时。
14. 按照技术方案 8-10 中任一项的催化裂化催化剂, 其中在步骤 (3) 中,
对于将含稀土和钠的 Y 型分子筛用铵盐溶液接触处理来说, 接触处 理在室温至 100。C、优选 60-80°C下进行至少 0.3小时,例如 0.3-3.0小时、 0.5-3小时或 0.5-1.5小时, 其中含稀土和钠的 Y型分子筛与铵盐溶液的比 例, 按分子筛(干基):铵盐:水的重量比计, 为 1 :(0.05-0.5):(5-30)、 优选 1 :(0. 1 -0.4):(8-15); 随后添加的稀土溶液的量是这样的,使得稀土溶液中的 稀土元素按氧化稀土 (RE203)计与含稀土和钠的 Y型分子筛按分子筛干基 计的重量比为 0.01-0.2, 例如, 0.02-0.12; 所说的铵盐选自氯化铵、 硝酸 铵、 碳酸铵、 碳酸氢铵中的任一种或多种的混合物;
对于将含稀土和钠的 Y 型分子筛用酸溶液接触处理来说, 接触处理 在室温至 100。C、 优选 60-80。C下进行至少 0.3小时, 例如 0.3-3.0小时、 0.5-3小时或 0.5-1.5小时,其中含稀土和钠的 Y型分子筛与酸溶液的比例, 按分子筛(干基):酸:水的重量比计, 为 1 : ( 0.03-0.2 ): ( 5-30 )、 优选 1 : ( 0.05-0.1 ): ( 8-15 ); 随后添加的稀土溶液的量是这样的, 使得稀土溶液 中的稀土元素按氧化稀土 (RE203)计与含稀土和钠的 Y型分子筛按分子筛 干基计的重量比为 0.01-0.2, 例如, 0.02-0.12; 所说的酸可以为无机酸或 者有机酸, 无机酸可以选自石克酸、 盐酸或硝'酸中的一种或多种的混合物, 有机酸可以选自草酸、 乙酸、 柠檬酸或酒石酸中的一种或多种的混合物; 优选有机酸如草酸、 乙酸、 宁檬酸和酒石酸;
对于将含稀土和钠的 Y型分子筛用铵盐和稀土溶液的混合液接触处 理来说, 接触处理在室温至 100。C、 优选 60-80。C下进行至少 0.3小时, 例如 0.3-3.0小时、 0.5-3小时或 0.5-1.5小时, 其中含稀土和钠的 Y型分 子筛与铵盐和稀土溶液的比例, 按分子筛(干基):铵盐:氧化稀土 (RE203): 水 的 重 量 比 计 , 为 1 :(0.05-0.5):(0.01-0.2):(5-30) 、 优 选 1 :(0.1-0.4):(0.02-0.12):(8-15); 所说的铵盐选自氯化铵、 硝酸铵、 碳酸铵、 碳酸氢铵中的任一种或多种的混合物。
15. 按照技术方案 14的催化裂化催化剂, 其中在步骤 (3)中所述的接 触处理后, 通过加入碱性液体调节混合物的 pH值为 6-10、 优选 pH值为 7-9, 更优选 7.5-8.2。
16. 按照技术方案 15 的催化裂化催化剂, 其中所说的碱性液体可以 选自氨水、 水玻璃、 偏铝酸钠或氢氧化钠中的任一种或多种的混合物。
17. 按照技术方案 8-10 中任一项的催化裂化催化剂, 其中在步骤 (4) 中, 所说的第二次焙烧处理, 是在 500-650。C、 0-100%水蒸气条件下处理 0.5-4小时、 优选 1-3小时。
18. 一种制备催化裂化催化剂的方法, 该方法包括: 制备包括裂化活 性组元、 任选的介孔硅铝材料、 粘土和粘结剂的浆液; 将所制备的浆液喷 雾干燥, 稀土的 Y型分子筛, 任选的其它 Y型分子筛, 和任选的具有 MFI结构的 分子筛, 所述含稀土的 Y型分子筛, 其稀土含量以氧化稀土计为 10-25 重%, 如 11 -23重%, 晶胞常数为 2.440-2.472nm, 如 2.450-2.470nm, 结 晶度为 35-65%, 如 40-60%, 骨架硅铝原子比为 2.5-5.0, 该分子筛 X射线 衍射谱图中 2Θ=11.8士 0.1°峰的强度 1!与 2Θ=12.3±0.1。峰的强度 12的比值与 分子筛中以氧化稀土计的稀土重量百分含量的乘积值大于 48, 优选大于 55。
19. 按照技术方案 18的制备催化裂化催化剂的方法, 其中
所述的介孔硅铝材料具有拟薄水铝石的物相结构, 以氧化物重量计的 无水化学表达式为: (0~0.3)Na2O'(40~90)Al2O3'(10〜60)SiO2, 其平均孔径 为 5〜25nm, 最可几孔径为 5〜15nm, 比表面积为 200〜400m2/g, 孔容为 0.5-2. Oml/g;
所述的粘土选自高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂 石、 累托土、 海泡石、 凹凸棒石、 水滑石和膨润土中的一种或多种;
所述的粘结剂选自硅溶胶、 铝溶胶和拟薄水铝石中的一种或多种。 20. 按照技术方案 18-19中任一项的制备催化裂化催化剂的方法, 其 中每 100重量份的催化裂化催化剂, 以干基计, 使用 10-60重量份裂化活 性组元、 10-70重量份粘土, 10-60重量份粘结剂, 0-20重量份的介孔硅 铝材料来制备浆液。
21. 按照技术方案 18-20中任一项的制备催化裂化催化剂的方法, 其 中所述其它 Y型分子筛选自: 含稀土的 DASY分子筛, 含稀土的气相超 稳 Y型分子筛和含镁的超稳 Y型分子筛.
22. 按照技术方案 18-21 中任一项的制备催化裂化催化剂的方法, 其 中所述裂化活性组元包括或基本上由以下组成或由以下组成:
含稀土的 Y型分子筛,
任选地,
含稀土的 DASY分子筛, 和
任选地, 含稀土的气相超稳 Y型分子筛、 含镁的超稳 Y型分子筛和 具有 MFI结构的分子筛中的仅仅一种。
23. 按照技术方案 18-22中任一项的制备催化裂化催化剂的方法, 其 中每 100重量份的催化裂化催化剂, 以干基计, 使用 10-40重量份的含稀 土的 Y型分子筛, 0-15重量份的含稀土的0八3丫分子筛, 和 0-25重量份 的含稀土的气相超稳 Y型分子筛、 含镁的超稳 Y型分子筛和具有 MFI结 构的分子筛中的仅仅一种来制备浆液。
24. 按照技术方案 18-23中任一项的制备催化裂化催化剂的方法, 其 中所迷含稀土的 Y型分子筛是通过技术方案 8-17中所述的步骤制备的。
当本发明的催化裂化催化剂中所含的含稀土的 Y型分子筛单独地或 者与其它分子筛组合使用时, 催化裂化催化剂表现出高活性和高转化率; 并且所述含稀土的 Y型分子筛还可以与不同的分子筛组合, 以实现汽油、 柴油、 或液化气等的增产, 因此催化裂化催化剂表现出广泛的适应性。 另 外, 无论单独使用或者组合使用, 具有含稀土的 Y型分子筛的催化裂化 催化剂都表现出良好的结构稳定性。 附图说明
图 1为根据实施例 1制备的含稀土的 Y型分子筛的 X射线衍射谱图。 图 2为根据对比例 1制备的含稀土的 Y型分子筛的 X射线衍射谱图。 具体实施方式
第一 Y型分子筛及其制备方法
在本发明中, 稀土原料的利用效率可以由稀土利用率表明。稀土利用 率是指以重量计 , 产品中以氧化稀土 (RE203)计的稀土数量与以氧化稀土 (RE203)计的理论稀土投料量的比值(以百分数的形式)。 本发明提供的含 稀土的 Y型分子筛, 其稀土利用率大于 98%。
在本发明中所说的骨架硅铝原子比是本发明提供的含稀土的 Y型分 子筛中硅与铝的原子摩尔比。 测定硅铝比有多种方法, 如由 X射线衍射 测定晶胞参数计算得出硅铝比, 或者通过红外光谱法来测定硅铝比, 还可 以通过核磁共振 (NMR)测量并计算骨架硅铝原子比。 在本发明中釆用 NMR测量并计算骨架硅铝原子比。 在本发明中所说的分子筛的硅铝比均 指的是分子筛的骨架硅铝原子比。
对于含稀土的 Y型分子筛, 其 X射线衍射谱图中, 2Θ=11.8±0.1。峰可 用于表征小笼中的稀土分布情况, I!表示其峰强度, 2Θ=12.3±0.1。峰可用 于表征超笼中的稀土分布情况, 12表示其峰强度, 两者的比值可用于表征 稀土离子由超笼向小笼中的迁移程度。在本发明中, 峰强度是指扣除基线 的峰的强度(换言之, 峰强度是指相对于出峰面的相对强度)。 例如, 某 种含稀土的分子筛的 X 射线衍射谱图中 2Θ=11.8±0.1。峰的强度 I!与 2Θ=12.3土 0.1。峰的强度 12的比值 ( I2)为 5, 该分子筛中以氧化稀土计的稀 土重量百分含量为 10%, 则该乘积值为 50。 本发明提供的含稀土的 Υ型 分子筛在 X射线衍射谱图中的 2Θ=11.8±0.1。峰的强度 ^与 2Θ=12.3±0.1。峰 的强度 12的比值 ( W与分子筛中以氧化稀土计的稀土重量百分含量的乘 积值大于 48。 在本发明中, 不限制该乘积值的上限, 例如, 上限可以为 200, 如 100。 在本发明优选的实施方案中, 该乘积值的范围为 48-200, 如 48-100。 更进一步优选地, 该乘积值大于 55 , 大于 60, 大于 70, 例如 55-200, 如 55-90。
在本发明中所说的结晶保留度为老化处理后与老化处理前样品的结 晶度比值, 其中老化处理包括: 将分子筛与氯化铵溶液混合交换, 将其中 的 Na20含量洗至 0.3重%以下, 过滤干燥后, 在 800°C、 100%水蒸气的 条件下处理 17小时; 若分子筛的 Na20含量低于 0.3重%的话, 则不进行 交换、 过滤和干燥, 直接在 800°C、 100%水蒸气的条件下处理 17小时。
在本发明的一个方面中, 本发明提供的含稀土的 Y型分子筛, 其特 征在于, 稀土含量以氧化稀土计为 10-25重。 /。, 优选地 11-23重%, 晶胞 常数为 2.440-2.472nm, 优选地 2.450-2.470nm, 结晶度为 35-65%, 优选地 40-60% , 骨架硅铝原子比为 2.5-5.0 , 该分子筛 X 射线衍射谱图中 2Θ=11.8土 0.1。峰的强度 1!与 2Θ=12.3±0.1。峰的强度 12的比值 ( I2)与分子筛 中以氧化稀土计的稀土重量百分含量的乘积值大于 48。 本发明提供的含 稀土的 Υ型分子筛在 800。C、 100%水蒸气老化处理 17小时后的结晶保留 度大于 40%, 例如大于 45%。
在本发明的另一个方面中, 本发明提供了一种制备含稀土的 Y型分 子筛的方法。 该制备方法是经过二交二焙, 结合沉积稀土的过程。
在本发明的一种实施方案中, 本发明提供的含稀土的 Y 型分子筛的 制备方法包括以下步骤'.
(1)将 NaY分子筛与稀土溶液或稀土溶液与铵盐的混合溶液进行接触 处理而得到含稀土和钠的 Y型分子筛;
(2)对步骤 (1)中获得的含稀土和钠的 Y 型分子筛进行第一次焙烧处 理, 得到含稀土和钠的 Y型分子筛;
(3)然后或者将步骤 (2)中得到的含稀土和钠的 Y型分子筛用铵盐溶液 或酸溶液接触处理后, 再与稀土溶液混合并调节混合物的 pH值为 6-10, 或者将步骤 (2)中得到的含稀土和钠的 Y型分子筛用铵盐和稀土溶液的混 合液接触处理, 再调节混合物的 pH值为 6-10, 得到含稀土和钠的 Y型分 子筛;
(4)对步骤 (3)中获得的含稀土和钠的 Y 型分子筛进行第二次焙烧处 理, 得到目标的含稀土的 Y型分子筛。
在本发明的另一种实施方案中, 本发明提供的含稀土的 Y 型分子筛 的制备方法包括以下步骤:
(1)将 NaY分子筛与稀土溶液或稀土溶液与铵盐的混合溶液进行接触 处理而得到含稀土和钠的 Y型分子筛;
(2)使步骤 (1)中获得的含稀土和钠的 Y型分子筛经过滤、 水洗、 干燥 后, 进行第一次焙烧处理, 得到含稀土和钠的 Y型分子筛;
(3)然后或者将步骤 (2)中得到的含稀土和钠的 Y型分子筛用铵盐溶液 接触处理后在不过滤的情况下再与稀土溶液混合并调节混合物的 pH值为 6-10, 或者将步骤 (2)中得到的含稀土和钠的 Y 型分子筛用铵盐和稀土溶 液的混合液接触处理, 再调节混合物的 pH值为 6-10, 得到含稀土和钠的 Y型分子筛;
(4)使步骤 (3)中获得的含稀土和钠的 Υ型分子筛经过滤和水洗、 干燥 后, 进行第二次焙烧处理, 得到目标的含稀土的 Υ型分子筛。
在本发明的另一种实施方案中, 本发明提供的含稀土的 Υ型分子筛 的制备方法包括以下步骤:
(1)将 NaY分子筛与稀土溶液或稀土溶液与铵盐的混合溶液进行接触 处理而得到含稀土和钠的 Y型分子筛;
(2)使步骤 (1)中获得的含稀土和钠的 Y型分子筛经过滤、 水洗、 干燥 后, 进行第一次焙烧处理, 得到含稀土和钠的 Y型分子筛;
(3)然后将步骤 (2)中获得的含稀土和钠的 Y型分子筛用铵盐溶液或酸 溶液接触处理, 过滤后再与稀土溶液混合并调节混合物的 pH值为 6-10, 得到含稀土和钠的 Y型分子筛;
(4)使步骤 (3)中获得的含稀土和钠的 Y 型分子筛被任选地过滤和水 洗, 干燥, 进行第二次焙烧处理, 得到目标的含稀土的 Y型分子筛。
本发明提供的制备方法中, 原料 NaY分子筛的骨架硅铝原子比优选 大于 2.5且结晶度大于 80%。
本发明提供的制备方法中, 铵盐选自氯化铵、 硝酸铵、 碳酸铵、 碳酸 氢铵中的任一种或多种的混合物。
在上述含稀土的 Y型分子筛的制备方法的步骤 (1)中, 稀土溶液以氧 化稀土计与 NaY分子筛干基的重量比例为 0.06-0.14、 优选 0.07-0.12, 铵 盐(以氯化铵计)与稀土溶液(以氧化稀土计)的重量比例为 0-10, 优选 0-5 , 例如 0.2-3 , 所说的铵盐选自氯化铵、 硝酸铵、 碳酸铵、 碳酸氢铵中 的任一种或多种的混合物, pH被调节为 3.0-5.0,水筛重量比控制在 5-30、 优选 7-15, 所说的接触处理的过程是在室温 (如 18-26。C)至 100°C、 优选 70-95。C下进行至少 0.3小时、 优选 0.5-3小时, 例如 0.5-1.5小时。
在上述含稀土的 Y型分子筛的制备方法的步骤 (2)中, 所说的第一次 焙烧处理, 是在 500-650。C, 例如 530-630。C, 如 550-620。C, 0-100%水蒸 气条件下焙烧处理至少 0.5小时、优选 0.5-4.0小时、 1.0-4.0小时或 1.5-3.0 小时。 焙烧处理可促使稀土离子从分子筛超笼向小笼中迁移, 其中第一次 焙烧处理优选的实施方式是在 1-100%、优选 20-100%、 更优选 100%水蒸 气条件下进行。
在上述含稀土的 Y型分子筛的制备方法的步骤 (3)中, 对于将含稀土 和钠的 Y型分子筛用铵盐溶液接触处理来说, 接触处理在室温至 ioo。c、 优选 60-80°C下进行至少 0.3小时,例如 0.3-3.0小时、 0.5-3小时或 0.5-1.5 小时,其中含稀土和钠的 Y型分子筛与铵盐溶液的比例,按分子筛 (干基): 铵盐:水的重量比计, 为 1 :(0.05-0.5):(5-30)、 优选 1 :(0.1-0.4):(8-15); 随后 添加的稀土溶液的量是这样的, 使得稀土溶液中的稀土元素按氧化稀土 (RE203)计与含稀土和钠的 Y 型分子筛按分子筛干基计的重量比为 0.01 -0.2 , 例如, 0.02-0.12; 所说的铵盐选自氯化铵、 硝酸铵、 碳酸铵、 碳 酸氢铵中的任一种或多种的混合物;
对于将含稀土和钠的 Y 型分子筛用酸溶液接触处理来说, 接触处理 在室温至 100。 (:、 优选 60-80°C下进行至少 0.3小时, 例如 0.3-3.0小时、 0.5-3小时或 0.5-1.5小时,其中含稀土和钠的 Y型分子筛与酸溶液的比例, 按分子筛(干基):酸:水的重量比计, 为 1 : ( 0.03-0.2 ): ( 5-30 )、 优选 1 : ( 0.05-0.1 ): ( 8-15 ); 随后添加的稀土溶液的量是这样的, 使得稀土溶液 中的稀土元素按氧化稀土 (RE203)计与含稀土和钠的 Y型分子筛按分子筛 干基计的重量比为 0.01-0.2, 例如, 0.02-0.12; 所说的酸可以为无机酸或 者有机酸, 无机酸可以选自硫酸、 盐酸或硝酸中的一种或多种的混合物, 有机酸可以选自草酸、 乙酸、 柠檬酸或酒石酸中的一种或多种的混合物; 对于将含稀土和钠的 Y 型分子筛用铵盐和稀土溶液的混合液接触处 理来说, 接触处理在室温至 100。C:、 优选 60-80。C下进行至少 0.3小时, 例如 0.3-3.0小时、 0.5-3小时或 0.5-1.5小时, 其中含稀土和钠的 Y型分 子筛与铵盐和稀土溶液的比例, 按分子筛(干基):铵盐:氧化稀土 (RE203): 水 的 重 量 比 计 , 为 1 :(0.05-0.5):(0.01-0.2):(5-30) 、 优 选 1 :(0.1-0.4):(0.02-0.12):(8-15); 所说的铵盐选自氯化铵、 硝酸铵、 碳酸铵、 碳酸氢铵中的任一种或多种的混合物;
在上述接触处理后, 通过加入碱性液体调节混合物的 pH值为 6-10、 优选 pH值为 7-9, 更优选 7.5-8.2 , 使稀土离子全部沉淀形成稀土氢氧化 物, 即沉积稀土的过程。 时间不受特别地限制, 例如可以为 5分钟至 2小 时, 例如〗 0分钟至 60分钟, 10分钟至 30分钟。 所说的碱性液体可以选 自氨水、 水玻璃、 偏铝酸钠或氢氧化钠中的任一种或多种的混合物。
在上述含稀土的 Y型分子筛的制备方法的步骤 (4)中, 所说的第二次 焙烧处理, 是在 500-650。 (:、 0-100%水蒸气条件下处理 0.5-4小时、 优选 1-3 小时。 其中第二次焙烧处理优选的实施方式是在 1-100%、 优选 20-100%、 更优选 100%水蒸气条件下进行。
在上述步骤( 1 )至(4 )的描述中所列出的各种条件 (包括优选条件 和举例条件) 可以进行组合, 所得到的技术方案在本发明的范围内。
本发明提供的制备方法中, 稀土选自镧 (La)、铈 (Ce)、镨 (Pr)、钕 (Nd)、 钷 (Pm)、 钐(Sm)、 铕 (Eu)、 钆 (Gd)、 铽 (Tb)、 镝 (Dy)、 钬 (Ho)、 铒 (Er)、 铥 (Tm)、镱 (Yb)、镥 (Lu)、钪 (Sc)和钇 (Y),优选地, 稀土选自镧 (La)和铈 (Ce)。 稀土原料以可溶性盐如硝酸盐和盐酸盐的形式提供。稀土原料可以是单一 稀土元素组成的氯化稀土或硝酸稀土, 如氯化镧、 硝酸镧、 氯化铈或硝酸 铈等, 也可以是不同稀土元素比例的混合稀土, 如富铈型或富镧型混合稀 土。 例如, 所说的稀土溶液可以是含选自硝酸镧、 硝酸铈、 氯化镧、 氯化 铈、硝酸混合稀土和氯化混合稀土中的一种或多种的溶液, 其中硝酸混合 稀土是指 (RExlREx2... RExn)(N03)3, 其中 RExl、 REx2 RExn是指稀土 元素, 其中 n是大于或等于 2的整数, xl+x2+... +xn的和等于 1 ; 氯化混 合稀土(亦
Figure imgf000015_0001
REy2
REyn是指稀土元素, 其中 n是大于或等于 2的整数, yl+y2+... +yn的和等 于 1。
本发明提供制备方法中,通过一次液相稀土离子交换和一次固相稀土 离子迁移过程制备含稀土的 Y 型分子筛。 采用稀土交换与稀土沉积并结 合二次焙烧处理过程,保证稀土不发生流失且稀土离子可由超笼迁移到小 笼中。 该制备过程可以灵活调变并精确控制稀土含量, 操作简便。 进一步 地, 在使用铵盐进行二次交换的情况下, 在与铵盐接触处理后、 沉积稀土 过程之前可以不进行过滤,既缩短了制备流程,又进一步减少了稀土流失。 根据本发明的方法, 稀土利用率更高达 98。/。以上, 有效节约了稀土资源, 并进一步降低了生产成本。
现有技术 (例如 CN1053808A、 CN100344374C> 常规工业二交二焙方 法)得到的含稀土的 Y型分子筛在 800。C、 100%水蒸气老化处理 17小时 后的结晶保留度小于 40°/。。 有别于此, 本发明提供的含稀土的 Y型分子 筛在 800°C、 100%水蒸气老化处理 17小时后的结晶保留度更高, 例如大 于 40%, 如大于 45%, 说明其结构稳定性好。 因此, 与现有技术相比, 本 发明提供的含稀土的 Y 型分子筛, 结构稳定性好。 本发明提供的含稀土 的 Y型分子筛具有优良的活性稳定性 (更高的轻油微反 MA值), 当其作为 催化剂活性组分时, 可减少分子筛在催化剂中的用量, 降低催化剂生产成 本。
裂化活性组元
在本发明的催化裂化催化剂中, 除了上述第一 Y 型分子 外, 所述 裂化活性组元还可以任选地包括其它 Y型分子筛 (第二 Y型分子筛、 第 三 Y型分子筛等)和 /或具有 MFI结构的分子筛。
在本发明中,所述裂化活性组元中的各个组分的重量比例都是以干基 计的。 所述干基重量是在 800°C下焙烧 1小时测得的重量。
其它 Y型分子筛
在本文中, 其它 Y型分子筛是指不具有上述第一 Y型分子筛的特征 (包括上述 11/12与稀土含量的乘积值大于 48, 如大于 55 , 大于 60, 大于 70的特征)的 Y型分子筛。
在一种实施方案中, 以所述活性组元的干基重量为基准, 以干基计所 述其它 Y型分子筛的含量为 0-50重量%例如可以是 0-40重量%、 0-30重 量%、 0-20重量%, 所述第一 Y型分子筛的含量为 50-100重量%例如可以 是 60-100重量%、 70-100重量%或者 80-100重量%。优选地, 当含其它 Y 型分子筛时, 以催化剂的干基重量为基准, 所述催化裂化催化剂中所述的 含稀土的 Y型分子筛(第一 Y型分子筛)的含量为 10-60%, 例如可以为 20-40重量%; 其它 Y型分子筛的含量不超过 35重量%, 例如其它 Y型 分子筛的含量可以为 0.5-30重量。 /。、 0-10重量%或者 0-5重量%。
在一种实施方案中, 所述其它 Y型分子筛是含稀土的 DASY分子筛 (含稀土的水热超稳 Y型分子筛), 以 RE203(氧化稀土)计, 所述含稀土的 DASY分子筛中稀土含量为 1.5-3.0重量%。 所述含稀土的 DASY分子筛 可以为各种市售产品,例如中石化催化剂齐鲁分公司的 DASY2.0分子筛。
在一种实施方案中, 所述其它 Y型分子筛是含稀土的气相超稳 Y型 分子筛。 例如, 其可以通过下述方法制备: 在搅拌下, 将含稀土的 Y 型 分子筛与四氯化硅接触, 接触的温度为 100-50(TC , 接触的时间为 0.1-10 小时, 所述含稀土的 Y型分子筛与四氯化硅的重量比为 1 : 0.05-0.5。 具 体制备方法可以参照专利申请 CN1683244A或 CN1286721C, 特别是其中 的实施例 5、 6和 8。
在一种实施方案中, 所述其它 Y型分子筛是含镁的超稳 Y型分子筛, 所述含镁的超稳 Y型分子筛中以氧化镁计的镁含量为 0.1-25重量%,优选 为 0.5-25重量%。所述含镁的超稳 Y型分子筛可以根据常规的方法制备得 到, 其中的一种制备方法例如可以包括: 将溶解或经充分湿磨后的镁化合 物 (例如选自氧化镁、 氯化镁、 硫酸镁和硝酸镁中的至少一种)均勾分散于 超稳 Y型分子筛 (USY分子筛)浆液中,加或不加氨水, 混合均匀后干燥和 焙烧; 另一种制备方法例如可以包括: 将经充分湿磨后的超稳 Y型分子 筛 (USY 分子筛)均勾分散于镁化合物 (例如选自氯化镁、 硫酸镁和硝酸镁 中的至少一种)的溶液中, 加入氨水混合均勾后依次进行过滤、 洗涤、 干 燥和焙烧。 所述含镁的超稳 Y型分子筛的上述制备方法的具体实施过程 例如可以参照 CN1297018A或 CN1157465C, 特别是其中的实施例 1-5。
具有 MFI结构的分子筛
具有 MFI结构的分子筛可以商购或按照现有方法制备。 具有具有 MFI 结构的分子筛的实例包括 ZSM-5、 ZRP和 ZSP分子筛中的一种或多种。
在一种实施方案中, 所述的具有 MFI 结构的分子筛以氧化物重量比 计 的 无 水 化 学 组 成 表 达 式 为 : (0〜0.3)Na2O'(0.5〜5.5)Al2O3'(1.3〜10)P2O5'(0.7~15)
M 1 χΟγ·(0.01 ~5)M2mOn-(70~97)SiO2 , 其中, Ml 为 Fe、 Co或 Ni, x表示 Ml的原子数, y表示满足 Ml氧化态所需氧的个数, M2选自 Zn、 Mn、 Ga或 Sn, m表示 M2的原子数, n表示满足 M2氧化态所需氧的个数。
在一种优选地实施方案中, 所述的具有 MFI 结构的分子筛以氧化物 重 量 比 计 为 (0〜0.2)Na2O'(0.9〜5.0)Al2O3'(1.5〜7)P2O5'(0.9~10)MlxOy'(0.5〜2)M2mOn'(82〜 92)Si02。 在优选情况下, Ml为 Fe, M2为 Zn。
在本发明中, 所述的具有 MFI 结构的分子筛具体的制备方法可以参 照专利申请 CN1611299A, 特别是其中的实施例 1〜11。
介孔硅铝材料
所述的介孔硅铝材料具有拟薄水铝石的物相结构, 以氧化物重量计的 无水化学表达式为: (0~0.3)Na2O'(40〜90)Al2O3 '(10~60)SiO2, 其平均孔径 为 5〜25nm, 最可几孔径为 5〜15nm, 比表面积为 200〜400m2/g, 孔容为 0.5〜2.0ml/g。
所述介孔硅铝材料及其制备方法可参见 CN1565733A 或 CN 1854258A, 例如 CN 1854258A的实施例 1〜9。
粘土
在本发明中, 所述粘土可以为催化裂化催化剂中常用的粘土, 例如可 以为高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂石、 累托土、 海 泡石、 凹凸棒石、 水滑石和膨润土中的一种或多种。
粘结剂
在本发明中 ,所述粘结剂可以为催化裂化催化剂中常规使用的各种粘 结剂, 例如可以为选自硅溶胶、 铝溶胶和拟薄水铝石中的一种或多种, 优 选为铝溶胶和拟薄水铝石的双铝粘结剂。
催化裂化催化剂
在一种实施方案中, 以所述催化裂化催化剂的干基重量为基准, 所述 的催化裂化催化剂含有 10-60 重量%裂化活性组元、 20-70 重量%粘土和 10-50 重量%粘结剂。 在进一步的实施方案中, 以所述催化裂化催化剂的 干基重量为基准, 所述裂化活性组元以干基计的含量为 10-50重量%, 所 述粘土以干基计的含量为 20-60 重量%, 所述粘结剂以干基计的含量为 10-40 重量%。 更优选地, 以所述催化裂化催化剂的干基重量为基准, 所 述裂化活性组元以干基计的含量为 20-40重量。 /。, 所述粘土以干基计的含 量为 20-45重量%, 所述粘结剂以千基计的含量为 20-40重量%, 例如可 以为 25-35重量0 /0
在一种实施方案中, 以所述催化裂化催化剂的干基重量为基准, 所述 催化裂化催化剂含有 10-60重量%的裂化活性组元、 1-20重量%的介孔硅 铝材料、 10-60重量%的粘土和 10-50重量%的粘结剂。在进一步的实施方 案中, 以所述催化裂化催化剂的干基重量为基准, 所述裂化活性组元以干 基计的含量为 20-50重量%,所述介孔硅铝材料以干基计的含量为 1-18重 量%例如为 2-15重量。 /Q, 所述粘土以干基计的含量为 10-50重量%, 所述 粘结剂以干基计的含量为 10-40重量%。 更优选地, 以所述催化裂化催化 剂的干基重量为基准,所述裂化活性组元以干基计的含量为 20-40重量%, 所述介孔硅铝材料以干基计的含量为 1-15重量。 /。,所述粘土以干基计的含 量为 15-45重量%, 所述粘结剂以干基计的含量为 20-35重量%。
在一种实施方案中, 以所述催化裂化催化剂的干基重量为基准, 所述 催化裂化催化剂含有 10-60重量。 /。的裂化活性组元、 10-60重量%的粘土和 10-60重量%的粘结剂,其中所述的裂化活性组元包括 25-70重量%的第一 Y型分子筛、 10-70重量%的第二 Y型分子筛和 5-30重量%的第三 Y型分 子筛,其中所述的第二 Y型分子筛为一种含稀土的气相超稳 Y型分子筛; 所述第三 Y型分子筛为含稀土的 DASY分子筛, 其稀土含量优选为 1.5-3 重量%。 在进一步的实施方案中, 以所述催化裂化催化剂的干基重量为基 准, 所述裂化活性组元以干基计的含量为 20-50重量%, 所述粘土以千基 计的含量为 20-50重量。 /。, 所述粘结剂以干基计的含量为 10-50重量%。 更优选, 以所述催化裂化催化剂的干基重量为基准, 所述裂化活性组元以 干基计的含量为 20-45重量%例如为 30-42重量%, 所述粘土以干基计的 含量为 30-45重量%例如为 35-45重量%, 所述粘结剂以干基计的含量为 15-40重量%例如为 20-35重量%或为 25-32重量%。 所述裂化活性组元包 括 25-70重量%的所述第一 Y型分子筛、 10-70重量%的所述第二 Y型分 子筛和 5-25重量%的所述第三 Y型分子筛, 例如所述裂化活性组元可包 括 30-65重量%的所述第一 Y型分子筛、 15-65重量%的所述第二 Y型分 子筛和 5-20重量%的所述第三 Y型分子筛, 其中所述的笫二 Y型分子筛 为一种含稀土的气相超稳 Y型分子筛; 所述第三 Y型分子筛为含稀土的 DASY分子筛, 其稀土含量优选为 1.5-3重量%。
在一种实施方案中, 以所述催化裂化催化剂的干基重量为基准, 所述 催化裂化催化剂含有 10-60重量%的裂化活性组元、 10-70重量%的粘土和 10-60重量%的粘结剂,其中所述的裂化活性组元包括 35-70重量%的第一 Y型分子筛、 20-60重量%的第二 Y型分子筛和 2-20重量%的第三 Y型分 子筛; 其中所述第二 Y型分子筛为含镁的超稳 Y型分子筛, 所述第三 Y 型分子筛为含稀土的 DASY分子筛, 优选地, 所述的第一分子筛和第二 分子筛的干基重量比为 0.5-4: 1, 所述第三 Y型分子筛与第一 Y型分子筛 的干基重量比为 0.05:0.5-1 , 如 0.1-0.3: 1。 或者, 在所述裂化活性组元中, 所述第一 Y型分子筛可以占 39-70重量%, 所述第二 Y型分子筛可以占 22-55重量%, 所述第三 Y型分子筛可以占 5-20重量%, 其中所述第二 Y 型分子筛为含镁的超稳 Y 型分子筛, 所述第三 Y 型分子筛为含稀土的 DASY分子 。 优选的情况下, 本发明提供的催化裂化催化剂, 以所述催 化裂化催化剂的干基重量为基准, 所述裂化活性组元以干基计的含量为 20-50重量%, 所述粘土以干基计的含量为 20-50重量 °/。, 所述粘结剂以干 基计的含量为 10-50重量%。 更优选, 以所述催化裂化催化剂的干基重量 为基准, 所述裂化活性组元以干基计的含量为 30-45重量%, 所述粘土以 干基计的含量为 25-45重量%, 所述粘结剂以干基计的含量为 20-40重量 %。
在一种实施方案中, 以所述催化裂化催化剂的干基重量为基准, 所述 催化裂化催化剂含有 20-60重量%的裂化活性组元、 1-20重量%介孔硅铝 材料、 10-70重量%的粘土和 10-60重量%的粘结剂, 所述的裂化活性组元 含有 70-90重量%的 Y型分子筛和 10-30重量 °/。的具有 MFI结构的分子筛, 其中所述 Y型分子筛包括第一 Y型分子筛和其它 Y型分子筛,以干基计。 在进一步的实施方案中, 以所述 Y型分子筛的总重量为基准, 所述 Y型 分子筛包括 70〜99重量%所述笫一 Y型分子筛以及 1~30重量%的第二 Y 型分子筛, 其中所述第二 Y型分子筛优选为含稀土的 DASY分子筛, 其 稀土含量优选为 1.5~3重量。 /。。 在进一步的实施方案中, 以所述催化裂化 催化剂的干基重量为基准,所述裂化活性组元以干基计的含量为 20〜45重 量%, 所述介孔硅铝材料以干基计的含量为 2~10 重量%, 所述粘土以干 基计的含量为 20〜40重量%,所述粘结剂以干基计的含量为 20〜35重量%。
在一种实施方案中, 每 100重量份的催化裂化催化剂, 所述催化裂化 催化剂含有 10-60重量份裂化活性组元、 10-70重量份粘土, 10-60重量份 粘结剂, 0-20 重量份的介孔硅铝材料。 在进一步的实施方案中, 每 100 重量份的催化裂化催化剂, 所述催化裂化催化剂含有 28-38重量份裂化活 性组元、 20-44重量份粘土, 21-34重量份粘结剂, 0-12重量份的介孔硅 铝材料。
在一种实施方案中, 所述催化裂化催化剂基本上由以下组成: 10-60 重量份裂化活性组元、 10-70重量份粘土, 10-60重量份粘结剂, 0-20重 量份的介孔硅铝材料。在进一步的实施方案中, 所述催化裂化催化剂基本 上由以下组成: 28-38重量份裂化活性组元、 20-44重量份粘土, 21-34重 量份粘结剂, 0-12重量份的介孔硅铝材料。
在一种实施方案中, 每 100重量份的催化裂化催化剂, 所述催化裂化 催化剂含有 10-60重量份裂化活性组元、 10-70重量份粘土, 10-60重量份 粘结剂, 0-20重量份的介孔硅铝材料, 其中, 所述裂化活性组元包括或基 本上由以下组成或由以下组成: 10-40重量份的含稀土的 Y型分子筛, 0-25 重量份的任选的其它 Y型分子筛, 和 0-12重量份的任选的具有 MFI结构 的分子筛。 在进一步的实施方案中, 所述其它 Y型分子筛选自: 含稀土 的 DASY分子筛, 含稀土的气相超稳 Y型分子筛和含镁的超稳 Y型分子 筛中的一种或两种。
在一种实施方案中, 每 100重量份的催化裂化催化剂, 所述催化裂化 催化剂含有 28-38重量份裂化活性组元、 20-44重量份粘土, 21-34重量份 粘结剂, 0-12重量份的介孔硅铝材料, 其中, 所述裂化活性组元包括或基 本上由以下组成或由以下组成: 10-34重量份的含稀土的 Y型分子筛, 0-23 重量份的任选的其它 Y型分子筛, 和 0-10重量份的任选的具有 MFI结构 的分子筛。 在进一步的实施方案中, 所述其它 Y 型分子筛选自: 含稀土 的 DASY分子筛, 含稀土的气相超稳 Y型分子筛和含镁的超稳 Y型分子 筛中的一种或两种。
在一种实施方案中, 在催化裂化催化剂中, 所述裂化活性组元包括或 基本上由以下组成或由以下组成:
含稀土的 Y型分子筛,
任选地,
含稀土的 DASY分子筛, 和
任选地, 含稀土的气相超稳 Y型分子筛、 含镁的超稳 Y型分子筛和 具有 MFI结构的分子筛中的仅仅一种。
在一种实施方案中, 每 100重量份的催化裂化催化剂, 所述催化裂化 催化剂包括或基本上由以下组成或由以下组成:
15-50重量份粘土,
15-50重量份粘结剂,
0-15重量份的介孔硅铝材料,
10-40重量份的含稀土的 Y型分子筛,
0-15重量份的含稀土的 DASY分子筛, 和
0-25重量份的含稀土的气相超稳 Y型分子筛、 含镁的超稳 Y型分子 筛和具有 MFI结构的分子筛中的仅仅一种。
在进一步的实施方案中, 每 100重量份的催化裂化催化剂, 所述催化 裂化催化剂包括或基本上由以下组成或由以下组成:
20- 44重量份粘土,
21- 34重量份粘结剂,
0-12重量份的介孔硅铝材料,
10-34重量份的含稀土的 Y型分子筛,
0-10重量份的含稀土的 DASY分子筛, 和
5-20重量份的含稀土的气相超稳 Y型分子筛、 或者 8-21重量份的含 镁的超稳 Y型分子筛、 或者 5-10重量份的具有 MFI结构的分子筛中的仅 仅一种。 在一种实施方案中, 在催化裂化催化剂中, 所述裂化活性组元包括或 基本上由以下组成或由以下组成:
本发明的含稀土的 Y型分子筛,
含稀土的气相超稳 Y型分子筛, 和
任选地, 含稀土的 DASY分子筛。
在上述实施方案中, 优选地, 本发明的含稀土的 Y型分子筛与含稀 土的气相超稳 Y 型分子筛的重量比为 0.1-10, 优选地 0.2-5 , 更优选地 0.25-5 , 例如 0.5-5或 0.5-1. 在一种实施方案中, 每 100重量份的催化裂化催化剂, 所述催化裂化 催化剂包括或基本上由以下组成或由以下组成:
36-43重量份粘土,
25-32重量份粘结剂,
10-21重量份的本发明的含稀土的 Y型分子筛,
2-6重量份的含稀土的 DASY分子筛, 和
5-20重量份的含稀土的气相超稳 Y型分子筛。 催化裂化催化剂的制备方法
本发明还提供了一种所述催化裂化催化剂的制备方法,该方法包括将 裂化活性组元、 任选的介孔硅铝材料、 粘土和粘结剂混合打浆, 然后依次 进行喷雾干燥、 洗涤、 过滤和干燥的步骤。 这些工序的实施方法均可采用 常规的方法实施, 它们的具体实施方法例如在专利申请 CN1916166A、 CN1362472A, CN1727442A、 CN1132898C, CN1727445A和 CN1098130A 中都有详尽的描述, 这里一并引入本发明中以作参考。 实施例
下面通过实施例对本发明作进一步说明, 但并不因此而限制本发明。 第一 Y型分子筛
在本发明中, 分子筛的化学组成用 X射线荧光法测定 (参见《石油化 工分析方法 (RIPP实验方法)》, 杨翠定等编, 科学出版社, 1990年出版)。
分子筛的物相 (如晶胞常数)及结晶度数据采用 X射线衍射法测定,采 用 RIPP145-90和 RIPP146-90标准方法 (见《石油化工分析方法 (RIPP试验 方法)》, 杨翠定等编, 科学出版社, 1990年版)。
分子筛的骨架硅铝原子比通过核磁共振 (NMR)测量并计算得到。
轻油微反活性 (MA)参照 RIPP92-90标准方法测定。
在实施例及对比例中, 所用的原料是市售可得的并且规格如下: NaY分子筛: 工业级, 购自中国石化催化剂分公司, 齐鲁催化剂厂; 氯化稀土:工业级,购自中国石化催化剂分公司齐鲁公司,镧 (按 La203 计)铈 (按 Ce203计) 质量比为 55:45;
其他: 化学纯。
实施例 1
取 2.6千克 NaY分子筛(齐鲁催化剂厂, 灼减 22.5重%, 硅铝比 2.7, 结晶度 88% , 下同)和 15 千克去离子水混合打浆, 加入 1.0 升浓度 160gRE2O3/L的氯化稀土溶液及 0.24千克氯化铵固体,搅勾后升温至 70。C 并用稀盐酸调节浆液 pH至 4.0, 继续交换 1.5小时, 过滤、 水洗、干燥后, 在 100%水蒸气条件下于 550。C焙烧 2小时, 得到一交一焙含稀土和钠的 Y型分子筛 Y-A1 , Y-A1的化学组成为氧化钠 5.1重%,氧化稀土 7.8重0 /0。 然后按分子筛: NH4C1: H20=1 : 0.2: 10的比例打浆并于 70。C交换 1小 时, 然后加入 0.27升浓度 300gRE2O3/L的氯化稀土溶液, 搅匀后加入氨 水调节浆液 pH至 7.5并继续搅拌 10分钟, 过滤水洗、 干燥后在 100%水 蒸气下于 600°C焙烧 2小时, 得到本发明所述的含稀土的 Y型分子筛成 品, 记为 Y-A。
Y-A的 X射线衍射谱图示于图 1中。
Y-A中氧化钠 1.5重%, 氧化稀土 11.9重%, 结晶度 50.1%, 晶胞常 数 2.458nm, 骨架硅铝原子比 3.5。 其 2Θ=11.8±0.1。峰的强度 I! 与 2Θ=12.3±0.1。峰的强度 12的比值 (VI2)与分子筛中以氧化稀土计的稀土重量 百分含量的乘积值为 90.0。
实施例 2
取 2.6千克 NaY分子筛和 18千克去离子水混合打浆, 加入 1.25升浓 度 160gRE2O3/L的氯化稀土溶液及 0.12千克氯化铵固体, 搅匀后升温至 80°C并用稀盐酸调节浆液 pH至 3.8, 继续交换 1小时, 过滤、 水洗、 干 燥后, 在空气气氛下于 570。C焙烧 2小时, 得到一交一焙含稀土和钠的 Y 型分子筛 Y-B1 , Y-B1的化学组成为氧化钠 4.9重%, 氧化稀土 9.9重%。 然后按分子筛: NH4C1: H20=1 : 0.3: 10的比例打浆并于 60。C交换 0.5 小时, 然后加入 0.13升浓度 300gRE2O3/L的氯化稀土溶液, 搅匀后加入 氨水调节浆液 pH至 7.8并继续搅拌 10分钟, 过滤水洗、 干燥后在空气气 氛下于 570。C焙烧 2小时, 得到本发明所述的含稀土的 Y型分子筛成品, 记为 Y-B。
Y-B的 X射线衍射谱图特征同图 1。
Y-B中氧化钠 1.5重%, 氧化稀土 11.9重%, 结晶度 50.6%, 晶胞常 数 2.463nm , 骨架硅铝原子比 2.9。 其 2Θ=11.8士 0.1。峰的强度 I! 与 2Θ=12.3±0.1。峰的强度 12的比值 ( I2)与分子筛中以氧化稀土计的稀土重量 百分含量的乘积值为 54.1。
实施例 3
取 2.6千克 NaY分子筛和 18千克去离子水混合打浆, 加入 1.25升浓 度 160gRE2O3/L的氯化稀土溶液及 0.12千克氯化铵固体, 搅匀后升温至 80°C并用稀盐酸调节浆液 pH至 3.8, 继续交换 1小时, 过滤、 水洗、 干 燥后,在 50%水蒸气条件下于 570°C焙烧 2小时,得到一交一焙含稀土和 钠的 Y型分子筛 Y-C1, Y-C1的化学组成为氧化钠 4.9重%, 氧化稀土 9.9 重%。 然后按分子筛: N C1: ¾0=1: 0.15: 12的比例打浆并于 75。C交 换 1小时, 再加入 0.27升浓度 300gRE2O3/L的氯化稀土溶液, 搅勾后加 入水玻璃调节浆液 pH至 8.0并继续搅拌 10分钟, 过滤水洗、干燥后在空 气气氛下于 570。C焙烧 2小时, 得到本发明所述的含稀土的 Y型分子筛 成品, 记为 Y- (:。
Y-C的 X射线衍射谱图特征同图 1。
Y-C中氧化钠 1.3重%, 氧化稀土 13.9重%, 结晶度 48.8%, 晶胞常 数 2.465nm, 骨架硅铝原子比 3.1。 其 2Θ=11.8±0.1。峰的强度 I! 与 2Θ=12.3±0.1。峰的强度 12的比值 与分子筛中以氧化稀土计的稀土重量 百分含量的乘积值为 55.6。
实施例 4
取 2.6千克 NaY分子筛和 18千克去离子水混合打浆,加入 1.25升浓 度 160gRE2O3/L的氯化稀土溶液及 0.12千克氯化铵固体, 搅匀后升温至 80°C并用稀盐酸调节浆液 pH至 3.8, 继续交换 1小时, 过滤、 水洗、 干 燥后, 在空气气氛下于 600。C焙烧 1.5小时, 得到一交一焙含稀土和钠的 Y型分子筛 Y-D1, Y-D1的化学组成为氧化钠 4.9重%,氧化稀土 9.9重%; 然后按分子筛: NH4C1: RE203: H20=1 : 0.15: 0.06: 12的比例将 Y-Dl 与氯化铵及浓度 300gRE2O3/L的氯化稀土溶液混合打浆并于 75。C交换 1 小时,然后加入水玻璃调节浆液 pH至 8.0并继续搅拌 10分钟,过滤水洗、 干燥后在 100%水蒸气下于 570。C焙烧 3小时, 得到本发明所迷的含稀土 的 Y型分子筛成品, 记为 Y-D。
Y-D的 X射线衍射谱图特征同图 1。
Y-D中氧化钠 1.3重%, 氧化稀土 16.0重%, 结晶度 46.6%, 晶胞常 数 2.467nm , 骨架硅铝原子比 3.0。 其 2Θ=11.8±0.1°峰的强度 与 2Θ=12.3±0.1。峰的强度 12的比值 ( )与分子筛中以氧化稀土计的稀土重量 百分含量的乘积值为 57.2。
实施例 5
取 2.6千克 NaY分子筛和 20千克去离子水混合打浆, 加入 1.5升浓 度 160gRE2O3/L的氯化稀土溶液, 搅匀后升温至 75。C并用稀盐酸调节浆 液 pH至 3.5 , 继续交换 1小时, 过滤、 水洗、 干燥后, 在 100%水蒸气条 件下于 600。C焙烧 2小时,得到一交一焙含稀土和钠的 Y型分子筛 Y-E1, Y-E1的化学组成为氧化钠 4.8重%, 氧化稀土 11.9重%; 然后按分子筛: NH4C1: H20=1 : 0.3: 10的比例打浆并于 70。C交换 1 小时, 再加入 0.4 升浓度 300gRE2O3/L的氯化稀土溶液,搅匀后加入氨水调节浆液 pH至 7.9 并继续搅拌 10分钟, 过滤水洗、 干燥后在 80%水蒸气下于 600。C焙烧 2 小时, 得到本发明所述的含稀土的 Y型分子筛成品, 记为 Y-E。
Y-E的 X射线衍射谱图特征同图 1。
Y-E中氧化钠 1.3重%, 氧化稀土 17.9重。 /。, 结晶度 45.2%, 晶胞常 数 2.467nm , 骨架硅铝原子比 3.2。 其 2Θ=11.8±0.1。峰的强度 与 2Θ=12.3±0.1。峰的强度 12的比值 与分子筛中以氧化稀土计的稀土重量 百分含量的乘积值为 62.6。
实施例 6
取 2.6千克 NaY分子筛和 20千克去离子水混合打浆, 加入 1.5升浓 度 160gLa2O3/L的氯化镧溶液, 搅勾后升温至 75。C并用稀盐酸调节浆液 pH至 3.5 ,继续交换 1小时,过滤、水洗、干燥后,在空气气氛下于 620°C 焙烧 2小时, 得到一交一焙含稀土和钠的 Y型分子筛 Y-Fl , Y-F1的化学 组成为氧化钠 4.8重%, 氧化镧 11.9重%; 然后按分子筛: N C1: La203: H20=1 : 0.18: 0.10: 12的比例将 Y-F1与氯化铵及氯化镧溶液混合打浆并 于 65。C交换 1小时, 最后加入氨水调节浆液 pH至 8.2并继续搅拌 10分 钟, 过滤水洗、 干燥后在 100%水蒸气下于 620。C焙烧 3小时, 得到本发 明所述的含稀土的 Y型分子筛成品, 记为 Y-F。
Y-F的 X射线衍射谱图特征同图 1。
Y-F中氧化钠 1.5重%, 氧化镧 22.0重%, 结晶度 41.3%, 晶胞常数 2.470nm ,骨架硅铝原子比 3丄其 2Θ=11.8±0.1。峰的强度 I】与 2Θ=12.3±0.1° 峰的强度 12的比值 ( w与分子筛中以氧化稀土计的稀土重量百分含量的 乘积值为 70.1。
实施例 11
取 2.6千克 NaY分子筛(齐鲁催化剂厂, 灼减 22.5重%, 硅铝比 2.7, 结晶度 88% , 下同)和 15 千克去离子水混合打浆, 加入 1.0 升浓度 160gRE2O3/L的氯化稀土溶液及 0.24千克氯化铵固体,搅勾后升温至 70。C 并用稀盐酸调节浆液 pH至 4.0, 继续交换 1.5小时, 过滤、水洗、干燥后, 在 100%水蒸气条件下于 550。C焙烧 2小时, 得到一交一焙含稀土和钠的 Y型分子筛 YY-A1 , YY-A1的化学组成为氧化钠 5.1重%, 氧化稀土 7.8 重%。 然后按分子筛: N C1: H20=1 : 0.2: 10的比例打浆并于 70。C交 换 1 小时, 过滤水洗后, 重新打浆并加入 0.27升浓度 300gRE2O3/L的氯 化稀土溶液, 搅勾后加入氨水调节浆液 pH至 7.5并继续搅拌 10分钟, 任 选地过滤水洗、 干燥后在 100%水蒸气下于 600°C焙烧 2小时, 得到本发 明所述的含稀土的 Y型分子筛成品, 记为 YY-A。
YY-A中氧化钠 1.5重。 /。, 氧化稀土 11.8重%, 结晶度 50.3%, 晶胞常 数 2.458nm , 骨架硅铝原子比 3.5。 其 2Θ=11.8±0.1。峰的强度 I! 与 2Θ=12.3±0.1。峰的强度 12的比值( ΐ2 )与分子筛中以氧化稀土计的稀土重 量百分含量的乘积值为 89.7。
实施例 12
取 2.6千克 NaY分子筛和 18千克去离子水混合打浆,加入 1.25升浓 度 160gRE2O3/L的氯化稀土溶液及 0.12千克氯化铵固体, 搅勾后升温至 80°C并用稀盐酸调节浆液 pH至 3.8, 继续交换 1小时, 过滤、 水洗、 干 燥后, 在空气气氛下于 570。C焙烧 2小时,得到一交一焙含稀土和钠的 Y 型分子筛 YY-B 1 , YY-B1的化学组成为氧化钠 4.9重%, 氧化稀土 9.9重 %。 然后按分子筛: HC1: H20=1 : 0.05: 10的比例打浆并于 60。C交换 0.5 小时, 过滤水洗后, 重新打浆并加入 0.13升浓度 300gRE2O3/L的氯化稀 土溶液, 搅勾后加入氨水调节浆液 pH至 7.8并继续搅拌 10分钟, 任选地 过滤水洗、干燥后在空气气氛下于 570。C焙烧 2小时,得到本发明所述的 含稀土的 Y型分子筛成品, 记为 YY-B。
YY-B中氧化钠 1.5重%, 氧化稀土 11.9重0 /。, 结晶度 50.6%, 晶胞常 数 2.463nm, 骨架硅铝原子比 2.9。 其 2Θ=11.8±0.1°峰的强度 与 2Θ 2.3士 0.1。峰的强度 12的比值( I2 )与分子筛中以氧化稀土计的稀土重 量百分含量的乘积值为 48.8。
实施例 13
取 2.6千克 NaY分子筛和 18千克去离子水混合打浆, 加入 1.25升浓 度 160gRE2O3/L的氯化稀土溶液及 0.12千克氯化铵固体, 搅匀后升温至 80。C并用稀盐酸调节浆液 pH至 3.8, 继续交换 1小时, 过滤、 水洗、 干 燥后,在 50%水蒸气条件下于 570。C焙烧 2小时,得到一交一焙含稀土和 钠的 Y型分子筛 YY-C1, YY-C1的化学组成为氧化钠 4.9重%, 氧化稀土 9.9重%。 然后按分子筛: NH4C1: H20=1 : 0.15: 12的比例打浆并于 75°C 交换 1小时, 过滤水洗后, 重新打浆并加入 0.27升浓度 300gRE2O3/L的 氯化稀土溶液,搅匀后加入水玻璃调节浆液 pH至 8.0并继续搅拌 10分钟 , 任选地过滤水洗、干燥后在空气气氛下于 570。C焙烧 2小时,得到本发明 所述的含稀土的 Y型分子筛成品, 记为 YY-C。
YY-C中氧化钠 1.3重%, 氧化稀土 13.9重。 /。, 结晶度 48.8%, 晶胞常 数 2.465nm , 骨架硅铝原子比 3.1。 其 2Θ=11.8±0.1。峰的强度 与 2Θ=12.3土 0.1。峰的强度 12的比值( 1,/12 )与分子筛中以氧化稀土计的稀土重 量百分含量的乘积值为 55.6。
实施例 14
取 2.6千克 NaY分子筛和 18千克去离子水混合打浆, 加入 1.25升浓 度 160gRE2O3/L的氯化稀土溶液及 0.12千克氯化铵固体, 搅匀后升温至 80°C并用稀盐酸调节浆液 pH至 3.8, 继续交换 1小时, 过滤、 水洗、 干 燥后, 在空气气氛下于 600°C焙烧 1.5小时, 得到一交一焙含稀土和钠的 Y型分子筛 YY-D1 , YY-D1的化学組成为氧化钠 4.9重。 /。, 氧化稀土 9.9 重%; 然后按分子筛: N C1: H20=1 : 0.15: 12的比例打浆并于 75。C交 换 1小时, 过滤水洗后, 重新打浆并加入 0.4升浓度 300gRE2O3/L的氯化 稀土溶液, 搅勾后加入水玻璃调节浆液 pH至 8.0并继续搅拌 10分钟, 任 选地过滤水洗、 干燥后在 100%水蒸气下于 570。C焙烧 3小时, 得到本发 明所述的含稀土的 Y型分子筛成品, 记为 YY-D。 YY-D中氧化钠 1.3重。 /。, 氧化稀土 15.9重%, 结晶度 46.9%, 晶胞常 数 2.466nm , 骨架硅铝原子比 3.0。 其 2Θ=11.8±0.1。峰的强度 I! 与 2Θ=12.3士 0.1。峰的强度 12的比值( I!/ )与分子筛中以氧化稀土计的稀土重 量百分含量的乘积值为 57.2。
实施例 15
取 2,6千克 NaY分子筛和 20千克去离子水混合打浆, 加入 1.5升浓 度 160gRE2O3/L的氯化稀土溶液, 搅匀后升温至 75。C并用稀盐酸调节浆 液 pH至 3.5 , 继续交换 1小时, 过滤、 水洗、 干燥后, 在 100%水蒸气条 件下于 600。C焙烧 2小时,得到一交一焙含稀土和钠的 Y型分子筛 YY-E1 , YY-E1的化学组成为氧化钠 4.8重%,氧化稀土 11.9重%; 然后按分子筛: NH4C1: H20=1 : 0.3: 10的比例打浆并于 70°C交换 1小时, 过滤水洗后, 重新打浆并加入 0.4升浓度 300gRE2O3/L的氯化稀土溶液, 搅勾后加入氨 水调节浆液 pH至 7.9并继续搅拌 10分钟, 任选地过滤水洗、 干燥后在 80%水蒸气下于 600°C焙烧 2小时,得到本发明所述的含稀土的 Y型分子 筛成品, 记为 YY-E。
YY-E中氧化钠 1.3重%, 氧化稀土 17.9重0 /。, 结晶度 45.2%, 晶胞常 数 2.467nm , 骨架硅铝原子比 3.2。 其 2Θ=11.8±0.1。峰的强度 与 2Θ=12,3±0.1。峰的强度 12的比值( 1!/12 )与分子筛中以氧化稀土计的稀土重 量百分含量的乘积值为 62.6。
实施例】6
取 2.6千克 NaY分子筛和 20千克去离子水混合打浆, 加入 1.5升浓 度 160gLa2O3/L的氯化镧溶液, 搅匀后升温至 75。C并用稀盐酸调节浆液 pH至 3.5 ,继续交换 1小时,过滤、水洗、干燥后,在空气气氛下于 620。C 焙烧 2小时,得到一交一焙含稀土和钠的 Y型分子筛 YY-F1 , YY-F1的化 学组成为氧化钠 4.8重%,氧化镧 11.9重%;然后按分子筛:草酸: H20=1 : 0.08: 12的比例打浆并于 65。C交换 1小时, 过滤水洗后, 重新打浆并加 入 0.67升浓度 300gLa2O3/L的氯化镧溶液, 搅勾后加入氨水调节浆液 pH 至 8.2并继续搅拌 10分钟, 任选地过滤水洗、 干燥后在 100%水蒸气下于 620°C焙烧 3 小时, 得到本发明所述的含稀土的 Y型分子筛成品, 记为 YY-F。
YY-F中氧化钠 1.5重%, 氧化镧 21.9重%, 结晶度 41.7%, 晶胞常数 2.470nm,骨架硅铝原子比 3.1。其 2Θ=11.8士0.1。峰的强度 I!与 2Θ=12.3±0.1。 峰的强度 I2的比值 与分子筛中以氧化稀土计的稀土重量百分含量 的乘积值为 70.1。
对比例 1
本对比例是按照 CN1053808A中所述方法制备的含稀土的 Y型分子 师。
将 2.6千克 NaY分子筛与 1.75升氯化稀土溶液 (160gRE2O3/L)和 30 千克去离子水混合, 调节浆液 pH至 3.5并于 90。C交换 1小时, 过滤、 水 洗, 将滤饼放入管式焙烧炉中升温至 200。C 时通入水蒸气, 继续升温至 550°C焙烧 2小时, 将所得分子筛与 (NH4)2S04和 0按 1 : 0.2: 40的比 例打浆并于 60。C交换 15分钟, 过滤干燥得对比样品, 记为 DB-1。
DB-1的 X射线衍射谱图示于图 2中。
DB-1 的化学组成为氧化钠 1.3 重%, 氧化稀土 12.1 重%, 结晶度 56.7%, 晶胞常数 2.468nm, 骨架硅铝原子比 4.2。 其 2Θ=11.8±0.1。峰的强 度 I!与 2Θ=12.3±0.1。峰的强度 12的比值 ( )与分子筛中以氧化稀土计的稀 土重量百分含量的乘积值为 15.7。
亍 列 2
本对比例按照常规二交二焙方法制备含稀土的 Υ型分子筛。
将 2.6千克 NaY分子筛与 3.0升氯化稀土溶液 (160gRE2O3/L)和 20千 克去离子水混合, 90。C下交换 1 小时, 过滤、 水洗、 干燥后, 于 520。C 空气气氛下焙烧 2小时,将所得分子筛再与氯化稀土溶液和 H20按 1: 0.12: 10的比例打浆并于 90。C交换 1小时, 过滤干燥再次进行焙烧处理(焙烧 温度: 520。C和焙烧时间: 2小时)得到对比样品, 记为 DB-2。
DB-2的 X射线衍射谱图特征同图 2。
DB-2 的化学组成为氧化钠 1.9 重%, 氧化稀土 18.2 重。 /。, 结晶度 43.6%, 晶胞常数 2.469nm, 骨架硅铝原子比 2.7。 其 2Θ=11.8±0.1。峰的强 度 I!与 2Θ=12.3±0.1。峰的强度 12的比值 ( )与分子筛中以氧化稀土计的稀 土重量百分含量的乘积值为 16.4。
3†比例 3
本对比例是按照 CN100344374C中所述方法制备的含稀土的 Υ型分 子筛。
将 2.6千克 NaY分子筛与 20千克去离子水混合并升温至 90。C,加入 0.3千克克酸铵并用盐酸调节 pH至 3.5-4.0, 交换 1小时后过滤, 滤饼加 水 20千克, 再加入 2.87升氯化稀土溶液 (160gRE2O3/L)打浆, 盐酸调节 pH至 3.5-5.5 , 于室温下搅拌 1小时, 再加入氨水搅拌 5分钟, 水洗干燥 后, 在重量空速 0.1时 的水蒸气下 540。C焙烧 1.5小时; 将焙烧后的分 子筛在 60。C用氯化铵溶液以按分子筛:铵盐:水的 1 :0.1 : 10的比例洗涤 10 分钟, 干燥得到对比样品, 记为 DB-3。
DB-3的 X射线衍射谱图特征同图 2。
DB-3 的化学组成为氧化钠 0.2 重%, 氧化稀土 20.6 重。 /。, 结晶度 50.7%, 晶胞常数 2.472nm, 骨架硅铝原子比 3.7。 其 2Θ=11.8士 0.1。峰的强 度 I!与 2Θ=12.3±0.1。峰的强度 12的比值 (1!/12)与分子筛中以氧化稀土计的稀 土重量百分含量的乘积值为 26.8。
只于比例 4
本对比例是按照 CN100344374C中所述方法制备的含稀土的 Υ型分 子筛。
将 2.6千克 NaY分子筛与 20千克去离子水混合打浆, 再加入 1.63升 氯化稀土溶液 (160gRE2O3/L), 60。C 下搅拌 5 分钟后用盐酸调节 pH 至 3.5-5.5之间,继续搅拌 1小时后,加入氨水搅拌 5分钟过滤,水洗干燥后, 在重量空速 0.2时 的水蒸气下 600。C焙烧 1.5小时; 将焙烧后的分子筛 在 90。C用氯化铵溶液以按分子筛:铵盐:水的 1 :0.1: 10的比例洗涤 10分钟 , 干燥得到对比样品, 记为 DB-4。
DB-4的 X射线衍射谱图特征同图 2。
DB-4的化学组成为氧化钠 0.8重%,氧化稀土 11.8重%,结晶度 56.5%, 晶胞常数 2.465nm, 骨架硅铝原子比 3.3。 其 2Θ=11.8±0.1。峰的强度 与 2Θ=12.3±0.1。峰的强度 12的比值 (I!/W与分子筛中以氧化稀土计的稀土重量 百分含量的乘积值为 40.1。
^"比例 5
本对比例是按照 CN100344374C中所述方法制备的含稀土的 Υ型分 子筛。
将 2.6千克 NaY分子筛与 20千克去离子水混合打浆,再加入 2.19升 氯化稀土溶液 (160gRE2O3/L), 60。C 下搅拌 5 分钟后用盐酸调节 pH 至 3.5-5.5之间 ,继续搅拌 1小时后,加入氨水搅拌 5分钟过滤,水洗干燥后, 在空气氛围下 550。C焙烧 1.5小时; 将焙烧后的分子筛在 60。C用氯化铵 溶液以按分子筛:铵盐:水的 1 :0.1 : 10的比例洗涤 10分钟, 干燥得到对比样 品, i己为 DB-5。
DB-5的 X射线衍射谱图特征同图 2。
DB-5 的化学组成为氧化钠 1.0 重%, 氧化稀土 15.7 重%, 结晶度 52.9%, 晶胞常数 2.467nm, 骨架硅铝原子比 3.6。 其 2Θ 1.8士 0.1。峰的强 度 I!与 2Θ=12.3±0.1。峰的强度 12的比值 ( )与分子筛中以氧化稀土计的稀 土重量百分含量的乘积值为 30.9。
实施例 2 1
本实施例总结了实施例 1-6与 11-16和对比例 1-5的含稀土的 Υ型分 子筛的稀土利用率数据, 列于表 1 中。
分子筛样 稀土利用率 理论 RE203投料量 /% 产品中 RE203含量 /%
/%
Υ-Α 12.0 11.9 99.2
Υ-Β 12.0 11.9 99.2
Y-C 14.0 13.9 99.3
Y-D 16.0 16.0 100
Υ-Ε 18.0 17.9 99.4
Y-F 22.0 22.0 100
ΥΥ-Α 12.0 11.8 98.3
ΥΥ-Β 12.0 11.9 99.2
YY-C 14.0 13.9 99.3
YY-D 16.0 15.9 99.4
ΥΥ-Ε 18.0 17.9 99.4
YY-F 22.0 21.9 99.5
DB-1 14.0 12.1 86.4
DB-2 24.0 18.2 75.8
DB-3 23.0 20.6 89.6
DB-4 13.0 11.8 90.7
DB-5 17.5 15.7 89.7 由表 1可见, 实施例提供的分子筛的稀土利用率均在 98%以上, 而对 比例中稀土利用率较低,对比例 2的稀土利用率仅 75%左右, 其他对比例 的利用率稍高,但基本在 90%以下。采用本发明的二交二焙及沉积稀土的 工艺有效提高了稀土利用率, 减少了稀土资源的浪费。
实施例 22
100%水蒸气条件下老化处理 17小时后的物化数据。
将上述实施例及对比例中的分子筛与氯化铵溶液混合交换,将其中的 Na20含量洗至 0.3重%以下, 过滤干燥后, 在 800。C、 100%水蒸气条件 下老化处理 17小时, 进行物化表征并测定轻油 反活性 MA。
轻油微反评价条件: 分子筛装量 2g, 原料油为大港直馏轻柴油, 进 油量 1.56g, 反应温度 460°C。
结果见表 2。 表 2
Figure imgf000033_0001
由表 2可见, 实施例中所述分子 经过铵交洗钠后稀土含量基本没有 变化, 说明稀土离子主要定位于分子筛小笼中, 不会被反交换下来, 处于 小笼中的稀土离子对分子筛结构具有显著的稳定作用, 结晶保留度超过 45%以上, 轻油活性高于稀土含量相当的对比样。
催化裂化催化剂的制备和评价
在以下制备催化剂的实施例中, 除使用上述分子筛 YY-A、 YY-C 至 YY-F和 DB-1至 DB-5 , 还使用以下材料:
铝溶胶由中石化催化剂齐鲁分公司生产, 铝溶胶的 A1203含量为 21.5 重量%;
高岭土购自苏州中国高岭土公司;
拟薄水铝石购自山东铝厂;
介孔硅铝材料, 按照 CN1854258A中实施例 1的方法制备 (SH-SA-1) 含稀土的气相超稳 Y型分子筛根据 CN1683244A实施例 5的方法制得。
含镁的超稳 Y型分子筛为含镁的超稳 Y型分子筛根据 CN1297018A 中实施例 1的方法制得;
具有 MFI结构的分子筛 居专利申请 CN1611299A中实施例 1的方 法制得;
DASY2.0分子筛, 由中石化催化剂齐鲁分公司生产, RE203含量为 2 重量%, 硅铝原子摩尔比 4.1 ;
在催化剂的评价中, 根据以下公式计算转化率:
转化率 干气质量 +液化气质量 +汽油质量 +焦炭质量) /进油质量 100%
第一组
催化剂实施例 1
将以干基计的 18重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 40重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 33重量份的分子筛 YY-A 浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催化 剂。 将该微球催化剂在 500°C下焙烧 1小时, 再在 60°C下用 (NH4)2S04洗 涤((1^ )2804:微球催化剂: 0重量比=0.05: 1 : 10)至 Na20含量小于 0.25重 量%, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110 下烘干, 得到催化裂化催化剂 Cl。
催化剂实施例 2
将以干基计的 22重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 34重量份高岭土的浆液、以干基计的 11重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 31重量份的分子筛 YY-A 和以干基计的 2重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固 含量 30重量%的浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 500 °C下焙烧 1 小时, 再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化 剂: H20重量比 =0.05: 1: 10)至 Na20含量小于 0.25重量%, 最后用去离子水 淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化 裂化催化剂 C2。 催化剂实施例 3
将以干基计的 18重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量。 /。的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 39重量份高岭土的浆液、以干基计的 11重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 30重量份的分子筛 YY-C 和以干基计的 2重量份的 DASY2.0分子筛的混合浆液,搅拌 30分钟得到 固含量 30重量%的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙烧 1 小时, 再在 60°C下用(NH4)2S04洗涂 ((NH4)2S04:微球催化 剂: ¾0重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水 淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化 裂化催化剂 C3。
催化剂实施例 4
将以干基计的 22重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 37重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 28重量份的分子筛 YY-D 和以干基计的 3重量份的 DASY2.0分子筛的混合浆液,搅拌 30分钟得到 固含量 30重量%的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙烧 1 小时, 再在 60°C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化 剂: H20重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水 淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化 裂化催化剂 C4。
催化剂实施例 5
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 42重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 25重量份的分子筛 YY-E 和以干基计的 5重量份的 DASY2.0分子筛的混合浆液,搅拌 30分钟得到 固含量 30重量%的浆液, 喷雾千燥制成微球催化剂。 将该微球催化剂在 500°C下焙烧 1 小时, 再在 60°C下用 (NH4)2S04洗涤 ((NH4)2S04:微球催化 剂: ¾0重量比 =0.05: 1: 10)至 Na20含量小于 0.25重量%, 最后用去离子水 淋洗, 微球催化剂: 0重量比 =1:10, 过滤后于 110°C下供干, 得到催化 裂化催化剂 C5。
催化剂实施例 6
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65°C酸化 1小时, 分 别加入以干基计的 43重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 23重量份的分子筛 YY-F 和以干基计的 5重量份的 DASY2.0分子筛的混合浆液,搅拌 30分钟得到 固含量 30 重量%的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 50(TC下焙烧 1 小时, 再在 60°C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化 剂: H20重量比 =0.05: 1: 10)至 Na20含量小于 0.25重量%, 最后用去离子水 淋洗, 微球催化剂: ¾0重量比 =1:10, 过滤后于 110°C下烘干, 得到催化 裂化催化剂 C6。
催化剂对比例 1
将以干基计的 18重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65°C酸化 1小时, 分 别加入以干基计的 40重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 33重量份的分子筛 DB-1 浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催化 剂。 将该微球催化剂在 500°C下焙烧 1 小时, 再在 60°C下用(NH4)2S04洗 涤 ((NH4)2S04:微球催化剂: H20重量比 =0.05: 1:10)至 Na20含量小于 0.25重 量%, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1:10, 过滤后于 Π0 °(3下烘干, 得到催化裂化催化剂 DC-1。
催化剂对比例 2
将以干基计的 22重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65°C酸化 1小时, 分 别加入以干基计的 37重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 28重量份的分子筛 DB-2 和 3重量份的 DASY2.0分子筛的混合浆液, 搅拌 30分钟得到固含量 30 重量%的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙 烧 1小时,再在 60°C下用 (NH4)2S04洗'涤 ((NH4)2S04:微球催化剂: H20重量 比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球 催化剂: ¾0重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-2。
催化剂对比例 3
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 42重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 25重量份的分子筛 DB-3 和 5重量份的 DASY2.0分子筛的混合浆液, 搅拌 30分钟得到固含量 30 重量%的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙 烧 1小时,再在 60°C下用 (NH4)2S04洗涤 ((NH4)2S04:微球催化剂: 0重量 比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球 催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-3。
催化剂对比例 4
将以干基计的 18重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 38重量份高岭土的浆液、 以千基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 35重量份的分子筛 DB-4 浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催化 剂。 将该微球催化剂在 500°C下焙烧 1小时, 再在 60°C下用(NH4)2S04洗 涤 ((NH4)2S04:微球催化剂: H20重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重 量%, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110 下烘干, 得到催化裂化催化剂 DC-4。
催化剂对比例 5
将以干基计的 22重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 35重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 30重量份的分子篩 DB-5 和 3重量份的 DASY分子筛的混合浆液, 搅拌 30分钟得到固含量 30重 量%的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙烧 1小时, 再在 60°C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: 0重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20 重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-5。
分别将上述制备的催化裂化催化剂 C1-C6和 DC1-DC5, 在 800°C、 100%水蒸汽的条件下老化 12小时, 之后填装在小型固定流化床 ACE装 置 (购自美国 KTI公司)中, 填装量各自均为 9g。 然后, 在反应温度为 510 °C、 重时空速为 12h-l、 剂油比 (重量)为 6的条件下, 分别将表 3-1所示的 催化原料油注入填装有所述催化裂化催化剂 C1-C6和 DC1-DC5的固定流 化床 ACE装置中进行催化裂化反应。 分析反应产物的组成, 并根据公式 计算出转化率, 催化剂的催化裂化反应性能结果如下表 4-1所示:
表 3-1
Figure imgf000039_0001
表 4-1
Figure imgf000040_0001
第二组
催化剂实施例 1
将以干基计的 16重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 37重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶, 以及以干基计的 4重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之 后再向其中加入以干基计的 34重量份的分子筛 YY-A浆液,搅拌 30分钟 得到固含量 30重量%的浆液, 喷雾干燥制成微球催化剂。 将该微球催化 剂在 500°C下焙烧 1小时, 再在 60°C下用(NH4)2S04洗涤 ((NH4)2S04:微球 催化剂: H20重量比 =0.05: 1: 10)至 Na20含量小于 0.25重量%, 最后用去离 子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到 催化裂化催化剂 Cl。
催化剂实施例 2
将以干基计的 17重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 38重量份高呤土的浆液、 以干基计的 9重量份的铝溶 胶, 以及以干基计的 2重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之 后再向其中加入以干基计的 32重量份的分子筛 YY-A和以干基计的 2重 量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 50(TC下焙烧 1小时, 再在 60 °C下用(NH4)2S04 洗涤((NH4)2S04:微球催化剂: ¾0 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20重量比 =1 : 10,过滤后于 110°C下烘干,得到催化裂化催化剂 C2。
催化剂实施例 3
将以干基计的 22重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 20重量份高岭土的浆液、以干基计的 11重量份的铝溶 胶, 以及以干基计的 12重量份的介孔硅铝材料的浆液搅拌 20分钟, 之后 再向其中加入以干基计的 26重量份的分子筛 YY-C和以干基计的 9重量 份的 DASY2.0分子筛的混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时, 再在 60 °C下用(NH4)2S04 洗涤((NH4)2S04:微球催化剂: 0 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: 0重量比 =1 : 10,过滤后于 U0°C下供干,得到催化裂化催化剂 C3。
催化剂实施例 4
将以干基计的 22重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 26重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶, 以及以干基计的 8重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之 后再向其中加入以干基计的 30重量份的分子筛 YY-D和以干基计的 4重 量份的 DASY2.0分子筛的混合浆液, 搅拌 30分钟得到固含量 30重量% 的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 500Ό下焙烧 1小 时, 再在 6CTC下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20重量比 =1 : 10,过滤后于 110°C下烘干,得到催化裂化催化剂 C4。
催化剂实施例 5
将以干基计的 18重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 32重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶, 以及以干基计的 6重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之 后再向其中加入以干基计的 26重量份的分子筛 YY-E和以千基计的 8重 量份的 DASY2.0分子筛的混合浆液, 搅拌 30分钟得到固含量 30重量% 的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙烧 1小 时, 再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20重量比 =1 : 10,过滤后于 110°C下烘干,得到催化裂化催化剂 C5。
催化剂实施例 6
将以干基计的 18重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 40重量份高岭土的浆液、 以干基计的 8重量份的铝溶 胶, 以及以干基计的 5重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之 后再向其中加入以干基计的 29重量份的分子筛 YY-F浆液, 搅拌 30分钟 得到固含量 30重量%的浆液, 喷雾干燥制成微球催化剂。 将该微球催化 剂在 500 下焙烧 1小时, 再在 6(TC下用(NH4)2S04洗涤 ((NH4)2S04:微球 催化剂: H20重量比 =0.05: 1: 10)至 Na20含量小于 0.25重量%, 最后用去离 子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到 催化裂化催化剂 C6。
催化剂对比例 1
将以干基计的 16重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 37重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶, 以及以干基计的 4重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之 后再向其中加入以干基计的 34重量份的分子筛 DB-1浆液, 搅拌 30分钟 得到固含量 30重量%的浆液, 喷雾干燥制成微球催化剂。 将该微球催化 剂在 500°C下焙烧 1小时, 再在 6CTC下用(NH4)2S04洗涤 ((NH4)2S04:微球 催化剂: H20重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离 子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 11CTC下供干, 得到 催化裂化催化剂 DC-1。
催化剂对比例 2
将以干基计的 22重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 26重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶, 以及以干基计的 8重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之 后再向其中加入以干基计的 30重量份的分子筛 DB-2和以干基计的 4重 量份的 DASY2.0分子筛的混合浆液, 搅拌 30分钟得到固含量 30重量% 的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙烧 1小 时, 再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20 重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-2。
催化剂对比例 3
将以干基计的 18重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 32重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶, 以及以干基计的 6重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之 后再向其中加入以干基计的 26重量份的分子筛 DB-3和以干基计的 8重 量份的 DASY2.0分子筛的混合浆液, 搅拌 30分钟得到固含量 30重量% 的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙烧 1小 时, 再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: ¾0 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20 重量比 =1 : 10 , 过滤后于 110 °C下烘干, 得到催化裂化催化剂 DC-3。
催化剂对比例 4
将以干基计的 16重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 34重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶, 以及以干基计的 4重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之 后再向其中加入以干基计的 37重量份的分子筛 DB-4浆液, 搅拌 30分钟 得到固含量 30重量%的浆液, 喷雾干燥制成微球催化剂。 将该微球催化 剂在 500°C下焙烧 1小时, 再在 60°C下用 (NH4)2S04洗涤 ((NH4)2S04:微球 催化剂: 0重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离 子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到 催化裂化催化剂 DC-4。
催化剂对比例 5
将以干基计的 22重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 23重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶, 以及以干基计的 8重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之 后再向其中加入以干基计的 33 重量份的分子筛 DB-5 和 4 重量份的 DASY2.0分子筛的混合浆液搅拌 30分钟得到固含量 30重量%的浆液,喷 雾干燥制成微球催化剂。将该微球催化剂在 50CTC下焙烧 1小时,再在 60 下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: H20重量 比 =1 : 10, 过滤后于 110°C下洪干, 得到催化裂化催化剂 DC-5。
分别将上述制备的催化裂化催化剂 C1~C6和 DC1〜DC5, 在 800°C、 100%水蒸汽的条件下老化 12小时, 之后填装在小型固定流化床 ACE装 置 (购自美国 KTI公司)中, 填装量各自均为 9g。 然后, 在反应温度为 510 °C、 重时空速为 12h-l、 剂油比 (重量)为 6的条件下, 分别将表 3-2所示的 催化原料油注入填装有所述催化裂化催化剂 C1〜C6和 DC1~DC5的固定 流化床 ACE装置中进行催化裂化反应。 分析反应产物的组成, 并根据公 式计算出转化率, 催化剂的催化裂化反应性能结果如下表 4-2所示。
表 3-2
Figure imgf000046_0001
表 4-2
Figure imgf000047_0001
第三组
催化剂实施例 1
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 40重量份高岭土的浆液、 以干基计的 8重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 18重量份的分子筛 YY-A 和以干基计 12重量份的含稀土的气相超稳 Y型分子筛以及以干基计 10 重量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量% 的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 500Ό下焙烧 1小 时, 再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20重量比 =1 : 10,过滤后于 110°C下烘干,得到催化裂化催化剂 Cl。
催化剂实施例 2
将以干基计的 20重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 39重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 15重量份的分子筛 YY-A 和以干基计 15重量份的含稀土的气相超稳 Y型分子筛以及以干基计 2重 量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 50CTC下焙烧 1小时, 再在 60 °C下用(NH4)2S04 洗涤((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20重量比 =1 : 10,过滤后于 110°C下烘干,得到催化裂化催化剂 C2。
催化剂实施例 3
将以干基计的 18重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 42重量份高岭土的浆液、 以干基计的 8重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 10重量份的分子筛 YY-C 和以干基计 20重量份的含稀土的气相超稳 Y型分子筛以及以干基计 2重 量份的 DASY2.0分子 混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时, 再在 60 °C下用(NH4)2S04 洗涤((NH4)2S04:微球催化剂: ¾0 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20重量比 =1 : 10,过滤后于 110°C下烘干,得到催化裂化催化剂 C3。
催化剂实施例 4
将以干基计的 22重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所迷 36重量。 /。盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 36重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 21重量份的分子筛 YY-D 和以干基计 5重量份的含稀土的气相超稳 Y型分子筛以及以干基计 6重 量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 50CTC下焙烧 1小时, 再在 60 °C下用(NH4)2S04 洗涤((NH4)2S04:微球催化剂: ¾0 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20重量比 =1 : 10,过滤后于 110°C下烘干,得到催化裂化催化剂 C4。
催化剂实施例 5
将以干基计的 18重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65。C酸化 1小时, 分 别加入以干基计的 41重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 18重量份的分子筛 YY-E 和以千基计 9重量份的含稀土的气相超稳 Y型分子筛以及以干基计 5重 量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时, 再在 60 °C下用(N¾)2S04 洗涤((NH4)2S04:微球催化剂: H20 重量比 =0.05: l : 10)至Na2O含量小于0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20重量比 =1 : 10,过滤后于】10°C下烘干,得到催化裂化催化剂 C5。
催化剂实施例 6
将以干基计的 17重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 43重量份高岭土的浆液、 以干基计的 8重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 16重量份的分子筛 YY-F 和以干基计 12重量份的含稀土的气相超稳 Y型分子筛以及以干基计 4重 量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时, 再在 60 °C下用(NH4)2S04 洗涤((NH4)2S04:微球催化剂: ¾◦ 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20重量比 =1 : 10,过滤后于 110°C下烘干,得到催化裂化催化剂 C6。
催化剂对比例 1
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 40重量份高岭土的浆液、 以干基计的 8重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 18重量份的分子筛 DB-1 和以干基计 12重量份的含稀土的气相超稳 Y型分子筛以及以干基计 10 重量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量% 的浆液, 喷雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙烧 1小 时, 再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: 0 重量比 =0.05: l : 10)至Na2O含量小于0.25重量°/0, 最后用去离子水淋洗, 微球催 化剂: H2O 重量比 =1:10, 过滤后于 iio°c下烘千, 得到催化裂化催化剂
DC-1。
催化剂对比例 2
将以干基计的 22重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65。C酸化 1小时, 分 别加入以干基计的 36重量份高岭土的浆液、以千基计的 10重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 21重量份的分子筛 DB-2 和以干基计 5重量份的含稀土的气相超稳 Y型分子筛以及以干基计 6重 量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时, 再在 60 °C下用(NH4)2S04 洗涤((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1:10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20 重量比 =1:10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-2。
催化剂对比例 3
将以干基计的 18重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量°/。盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65°C酸化 1小时, 分 别加入以干基计的 41重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 18重量份的分子筛 DB-3 和以干基计 9重量份的含稀土的气相超稳 Y型分子筛以及以千基计 5重 量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时, 再在 60°C下用(N )2S04 洗涤 ((NH4)2S04:微球催化剂: 0 重量比 =0.05:1:10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: 0 重量比 =1:10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-3。
催化剂对比例 4
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所迷 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65°C酸化 1小时, 分 别加入以干基计的 38重量份高岭土的浆液、 以干基计的 8重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 20重量份的分子 DB-4 和以干基计 12重量份的含稀土的气相超稳 Y型分子筛以及以干基计 3重 量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时, 再在 60°C下用(N )2S04 洗涤 ((NH4)2S04:微球催化剂: H20 重量比 =0.05:1:10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20 重量比 =1:10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-4。
催化剂对比例 5
将以干基计的 22重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以千基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 34重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 23重量份的分子筛 DB-5 和以干基计 5重量份的含稀土的气相超稳 Y型分子筛以及以千基计 6重 量份的 DASY2.0分子 混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时, 再在 60 °C下用(NH4)2S04 洗涤((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20 重量比 =1 : 10 , 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-5。 催化剂参考例 1
将以干基计的 20重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 39重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 0重量份的分子筛 YY-A 和以干基计 30重量份的含稀土的气相超稳 Y型分子筛以及以干基计 2重 量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时, 再在 60 °C下用(NH4)2S04 洗涤((NH4)2S04:微球催化剂:¾0 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20重量比 =1 : 10,过滤后于 110°C下烘干,得到催化裂化催化剂 Rl。
催化剂参考例 2
将以干基计的 20重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 39重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 30重量份的分子筛 YY-A 和以干基计 0重量份的含稀土的气相超稳 Y型分子筛以及以千基计 2重 量份的 DASY2.0分子筛混合浆液, 搅拌 30分钟得到固含量 30重量%的 浆液,喷雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时, 再在 60 °C下用(NH4)2S04 洗涤((NH4)2S04:微球催化剂: 0 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催 化剂: H20重量比 =1 : 10,过滤后于 110°C下烘干,得到催化裂化催化剂 R2。
分别将上述制备的催化裂化催化剂 R1-R2, C1-C6和 DC1-DC5, 在 800°C、 100%水蒸汽的条件下老化 12小时, 之后填装在固定流化床 FFB 装置(由中国石化石油化工科学研究院大地公司制造)中评价催化裂化催化 剂的反应性能, 催化剂的填装量为 150g。 然后, 在反应温度为 520°C、 重 时空速为 16h-l、 剂油比 (重量)为 6的条件下, 将表 3-3所示的原料油, 注 入所述固定流化床 FFB装置中进行催化裂化反应。 分析反应产物的组成, 并根据公式计算出转化率, 催化剂的催化裂化反应性能结果如下表 4-3所 示:
表 3-3
Figure imgf000054_0001
表 4-3
Figure imgf000055_0001
第四组
催化剂实施例 1
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65°C酸化 1小时, 分 别加入以干基计的 37重量份高岭土的浆液、 以千基计的 7重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 18重量份的分子筛 YY-A 和以干基计 17重量份的含镁的超稳 Y型分子筛以及以干基计 2重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固含量 30重量%的浆液,喷 雾干燥制成微球催化剂。将该微球催化剂在 500 °C下焙烧 1小时,再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: 0 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: 0重量 比 : 10, 过滤后于〗 10°C下烘干, 得到催化裂化催化剂 Cl。
催化剂实施例 2
将以干基计的 16重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 39重量份高岭土的浆液、 以千基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 25重量份的分子筛 YY-A 和以干基计 8重量份的含镁的超稳 Y型分子筛以及以干基计 2重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固含量 30重量%的浆液, 喷 雾干燥制成微球催化剂。将该微球催化剂在 500Ό下焙烧 1小时,再在 60 下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: 0 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: 0重量 比 =1 : 10, 过滤后于 110Ό下烘干, 得到催化裂化催化剂 C2。
催化剂实施例 3
将以干基计的 17重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 38重量份高岭土的浆液、 以千基计的 8重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 20重量份的分子筛 YY-C 和以干基计 10重量份的含镁的超稳 Y型分子筛以及以干基计 7重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固含量 30重量%的浆液,喷 雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时,再在 60 C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: ¾0 重量比 =0.05:1 :10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: H20重量 比 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 C3。
催化剂实施例 4
将以干基计的 24重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 29重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 17重量份的分子筛 YY-D 和以干基计 15重量份的含镁的超稳 Y型分子筛以及以千基计 5重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固含量 30重量%的浆液, 喷 雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙烧 1小时,再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: H20重量 比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 C4。
催化剂实施例 5
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 34重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶,搅袢 20分钟,之后再向其中加入以干基计的 15重量份的分子筛 YY-E 和以干基计 21重量份的含镁的超稳 Y型分子筛以及以干基计 2重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固含量 30重量%的浆液,喷 雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙烧 1小时,再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: H20重量 比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 C5。
催化剂实施例 6
将以干基计的 15重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量。 /。的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 44重量份高呤土的浆液、 以干基计的 6重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 22重量份的分子筛 YY-F 和以干基计 9重量份的含镁的超稳 Y型分子筛以及以干基计 4重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固含量 30重量%的浆液,喷 雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时,再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂 : 0 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: H20重量 比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 C6。
催化剂对比例 1
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量。 /。的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 35重量份高呤土的浆液、 以千基计的 7重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 20重量份的分子筛 DB-1 和以干基计 17重量份的含镁的超稳 Y型分子筛以及以干基计 2重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固含量 30重量%的浆液, 喷 雾干燥制成微球催化剂。 将该微球催化剂在 50CTC下焙烧 1小时,再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: 0重量 比 =1 : 10, 过滤后于 110Ό下烘干, 得到催化裂化催化剂 DC- 1。
催化剂对比例 2
将以干基计的 24重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 Ό酸化 1小时, 分 别加入以干基计的 28重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 18重量份的分子筛 DB-2 和以干基计 15重量份的含镁的超稳 Y型分子筛以及以干基计 5重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固含量 30重量%的浆液, 喷 雾干燥制成微球催化剂。 将该微球催化剂在 500°C下焙烧 1小时,再在 60 " 下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 :10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: 0重量 比 =1 : 10, 过滤后于 110。C下烘千, 得到催化裂化催化剂 DC-2。
催化剂对比例 3
将以千基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以千基计的 33重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 16重量份的分子筛 DB-3 和以干基计 21重量份的含镁的超稳 Y型分子筛以及以干基计 2重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固含量 30重量%的浆液, 喷 雾千燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时,再在 60 °C下用(NH4)2S04洗、涤 ((NH4)2S04:微球催化剂: ¾0 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: H20重量 比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-3。
催化剂对比例 4
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 35重量份高岭土的浆液、 以干基计的 7重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 20重量份的分子筛 DB-4 和以干基计 17重量份的含镁的超稳 Y型分子筛以及以干基计 2重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固含量 30重量。 /。的浆液,喷 雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时,再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: H20 重量比 -0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: 0重量 比 =1 : 10, 过滤后于 110Ό下烘干, 得到催化裂化催化剂 DC-4。
催化剂对比例 5
将以干基计的 17重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65°C酸化 1小时, 分 别加入以干基计的 37重量份高岭土的浆液、 以干基计的 8重量份的铝溶 胶,搅拌 20分钟,之后再向其中加入以干基计的 21重量份的分子筛 DB-5 和以干基计 10重量份的含镁的超稳 Y型分子筛以及以干基计 7重量份的 DASY2.0分子筛混合浆液,搅拌 30分钟得到固含量 30重量%的浆液,喷 雾干燥制成微球催化剂。将该微球催化剂在 500°C下焙烧 1小时,再在 60 °C下用(NH4)2S04洗涤 ((NH4)2S04:微球催化剂: H20 重量比 =0.05: 1 : 10)至 Na20含量小于 0.25重量%, 最后用去离子水淋洗, 微球催化剂: H20重量 比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-5。
分别将上述制备的催化裂化催化剂 C1-C6和 DC1-DC5 , 在 800°C、 100%水蒸汽的条件下老化 17小时, 之后填装在固定流化床 FFB装置(由 中国石化石油化工科学研究院大地公司制造)中评价催化裂化催化剂的反 应性能, 催化剂的填装量为 150g。 然后, 在反应温度为 500°C、 重时空速 为 16h-l、 剂油比 (重量)为 5的条件下, 将表 3-4所示的原料油, 注入所述 固定流化床 FFB装置中进行催化裂化反应。 分析反应产物的组成, 并根 据公式计算出转化率, 结果如下表 4-4所示:
表 3-4
Figure imgf000061_0001
表 4-4
Figure imgf000062_0001
第五组
催化剂实施例 1
将以干基计的 20重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 27重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶以及以干基计的 8重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之后 再向其中加入以干基计的 23重量份的分子筛 YY-A和以干基计 4重量份 的 DASY2.0分子筛以及以干基计 8重量份的具有 MFI结构的分子筛的混 合浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催 化剂。 将该微球催化剂在 500°C下焙烧 1小时, 再在 60°C下用 (NH4)2S04 洗涤 ((NH4)2S04:微球催化剂: H20重量比 =0.05: 1 : 10)至 Na20含量小于 0.25 重量%, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 1 10°C下烘干, 得到催化裂化催化剂 Cl。
催化剂实施例 2
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 34重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶以及以干基计的 3重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之后 再向其中加入以干基计的 28重量份的分子筛 YY-A和以干基计 2重量份 的 DASY2.0分子筛以及以干基计 5重量份的具有 MFI结构的分子筛的混 合浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催 化剂。 将该微球催化剂在 500°C下焙烧 1 小时, 再在 60°C下用(NH4)2S04 洗涤 ((NH4)2S04:微球催化剂: H20重量比 =0.05: 1 : 10)至 Na20含量小于 0.25 重量%, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 C2。
催化剂实施例 3
将以干基计的 18重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 33重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶以及以干基计的 4重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之后 再向其中加入以干基计的 27重量份的分子筛 YY-C和以干基计 2重量份 的 DASY2.0分子筛以及以干基计 6重量份的具有 MFI结构的分子筛的混 合浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催 化剂。 将该微球催化剂在 500°C下焙烧 1小时, 再在 60°C下用 (NH4)2S04 洗涤 ((NH4)2S04:微球催化剂: H20重量比 =0.05: 1 : 10)至 Na20含量小于 0.25 重量%, 最后用去离子水淋洗, 微球催化剂: 0重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 C3。
催化剂实施例 4
将以干基计的 20重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 32重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶以及以干基计的 3重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之后 再向其中加入以干基计的 24重量份的分子筛 YY-D和以干基计 3重量份 的 DASY2.0分子筛以及以干基计 8重量份的具有 MFI结构的分子筛的混 合浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催 化剂。 将该微球催化剂在 500°C下焙烧 1小时, 再在 60°C下用(NH4)2S04 洗涤 ((NH4)2S04:微球催化剂: H20重量比 =0.05: 1 : 10)至 Na20含量小于 0.25 重量%, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 11(TC下烘干, 得到催化裂化催化剂 C4。
催化剂实施例 5
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 32重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶以及以干基计的 5重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之后 再向其中加入以干基计的 22重量份的分子筛 YY-E和以干基计 8重量份 的 DASY2.0分子筛以及以干基计 5重量份的具有 MFI结构的分子筛的混 合浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催 化剂。 将该微球催化剂在 500°C下焙烧 1小时, 再在 60°C下用(NH4)2S04 洗涤 ((NH4)2S04:微球催化剂: H20重量比 =0.05: 1 :10)至 Na20含量小于 0.25 重量%, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 iio°c下烘干, 得到催化裂化催化剂 C5。
催化剂实施例 6
将以干基计的 16重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量。 /。的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 38重量份高岭土的浆液、 以干基计的 7重量份的铝溶 胶以及以干基计的 4重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之后 再向其中加入以干基计的 20重量份的分子筛 YY-F和以干基计 5重量份 的 DASY2.0分子筛以及以干基计 10重量份的具有 MFI结构的分子筛的 混合浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球 催化剂。将该 ^啟球催化剂在 500 °C下焙烧 1小时,再在 60°C下用 (NH4)2S04 洗涤 ((NH4)2S04:微球催化剂: H20重量比 =0.05: 1 : 10)至 Na20含量小于 0.25 重量%, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 C6。
催化剂对比例 1
将以干基计的 20重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 27重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶以及以干基计的 8重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之后 再向其中加入以干基计的 23重量份的分子筛 DB-1和以干基计 4重量份 的 DASY2.0分子筛以及以干基计 8重量份的具有 MFI结构的分子筛的混 合浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催 化剂。 将该微球催化剂在 500°C下焙烧 1小时, 再在 60°C下用(NH4)2S04 洗涤 ((NH4)2S04:微球催化剂: H20重量比 =0.05: 1 : 10)至 Na20含量小于 0.25 重量%, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-1。
催化剂对比例 2
将以干基计的 20重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 32重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶以及以干基计的 3重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之后 再向其中加入以干基计的 24重量份的分子筛 DB-2和以干基计 3重量份 的 DASY2.0分子筛以及以干基计 8重量份的具有 MFI结构的分子筛的混 合浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催 化剂。 将该微球催化剂在 500°C下焙烧 1 小时, 再在 60°C下用 (NH4)2S04 洗涤 ((N )2S04:微球催化剂: 0重量比 =0.05: 1: 10)至 Na20含量小于 0.25 重量%, 最后用去离子水淋洗, t球催化剂: H20重量比 =1 : 10, 过滤后于 11CTC下烘干, 得到催化裂化催化剂 DC-2。
催化剂对比例 3
将以干基计的 19重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 32重量份高岭土的浆液、 以干基计的 9重量份的铝溶 胶以及以干基计的 5重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之后 再向其中加入以干基计的 22重量份的分子筛 DB-3和以干基计 8重量份 的 DASY2.0分子筛以及以干基计 5重量份的具有 MFI结构的分子筛的混 合浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催 化剂。 将该微球催化剂在 500°C下焙烧 1小时, 再在 60Ό下用 (NH4)2S04 洗涤 ((NH4)2S04:微球催化剂: ¾0重量比 =0.05: 1 : 10)至 Na20含量小于 0.25 重量%, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-3。
催化剂对比例 4
将以干基计的 20重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 25重量份高岭土的浆液、以千基计的 10重量份的铝溶 胶以及以干基计的 8重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之后 再向其中加入以干基计的 25重量份的分子筛 DB-4和以干基计 4重量份 的 DASY2.0分子筛以及以干基计 8重量份的具有 MFI结构的分子筛的混 合浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催 化剂。 将该微球催化剂在 500 °C下焙烧 1小时, 再在 60°C下用 (NH4)2S04 洗涤 ((NH4)2S04:微球催化剂: H20重量比 =0.05: 1 : 10)至 Na20含量小于 0.25 重量。 /。, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-4。
催化剂对比例 5
将以干基计的 20重量份的拟薄水铝石与去离子水混合打浆, 并向得 到的浆液中加入浓度为 36重量%的盐酸胶溶,酸铝比 (所述 36重量%盐酸 与以干基计的拟薄水铝石的重量比)为 0.20, 升温至 65 °C酸化 1小时, 分 别加入以干基计的 30重量份高岭土的浆液、以干基计的 10重量份的铝溶 胶以及以干基计的 3重量份的介孔硅铝材料的浆液, 搅拌 20分钟, 之后 再向其中加入以干基计的 26重量份的分子筛 DB-5和以干基计 3重量份 的 DASY2.0分子筛以及以干基计 8重量份的具有 MFI结构的分子筛的混 合浆液, 搅拌 30分钟得到固含量 30重量%的浆液, 喷雾干燥制成微球催 化剂。 将该微球催化剂在 50(TC下焙烧〗 小时, 再在 60°C下用(NH4)2S04 洗涤 ((NH4)2S04:微球催化剂: H20重量比 =0.05: 1 : 10)至 Na20含量小于 0.25 重量。 /。, 最后用去离子水淋洗, 微球催化剂: H20重量比 =1 : 10, 过滤后于 110°C下烘干, 得到催化裂化催化剂 DC-5。
分别将上述制备的催化裂化催化剂 C1-C6和 DC1-DC5, 在 800°C、 100%水蒸汽的条件下老化 Π小时, 之后填装在固定流化床 FFB装置(由 中国石化石油化工科学研究院大地公司制造)中评价催化裂化催化剂的反 应性能, 催化剂的填装量为 150g。 然后, 在反应温度为 51(TC、 重时空速 为 12h-l、 剂油比 (重量)为 6的条件下, 将表 3-5所示的原料油, 注入所述 固定流化床 FFB装置中进行催化裂化反应。 分析反应产物的组成, 并根 据公式计算出转化率, 结果如下表 4-5所示:
密度 (20°C)/(kg/m3) 914.8 粘度 (8(TC) 20.37 残炭 /重量% 5.74 四组分组成 /重量 %
饱和烃 58.0 芳烃 22.7 胶质 16.1 沥青质 3.2 元素组成 /重量%
C 86.84
H 12.36
S 0.16
N 0.22 金属含量 /^g/g)
Fe 2.7
Ni 8.6
Cu 0.2
V 0.4
Na 2.2
Ca 1.3
表 4-5
Figure imgf000069_0001

Claims

权 利 要 求 书
1. 一种催化裂化催化剂, 该催化裂化催化剂具有裂化活性组元、 任 选的介孔硅铝材料、 粘土和粘结剂, 其中, 所述裂化活性组元包括或基本 上由以下组成或由以下组成: 含稀土的 Y型分子筛, 任选的其它 Y型分 子筛, 和任选的具有 MFI结构的分子筛,
所述含稀土的 Y型分子筛, 其稀土含量以氧化稀土计为 10-25重%, 如 11-23重%, 晶胞常数为 2.440-2.472nm, 如 2.450-2.470nm, 结晶度为 35-65%, 如 40-60%, 骨架硅铝原子比为 2.5-5.0, 该分子筛 X射线衍射谱 图中 2Θ=11.8±0. 峰的强度 1!与 2Θ=12.3±0.1。峰的强度 12的比值与分子筛 中以氧化稀土计的稀土重量百分含量的乘积值大于 48, 优选大于 55。
2. 按照权利要求 1的催化裂化催化剂, 其中所述含稀土的 Υ型分子 筛在经过 800。C、100%水蒸气老化处理 17小时后的结晶保留度大于 40%, 优选 45%。
3. 按照权利要求 1的催化裂化催化剂, 其中
所述的介孔硅铝材料具有拟薄水铝石的物相结构,以氧化物重量计的 无水化学表达式为: (0~0.3)Na2O'(40〜90)Al2O3'(10〜60)SiO2, 其平均孔径 为 5〜25nm, 最可几孔径为 5~15nm, 比表面积为 200~400m2/g , 孔容为 0.5〜2.0ml/g;
所述的粘土选自高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂 石、 累托土、 海泡石、 凹凸棒石、 水滑石和膨润土中的一种或多种;
所述的粘结剂选自硅溶胶、 铝溶胶和拟薄水铝石中的一种或多种。
4. 按照权利要求 1 的催化裂化催化剂, 其中每 100重量份的催化裂 化催化剂, 所述催化裂化催化剂含有 10-60 重量份裂化活性组元、 10-70 重量份粘土, 10-60重量份粘结剂, 0-20重量份的介孔硅铝材料。
5. 按照权利要求 1的催化裂化催化剂, 其中所述其它 Y型分子筛选 自: 含稀土的 DASY分子筛, 含稀土的气相超稳 Y型分子筛和含镁的超 稳 Y型分子筛。
6. 按照权利要求 1 的催化裂化催化剂, 其中所述裂化活性组元包括 或基本上由以下组成或由以下组成:
含稀土的 Y型分子筛,
任选地, 含稀土的 DAS Y分子筛, 和
任选地, 含稀土的气相超稳 Υ型分子筛、 含镁的超稳 Υ型分子 筛和具有 MFI结构的分子筛中的仅仅一种。
7. 按照权利要求 1 的催化裂化催化剂, 其中每 100重量份的催化裂 化催化剂,所述催化裂化催化剂包含 10-40重量份的含稀土的 Υ型分子筛, 0-15重量份的含稀土的 DASY分子筛, 和 0-25重量份的含稀土的气相超 稳 Υ型分子筛、 含镁的超稳 Υ型分子筛和具有 MFI结构的分子筛中的仅 仅一种。
8. 按照权利要求 1的催化裂化催化剂, 其中所述含稀土的 Υ型分子 筛是通过下述方法制备的, 包括以下步骤:
(1)将 NaY分子筛与稀土溶液或稀土溶液与铵盐的混合溶液进行接触 处理而得到含稀土和钠的 Y型分子筛;
(2)对步骤 (1)中获得的含稀土和钠的 Y 型分子筛进行第一次焙烧处 理, 得到含稀土和钠的 Y型分子筛;
(3)然后或者将步骤 (2)中得到的含稀土和钠的 Y型分子筛用铵盐溶液 或酸溶液接触处理后, 再与稀土溶液混合并调节混合物的 pH值为 6-10, 或者将步骤 (2)中得到的含稀土和钠的 Y型分子筛用铵盐和稀土溶液的混 合液接触处理,再调节混合物的 pH值为 6-10,得到含稀土和钠的 Y型分 子筛;
(4)对步骤 (3)中获得的含稀土和钠的 Y 型分子筛进行第二次焙烧处 理, 得到目标的含稀土的 Y型分子筛。
9. 按照权利要求 1的催化裂化催化剂, 其中所述含稀土的 Y型分子 筛是通过下述方法制备的, 包括以下步骤:
(1)将 NaY分子筛与稀土溶液或稀土溶液与铵盐的混合溶液进行接触 处理而得到含稀土和钠的 Y型分子筛;
(2)使步骤 (1)中获得的含稀土和钠的 Y型分子筛经过滤、 水洗、 干燥 后, 进行第一次焙烧处理, 得到含稀土和钠的 Y型分子筛;
(3)然后或者将步骤 (2)中得到的含稀土和钠的 Y型分子筛用铵盐溶液 接触处理后在不过滤的情况下再与稀土溶液混合并调节混合物的 pH值为 6-10, 或者将步骤 (2)中得到的含稀土和钠的 Y型分子筛用铵盐和稀土溶 液的混合液接触处理, 再调节混合物的 pH值为 6-10, 得到含稀土和钠的 Y型分子筛; (4)使步骤 (3)中获得的含稀土和钠的 Y型分子筛经过滤和水洗、 干燥 后, 进行第二次焙烧处理, 得到目标的含稀土的 Y型分子筛。
10. 按照权利要求 1的催化裂化催化剂,其中所述含稀土的 Y型分子 筛是通过下述方法制备的, 包括以下步骤:
(1)将 NaY分子筛与稀土溶液或稀土溶液与铵盐的混合溶液进行接触 处理而得到含稀土和钠的 Y型分子筛;
(2)使步骤 (1)中获得的含稀土和钠的 Y型分子筛经过滤、 水洗、 干燥 后, 进行第一次焙烧处理, 得到含稀土和钠的 Y型分子筛;
(3)然后将步骤 (2)中获得的含稀土和钠的 Y型分子筛用铵盐溶液或酸 溶液接触处理, 过滤后再与稀土溶液混合并调节混合物的 pH值为 6-10, 得到含稀土和钠的 Y型分子筛;
(4)使步骤 (3)中获得的含稀土和钠的 Y 型分子筛被任选地过滤和水 洗, 干燥, 进行第二次焙烧处理, 得到目标的含稀土的 Y型分子筛。
11. 按照权利要求 8-10中任一项的催化裂化催化剂,其中铵盐选自氯 化铵、 硝酸铵、 碳酸铵、 碳酸氢铵中的任一种或多种的混合物。
12. 按照权利要求 8-10 中任一项的催化裂化催化剂, 其中在步骤 (1) 中,
稀土溶液以氧化稀土计与 NaY分子筛干基的重量比例为 0.06-0.14、 优选 0.07-0.12, 铵盐(以氯化铵计)与稀土溶液(以氧化稀土计)的重量 比例为 0-10, 优选 0-5, 例如 0.2-3 , 所说的铵盐选自氯化铵、 硝酸铵、 碳 酸铵、 碳酸氢铵中的任一种或多种的混合物, pH被调节为 3.0-5.0, 水筛 重量比控制在 5-30、 优选 7-15 , 所说的接触处理的过程是在室温(如 18-26°C)至 100° (:、 优选 70-95°C下进行至少 0.3小时、 优选 0.5-3小时, 例如 0.5-1.5小时。
13. 按照权利要求 8-10 中任一项的催化裂化催化剂, 其中在步骤 (2) 中,
所说的第一次焙烧处理, 是在 500-650。C , 例如 530-630。C, 如 550-620°C, 0-100%水蒸气条件下焙烧处理至少 0.5小时、 优选 0.5-4.0小 时、 1.0-4.0小时或 1.5-3.0小时。
14. 按照权利要求 8-10 中任一项的催化裂化催化剂, 其中在步骤 (3) 中,
对于将含稀土和钠的 Y型分子筛用铵盐溶液接触处理来说, 接触处 理在室温至 100。C、优选 60-80。C下进行至少 0.3小时,例如 0.3-3.0小时、 0.5-3小时或 0.5-1.5小时, 其中含稀土和钠的 Y型分子筛与铵盐溶液的比 例, 按分子筛(干基):铵盐:水的重量比计, 为 1 :(0.05-0.5):(5-30) 优选 1 :(0.1-0.4):(8-15); 随后添加的稀土溶液的量是这样的, 使得稀土溶液中的 稀土元素按氧化稀土 (RE203)计与含稀土和钠的 Y型分子筛按分子筛干基 计的重量比为 0.01-0.2, 例如, 0.02-0.12; 所说的铵盐选自氯化铵、 硝酸 铵、 碳酸铵、 碳酸氢铵中的任一种或多种的混合物;
对于将含稀土和钠的 Y 型分子筛用酸溶液接触处理来说, 接触处理 在室温至 100。C、 优选 60-80°C下进行至少 0.3小时, 例如 0.3-3.0小时、 0.5-3小时或 0.5-1.5小时,其中含稀土和钠的 Y型分子筛与酸溶液的比例, 按分子筛(干基):酸:水的重量比计, 为 1 : ( 0.03-0.2 ( 5-30 )、 优选 1 : ( 0.05-0.1 ): ( 8-15 ); 随后添加的稀土溶液的量是这样的, 使得稀土溶液 中的稀土元素按氧化稀土 (RE203)计与含稀土和钠的 Y型分子筛按分子筛 干基计的重量比为 0.01-0.2, 例如, 0.02-0.12; 所说的酸可以为无机酸或 者有机酸, 无机酸可以选自硫酸、 盐酸或硝酸中的一种或多种的混合物, 有机酸可以选自草酸、 乙酸、 柠檬酸或酒石酸中的一种或多种的混合物; 优选有机酸如草酸、 乙酸、 柠檬酸和酒石酸;
对于将含稀土和钠的 Y 型分子筛用铵盐和稀土溶液的混合液接触处 理来说, 接触处理在室温至 100。C、 优选 60-80。C下进行至少 0.3小时, 例如 0.3-3.0小时、 0.5-3小时或 0.5-1.5小时, 其中含稀土和钠的 Y型分 子筛与铵盐和稀土溶液的比例, 按分子筛(干基):铵盐:氧化稀土 (RE203): 水 的 重 量 比 计 , 为 1 :(0.05-0.5):(0.01-0.2):(5-30) 、 优 选 1 :(0.1-0.4):(0.02-0.12):(8-15); 所说的铵盐选自氯化铵、 硝酸铵、 碳酸铵、 碳酸氢铵中的任一种或多种的混合物。
15. 按照权利要求 14的催化裂化催化剂, 其中在步骤 (3)中所述的接 触处理后, 通过加入碱性液体调节混合物的 pH值为 6-10、 优选 pH值为 7-9, 更优选 7.5-8.2。
16. 按照权利要求 15 的催化裂化催化剂, 其中所说的碱性液体可以 选自氨水、 水玻璃、 偏铝酸钠或氢氧化钠中的任一种或多种的混合物。
17. 按照权利要求 8-10 中任一项的催化裂化催化剂, 其中在步骤 (4) 中, 所说的第二次焙烧处理, 是在 500-650。 (:、 0-100%水蒸气条件下处理 0.5-4小时、 优选 1-3小时。
18. 一种制备催化裂化催化剂的方法, 该方法包括: 制备包括裂化活 性组元、 任选的介孔硅铝材料、 粘土和粘结剂的浆液; 将所制备的浆液喷 雾干燥, 、. 、 。、 、 , , 。、 、 , 、 ' 稀土的 Υ型分子筛, 任选的其它 Υ型分子筛, 和任选的具有 MFI结构的 分子筛, 所述含稀土的 Υ型分子筛, 其稀土含量以氧化稀土计为 10-25 重0 /。, 如 11-23重%, 晶胞常数为 2.440-2.472nm, 如 2.450-2.470nm, 结 晶度为 35-65%, 如 40-60%, 骨架硅铝原子比为 2.5-5.0, 该分子筛 X射线 衍射语图中 2Θ=11.8±0.1。峰的强度 1!与 2Θ=12.3±0.1。峰的强度 12的比值与 分子筛中以氧化稀土计的稀土重量百分含量的乘积值大于 48, 优选大于 55。
19. 按照权利要求 18的制备催化裂化催化剂的方法, 其中
所述的介孔硅铝材料具有拟薄水铝石的物相结构,以氧化物重量计的 无水化学表达式为: (0~0.3)Na2O'(40~90)Al2O3*(10〜60)SiO2, 其平均孔径 为 5〜25nm, 最可几孔径为 5~15nm, 比表面积为 200〜400m2/g , 孔容为 0.5~2.0ml/g;
所述的粘土选自高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂 石、 累托土、 海泡石、 凹凸棒石、 水滑石和膨润土中的一种或多种;
所述的粘结剂选自硅溶胶、 铝溶胶和拟薄水铝石中的一种或多种。
20. 按照权利要求 18的制备催化裂化催化剂的方法, 其中每 100重 量份的催化裂化催化剂 ,以干基计,使用 10-60重量份裂化活性组元、 10-70 重量份粘土, 10-60重量份粘结剂, 0-20重量份的介孔硅铝材料来制备浆 液。
21. 按照权利要求 18的制备催化裂化催化剂的方法,其中所述其它 Y 型分子筛选自: 含稀土的 DASY分子筛, 含稀土的气相超稳 Y型分子筛 和含镁的超稳 Y型分子筛。
22. 按照权利要求 18 的制备催化裂化催化剂的方法, 其中所述裂化 活性组元包括或基本上由以下组成或由以下组成:
含稀土的 Y型分子筛,
任选地,
含稀土的 DASY分子筛, 和
任选地, 含稀土的气相超稳 Y型分子筛、 含镁的超稳 Y型分子筛和 具有 MFI结构的分子筛中的仅仅一种。
23 按照权利要求 18的制备催化裂化催化剂的方法,其中每 100重量 份的催化裂化催化剂, 以干基计,使用 10-40重量份的含稀土的 Y型分子 筛, 0-15重量份的含稀土的 DASY分子筛, 和 0-25重量份的含稀土的气 相超稳 Y型分子筛、 含镁的超稳 Y型分子筛和具有 MFI结构的分子筛中 的仅仅一种来制备浆液。
24. 按照权利要求 18 的制备催化裂化催化剂的方法, 其中所述含稀 土的 Y型分子筛是通过权利要求 8-17中所述的步骤制备的。
PCT/CN2013/000767 2012-09-14 2013-06-27 一种具有含稀土的y型分子筛的催化裂化催化剂及其制备方法 WO2014040365A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2015113601A RU2628071C2 (ru) 2012-09-14 2013-06-27 Катализатор каталитического крекинга, содержащий рзэ-содержащий цеолит, и способ его получения
SG11201501897RA SG11201501897RA (en) 2012-09-14 2013-06-27 A catalytic cracking catalyst having a rare earth-containing y zeolite and a preparation process thereof
KR1020157009020A KR102109395B1 (ko) 2012-09-14 2013-06-27 희토류 함유 y형 분자체를 가진 접촉 분해 촉매 및 이의 제조 방법
AU2013314978A AU2013314978B2 (en) 2012-09-14 2013-06-27 Catalytic cracking catalyst of rare earth-containing Y-type molecular sieve and preparation method therefor
JP2015531422A JP6301336B2 (ja) 2012-09-14 2013-06-27 レアアースを含むy型ゼオライトを有する接触分解触媒およびその製造方法
EP13837046.5A EP2896456B1 (en) 2012-09-14 2013-06-27 Catalytic cracking catalyst of rare earth-containing y-type molecular sieve and preparation method therefor

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201210341407.1A CN103657700B (zh) 2012-09-14 2012-09-14 一种催化裂化催化剂及其制备方法
CN201210341407.1 2012-09-14
CN201210341383.X 2012-09-14
CN201210341750.6A CN103657702B (zh) 2012-09-14 2012-09-14 一种催化裂化催化剂及其制备方法
CN201210341750.6 2012-09-14
CN201210341738.5 2012-09-14
CN201210341385.9 2012-09-14
CN201210341738.5A CN103657701B (zh) 2012-09-14 2012-09-14 一种催化裂化催化剂及其制备方法
CN201210341385.9A CN103657712B (zh) 2012-09-14 2012-09-14 一种催化裂化催化剂及其制备方法
CN201210341383.XA CN103657711B (zh) 2012-09-14 2012-09-14 一种催化裂化催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2014040365A1 true WO2014040365A1 (zh) 2014-03-20

Family

ID=50275062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000767 WO2014040365A1 (zh) 2012-09-14 2013-06-27 一种具有含稀土的y型分子筛的催化裂化催化剂及其制备方法

Country Status (9)

Country Link
US (1) US9656255B2 (zh)
EP (1) EP2896456B1 (zh)
JP (1) JP6301336B2 (zh)
KR (1) KR102109395B1 (zh)
AU (1) AU2013314978B2 (zh)
RU (1) RU2628071C2 (zh)
SG (1) SG11201501897RA (zh)
TW (1) TWI568495B (zh)
WO (1) WO2014040365A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104307559A (zh) * 2014-09-03 2015-01-28 中国海洋石油总公司 一种脱除芳烃中烯烃的整体式催化剂及其制备方法
CN112717961A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 滤渣及其制备方法以及催化裂化催化剂及其制备方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508467B (zh) * 2012-06-27 2015-09-23 中国石油化工股份有限公司 一种稀土y分子筛及其制备方法
CA2893459C (en) * 2012-12-21 2021-03-16 Albemarle Europe Sprl Modified y-zeolite/zsm-5 catalyst for increased propylene production
IN2014MU01231A (zh) * 2014-03-31 2015-10-02 Hindustan Petroleum Corp Ltd
EP2926899A1 (en) * 2014-03-31 2015-10-07 Hindustan Petroleum Corporation Ltd. A catalyst composite for the reduction of olefins in the FCC naphtha stream
CN103920524B (zh) * 2014-04-28 2016-02-24 东北石油大学 一种脱硅剂及其制备方法和应用
CN105582973B (zh) * 2014-10-29 2018-03-20 中国石油化工股份有限公司 一种重油裂化催化剂及其制备方法
RU2629773C1 (ru) * 2016-10-11 2017-09-04 Акционерное общество "Всероссийский научно-исследовательский институт по переработке нефти" (АО "ВНИИ НП") Способ получения гранулированного катализатора крекинга
EP3737500B1 (en) 2018-01-12 2024-08-28 Ketjen Limited Liability Company Process for making an fcc catalyst with enhanced mesoporosity
US11731114B2 (en) 2018-08-29 2023-08-22 Jgc Catalysts And Chemicals Ltd. Fluid catalytic cracking catalyst for hydrocarbon oil
JP7123864B2 (ja) * 2019-02-28 2022-08-23 日揮触媒化成株式会社 炭化水素油用流動接触分解触媒
WO2020044859A1 (ja) * 2018-08-29 2020-03-05 日揮触媒化成株式会社 炭化水素油用流動接触分解触媒
CN109772426B (zh) * 2019-01-23 2021-09-21 浙江恒澜科技有限公司 含微量稀土离子的微球型mfi拓扑学结构全硅-1分子筛催化剂及其喷雾成型制备方法
US20230072292A1 (en) * 2019-12-19 2023-03-09 Albemarle Corporation Catalyst With Vanadium Trap
US20230051097A1 (en) 2019-12-23 2023-02-16 Zeopore Technologies Nv Mesoporous zeolites prepared by alkaline treatment with precipitates
CN113952969B (zh) * 2020-07-20 2023-07-11 中国石油化工股份有限公司 一种催化裂化催化剂及其制备方法和应用
CN114425417B (zh) * 2020-09-02 2023-07-11 中国石油化工股份有限公司 一种石脑油催化裂解催化剂及其制备方法与应用
CN114425398B (zh) * 2020-09-21 2023-07-14 中国石油化工股份有限公司 一种催化裂化催化剂及其制备方法和应用
CN114425421B (zh) * 2020-09-22 2023-07-11 中国石油化工股份有限公司 一种催化裂化催化剂及其制备方法与应用
CN114272919B (zh) * 2020-09-27 2024-09-06 中国石油天然气股份有限公司 催化裂化助剂及其制备方法、使用方法
US11851386B2 (en) * 2021-10-15 2023-12-26 Exelus, Inc. Solid-acid catalyzed paraffin alkylation with rare earth-modified molecular sieve adsorbents
WO2023069656A1 (en) * 2021-10-21 2023-04-27 Basf Corporation In-situ crystallized ultra-low zeolite content fluid catalytic cracking catalyst
CN115571902B (zh) * 2022-09-05 2023-09-22 杭州智华杰科技有限公司 一种提高拟薄水铝石载体耐候性的方法

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259212A (en) * 1978-06-07 1981-03-31 Exxon Research And Engineering Co. Octane improvement cracking catalyst
CN1053808A (zh) 1991-02-28 1991-08-14 中国石油化工总公司石油化工科学研究院 一种稀土y分子筛的制备方法
CN1098130A (zh) 1993-07-29 1995-02-01 中国石油化工总公司 一种裂化催化剂及其制备方法
CN1297018A (zh) 1999-11-17 2001-05-30 中国石油化工集团公司 一种多产轻质油的催化裂化催化剂及其制备
CN1069553C (zh) 1997-11-25 2001-08-15 中国石油化工总公司 一种制备稀土y型分子筛的方法
CN1317547A (zh) 2000-04-07 2001-10-17 中国石油天然气股份有限公司兰州炼化分公司 一种降低汽油烯烃含量的fcc催化剂及其制备方法
CN1362472A (zh) 2001-01-04 2002-08-07 中国石油化工股份有限公司 一种催化裂化催化剂的制备方法
CN1382631A (zh) 2001-04-28 2002-12-04 中国石油化工股份有限公司 一种稀土y型沸石
CN1436727A (zh) 2002-02-07 2003-08-20 中国石油天然气股份有限公司 一种改性八面沸石及含该改性八面沸石的烃类裂化催化剂
CN1132898C (zh) 2000-01-27 2003-12-31 中国石油化工集团公司 一种石油催化裂化催化剂
CN1506161A (zh) 2002-12-13 2004-06-23 中国石油天然气股份有限公司 一种超稳稀土y分子筛活性组分及其制备方法
CN1565733A (zh) 2003-06-30 2005-01-19 中国石油化工股份有限公司 一种中孔硅铝材料及其制备方法
CN1611299A (zh) 2003-10-31 2005-05-04 中国石油化工股份有限公司 一种含磷和金属组分的mfi结构分子筛及其应用
CN1683244A (zh) 2004-04-14 2005-10-19 中国石油化工股份有限公司 一种分子筛的气相抽铝补硅方法
CN1727445A (zh) 2004-07-29 2006-02-01 中国石油化工股份有限公司 烃类裂化催化剂及其制备方法
CN1727442A (zh) 2004-07-29 2006-02-01 中国石油化工股份有限公司 一种石油烃裂化催化剂及其制备方法
CN1854258A (zh) 2005-04-29 2006-11-01 中国石油化工股份有限公司 一种裂化催化剂
CN1916166A (zh) 2006-09-08 2007-02-21 北京赛尔泰和生物医药科技有限公司 自体角膜上皮的制备方法
CN100344374C (zh) 2004-08-13 2007-10-24 中国石油化工股份有限公司 一种稀土y分子筛及其制备方法
CN101147875A (zh) 2006-09-20 2008-03-26 中国石油化工股份有限公司 一种催化裂化催化剂
CN101285001A (zh) * 2007-04-12 2008-10-15 中国石油化工股份有限公司 一种催化裂化催化剂
CN101385983A (zh) * 2007-09-12 2009-03-18 中国石油化工股份有限公司 一种重油催化裂化催化剂
US20090230023A1 (en) * 2006-06-28 2009-09-17 Idemitsu Kosan Co., Ltd. Fluid catalytic cracking catalyst having desulfurizing functions, process for production of the same, and process for production of low-sulfur catalytically cracked gasoline with the catalyst
CN101537366A (zh) 2008-03-19 2009-09-23 中国石油天然气股份有限公司 一种可改善结焦性能的改性分子筛
CN101823726A (zh) 2009-03-04 2010-09-08 中国石油天然气股份有限公司 一种改性y分子筛
WO2011115785A1 (en) * 2010-03-18 2011-09-22 W. R. Grace & Co.-Conn. High light olefins fcc catalyst compositions

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442795A (en) 1963-02-27 1969-05-06 Mobil Oil Corp Method for preparing highly siliceous zeolite-type materials and materials resulting therefrom
NL6909263A (zh) 1969-06-18 1970-12-22
US4125591A (en) 1972-03-15 1978-11-14 American Cyanamid Company Process for producing rare earth exchanged crystalline aluminosilicate
US4503023A (en) 1979-08-14 1985-03-05 Union Carbide Corporation Silicon substituted zeolite compositions and process for preparing same
JPS59150539A (ja) 1983-02-16 1984-08-28 Res Assoc Residual Oil Process<Rarop> 炭化水素転化触媒
US5286370A (en) 1987-12-28 1994-02-15 Mobil Oil Corporation Catalytic cracking using a layered cracking catalyst
US5013699A (en) 1988-04-07 1991-05-07 Uop Novel zeolite compositions derived from zeolite Y
JPH0818819B2 (ja) 1989-10-04 1996-02-28 出光興産株式会社 新規なフォージャサイト型アルミノシリケート及びその製造方法並びに重質油水素化分解触媒
CN1064929A (zh) 1991-10-03 1992-09-30 高常宝 双层肋管立柱式散热器
CN1030099C (zh) 1992-04-12 1995-10-18 雷践仁 多功能步进式电液随动伺服阀
US5669804A (en) 1994-10-25 1997-09-23 Sony Corporation Magnetic tape surface treatment method and apparatus
CN1157465A (zh) 1996-02-16 1997-08-20 陈为凤 诱导电路(无导体能通电的电路)
CN1064929C (zh) * 1996-10-09 2001-04-25 中国石油化工集团公司抚顺石油化工研究院 一种高硅高结晶度y型分子筛及其制备方法
CN1098809C (zh) * 2000-10-10 2003-01-15 石油大学(华东) 在非缓冲体系中对超稳分子筛进行改性的方法
CN1170634C (zh) 2001-05-30 2004-10-13 中国石油化工股份有限公司 一种高硅y沸石的制备方法
CN1291789C (zh) 2002-02-07 2006-12-27 中国石油天然气股份有限公司 一种含改性八面沸石的烃类裂化催化剂
RU2372142C2 (ru) * 2004-03-31 2009-11-10 Чайна Петролеум Энд Кемикел Корпорейшн Цеолитсодержащий катализатор конверсии углеводородов, способ его приготовления и способ превращения углеводородных нефтепродуктов с использованием этого катализатора
CN1307098C (zh) 2004-03-31 2007-03-28 中国石油化工股份有限公司 一种稀土超稳y型沸石的制备方法
CN1322928C (zh) 2004-08-13 2007-06-27 中国石油化工股份有限公司 一种降低催化裂化汽油烯烃含量的裂化催化剂
CN100357399C (zh) * 2005-03-31 2007-12-26 中国石油化工股份有限公司 一种裂化催化剂的制备方法
CN100422081C (zh) 2005-10-19 2008-10-01 中国石油化工股份有限公司 一种改性y沸石及其制备方法
CN100497175C (zh) 2005-10-31 2009-06-10 中国石油化工股份有限公司 一种提高超稳y型沸石稀土含量的方法
CN101081369B (zh) 2006-05-31 2010-05-12 中国石油化工股份有限公司 一种含稀土高硅y型沸石及其制备方法
US7744850B2 (en) * 2006-08-03 2010-06-29 Uop Llc UZM-22 aluminosilicate zeolite, method of preparation and processes using UZM-22
CN101284243B (zh) * 2007-04-12 2011-04-20 中国石油化工股份有限公司 一种催化裂化催化剂
CN101386788B (zh) * 2007-09-12 2012-09-05 中国石油化工股份有限公司 一种重油催化裂化催化剂及其制备方法
CN101451074B (zh) 2007-11-28 2012-03-21 中国石油化工股份有限公司 一种重油催化裂化催化剂及其制备方法
CN101250428B (zh) 2008-04-07 2015-11-25 华东理工大学 一种原位晶化裂化催化剂及其制备方法
CN101767028B (zh) 2008-12-31 2012-02-22 中国石油化工股份有限公司 一种流化催化裂化催化剂的制备方法
CN101898144B (zh) 2009-05-27 2013-02-13 中国石油天然气股份有限公司 一种含骨架杂原子的y型分子筛的催化裂化催化剂及其制备方法
CN102125870B (zh) 2010-12-15 2013-01-16 卓润生 一种重质油催化裂化催化剂的制备方法
CN103073024B (zh) 2011-10-26 2014-12-31 中国石油化工股份有限公司 一种改性y型分子筛及其制备方法
CN103130240B (zh) 2011-12-01 2015-07-01 中国石油化工股份有限公司 一种改性的y型分子筛及其制备方法
CN103508467B (zh) * 2012-06-27 2015-09-23 中国石油化工股份有限公司 一种稀土y分子筛及其制备方法

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259212A (en) * 1978-06-07 1981-03-31 Exxon Research And Engineering Co. Octane improvement cracking catalyst
CN1053808A (zh) 1991-02-28 1991-08-14 中国石油化工总公司石油化工科学研究院 一种稀土y分子筛的制备方法
CN1026225C (zh) 1991-02-28 1994-10-19 中国石油化工总公司石油化工科学研究院 一种稀土y分子筛的制备方法
CN1098130A (zh) 1993-07-29 1995-02-01 中国石油化工总公司 一种裂化催化剂及其制备方法
CN1069553C (zh) 1997-11-25 2001-08-15 中国石油化工总公司 一种制备稀土y型分子筛的方法
CN1297018A (zh) 1999-11-17 2001-05-30 中国石油化工集团公司 一种多产轻质油的催化裂化催化剂及其制备
CN1157465C (zh) 1999-11-17 2004-07-14 中国石油化工集团公司 一种多产轻质油的催化裂化催化剂及其制备
CN1132898C (zh) 2000-01-27 2003-12-31 中国石油化工集团公司 一种石油催化裂化催化剂
CN1317547A (zh) 2000-04-07 2001-10-17 中国石油天然气股份有限公司兰州炼化分公司 一种降低汽油烯烃含量的fcc催化剂及其制备方法
CN1362472A (zh) 2001-01-04 2002-08-07 中国石油化工股份有限公司 一种催化裂化催化剂的制备方法
CN1382631A (zh) 2001-04-28 2002-12-04 中国石油化工股份有限公司 一种稀土y型沸石
CN1436727A (zh) 2002-02-07 2003-08-20 中国石油天然气股份有限公司 一种改性八面沸石及含该改性八面沸石的烃类裂化催化剂
CN1506161A (zh) 2002-12-13 2004-06-23 中国石油天然气股份有限公司 一种超稳稀土y分子筛活性组分及其制备方法
CN1565733A (zh) 2003-06-30 2005-01-19 中国石油化工股份有限公司 一种中孔硅铝材料及其制备方法
CN1611299A (zh) 2003-10-31 2005-05-04 中国石油化工股份有限公司 一种含磷和金属组分的mfi结构分子筛及其应用
CN1683244A (zh) 2004-04-14 2005-10-19 中国石油化工股份有限公司 一种分子筛的气相抽铝补硅方法
CN1286721C (zh) 2004-04-14 2006-11-29 中国石油化工股份有限公司 一种分子筛的气相抽铝补硅方法
CN1727445A (zh) 2004-07-29 2006-02-01 中国石油化工股份有限公司 烃类裂化催化剂及其制备方法
CN1727442A (zh) 2004-07-29 2006-02-01 中国石油化工股份有限公司 一种石油烃裂化催化剂及其制备方法
CN100344374C (zh) 2004-08-13 2007-10-24 中国石油化工股份有限公司 一种稀土y分子筛及其制备方法
CN1854258A (zh) 2005-04-29 2006-11-01 中国石油化工股份有限公司 一种裂化催化剂
US20090230023A1 (en) * 2006-06-28 2009-09-17 Idemitsu Kosan Co., Ltd. Fluid catalytic cracking catalyst having desulfurizing functions, process for production of the same, and process for production of low-sulfur catalytically cracked gasoline with the catalyst
CN1916166A (zh) 2006-09-08 2007-02-21 北京赛尔泰和生物医药科技有限公司 自体角膜上皮的制备方法
CN101147875A (zh) 2006-09-20 2008-03-26 中国石油化工股份有限公司 一种催化裂化催化剂
CN101285001A (zh) * 2007-04-12 2008-10-15 中国石油化工股份有限公司 一种催化裂化催化剂
CN101385983A (zh) * 2007-09-12 2009-03-18 中国石油化工股份有限公司 一种重油催化裂化催化剂
CN101537366A (zh) 2008-03-19 2009-09-23 中国石油天然气股份有限公司 一种可改善结焦性能的改性分子筛
CN101823726A (zh) 2009-03-04 2010-09-08 中国石油天然气股份有限公司 一种改性y分子筛
WO2011115785A1 (en) * 2010-03-18 2011-09-22 W. R. Grace & Co.-Conn. High light olefins fcc catalyst compositions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2896456A4
YANG CUIDING: "Analytical Methods in Petrochemical Industry (RIPP Experiment Techniques", 1990, SCIENCE PRESS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104307559A (zh) * 2014-09-03 2015-01-28 中国海洋石油总公司 一种脱除芳烃中烯烃的整体式催化剂及其制备方法
CN112717961A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 滤渣及其制备方法以及催化裂化催化剂及其制备方法
CN112717961B (zh) * 2019-10-28 2023-04-11 中国石油化工股份有限公司 滤渣及其制备方法以及催化裂化催化剂及其制备方法

Also Published As

Publication number Publication date
EP2896456A4 (en) 2016-06-29
TW201410323A (zh) 2014-03-16
SG11201501897RA (en) 2015-04-29
US20140080697A1 (en) 2014-03-20
EP2896456A1 (en) 2015-07-22
TWI568495B (zh) 2017-02-01
RU2628071C2 (ru) 2017-08-14
KR20150054926A (ko) 2015-05-20
US9656255B2 (en) 2017-05-23
EP2896456B1 (en) 2021-08-18
AU2013314978B2 (en) 2017-10-26
JP6301336B2 (ja) 2018-03-28
AU2013314978A1 (en) 2015-04-02
KR102109395B1 (ko) 2020-05-28
RU2015113601A (ru) 2016-11-10
JP2015533637A (ja) 2015-11-26

Similar Documents

Publication Publication Date Title
WO2014040365A1 (zh) 一种具有含稀土的y型分子筛的催化裂化催化剂及其制备方法
TWI554604B (zh) Catalytic cracking catalyst comprising modified Y zeolite and preparation method thereof
CN103157506B (zh) 一种高轻收重油催化裂化催化剂及其制备方法
CN103157507B (zh) 一种重油催化裂化催化剂及其制备方法
WO2014000422A1 (zh) 一种含稀土的y型分子筛及其制备方法
CN104549423A (zh) 一种金属改性y沸石、其制备方法和应用
WO2013060099A1 (zh) 一种改性y型分子筛及其制备方法和用途
WO2017020848A1 (zh) 分子筛的改性方法及含分子筛的催化裂化催化剂
TWI778020B (zh) 含鎂的改性y型分子篩、其製備方法及包含它的催化劑
CN103657711B (zh) 一种催化裂化催化剂及其制备方法
CN101284243A (zh) 一种催化裂化催化剂
JP2022527909A (ja) 接触分解触媒およびその調製方法
WO2021259317A1 (zh) 一种催化裂化催化剂及其制备方法
WO2018026313A1 (ru) Способ приготовления катализатора крекинга с щелочноземельными элементами
CN103657712B (zh) 一种催化裂化催化剂及其制备方法
CN108262056A (zh) 一种孔体积可调的催化裂化催化剂及其制备方法
CN103657701B (zh) 一种催化裂化催化剂及其制备方法
CN104923282B (zh) 一种高稀土含量原位晶化催化剂的超稳化处理方法
CN106890675B (zh) 含稀土催化裂化催化剂的制备方法
CN103657700B (zh) 一种催化裂化催化剂及其制备方法
CN109692702B (zh) 一种大孔高岭石及其制备和应用
TW202237268A (zh) 一種催化裂解催化劑、其製備方法和製備系統
CN114534774A (zh) 复合材料、催化裂化催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013314978

Country of ref document: AU

Date of ref document: 20130627

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157009020

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013837046

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015113601

Country of ref document: RU

Kind code of ref document: A