CN1026225C - 一种稀土y分子筛的制备方法 - Google Patents

一种稀土y分子筛的制备方法 Download PDF

Info

Publication number
CN1026225C
CN1026225C CN91101221A CN91101221A CN1026225C CN 1026225 C CN1026225 C CN 1026225C CN 91101221 A CN91101221 A CN 91101221A CN 91101221 A CN91101221 A CN 91101221A CN 1026225 C CN1026225 C CN 1026225C
Authority
CN
China
Prior art keywords
molecular sieve
rey
roasting
rare earth
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN91101221A
Other languages
English (en)
Other versions
CN1053808A (zh
Inventor
舒兴田
何鸣元
冯景琨
李茹华
万焱波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
Baling Petrochemical Co Ltd Changling Oil Refining and Chemical Engineering Plant
Original Assignee
Sinopec Research Institute of Petroleum Processing
Baling Petrochemical Co Ltd Changling Oil Refining and Chemical Engineering Plant
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, Baling Petrochemical Co Ltd Changling Oil Refining and Chemical Engineering Plant filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN91101221A priority Critical patent/CN1026225C/zh
Publication of CN1053808A publication Critical patent/CN1053808A/zh
Priority to EP92200061A priority patent/EP0550917B1/en
Priority to US07/820,385 priority patent/US5232675A/en
Application granted granted Critical
Publication of CN1026225C publication Critical patent/CN1026225C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles

Abstract

一种适用于烃类裂化催化剂的REY分子筛的制备方法是将NaY分子筛与RE3+在水溶液中进行一次离子交换后,于450~600℃、100%流动水蒸汽中焙烧1~3小时。与常规的经RE3+交换和空气焙烧的制备方法相比,该法不但简化了制备流程、降低了稀土用量和生产成本,而且该法制得的分子筛在进一步NH4 +交换或水洗时可被反交换的稀土量少、Na+浓度降低的幅度大,洗净后具有更高的水热结构稳定性和更高的裂化活性稳定性。

Description

本发明是关于一种REY分子筛的制备方法。确切地说,是关于一种用于烃类裂化催化剂的REY分子筛的制备方法。
NaY分子筛中的Na+被RE3+交换后制得的REY分子筛是催化裂化催化剂的高活性组元(K.M.Elliot and S.C.Eastwood,Oil & Gas J.,60,142,1962;S.C.Eastwood,R.D.Drem and F.D.Hart-zell,Oil & Gas J.,60,152,1962)。但是当NaY分子筛和稀土的盐在常温常压的水溶液中进行离子交换时,直径约0.79纳米的水合稀土离子很难通过Y型分子筛的直径0.24纳米的六元环渗透到方钠石笼里去(H.S.Sherry,Adv.Chem.Ser.,101,350,1970)。因此,在REY分子筛的制备过程中有必要通过焙烧来除去围绕在稀土离子周围的水合层,以使脱水后的稀土离子向方钠石笼以至六角棱柱体内迁移,而处在这些笼内的钠离子也借助于焙烧而向超笼移动。总之,焙烧的结果是加速了固态离子间的晶内交换,为分子筛在水溶液中与其它阳离子例如NH+ 4、RE3+的交换以及降低分子筛的Na+含量创造了条件(USP3,402,996)。
据文献报导,REY分子筛之所以具有良好的热和水热稳定性,是由于迁移到方钠石笼并形成含氧桥的多核稀土阳离子所致(P.S.lyer,J.Scherzer and Z.C.Mester,ACS
Figure 911012214_IMG1
Series,368,48,1988)。因此如何促进稀土离子的迁移、提高在可被锁住的阳离子位置(小笼内)上稀土离子的占有率,将直接关系到REY分子筛的性能并影响以其为活性组分的催化剂的活性稳定性。为 达此目的,工业上通常采用高温焙烧的方法。然而,过高的焙烧温度除了对工业焙烧炉的材质要求更苛刻外,已经处于被锁住位置的稀土离子有返回到大笼的趋势(Zeolites,6(4),235,1986)。因此,如何在限定的焙烧温度下使尽可能多的稀土离子迁移到小笼位置以进一步提高分子筛的稳定性就成为目前工业上有待解决的一大技术难题。
另一方面,人们长期以来始终认为为使含REY分子筛的催化剂能具有较高的热和水热稳定性,必须使分子筛中有足够高的稀土含量(USP3,140,249;USP3,140,250;USP3,140,251;USP3,140,252;USP3,140,253)。为达此目的,工业上现行采用的REY分子筛的制备流程是:RE3+交换-空气焙烧-RE3+交换-空气焙烧,即“二交二焙”。该流程不但繁锁、能耗大,而且由于稀土用量大而带来的生产成本高是不可避免的。
本发明的目的就在于解决目前REY分子筛制备过程中存在的上述问题,提供一种新的制备方法以简化流程、降低稀土的用量和生产成本,在限定的焙烧温度下由NaY分子筛制备出具有更高的活性稳定性和水热结构稳定性的REY分子筛。
本发明提供的制备方法是将NaY分子筛与RE3+进行一次离子交换后,在100%流动水蒸汽中焙烧一次。
本发明提供的制备方法由下述步骤组成:
(1)离子交换:将SiO2/Al2O3≥4.8的NaY分子筛与混合稀土溶液按照NaY(灼基)∶RECl3=1∶0.2~0.4的重量比在60~100℃下离子交换0.3~2.0小时,RECl3溶液的浓度为0.5~5.0重%,最好为1.0~3.5重%,RECl3溶液的PH应控制在使NaY分子筛与之 混合后溶液的PH为3.0~5.0为宜;
(2)过滤后的滤饼用自身重量20倍的脱离子水冲洗;
(3)焙烧:升温至200℃时开始通入水蒸汽,在100%流动水蒸汽气氛中继续升温至500~600℃,维持该流动水蒸汽气氛焙烧1~3小时,水蒸汽的重量空速为0.5~4.0时-1,最好为0.8~2.0时-1
经相同条件洗涤后,用本发明提供方法制备的REY分子筛比用常规空气焙烧制得的REY分子筛的稀土含量高、钠含量低。图1~3所示的X射线衍射分析则进一步说明本发明提供的方法较常规方法促使了更多的RE3+迁移到可被锁住的阳离子位置(小笼中)。
图1显示了Y型分子筛经不同离子交换后的衍射峰。曲线a是NaY分子筛所显示出的(311)晶面衍射峰;曲线b是NaY分子筛经NH+ 4交换后所得的(311)晶面衍射峰;曲线c是NaY分子筛经RE3+交换后(交换度60%以上,RE2O3含量10重%以上)所得的(222)晶面衍射峰,这时(311)晶面衍射峰消失;曲线d是RE3+交换后的Y型分子筛经NH+ 4进行反交换后(RE2O3含量0.5重%以下)所得的(311)晶面衍射峰,这时原来的(222)晶面衍射峰消失。由图1可看出:(222)晶面衍射峰是由处在易于被反交换位置(超笼中)的水合稀土离子所致。
图2是REY分子筛焙烧前后衍射峰的变化情况。曲线a是REY分子筛焙烧前所显示的(222)晶面衍射峰;曲线b是REY分子筛焙烧后所显示出的同时存在的(311)和(222)晶面衍射峰;曲线c是焙烧后的REY分子筛经NH+ 4进行两次反交换后所显示出的加强的(311)衍射峰和减弱的(222)衍射峰,由于NH+ 4交换后的分子筛中RE2O3 含量仍达12重%,因而(311)衍射峰的加强并非NH+ 4取代RE3+所致,加强的衍射峰中仍包含着迁移到小笼中去的RE3+的贡献,而(222)衍射峰的减弱则是由于处在可被交换位置(超笼中)的RE3+被交换掉所致。因此,曲线b的I(311)/I(222)值实际上可用来表示RE3+在小笼及在超笼中相对的量的多少,亦即表示RE3+由超笼向小笼的迁移度。
图3是同一REY分子筛样品按不同方式焙烧后所得的(311)和(222)衍射峰。曲线a是用本发明提供的方法即经流动水蒸汽焙烧后所得结果,其I(311)/I(222)值达到2.8;曲线b是用常规的方法即在流动空气中焙烧后所得的结果,其I(311)/I(222)值仅有0.96。由图3可知:本发明提供的方法促进了RE3+由超笼向小笼的迁移。
由于上述原因,与常规的在空气气氛下焙烧的REY分子筛相比,本发明提供方法制备的REY分子筛具有更高的水热结构稳定性和更高的裂化活性稳定性。从制备流程本身看,以“一交一焙”代替了传统的“二交二焙”,流程的简化和能耗的降低是明显的;且制备过程中节省了第二次交换所需的稀土,这对工业生产中降低原料消耗从而降低成本来说无疑具有重大意义。
下面的实例将对本发明提供的方法作进一步的说明。
实例1
按本发明提供的方法制备REY分子筛。
取SiO2/Al2O3=5.0、结晶度89%的NaY分子筛100克(灼基,长岭催化剂厂产品),分散在1000克2.5重%的RECl3(重量百分组成为:CeO256.8、La2O325.6、Nd2O312.7、Pr2O3<4)溶液中,在搅拌下升温至90℃,保持该温度离了交换1小时。过滤后的滤饼用其自身重20倍的脱离子水冲洗。取冲洗过的滤饼20克(灼基)装入内径30毫米的不锈钢管状反应器中,升温至200℃时开始通入重量空速为1.0时-1的水蒸汽,继续升温至550℃,在该温度下100%水蒸汽气氛中焙烧2.0小时。焙烧后的REY分子筛按REY(灼基)∶(NH42SO4∶H2O=1∶0.5∶20的重量比在60℃下洗涤两次,每次15分钟。然后再按REY(灼基)∶H2O=1∶20的重量比在60℃下洗涤15分钟。
所得REY分子筛洗涤前后的组成列于表1。洗后样品经100%水蒸汽老化4小时后的结构参数列于表2。
比较例1
按照实例1所述的方法制备REY分子筛,但焙烧时用重量空速为1.0时-1的空气代替水蒸汽。该样品洗涤前后的组成列于表1。洗后样品经100%水蒸汽老化4小时后的结构参数列于表2。
由表中数据可知:经过相同条件洗涤后,用本发明提供方法制备的REY分子筛比用常规空气焙烧制得的REY分子筛的稀土含量高、钠含量低;经相同的水热老化处理后,前者比后者具有明显高的水热结构稳定性。
表1
分子筛组成,重% 晶胞常数ao
分子筛    实例
Na2O RE2O3Al2O3SiO2纳米
NaY    12.6    0    19.2    68.2    2.468
交换后    实例1    3.5    14.5    /    /    2.470
REY    比较例1    3.5    14.5    /    /    2.470
焙烧后    实例1    3.4    14.4    /    /    2.468
REY    比较例1    3.4    14.4    /    /    2.471
洗涤后    实例1    0.75    13.6    /    /    2.470
REY    比较例1    0.90    12.0    /    /    2.472
*550℃、100%水蒸汽焙烧2小时后的测定值。
表2
760℃老化后    800℃老化后    820℃老化后
实例
ao结晶保留 ao结晶保留 ao结晶保留
纳米    %    纳米    %    纳米    %
实例1    2.445    67.6    2.443    55.2    2.437    22.5
比较例1    2.443    55.4    2.439    26.4    结构    0
崩塌
实例2~6
这些实例说明水热焙烧时水蒸汽重量空速的变化范围。
按实例1所述方法制备REY分子筛,但改变通入的水蒸汽的重量空速,所得各样品的组成、晶胞常数及老化后的结晶保留度均列于表3。从表3中数据可知:虽然当水蒸汽的重量空速小于0.8时-1所得的REY分子筛经水热老化后结晶保留度有明显下降,但比相同空速的空气焙烧并经水热老化处理所得分子筛的结晶保留度仍高得多。
表3
实    重量    *    洗涤后REY组成重%    洗涤、老化后**
空速 洗涤前ao
纳米 ao结晶保留
例 时-1Na2O RE2O3纳米 %
***    0.5    2.472    0.89    12.2    2.438    27.5
2    0.5    2.470    0.82    12.8    2.442    44.2
3    0.8    2.468    0.74    13.8    2.443    55.2
1    1.0    2.468    0.75    13.6    2.443    55.2
4    2.0    2.469    0.71    14.0    2.444    55.9
5    3.0    2.468    0.72    13.9    2.442    52.9
6    4.0    2.468    0.72    14.0    2.443    54.6
*在550℃、100%水蒸汽气氛下焙烧2小时后。
**在800℃、100%水蒸汽气氛下老化4小时后。
***在重量空速为0.5时-1的空气中550℃焙烧2小时,洗涤、老化条件同以下各例。
实例7~12
这些实例说明水热焙烧时焙烧温度的变化范围。
按实例1所述方法制备REY分子筛,但改变水热焙烧时的焙烧温度,所得各样品的组成、晶胞常数及老化后的结晶保留度均列于表4。从表中数据可知:当焙烧温度低于500℃或高于600℃时,所得的REY分子筛水热老化后的结构稳定性明显下降。
表4
实    焙烧    *    洗涤后REY组成重%    洗涤、老化后**
温度 洗涤前ao
纳米 ao结晶保留
例 ℃ Na2O RE2O3纳米 %
7    400    2.409    0.80    12.7    2.443    25.1
8    450    2.468    0.78    13.2    2.444    46.5
9    500    2.469    0.75    13.6    2.443    56.9
1    550    2.468    0.75    13.6    2.443    55.2
10    570    2.468    0.74    13.8    2.443    56.4
11    600    2.468    0.72    13.7    2.439    54.2
12    650    2.466    0.73    13.6    2.437    23.0
*在100%水蒸汽气氛下焙烧2小时后。
**在800℃、100%水蒸汽气氛下老化4小时后。
实例13~17
这些实例说明水热焙烧时焙烧时间的变化范围。
按实例1所述方法制备REY分子筛,但改变水热焙烧时的焙烧时间。所得各样品的组成、晶胞常数及老化后的结晶保留度均列于表5。从表中数据可知:当焙烧时间少于1小时时,所得的REY分子筛水热老化后的结构稳定性将明显下降。
表5
实    焙烧    *    洗涤后REY组成重%    洗涤、老化后**
时间 洗涤前ao
纳米 ao结晶保留
例 小时 Na2O RE2O3纳米 %
13    0.5    2.470    0.82    12.2    2.440    36.5
14    1.0    2.468    0.79    13.2    2.441    51.5
15    1.5    2.469    0.74    13.4    2.443    57.5
1    2.0    2.468    0.75    13.5    2.443    55.2
16    2.5    2.468    0.73    13.7    2.445    53.6
17    3.0    2.468    0.74    13.6    2.442    52.5
*在550℃、100%水蒸汽气氛下焙烧后。
**在800℃、100%水蒸汽气氛下老化4小时后。
实例18
本发明提供的方法在放大的规模下仍得到满意的效果。
按实例1中所述离子交换条件交换后的REY分子筛以每小时250公斤的进料速度送入内径为5500毫米、长为24000毫米、转速为1.5转/分的转筒式焙烧炉内。炉内料层温度为520℃,在整个焙烧过程中沿进料逆向通入温度为500℃、流量为200公斤/小时的过热蒸汽。从焙烧炉出口处得到的分子筛再按实例1中所述的条件进行两次铵洗一次水洗。洗后REY分子筛的组成和结构参数列于表6。老化条件为800℃、100%水蒸汽4小时。
表6
洗涤后REY
洗涤、老化后
洗涤前    组成,重%
实例 焙烧规模 ao
纳米 ao结晶保
Na2O RE2O3
纳米    留,%
18    进料250公斤    2.468    0.82    13.21    2.446    58.4
分子筛/时
比较例2    分子筛/时    2.470    0.94    11.83    2.442    36.5
1    实验室    2.468    0.75    13.6    2.443    55.2
比较例1    实验室    2.471    0.90    12.0    2.439    26.4
比较例2
按照实例18所述的方法制备REY分子筛,但焙烧时用干空气代替水蒸汽。所得REY分子筛的组成和结构参数列于表6。
由表6数据可知:由水蒸汽焙烧制成的REY分子筛稀土含量高、钠含量低、水热老化后的结构稳定性好,这与实例1和比较例1中所得结果一致。
比较例3
按照工业上常规的二次RE3+交换并二次空气中焙烧的方法制备出REY分子筛。
将比较例2制出的REY分子筛再按照分子筛∶RECl3=1∶0.15的重量比按比较例2所述条件重复离子交换一次并再次在空气中焙烧,即完成工业上常规的“二交二焙”全过程。
实例19
以本发明提供方法制备出的REY分子筛具有较常规方法制备的REY分子筛为高的催化裂化活性稳定性。
以硅铝共胶为载体,分别以本发明提供方法(实例18)和常规方法(比较例2、3)制备出的REY分子筛为活性组分,按照REY∶载体=18∶82的重量比(灼基)将该二组分混合并打浆均质、喷雾干燥,然后按照REY催化剂∶(NH42SO4∶H2O=1∶0.1∶20的重量比在60℃下洗涤两次,每次15分钟,再按REY催化剂∶H2O=1∶40的重量比在60℃下洗涤两次,每次15分钟,然后烘干。它们的催化剂组成及轻油微反活性评价结果列于表7。
以含25%铝胶(以Al2O3灼基计)粘结剂的多水高岭土为载体,分别以本发明提供方法(实例18)和常规方法(比较例2、3)制备出的REY分子筛为活性组分,按上述方法制成催化剂。它们的催化剂组成及轻油微反活性评价结果列于表8。
活性评价前催化剂在反应器中升温至800或820℃,在100%水蒸汽气氛中老化4或17小时。评价条件如下:大港直馏轻柴油(馏程200~300℃)为原料,20~40目催化剂装量5克,剂油比3.0,重量空速16时-1,反应温度460℃。
从表7和表8的数据中看出:以本发明提供方法制备出的REY分子筛具有较常规方法制备出的REY分子筛为高得多的催化裂化活性稳定性。
表7
实例    比较    比较
催化剂所用分子筛    18    例2    例3
催化剂中Na2O,重% 0.10 0.13 0.10
催化剂中RE2O3,重% 1.54 1.53 2.21
微活    800℃水热老化4小时    79.3    75.0    76.6
重%    800℃水热老化17小时    66.0    50.0    60.5
表8
实例    比较    比较
催化剂所用分子筛    18    例2    例3
催化剂中Na2O,重% 0.13 0.15 0.08
催化剂中RE2O3,重% 2.11 2.13 2.81
微活    800℃水热老化4小时    81.9    75.3    76.3
重%    820℃水热老化4小时    75.1    70.5    73.5

Claims (3)

1、一种REY分子筛的制备方法,其特征在于它由下述步骤组成:
(1)离子交换:将SiO2/Al2O3≥4.8的NaY分子筛与浓度为0.5~5.0重%的混合氯化稀土水溶液按照NaY(灼基):RECl3=1∶0.2~0.4的重量比在60~100℃下离子交换0.3~2.0小时,RECl3溶液的PH应控制在使NaY与之混合后浆液的PH为3.0~5.0;
(2)过滤后的滤饼用自身重量20倍的脱离子水冲洗;
(3)焙烧:升温至200℃时开始通入重量空速0.5~4.0时-1、100%的水蒸汽,维持该流动水蒸汽气氛500~600℃焙烧1~3小时。
2、按照权利要求1所述的方法,其特征在于所说(1)中RECl3溶液的浓度为1.0~3.5重%。
3、按照权利要求1所述的方法,其特征在于所说(3)中水蒸汽的重量空速为0.8~2.0时-1
CN91101221A 1991-02-28 1991-02-28 一种稀土y分子筛的制备方法 Expired - Fee Related CN1026225C (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN91101221A CN1026225C (zh) 1991-02-28 1991-02-28 一种稀土y分子筛的制备方法
EP92200061A EP0550917B1 (en) 1991-02-28 1992-01-10 Rare earth-containing high-silica zeolite having pentasil structure and process for the same
US07/820,385 US5232675A (en) 1991-02-28 1992-01-14 Rare earth-containing high-silica zeolite having penta-sil type structure and process for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN91101221A CN1026225C (zh) 1991-02-28 1991-02-28 一种稀土y分子筛的制备方法
EP92200061A EP0550917B1 (en) 1991-02-28 1992-01-10 Rare earth-containing high-silica zeolite having pentasil structure and process for the same

Publications (2)

Publication Number Publication Date
CN1053808A CN1053808A (zh) 1991-08-14
CN1026225C true CN1026225C (zh) 1994-10-19

Family

ID=40303601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN91101221A Expired - Fee Related CN1026225C (zh) 1991-02-28 1991-02-28 一种稀土y分子筛的制备方法

Country Status (3)

Country Link
US (1) US5232675A (zh)
EP (1) EP0550917B1 (zh)
CN (1) CN1026225C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014000422A1 (zh) 2012-06-27 2014-01-03 中国石油化工股份有限公司 一种含稀土的y型分子筛及其制备方法
WO2014040365A1 (zh) 2012-09-14 2014-03-20 中国石油化工股份有限公司 一种具有含稀土的y型分子筛的催化裂化催化剂及其制备方法
WO2021004503A1 (zh) 2019-07-09 2021-01-14 中国石油化工股份有限公司 含稀土的y型分子筛及其制备方法、含该分子筛的催化裂化催化剂
WO2021004502A1 (zh) 2019-07-09 2021-01-14 中国石油化工股份有限公司 含稀土的y型分子筛及其制备方法、含该分子筛的催化裂化催化剂
WO2022148475A1 (zh) 2021-01-11 2022-07-14 中国石油化工股份有限公司 一种催化裂化催化剂、其制备方法和制备系统
RU2808676C2 (ru) * 2019-07-09 2023-12-01 Чайна Петролеум Энд Кемикал Корпорейшн Содержащий редкоземельные элементы цеолит y, способ его изготовления и содержащий цеолит катализатор каталитического крекинга

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1030287C (zh) * 1992-10-22 1995-11-22 中国石油化工总公司 制取高质量汽油、丙烯、丁烯的烃转化催化剂
CN1034223C (zh) * 1993-03-29 1997-03-12 中国石油化工总公司 制取低碳烯烃的裂解催化剂
CN1040623C (zh) * 1993-04-10 1998-11-11 中国科学院长春应用化学研究所 高交换度稀土zsm-5沸石的水热制备方法
CN1034586C (zh) * 1993-11-05 1997-04-16 中国石油化工总公司 多产低碳烯烃的催化转化方法
CN1041399C (zh) * 1994-12-30 1998-12-30 中国石油化工总公司 一种含稀土的结晶硅酸铝沸石
CN1049406C (zh) * 1995-10-06 2000-02-16 中国石油化工总公司 具有mfi结构含磷和稀土的分子筛
CN1048655C (zh) * 1996-06-24 2000-01-26 中国石油化工总公司 一种烷基化催化剂及其应用
CN1078495C (zh) * 1996-08-23 2002-01-30 中国科学院大连化学物理研究所 甲烷无氧脱氢制乙烯和芳烃的钼/含磷五元环沸石催化剂及其应用
CN1059133C (zh) * 1997-03-24 2000-12-06 中国石油化工总公司 具有mfi结构的含磷分子筛
EP0909804B1 (en) 1997-10-15 2010-09-08 China Petro-Chemical Corporation A process for production of ethylene and propylene by catalytic pyrolysis of heavy hydrocarbons
CN1069553C (zh) * 1997-11-25 2001-08-15 中国石油化工总公司 一种制备稀土y型分子筛的方法
JPH11189775A (ja) * 1997-12-26 1999-07-13 Japan Energy Corp 低流動点油の製造方法
PE20000278A1 (es) * 1998-02-03 2000-03-30 Exxon Research Engineering Co Desparafinacion catalitica con fierrierita con intercambio ionico de metal trivalente de tierras raras
US6429348B1 (en) 1998-05-05 2002-08-06 Exxonmobil Chemical Patents, Inc. Method for selectively producing propylene by catalytically cracking an olefinic hydrocarbon feedstock
US6271433B1 (en) 1999-02-22 2001-08-07 Stone & Webster Engineering Corp. Cat cracker gas plant process for increased olefins recovery
AU2003213502B2 (en) * 1999-03-05 2004-06-03 Exxonmobil Research And Engineering Company Catalytic dewaxing with trivalent rare earth metal ion exchanged ferrierite
AU5965599A (en) * 1999-05-11 2000-11-21 Ke Lin Adsorbing desulfurizer for removal of organic sulfides and methods of making them
US6843977B2 (en) * 2000-05-25 2005-01-18 Board Of Trustees Of Michigan State University Ultrastable porous aluminosilicate structures and compositions derived therefrom
US6761875B2 (en) * 2001-09-05 2004-07-13 Engelhard Corporation Rare earth silicate molecular sieves
US20030127358A1 (en) * 2002-01-10 2003-07-10 Letzsch Warren S. Deep catalytic cracking process
US6936239B2 (en) 2002-08-28 2005-08-30 Akzo Novel Nv Process for the preparation of doped pentasil-type zeolites using doped faujasite seeds
AU2003250229A1 (en) * 2002-08-28 2004-03-19 Albemarle Netherlands B.V. Process for the preparation of doped pentasil-type zeolites using doped faujasite seeds
US6964934B2 (en) 2002-08-28 2005-11-15 Albemarle Netherlands B.V. Process for the preparation of doped pentasil-type zeolite using doped seeds
EP1532076B1 (en) * 2002-08-28 2019-05-15 Albemarle Netherlands B.V. Process for the preparation of doped pentasil-type zeolites using doped seeds
US6908603B2 (en) * 2003-06-02 2005-06-21 Engelhard Corporation In-situ ZSM-5 synthesis
US7273543B2 (en) * 2003-08-04 2007-09-25 Stone & Webster Process Technology, Inc. Process and apparatus for controlling catalyst temperature in a catalyst stripper
CN100496701C (zh) * 2004-03-04 2009-06-10 白相才 高比表面稀土硅铝复合氧化物及制备方法和吸附剂
EP3225678B1 (en) 2004-03-08 2022-04-27 China Petroleum & Chemical Corporation Am fcc process with two reaction zones
CN100344374C (zh) * 2004-08-13 2007-10-24 中国石油化工股份有限公司 一种稀土y分子筛及其制备方法
CN1322928C (zh) * 2004-08-13 2007-06-27 中国石油化工股份有限公司 一种降低催化裂化汽油烯烃含量的裂化催化剂
KR100632563B1 (ko) * 2004-09-10 2006-10-09 에스케이 주식회사 접촉 분해용 고체산 촉매 및 이를 이용하여 전범위납사로부터 경질 올레핀을 선택적으로 제조하는 공정
US7992375B2 (en) * 2005-12-27 2011-08-09 Chevron U.S.A. Inc. Treatment of engine exhaust using molecular sieve SSZ-73
US7622032B2 (en) * 2005-12-28 2009-11-24 Chevron U.S.A. Inc. Hydrocarbon conversion using molecular sieve SSZ-74
CN101088613B (zh) * 2006-06-14 2010-08-25 中国石油化工股份有限公司 一种rey分子筛的制备方法
CN101104576B (zh) * 2006-07-13 2010-08-25 中国石油化工股份有限公司 一种有机含氧化合物和烃类的联合催化转化方法
CN101104571B (zh) * 2006-07-13 2010-05-12 中国石油化工股份有限公司 一种联合烃类催化转化从乙醇生产乙烯的方法
CN101134913B (zh) 2006-08-31 2011-05-18 中国石油化工股份有限公司 一种烃类催化转化方法
CN101134172B (zh) * 2006-08-31 2010-10-27 中国石油化工股份有限公司 一种烃类转化催化剂
CN101239878B (zh) * 2007-02-07 2010-05-19 中国石油化工股份有限公司 碳四及其以上烯烃增产乙烯、丙烯的方法
CN101932672B (zh) * 2007-08-09 2015-01-21 中国石油化工股份有限公司 一种催化转化方法
EP2082801A1 (en) * 2008-01-25 2009-07-29 Total Petrochemicals Research Feluy Process for obtaining modified molecular sieves
RU2548362C2 (ru) 2009-06-25 2015-04-20 Чайна Петролеум & Кемикал Корпорейшн Катализатор каталитического крекинга и способ повышения селективности катализатора(варианты)
US9181146B2 (en) 2010-12-10 2015-11-10 Exxonmobil Chemical Patents Inc. Process for the production of xylenes and light olefins
RU2473385C1 (ru) * 2011-08-25 2013-01-27 Окрытое акционерное общество "Газпромнефть-Омский НПЗ" Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления
US8937205B2 (en) 2012-05-07 2015-01-20 Exxonmobil Chemical Patents Inc. Process for the production of xylenes
US9181147B2 (en) 2012-05-07 2015-11-10 Exxonmobil Chemical Patents Inc. Process for the production of xylenes and light olefins
US8921633B2 (en) 2012-05-07 2014-12-30 Exxonmobil Chemical Patents Inc. Process for the production of xylenes and light olefins
JP6232058B2 (ja) 2012-06-27 2017-11-15 中国石油化工股▲ふん▼有限公司 修飾されたy型ゼオライトを含有する接触分解の触媒およびその調製方法
US11111152B2 (en) 2015-08-05 2021-09-07 Petrochina Company Limited Preparation method for modified molecular sieve and modified molecular sieve-containing catalytic cracking catalyst
WO2017020848A1 (zh) 2015-08-05 2017-02-09 中国石油天然气股份有限公司 分子筛的改性方法及含分子筛的催化裂化催化剂
CN106927482B (zh) * 2015-12-29 2019-09-03 中国石油天然气股份有限公司 一种超稳y型分子筛的制备方法
US10767117B2 (en) 2017-04-25 2020-09-08 Saudi Arabian Oil Company Enhanced light olefin yield via steam catalytic downer pyrolysis of hydrocarbon feedstock
US10870802B2 (en) 2017-05-31 2020-12-22 Saudi Arabian Oil Company High-severity fluidized catalytic cracking systems and processes having partial catalyst recycle
US10889768B2 (en) 2018-01-25 2021-01-12 Saudi Arabian Oil Company High severity fluidized catalytic cracking systems and processes for producing olefins from petroleum feeds
CN109833898B (zh) * 2019-01-23 2021-05-14 浙江恒澜科技有限公司 含微量稀土离子的球形mfi拓扑学结构全硅分子筛催化剂的制备方法及己内酰胺制备方法
CN109775714B (zh) * 2019-01-23 2021-05-14 浙江恒澜科技有限公司 一种含微量稀土离子的mfi拓扑学结构硅分子筛及其制备方法
JP2022522835A (ja) 2019-03-04 2022-04-20 中国石油化工股▲ふん▼有限公司 低質油から軽質オレフィンを製造する方法およびシステム
CN111718754B (zh) 2019-03-22 2021-11-16 中国石油化工股份有限公司 一种生产汽油和丙烯的方法和系统
CN111718753B (zh) 2019-03-22 2021-10-08 中国石油化工股份有限公司 一种多产丙烯的催化转化方法和系统
CN112209401B (zh) * 2019-07-09 2022-07-15 中国石油化工股份有限公司 一种改性方法和一种稀土y型分子筛
CN113318776B (zh) * 2020-02-28 2023-09-05 中国石油化工股份有限公司 裂化催化剂
CN112206810B (zh) * 2019-07-09 2022-01-04 中国石油化工股份有限公司 一种制备方法和一种稀土y型分子筛
CN112209400B (zh) * 2019-07-09 2022-08-05 中国石油化工股份有限公司 一种稀土y型分子筛及其制备方法
CN113318777A (zh) * 2020-02-28 2021-08-31 中国石油化工股份有限公司 一种含稀土y型分子筛的催化裂化催化剂
CN112206809A (zh) * 2019-07-09 2021-01-12 中国石油化工股份有限公司 一种含稀土的y型分子筛及其制备方法
CN110404580A (zh) * 2019-08-08 2019-11-05 无锡威孚环保催化剂有限公司 稀土金属改性的分子筛催化剂及其制备方法
US11505754B2 (en) 2020-09-01 2022-11-22 Saudi Arabian Oil Company Processes for producing petrochemical products from atmospheric residues
US11434432B2 (en) 2020-09-01 2022-09-06 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a greater boiling point fraction with steam
US11332680B2 (en) 2020-09-01 2022-05-17 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of lesser and greater boiling point fractions with steam
US11230673B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a lesser boiling point fraction with steam
US11230672B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking
US11242493B1 (en) 2020-09-01 2022-02-08 Saudi Arabian Oil Company Methods for processing crude oils to form light olefins
US11352575B2 (en) 2020-09-01 2022-06-07 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize hydrotreating of cycle oil
CN113694880B (zh) * 2021-09-10 2023-10-10 润和催化剂股份有限公司 一种含稀土Li-LSX沸石及其制备方法和应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322690A (en) * 1963-12-10 1967-05-30 Exxon Research Engineering Co Synthetic crystalline zeolite compositions and preparation thereof
US3702886A (en) * 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3607043A (en) * 1969-11-19 1971-09-21 Grace W R & Co Cation and thermal stabilization of a faujasite-type zeolite
US3930987A (en) * 1973-04-12 1976-01-06 Mobil Oil Corporation Catalyst and method of preparing same
US4175114A (en) * 1973-12-13 1979-11-20 Mobil Oil Corporation Method for producing zeolites
GB1567948A (en) * 1976-07-22 1980-05-21 Ici Ltd Zeolite synthesis
GB2033358B (en) * 1978-11-06 1983-03-02 Mobil Oil Corp Crystalline zeolite composition
US4283309A (en) * 1979-01-08 1981-08-11 Exxon Research & Engineering Co. Hydrocarbon conversion catalyst
US4309313A (en) * 1980-05-23 1982-01-05 W. R. Grace & Co. Synthesis of cesium-containing zeolite, CSZ-1
US4374294A (en) * 1980-12-02 1983-02-15 Mobil Oil Corporation Zeolite catalysts modified with group IIIA metal
US4440868A (en) * 1981-12-07 1984-04-03 Ashland Oil, Inc. Carbo-metallic oil conversion catalysts
US4508840A (en) * 1982-07-30 1985-04-02 Mobil Oil Corporation Method of preparing a high-density cracking catalyst with reduced sulfur emissions from coke
DE3370469D1 (en) * 1982-11-16 1987-04-30 Hoechst Ag Aluminium silicates with a zeolite structure and process for their preparation
NZ211326A (en) * 1984-03-21 1988-06-30 Mobil Oil Corp Preparing discrete particles containing crystalline zeolite
US4650655A (en) * 1984-07-26 1987-03-17 Mobil Oil Corporation Crystallization of ZSM-5 from reaction mixtures containing zeolite beta
US4873211A (en) * 1987-07-02 1989-10-10 Phillips Petroleum Company Cracking catalyst and process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014000422A1 (zh) 2012-06-27 2014-01-03 中国石油化工股份有限公司 一种含稀土的y型分子筛及其制备方法
US10130944B2 (en) 2012-06-27 2018-11-20 China Petroleum & Chemical Corporation Rare earth-containing Y zeolite and a preparation process thereof
WO2014040365A1 (zh) 2012-09-14 2014-03-20 中国石油化工股份有限公司 一种具有含稀土的y型分子筛的催化裂化催化剂及其制备方法
WO2021004503A1 (zh) 2019-07-09 2021-01-14 中国石油化工股份有限公司 含稀土的y型分子筛及其制备方法、含该分子筛的催化裂化催化剂
WO2021004502A1 (zh) 2019-07-09 2021-01-14 中国石油化工股份有限公司 含稀土的y型分子筛及其制备方法、含该分子筛的催化裂化催化剂
RU2808676C2 (ru) * 2019-07-09 2023-12-01 Чайна Петролеум Энд Кемикал Корпорейшн Содержащий редкоземельные элементы цеолит y, способ его изготовления и содержащий цеолит катализатор каталитического крекинга
WO2022148475A1 (zh) 2021-01-11 2022-07-14 中国石油化工股份有限公司 一种催化裂化催化剂、其制备方法和制备系统

Also Published As

Publication number Publication date
US5232675A (en) 1993-08-03
EP0550917B1 (en) 1997-12-17
EP0550917A1 (en) 1993-07-14
CN1053808A (zh) 1991-08-14

Similar Documents

Publication Publication Date Title
CN1026225C (zh) 一种稀土y分子筛的制备方法
CN1093951A (zh) 用于催化裂化中钝化钒的组合物及其制备方法
CN1727443A (zh) 一种裂化催化剂及其应用
CN1098130A (zh) 一种裂化催化剂及其制备方法
CN1020282C (zh) 重质馏份油加氢处理催化剂
CN1020269C (zh) 含稀土五元环结构高硅沸石的合成
CN1072031C (zh) 一种五元环分子筛组合物的制备方法
CN1552801A (zh) 一种催化裂化催化剂及其制备方法
CN1029202C (zh) 含无定形氧化铝的超稳y型沸石的制备方法
CN1891627A (zh) 合成丝光沸石的方法
CN1175086C (zh) 一种含层状粘土的裂化催化剂及其制备方法
CN1157465C (zh) 一种多产轻质油的催化裂化催化剂及其制备
CN1296276C (zh) 一种zsm-5/丝光沸石混晶材料的合成方法
CN1111086C (zh) 一种含稀土的分子筛及其制备方法
CN1142252C (zh) 一种抗钒的烃类裂化催化剂及制备
CN1317359C (zh) 一种含稀土超稳y型沸石的石油烃裂化催化剂
CN1007879B (zh) 层柱粘土分子筛裂化催化剂
CN1565967A (zh) 制备丝光沸石/zsm-5混晶材料的方法
CN1020281C (zh) 一种裂化催化剂
CN1714045A (zh) 多孔结晶材料(itq-21)及没有氟化物离子时生产该材料的方法
CN1024503C (zh) 稀土y分子筛裂化催化剂及其制备
CN1242918C (zh) 一种复合结构分子筛及其制备方法
CN1733363A (zh) 一种降低催化裂化汽油烯烃含量的裂化催化剂
CN1112246C (zh) 一种含磷和稀土的烃类裂化催化剂及其制备方法
CN1184006C (zh) 一种烃类催化裂化催化剂及其制备方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C53 Correction of patent for invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: VEB BITFERERD CHEMICAL UNITED CORP. TO: BITTERFELD WOFEN CHEMICAL CO., LTD.

C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee