WO2021004503A1 - 含稀土的y型分子筛及其制备方法、含该分子筛的催化裂化催化剂 - Google Patents

含稀土的y型分子筛及其制备方法、含该分子筛的催化裂化催化剂 Download PDF

Info

Publication number
WO2021004503A1
WO2021004503A1 PCT/CN2020/101051 CN2020101051W WO2021004503A1 WO 2021004503 A1 WO2021004503 A1 WO 2021004503A1 CN 2020101051 W CN2020101051 W CN 2020101051W WO 2021004503 A1 WO2021004503 A1 WO 2021004503A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
rare earth
pore size
size distribution
ammonium
Prior art date
Application number
PCT/CN2020/101051
Other languages
English (en)
French (fr)
Inventor
罗一斌
王成强
郑金玉
舒兴田
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910612759.8A external-priority patent/CN112209400B/zh
Priority claimed from CN201910612785.0A external-priority patent/CN112206810B/zh
Priority claimed from CN201910612796.9A external-priority patent/CN112209401B/zh
Priority claimed from CN201910612784.6A external-priority patent/CN112206809A/zh
Priority claimed from CN202010126355.0A external-priority patent/CN113318777A/zh
Priority claimed from CN202010126369.2A external-priority patent/CN113318778B/zh
Priority claimed from CN202010126354.6A external-priority patent/CN113318776B/zh
Priority to US17/626,087 priority Critical patent/US20220259055A1/en
Priority to KR1020227004473A priority patent/KR20220025200A/ko
Priority to JP2022501268A priority patent/JP2022540629A/ja
Priority to EP20837442.1A priority patent/EP3998118A4/en
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Publication of WO2021004503A1 publication Critical patent/WO2021004503A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/22After treatment, characterised by the effect to be obtained to destroy the molecular sieve structure or part thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used

Definitions

  • the invention relates to a Y-type molecular sieve containing rare earths and a preparation method thereof, and a catalytic cracking catalyst containing the molecular sieve.
  • Catalytic cracking is the most important production technology in today's refineries.
  • the catalytic cracking unit is used to convert heavy oil and residual oil into gasoline, diesel and light gas components.
  • the catalytic cracking unit must include two parts: reaction and high-temperature catalyst regeneration. Therefore, the catalyst needs to consider factors such as catalytic activity and selectivity. Compared with other types of molecular sieves, Y-type molecular sieves are more used in cracking reactions. As the active component of the catalytic cracking catalyst, its main role in the catalytic cracking catalyst is responsible for the production of molecular products in the gasoline range.
  • the rare earth exchanged rare earth Y molecular sieve is a highly active component of the catalytic cracking catalyst.
  • the rare earth ions in the rare earth Y molecular sieve migrate from the super cage to the sodalite cage and form a polynuclear cation structure containing oxygen bridges, which increases the stability of the acid center of the molecular sieve under high temperature and hydrothermal environment, and improves the cracking activity of the molecular sieve catalyst And activity stability, thereby improving the heavy oil conversion activity and selectivity of the catalyst.
  • the hydration layer surrounding the rare earth ions must be removed by roasting, so that the rare earth ions can enter the sodalite cage and even the hexagonal prism.
  • the sodium ions in these cages also rely on the roasting process. Migrate out to the super cage.
  • the result of roasting is to accelerate the intracrystalline exchange between solid ions, creating conditions for the exchange of molecular sieve with other cations such as NH 4 + , RE 3+ in aqueous solution and reducing the Na + content of molecular sieve (USP3402996).
  • CN1026225C discloses a method for preparing rare earth Y molecular sieve. The method is to perform ion exchange between NaY molecular sieve and RE 3+ in an aqueous solution, and then calcinate in 100% flowing water vapor at 450 to 600°C for 1 to 3 hours. .
  • CN103508467A discloses a rare earth Y molecular sieve and a preparation method thereof. The method is to contact NaY molecular sieve with a rare earth salt solution or a mixed solution of ammonium salt and a rare earth salt solution, and perform roasting treatment after filtering, washing and drying.
  • rare earth sodium Y molecular sieve then beat it and contact with ammonium salt solution without filtering, then mix with rare earth salt solution and adjust the pH of the slurry with alkaline liquid for rare earth deposition, or beat rare earth sodium Y molecular sieve with ammonium salt and
  • the mixed solution of the rare earth salt solution is subjected to contact treatment, and then the pH value of the slurry is adjusted with an alkaline liquid for rare earth deposition, and then filtered and dried and subjected to a second roasting treatment to obtain a rare earth Y molecular sieve.
  • This method requires a process of two-pass and two-baking combined with the deposition of rare earths.
  • the hydrothermal calcination in a pressurized manner can obtain a rare earth-containing Y-type molecular sieve with unique mesoporous characteristics, and the rare-earth-containing Y-type molecular sieve has higher Activity stability and hydrothermal stability. Based on this, the present invention is formed.
  • the invention provides a rare earth-containing Y-type molecular sieve, which is characterized in that there are at least two mesopore pore size distributions at 2-3 nanometers and 3-4 nanometers.
  • the rare earth-containing Y-type molecular sieve has at least three mesoporous pore size distributions, and there are three mesoporous distributions at 2-3 nanometers, 3-4 nanometers, and 10-30 nanometers.
  • the present invention also provides a catalytic cracking catalyst, which comprises the above-mentioned Y-type molecular sieve containing rare earth, and an inorganic oxide binder and/or natural minerals.
  • the present invention also provides a method for preparing rare earth-containing Y-type molecular sieve, which includes the step of hydrothermally roasting the rare-earth-containing NaY molecular sieve in an atmosphere with external pressure and external addition of water.
  • the apparent pressure is 0.01 to 1.0 MPa and contains 1 to 100% water vapor
  • the hydrothermal roasting treatment is carried out at a temperature of 300 to 800°C, preferably 400 to 600°C.
  • the rare earth-containing NaY molecular sieve is obtained by contacting the NaY molecular sieve with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt.
  • the present invention also provides a method for preparing rare earth-containing Y-type molecular sieve, which includes: (1) Partial ammonium exchange between NaY molecular sieve and ammonium salt to remove 10-80% sodium ions, filtered, washed, and dried to obtain NH 4 NaY molecular sieve; (2) The NH 4 NaY molecular sieve obtained in step (1) is contacted with a rare earth salt solution or a mixed solution of a rare earth salt solution and ammonium salt, filtered, washed with water, and dried to obtain a rare earth-containing NaY molecular sieve; (3) The rare earth-containing NaY molecular sieve obtained in step (2) is subjected to hydrothermal roasting treatment under external pressure and an aqueous solution containing acidic or alkaline substances is added, or the step (2) containing NaY After the rare earth NaY molecular sieve is contacted with the acidic substance or the alkaline substance to obtain the rare earth-containing NaY molecular sieve containing the acidic substance or the
  • the rare earth-containing Y-type molecular sieve provided by the present invention has higher hydrothermal structural stability and higher cracking activity stability, reduced coke selectivity, and has broad application prospects in the field of heavy oil catalysis.
  • the method for preparing the rare earth-containing Y-type molecular sieve can promote the migration of rare-earth ions from super cages to sodalite cages and form special pore size distribution characteristics, the process is simple and easy to operate, and the Y-type molecular sieve is significantly enriched in mesopores It can form a certain degree of molecular sieve mesopores, improve accessibility, and increase the utilization rate of active centers. This method is a low-cost and low-emission new way to expand molecular sieve crystals.
  • Figure 1 shows the pore size distribution curve calculated by PAY-1 according to the BJH model.
  • Figure 2 shows the X-ray diffraction (XRD) spectrum of PAY-1.
  • Figure 3 shows the pore size distribution curve calculated by DAY-1 according to the BJH model.
  • Figure 4 shows the pore size distribution curve calculated by PDY-1 according to the BJH model.
  • Figure 5 shows the pore size distribution curve calculated by DDY-1 according to the BJH model.
  • Figure 6 shows the pore size distribution curves of PBY-1 (curve a), DBY-1.1 (curve b) and PCY-1 (curve A) calculated based on the BJH model.
  • Figure 7 shows the adsorption and desorption curves of PBY-1 (curve c), DBY-1.1 (curve d) and PCY-1 (curve C).
  • the invention provides a rare earth-containing Y-type molecular sieve, which is characterized in that there are at least two mesopore pore size distributions at 2-3 nanometers and 3-4 nanometers.
  • the rare earth-containing Y-type molecular sieve has at least three mesoporous pore size distributions, and there are three mesoporous distributions at 2-3 nanometers, 3-4 nanometers, and 10-30 nanometers.
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the 3-4 nanometer pore size distribution is ⁇ 0.05, such as ⁇ 0.1, or 0.1 to 0.4.
  • the rare earth-containing Y-type molecular sieve of the present invention is characterized in that there are at least 2-3 nanometers, 3-4 nanometers, and 10-30 nanometers of mesoporous pore size distribution, in the BJH pore size distribution spectrum ,
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the total pores is greater than 0.1, and the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is greater than 0.2;
  • the ratio of the peak area to the peak area of the total pores is greater than 0.12, and the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is greater than 0.22; or, the peak area of the 2-3 nanometer pore size distribution and the peak area of the total pores
  • the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is, for example, greater than 0.25; or, the ratio of the peak area of the 2-3
  • the rare earth-containing Y-type molecular sieve of the present invention is characterized in that there are at least 2-3 nanometers, 3-4 nanometers, and 10-30 nanometers of mesoporous pore size distribution, in the BJH pore size distribution spectrum ,
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the total pores is greater than 0.1, and the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is greater than 0.2;
  • the ratio of the peak area to the peak area of the total pores is greater than 0.12, and the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is greater than 0.22; or, the peak area of the 2-3 nanometer pore size distribution and the peak area of the total pores
  • the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is, for example, greater than 0.25; or, the ratio of the peak area of the 2-3
  • the rare earth-containing Y molecular sieve of the present invention has a rare earth content of 1 to 20% by weight, for example, 2 to 18% by weight, or 8 to 15% by weight in terms of rare earth oxide, and a unit cell constant of 2.440 to 2.470nm, crystallinity is 30 to 60%.
  • the rare earth-containing Y molecular sieve of the present invention has a mesopore volume greater than 0.03cc/g, for example greater than 0.031cc/g, or 0.031cc/g to 0.037cc/g or 0.031cc/g g to 0.057cc/g.
  • the mesoporous refers to pores with a pore diameter of 2-50 nm.
  • the present invention also provides a catalytic cracking catalyst, which comprises the above-mentioned Y-type molecular sieve containing rare earth, and an inorganic oxide binder and/or natural minerals.
  • the catalytic cracking catalyst of the present invention contains 20-60% by weight of rare earth-containing Y-type molecular sieve, 10-30% by weight of inorganic oxide binder and 30% by weight on a dry basis. -50% by weight of natural minerals.
  • the above-mentioned rare earth-containing Y-type molecular sieve is used as the main cracking active component.
  • the natural minerals are selected from kaolin, halloysite, montmorillonite, diatomaceous earth, attapulgite, sepiolite, halloysite, hydrotalcite, bentonite, and rector At least one of soil;
  • the inorganic oxide binder or its precursor includes at least one selected from the group consisting of silica sol, alumina sol, peptized pseudo-boehmite, silica alumina sol and phosphorus-containing alumina sol .
  • the preparation method of the catalytic cracking catalyst of the present invention includes: mixing the raw materials used for preparing the catalytic cracking catalyst including rare earth-containing Y-type molecular sieve, natural minerals and inorganic oxide binders with water and then performing beating and spray drying, Wherein, on a dry basis, the catalyst contains 20-60% by weight of rare earth-containing Y-type molecular sieve, 10-30% by weight of inorganic oxide binder and 30-50% by weight of natural minerals.
  • the method for preparing rare earth-containing Y-type molecular sieve includes the step of hydrothermally roasting the rare earth-containing NaY molecular sieve under an atmosphere of external pressure and external water addition. Atmosphere environment with an apparent pressure of 0.01 to 1.0 MPa and containing 1 to 100% water vapor, and the hydrothermal roasting treatment is carried out at a temperature of 300 to 800°C, preferably 400 to 600°C.
  • the rare earth-containing NaY molecular sieve is obtained from step A of contacting NaY molecular sieve with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt.
  • the rare earth salt solution is selected from chloride aqueous solutions containing one or more of lanthanum, cerium, praseodymium, and neodymium ions; and the ammonium salt is selected from ammonium chloride, ammonium nitrate, and carbonic acid Any one or a mixture of ammonium and ammonium bicarbonate.
  • step A After the contact treatment in step A, it also includes conventional filtration, water washing, and drying.
  • the purpose is to remove, for example, chloride ions, prevent the subsequent roasting process from corroding the equipment, and also play a role in partial sodium removal.
  • the hydrothermal roasting treatment is carried out under an atmosphere of external pressure and external water addition.
  • the atmosphere environment is obtained by externally applying pressure and externally applying water, preferably the apparent pressure is 0.1 to 0.8 MPa, more preferably the apparent pressure is 0.3 to 0.6 MPa, preferably containing 30 to 100% water vapor, more preferably containing 60 to 100% water vapor.
  • the externally applied pressure refers to applying a certain pressure from the outside during the hydrothermal roasting process of the prepared material. For example, it can be carried out by introducing an inert gas from the outside to maintain a certain back pressure.
  • the amount of externally applied water is based on the requirement that the atmosphere contains 1 to 100% water vapor.
  • the method of the present invention may also include a step of performing ammonium exchange after the step of hydrothermal roasting treatment.
  • the ammonium exchange is at room temperature to 100°C for at least 0.3 hours, wherein the rare earth sodium Y molecular sieve is calculated on the dry basis of the molecular sieve, and the weight ratio to ammonium salt and water is 1: (0.05 to 0.5): (5 to 30) .
  • step (1) The NH 4 NaY molecular sieve obtained in step (1) is contacted with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt, filtered, washed with water, and dried to obtain a rare earth-containing NaY molecular sieve;
  • step (3) The rare earth-containing NaY molecular sieve obtained in step (2) is subjected to hydrothermal roasting treatment under an atmosphere of external pressure and external addition of water.
  • the apparent pressure is 0.01 to 1 MPa and contains 1
  • the temperature of the hydrothermal roasting treatment is 300 to 800°C, preferably 400 to 600°C.
  • the ammonium salt in the step (1) and step (2) is selected from any one or a mixture of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium bicarbonate.
  • the NaY molecular sieve is partially ammonium exchanged with the ammonium salt, and the purpose is to remove 10-80%, preferably 20-60% of sodium ions.
  • the process can be, for example, the NaY molecular sieve and the ammonium salt solution, the weight ratio of the water sieve is 5 to 30, the ammonium salt to weight ratio is 0.01 to 3, and the NaY molecular sieve exchange temperature is room temperature to 100° C. for at least 0.3 hours.
  • the rare earth salt solution in the step (2) is selected from chloride aqueous solutions containing one or more of lanthanum, cerium, praseodymium, and neodymium ions.
  • the NaY molecular sieve is contacted with the rare earth salt solution or the mixed solution of the rare earth salt solution and ammonium salt, and the process is to combine the NaY molecular sieve with the rare earth salt solution or
  • step (2) After the contact treatment in step (2), it also includes conventional filtration, water washing, and drying.
  • the purpose is to remove, for example, chloride ions, prevent the subsequent roasting process from corroding the equipment, and also play a role in partial sodium removal.
  • step (3) the hydrothermal roasting treatment is performed under an atmosphere of external pressure and external water addition.
  • the atmosphere environment is obtained by externally applying pressure and externally applying water, preferably the apparent pressure is 0.1 to 0.8 MPa, more preferably the apparent pressure is 0.3 to 0.6 MPa, preferably containing 30 to 100% water vapor, more preferably containing 60 to 100% water vapor.
  • the externally applied pressure refers to applying a certain pressure from the outside during the hydrothermal roasting process of the prepared material. For example, it can be carried out by introducing an inert gas from the outside to maintain a certain back pressure.
  • the amount of externally applied water is based on the requirement that the atmosphere contains 1 to 100% water vapor.
  • the preparation method of the present invention may also include step (4) of ammonium exchange after step (3).
  • the ammonium exchange in step (4) is exchanged at room temperature to 100°C for at least 0.3 hours, wherein the weight ratio of rare earth sodium Y molecular sieve to ammonium salt and water is 1: (0.05 to 0.5): (5 to 30).
  • the preparation method of the present invention prepares the rare earth-containing Y-type molecular sieve of the present invention with unique pore size distribution characteristics, which has at least 2-3 nanometers, 3-4 nanometers, and 10-30 nanometers of mesoporous pore size distribution, wherein ,
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the total pores is greater than 0.1, and the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is greater than 0.2.
  • the method for preparing rare earth-containing Y-type molecular sieves includes: applying rare-earth-containing NaY molecular sieves under an atmosphere of external pressure and external addition of an acidic or alkaline aqueous solution. Hydrothermal roasting processes and recovers the product.
  • the atmospheric environment has an apparent pressure of 0.01 to 1 MPa and contains 1 to 100% water vapor.
  • the rare earth-containing NaY molecular sieve is preferably obtained by contacting the NaY molecular sieve with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt, followed by filtration, water washing and drying.
  • the rare earth salt solution is selected from chloride aqueous solutions containing one or more of lanthanum, cerium, praseodymium, and neodymium ions.
  • the ammonium salt is selected from any one or a mixture of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium bicarbonate.
  • the hydrothermal roasting treatment is carried out under an atmosphere of external pressure and external addition of water.
  • the atmosphere environment is obtained by externally applying pressure and externally applying water, preferably the apparent pressure is 0.1 to 0.8 MPa, more preferably the apparent pressure is 0.3 to 0.6 MPa, preferably containing 30 to 100% water vapor, more preferably containing 60 to 100% water vapor.
  • the externally applied pressure refers to applying a certain pressure from the outside during the hydrothermal roasting process of the prepared material. For example, it can be carried out by introducing an inert gas from the outside to maintain a certain back pressure.
  • the amount of externally applied water is to meet the requirements of 1 to 100% water vapor of the atmosphere environment.
  • the method of the present invention may also include the step of performing ammonium exchange afterwards.
  • Ammonium exchange is exchanged at room temperature to 100°C for at least 0.3 hours.
  • the weight ratio of rare earth sodium Y molecular sieve to ammonium salt and water is 1: (0.05 to 0.5): (5 to 30) based on the dry basis of the molecular sieve.
  • the rare earth-containing NaY molecular sieve is roasted in the presence of an apparent pressure of 0.01 to 1 MPa, a steam atmosphere of 1 to 100%, and an acidic or alkaline substance; preferably at 300 to 800°C, 0.1 to 0.8 MPa, It is calcined in a 30 to 100% water vapor atmosphere for at least 0.1 hours, and more preferably in a 400 to 600° C., 0.3 to 0.6 MPa, 60 to 100% water vapor atmosphere for 1 to 3 hours.
  • the acidic substance includes one or more mixtures of ammonium chloride, ammonium sulfate, ammonium carbonate, ammonium bicarbonate, ammonium phosphate, ammonium dihydrogen phosphate, diammonium phosphate, hydrochloric acid, sulfuric acid, nitric acid, etc., wherein Preferably, one or more of ammonium carbonate, ammonium bicarbonate, ammonium phosphate, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate; the alkaline substance is selected from buffer solutions containing ammonia, ammonia and ammonium chloride, and hydroxide A mixture of one or more of sodium, sodium metaaluminate, sodium carbonate, sodium bicarbonate, etc., among which ammonia water or a buffer solution of ammonia water and ammonium chloride is preferred.
  • the preparation method of the present invention may further include subjecting the product rare earth sodium Y molecular sieve to an ammonium salt aqueous solution exchange treatment, filtering, washing and drying to obtain a rare earth-containing Y molecular sieve.
  • the exchange treatment is to exchange at room temperature to 100°C for at least 0.3 hours, wherein the weight ratio of rare earth sodium Y molecular sieve to ammonium salt and water is 1: (0.05 to 0.5): (5 to 30) on a molecular sieve dry basis.
  • the method for preparing rare earth-containing Y-type molecular sieves includes: contacting rare earth-containing NaY molecular sieves with acidic substances or alkaline substances to obtain rare-earth-containing NaY containing acidic substances or alkaline substances
  • the molecular sieve is subjected to hydrothermal roasting treatment in an atmosphere with externally applied pressure and externally added water. In the atmosphere, the apparent pressure is 0.01 to 1 MPa and contains 1 to 100% water vapor.
  • the rare earth-containing NaY molecular sieve is preferably obtained by contacting the NaY molecular sieve with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt, and obtaining it through step A of filtration, water washing, and drying. of.
  • the rare earth salt solution in step A is selected from chloride aqueous solutions containing one or more of lanthanum, cerium, praseodymium, and neodymium ions.
  • the ammonium salt in step A is selected from any one or a mixture of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium bicarbonate.
  • step A the NaY molecular sieve and the rare earth salt solution or the mixed solution of the ammonium salt and the rare earth salt solution are contacted.
  • the NaY molecular sieve containing rare earth is modified by acidic substances or alkaline substances.
  • the acidic substance includes one or more mixtures of ammonium chloride, ammonium sulfate, ammonium carbonate, ammonium bicarbonate, ammonium phosphate, ammonium dihydrogen phosphate, diammonium phosphate, hydrochloric acid, sulfuric acid, nitric acid, etc.;
  • the alkaline substance is selected from a mixture of one or more of ammonia, ammonia and ammonium chloride buffer solution, sodium hydroxide, sodium metaaluminate, sodium carbonate, sodium bicarbonate, etc.;
  • the contact of the substance or the alkaline substance can be common methods such as immersion or loading.
  • the hydrothermal roasting treatment is carried out under an atmosphere of external pressure and external water addition.
  • the atmosphere environment is obtained by externally applying pressure and externally applying water, preferably the apparent pressure is 0.1 to 0.8 MPa, more preferably the apparent pressure is 0.3 to 0.6 MPa, preferably containing 30 to 100% water vapor, more preferably containing 60 to 100% water vapor.
  • the externally applied pressure refers to applying a certain pressure from the outside during the hydrothermal roasting process of the prepared material. For example, it can be carried out by introducing an inert gas from the outside to maintain a certain back pressure.
  • the amount of externally applied water is based on the requirement that the atmosphere contains 1 to 100% water vapor.
  • the hydrothermal calcination temperature is 300 to 800°C, preferably 400 to 600°C; the calcination time is at least 0.1 hours, preferably 0.5 to 3 hours.
  • the fifth method for preparing rare earth-containing Y-type molecular sieve of the present invention includes:
  • step (1) The NH 4 NaY molecular sieve obtained in step (1) is contacted with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt, filtered, washed with water, and dried to obtain a rare earth-containing NaY molecular sieve;
  • step (2) The rare earth-containing NaY molecular sieve obtained in step (2) is subjected to hydrothermal roasting treatment under external pressure and an aqueous solution containing acidic or alkaline substances is added, or the step (2) containing NaY After the rare earth NaY molecular sieve is contacted with the acidic substance or the alkaline substance to obtain the rare earth-containing NaY molecular sieve containing the acidic substance or the alkaline substance, the hydrothermal roasting process is performed under an atmosphere of external pressure and external addition of water.
  • the atmosphere Environment its apparent pressure is 0.01 to 1MPa (for example, 0.1 to 0.8MPa, or 0.3 to 0.6MPa) and contains 1 to 100% (for example, 30 to 100%, or 60 to 100%) water vapor, and hydrothermal roasting treatment temperature It is carried out at 300 to 800°C, preferably 400 to 600°C.
  • the ammonium salt in the step (1) and step (2) is selected from any one or a mixture of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium bicarbonate.
  • the NaY molecular sieve is partially ammonium exchanged with the ammonium salt, and the purpose is to remove 10-80%, preferably 20-60% of sodium ions.
  • the process can be, for example, the NaY molecular sieve and the ammonium salt solution, the weight ratio of the water sieve is 5 to 30, the ammonium salt to weight ratio is 0.01 to 3, and the NaY molecular sieve exchange temperature is room temperature to 100° C. for at least 0.3 hours.
  • the rare earth salt solution in the step (2) is selected from chloride aqueous solutions containing one or more of lanthanum, cerium, praseodymium, and neodymium ions.
  • the NaY molecular sieve is contacted with the rare earth salt solution or the mixed solution of the rare earth salt solution and ammonium salt, and the process is to combine the NaY molecular sieve with the rare earth salt solution or
  • step (2) After the contact treatment in step (2), it also includes conventional filtration, water washing, and drying.
  • the purpose is to remove, for example, chloride ions, prevent the subsequent roasting process from corroding the equipment, and also play a role in partial sodium removal.
  • step (3) the hydrothermal roasting treatment is performed under an atmosphere of external pressure and external water addition.
  • the acidic substance can be, but is not limited to, one or more selected from ammonium chloride, ammonium sulfate, ammonium carbonate, ammonium bicarbonate, ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, hydrochloric acid, sulfuric acid, nitric acid, etc.
  • ammonium carbonate, ammonium bicarbonate, ammonium phosphate, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate are preferred;
  • the alkaline substance can be, but not limited to, selected from ammonia, ammonia and chlorine
  • ammonia hydroxide buffer solution, sodium hydroxide, sodium metaaluminate, sodium carbonate, sodium bicarbonate, etc. among which ammonia water or a buffer solution of ammonia water and ammonium chloride is preferred.
  • the atmosphere environment is obtained by externally applying pressure and externally applying water, preferably the apparent pressure is 0.1 to 0.8 MPa, more preferably the apparent pressure is 0.3 to 0.6 MPa, preferably containing 30 to 100% water vapor, more preferably containing 60 to 100% water vapor.
  • the externally applied pressure refers to applying a certain pressure from the outside during the hydrothermal roasting process of the prepared material. For example, it can be carried out by introducing an inert gas from the outside to maintain a certain back pressure.
  • the amount of water in the aqueous solution containing the acidic substance or the alkaline substance is applied externally to meet the requirement that the atmospheric environment contains 1 to 100% water vapor.
  • the preparation method of the present invention may also include step (4) of ammonium exchange after step (3).
  • the ammonium exchange in step (4) is exchanged at room temperature to 100°C for at least 0.3 hours, wherein the weight ratio of rare earth sodium Y molecular sieve to ammonium salt and water is 1: (0.05 to 0.5): (5 to 30).
  • the preparation method of the present invention prepares the rare earth-containing Y-type molecular sieve of the present invention with unique pore size distribution characteristics, which has at least 2-3 nanometers, 3-4 nanometers, and 10-30 nanometers of mesoporous pore size distribution, wherein ,
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores is greater than 0.1, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is greater than 0.2, and in the BJH pore size distribution curve, 2
  • the ratio of the peak area of the -3 nanometer pore size distribution to the peak area of the 3-4 nanometer pore size distribution is ⁇ 0.05, such as ⁇ 0.1, or 0.1 to 0.4.
  • the method for preparing the rare earth-containing Y-type molecular sieve provided by the present invention can be roasted only once, preferably only once.
  • a rare earth-containing Y-type molecular sieve characterized in that there are at least two mesopore pore size distributions at 2-3 nm and 3-4 nm.
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the 3-4 nanometer pore size distribution is ⁇ 0.05, preferably ⁇ 0.1, and more preferably 0.1 to 0.4.
  • the rare earth content is 2 to 18% by weight, preferably 8 to 15% by weight in terms of rare earth oxide
  • the unit cell constant is 2.440 to 2.470 nm
  • the crystallinity is 30 to 60%.
  • the method for preparing rare earth-containing Y-type molecular sieves according to one of the technical solutions A1-4, which is characterized in that it comprises the step of hydrothermally roasting the rare earth-containing NaY molecular sieve in an atmosphere with external pressure and external water addition,
  • the atmospheric environment has an apparent pressure of 0.01 to 1.0 MPa and contains 1 to 100% water vapor.
  • the rare earth-containing NaY molecular sieve is obtained from step A of contacting NaY molecular sieve with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt.
  • the rare earth salt solution is a chloride aqueous solution selected from one or more of lanthanum, cerium, praseodymium, and neodymium ions.
  • ammonium salt is selected from any one or a mixture of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium bicarbonate.
  • a Y-type molecular sieve containing rare earths characterized in that there are at least 2-3 nanometers, 3-4 nanometers, and 10-30 nanometers of mesoporous pore size distribution.
  • 2-3 nanometers pore size distribution The ratio of the peak area of the pores to the peak area of the total pores is greater than 0.1, and the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is greater than 0.2.
  • the molecular sieve according to technical solution B1 wherein the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the total pores is greater than 0.12, preferably greater than 0.15, more preferably 0.18 to 0.26, 10-30 nanometers
  • the ratio of the peak area of the pore size distribution to the peak area of the total pores is greater than 0.22, preferably greater than 0.25, more preferably 0.27 to 0.32.
  • the molecular sieve according to technical solution B1 wherein the content of the rare earth is 2 to 18% by weight, preferably 8 to 15% by weight in terms of rare earth oxide, the unit cell constant is 2.440 to 2.470 nm, and the crystallinity is 30 to 60%.
  • step (1) The NH4NaY molecular sieve obtained in step (1) is contacted with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt, filtered, washed with water, and dried to obtain a rare earth-containing NaY molecular sieve;
  • step (3) The rare earth-containing NaY molecular sieve obtained in step (2) is subjected to hydrothermal roasting treatment under an atmosphere of external pressure and external addition of water.
  • the apparent pressure is 0.01 to 1 MPa and contains 1 To 100% water vapor.
  • step (1) and step (2) are selected from any one or more of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium bicarbonate mixture.
  • the rare earth salt solution in step (2) is an aqueous chloride solution containing one or more of lanthanum, cerium, praseodymium, and neodymium ions.
  • the exchange temperature is at least 0.3 hours at room temperature to 100°C.
  • step (3) has an apparent pressure of 0.1 to 0.8 MPa, preferably 0.3 to 0.6 MPa, and contains 30% to 100% water vapor, preferably 60 to 100% water vapor.
  • step (3) The method according to technical solution B5, wherein the hydrothermal calcination described in step (3) is performed at 300 to 800°C, preferably 400 to 600°C.
  • the method for preparing rare earth-containing Y-type molecular sieve includes: hydrothermally roasting the NaY molecular sieve containing rare earth under external pressure and externally adding an aqueous solution containing acidic or alkaline substances and recovering the product.
  • the stated atmosphere has an apparent pressure of 0.01 to 1 MPa and contains 1 to 100% water vapor.
  • the rare earth salt solution contains an aqueous chloride solution containing one or more of lanthanum, cerium, praseodymium, and neodymium ions.
  • ammonium salt is selected from any one or a mixture of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium bicarbonate.
  • the alkaline substance comprises a mixture of one or more of ammonia water, a buffer solution of ammonia water and ammonium chloride, sodium hydroxide, sodium carbonate, and sodium bicarbonate.
  • the molecular sieve according to technical solution C10 has at least two mesopore pore size distributions at 2-3 nm and 3-4 nm, and the mesopore volume is greater than 0.03 cc/g.
  • the rare earth content is 2 to 18% by weight, preferably 8 to 15% by weight in terms of rare earth oxide
  • the unit cell constant is 2.440 to 2.470 nm
  • the crystallinity is 30 to 60%.
  • a modification method of Y-type molecular sieve which comprises: contacting NaY molecular sieve containing rare earth with alkaline substance to obtain alkaline substance-containing NaY molecular sieve containing rare earth. Water is carried out under an atmosphere of external pressure and external addition of water. For thermal roasting treatment, the atmospheric environment has an apparent pressure of 0.01 to 1 MPa and contains 1 to 100% water vapor.
  • the rare earth salt solution in step A is an aqueous chloride solution containing one or more selected from lanthanum, cerium, praseodymium, and neodymium.
  • ammonium salt in step A is selected from any one or a mixture of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium bicarbonate.
  • alkaline substance is selected from one or more of ammonia water, a buffer solution of ammonia water and ammonium chloride, sodium hydroxide, sodium carbonate, and sodium bicarbonate.
  • the molecular sieve according to technical solution D9 has at least two mesopore pore size distributions at 2-3 nm and 3-4 nm, and the mesopore volume is greater than or equal to 0.031 cc/g.
  • the molecular sieve according to technical solution D9 wherein the rare earth content is 2 to 18% by weight, preferably 8 to 15% by weight in terms of rare earth oxide, the unit cell constant is 2.440 to 2.470 nm, and the crystallinity is 30 to 60%.
  • a catalytic cracking catalyst containing inorganic oxide binder, natural minerals and rare earth-containing Y-type molecular sieve, characterized in that the rare-earth-containing Y-type molecular sieve has at least 2-3 nanometers and 3- Two kinds of mesopore pore size distribution at 4nm.
  • the catalyst according to technical solution E1 which, on a dry basis, contains 10-30% by weight of inorganic oxide binder, 30-50% by weight of natural minerals, and 20-60% by weight of rare earth-containing Y-type molecular sieve.
  • the crystallinity is 30 to 60%.
  • the catalyst of one of the technical solutions E1-5, wherein the rare earth-containing Y-type molecular sieve includes the step of hydrothermally roasting the rare earth-containing NaY molecular sieve under an atmosphere of external pressure and external water addition
  • the obtained atmosphere has an apparent pressure of 0.01 to 1.0 MPa and contains 1 to 100% water vapor.
  • the catalyst according to technical solution E6, wherein the rare earth-containing NaY molecular sieve is obtained from step A of contacting NaY molecular sieve with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt; preferably, The step A is carried out at pH 3.0 to 5.0, water-to-sieve weight ratio of 5 to 30, and room temperature to 100°C.
  • the rare earth salt solution is selected from one or more of lanthanum, cerium, praseodymium, and neodymium ions including a chloride aqueous solution; and the ammonium salt is selected from ammonium chloride , Ammonium nitrate, ammonium carbonate and ammonium bicarbonate any one or a mixture of more.
  • the catalyst according to technical scheme E1 wherein the natural minerals are selected from kaolin, halloysite, montmorillonite, diatomaceous earth, attapulgite, sepiolite, halloysite, hydrotalcite, bentonite and At least one of rectorite, and the inorganic oxide binder is selected from at least one of silica sol, aluminum sol, peptized pseudo-boehmite, silica alumina sol and phosphorus-containing aluminum sol.
  • the natural minerals are selected from kaolin, halloysite, montmorillonite, diatomaceous earth, attapulgite, sepiolite, halloysite, hydrotalcite, bentonite and At least one of rectorite
  • the inorganic oxide binder is selected from at least one of silica sol, aluminum sol, peptized pseudo-boehmite, silica alumina sol and phosphorus-containing aluminum sol.
  • the catalyst according to technical scheme F1 wherein, on a dry basis, it contains 20-60% by weight of rare earth-containing Y-type molecular sieve, 10-30% by weight of inorganic oxide binder and 30-50% by weight Natural minerals.
  • the catalyst according to technical solution F1 wherein the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the total pores of the rare earth-containing Y-type molecular sieve is greater than 0.12, preferably greater than 0.15, more preferably From 0.18 to 0.26, the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is greater than 0.22, preferably greater than 0.25, more preferably 0.27 to 0.32.
  • the catalyst according to technical solution F1 wherein the rare earth-containing Y-type molecular sieve has a rare earth content of 1 to 20% by weight, preferably 8 to 15% by weight based on rare earth oxide, and a unit cell constant of 2.440 to 2.470 nm, The crystallinity is 30 to 60%.
  • the ratio of I2 is greater than 4.0, preferably greater than 4.3, more preferably 4.8 to 6.0.
  • step (1) The NH4NaY molecular sieve obtained in step (1) is contacted with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt, filtered, washed with water, and dried to obtain a rare earth-containing NaY molecular sieve;
  • step (3) The rare earth-containing NaY molecular sieve obtained in step (2) is subjected to hydrothermal roasting treatment under an atmosphere of external pressure and external addition of water.
  • the apparent pressure is 0.01 to 1 MPa and contains 1 To 100% water vapor.
  • step (1) and step (2) are selected from any one or more of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium bicarbonate Mixture;
  • the rare earth salt solution is selected from the chloride aqueous solution of rare earth ions including one or more of lanthanum, cerium, praseodymium, and neodymium ions.
  • the catalyst according to technical solution F1 wherein the natural minerals are selected from kaolin, halloysite, montmorillonite, diatomite, attapulgite, sepiolite, halloysite, hydrotalcite, bentonite and At least one of rectorite; the inorganic oxide binder is selected from at least one of silica sol, alumina sol, peptized pseudo-boehmite, silica alumina sol, and phosphorus-containing alumina sol.
  • the natural minerals are selected from kaolin, halloysite, montmorillonite, diatomite, attapulgite, sepiolite, halloysite, hydrotalcite, bentonite and At least one of rectorite
  • the inorganic oxide binder is selected from at least one of silica sol, alumina sol, peptized pseudo-boehmite, silica alumina sol, and phosphorus-containing alumina sol.
  • a cracking catalyst containing rare earth-containing Y-type molecular sieve, inorganic oxide binder and natural minerals, characterized in that the rare-earth-containing Y-type molecular sieve, at least 2-3 nanometers and 3-4
  • the pore size distribution of two mesopores at nanometers has a mesopore volume greater than 0.03cc/g.
  • the cracking catalyst according to technical scheme G1 on a dry basis, contains 20-60% by weight of rare earth-containing Y-type molecular sieve, 10-30% by weight of inorganic oxide binder and 30-50% by weight of natural Minerals.
  • the cracking catalyst according to technical solution G1 characterized in that the rare earth-containing Y-type molecular sieve is an atmosphere where the rare-earth-containing NaY molecular sieve is externally applied with pressure and an aqueous solution containing acidic or alkaline substances is added.
  • the rare earth-containing Y-type molecular sieve is obtained by contacting the rare-earth-containing NaY molecular sieve with an alkaline substance to obtain a rare-earth-containing NaY molecular sieve containing the alkaline substance, and then applying it externally It is obtained in the second process of hydrothermal roasting treatment under an atmosphere of pressure and external water added; the apparent pressure of the atmosphere is 0.01 to 1 MPa and contains 1 to 100% water vapor.
  • the rare earth salt solution is selected from one or more of lanthanum, cerium, praseodymium, and neodymium ions including a chloride aqueous solution
  • the ammonium salt is selected from chloride Any one or a mixture of ammonium, ammonium nitrate, ammonium carbonate and ammonium bicarbonate.
  • the acidic substance is selected from ammonium chloride, ammonium sulfate, ammonium carbonate, ammonium bicarbonate, ammonium carbonate, ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, hydrochloric acid , Sulfuric acid, nitric acid, one or more mixtures.
  • the cracking catalyst according to technical solution G1 wherein the inorganic oxide binder is selected from at least one of silica sol, alumina sol, peptized pseudo-boehmite, silica alumina sol and phosphorus-containing alumina sol
  • the natural minerals are selected from at least one of kaolin, halloysite, montmorillonite, diatomite, attapulgite, sepiolite, halloysite, hydrotalcite, bentonite and rectorite.
  • a rare earth-containing Y-type molecular sieve characterized in that there are at least two mesoporous pore size distributions at 2-3 nm and 3-4 nm, wherein
  • the mesopore volume of the molecular sieve is greater than 0.03cc/g, and/or
  • the molecular sieve according to Scheme H1 characterized in that in the BJH pore size distribution curve of the molecular sieve, the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the 3-4 nanometer pore size distribution is ⁇ 0.05, preferably ⁇ 0.1, more preferably 0.1 to 0.4.
  • the molecular sieve according to any one of the preceding schemes characterized in that its rare earth content is 2 to 18% by weight, preferably 8 to 15% by weight in terms of rare earth oxide, a unit cell constant of 2.440 to 2.470 nm, and a crystallinity of 30 to 60%.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores is greater than 0.1, for example, greater than 0.12, greater than 0.15 , More preferably 0.18 to 0.26,
  • the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is greater than 0.2, for example, greater than 0.22, greater than 0.25, more preferably 0.27 to 0.32.
  • the rare earth-containing NaY molecular sieve is obtained by hydrothermal roasting under an atmosphere of external pressure and external water addition; the apparent pressure of the atmosphere is 0.01 to 1.0 MPa, for example, 0.1 to 0.8 MPa, preferably 0.3 to 0.6 MPa, and contains 1 to 100% water vapor, for example, 30% to 100% water vapor, preferably 60 to 100% water vapor.
  • step (1) The NH4NaY molecular sieve obtained in step (1) is contacted with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt, filtered, washed with water, and dried to obtain a rare earth-containing NaY molecular sieve.
  • the rare earth salt solution is selected from chloride aqueous solutions containing one or more of lanthanum, cerium, praseodymium, and neodymium ions.
  • the ammonium salt is selected from any one or a mixture of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium bicarbonate.
  • the atmosphere environment of the water is the atmosphere environment of an aqueous solution containing acidic substances or alkaline substances
  • the acidic substances are selected from ammonium chloride, ammonium sulfate, A mixture of one or more of ammonium carbonate, ammonium bicarbonate, ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, hydrochloric acid, sulfuric acid, and nitric acid
  • the alkaline substance includes ammonia, ammonia and ammonium chloride A mixture of one or more of buffer solution, sodium hydroxide, sodium metaaluminate, sodium carbonate, and sodium bicarbonate.
  • a catalytic cracking catalyst wherein the catalytic cracking catalyst contains 20-60% by weight of the rare earth-containing Y-type molecular sieve of any one of the foregoing schemes 1-6, and 10-30% by weight of an inorganic oxide binder And 30-50% by weight of natural minerals.
  • the catalytic cracking catalyst of Scheme H17 wherein the natural minerals are selected from kaolin, halloysite, montmorillonite, diatomaceous earth, attapulgite, sepiolite, halloysite, hydrotalcite, bentonite, and At least one of the tortuos, and the inorganic oxide binder is selected from at least one of silica sol, alumina sol, peptized pseudo-boehmite, silica alumina sol and phosphorus-containing alumina sol.
  • a rare earth-containing Y-type molecular sieve characterized in that there are at least two mesopore pore size distributions at 2-3 nm and 3-4 nm.
  • the molecular sieve according to scheme M1 characterized in that in the BJH pore size distribution curve of the molecular sieve, the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the 3-4 nanometer pore size distribution is ⁇ 0.05, preferably ⁇ 0.1, more preferably 0.1 to 0.4.
  • the molecular sieve according to any one of the preceding schemes characterized in that its rare earth content is 2 to 18% by weight, preferably 8 to 15% by weight in terms of rare earth oxide, the unit cell constant is 2.440 to 2.470 nm, and the crystallinity is 30 to 60%.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores is greater than 0.1, for example, greater than 0.12, greater than 0.15 , More preferably 0.18 to 0.26,
  • the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is greater than 0.2, for example, greater than 0.22, greater than 0.25, more preferably 0.27 to 0.32.
  • the molecular sieve according to any one of the preceding schemes characterized in that the mesopore volume of the molecular sieve is greater than 0.03cc/g, such as 0.031cc/g to 0.037cc/g or 0.031cc/g to 0.057cc/g.
  • step (1) The NH4NaY molecular sieve obtained in step (1) is contacted with a rare earth salt solution or a mixed solution of a rare earth salt solution and an ammonium salt, filtered, washed with water, and dried to obtain a rare earth-containing NaY molecular sieve.
  • the atmosphere environment of the water is an atmosphere environment of pure water or an atmosphere environment of an aqueous solution containing an acidic substance or an alkaline substance.
  • the rare earth salt solution is selected from one or more chloride aqueous solutions of lanthanum, cerium, praseodymium, and neodymium ions;
  • the ammonium salt is selected from any one or a mixture of ammonium chloride, ammonium nitrate, ammonium carbonate and ammonium bicarbonate.
  • the atmosphere environment of the water is an atmosphere environment of an aqueous solution containing an acidic substance or an alkaline substance
  • the acidic substance is selected from ammonium chloride, ammonium sulfate, A mixture of one or more of ammonium carbonate, ammonium bicarbonate, ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, hydrochloric acid, sulfuric acid, and nitric acid
  • the alkaline substance includes ammonia, ammonia and ammonium chloride A mixture of one or more of buffer solution, sodium hydroxide, sodium metaaluminate, sodium carbonate, and sodium bicarbonate.
  • a catalytic cracking catalyst wherein the catalytic cracking catalyst contains 20-60% by weight of the rare earth-containing Y-type molecular sieve of any one of the foregoing schemes 1-6, and 10-30% by weight of an inorganic oxide binder And 30-50% by weight of natural minerals.
  • the catalytic cracking catalyst of scheme M17 wherein the natural minerals are selected from the group consisting of kaolin, halloysite, montmorillonite, diatomite, attapulgite, sepiolite, halloysite, hydrotalcite, bentonite, and At least one kind of support soil, and the inorganic oxide binder is selected from at least one of silica sol, aluminum sol, peptized pseudo-boehmite, silica alumina sol, and phosphorus-containing aluminum sol.
  • the natural minerals are selected from the group consisting of kaolin, halloysite, montmorillonite, diatomite, attapulgite, sepiolite, halloysite, hydrotalcite, bentonite, and At least one kind of support soil
  • the inorganic oxide binder is selected from at least one of silica sol, aluminum sol, peptized pseudo-boehmite, silica alumina sol, and phosphorus-containing aluminum sol.
  • the method for preparing the rare earth-containing Y-type molecular sieve can promote the migration of rare-earth ions from super cages to sodalite cages and form special pore size distribution characteristics, the process is simple and easy to operate, and the Y-type molecular sieve is significantly enriched in mesopores It can form a certain degree of molecular sieve mesopores, improve accessibility, and increase the utilization rate of active centers. This method is a low-cost and low-emission new way to expand molecular sieve crystals.
  • the method for preparing the rare earth-containing Y-type molecular sieve provided by the present invention can provide rare-earth-containing Y-type molecular sieves with unique pore size distribution characteristics, that is, at least 2-3 nanometers
  • the mesopore pore size distribution at 3-4 nm and 3-4 nm, the mesopore volume is greater than 0.03cc/g, for example, 0.031cc/g to 0.037cc/g, even up to 0.057cc/g, and can provide a larger area
  • the hysteresis ring has a rare earth content of 8 to 15% by weight in terms of rare earth oxide, a unit cell constant of 2.440 to 2.470 nm, and a crystallinity of 30 to 60%.
  • the rare earth-containing Y-type molecular sieve provided by the present invention has higher hydrothermal structural stability and higher cracking activity stability, reduced coke selectivity, and has broad application prospects in the field of heavy oil catalysis.
  • the unit cell constant and crystallinity of the rare earth-containing Y-type molecular sieve product of the present invention are determined by X-ray diffraction (XRD), and the XRF analysis of the chemical composition of the product is in Japan Rigaku Corporation 3013
  • XRD X-ray diffraction
  • the BJH pore size distribution curve of the product is measured by low-temperature nitrogen absorption and desorption.
  • Example A1 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 10.1% by weight.
  • Figure 1 shows the pore size distribution curve calculated by PAY-1 according to the BJH model.
  • Figure 2 is the XRD spectrum of PAY-1, indicating that the PAY-1 molecular sieve has a pure phase FAU crystal structure without the formation of impurities.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example A1 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at atmospheric pressure.
  • Example A1 The process is the same as in Example A1, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DAY-1.
  • rare earth oxide is 10.1% by weight.
  • Figure 3 shows the pore size distribution curve calculated by DAY-1 according to the BJH model.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the 3-4 nm pore size distribution is 0.
  • the XRD spectrum of DAY-1 has similar characteristics to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Example A2 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 8.2% by weight.
  • the BJH pore size distribution curve and XRD spectrum of PAY-2 have similar characteristics to the BJH pore size distribution curve and XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the 3-4 nanometer pore size distribution is 0.3.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example A2 illustrates a comparative sample of Y-type molecular sieve containing rare earths obtained by hydrothermal calcination at atmospheric pressure.
  • Example A2 The process is the same as in Example A2, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DAY-2.
  • rare earth oxide is 8.2% by weight.
  • the BJH pore size distribution curve and XRD spectrum of DAY-2 have similar characteristics to the BJH pore size distribution curve of DAY-1 and the XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the 3-4 nm pore size distribution is 0.
  • the unit cell and crystallinity data are shown in the table below.
  • Example A3 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 11.4% by weight.
  • the BJH pore size distribution curve and XRD spectrum of PAY-3 have similar characteristics to the BJH pore size distribution curve and XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the 3-4 nanometer pore size distribution is 0.25.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example A3 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at atmospheric pressure.
  • Example A3 The process is the same as that of Example A3, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DAY-3.
  • rare earth oxide is 11.4% by weight.
  • the BJH pore diameter distribution curve and XRD spectrum of DAY-3 have similar characteristics to the BJH pore diameter distribution curve of DAY-1 and the XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the 3-4 nm pore size distribution is 0.
  • the unit cell and crystallinity data are shown in the table below.
  • Example A4 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 12.6% by weight.
  • the BJH pore size distribution curve and XRD spectrum of PAY-4 have similar characteristics to the BJH pore size distribution curve and XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the 3-4 nm pore size distribution is 0.22.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example A4 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at atmospheric pressure.
  • Example A4 The process is the same as that of Example A4, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DAY-4.
  • rare earth oxide is 12.6% by weight.
  • the BJH pore size distribution curve and XRD spectrum of DAY-4 have similar characteristics to the BJH pore size distribution curve of DAY-1 and the XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the 3-4 nm pore size distribution is 0.
  • the unit cell and crystallinity data are shown in the table below.
  • Example A5 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 13.4% by weight.
  • the BJH pore size distribution curve and XRD spectrum of PAY-5 have similar characteristics to the BJH pore size distribution curve and XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the 3-4 nm pore size distribution is 0.23.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example A5 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at atmospheric pressure.
  • Example A5 The process is the same as that of Example A5, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DAY-5.
  • rare earth oxide is 13.4% by weight.
  • the BJH pore size distribution curve and XRD spectrum of DAY-5 have similar characteristics to the BJH pore size distribution curve of DAY-1 and the XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the 3-4 nm pore size distribution is 0.
  • the unit cell and crystallinity data are shown in the table below.
  • Example A6 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 10.0% by weight.
  • the BJH pore size distribution curve and XRD spectrum of PAY-6 have similar characteristics to the BJH pore size distribution curve and XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the 3-4 nanometer pore size distribution is 0.20.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example A6 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at atmospheric pressure.
  • Example A6 The process is the same as that of Example A6, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DAY-6.
  • rare earth oxide is 10.0% by weight.
  • the BJH pore size distribution curve and XRD spectrum of DAY-6 have similar characteristics to the BJH pore size distribution curve of DAY-1 and the XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the 3-4 nm pore size distribution is 0.
  • the unit cell and crystallinity data are shown in the table below.
  • Example A7 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 9.8% by weight.
  • the BJH pore size distribution curve and XRD spectrum of PAY-7 have similar characteristics to the BJH pore size distribution curve and XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the 3-4 nanometer pore size distribution is 0.11.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example A7 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal calcination at atmospheric pressure.
  • Example A3 The process is the same as that of Example A3, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DAY-7.
  • rare earth oxide is 9.8% by weight.
  • the BJH pore size distribution curve and XRD spectrum of DAY-7 have similar characteristics to the BJH pore size distribution curve of DAY-1 and the XRD spectrum of PAY-1, respectively.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the 3-4 nm pore size distribution is 0.
  • the unit cell and crystallinity data are shown in the table below.
  • Test example A1 illustrates the hydrothermal stability test of Y-type molecular sieve samples containing rare earths.
  • the rare earth-containing Y-type molecular sieve samples PAY-1 to PAY-7 of Example A1 to Example A7, and the comparative samples DAY-1 to DAY-7 of Comparative Example A1 to Comparative Example A7 were mixed and exchanged with ammonium chloride solution. , Reduce the Na 2 O% to less than 0.3% by weight, filter and dry it as a fresh sample.
  • the fresh sample was subjected to hydrothermal aging treatment at 800°C, 100% steam, and 17 hours to obtain an aged sample.
  • the unit cell and crystallinity data of the fresh sample and the unit cell and crystallinity data of the aged sample are shown in the table below.
  • the rare earth-containing Y-type molecular sieve used in the present invention still has a higher degree of crystallinity after being treated with 800°C, 100% water vapor, and 17 hours of hydrothermal aging, and the crystallinity is significantly higher than that of the comparative sample, indicating that it is compared with atmospheric water vapor After roasting and treatment under pressurized water vapor conditions, the Y-type molecular sieve containing rare earth has higher hydrothermal stability, and the hydrothermal stability is significantly improved.
  • Example D1 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 10.1% by weight.
  • Figure 4 shows the pore size distribution curve calculated by PDY-1 according to the BJH model. There are at least three mesopore pore size distributions, and there are three significant mesopore distributions at 2-3 nm, 3-4 nm, and 10-30 nm.
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the total pores of PDY-1 is 0.25, and the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is 0.3.
  • the XRD spectrum of PDY-1 has similar characteristics to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • the comparative example D1 illustrates the comparative sample of Y-type molecular sieve containing rare earth obtained under partial ammonium cross and calcination at normal pressure.
  • Example D1 The process is the same as that of Example D1, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DDY-1.
  • rare earth oxide is 10.1% by weight.
  • Figure 5 shows the pore size distribution curve calculated by DDY-1 according to the BJH model.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores of DDY-1 is 0, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is 0.
  • the XRD spectrum of DDY-1 has similar characteristics to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Example D2 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 8.2% by weight.
  • the BJH pore size distribution curve of PDY-2 has similar characteristics to the BJH pore size distribution curve of PDY-1.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores of PDY-2 is 0.12, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is 0.25.
  • the XRD spectrum of PDY-2 has similar characteristics to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example D2 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained under partial ammonium cross and calcination at normal pressure.
  • Example D2 The process is the same as that in Example D2, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DDY-2.
  • rare earth oxide is 8.2% by weight.
  • the BJH pore size distribution curve of DDY-2 has similar characteristics to the BJH pore size distribution curve of DDY-1.
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the total pores of DDY-2 is 0, and the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is zero.
  • the XRD spectrum of DDY-2 has similar features to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Example D3 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 11.4% by weight.
  • the BJH pore size distribution curve of PDY-3 has similar characteristics to the BJH pore size distribution curve of PDY-1.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores of PDY-3 is 0.23, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is 0.25.
  • the XRD spectrum of PDY-3 has similar characteristics to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • the comparative example D3 illustrates the comparative sample of Y-type molecular sieve containing rare earth obtained under the condition of partial ammonium cross and calcination at normal pressure.
  • Example D3 The process is the same as in Example D3, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DDY-3.
  • rare earth oxide is 11.4% by weight.
  • the BJH pore size distribution curve of DDY-3 has similar characteristics to the BJH pore size distribution curve of DDY-1.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores of DDY-3 is 0, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is 0.
  • the XRD spectrum of DDY-3 has similar features to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Example D4 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 12.6% by weight.
  • the BJH pore size distribution curve of PDY-4 has similar characteristics to the BJH pore size distribution curve of PDY-1.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores of PDY-4 is 0.23, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is 0.21.
  • the XRD spectrum of PDY-4 has similar characteristics to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example D4 illustrates the comparative sample of Y-type molecular sieve containing rare earth obtained under partial ammonium cross and calcination at normal pressure.
  • Example D4 The process is the same as that of Example D4, except that the firing condition is normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DDY-4.
  • rare earth oxide is 12.6% by weight.
  • the BJH pore size distribution curve of DDY-4 has similar characteristics to the BJH pore size distribution curve of DDY-1.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores of DDY-4 is 0, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is 0.
  • the XRD spectrum of DDY-4 has similar features to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Example D5 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 13.4% by weight.
  • the BJH pore size distribution curve of PDY-5 has similar characteristics to the BJH pore size distribution curve of PDY-1.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores of PDY-5 is 0.24, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is 0.29.
  • the XRD spectrum of PDY-5 has similar characteristics to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example D5 illustrates the comparative sample of Y-type molecular sieve containing rare earth obtained under partial ammonium cross and calcination at atmospheric pressure.
  • Example D5 The process is the same as that in Example D5, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DDY-5.
  • rare earth oxide is 13.4% by weight.
  • the BJH pore size distribution curve of DDY-5 has similar characteristics to the BJH pore size distribution curve of DDY-1.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores of DDY-5 is 0, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is 0.
  • the XRD spectrum of DDY-5 has similar features to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Example D6 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 10.0% by weight.
  • the BJH pore size distribution curve of PDY-6 has similar characteristics to the BJH pore size distribution curve of PDY-1.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores of PDY-6 is 0.18, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is 0.22.
  • the XRD spectrum of PDY-6 has similar characteristics to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example D6 illustrates the comparative sample of Y-type molecular sieve containing rare earth obtained under partial ammonium cross and calcination at atmospheric pressure.
  • Example D6 The process is the same as that of Example D6, except that the firing condition is normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DDY-6.
  • rare earth oxide is 10.0% by weight.
  • the BJH pore size distribution curve of DDY-6 has similar characteristics to the BJH pore size distribution curve of DDY-1.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores of DDY-6 is 0, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is 0.
  • the XRD spectrum of DDY-6 has similar characteristics to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Example D7 illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • rare earth oxide is 9.8% by weight.
  • the BJH pore size distribution curve of PDY-7 has similar characteristics to the BJH pore size distribution curve of PDY-1.
  • the ratio of the peak area of the 2-3 nm pore size distribution to the peak area of the total pores of PDY-7 is 0.13, and the ratio of the peak area of the 10-30 nm pore size distribution to the peak area of the total pores is 0.21.
  • the XRD spectrum of PDY-7 has similar features to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Comparative Example D7 illustrates the comparative sample of Y-type molecular sieve containing rare earth obtained under partial ammonium cross and calcination at atmospheric pressure.
  • Example D7 The process is the same as in Example D7, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DDY-7.
  • rare earth oxide is 9.8% by weight.
  • the BJH pore size distribution curve of DDY-7 has similar characteristics to the BJH pore size distribution curve of DDY-1.
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the total pores of DDY-7 is 0, and the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is zero.
  • the XRD spectrum of DDY-7 has similar features to the XRD spectrum of PAY-1.
  • the unit cell and crystallinity data are shown in the table below.
  • Test example D1 illustrates the hydrothermal stability test of Y-type molecular sieve samples containing rare earths.
  • the rare earth-containing Y-type molecular sieve samples PAY-1 to PAY-7 of Example D1 to Example D7, and the comparative samples DAY-1 to DAY-7 of Comparative Example D1 to Comparative Example D7 were mixed and exchanged with ammonium chloride solution. , Reduce the Na 2 O% to less than 0.3% by weight, filter and dry it as a fresh sample.
  • the fresh sample was subjected to hydrothermal aging treatment at 800°C, 100% steam, and 17 hours to obtain an aged sample.
  • the unit cell and crystallinity data of the fresh sample and the unit cell and crystallinity data of the aged sample are shown in the table below.
  • the Y-type molecular sieve samples PDY-1 to PDY-7 containing rare earths still have high crystallinity after being treated at 800°C, 100% water vapor, and 17 hours of hydrothermal aging.
  • the crystallization of samples PDY-1 to PDY-7 The degrees are significantly higher than those of the comparative sample, indicating that compared with the atmospheric pressure hydrothermal roasting, under the atmosphere environment of the present invention, the obtained Y-type molecular sieve containing rare earth has higher hydrothermal stability and the hydrothermal stability is significantly improved.
  • Example B1 illustrates the rare earth-containing Y-type molecular sieve prepared by the third method.
  • PBY-1 a rare earth-containing Y-type molecular sieve sample.
  • rare earth oxide is 10.1% by weight.
  • Curve a in Fig. 6 is the pore size distribution curve calculated by the BJH model for sample PBY-1. It can be seen that there are at least two mesopore pore size distributions, including one at 2-3 nm. There is another mesopore pore size distribution at 4 nm.
  • the curve c in Figure 7 is the adsorption and desorption curve of the sample PBY-1. It can be seen that it has a hysteresis loop with a larger area, indicating that the PBY-1 sample has a rich mesoporous structure.
  • PBY-1 has similar characteristics to that of PAY-1, indicating that it has a pure-phase FAU crystal structure without the formation of impurities.
  • XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B1.1 illustrates a comparative sample of Y-type molecular sieve containing rare earths obtained by hydrothermal roasting at atmospheric pressure without adding ammonia water.
  • Example B1 The process is the same as in Example B1, except that the calcination conditions are normal pressure (apparent pressure 0 MPa) and ammonia water is not added.
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-1.1.
  • rare earth oxide is 10.1% by weight.
  • Curve b in Figure 6 is the pore size distribution curve calculated by the comparative sample DBY-1.1 according to the BJH model.
  • There is mainly one type of mesoporous pore size distribution that is, there is a mesoporous pore size distribution at 3-4 nm, and at 2-3 There is no other mesopore pore size distribution at the nanometer level.
  • the curve d in Figure 7 is the absorption and desorption curve of the comparative sample DBY-1.1.
  • the hysteresis loop area is small, indicating that the mesopore volume is small.
  • the XRD spectrum of DBY-1.1 has similar characteristics to the XRD spectrum of PAY-1.
  • XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B1.2 illustrates a comparative sample of Y-type molecular sieve containing rare earths obtained by hydrothermal roasting at atmospheric pressure and adding ammonia water.
  • Example B1 The process is the same as that of Example B1, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-1.2.
  • rare earth oxide is 10.1% by weight.
  • the pore size distribution curve calculated by the DBY-1.2 BJH model is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-1.2 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example C1 illustrates the rare earth-containing Y-type molecular sieve prepared by the fourth method.
  • rare earth oxide is 10.1% by weight.
  • Curve A in Fig. 6 is the pore size distribution curve calculated by the BJH model for sample PCY-1. It can be seen that there are at least two mesopore pore size distributions, respectively at 2-3 nm and 3-4 nm.
  • Curve C in Figure 7 is the adsorption-desorption curve of sample PCY-1. It can be seen that the adsorption-desorption curve of sample PCY-1 has a hysteresis loop with a larger area, indicating that the PCY-1 sample has a rich mesoporous structure.
  • the XRD spectrum of the sample PCY-1 has similar characteristics to the XRD spectrum of PAY-1, indicating that it has a pure phase FAU crystal structure without the formation of impurities.
  • XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example C1 illustrates a comparative sample of Y-type molecular sieve containing rare earths obtained by immersing and supporting ammonia water and calcining under normal pressure.
  • Example C1 The process is the same as in Example C1, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DCY-1.
  • rare earth oxide is 10.1% by weight.
  • the pore size distribution curve calculated by the BJH model of DCY-1 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DCY-1 has similar features to the XRD spectrum of PAY-1.
  • XRD characterization parameters and hole parameters are shown in the table below.
  • Example B2 illustrates the rare earth-containing Y-type molecular sieve prepared by the third method.
  • rare earth oxide is 8.2% by weight.
  • the pore size distribution curve calculated by the BJH model of PBY-2 is the same as the characteristic of curve a in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve c in Fig. 7.
  • PBY-2 has similar characteristics to the XRD spectrum of PAY-1.
  • XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B2.1 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at atmospheric pressure without adding ammonium chloride.
  • Example B2 The process is the same as in Example B2, except that the calcination conditions are normal pressure (apparent pressure 0 MPa) and ammonium chloride is not added.
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-2.1.
  • rare earth oxide is 8.2% by weight.
  • the pore size distribution curve calculated by the BJH model of DBY-2.1 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-2.1 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B2.2 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at atmospheric pressure and adding ammonium chloride.
  • Example B2 The process is the same as in Example B2, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-2.2.
  • rare earth oxide is 8.2% by weight.
  • the pore size distribution curve calculated by the BJH model of DBY-2.2 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-2.2 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example C2 illustrates the rare earth-containing Y-type molecular sieve prepared by the fourth method.
  • rare earth oxide is 8.2% by weight.
  • the pore size distribution curve calculated by the BJH model of PCY-2 is the same as the characteristic of curve A in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve C in Fig. 7.
  • the XRD spectrum of PCY-2 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example C2 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by impregnating loaded ammonium chloride and calcining under normal pressure.
  • Example C2 The process is the same as that of Example C2, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is denoted as DCY-2.
  • rare earth oxide is 8.2% by weight.
  • the pore size distribution curve calculated by the BJH model of DCY-2 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DCY-2 has similar features to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example B3 illustrates the rare earth-containing Y-type molecular sieve prepared by the third method.
  • PBY-3 The molecular sieve sample is denoted as PBY-3.
  • rare earth oxide is 11.4% by weight.
  • the pore size distribution curve calculated by the BJH model of PBY-3 is the same as the characteristic of curve a in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve c in Fig. 7.
  • the XRD spectrum of PBY-3 has similar characteristics to the XRD spectrum of PAY-1.
  • XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B3.1 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at normal pressure without adding ammonium bicarbonate.
  • Example B3 The process is the same as that of Example B3, except that the calcination conditions are normal pressure (apparent pressure 0 MPa) and ammonium bicarbonate is not added.
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-3.1.
  • rare earth oxide is 11.4% by weight.
  • the pore size distribution curve calculated by the BJH model of DBY-3.1 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-3.1 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B3.2 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at atmospheric pressure and adding ammonium bicarbonate.
  • Example B3 The process is the same as that of Example B3, except that the firing condition is normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-3.2.
  • rare earth oxide is 11.4% by weight.
  • the pore size distribution curve calculated by the BJH model of DBY-3.2 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-3.2 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example C3 illustrates the rare earth-containing Y-type molecular sieve prepared by the fourth method.
  • rare earth oxide is 11.4% by weight.
  • the pore size distribution curve calculated by the BJH model of PCY-3 is the same as the characteristic of curve A in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve C in Fig. 7.
  • the XRD spectrum of PCY-3 has similar features to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example C3 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by impregnating and supporting ammonium bicarbonate and calcining under normal pressure.
  • Example C3 The process is the same as that of Example C3, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DCY-3.
  • rare earth oxide is 11.4% by weight.
  • the pore size distribution curve calculated by the BJH model of DCY-3 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DCY-3 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example B4 illustrates the rare earth-containing Y-type molecular sieve prepared by the third method.
  • PBY-4 a rare earth-containing Y-type molecular sieve
  • rare earth oxide is 12.6% by weight.
  • the pore size distribution curve calculated by the BJH model of PBY-4 is the same as the characteristic of curve a in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve c in Fig. 7.
  • PBY-4 has similar characteristics to the XRD spectrum of PAY-1.
  • XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B4.1 illustrates a comparative sample of Y-type molecular sieve containing rare earths obtained by hydrothermal roasting at normal pressure without adding sodium carbonate.
  • Example B4 The process is the same as in Example B4, except that the calcination conditions are normal pressure (apparent pressure 0 MPa) and no sodium carbonate is added.
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-4.1.
  • rare earth oxide is 12.6% by weight
  • the pore size distribution curve calculated by the BJH model of DBY-4.1 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-4.1 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B4.2 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at normal pressure and adding sodium carbonate.
  • Example B4 The process is the same as that of Example B4, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-4.2.
  • rare earth oxide is 12.6% by weight.
  • the pore size distribution curve calculated by the BJH model of DBY-4.2 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-4.2 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example C4 illustrates the rare earth-containing Y-type molecular sieve prepared by the fourth method.
  • rare earth oxide is 12.6% by weight.
  • the pore size distribution curve calculated by the BJH model of PCY-4 is the same as the characteristic of curve A in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve C in Fig. 7.
  • the XRD spectrum of PCY-4 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example C4 illustrates a comparative sample of Y-type molecular sieve containing rare earths obtained by impregnating loaded sodium carbonate and calcining under normal pressure.
  • Example C4 The process is the same as in Example C4, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is designated as DCY-4.
  • rare earth oxide is 12.6% by weight.
  • the pore size distribution curve calculated by the BJH model of DCY-4 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DCY-4 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example B5 illustrates the rare earth-containing Y-type molecular sieve prepared by the third method.
  • the rare earth Y-type molecular sieve sample is denoted as PBY-5-1.
  • rare earth oxide is 13.4% by weight.
  • the pore size distribution curve calculated by the BJH model of PBY-5 is the same as the characteristic of curve a in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve c in Fig. 7.
  • the XRD spectrum of PBY-5 has similar characteristics to the XRD spectrum of PAY-1.
  • XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B5.1 illustrates a comparative sample of Y-type molecular sieve containing rare earths obtained by hydrothermal roasting at atmospheric pressure without adding a buffer solution of ammonium chloride and ammonia water.
  • Example B5 The process is the same as in Example B5, except that the calcination conditions are normal pressure (apparent pressure 0 MPa) and no buffer solution of ammonium chloride and ammonia is added.
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-5.1.
  • rare earth oxide is 13.4% by weight.
  • the pore size distribution curve calculated by the BJH model of DBY-5.1 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-5.1 has similar characteristics to the XRD spectrum of PAY-1.
  • XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B5.2 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at atmospheric pressure and adding a buffer solution of ammonium chloride and ammonia water.
  • Example B5 The process is the same as in Example B5, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-5.2.
  • rare earth oxide is 13.4% by weight.
  • the pore size distribution curve calculated by the BJH model of DBY-5.2 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-5.2 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example C5 illustrates the rare earth-containing Y-type molecular sieve prepared by the fourth method.
  • rare earth oxide is 13.4% by weight.
  • the pore size distribution curve calculated by the BJH model of PCY-5 is the same as that of curve A in Fig. 6, and the adsorption-desorption curve is the same as that of curve C in Fig. 7.
  • the XRD spectrum of PCY-5 has similar features to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example C5 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by impregnating a buffer solution loaded with ammonium chloride and ammonia water and calcining under normal pressure.
  • Example C5 The process is the same as that of Example C5, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DCY-5.
  • rare earth oxide is 13.4% by weight.
  • the pore size distribution curve calculated by the BJH model of DCY-5 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DCY-5 has similar features to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example B6 illustrates the rare earth-containing Y-type molecular sieve prepared by the third method.
  • rare earth oxide is 10.0% by weight.
  • the pore size distribution curve calculated by the BJH model of PBY-6 is the same as the characteristic of curve a in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve c in Fig. 7.
  • PBY-6 has similar characteristics to the XRD spectrum of PAY-1.
  • XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B6.1 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at normal pressure without adding hydrochloric acid.
  • Example B6 The process is the same as in Example B6, except that the calcination conditions are normal pressure (apparent pressure 0 MPa) and no hydrochloric acid is added.
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-6.1.
  • rare earth oxide is 10.0% by weight.
  • the pore size distribution curve calculated by the BJH model of DBY-6.1 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-6.1 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B6.2 illustrates the Y-type molecular sieve containing rare earths obtained by hydrothermal roasting at atmospheric pressure and adding hydrochloric acid.
  • Example B6 The process is the same as that of Example B6, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-6.2.
  • rare earth oxide is 10.0% by weight.
  • the pore size distribution curve calculated by the BJH model of DBY-6.2 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-6.2 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example C6 illustrates the rare earth-containing Y-type molecular sieve prepared by the fourth method.
  • the immersion method is used to load 2g of hydrochloric acid solution.
  • pressurized hydrothermal roasting treatment at 430°C, an apparent pressure of 0.6 MPa, and a 100% steam atmosphere for 2.0 hours to obtain rare earth-containing Y Type molecular sieve sample, denoted as PCY-6.
  • rare earth oxide is 10.0% by weight.
  • the pore size distribution curve calculated by the BJH model of PCY-6 is the same as the characteristic of curve A in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve C in Fig. 7.
  • the XRD spectrum of PCY-6 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example C6 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by impregnating loaded hydrochloric acid and calcining under normal pressure.
  • Example C6 The process is the same as in Example C6, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DCY-6.
  • rare earth oxide is 10.0% by weight.
  • the pore size distribution curve calculated by the BJH model of DCY-6 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DCY-6 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example B7 illustrates the rare earth-containing Y-type molecular sieve prepared by the third method.
  • PBY-7 The molecular sieve sample is denoted as PBY-7.
  • rare earth oxide is 9.8% by weight.
  • the pore size distribution curve calculated by the BJH model of PBY-7 is the same as the characteristic of curve a in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve c in Fig. 7.
  • PBY-7 has similar characteristics to the XRD spectrum of PAY-1.
  • XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B7.1 illustrates a comparative sample of Y-type molecular sieve containing rare earths obtained by hydrothermal roasting at normal pressure without adding solid sodium hydroxide.
  • Example B7 The process is the same as in Example B7, except that the calcination conditions are normal pressure (apparent pressure 0 MPa) and no solid sodium hydroxide is added.
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DBY-7.1.
  • rare earth oxide is 9.8% by weight.
  • the pore size distribution curve calculated by the BJH model of DBY-7.1 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-7.1 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example B7.2 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by hydrothermal roasting at atmospheric pressure and adding sodium hydroxide.
  • Example B7 The process is the same as that of Example B7, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • a comparative sample of Y-type molecular sieve containing rare earth was obtained, which was recorded as DBY-7.2.
  • rare earth oxide is 9.8% by weight.
  • the pore size distribution curve calculated by the BJH model of DBY-7.2 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DBY-7.2 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Example C7 illustrates the rare earth-containing Y-type molecular sieve prepared by the fourth method.
  • rare earth oxide is 9.8% by weight.
  • the pore size distribution curve calculated by the BJH model of PCY-7 is the same as the characteristic of curve A in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve C in Fig. 7.
  • the XRD spectrum of PCY-7 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • Comparative Example C7 illustrates a comparative sample of Y-type molecular sieve containing rare earth obtained by impregnating loaded sodium hydroxide and calcining under normal pressure.
  • Example C7 The process is the same as that of Example C7, except that the firing conditions are normal pressure (apparent pressure 0 MPa).
  • the obtained comparative sample of Y-type molecular sieve containing rare earth is recorded as DCY-7.
  • rare earth oxide is 9.8% by weight.
  • the pore size distribution curve calculated by the BJH model of DCY-7 is the same as the characteristic of curve b in Fig. 6, and the adsorption-desorption curve is the same as the characteristic of curve d in Fig. 7.
  • the XRD spectrum of DCY-7 has similar characteristics to the XRD spectrum of PAY-1. XRD characterization parameters and hole parameters are shown in the table below.
  • the mesopore area and mesopore volume of the rare earth-containing Y-type molecular sieve prepared by the method of the present invention are significantly higher than those of the sample prepared in the comparative example, and it shows that it has more significant mesoporous characteristics and higher
  • the degree of crystallinity indicates that pressurized hydrothermal roasting with adjusted atmosphere can significantly increase the mesopore richness of Y molecular sieve and form a certain degree of molecular sieve mesopores.
  • Example E illustrates the preparation of the rare earth-containing Y-type molecular sieve of the present invention.
  • the rare-earth-containing Y-type molecular sieve can be used in the preparation of a catalytic cracking catalyst.
  • PEY-1 a rare earth-containing Y-type molecular sieve sample.
  • rare earth oxide is 10.1% by weight.
  • the pore size distribution curve of PEY-1 is obtained, in which there are at least three mesopore pore size distributions, and there are three significant mesopore distributions at 2-3 nm, 3-4 nm, and 10-30 nm.
  • the ratio of the peak area of the 2-3 nanometer pore size distribution to the peak area of the total pores of PEY-1 is 0.25, and the ratio of the peak area of the 10-30 nanometer pore size distribution to the peak area of the total pores is 0.3.
  • the XRD spectrum of PEY-1 has similar characteristics to the XRD spectrum of PAY-1.
  • the properties of the raw materials used are as follows:
  • Aluminum sol (Qilu Catalyst Branch, alumina content is 21.5% by weight),
  • Peptized pseudo-boehmite (solid content 10% by weight).
  • the catalyst performance test uses Wu-mixed triple oil, and its main properties are as follows:
  • Viscosity (373K), mPa.s 9.96 Residual carbon, wt% 3.0 C,wt% 85.98 H,wt% 12.86 S,wt% 0.55 N,wt% 0.18 Saturated hydrocarbon, wt% 56.56 Aromatic hydrocarbon, wt% 24.75 Gum, wt% 18.75 Asphaltene, wt% 0.44 Fe, ⁇ g/g 5.3 Ni, ⁇ g/g 5.0 V, ⁇ g/g 0.8 Cu, ⁇ g/g 0.04 Na, ⁇ g/g 1.2
  • Pseudo-boehmite and deionized water are mixed and beaten, and 36% by weight of hydrochloric acid is added to the obtained slurry to peptize, and the acid aluminum ratio (the 36% by weight of hydrochloric acid and the pseudo-boehmite on a dry basis)
  • the weight ratio of the stone is 0.20, the temperature is increased to 65°C for 1 hour, and the kaolin slurry and aluminum sol on a dry basis are added separately, and stirred for 20 minutes, and then the Y-type containing rare earth on a dry basis is added to them.
  • the molecular sieve samples PAY-1 to PAY-7 were stirred for 30 minutes to obtain a slurry with a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • the obtained catalysts are respectively denoted as AC-1 to AC-7.
  • the specific ratio of the catalyst on a dry basis is shown below table.
  • the catalyst was prepared according to the method of Example A8, except that the rare earth-containing Y-type molecular sieve of Example A8 was replaced with the rare-earth-containing Y-type molecular sieve prepared by Comparative Example A1 to Comparative Example A7. Comparative samples DAY-1 to DAY- 7.
  • the prepared comparative catalysts are marked as DAC-1 to DAC-7, and the specific ratio of the comparative catalysts is shown in the following table.
  • Test Example A2 illustrates the technical effect of the catalytic cracking catalyst of the present invention.
  • the above-mentioned catalyst samples AC-1 to AC-7 and the comparative catalyst samples DAC-1 to DAC-7 were respectively subjected to a hydrothermal aging treatment at 800° C., 100% water vapor and 17 hours for heavy oil micro-reverse evaluation.
  • Heavy oil micro-reverse evaluation conditions catalyst loading is 5 grams, raw material oil is Wu-mixed triple oil, oil intake is 1.384 grams, reaction temperature is 500°C, and regeneration temperature is 600°C.
  • the evaluation results are shown in the table below.
  • the catalytic cracking catalyst of the present invention has excellent heavy oil conversion ability and higher gasoline yield.
  • Pseudo-boehmite and deionized water are mixed and beaten, and 36% by weight of hydrochloric acid is added to the obtained slurry to peptize, and the acid aluminum ratio (the 36% by weight of hydrochloric acid and the pseudo-boehmite on a dry basis)
  • the weight ratio of the stone is 0.20, the temperature is increased to 65°C for 1 hour, and the kaolin slurry and aluminum sol on a dry basis are added separately, and stirred for 20 minutes, and then the Y-type containing rare earth on a dry basis is added to them.
  • the molecular sieve samples PDY-1 to PDY-7 were stirred for 30 minutes to obtain a slurry with a solid content of 30% by weight, and spray-dried to prepare a microsphere catalyst.
  • the obtained catalysts are respectively referred to as DC-1 to DC-7.
  • the specific ratio of the catalyst on a dry basis is shown below table.
  • the catalyst was prepared according to the method of Example D8, except that the rare earth-containing Y-type molecular sieve PDY-1 of Example D8 was replaced with the rare-earth-containing Y-type molecular sieve comparative sample DDY-1 prepared in Comparative Example D1 to Comparative Example D7. To DDY-7, the prepared catalysts are designated as DDC-1 to DDC-7, respectively.
  • the catalyst ratio on a dry basis is shown in the table below.
  • Test Example D2 illustrates the technical effect of the catalytic cracking catalyst of the present invention.
  • the above-mentioned catalyst samples DC-1 to DC-7 and the comparative catalyst samples DDC-1 to DDC-7 were subjected to a hydrothermal aging treatment at 800° C., 100% steam, and 17 hours for heavy oil micro-reverse evaluation.
  • Heavy oil micro-reverse evaluation conditions catalyst loading is 5 grams, raw material oil is Wu-mixed triple oil, oil intake is 1.384 grams, reaction temperature is 500°C, and regeneration temperature is 600°C.
  • the evaluation results are shown in the table below.
  • the catalytic cracking catalyst of the present invention has excellent heavy oil conversion ability and higher gasoline yield.
  • Example B8 and Example C8 illustrate the preparation of the cracking catalyst of the present invention.
  • the catalysts obtained are respectively denoted as BC-1 and CC-1.
  • the specific ratio of the catalyst on a dry basis is shown below table.
  • the catalyst was prepared according to the method of Example B8, except that the rare earth-containing Y-type molecular sieve of Example B1 was replaced with the rare-earth-containing Y-type molecular sieve prepared by Comparative Example B1.1, Comparative Example B1.2, and Comparative Example C1.
  • the prepared comparative catalysts are respectively referred to as DBC-1.1, DBC-1.2, and DCC-1.
  • the specific ratios of the comparative catalysts on a dry basis are shown in the following table.
  • the cracking catalysts BC-1, CC-1, comparative cracking catalysts DBC-1.1, DBC-1.2, and DCC-1 were treated with 800°C, 100% steam, and 17 hours hydrothermal aging, respectively, to conduct heavy oil micro-reverse evaluation.
  • Heavy oil micro-reverse evaluation conditions catalyst loading is 5 grams, raw material oil is Wu-mixed triple oil, oil intake is 1.384 grams, reaction temperature is 500°C, and regeneration temperature is 600°C.
  • Example B9 and Example C9 illustrate the preparation of the cracking catalyst of the present invention.
  • the obtained catalysts are respectively denoted as BC-2 and CC-2.
  • the specific ratio of the catalyst on a dry basis is shown below table.
  • the catalyst was prepared according to the method of Example B9, except that the rare earth-containing Y-type molecular sieve of Example B2 was replaced with the rare-earth-containing Y-type molecular sieve prepared by Comparative Example B2.1, Comparative Example B2.2, and Comparative Example C2.
  • the prepared comparative catalysts are marked as DBC-2.1, DBC-2.2, and DCC-2, respectively.
  • the specific ratios of the comparative catalysts on a dry basis are shown in the following table.
  • the cracking catalysts BC-2, CC-2, and the comparative cracking catalysts DBC-2.1, DBC-2.2, and DCC-2 were treated with 800°C, 100% steam and 17 hours of hydrothermal aging, respectively, for heavy oil micro-reverse evaluation.
  • Heavy oil micro-reverse evaluation conditions catalyst loading is 5 grams, raw material oil is Wu-mixed triple oil, oil intake is 1.384 grams, reaction temperature is 500°C, and regeneration temperature is 600°C.
  • Example B10 and Example C10 illustrate the preparation of the cracking catalyst of the present invention.
  • the catalysts obtained are denoted as BC-3 and CC-3 respectively.
  • the specific ratio of the catalyst on a dry basis is shown below table.
  • the catalyst was prepared according to the method of Example B10, except that the rare earth-containing Y-type molecular sieve of Example B3 was replaced with the rare-earth-containing Y-type molecular sieve prepared by Comparative Example B3.1, Comparative Example B3.2, and Comparative Example C3.
  • the prepared comparative catalysts are marked as DBC-3.1, DBC-3.2, and DCC-3, respectively.
  • the specific ratios of the comparative catalysts on a dry basis are shown in the following table.
  • the cracking catalysts BC-3, CC-3, the comparative cracking catalysts DBC-3.1, DBC-3.2, and DCC-3 were respectively subjected to 800°C, 100% steam, and 17 hours hydrothermal aging treatments for heavy oil micro-reverse evaluation.
  • Heavy oil micro-reverse evaluation conditions catalyst loading is 5 grams, raw material oil is Wu-mixed triple oil, oil intake is 1.384 grams, reaction temperature is 500°C, and regeneration temperature is 600°C.
  • Example B11 and Example C11 illustrate the preparation of the cracking catalyst of the present invention.
  • the catalysts obtained are respectively denoted as BC-4 and CC-4.
  • the specific ratio of the catalyst on a dry basis is shown below table.
  • the catalyst was prepared according to the method of Example B11, except that the rare earth-containing Y-type molecular sieve of Example B4 was replaced with the rare-earth-containing Y-type molecular sieve prepared by Comparative Example B4.1, Comparative Example B4.2, and Comparative Example C4.
  • the prepared comparative catalysts are marked as DBC-4.1, DBC-4.2, and DCC-4, respectively.
  • the specific ratios of the comparative catalysts on a dry basis are shown in the following table.
  • the cracking catalysts BC-4, CC-4, the comparative cracking catalysts DBC-4.1, DBC-4.2, and DCC-4 were treated with 800°C, 100% steam, and 17 hours of hydrothermal aging, respectively, for heavy oil micro-reverse evaluation.
  • Heavy oil micro-reverse evaluation conditions catalyst loading is 5 grams, raw material oil is Wu-mixed triple oil, oil intake is 1.384 grams, reaction temperature is 500°C, and regeneration temperature is 600°C.
  • Example B12 and Example C12 illustrate the preparation of the cracking catalyst of the present invention.
  • the catalysts obtained are respectively denoted as BC-5 and CC-5.
  • the specific ratio of the catalyst on a dry basis is shown below table.
  • the catalyst was prepared according to the method of Example B12, except that the Y-type molecular sieve containing rare earth in Example B5 was replaced with the Y-type molecular sieve prepared by Comparative Example B5.1, Comparative Example B5.2, and Comparative Example C5.
  • the prepared comparative catalysts are marked as DBC-5.1, DBC-5.2, and DCC-5, respectively.
  • the specific ratios of the comparative catalysts on a dry basis are shown in the following table.
  • the cracking catalysts BC-5, CC-5, comparative cracking catalysts DBC-5.1, DBC-5.2, and DCC-5 were treated with 800°C, 100% steam and 17 hours of hydrothermal aging, respectively, for heavy oil micro-reverse evaluation.
  • Heavy oil micro-reverse evaluation conditions catalyst loading is 5 grams, raw material oil is Wu-mixed triple oil, oil intake is 1.384 grams, reaction temperature is 500°C, and regeneration temperature is 600°C.
  • Example B13 and Example C13 illustrate the preparation of the cracking catalyst of the present invention.
  • the catalyst was prepared according to the method of Example B13, except that the rare earth-containing Y-type molecular sieve of Example B6 was replaced with the rare-earth-containing Y-type molecular sieve prepared by Comparative Example B6.1, Comparative Example B6.2, and Comparative Example C6.
  • the prepared comparative catalysts are marked as DBC-6.1, DBC-6.2, and DCC-6 respectively.
  • the specific ratios of the comparative catalysts on a dry basis are shown in the following table.
  • the cracking catalysts BC-6, CC-6, the comparative cracking catalysts DBC-6.1, DBC-6.2, and DCC-6 were treated with 800°C, 100% steam, and 17 hours of hydrothermal aging, respectively, for heavy oil micro-reverse evaluation.
  • Heavy oil micro-reverse evaluation conditions catalyst loading is 5 grams, raw material oil is Wu-mixed triple oil, oil intake is 1.384 grams, reaction temperature is 500°C, and regeneration temperature is 600°C.
  • Example B14 and Example C14 illustrate the preparation of the cracking catalyst of the present invention.
  • the obtained catalysts are respectively denoted as BC-7 and CC-7.
  • the specific ratio of the catalyst on a dry basis is shown below table.
  • the catalyst was prepared according to the method of Example B14, except that the rare earth-containing Y-type molecular sieve of Example B7 was replaced with the rare-earth-containing Y-type molecular sieve prepared by Comparative Example B7.1, Comparative Example B7.2, and Comparative Example C7.
  • the prepared comparative catalysts are respectively referred to as DBC-7.1, DBC-7.2, and DCC-7.
  • the specific ratios of the comparative catalysts on a dry basis are shown in the following table.
  • the cracking catalysts BC-7, CC-7, the comparative cracking catalysts DBC-7.1, DBC-7.2, and DCC-7 were respectively subjected to 800°C, 100% steam, and 17 hours hydrothermal aging treatments to conduct heavy oil micro-reverse evaluation.
  • Heavy oil micro-reverse evaluation conditions catalyst loading is 5 grams, raw material oil is Wu-mixed triple oil, oil intake is 1.384 grams, reaction temperature is 500°C, and regeneration temperature is 600°C.
  • the catalyst prepared by the present invention has excellent heavy oil conversion ability and higher gasoline yield.
  • the BC-1 sample of the present invention has been treated with 800°C, 100% water vapor, and 17 hours of hydrothermal aging, showing superior heavy oil cracking activity, and the conversion rate is increased by 6.22%.
  • the yield increased by 5.15 percentage points, and the coke/conversion rate decreased by 0.01.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

提供了一种含稀土的Y型分子筛,其特征在于至少存在2-3纳米和3-4纳米处两种介孔孔径分布。还提供了一种催化裂化催化剂,所述催化裂化催化剂用于重油催化裂化时具有优异的重油转化能力,更高的汽油收率,更低的焦炭选择性。

Description

含稀土的Y型分子筛及其制备方法、含该分子筛的催化裂化催化剂 技术领域
本发明涉及一种含稀土的Y型分子筛及其制备方法,以及含该分子筛的催化裂化催化剂。
背景技术
催化裂化是当今炼油厂最重要的生产技术,催化裂化装置用于将重油和渣油转化为汽油、柴油和轻气体组分。
在工业中,催化裂化装置必须包括反应与催化剂高温再生两个部分,因此催化剂需要考虑催化活性、选择性等因素,相较于其他类型的分子筛,Y型分子筛被更多用于裂化反应中,作为催化裂化催化剂活性组元,它在催化裂化催化剂中的主要作用是负责生产汽油范围分子产物。
稀土交换的稀土Y分子筛是催化裂化催化剂的高活性组元。
稀土Y分子筛中稀土离子由超笼向方钠石笼中迁移,并形成含氧桥的多核阳离子结构,增加了分子筛的酸中心在高温水热环境下的稳定性,提高了分子筛催化剂的裂化活性和活性稳定性,从而改善催化剂的重油转换活性和选择性。
但当NaY分子筛与稀土盐的水溶液进行离子交换时,直径约为0.79nm的水合稀土离子很难通过Y分子筛六元环窗口(直径约为0.26nm)进入方钠石笼。
因此,在稀土Y分子筛制备过程中必须通过焙烧来除去围绕在稀土离子周围的水合层,使稀土离子可以进入方钠石笼中以至六角棱柱体内,同时这些笼内的钠离子也借助于焙烧过程迁移出来到超笼中,总之,焙烧的结果是加速了固态离子间的晶内交换,为分子筛在水溶液中与其他阳离子例如NH 4 +、RE 3+的交换以及降低分子筛的Na +含量创造条件(USP3402996)。
因此,如何促进稀土离子的迁移,提高可被锁住的阳离子位置(小笼内)上稀土离子的占有率,将直接关系到稀土Y分子筛的性能并影响以其为活性组分的催化剂的活性稳定性。
为促进稀土离子迁移入方钠石笼,工业通常采用高温焙烧或者高温水热焙烧的方法,然而过高的焙烧温度除了对工业焙烧炉的材质要求更苛刻外,已经被锁住位置的稀土离子有返回到大笼的趋势(Zeolites,6(4),235,1986)。
目前工业焙烧技术现状:NaY与RE 3+交换后得到的稀土NaY(氧化钠 含量4.5-6.0%)分子筛滤饼,需要在高温焙烧(550-580℃)进行固态离子交换,再水溶液交换脱钠。
目前固态离子交换度需要进一步提升是当前面临的主要问题。
因此,如何在限定的焙烧温度下使尽可能多的稀土离子迁移到小笼位置以进一步提高分子筛的稳定性就成为了工业上有待解决的一大技术难题。
在CN1026225C中公开了一种稀土Y分子筛的制备方法,该方法是将NaY分子筛与RE 3+在水溶液中进行一次离子交换后,于450至600℃、100%流动水蒸汽中焙烧1至3小时。
在CN103508467A中公开的一种稀土Y分子筛及其制备方法,所述方法是将NaY分子筛与稀土盐溶液或铵盐和稀土盐溶液混合溶液进行接触处理,经过滤、水洗、干燥后进行焙烧处理,得到稀土钠Y分子筛;然后将其打浆并与铵盐溶液接触后不过滤,再与稀土盐溶液混合并用碱性液体调节浆液pH值进行稀土沉积,或者将稀土钠Y分子筛打浆后与铵盐和稀土盐溶液混合溶液进行接触处理,再用碱性液体调节浆液pH值进行稀土沉积,再经过滤干燥后进行第二次焙烧处理,得到稀土Y分子筛。
该方法需要经过两交两焙并结合沉积稀土的过程。
现有技术中,由于焙烧工艺的限制,稀土Y分子筛中在限定的焙烧温度下,稀土离子迁移到小笼位置过程中,仍有一部分稀土离子存在于超笼中,未能及时迁移至小笼中,导致稀土Y分子筛的水热稳定性受到限制,进而影响其在催化裂化催化剂中的重油裂化转化能力。
发明内容
本发明的发明人在大量的试验的基础上意外地发现:采用加压方式的水热焙烧可以得到具有独特介孔特征的含稀土的Y型分子筛,该含稀土的Y型分子筛具有更高的活性稳定性和水热稳定性。基于此,形成本发明。
本发明提供了一种含稀土的Y型分子筛,其特征在于至少存在2-3纳米和3-4纳米处两种介孔孔径分布。例如,该含稀土的Y型分子筛至少存在3种介孔孔径分布,分别在2-3纳米、3-4纳米、10-30纳米处存在3种介孔分布。
本发明还提供了一种催化裂化催化剂,其包括上述的含稀土的Y型分子筛,以及无机氧化物粘结剂和/或天然矿物质。
本发明还提供了一种含稀土的Y型分子筛的制备方法,其包括将含稀土 的NaY分子筛在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理的步骤,所述的气氛环境,其表观压力为0.01至1.0MPa并含1至100%水蒸气,水热焙烧处理在300至800℃,优选400至600℃的温度下进行。所述的含稀土的NaY分子筛是由将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理的步骤得到。
本发明还提供了一种含稀土的Y型分子筛的制备方法,其包括:(1)将NaY分子筛与铵盐进行部分铵交换以脱除10-80%的钠离子,过滤、洗涤、干燥得到NH 4NaY分子筛;(2)将步骤(1)得到的NH 4NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,过滤、水洗、干燥,得到含稀土的NaY分子筛;(3)将步骤(2)得到的含稀土的NaY分子筛在外部施加压力和外部添加含酸性物质或碱性物质的水溶液的气氛环境下进行水热焙烧处理,或者将步骤(2)得到的含稀土的NaY分子筛与酸性物质或碱性物质接触得到含酸性物质或碱性物质的含稀土的NaY分子筛后,在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理,所述的气氛环境,其表观压力为0.01至1MPa并含1至100%水蒸气,水热焙烧处理温度在300至800℃、优选400至600℃下进行。
本发明提供的所述的含稀土的Y型分子筛具有更高的水热结构稳定性和更高的裂化活性稳定性,焦炭选择性降低,在重油催化领域具有广阔的应用前景。
本发明提供的制备所述的含稀土的Y型分子筛的方法能够促进稀土离子由超笼向方钠石笼迁移并形成特殊的孔径分布特征,过程简单易操作,显著增加Y型分子筛介孔丰富度,形成一定程度的分子筛介孔,改善可接近性,提升活性中心利用率,该方法是分子筛晶体扩孔的低成本、低排放的新途径。
附图说明
图1为PAY-1根据BJH模型计算得到的孔径分布曲线。
图2为PAY-1的X射线衍射(XRD)谱图。
图3为DAY-1根据BJH模型计算得到的孔径分布曲线。
图4为PDY-1根据BJH模型计算得到的孔径分布曲线。
图5为DDY-1根据BJH模型计算得到的孔径分布曲线。
图6显示了PBY-1(曲线a)、DBY-1.1(b曲线)和PCY-1(A曲线)的根据BJH模型计算得到的孔径分布曲线。
图7显示了PBY-1(曲线c)、DBY-1.1(d曲线)和PCY-1(C曲线)的吸脱附曲线。
具体实施方式
含稀土的Y型分子筛
本发明提供了一种含稀土的Y型分子筛,其特征在于至少存在2-3纳米和3-4纳米处两种介孔孔径分布。例如,该含稀土的Y型分子筛至少存在3种介孔孔径分布,分别在2-3纳米、3-4纳米、10-30纳米处存在3种介孔分布。
根据本发明的一种实施方案,在BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为≥0.05,例如≥0.1,或者0.1至0.4。
根据本发明的一种实施方案,本发明的含稀土的Y型分子筛的特征在于至少存在2-3纳米、3-4纳米、10-30纳米处介孔孔径分布,在BJH孔径分布谱图中,2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.1,10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.2;例如,2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.12,10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.22;或者,2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.15,10-30纳米孔径分布的峰面积与总孔的峰面积的比值例如大于0.25;或者,2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0.18至0.26,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0.27至0.32;或者2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.12、优选大于0.15、更优选为0.18至0.26,10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.22、优选大于0.25、更优选0.27至0.32。
根据本发明的一种实施方案,本发明的含稀土的Y型分子筛的特征在于至少存在2-3纳米、3-4纳米、10-30纳米处介孔孔径分布,在BJH孔径分布谱图中,2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.1,10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.2;例如,2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.12,10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.22;或者,2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.15,10-30纳米孔径分布的峰面积与总孔的峰面积的比值例如大于0.25;或者,2-3纳米孔径分布的峰面积与总孔的峰面积的 比值为0.18至0.26,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0.27至0.32;2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为≥0.05,例如≥0.1,或者0.1至0.4。
根据本发明的一种实施方案,本发明的含稀土的Y分子筛,其稀土含量以氧化稀土计为1至20重量%、例如2至18重量%、或8至15重量%,晶胞常数为2.440至2.470nm,结晶度为30至60%。
根据本发明的一种实施方案,本发明的含稀土的Y分子筛,其介孔体积大于0.03cc/g,例如大于0.031cc/g,或者为0.031cc/g至0.037cc/g或者0.031cc/g至0.057cc/g。所述的介孔是指孔径为2至50nm的孔。
对于含稀土的Y型分子筛,在其X射线衍射图谱中,2θ=11.8±0.1°峰可用于表征小笼中的稀土分布情况,I 1表示其峰强度;2θ=12.3±0.1°峰可用于表征超笼中的稀土分布情况,I 2表示其峰强度,I 1与I 2的比值可用于表征稀土离子由超笼向小笼中迁移的程度,比值越高表明迁移程度越好,反之较差。
如果采用常规的常压水蒸气焙烧得到的含稀土的Y型分子筛,X射线衍射图中2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值通常<4。
本发明的含稀土的Y分子筛,X射线衍射图中2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值可以是>4.0,≥4.0,>4.3,≥4.8,≥4.9,例如4.5至6.0,例如,4.8至6.0,或者4.8至7.0。
催化剂
本发明还提供了一种催化裂化催化剂,其包括上述的含稀土的Y型分子筛,以及无机氧化物粘结剂和/或天然矿物质。
根据本发明的一种实施方案,本发明的催化裂化催化剂,以干基重量计,含有20-60重量%的含稀土的Y型分子筛、10-30重量%的无机氧化物粘结剂和30-50重量%的天然矿物质。
根据本发明的一种实施方案,上述的含稀土的Y型分子筛作为主要的裂化活性组分。
无机氧化物粘结剂和天然矿物质都是本领域常规使用的那些。
本发明的催化裂化催化剂中,所述的天然矿物质包括选自高岭土、多水高岭土、蒙脱土、硅藻土、凸凹棒石、海泡石、埃洛石、水滑石、膨润土和累托土中的至少一种;所述的无机氧化物粘结剂或其前身物包括选自硅溶胶、铝溶胶、胶溶拟薄水铝石、硅铝溶胶和含磷铝溶胶中的至少一种。
本发明的催化裂化催化剂,制备方法包括:将包括含稀土的Y型分子筛、天然矿物质和无机氧化物粘结剂等的用于制备催化裂化催化剂的原料和水混合以后进行打浆和喷雾干燥,其中以干基重量计,所述催化剂含有20-60重量%的含稀土的Y型分子筛、10-30重量%的无机氧化物粘结剂和30-50重量%的天然矿物质。
含稀土的Y型分子筛的制备方法
根据本发明的第1种所述的含稀土的Y型分子筛的制备方法,其包括将含稀土的NaY分子筛在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理的步骤,所述的气氛环境,其表观压力为0.01至1.0MPa并含1至100%水蒸气,水热焙烧处理在300至800℃,优选400至600℃的温度下进行。
本发明的方法,所述的含稀土的NaY分子筛是由将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理的步骤A得到。
在步骤A中,所述的稀土盐溶液选自包含镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液;所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
本发明的方法,步骤A优选是在pH=3.0至5.0、水筛重量比5至30,室温至100℃下进行。
在步骤A中接触处理之后还包括常规的过滤、水洗、干燥,其目的是去除例如氯离子,防止后续的焙烧过程对设备的腐蚀作用,也起到有部分脱钠的作用。
本发明的方法,其中所述的水热焙烧处理是在外部施加压力和外部添加水的气氛环境下进行。
所述的气氛环境以由外部施加压力和外部施加水而获得,优选表观压力为0.1至0.8MPa、更优选表观压力为0.3至0.6MPa,优选含30至100%水蒸气,更优选含60至100%水蒸气。
所述的外部施加压力是指从外部针对制备物料水热焙烧处理过程中施加一定压力,例如,可以采用从外部通入惰性气体保持一定背压的方式进行。
所述的外部施加水的量,以满足所述的气氛环境含1至100%水蒸气为准。
本发明的方法,还可以包括水热焙烧处理的步骤后进行铵交换的步骤。
所述的铵交换是在室温至100℃下交换至少0.3小时,其中稀土钠Y分子筛按分子筛干基计,与铵盐和水的重量比例为1:(0.05至0.5):(5至30)。
根据本发明的第2种制备上述的含稀土的Y分子筛的方法,其特征在于该制备方法包括:
(1)将NaY分子筛与铵盐进行部分铵交换以脱除10-80%的钠离子,过滤、洗涤、干燥得到NH 4NaY分子筛;
(2)将步骤(1)得到的NH 4NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,过滤、水洗、干燥,得到含稀土的NaY分子筛;
(3)将步骤(2)得到的含稀土的NaY分子筛在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理,所述的气氛环境,其表观压力为0.01至1MPa并含1至100%水蒸气,水热焙烧处理温度在300至800℃、优选400至600℃下进行。
本发明的制备方法中,所述的步骤(1)和步骤(2)中铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
本发明的制备方法中,所述的步骤(1)中将NaY分子筛与与铵盐进行部分铵交换,目的是脱除10-80%、优选20-60%的钠离子。
该过程例如可以是将NaY分子筛与铵盐溶液,水筛重量比为5至30,铵盐与重量比为0.01至3,NaY分子筛交换温度为室温至100℃下交换至少0.3小时。
本发明的制备方法中,所述的步骤(2)中稀土盐溶液选自包含镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液。
本发明的制备方法中,所述的步骤(2)中所说的将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,其过程是将NaY分子筛与稀土盐溶液或铵盐和稀土盐溶液混合溶液,在浆液pH=3.0至5.0,水筛重量比为5至30,交换温度为室温至100℃下交换至少0.3小时。
在步骤(2)中接触处理之后还包括常规的过滤、水洗、干燥,其目的是去除例如氯离子,防止后续的焙烧过程对设备的腐蚀作用,也起到有部分脱钠的作用。
本发明的制备方法中,步骤(3)水热焙烧处理是在外部施加压力和外部添加水的气氛环境下进行。
所述的气氛环境以由外部施加压力和外部施加水而获得,优选表观压力为0.1至0.8MPa、更优选表观压力为0.3至0.6MPa,优选含30至100%水蒸气,更优选含60至100%水蒸气。
所述的外部施加压力是指从外部针对制备物料水热焙烧处理过程中施加一定压力,例如,可以采用从外部通入惰性气体保持一定背压的方式进行。
所述的外部施加水的量,以满足所述的气氛环境含1至100%水蒸气为准。
本发明的制备方法,还可以包括步骤(3)后进行铵交换的步骤(4)。
步骤(4)的铵交换是在室温至100℃下交换至少0.3小时,其中稀土钠Y分子筛按分子筛干基计,与铵盐和水的重量比例为1:(0.05至0.5):(5至30)。
本发明的这类制备方法制备了具有独特的孔径分布特点的本发明的含稀土的Y型分子筛,其至少存在2-3纳米、3-4纳米、10-30纳米处介孔孔径分布,其中,2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.1,10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.2。
根据本发明的第3种所述的含稀土的Y型分子筛的制备方法,其包括:将含稀土的NaY分子筛在外部施加压力和外部添加含酸性物质或碱性物质的水溶液的气氛环境下进行水热焙烧处理并回收产物,所述的气氛环境,其表观压力为0.01至1MPa并含1至100%水蒸气。
在本发明的制备方法中,所述的含稀土的NaY分子筛优选是将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,经过滤、水洗、干燥得到的。
所述的稀土盐溶液选自包含镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液。
所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
所述的将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,其过程是将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液,在浆液pH=3.0至5.0,水筛重量比为5至30,交换温度为室温至100℃下交换至少0.3小时。
本发明的方法,水热焙烧处理是在外部施加压力和外部添加水的气氛环 境下进行。
所述的气氛环境以由外部施加压力和外部施加水而获得,优选表观压力为0.1至0.8MPa、更优选表观压力为0.3至0.6MPa,优选含30至100%水蒸气,更优选含60至100%水蒸气。
所述的外部施加压力是指从外部针对制备物料水热焙烧处理过程中施加一定压力,例如,可以采用从外部通入惰性气体保持一定背压的方式进行。
所述的外部施加水的量,以满足所述的气氛环境的1至100%水蒸气为准。
本发明的方法,还可以包括之后进行铵交换的步骤。
铵交换是在室温至100℃下交换至少0.3小时,其中稀土钠Y分子筛按分子筛干基计,与铵盐和水的重量比例为1:(0.05至0.5):(5至30)。
所述的含稀土的NaY分子筛在表观压力0.01至1MPa、1至100%水蒸气气氛以及含酸性物质或碱性物质存在下进行焙烧处理;优选是在300至800℃、0.1至0.8MPa、30至100%水蒸气气氛下焙烧至少0.1小时,更优选在400至600℃、0.3至0.6MPa、60至100%水蒸气气氛下焙烧1至3小时。
所述的酸性物质包含氯化铵、硫酸铵、碳酸铵、碳酸氢铵、磷酸铵、磷酸二氢铵、磷酸氢二铵、盐酸、硫酸、硝酸等中的一种或多种的混合物,其中优选碳酸铵、碳酸氢铵、磷酸铵、磷酸二氢铵、磷酸氢二铵中的一种或多种;所述的碱性物质选自包含氨水、氨水与氯化铵的缓冲溶液、氢氧化钠、偏铝酸钠、碳酸钠、碳酸氢钠等中的一种或多种的混合物,其中优选氨水或氨水与氯化铵的缓冲溶液。
本发明的制备方法,进一步可以包括将所述的产物稀土钠Y分子筛经铵盐水溶液交换处理,经过滤、洗涤、干燥得到含稀土的Y型分子筛。
交换处理是在室温至100℃下交换至少0.3小时,其中稀土钠Y分子筛按分子筛干基计,与铵盐和水的重量比例为1:(0.05至0.5):(5至30)。
根据本发明的第4种所述的含稀土的Y型分子筛的制备方法,其包括:将含稀土的NaY分子筛与酸性物质或碱性物质接触得到含酸性物质或碱性物质的含稀土的NaY分子筛在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理,所述的气氛环境,其表观压力为0.01至1MPa并含1至100%水蒸气。
在本发明的制备方法中,所述的含稀土的NaY分子筛优选是将NaY分 子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,经过滤、水洗、干燥处理的步骤A得到的。
步骤A所述的稀土盐溶液选自包含镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液。
步骤A所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
步骤A所述的将NaY分子筛与稀土盐溶液或铵盐和稀土盐溶液的混合溶液进行接触处理,其过程通常为将NaY分子筛与稀土盐溶液或铵盐和稀土盐溶液混合溶液,在浆液pH=3.0至5.0,水筛重量比为5至30,交换温度为室温至100℃下交换至少0.3小时。
在本发明的制备方法中,利用酸性物质或碱性物质对含稀土的NaY分子筛进行改性。所述的酸性物质包含氯化铵、硫酸铵、碳酸铵、碳酸氢铵、磷酸铵、磷酸二氢铵、磷酸氢二铵、盐酸、硫酸、硝酸等中的一种或多种的混合物;所述的碱性物质选自包含氨水、氨水与氯化铵的缓冲溶液、氢氧化钠、偏铝酸钠、碳酸钠、碳酸氢钠等中的一种或多种的混合物;所述的与酸性物质或碱性物质接触,可以是浸渍或者负载等常用的方式。
在本发明的制备方法中,所述的水热焙烧处理是在外部施加压力和外部添加水的气氛环境下进行。
所述的气氛环境以由外部施加压力和外部施加水而获得,优选表观压力为0.1至0.8MPa、更优选表观压力为0.3至0.6MPa,优选含30至100%水蒸气,更优选含60至100%水蒸气。
所述的外部施加压力是指从外部针对制备物料水热焙烧处理过程中施加一定压力,例如,可以采用从外部通入惰性气体保持一定背压的方式进行。
所述的外部施加水的量,以满足所述的气氛环境含1至100%水蒸气为准。
所述的水热焙烧温度为300至800℃、优选400至600℃;焙烧时间至少0.1小时、优选0.5至3小时。
根据本发明的第5种所述的含稀土的Y型分子筛的制备方法,其包括:
(1)将NaY分子筛与铵盐进行部分铵交换以脱除10-80%的钠离子,过滤、洗涤、干燥得到NH 4NaY分子筛;
(2)将步骤(1)得到的NH 4NaY分子筛与稀土盐溶液或者稀土盐溶液 和铵盐的混合溶液进行接触处理,过滤、水洗、干燥,得到含稀土的NaY分子筛;
(3)将步骤(2)得到的含稀土的NaY分子筛在外部施加压力和外部添加含酸性物质或碱性物质的水溶液的气氛环境下进行水热焙烧处理,或者将步骤(2)得到的含稀土的NaY分子筛与酸性物质或碱性物质接触得到含酸性物质或碱性物质的含稀土的NaY分子筛后,在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理,所述的气氛环境,其表观压力为0.01至1MPa(例如0.1至0.8MPa、或者0.3至0.6MPa)并含1至100%(例如30至100%、或者60至100%)水蒸气,水热焙烧处理温度在300至800℃、优选400至600℃下进行。
本发明的制备方法中,所述的步骤(1)和步骤(2)中铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
本发明的制备方法中,所述的步骤(1)中将NaY分子筛与与铵盐进行部分铵交换,目的是脱除10-80%、优选20-60%的钠离子。
该过程例如可以是将NaY分子筛与铵盐溶液,水筛重量比为5至30,铵盐与重量比为0.01至3,NaY分子筛交换温度为室温至100℃下交换至少0.3小时。
本发明的制备方法中,所述的步骤(2)中稀土盐溶液选自包含镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液。
本发明的制备方法中,所述的步骤(2)中所说的将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,其过程是将NaY分子筛与稀土盐溶液或铵盐和稀土盐溶液混合溶液,在浆液pH=3.0至5.0,水筛重量比为5至30,交换温度为室温至100℃下交换至少0.3小时。
在步骤(2)中接触处理之后还包括常规的过滤、水洗、干燥,其目的是去除例如氯离子,防止后续的焙烧过程对设备的腐蚀作用,也起到有部分脱钠的作用。
本发明的制备方法中,步骤(3)水热焙烧处理是在外部施加压力和外部添加水的气氛环境下进行。
所述的酸性物质可以但不限于选自氯化铵、硫酸铵、碳酸铵、碳酸氢铵、磷酸铵、磷酸二氢铵、磷酸氢二铵、盐酸、硫酸、硝酸等中的一种或多种的混合物,其中优选碳酸铵、碳酸氢铵、磷酸铵、磷酸二氢铵、磷酸氢二铵中的一种或多种;所述的碱性物质可以但不限于选自氨水、氨水与氯化铵的缓 冲溶液、氢氧化钠、偏铝酸钠、碳酸钠、碳酸氢钠等中的一种或多种的混合物,其中优选氨水或氨水与氯化铵的缓冲溶液。
所述的气氛环境以由外部施加压力和外部施加水而获得,优选表观压力为0.1至0.8MPa、更优选表观压力为0.3至0.6MPa,优选含30至100%水蒸气,更优选含60至100%水蒸气。
所述的外部施加压力是指从外部针对制备物料水热焙烧处理过程中施加一定压力,例如,可以采用从外部通入惰性气体保持一定背压的方式进行。
所述的外部施加含酸性物质或碱性物质的水溶液中的水的量,以满足所述的气氛环境含1至100%水蒸气为准。
本发明的制备方法,还可以包括步骤(3)后进行铵交换的步骤(4)。
步骤(4)的铵交换是在室温至100℃下交换至少0.3小时,其中稀土钠Y分子筛按分子筛干基计,与铵盐和水的重量比例为1:(0.05至0.5):(5至30)。
本发明的这类制备方法制备了具有独特的孔径分布特点的本发明的含稀土的Y型分子筛,其至少存在2-3纳米、3-4纳米、10-30纳米处介孔孔径分布,其中,2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.1,10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.2,并且在BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为≥0.05,例如≥0.1,或者0.1至0.4。
本发明提供的制备所述的含稀土的Y型分子筛的方法可以只进行一次焙烧,优选地仅仅进行一次焙烧。
本发明还提供了下述技术方案:
A1.一种含稀土的Y型分子筛,其特征在于至少存在2-3纳米和3-4纳米处两种介孔孔径分布。
A2.按照技术方案A1的分子筛,其BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值≥0.05、优选≥0.1、更优选为0.1至0.4。
A3.按照技术方案A1的分子筛,其稀土含量以氧化稀土计为2至18重量%,优选8至15重量%,晶胞常数为2.440至2.470nm,结晶度为30至60%。
A4.按照技术方案A1的分子筛,其特征在于,X射线衍射图中2θ=11.8±0.1°峰的强度I1与2θ=12.3±0.1°峰的强度I2的比值≥4.0、优选为4.5 至6.0。
A5.技术方案A1-4之一的含稀土的Y型分子筛的制备方法,其特征在于包括将含稀土的NaY分子筛在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理的步骤,所述的气氛环境,其表观压力为0.01至1.0MPa并含1至100%水蒸气。
A6.按照技术方案A5的方法,所述的含稀土的NaY分子筛是由将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理的步骤A得到。
A7.按照技术方案A6的方法,其中,所述的稀土盐溶液选自镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液。
A8.按照技术方案A6的方法,其中,所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
A9.按照技术方案A6的方法,其中,步骤A在pH=3.0至5.0、水筛重量比5至30,室温至100℃下进行。
A10.按照技术方案A5的方法,其中,所述的气氛环境,其表观压力优选为0.1至0.8MPa、更优选0.3至0.6MPa,含30%至100%水蒸气、优选60至100%水蒸气。
A11.按照技术方案A5的方法,其中,所述的水热焙烧处理的步骤在300至800℃、优选400至600℃下进行。
B1.一种含稀土的Y型分子筛,其特征在于,至少存在2-3纳米、3-4纳米、10-30纳米处介孔孔径分布,BJH孔径分布谱图中,2-3纳米孔径分布的峰面积与总的孔的峰面积的比值大于0.1,10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.2。
B2.按照技术方案B1的分子筛,其中,所述的2-3纳米孔径分布的峰面积与总的孔的峰面积的比值大于0.12、优选大于0.15、更优选为0.18至0.26,10-30纳米孔径分布的峰面积与总的孔的峰面积的比值大于0.22、优选大于0.25、更优选0.27至0.32。
B3.按照技术方案B1的分子筛,其中,所述的稀土,其含量以氧化稀土计为2至18重量%、优选8至15重量%,晶胞常数为2.440至2.470nm,结晶度为30至60%。
B4.按照技术方案B1的分子筛,其特征在于,X射线衍射图中2θ=11.8±0.1°峰的强度I1与2θ=12.3±0.1°峰的强度I2的比值大于4.0、优选大 于4.3、更优选为4.8至6.0。
B5.含稀土的Y型分子筛的制备方法,包括以下步骤:
(1)将NaY分子筛与铵盐进行部分铵交换以脱除10-80%的钠离子,过滤、洗涤、干燥得到NH4NaY分子筛;
(2)将步骤(1)得到的NH4NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,过滤、水洗、干燥,得到含稀土的NaY分子筛;
(3)将步骤(2)得到的含稀土的NaY分子筛在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理,所述的气氛环境,其表观压力为0.01至1MPa并含1至100%水蒸气。
B6.按照技术方案B5的方法,其中,步骤(1)与步骤(2)中所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
B7.按照技术方案B5的方法,其中,步骤(2)中稀土盐溶液为包含镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液。
B8.按照技术方案B5的方法,其中,步骤(2)是将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液,在浆液pH=3.0至5.0,水筛重量比为5至30,交换温度为室温至100℃下交换至少0.3小时。
B9.按照技术方案B5的方法,其中,步骤(3)中所述的气氛环境,其表观压力为0.1至0.8MPa、优选0.3至0.6MPa,含30%至100%水蒸气、优选60至100%水蒸气。
B10.按照技术方案B5的方法,其中,步骤(3)所述的水热焙烧在300至800℃、优选400至600℃下进行。
C1.含稀土的Y型分子筛的制备方法,包括:将含稀土的NaY分子筛在外部施加压力和外部添加含酸性物质或碱性物质的水溶液的气氛环境下进行水热焙烧处理并回收产物,所述的气氛环境,其表观压力为0.01至1MPa并含1至100%水蒸气。
C2.按照技术方案C1的方法,其中,所述的含稀土的NaY分子筛是将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,经过滤、水洗、干燥得到的。
C3.按照技术方案C2的方法,其中,所述的稀土盐溶液包含镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液。
C4.按照技术方案C2的方法,其中,所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
C5.按照技术方案C2的方法,其中,所述的将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,其过程是将NaY分子筛与稀土盐溶液或铵盐和稀土盐溶液混合溶液,在浆液pH=3.0至5.0,水筛重量比为5至30,交换温度为室温至100℃下交换至少0.3小时。
C6.按照技术方案C1或2的方法,其中,所述的酸性物质包含氯化铵、硫酸铵、碳酸铵、碳酸氢铵、碳酸铵、磷酸铵、磷酸二氢铵、磷酸氢二铵、盐酸、硫酸、硝酸等中的一种或多种的混合物。
C7.按照技术方案C1的方法,其中,所述的碱性物质包含氨水、氨水与氯化铵的缓冲溶液、氢氧化钠、碳酸钠、碳酸氢钠等中的一种或多种的混合物。
C8.按照技术方案C1的方法,其中,所述的气氛环境,其表观压力优选为0.1至0.8MPa、更优选表观压力为0.3至0.6MPa,水热焙烧处理温度在300至800℃,优选400至600℃下进行。
C9.按照技术方案C1的方法,其中,所述的气氛环境,含30至100%水蒸气、优选含60至100%水蒸气。
C10.技术方案C1-9之一的方法得到的含稀土的Y型分子筛。
C11.按照技术方案C10的分子筛,其至少存在2-3纳米和3-4纳米处两种介孔孔径分布,其介孔体积大于0.03cc/g。
C12.按照技术方案C10的分子筛,其中,所述的介孔体积为0.031cc/g至0.037cc/g。
C13.按照技术方案C10的分子筛,其特征在于X射线衍射图中2θ=11.8±0.1°峰的强度I1与2θ=12.3±0.1°峰的强度I2的比值≥4.0,优选比值为4.5至6.0。
C14.按照技术方案C10的分子筛,其稀土含量以氧化稀土计为2至18重量%,优选8至15重量%,晶胞常数为2.440至2.470nm,结晶度为30至60%。
D1、一种Y型分子筛的改性方法,包括:将含稀土的NaY分子筛与碱性物质接触得到含碱性物质的含稀土的NaY分子筛在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理,所述的气氛环境,其表观压力为0.01至1MPa并含1至100%水蒸气。
D2、按照技术方案D1的方法,其中,所述的含稀土的NaY分子筛是将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,经过滤、水洗、干燥处理的步骤A得到的。
D3、按照技术方案D2的方法,其中,步骤A中所述的稀土盐溶液为包含选自镧、铈、镨、钕中的一种或多种的氯化物水溶液。
D4、按照技术方案D2的方法,其中,步骤A中所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
D5、按照技术方案D2的方法,其中,所述的步骤A是在pH=3.0至5.0、水筛重量比5至30,室温至100℃下进行。
D6、按照技术方案D1的方法,其中,所述的碱性物质选自氨水、氨水与氯化铵的缓冲溶液、氢氧化钠、碳酸钠、碳酸氢钠中的一种或多种。
D7、按照技术方案D1的方法,其中,所述的气氛环境,其表观压力为0.1至0.8MPa、优选0.3至0.6MPa,水热焙烧处理温度在300至800℃、优选400至600℃。
D8、按照技术方案D1或7的方法,其中,所述的气氛环境,含30至100%水蒸气、优选60至100%水蒸气。
D9、技术方案D1-8之一方法得到的含稀土的Y型分子筛。
D10、按照技术方案D9的分子筛,其至少存在2-3纳米和3-4纳米处两种介孔孔径分布,其介孔体积大于等于0.031cc/g。
D11、按照技术方案D9的分子筛,其中,所述的介孔体积为0.031cc/g至0.057cc/g。
D12、按照技术方案D9的分子筛,其X射线衍射图中2θ=11.8±0.1°峰的强度I1与2θ=12.3±0.1°峰的强度I2的比值为≥4.0;优选的比值为4.5至6.0。
D13、按照技术方案D9的分子筛,其稀土含量以氧化稀土计为2至18重量%、优选8至15重量%,晶胞常数为2.440至2.470nm,结晶度为30至60%。
E1.一种催化裂化催化剂,含有无机氧化物粘结剂、天然矿物质和含稀土的Y型分子筛,其特征在于,所述的含稀土的Y型分子筛,至少存在2-3纳米和3-4纳米处两种介孔孔径分布。
E2.按照技术方案E1的催化剂,其中,以干基重量计,含有10-30重量%的无机氧化物粘结剂、30-50重量%的天然矿物质和20-60重量%的含含 稀土的Y型分子筛。
E3.按照技术方案E1的催化剂,其中,所述的含稀土的Y型分子筛,其BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值≥0.05、优选≥0.1、更优选为0.1至0.4。
E4.按照技术方案E1的催化剂,其中,所述的含稀土的Y型分子筛,其稀土含量以氧化稀土计为1至20重量%,优选8至15重量%,晶胞常数为2.440至2.470nm,结晶度为30至60%。
E5.按照技术方案E1的催化剂,其中,所述的含稀土的Y型分子筛,其X射线衍射图中2θ=11.8±0.1°峰的强度I1与2θ=12.3±0.1°峰的强度I2的比值≥4.0、优选为4.5至6.0。
E6.技术方案E1-5之一的催化剂,其中,所述的含稀土的Y型分子筛是包括将含稀土的NaY分子筛在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理的步骤得到的,所述的气氛环境,其表观压力为0.01至1.0MPa并含1至100%水蒸气。
E7.按照技术方案E6的催化剂,其中,所述的含稀土的NaY分子筛是由将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理的步骤A得到的;优选的,所述的步骤A是在pH=3.0至5.0、水筛重量比5至30,室温至100℃下进行。
E8.按照技术方案E7的催化剂,其中,所述的稀土盐溶液选自镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液;所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
E9.按照技术方案E6的催化剂,其中,所述的气氛环境,其表观压力优选为0.1至0.8MPa、更优选0.3至0.6MPa,含30%至100%水蒸气、优选60至100%水蒸气;所述的水热焙烧处理的步骤在300至800℃,优选400至600℃下进行。
E10.按照技术方案E1的催化剂,其中,所述的天然矿物质选自高岭土、多水高岭土、蒙脱土、硅藻土、凸凹棒石、海泡石、埃洛石、水滑石、膨润土和累托土中的至少一种,所述的无机氧化物粘结剂选自硅溶胶、铝溶胶、胶溶拟薄水铝石、硅铝溶胶和含磷铝溶胶中的至少一种。
F1.一种含有含稀土的Y型分子筛的催化裂化催化剂,含有含稀土的Y型分子筛、无机氧化物粘结剂和天然矿物质,其特征在于,所述的含稀土的Y型分子筛,至少存在2-3纳米、3-4纳米、10-30纳米处介孔孔径分布, BJH孔径分布谱图中,2-3纳米孔径分布的峰面积与总的孔的峰面积的比值大于0.1,10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.2。
F2.按照技术方案F1的催化剂,其中,以干基重量计,含有20-60重量%的含稀土的Y型分子筛、10-30重量%的无机氧化物粘结剂和30-50重量%的天然矿物质。
F3.按照技术方案F1的催化剂,其中,所述的含稀土的Y型分子筛,其2-3纳米孔径分布的峰面积与总的孔的峰面积的比值大于0.12、优选大于0.15、更优选为0.18至0.26,10-30纳米孔径分布的峰面积与总的孔的峰面积的比值大于0.22、优选大于0.25、更优选0.27至0.32。
F4.按照技术方案F1的催化剂,其中,所述的含稀土的Y型分子筛,以氧化稀土计稀土含量为1至20重量%、优选8至15重量%,晶胞常数为2.440至2.470nm,结晶度为30至60%。
F5.按照技术方案F1的催化剂,其中,所述的含稀土的Y型分子筛,其特征在于,X射线衍射图中2θ=11.8±0.1°峰的强度I1与2θ=12.3±0.1°峰的强度I2的比值大于4.0、优选大于4.3、更优选为4.8至6.0。
F6.按照技术方案F1的催化剂,其中,所述的含稀土的Y型分子筛,由包括以下步骤的方法得到:
(1)将NaY分子筛与铵盐进行部分铵交换以脱除10-80%的钠离子,过滤、洗涤、干燥得到NH4NaY分子筛;
(2)将步骤(1)得到的NH4NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,过滤、水洗、干燥,得到含稀土的NaY分子筛;
(3)将步骤(2)得到的含稀土的NaY分子筛在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理,所述的气氛环境,其表观压力为0.01至1MPa并含1至100%水蒸气。
F7.按照技术方案F6的催化剂,其中,步骤(1)与步骤(2)中所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物;步骤(2)中稀土盐溶液选自包含镧、铈、镨、钕离子的一种或多种在内的稀土离子的氯化物水溶液。
F8.按照技术方案F6的催化剂,其中,步骤(2)所述的接触处理,是在浆液pH=3.0至5.0、水筛重量比为5至30,交换温度为室温至100℃下交换至少0.3小时。
F9.按照技术方案F6的催化剂,其中,步骤(3)中所述的气氛环境,其表观压力优选为0.1至0.8MPa、更优选0.3至0.6MPa,含30%至100%水蒸气、优选60至100%水蒸气;步骤(3)所述的水热焙烧在300至800℃、优选400至600℃下进行。
F10.按照技术方案F1的催化剂,其中,所述的天然矿物质选自高岭土、多水高岭土、蒙脱土、硅藻土、凸凹棒石、海泡石、埃洛石、水滑石、膨润土和累托土中的至少一种;所述的无机氧化物粘结剂选自硅溶胶、铝溶胶、胶溶拟薄水铝石、硅铝溶胶和含磷铝溶胶中的至少一种。
G1.一种裂化催化剂,含有含稀土的Y型分子筛、无机氧化物粘结剂和天然矿物质,其特征在于,所述的含稀土的Y型分子筛,至少存在2-3纳米和3-4纳米处两种介孔孔径分布,其介孔体积大于0.03cc/g。
G2.按照技术方案G1的裂化催化剂,以干基重量计,含有20-60重量%的含稀土的Y型分子筛、10-30重量%的无机氧化物粘结剂和30-50重量%的天然矿物质。
G3.按照技术方案G1的裂化催化剂,其中,所述的介孔体积大于0.031cc/g。
G4.按照技术方案G1的裂化催化剂,其中,所述的介孔体积为0.031cc/g至0.057cc/g。
G5.按照技术方案G1的裂化催化剂,其中,所述的含稀土的Y型分子筛,其X射线衍射图中2θ=11.8±0.1°峰的强度I1与2θ=12.3±0.1°峰的强度I2的比值为≥4.0、优选的比值为4.5至6.0。
G6.按照技术方案G1的裂化催化剂,其特征在于,所述的含稀土的Y型分子筛是将含稀土的NaY分子筛在外部施加压力和外部添加含酸性物质或碱性物质的水溶液的气氛环境下进行水热焙烧处理的过程一得到的;或者,所述的含稀土的Y型分子筛是将含稀土的NaY分子筛与碱性物质接触得到含碱性物质的含稀土的NaY分子筛后,在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理的过程二得到的;所述的气氛环境,其表观压力为0.01至1MPa并含1至100%水蒸气。
G7.按照技术方案G6的裂化催化剂,其中,所述的含稀土的NaY分子筛是将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,经过滤、水洗、干燥得到的。
G8.按照技术方案G6的裂化催化剂,其中,所述的稀土盐溶液选自镧、 铈、镨、钕离子的一种或多种在内的氯化物水溶液;所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
G9.按照技术方案G6的裂化催化剂,其中,所述的酸性物质选自氯化铵、硫酸铵、碳酸铵、碳酸氢铵、碳酸铵、磷酸铵、磷酸二氢铵、磷酸氢二铵、盐酸、硫酸、硝酸中的一种或多种的混合物。
G10.按照技术方案G6的裂化催化剂,其中,所述的碱性物质包含氨水、氨水与氯化铵的缓冲溶液、氢氧化钠、碳酸钠、碳酸氢钠中的一种或多种的混合物。
G11.按照技术方案G6的裂化催化剂,其中,所述的气氛环境,其表观压力优选为0.1至0.8MPa、更优选0.3至0.6MPa,水热焙烧处理温度在300至800℃,优选在400至600℃。
G12.按照技术方案G6的裂化催化剂,其中,所述的气氛环境,含30至100%水蒸气、优选含60至100%水蒸气。
G13.按照技术方案G1的裂化催化剂,其中,所述的无机氧化物粘结剂选自硅溶胶、铝溶胶、胶溶拟薄水铝石、硅铝溶胶和含磷铝溶胶中的至少一种;所述的天然矿物质选自高岭土、多水高岭土、蒙脱土、硅藻土、凸凹棒石、海泡石、埃洛石、水滑石、膨润土和累托土中的至少一种。
H1.一种含稀土的Y型分子筛,其特征在于至少存在2-3纳米和3-4纳米处两种介孔孔径分布,其中
所述分子筛的介孔体积大于0.03cc/g,和/或
所述分子筛的X射线衍射图中2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值≥4.0。
H2.按照方案H1的分子筛,其特征在于在分子筛的BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值≥0.05、优选≥0.1、更优选为0.1至0.4。
H3.按照前述方案中任一项的分子筛,其特征在于其稀土含量以氧化稀土计为2至18重量%,优选8至15重量%,晶胞常数为2.440至2.470nm,结晶度为30至60%。
H4.按照前述方案中任一项的分子筛,其特征在于
X射线衍射图中2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值≥4.0、优选为4.5至6.0,例如≥4.8,或者4.9至7.0。
H5.按照前述方案中任一项的分子筛,其特征在于
在分子筛的BJH孔径分布曲线中,还存在10-30纳米处介孔孔径分布,其中,2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.1,例如,大于0.12、大于0.15、更优选0.18至0.26,
10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.2,例如,大于0.22、大于0.25、更优选0.27至0.32。
H6.按照前述方案中任一项的分子筛,其特征在于所述分子筛的介孔体积为0.031cc/g至0.057cc/g。
H7.方案H1-6中任一项的含稀土的Y型分子筛的制备方法,其特征在于所述的含稀土的Y型分子筛是将含稀土的NaY分子筛在外部施加压力和外部添加含酸性物质或碱性物质的水溶液的气氛环境下进行水热焙烧处理得到的;或者,所述的含稀土的Y型分子筛是将含稀土的NaY分子筛与酸性物质或碱性物质接触得到含酸性物质或碱性物质的含稀土的NaY分子筛后,在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理得到的;所述的气氛环境,其表观压力为0.01至1.0MPa、例如0.1至0.8MPa、优选0.3至0.6MPa,并含1至100%水蒸气,例如含30%至100%水蒸气、优选60至100%水蒸气。
H8.按照方案H7的方法,其中所述的含稀土的NaY分子筛是由将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理的步骤A得到。
H9.按照方案H7的方法,其中所述的含稀土的NaY分子筛是通过以下步骤(1)和(2)得到的:
(1)将NaY分子筛与铵盐进行部分铵交换以脱除10-80%的钠离子,过滤、洗涤、干燥得到NH4NaY分子筛;
(2)将步骤(1)得到的NH4NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,过滤、水洗、干燥,得到含稀土的NaY分子筛。
H10.按照方案H7-9中任一项的方法,其中
所述的稀土盐溶液选自包含镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液。
H11.按照方案H7-10中任一项的方法,其中
所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
H12.按照方案H7-11中任一项的方法,其中步骤A或步骤(2)在pH=3.0至5.0、水筛重量比5至30,室温至100℃下进行,任选地,交换时间是至少0.3小时。
H13.按照方案H7-12中任一项的方法,其中所述的气氛环境,其表观压力优选为0.1至0.8MPa、更优选0.3至0.6MPa,含30%至100%水蒸气、优选60至100%水蒸气。
H14.按照方案H7-13中任一项的方法,其中所述的水热焙烧处理的步骤在300至800℃、优选400至600℃下进行。
H15.按照方案H7-14中任一项的方法,其中所述的水的气氛环境是含酸性物质或碱性物质的水溶液的气氛环境,所述的酸性物质选自氯化铵、硫酸铵、碳酸铵、碳酸氢铵、磷酸铵、磷酸二氢铵、磷酸氢二铵、盐酸、硫酸、硝酸中的一种或多种的混合物;所述的碱性物质包含氨水、氨水与氯化铵的缓冲溶液、氢氧化钠、偏铝酸钠、碳酸钠、碳酸氢钠中的一种或多种的混合物。
H16.按照方案H7-15中任一项的方法,其中所述的含酸性物质或碱性物质的水溶液的质量浓度为0.1-20%。
H17.一种催化裂化催化剂,其中所述催化裂化催化剂含有20-60重量%的前述方案1-6中任一项的含稀土的Y型分子筛、10-30重量%的无机氧化物粘结剂和30-50重量%的天然矿物质。
H18.方案H17的催化裂化催化剂,其中所述的天然矿物质选自高岭土、多水高岭土、蒙脱土、硅藻土、凸凹棒石、海泡石、埃洛石、水滑石、膨润土和累托土中的至少一种,所述的无机氧化物粘结剂选自硅溶胶、铝溶胶、胶溶拟薄水铝石、硅铝溶胶和含磷铝溶胶中的至少一种。
M1.一种含稀土的Y型分子筛,其特征在于至少存在2-3纳米和3-4纳米处两种介孔孔径分布。
M2.按照方案M1的分子筛,其特征在于在分子筛的BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值≥0.05、优选≥0.1、更优选为0.1至0.4。
M3.按照前述方案中任一项的分子筛,其特征在于其稀土含量以氧化稀土计为2至18重量%,优选8至15重量%,晶胞常数为2.440至2.470nm,结晶度为30至60%。
M4.按照前述方案中任一项的分子筛,其特征在于
X射线衍射图中2θ=11.8±0.1°峰的强度I1与2θ=12.3±0.1°峰的强度I2的比值≥4.0、优选为4.5至6.0,例如≥4.8,或者4.9至7.0。
M5.按照前述方案中任一项的分子筛,其特征在于
在分子筛的BJH孔径分布曲线中,还存在10-30纳米处介孔孔径分布,其中,2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.1,例如,大于0.12、大于0.15、更优选0.18至0.26,
10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.2,例如,大于0.22、大于0.25、更优选0.27至0.32。
M6.按照前述方案中任一项的分子筛,其特征在于所述分子筛的介孔体积大于0.03cc/g,例如0.031cc/g至0.037cc/g或0.031cc/g至0.057cc/g。
M7.方案M1-6中任一项的含稀土的Y型分子筛的制备方法,其特征在于包括将含稀土的NaY分子筛在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理的步骤,所述的气氛环境,其表观压力为0.01至1.0MPa、例如0.1至0.8MPa、优选0.3至0.6MPa,并含1至100%水蒸气,例如含30%至100%水蒸气、优选60至100%水蒸气。
M8.按照方案M7的方法,其中所述的含稀土的NaY分子筛是由将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理的步骤A得到。
M9.按照方案M7的方法,其中所述的含稀土的NaY分子筛是通过以下步骤(1)和(2)得到的:
(1)将NaY分子筛与铵盐进行部分铵交换以脱除10-80%的钠离子,过滤、洗涤、干燥得到NH4NaY分子筛;
(2)将步骤(1)得到的NH4NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,过滤、水洗、干燥,得到含稀土的NaY分子筛。
M10.按照方案M7-9中任一项的方法,其中所述的水的气氛环境是纯水的气氛环境或含酸性物质或碱性物质的水溶液的气氛环境。
M11.按照方案M7-10中任一项的方法,其中
所述的稀土盐溶液选自镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液;
所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
M12.按照方案M7-11中任一项的方法,其中步骤A或步骤(2)在pH=3.0至5.0、水筛重量比5至30,室温至100℃下进行,任选地,交换时间是至少0.3小时。
M13.按照方案M7-12中任一项的方法,其中所述的气氛环境,其表观压力优选为0.1至0.8MPa、更优选0.3至0.6MPa,含30%至100%水蒸气、优选60至100%水蒸气。
M14.按照方案M7-13中任一项的方法,其中所述的水热焙烧处理的步骤在300至800℃、优选400至600℃下进行。
M15.按照方案M7-14中任一项的方法,其中所述的水的气氛环境是含酸性物质或碱性物质的水溶液的气氛环境,所述的酸性物质选自氯化铵、硫酸铵、碳酸铵、碳酸氢铵、磷酸铵、磷酸二氢铵、磷酸氢二铵、盐酸、硫酸、硝酸中的一种或多种的混合物;所述的碱性物质包含氨水、氨水与氯化铵的缓冲溶液、氢氧化钠、偏铝酸钠、碳酸钠、碳酸氢钠中的一种或多种的混合物。
M16.按照方案M10-15中任一项的方法,其中所述的含酸性物质或碱性物质的水溶液的质量浓度为0.1-20%。
M17.一种催化裂化催化剂,其中所述催化裂化催化剂含有20-60重量%的前述方案1-6中任一项的含稀土的Y型分子筛、10-30重量%的无机氧化物粘结剂和30-50重量%的天然矿物质。
M18.方案M17的催化裂化催化剂,其中所述的天然矿物质选自高岭土、多水高岭土、蒙脱土、硅藻土、凸凹棒石、海泡石、埃洛石、水滑石、膨润土和累托土中的至少一种,所述的无机氧化物粘结剂选自硅溶胶、铝溶胶、胶溶拟薄水铝石、硅铝溶胶和含磷铝溶胶中的至少一种。
本发明提供的制备所述的含稀土的Y型分子筛的方法能够促进稀土离子由超笼向方钠石笼迁移并形成特殊的孔径分布特征,过程简单易操作,显著增加Y型分子筛介孔丰富度,形成一定程度的分子筛介孔,改善可接近性,提升活性中心利用率,该方法是分子筛晶体扩孔的低成本、低排放的新途径。
如随后提供的实施例中所显示的,本发明提供的制备所述的含稀土的Y型分子筛的方法能够提供具有独特的孔径分布特征的含稀土的Y型分子筛,即至少存在2-3纳米和3-4纳米处两种介孔孔径分布,其介孔体积大于0.03cc/g,例如,0.031cc/g至0.037cc/g,甚至达到0.057cc/g,并且能够提供具有更大面积的滞后环,其稀土含量以氧化稀土计为8至15重量%,晶胞常 数为2.440至2.470nm,结晶度为30至60%。
本发明提供的所述的含稀土的Y型分子筛具有更高的水热结构稳定性和更高的裂化活性稳定性,焦炭选择性降低,在重油催化领域具有广阔的应用前景。
实施例
下面通过实施例对本发明作进一步说明,但并不因此而限制本发明的内容。
在各实施例和对比例中,本发明所述的含稀土的Y型分子筛产品晶胞常数和结晶度用X射线衍射(XRD)确定,产品化学组成的XRF分析在日本理学电机株氏会社3013型X射线荧光光谱仪上进行,产品BJH孔径分布曲线由低温氮气吸脱附测量得到。
实施例A1
实施例A1说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛(中国石化催化剂公司长岭分公司,灼减74.1重%,结晶度89.3%,下同)和1800克去离子水混合打浆,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在500℃、表观压力0.3MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PAY-1。
PAY-1的化学组成中,氧化稀土为10.1重%。
图1为PAY-1根据BJH模型计算得到的孔径分布曲线。
从孔径分布曲线可以看出,至少存在2种介孔孔径分布,分别在2-3纳米处和3-4纳米处;二者峰面积比值0.15。
图2为PAY-1的XRD谱图,表明PAY-1分子筛具有纯相的FAU晶体结构,无杂晶形成。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为5.6。
晶胞和结晶度数据见下表。
对比例A1
对比例A1说明常压水热焙烧得到的含稀土的Y型分子筛的对比样品。
同实施例A1的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DAY-1。
DAY-1的化学组成中,氧化稀土为10.1重%。
图3为DAY-1根据BJH模型计算得到的孔径分布曲线。
从孔径分布曲线可以看出,主要存在1种介孔孔径分布,即在3-4纳米处存在一种介孔孔径分布,而未出现在2-3纳米处存在另一种介孔孔径分布。
因此,BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0。
DAY-1的XRD谱图具有与PAY-1的XRD谱图相似的特征。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为3.4。
晶胞和结晶度数据见下表。
实施例A2
实施例A2说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和1000克去离子水混合打浆,加入16毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及8克氯化铵固体,搅匀后升温至60℃并用稀盐酸调节浆液pH值至4.0,恒温搅拌1.5小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在430℃、表观压力0.8MPa、50%水蒸气气氛下加压水热焙烧处理0.5小时,得到含稀土的Y型分子筛样品,记为PAY-2。
PAY-2的化学组成中,氧化稀土为8.2重%。
PAY-2的BJH孔径分布曲线和XRD谱图分别具有与PAY-1的BJH孔径分布曲线和XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0.3。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为4.3。
晶胞和结晶度数据见下表。
对比例A2
对比例A2说明常压水热焙烧得到的含稀土的Y型分子筛的对比样品。
同实施例A2的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DAY-2。
DAY-2的化学组成中,氧化稀土为8.2重%。
DAY-2的BJH孔径分布曲线和XRD谱图分别具有与DAY-1的BJH孔径分布曲线和PAY-1的XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为2.8。
晶胞和结晶度数据见下表。
实施例A3
实施例A3说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和2200克去离子水混合打浆,加入24毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至70℃并用稀盐酸调节浆液pH值至3.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在520℃、表观压力0.4MPa、100%水蒸气气氛下加压水热焙烧处理1.5小时,得到含稀土的Y型分子筛样品,记为PAY-3。
PAY-3的化学组成中,氧化稀土为11.4重%。
PAY-3的BJH孔径分布曲线和XRD谱图分别具有与PAY-1的BJH孔径分布曲线和XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0.25。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为5.2。
晶胞和结晶度数据见下表。
对比例A3
对比例A3说明常压水热焙烧得到的含稀土的Y型分子筛的对比样品。
同实施例A3的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DAY-3。
DAY-3的化学组成中,氧化稀土为11.4重%。
DAY-3的BJH孔径分布曲线和XRD谱图分别具有与DAY-1的BJH孔 径分布曲线和PAY-1的XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为3.7。
晶胞和结晶度数据见下表。
实施例A4
实施例A4说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和2800克去离子水混合打浆,加入28毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至80℃并用稀盐酸调节浆液pH值至3.8,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在580℃、表观压力0.5MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PAY-4。
PAY-4的化学组成中,氧化稀土为12.6重%。
PAY-4的BJH孔径分布曲线和XRD谱图分别具有与PAY-1的BJH孔径分布曲线和XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0.22。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为4.9。
晶胞和结晶度数据见下表。
对比例A4
对比例A4说明常压水热焙烧得到的含稀土的Y型分子筛的对比样品。
同实施例A4的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DAY-4。
DAY-4的化学组成中,氧化稀土为12.6重%。
DAY-4的BJH孔径分布曲线和XRD谱图分别具有与DAY-1的BJH孔径分布曲线和PAY-1的XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为3.9。
晶胞和结晶度数据见下表。
实施例A5
实施例A5说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和2000克去离子水混合打浆,加入32毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.0,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在550℃、表观压力0.4MPa、100%水蒸气气氛下加压水热焙烧处理1.5小时,得到含稀土的Y型分子筛样品,记为PAY-5。
PAY-5的化学组成中,氧化稀土为13.4重%。
PAY-5的BJH孔径分布曲线和XRD谱图分别具有与PAY-1的BJH孔径分布曲线和XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0.23。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为5.1。
晶胞和结晶度数据见下表。
对比例A5
对比例A5说明常压水热焙烧得到的含稀土的Y型分子筛的对比样品。
同实施例A5的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DAY-5。
DAY-5的化学组成中,氧化稀土为13.4重%。
DAY-5的BJH孔径分布曲线和XRD谱图分别具有与DAY-1的BJH孔径分布曲线和PAY-1的XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为4.3。
晶胞和结晶度数据见下表。
实施例A6
实施例A6说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和1800克去离子水混合打浆,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在430℃、表观压力0.6MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PAY-6。
PAY-6的化学组成中,氧化稀土为10.0重%。
PAY-6的BJH孔径分布曲线和XRD谱图分别具有与PAY-1的BJH孔径分布曲线和XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0.20。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为4.7。
晶胞和结晶度数据见下表。
对比例A6
对比例A6说明常压水热焙烧得到的含稀土的Y型分子筛的对比样品。
同实施例A6的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DAY-6。
DAY-6的化学组成中,氧化稀土为10.0重%。
DAY-6的BJH孔径分布曲线和XRD谱图分别具有与DAY-1的BJH孔径分布曲线和PAY-1的XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为2.7。
晶胞和结晶度数据见下表。
实施例A7
实施例A7说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和1800克去离子水混合打浆,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在400℃、表观压力0.8MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PAY-7。
PAY-7的化学组成中,氧化稀土为9.8重%。
PAY-7的BJH孔径分布曲线和XRD谱图分别具有与PAY-1的BJH孔径分布曲线和XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0.11。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为4.1。
晶胞和结晶度数据见下表。
对比例A7
对比例A7说明常压水热焙烧得到的含稀土的Y型分子筛的对比样品。
同实施例A3的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DAY-7。
DAY-7的化学组成中,氧化稀土为9.8重%。
DAY-7的BJH孔径分布曲线和XRD谱图分别具有与DAY-1的BJH孔径分布曲线和PAY-1的XRD谱图相似的特征。
BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值为0。
XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为3.2。
晶胞和结晶度数据见下表。
测试例A1
测试例A1说明含稀土的Y型分子筛样品的水热稳定性测试情况。
将实施例A1至实施例A7的含稀土的Y型分子筛样品PAY-1至PAY-7、对比例A1至对比例A7的对比样品DAY-1至DAY-7,分别与氯化铵溶液混合交换,将其中的Na 2O%降至0.3重%以下,过滤干燥后作为新鲜样品。
新鲜样品经800℃、100%水蒸气、17小时水热老化处理得到老化样品。
新鲜样品的晶胞和结晶度数据以及老化样品的晶胞和结晶度数据见下表。
Figure PCTCN2020101051-appb-000001
本发明采用的含稀土的Y型分子筛经800℃、100%水蒸气、17小时水热老化处理后仍具有较高的结晶度,结晶度均明显高于对比样品,说明相比常压水蒸气焙烧,在加压水蒸气条件下处理后,含稀土的Y型分子筛具有较高的水热稳定性,水热稳定性显著提高。
实施例D1
实施例D1说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和1800克去离子水混合打浆,加入10克氯化铵固体,搅匀后升温至70℃,恒温搅拌2小时,过滤、水洗、干燥后,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在500℃、表观压力0.3MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PDY-1。
PDY-1的化学组成中,氧化稀土为10.1重%。
图4为PDY-1根据BJH模型计算得到的孔径分布曲线,至少存在3种介孔孔径分布,分别在2-3纳米、3-4纳米、10-30纳米处存在3种显著介孔分布。
PDY-1的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0.25,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0.3。
PDY-1的XRD谱图具有与PAY-1的XRD谱图相似的特征。
PDY-1的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强 度I 2的比值为5.8。
晶胞和结晶度数据见下表。
对比例D1
对比例D1说明在有部分铵交以及在常压焙烧情况下得到的含稀土的Y型分子筛对比样品。
同实施例D1的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DDY-1。
DDY-1的化学组成中,氧化稀土为10.1重%。
图5为DDY-1根据BJH模型计算得到的孔径分布曲线。
从孔径分布曲线可以看出,主要存在1种介孔孔径分布,即在3-4纳米处存在一种介孔孔径分布,而未出现在2-3纳米和10-30纳米处存在介孔孔径分布。
DDY-1的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0。
DDY-1的XRD谱图具有与PAY-1的XRD谱图相似的特征。
DDY-1的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为3.5。
晶胞和结晶度数据见下表。
实施例D2
实施例D2说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和1000克去离子水混合打浆,加入5克硫酸铵固体,搅匀后升温至80℃,恒温搅拌2小时,过滤、水洗、干燥后,加入16毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及8克氯化铵固体,搅匀后升温至60℃并用稀盐酸调节浆液pH值至4.0,恒温搅拌1.5小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在430℃、表观压力0.8MPa、50%水蒸气气氛下加压水热焙烧处理0.5小时,得到含稀土的Y型分子筛样品,记为PDY-2。
PDY-2的化学组成中,氧化稀土为8.2重%。
PDY-2的BJH孔径分布曲线具有与PDY-1的BJH孔径分布曲线相似的特征。
PDY-2的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0.12, 10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0.25。
PDY-2的XRD谱图具有与PAY-1的XRD谱图相似的特征。
PDY-2的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为4.4。
晶胞和结晶度数据见下表。
对比例D2
对比例D2说明在有部分铵交以及在常压焙烧情况下得到的含稀土的Y型分子筛对比样品。
同实施例D2的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DDY-2。
DDY-2的化学组成中,氧化稀土为8.2重%。
DDY-2的BJH孔径分布曲线具有与DDY-1的BJH孔径分布曲线相似的特征。
DDY-2的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0。
DDY-2的XRD谱图具有与PAY-1的XRD谱图相似的特征。
DDY-2的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为3.2。
晶胞和结晶度数据见下表。
实施例D3
实施例D3说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和2200克去离子水混合打浆,加入20克硫酸铵固体,搅匀后升温至80℃,恒温搅拌1.5小时,过滤、水洗、干燥后,加入24毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至70℃并用稀盐酸调节浆液pH值至3.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在520℃、表观压力0.4MPa、100%水蒸气气氛下加压水热焙烧处理1.5小时,得到含稀土的Y型分子筛样品,记为PDY-3。
PDY-3的化学组成中,氧化稀土为11.4重%。
PDY-3的BJH孔径分布曲线具有与PDY-1的BJH孔径分布曲线相似的特征。
PDY-3的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0.23,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0.25。
PDY-3的XRD谱图具有与PAY-1的XRD谱图相似的特征。
PDY-3的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为5.4。
晶胞和结晶度数据见下表。
对比例D3
对比例D3说明在有部分铵交以及在常压焙烧情况下得到的含稀土的Y型分子筛对比样品。
同实施例D3的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DDY-3。
DDY-3的化学组成中,氧化稀土为11.4重%。
DDY-3的BJH孔径分布曲线具有与DDY-1的BJH孔径分布曲线相似的特征。
DDY-3的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0。
DDY-3的XRD谱图具有与PAY-1的XRD谱图相似的特征。
DDY-3的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为4.1。
晶胞和结晶度数据见下表。
实施例D4
实施例D4说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和2800克去离子水混合打浆,加入50克氯化铵固体,搅匀后升温至60℃,恒温搅拌2小时,过滤、水洗、干燥后,加入28毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至80℃并用稀盐酸调节浆液pH值至3.8,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在580℃、表观压力0.5MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PDY-4。
PDY-4的化学组成中,氧化稀土为12.6重%。
PDY-4的BJH孔径分布曲线具有与PDY-1的BJH孔径分布曲线相似的 特征。
PDY-4的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0.23,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0.21。
PDY-4的XRD谱图具有与PAY-1的XRD谱图相似的特征。
PDY-4的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为5.2。
晶胞和结晶度数据见下表。
对比例D4
对比例D4说明在有部分铵交以及在常压焙烧情况下得到的含稀土的Y型分子筛对比样品。
同实施例D4的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DDY-4。
DDY-4的化学组成中,氧化稀土为12.6重%。
DDY-4的BJH孔径分布曲线具有与DDY-1的BJH孔径分布曲线相似的特征。
DDY-4的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0。
DDY-4的XRD谱图具有与PAY-1的XRD谱图相似的特征。
DDY-4的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为4.2。
晶胞和结晶度数据见下表。
实施例D5
实施例D5说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和2000克去离子水混合打浆,加入200克氯化铵固体,搅匀后升温至60℃,恒温搅拌1.0小时,过滤、水洗、干燥后,加入32毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.0,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在550℃、表观压力0.4MPa、100%水蒸气气氛下加压水热焙烧处理1.5小时,得到含稀土的Y型分子筛样品,记为PDY-5。
PDY-5的化学组成中,氧化稀土为13.4重%。
PDY-5的BJH孔径分布曲线具有与PDY-1的BJH孔径分布曲线相似的特征。
PDY-5的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0.24,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0.29。
PDY-5的XRD谱图具有与PAY-1的XRD谱图相似的特征。
PDY-5的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为5.5。
晶胞和结晶度数据见下表。
对比例D5
对比例D5说明在有部分铵交以及在常压焙烧情况下得到的含稀土的Y型分子筛对比样品。
同实施例D5的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DDY-5。
DDY-5的化学组成中,氧化稀土为13.4重%。
DDY-5的BJH孔径分布曲线具有与DDY-1的BJH孔径分布曲线相似的特征。
DDY-5的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0。
DDY-5的XRD谱图具有与PAY-1的XRD谱图相似的特征。
DDY-5的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为4.4。
晶胞和结晶度数据见下表。
实施例D6
实施例D6说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和1800克去离子水混合打浆,加入50克硫酸铵固体,搅匀后升温至70℃,恒温搅拌2小时,过滤、水洗、干燥后,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在430℃、表观压力0.6MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PDY-6。
PDY-6的化学组成中,氧化稀土为10.0重%。
PDY-6的BJH孔径分布曲线具有与PDY-1的BJH孔径分布曲线相似的特征。
PDY-6的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0.18,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0.22。
PDY-6的XRD谱图具有与PAY-1的XRD谱图相似的特征。
PDY-6的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为4.9。
晶胞和结晶度数据见下表。
对比例D6
对比例D6说明在有部分铵交以及在常压焙烧情况下得到的含稀土的Y型分子筛对比样品。
同实施例D6的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DDY-6。
DDY-6的化学组成中,氧化稀土为10.0重%。
DDY-6的BJH孔径分布曲线具有与DDY-1的BJH孔径分布曲线相似的特征。
DDY-6的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0。
DDY-6的XRD谱图具有与PAY-1的XRD谱图相似的特征。
DDY-6的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为2.8。
晶胞和结晶度数据见下表。
实施例D7
实施例D7说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和1800克去离子水混合打浆,加入20克硫酸铵固体,搅匀后升温至80℃,恒温搅拌2小时,过滤、水洗、干燥后,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加水,然后在400℃、表观压力0.8MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土 的Y型分子筛样品,记为PDY-7。
PDY-7的化学组成中,氧化稀土为9.8重%。
PDY-7的BJH孔径分布曲线具有与PDY-1的BJH孔径分布曲线相似的特征。
PDY-7的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0.13,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0.21。
PDY-7的XRD谱图具有与PAY-1的XRD谱图相似的特征。
PDY-7的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为4.4。
晶胞和结晶度数据见下表。
对比例D7
对比例D7说明在有部分铵交以及在常压焙烧情况下得到的含稀土的Y型分子筛对比样品。
同实施例D7的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DDY-7。
DDY-7的化学组成中,氧化稀土为9.8重%。
DDY-7的BJH孔径分布曲线具有与DDY-1的BJH孔径分布曲线相似的特征。
DDY-7的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0。
DDY-7的XRD谱图具有与PAY-1的XRD谱图相似的特征。
DDY-7的XRD谱图显示2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为3.4。
晶胞和结晶度数据见下表。
测试例D1
测试例D1说明含稀土的Y型分子筛样品的水热稳定性测试情况。
将实施例D1至实施例D7的含稀土的Y型分子筛样品PAY-1至PAY-7、对比例D1至对比例D7的对比样品DAY-1至DAY-7,分别与氯化铵溶液混合交换,将其中的Na 2O%降至0.3重%以下,过滤干燥后作为新鲜样品。
新鲜样品经800℃、100%水蒸气、17小时水热老化处理得到老化样品。
新鲜样品的晶胞和结晶度数据以及老化样品的晶胞和结晶度数据见下表。
Figure PCTCN2020101051-appb-000002
可见,含稀土的Y型分子筛样品PDY-1至PDY-7经800℃、100%水蒸气、17小时水热老化处理后仍具有较高的结晶度,样品PDY-1至PDY-7的结晶度均明显高于对比样品,说明相比常压水热焙烧,在本发明的气氛环境条件下水热处理,所得含稀土的Y型分子筛具有较高的水热稳定性,水热稳定性显著提高。
实施例B1
实施例B1说明以第3种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和1800克去离子水混合打浆,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加7g氨水,然后在500℃、表观压力0.3MPa、100%蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PBY-1。
PBY-1的化学组成中,氧化稀土为10.1重%。
图6中a曲线为样品PBY-1根据BJH模型计算得到的孔径分布曲线,可以看出至少存在2种介孔孔径分布,包括在2-3纳米处存在一种介孔孔径分布,在3-4纳米处存在另一种介孔孔径分布。
图7中c曲线为样品PBY-1的吸脱附曲线,可以看出其具有面积较大的滞后环,表明PBY-1样品具有丰富的介孔结构。
PBY-1的XRD谱图具有与PAY-1的XRD谱图相似的特征,表明其具有纯相的FAU晶体结构,无杂晶形成。XRD表征参数和孔参数见下表。
对比例B1.1
对比例B1.1说明以常压水热焙烧、未添加氨水得到的含稀土的Y型分子筛对比样品。
同实施例B1的过程,区别在于焙烧条件为常压(表观压力0MPa)且未添加氨水。
得到的含稀土的Y型分子筛对比样品,记为DBY-1.1。
DBY-1.1的化学组成中,氧化稀土为10.1重%。
图6中b曲线为对比样品DBY-1.1根据BJH模型计算得到的孔径分布曲线,主要存在1种介孔孔径分布,即在3-4纳米处存在一种介孔孔径分布,而在2-3纳米处未显示存在另一种介孔孔径分布。
图7中d曲线为对比样品DBY-1.1吸脱附曲线,滞后环面积较小,表明介孔体积较少。
DBY-1.1的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B1.2
对比例B1.2说明以常压水热焙烧、添加氨水得到的含稀土的Y型分子筛对比样品。
同实施例B1的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DBY-1.2。
DBY-1.2的化学组成中,氧化稀土为10.1重%。
DBY-1.2的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-1.2的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例C1
实施例C1说明以第4种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和1800克去离子水混合打浆,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,采用浸渍法负载7g氨水,干燥后,然后在500℃、表观压力0.3MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PCY-1。
PCY-1的化学组成中,氧化稀土为10.1重%。
图6中A曲线为样品PCY-1根据BJH模型计算得到的孔径分布曲线,可以看出,其至少存在2种介孔孔径分布,分别在2-3纳米处和3-4纳米处。
图7中C曲线为样品PCY-1的吸脱附曲线,可以看出,样品PCY-1的吸脱附曲线具有面积较大的滞后环,表明PCY-1样品具有丰富的介孔结构。
样品PCY-1的XRD谱图具有与PAY-1的XRD谱图相似的特征,表明其具有纯相的FAU晶体结构,无杂晶形成。XRD表征参数和孔参数见下表。
对比例C1
对比例C1说明浸渍负载氨水、以常压水热焙烧得到的含稀土的Y型分子筛对比样品。
同实施例C1的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DCY-1。
DCY-1的化学组成中,氧化稀土为10.1重%。
DCY-1的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DCY-1的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例B2
实施例B2说明以第3种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和1000克去离子水混合打浆,加入16毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及8克氯化铵固体,搅匀后升温至60℃并用稀盐酸调节浆液pH值至4.0,恒温搅拌1.5小时。
经过滤、水洗、干燥后,外部施加压力并添加含10克氯化铵的氯化铵水溶液,然后在430℃、表观压力0.8MPa、100%蒸气气氛下加压水热焙烧处理0.5小时,得到含稀土的Y型分子筛样品,记为PBY-2。
PBY-2的化学组成中,氧化稀土为8.2重%。
PBY-2的BJH模型计算得到的孔径分布曲线同图6中a曲线的特征,吸脱附曲线同图7中c曲线的特征。
PBY-2的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B2.1
对比例B2.1说明以常压水热焙烧、未添加氯化铵得到的含稀土的Y型分子筛对比样品。
同实施例B2的过程,区别在于焙烧条件为常压(表观压力0MPa)且未添加氯化铵。
得到的含稀土的Y型分子筛对比样品,记为DBY-2.1。
DBY-2.1的化学组成中,氧化稀土为8.2重%。
DBY-2.1的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-2.1的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B2.2
对比例B2.2说明以常压水热焙烧、添加氯化铵得到的含稀土的Y型分子筛对比样品。
同实施例B2的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DBY-2.2。
DBY-2.2的化学组成中,氧化稀土为8.2重%。
DBY-2.2的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-2.2的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例C2
实施例C2说明以第4种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和1000克去离子水混合打浆,加入16毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及8克氯化铵固体,搅匀后升温至60℃并用稀盐酸调节浆液pH值至4.0,恒温搅拌1.5小时。
经过滤、水洗、干燥后,采用浸渍法负载10克氯化铵,干燥后,然后在430℃、表观压力0.8MPa、100%水蒸气气氛下加压水热焙烧处理0.5小时,得到含稀土的Y型分子筛样品,记为PCY-2。
PCY-2的化学组成中,氧化稀土为8.2重%。
PCY-2的BJH模型计算得到的孔径分布曲线同图6中A曲线的特征,吸脱附曲线同图7中C曲线的特征。
PCY-2的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例C2
对比例C2说明浸渍负载氯化铵、以常压水热焙烧得到的含稀土的Y型分子筛对比样品。
同实施例C2的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DCY-2。
DCY-2的化学组成中,氧化稀土为8.2重%。
DCY-2的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DCY-2的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例B3
实施例B3说明以第3种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和2200克去离子水混合打浆,加入24毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至70℃并用稀盐酸调节浆液pH值至3.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,在520℃、表观压力0.4MPa、含有质量浓度为6%的碳酸氢铵水溶液的100%蒸气气氛下加压水热焙烧处理1.5小时,得到含稀土的Y型分子筛样品,记为PBY-3。
PBY-3的化学组成中,氧化稀土为11.4重%。
PBY-3的BJH模型计算得到的孔径分布曲线同图6中a曲线的特征,吸脱附曲线同图7中c曲线的特征。
PBY-3的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B3.1
对比例B3.1说明以常压水热焙烧、未添加碳酸氢铵得到的含稀土的Y型分子筛对比样品。
同实施例B3的过程,区别在于焙烧条件为常压(表观压力0MPa)且未添加碳酸氢铵。
得到的含稀土的Y型分子筛对比样品,记为DBY-3.1。
DBY-3.1的化学组成中,氧化稀土为11.4重%。
DBY-3.1的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-3.1的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B3.2
对比例B3.2说明以常压水热焙烧、添加碳酸氢铵得到的含稀土的Y型分子筛对比样品。
同实施例B3的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DBY-3.2。
DBY-3.2的化学组成中,氧化稀土为11.4重%。
DBY-3.2的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-3.2的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例C3
实施例C3说明以第4种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和2200克去离子水混合打浆,加入24毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至70℃并用稀盐酸调节浆液pH值至3.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,采用浸渍法负载12g碳酸氢铵,干燥后,然后在520℃、表观压力0.4MPa、100%水蒸气气氛下加压水热焙烧处理1.5小时,得到含稀土的Y型分子筛样品,记为PCY-3。
PCY-3的化学组成中,氧化稀土为11.4重%。
PCY-3的BJH模型计算得到的孔径分布曲线同图6中A曲线的特征,吸脱附曲线同图7中C曲线的特征。
PCY-3的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例C3
对比例C3说明浸渍负载碳酸氢铵、以常压水热焙烧得到的含稀土的Y型分子筛对比样品。
同实施例C3的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DCY-3。
DCY-3的化学组成中,氧化稀土为11.4重%。
DCY-3的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DCY-3的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例B4
实施例B4说明以第3种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和2800克去离子水混合打浆,加入28毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至80℃并用稀盐酸调节浆液pH值至3.8,恒温搅拌1.0小时。
经过滤、水洗、干燥后,在580℃、表观压力0.5MPa、含有质量浓度为9%的碳酸钠水溶液的100%蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PBY-4。
PBY-4的化学组成中,氧化稀土为12.6重%。
PBY-4的BJH模型计算得到的孔径分布曲线同图6中a曲线的特征,吸脱附曲线同图7中c曲线的特征。
PBY-4的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B4.1
对比例B4.1说明以常压水热焙烧、未添加碳酸钠得到的含稀土的Y型分子筛对比样品。
同实施例B4的过程,区别在于焙烧条件为常压(表观压力0MPa)且未添加碳酸钠。
得到的含稀土的Y型分子筛对比样品,记为DBY-4.1。
DBY-4.1的化学组成中,氧化稀土为12.6重%
DBY-4.1的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-4.1的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B4.2
对比例B4.2说明以常压水热焙烧、添加碳酸钠得到的含稀土的Y型分子筛对比样品。
同实施例B4的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DBY-4.2。
DBY-4.2的化学组成中,氧化稀土为12.6重%。
DBY-4.2的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-4.2的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例C4
实施例C4说明以第4种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和2800克去离子水混合打浆,加入28毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至80℃并用稀盐酸调节浆液pH值至3.8,恒温搅拌1.0小时。
经过滤、水洗、干燥后,采用浸渍法负载9g碳酸钠,干燥后,然后在580℃、表观压力0.5MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PCY-4。
PCY-4的化学组成中,氧化稀土为12.6重%。
PCY-4的BJH模型计算得到的孔径分布曲线同图6中A曲线的特征,吸脱附曲线同图7中C曲线的特征。
PCY-4的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例C4
对比例C4说明浸渍负载碳酸钠、以常压水热焙烧得到的含稀土的Y型分子筛对比样品。
同实施例C4的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DCY-4。
DCY-4的化学组成中,氧化稀土为12.6重%。
DCY-4的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DCY-4的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例B5
实施例B5说明以第3种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和2000克去离子水混合打浆,加入32毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.0,恒温搅拌1.0小时。
经过滤、水洗、干燥后,在550℃、表观压力0.4MPa、含有10克氯化铵的氯化铵与氨水的缓冲溶液的100%蒸气气氛下加压水热焙烧处理1.5小 时,得到含稀土的Y型分子筛样品,记为PBY-5-1。
PBY-5的化学组成中,氧化稀土为13.4重%。
PBY-5的BJH模型计算得到的孔径分布曲线同图6中a曲线的特征,吸脱附曲线同图7中c曲线的特征。
PBY-5的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B5.1
对比例B5.1说明以常压水热焙烧、未添加氯化铵与氨水的缓冲溶液得到的含稀土的Y型分子筛对比样品。
同实施例B5的过程,区别在于焙烧条件为常压(表观压力0MPa)且未添加氯化铵与氨水的缓冲溶液。
得到的含稀土的Y型分子筛对比样品,记为DBY-5.1。
DBY-5.1的化学组成中,氧化稀土为13.4重%。
DBY-5.1的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-5.1的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B5.2
对比例B5.2说明以常压水热焙烧、添加氯化铵与氨水的缓冲溶液得到的含稀土的Y型分子筛对比样品。
同实施例B5的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DBY-5.2。
DBY-5.2的化学组成中,氧化稀土为13.4重%。
DBY-5.2的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-5.2的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例C5
实施例C5说明以第4种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和2000克去离子水混合打浆,加入32毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.0,恒温搅拌1.0小时。
经过滤、水洗、干燥后,采用浸渍法负载10克氯化铵与氨水的缓冲溶液,干燥后,然后在550℃、表观压力0.4MPa、100%水蒸气气氛下加压水热焙烧处理1.5小时,得到含稀土的Y型分子筛样品,记为PCY-5。
PCY-5的化学组成中,氧化稀土为13.4重%。
PCY-5的BJH模型计算得到的孔径分布曲线同图6中A曲线的特征,吸脱附曲线同图7中C曲线的特征。
PCY-5的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例C5
对比例C5说明浸渍负载氯化铵与氨水的缓冲溶液、以常压水热焙烧得到的含稀土的Y型分子筛对比样品。
同实施例C5的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DCY-5。
DCY-5的化学组成中,氧化稀土为13.4重%。
DCY-5的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DCY-5的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例B6
实施例B6说明以第3种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和1800克去离子水混合打浆,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,在430℃、表观压力0.6MPa、含有质量浓度为6%的盐酸水溶液的100%蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PBY-6。
PBY-6的化学组成中,氧化稀土为10.0重%。
PBY-6的BJH模型计算得到的孔径分布曲线同图6中a曲线的特征,吸脱附曲线同图7中c曲线的特征。
PBY-6的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B6.1
对比例B6.1说明以常压水热焙烧、未添加盐酸得到的含稀土的Y型分子筛对比样品。
同实施例B6的过程,区别在于焙烧条件为常压(表观压力0MPa)且未添加盐酸。
得到的含稀土的Y型分子筛对比样品,记为DBY-6.1。
DBY-6.1的化学组成中,氧化稀土为10.0重%。
DBY-6.1的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-6.1的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B6.2
对比例B6.2说明以常压水热焙烧、添加盐酸得到的含稀土的Y型分子筛。
同实施例B6的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DBY-6.2。
DBY-6.2的化学组成中,氧化稀土为10.0重%。
DBY-6.2的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-6.2的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例C6
实施例C6说明以第4种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和1800克去离子水混合打浆,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,采用浸渍法负载2g盐酸溶液,干燥后,然后在430℃、表观压力0.6MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PCY-6。
PCY-6的化学组成中,氧化稀土为10.0重%。
PCY-6的BJH模型计算得到的孔径分布曲线同图6中A曲线的特征,吸脱附曲线同图7中C曲线的特征。
PCY-6的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征 参数和孔参数见下表。
对比例C6
对比例C6说明浸渍负载盐酸、以常压水热焙烧得到的含稀土的Y型分子筛对比样品。
同实施例C6的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DCY-6。
DCY-6的化学组成中,氧化稀土为10.0重%。
DCY-6的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DCY-6的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例B7
实施例B7说明以第3种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和1800克去离子水混合打浆,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,在400℃、表观压力0.8MPa、含有质量浓度为6%的氢氧化钠水溶液的100%蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PBY-7。
PBY-7的化学组成中,氧化稀土为9.8重%。
PBY-7的BJH模型计算得到的孔径分布曲线同图6中a曲线的特征,吸脱附曲线同图7中c曲线的特征。
PBY-7的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B7.1
对比例B7.1说明以常压水热焙烧、未添加固体氢氧化钠得到的含稀土的Y型分子筛对比样品。
同实施例B7的过程,区别在于焙烧条件为常压(表观压力0MPa)且未添加固体氢氧化钠。
得到的含稀土的Y型分子筛对比样品,记为DBY-7.1。
DBY-7.1的化学组成中,氧化稀土为9.8重%。
DBY-7.1的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征, 吸脱附曲线同图7中d曲线的特征。
DBY-7.1的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例B7.2
对比例B7.2说明以常压水热焙烧、添加氢氧化钠得到的含稀土的Y型分子筛对比样品。
同实施例B7的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到含稀土的Y型分子筛对比样品,记为DBY-7.2。
DBY-7.2的化学组成中,氧化稀土为9.8重%。
DBY-7.2的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DBY-7.2的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
实施例C7
实施例C7说明以第4种方法制备得到的含稀土的Y型分子筛。
取100克NaY分子筛和1800克去离子水混合打浆,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,采用浸渍法负载3g氢氧化钠固体,干燥后,然后在400℃、表观压力0.8MPa、100%水蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PCY-7。
PCY-7的化学组成中,氧化稀土为9.8重%。
PCY-7的BJH模型计算得到的孔径分布曲线同图6中A曲线的特征,吸脱附曲线同图7中C曲线的特征。
PCY-7的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
对比例C7
对比例C7说明浸渍负载氢氧化钠、以常压水热焙烧得到的含稀土的Y型分子筛对比样品。
同实施例C7的过程,区别在于焙烧条件为常压(表观压力0MPa)。
得到的含稀土的Y型分子筛对比样品,记为DCY-7。
DCY-7的化学组成中,氧化稀土为9.8重%。
DCY-7的BJH模型计算得到的孔径分布曲线同图6中b曲线的特征,吸脱附曲线同图7中d曲线的特征。
DCY-7的XRD谱图具有与PAY-1的XRD谱图相似的特征。XRD表征参数和孔参数见下表。
Figure PCTCN2020101051-appb-000003
Figure PCTCN2020101051-appb-000004
由表数据可见,本发明方法制备得到的含稀土的Y型分子筛介孔面积及介孔体积均明显高于制备对比例的样品,其表现为具有较显著地介孔特性的同时具有更高的结晶度,说明采用调节气氛的加压水热焙烧,显著增加Y分子筛介孔丰富度,形成一定程度的分子筛介孔。
实施例E
实施例E说明本发明的含稀土的Y型分子筛的制备,所述的含稀土的Y型分子筛可用于制备催化裂化催化剂中。
取100克NaY分子筛和1800克去离子水混合打浆,加入10克氯化铵固体,搅匀后升温至70℃,恒温搅拌2小时,过滤、水洗、干燥后,加入20毫升浓度为357克RE 2O 3/L的氯化稀土盐溶液及2克氯化铵固体,搅匀后升温至70℃并用稀盐酸调节浆液pH值至4.5,恒温搅拌1.0小时。
经过滤、水洗、干燥后,外部施加压力并添加7g氨水,然后在500℃、表观压力0.3MPa、100%蒸气气氛下加压水热焙烧处理2.0小时,得到含稀土的Y型分子筛样品,记为PEY-1。
PEY-1的化学组成中,氧化稀土为10.1重%。
根据BJH模型计算得到PEY-1的孔径分布曲线,其中至少存在3种介孔孔径分布,分别在2-3纳米、3-4纳米、10-30纳米处存在3种显著介孔分布。
PEY-1的2-3纳米孔径分布的峰面积与总孔的峰面积的比值为0.25,10-30纳米孔径分布的峰面积与总孔的峰面积的比值为0.3。
PEY-1的XRD谱图具有与PAY-1的XRD谱图相似的特征。
PEY-1的XRD谱图显示其2θ=11.8±0.1°峰的强度I 1与2θ=12.3±0.1°峰的强度I 2的比值为6.3。
以下实施例说明本发明提供的催化裂化催化剂。
所用原材料的性质如下:
高岭土(苏州中国高岭土公司,固含量75重量%),
铝溶胶(齐鲁催化剂分公司,氧化铝含量为21.5重量%),
胶溶拟薄水铝石(固含量10重量%)。
催化剂性能测试使用武混三重油,其主要性质如下:
项目 VGO
密度(293K),g/cm 3 0.904
粘度(373K),mPa.s 9.96
残炭,wt% 3.0
C,wt% 85.98
H,wt% 12.86
S,wt% 0.55
N,wt% 0.18
饱和烃,wt% 56.56
芳香烃,wt% 24.75
胶质,wt% 18.75
沥青质,wt% 0.44
Fe,μg/g 5.3
Ni,μg/g 5.0
V,μg/g 0.8
Cu,μg/g 0.04
Na,μg/g 1.2
实施例A8至实施例A14
将拟薄水铝石与去离子水混合打浆,并向得到的浆液中加入浓度为36重量%的盐酸胶溶,酸铝比(所述36重量%盐酸与以干基计的拟薄水铝石的重量比)为0.20,升温至65℃酸化1小时,分别加入以干基计的高岭土的浆液和铝溶胶,搅拌20分钟,之后再向其中分别加入以干基计的含稀土的Y型分子筛样品PAY-1至PAY-7,搅拌30分钟得到固含量30重量%的浆液,喷雾干燥制成微球催化剂。
然后将微球催化剂在500℃焙烧1小时,再在60℃下用氯化铵水溶液洗涤(其中,氯化铵:微球催化剂:水=0.2:1:10)至氧化钠含量小于0.30重量%,然后使用去离子水进行多次洗涤并过滤,放置120℃恒温烘箱中进行干燥处理12小时,得到的催化剂分别记为AC-1至AC-7,催化剂以干基计的具体配比见下表。
对比例A8至对比例A14
按照实施例A8的方法制备催化剂,不同的是,将实施例A8的含稀土的Y型分子筛分别替换为对比例A1至对比例A7制备的含稀土的Y型分子筛对比样品DAY-1至DAY-7,制备的对比催化剂分别记为DAC-1至DAC-7,对比催化剂的具体配比见下表。
实施例 催化剂 含稀土的Y型分子筛 高岭土 胶溶拟薄水铝石 铝溶胶
编号 编号 名称 重量% 重量% 重量% 重量%
A8 AC-1 PAY-1 33 42 15 10
A9 AC-2 PAY-2 33 42 15 10
A10 AC-3 PAY-3 33 42 15 10
A11 AC-4 PAY-4 33 42 15 10
A12 AC-5 PAY-5 33 42 15 10
A13 AC-6 PAY-6 30 42 15 13
A14 AC-7 PAY-7 33 42 15 10
对比例A8 DAC-1 DAY-1 33 42 15 10
对比例A9 DAC-2 DAY-2 33 42 15 10
对比例A10 DAC-3 DAY-3 33 42 15 10
对比例A11 DAC-4 DAY-4 33 42 15 10
对比例A12 DAC-5 DAY-5 33 42 15 10
对比例A13 DAC-6 DAY-6 30 42 15 13
对比例A14 DAC-7 DAY-7 33 42 15 10
测试例A2
测试例A2说明本发明的催化裂化催化剂的技术效果。
分别将上述催化剂样品AC-1至AC-7和对比催化剂样品DAC-1至DAC-7经800℃、100%水蒸气、17小时水热老化处理后进行重油微反评价。
重油微反评价条件:催化剂装量5克,原料油为武混三重油,进油量为1.384克,反应温度为500℃,再生温度为600℃。
评价结果见下表。本发明的催化裂化催化剂具有优异的重油转化能力和更高的汽油收率。
Figure PCTCN2020101051-appb-000005
Figure PCTCN2020101051-appb-000006
实施例D8至实施例D14
将拟薄水铝石与去离子水混合打浆,并向得到的浆液中加入浓度为36重量%的盐酸胶溶,酸铝比(所述36重量%盐酸与以干基计的拟薄水铝石的重量比)为0.20,升温至65℃酸化1小时,分别加入以干基计的高岭土的浆液和铝溶胶,搅拌20分钟,之后再向其中分别加入以干基计的含稀土的Y型分子筛样品PDY-1至PDY-7,搅拌30分钟得到固含量30重量%的浆液,喷雾干燥制成微球催化剂。
然后将微球催化剂在500℃焙烧1小时,再在60℃下用氯化铵水溶液洗涤(其中,氯化铵:微球催化剂:水=0.2:1:10)至氧化钠含量小于0.30重量%,然后使用去离子水进行多次洗涤并过滤,放置120℃恒温烘箱中进行干燥处理12小时,得到的催化剂分别记为DC-1至DC-7,催化剂以干基计的具体配比见下表。
对比例D8至对比例D14
按照实施例D8的方法制备催化剂,不同的是,将实施例D8的含稀土的Y型分子筛PDY-1分别替换为对比例D1至对比例D7制备的含稀土的Y型分子筛对比样品DDY-1至DDY-7,制备的催化剂分别记为DDC-1至DDC-7。
催化剂以干基计的配比见下表。
Figure PCTCN2020101051-appb-000007
测试例D2
测试例D2说明本发明的催化裂化催化剂的技术效果。
分别将上述催化剂样品DC-1至DC-7和对比催化剂样品DDC-1至DDC-7经800℃、100%水蒸气、17小时水热老化处理后进行重油微反评价。
重油微反评价条件:催化剂装量5克,原料油为武混三重油,进油量为1.384克,反应温度为500℃,再生温度为600℃。
评价结果见下表。本发明的催化裂化催化剂具有优异的重油转化能力和更高的汽油收率。
Figure PCTCN2020101051-appb-000008
实施例B8和实施例C8
实施例B8和实施例C8说明本发明的裂化催化剂的制备。
将拟薄水铝石与去离子水混合打浆,并向得到的浆液中加入浓度为36重量%的盐酸胶溶,酸铝比(所述36重量%盐酸与以干基计的拟薄水铝石的重量比)为0.20,升温至65℃酸化1小时,分别加入以干基计的高岭土的浆液和铝溶胶,搅拌20分钟,之后再向其中分别加入以干基计的含稀土的Y型分子筛样品(实施例B1、实施例C1),搅拌30分钟得到固含量30重量%的浆液,喷雾干燥制成微球催化剂。
然后将微球催化剂在500℃焙烧1小时,再在60℃下用氯化铵水溶液洗涤(其中,氯化铵:微球催化剂:水=0.2:1:10)至氧化钠含量小于0.30重量%,然后使用去离子水进行多次洗涤并过滤,放置120℃恒温烘箱中进行干燥处 理12小时,得到的催化剂分别记为BC-1和CC-1,催化剂以干基计的具体配比见下表。
对比例B8.1、对比例B8.2、对比例C8
按照实施例B8的方法制备催化剂,不同的是,将实施例B1的含稀土的Y型分子筛分别替换为对比例B1.1、对比例B1.2、对比例C1制备的含稀土的Y型分子筛对比样品DBY-1.1、DBY-1.2、DCY-1,制备的对比催化剂分别记为DBC-1.1、DBC-1.2、DCC-1,对比催化剂以干基计的具体配比见下表。
测试
将裂化催化剂BC-1、CC-1、对比裂化催化剂DBC-1.1、DBC-1.2、DCC-1分别经800℃、100%水蒸气、17小时水热老化处理,进行重油微反评价。
重油微反评价条件:催化剂装量5克,原料油为武混三重油,进油量为1.384克,反应温度为500℃,再生温度为600℃。
评价结果见下表。
实施例B9和实施例C9
实施例B9和实施例C9说明本发明的裂化催化剂的制备。
将拟薄水铝石与去离子水混合打浆,并向得到的浆液中加入浓度为36重量%的盐酸胶溶,酸铝比(所述36重量%盐酸与以干基计的拟薄水铝石的重量比)为0.20,升温至65℃酸化1小时,分别加入以干基计的高岭土的浆液和铝溶胶,搅拌20分钟,之后再向其中分别加入以干基计的含稀土的Y型分子筛样品(实施例B2、实施例C2),搅拌30分钟得到固含量30重量%的浆液,喷雾干燥制成微球催化剂。
然后将微球催化剂在500℃焙烧1小时,再在60℃下用氯化铵水溶液洗涤(其中,氯化铵:微球催化剂:水=0.2:1:10)至氧化钠含量小于0.30重量%,然后使用去离子水进行多次洗涤并过滤,放置120℃恒温烘箱中进行干燥处理12小时,得到的催化剂分别记为BC-2和CC-2,催化剂以干基计的具体配比见下表。
对比例B9.1、对比例B9.2、对比例C9
按照实施例B9的方法制备催化剂,不同的是,将实施例B2的含稀土的Y型分子筛分别替换为对比例B2.1、对比例B2.2、对比例C2制备的含稀土的Y型分子筛对比样品DBY-2.1、DBY-2.2、DCY-2,制备的对比催化剂分别记为DBC-2.1、DBC-2.2、DCC-2,对比催化剂以干基计的具体配比见下 表。
测试
将裂化催化剂BC-2、CC-2、对比裂化催化剂DBC-2.1、DBC-2.2、DCC-2分别经800℃、100%水蒸气、17小时水热老化处理,进行重油微反评价。
重油微反评价条件:催化剂装量5克,原料油为武混三重油,进油量为1.384克,反应温度为500℃,再生温度为600℃。
评价结果见下表。
实施例B10和实施例C10
实施例B10和实施例C10说明本发明的裂化催化剂的制备。
将拟薄水铝石与去离子水混合打浆,并向得到的浆液中加入浓度为36重量%的盐酸胶溶,酸铝比(所述36重量%盐酸与以干基计的拟薄水铝石的重量比)为0.20,升温至65℃酸化1小时,分别加入以干基计的高岭土的浆液和铝溶胶,搅拌20分钟,之后再向其中分别加入以干基计的含稀土的Y型分子筛样品(实施例B3、实施例C3),搅拌30分钟得到固含量30重量%的浆液,喷雾干燥制成微球催化剂。
然后将微球催化剂在500℃焙烧1小时,再在60℃下用氯化铵水溶液洗涤(其中,氯化铵:微球催化剂:水=0.2:1:10)至氧化钠含量小于0.30重量%,然后使用去离子水进行多次洗涤并过滤,放置120℃恒温烘箱中进行干燥处理12小时,得到的催化剂分别记为BC-3和CC-3,催化剂以干基计的具体配比见下表。
对比例B10.1、对比例B10.2、对比例C10
按照实施例B10的方法制备催化剂,不同的是,将实施例B3的含稀土的Y型分子筛分别替换为对比例B3.1、对比例B3.2、对比例C3制备的含稀土的Y型分子筛对比样品DBY-3.1、DBY-3.2、DCY-3,制备的对比催化剂分别记为DBC-3.1、DBC-3.2、DCC-3,对比催化剂以干基计的具体配比见下表。
测试
将裂化催化剂BC-3、CC-3、对比裂化催化剂DBC-3.1、DBC-3.2、DCC-3分别经800℃、100%水蒸气、17小时水热老化处理,进行重油微反评价。
重油微反评价条件:催化剂装量5克,原料油为武混三重油,进油量为1.384克,反应温度为500℃,再生温度为600℃。
评价结果见下表。
实施例B11和实施例C11
实施例B11和实施例C11说明本发明的裂化催化剂的制备。
将拟薄水铝石与去离子水混合打浆,并向得到的浆液中加入浓度为36重量%的盐酸胶溶,酸铝比(所述36重量%盐酸与以干基计的拟薄水铝石的重量比)为0.20,升温至65℃酸化1小时,分别加入以干基计的高岭土的浆液和铝溶胶,搅拌20分钟,之后再向其中分别加入以干基计的含稀土的Y型分子筛样品(实施例B4、实施例C4),搅拌30分钟得到固含量30重量%的浆液,喷雾干燥制成微球催化剂。
然后将微球催化剂在500℃焙烧1小时,再在60℃下用氯化铵水溶液洗涤(其中,氯化铵:微球催化剂:水=0.2:1:10)至氧化钠含量小于0.30重量%,然后使用去离子水进行多次洗涤并过滤,放置120℃恒温烘箱中进行干燥处理12小时,得到的催化剂分别记为BC-4和CC-4,催化剂以干基计的具体配比见下表。
对比例B11.1、对比例B11.2、对比例C11
按照实施例B11的方法制备催化剂,不同的是,将实施例B4的含稀土的Y型分子筛分别替换为对比例B4.1、对比例B4.2、对比例C4制备的含稀土的Y型分子筛对比样品DBY-4.1、DBY-4.2、DCY-4,制备的对比催化剂分别记为DBC-4.1、DBC-4.2、DCC-4,对比催化剂以干基计的具体配比见下表。
测试
将裂化催化剂BC-4、CC-4、对比裂化催化剂DBC-4.1、DBC-4.2、DCC-4分别经800℃、100%水蒸气、17小时水热老化处理,进行重油微反评价。
重油微反评价条件:催化剂装量5克,原料油为武混三重油,进油量为1.384克,反应温度为500℃,再生温度为600℃。
评价结果见下表。
实施例B12和实施例C12
实施例B12和实施例C12说明本发明的裂化催化剂的制备。
将拟薄水铝石与去离子水混合打浆,并向得到的浆液中加入浓度为36重量%的盐酸胶溶,酸铝比(所述36重量%盐酸与以干基计的拟薄水铝石的重量比)为0.20,升温至65℃酸化1小时,分别加入以干基计的高岭土的浆液和铝溶胶,搅拌20分钟,之后再向其中分别加入以干基计的含稀土的Y型分子筛样品(实施例B5、实施例C5),搅拌30分钟得到固含量30重量% 的浆液,喷雾干燥制成微球催化剂。
然后将微球催化剂在500℃焙烧1小时,再在60℃下用氯化铵水溶液洗涤(其中,氯化铵:微球催化剂:水=0.2:1:10)至氧化钠含量小于0.30重量%,然后使用去离子水进行多次洗涤并过滤,放置120℃恒温烘箱中进行干燥处理12小时,得到的催化剂分别记为BC-5和CC-5,催化剂以干基计的具体配比见下表。
对比例B12.1、对比例B12.2、对比例C12
按照实施例B12的方法制备催化剂,不同的是,将实施例B5的含稀土的Y型分子筛分别替换为对比例B5.1、对比例B5.2、对比例C5制备的含稀土的Y型分子筛对比样品DBY-5.1、DBY-5.2、DCY-5,制备的对比催化剂分别记为DBC-5.1、DBC-5.2、DCC-5,对比催化剂以干基计的具体配比见下表。
测试
将裂化催化剂BC-5、CC-5、对比裂化催化剂DBC-5.1、DBC-5.2、DCC-5分别经800℃、100%水蒸气、17小时水热老化处理,进行重油微反评价。
重油微反评价条件:催化剂装量5克,原料油为武混三重油,进油量为1.384克,反应温度为500℃,再生温度为600℃。
评价结果见下表。
实施例B13和实施例C13
实施例B13和实施例C13说明本发明的裂化催化剂的制备。
将拟薄水铝石与去离子水混合打浆,并向得到的浆液中加入浓度为36重量%的盐酸胶溶,酸铝比(所述36重量%盐酸与以干基计的拟薄水铝石的重量比)为0.20,升温至65℃酸化1小时,分别加入以干基计的高岭土的浆液和铝溶胶,搅拌20分钟,之后再向其中分别加入以干基计的含稀土的Y型分子筛样品(实施例B6、实施例C6),搅拌30分钟得到固含量30重量%的浆液,喷雾干燥制成微球催化剂。
然后将微球催化剂在500℃焙烧1小时,再在60℃下用氯化铵水溶液洗涤(其中,氯化铵:微球催化剂:水=0.2:1:10)至氧化钠含量小于0.30重量%,然后使用去离子水进行多次洗涤并过滤,放置120℃恒温烘箱中进行干燥处理12小时,得到的催化剂分别记为BC-6和CC-6,催化剂以干基计的具体配比见下表。
对比例B13.1、对比例B13.2、对比例C13
按照实施例B13的方法制备催化剂,不同的是,将实施例B6的含稀土的Y型分子筛分别替换为对比例B6.1、对比例B6.2、对比例C6制备的含稀土的Y型分子筛对比样品DBY-6.1、DBY-6.2、DCY-6,制备的对比催化剂分别记为DBC-6.1、DBC-6.2、DCC-6,对比催化剂以干基计的具体配比见下表。
测试
将裂化催化剂BC-6、CC-6、对比裂化催化剂DBC-6.1、DBC-6.2、DCC-6分别经800℃、100%水蒸气、17小时水热老化处理,进行重油微反评价。
重油微反评价条件:催化剂装量5克,原料油为武混三重油,进油量为1.384克,反应温度为500℃,再生温度为600℃。
评价结果见下表。
实施例B14和实施例C14
实施例B14和实施例C14说明本发明的裂化催化剂的制备。
将拟薄水铝石与去离子水混合打浆,并向得到的浆液中加入浓度为36重量%的盐酸胶溶,酸铝比(所述36重量%盐酸与以干基计的拟薄水铝石的重量比)为0.20,升温至65℃酸化1小时,分别加入以干基计的高岭土的浆液和铝溶胶,搅拌20分钟,之后再向其中分别加入以干基计的含稀土的Y型分子筛样品(实施例B7、实施例C7),搅拌30分钟得到固含量30重量%的浆液,喷雾干燥制成微球催化剂。
然后将微球催化剂在500℃焙烧1小时,再在60℃下用氯化铵水溶液洗涤(其中,氯化铵:微球催化剂:水=0.2:1:10)至氧化钠含量小于0.30重量%,然后使用去离子水进行多次洗涤并过滤,放置120℃恒温烘箱中进行干燥处理12小时,得到的催化剂分别记为BC-7和CC-7,催化剂以干基计的具体配比见下表。
对比例B14.1、对比例B14.2、对比例C14
按照实施例B14的方法制备催化剂,不同的是,将实施例B7的含稀土的Y型分子筛分别替换为对比例B7.1、对比例B7.2、对比例C7制备的含稀土的Y型分子筛对比样品DBY-7.1、DBY-7.2、DCY-7,制备的对比催化剂分别记为DBC-7.1、DBC-7.2、DCC-7,对比催化剂以干基计的具体配比见下表。
测试
将裂化催化剂BC-7、CC-7、对比裂化催化剂DBC-7.1、DBC-7.2、DCC-7 分别经800℃、100%水蒸气、17小时水热老化处理,进行重油微反评价。
重油微反评价条件:催化剂装量5克,原料油为武混三重油,进油量为1.384克,反应温度为500℃,再生温度为600℃。
评价结果见下表。
由表可见,本发明制备的催化剂具有优异的重油转化能力和更高的汽油收率。例如,相比于DBC-1.1,本发明的BC-1样品经800℃、100%水蒸气、17小时水热老化处理后表现出具有较优异的重油裂化活性,转化率提高6.22个百分点,汽油收率提高5.15个百分点,焦炭/转化率下降0.01。
Figure PCTCN2020101051-appb-000009
Figure PCTCN2020101051-appb-000010
Figure PCTCN2020101051-appb-000011

Claims (18)

  1. 一种含稀土的Y型分子筛,其特征在于至少存在2-3纳米和3-4纳米处两种介孔孔径分布。
  2. 按照权利要求1的分子筛,其特征在于在分子筛的BJH孔径分布曲线中,2-3纳米孔径分布的峰面积与3-4纳米孔径分布的峰面积比值≥0.05、优选≥0.1、更优选为0.1至0.4。
  3. 按照前述权利要求中任一项的分子筛,其特征在于其稀土含量以氧化稀土计为2至18重量%,优选8至15重量%,晶胞常数为2.440至2.470nm,结晶度为30至60%。
  4. 按照前述权利要求中任一项的分子筛,其特征在于
    X射线衍射图中2θ=11.8±0.1°峰的强度I1与2θ=12.3±0.1°峰的强度I2的比值≥4.0、优选为4.5至6.0,例如≥4.8,或者4.9至7.0。
  5. 按照前述权利要求中任一项的分子筛,其特征在于
    在分子筛的BJH孔径分布曲线中,还存在10-30纳米处介孔孔径分布,其中,2-3纳米孔径分布的峰面积与总孔的峰面积的比值大于0.1,例如,大于0.12、大于0.15、更优选0.18至0.26,
    10-30纳米孔径分布的峰面积与总孔的峰面积的比值大于0.2,例如,大于0.22、大于0.25、更优选0.27至0.32。
  6. 按照前述权利要求中任一项的分子筛,其特征在于所述分子筛的介孔体积大于0.03cc/g,例如0.031cc/g至0.037cc/g或0.031cc/g至0.057cc/g。
  7. 权利要求1-6中任一项的含稀土的Y型分子筛的制备方法,其特征在于包括将含稀土的NaY分子筛在外部施加压力和外部添加水的气氛环境下进行水热焙烧处理的步骤,所述的气氛环境,其表观压力为0.01至1.0MPa、例如0.1至0.8MPa、优选0.3至0.6MPa,并含1至100%水蒸气,例如含30%至100%水蒸气、优选60至100%水蒸气。
  8. 按照权利要求7的方法,其中所述的含稀土的NaY分子筛是由将NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理的步骤A得到。
  9. 按照权利要求7的方法,其中所述的含稀土的NaY分子筛是通过以下步骤(1)和(2)得到的:
    (1)将NaY分子筛与铵盐进行部分铵交换以脱除10-80%的钠离子,过滤、洗涤、干燥得到NH4NaY分子筛;
    (2)将步骤(1)得到的NH4NaY分子筛与稀土盐溶液或者稀土盐溶液和铵盐的混合溶液进行接触处理,过滤、水洗、干燥,得到含稀土的NaY分子筛。
  10. 按照权利要求7-9中任一项的方法,其中所述的水的气氛环境是纯水的气氛环境或含酸性物质或碱性物质的水溶液的气氛环境。
  11. 按照权利要求7-10中任一项的方法,其中
    所述的稀土盐溶液选自镧、铈、镨、钕离子的一种或多种在内的氯化物水溶液;
    所述的铵盐选自氯化铵、硝酸铵、碳酸铵和碳酸氢铵中的任意一种或者多种的混合物。
  12. 按照权利要求7-11中任一项的方法,其中步骤A或步骤(2)在pH=3.0至5.0、水筛重量比5至30,室温至100℃下进行,任选地,交换时间是至少0.3小时。
  13. 按照权利要求7-12中任一项的方法,其中所述的气氛环境,其表观压力优选为0.1至0.8MPa、更优选0.3至0.6MPa,含30%至100%水蒸气、优选60至100%水蒸气。
  14. 按照权利要求7-13中任一项的方法,其中所述的水热焙烧处理的步骤在300至800℃、优选400至600℃下进行。
  15. 按照权利要求7-14中任一项的方法,其中所述的水的气氛环境是含酸性物质或碱性物质的水溶液的气氛环境,所述的酸性物质选自氯化铵、硫酸铵、碳酸铵、碳酸氢铵、磷酸铵、磷酸二氢铵、磷酸氢二铵、盐酸、硫酸、硝酸中的一种或多种的混合物;所述的碱性物质包含氨水、氨水与氯化铵的缓冲溶液、氢氧化钠、偏铝酸钠、碳酸钠、碳酸氢钠中的一种或多种的混合物。
  16. 按照权利要求10-15中任一项的方法,其中所述的含酸性物质或碱性物质的水溶液的质量浓度为0.1-20%。
  17. 一种催化裂化催化剂,其中所述催化裂化催化剂含有20-60重量%的前述权利要求1-6中任一项的含稀土的Y型分子筛、10-30重量%的无机氧化物粘结剂和30-50重量%的天然矿物质。
  18. 权利要求17的催化裂化催化剂,其中所述的天然矿物质选自高岭土、多水高岭土、蒙脱土、硅藻土、凸凹棒石、海泡石、埃洛石、水滑石、膨润土和累托土中的至少一种,所述的无机氧化物粘结剂选自硅溶胶、铝溶胶、胶溶拟薄水铝石、硅铝溶胶和含磷铝溶胶中的至少一种。
PCT/CN2020/101051 2019-07-09 2020-07-09 含稀土的y型分子筛及其制备方法、含该分子筛的催化裂化催化剂 WO2021004503A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/626,087 US20220259055A1 (en) 2019-07-09 2020-07-09 Rare earth-containing y zeolite, preparation process thereof, and catalytic cracking catalyst containing the zeolite
KR1020227004473A KR20220025200A (ko) 2019-07-09 2020-07-09 희토류 함유 y형 분자체, 그의 제조 방법, 및 분자체를 함유하는 접촉 분해 촉매
JP2022501268A JP2022540629A (ja) 2019-07-09 2020-07-09 レアアースを含むy型分子篩、その製造方法、および当該分子篩を含む接触分解触媒
EP20837442.1A EP3998118A4 (en) 2019-07-09 2020-07-09 Y-TYPE RARE EARTH MOLECULAR SIEVE AND PROCESS FOR PRODUCTION THEREOF AND CATALYTIC CRACKING CATALYST WITH MOLECULAR SIEVE

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201910612784.6 2019-07-09
CN201910612785.0A CN112206810B (zh) 2019-07-09 2019-07-09 一种制备方法和一种稀土y型分子筛
CN201910612759.8 2019-07-09
CN201910612796.9A CN112209401B (zh) 2019-07-09 2019-07-09 一种改性方法和一种稀土y型分子筛
CN201910612785.0 2019-07-09
CN201910612784.6A CN112206809A (zh) 2019-07-09 2019-07-09 一种含稀土的y型分子筛及其制备方法
CN201910612759.8A CN112209400B (zh) 2019-07-09 2019-07-09 一种稀土y型分子筛及其制备方法
CN201910612796.9 2019-07-09
CN202010126354.6 2020-02-28
CN202010126355.0A CN113318777A (zh) 2020-02-28 2020-02-28 一种含稀土y型分子筛的催化裂化催化剂
CN202010126355.0 2020-02-28
CN202010126369.2 2020-02-28
CN202010126369.2A CN113318778B (zh) 2020-02-28 2020-02-28 一种催化裂化催化剂
CN202010126354.6A CN113318776B (zh) 2020-02-28 2020-02-28 裂化催化剂

Publications (1)

Publication Number Publication Date
WO2021004503A1 true WO2021004503A1 (zh) 2021-01-14

Family

ID=74114363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101051 WO2021004503A1 (zh) 2019-07-09 2020-07-09 含稀土的y型分子筛及其制备方法、含该分子筛的催化裂化催化剂

Country Status (6)

Country Link
US (1) US20220259055A1 (zh)
EP (1) EP3998118A4 (zh)
JP (1) JP2022540629A (zh)
KR (1) KR20220025200A (zh)
TW (1) TW202102439A (zh)
WO (1) WO2021004503A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3402996A (en) 1966-12-19 1968-09-24 Grace W R & Co Ion exchange of crystalline zeolites
US5248642A (en) * 1992-05-01 1993-09-28 W. R. Grace & Co.-Conn. Catalytic cracking catalysts and additives
CN1026225C (zh) 1991-02-28 1994-10-19 中国石油化工总公司石油化工科学研究院 一种稀土y分子筛的制备方法
US20100133145A1 (en) * 2007-02-21 2010-06-03 W. R. Grace & Co.-Conn. Gasoline Sulfur Reduction Catalyst for Fluid Catalytic Cracking Process
CN103058217A (zh) * 2011-10-21 2013-04-24 中国石油化工股份有限公司 一种含稀土的y分子筛的制备方法
CN103508467A (zh) 2012-06-27 2014-01-15 中国石油化工股份有限公司 一种稀土y分子筛及其制备方法
CN108264924A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 一种多产汽油的烃催化裂化方法
CN108786901A (zh) * 2018-06-05 2018-11-13 中国石油天然气股份有限公司 一种抗重金属型催化裂化催化剂及其制备方法
CN109305686A (zh) * 2017-07-28 2019-02-05 中国石油天然气股份有限公司 一种y型分子筛的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055916B (zh) * 2011-10-21 2015-06-17 中国石油化工股份有限公司 一种催化裂化催化剂的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3402996A (en) 1966-12-19 1968-09-24 Grace W R & Co Ion exchange of crystalline zeolites
CN1026225C (zh) 1991-02-28 1994-10-19 中国石油化工总公司石油化工科学研究院 一种稀土y分子筛的制备方法
US5248642A (en) * 1992-05-01 1993-09-28 W. R. Grace & Co.-Conn. Catalytic cracking catalysts and additives
US20100133145A1 (en) * 2007-02-21 2010-06-03 W. R. Grace & Co.-Conn. Gasoline Sulfur Reduction Catalyst for Fluid Catalytic Cracking Process
CN103058217A (zh) * 2011-10-21 2013-04-24 中国石油化工股份有限公司 一种含稀土的y分子筛的制备方法
CN103508467A (zh) 2012-06-27 2014-01-15 中国石油化工股份有限公司 一种稀土y分子筛及其制备方法
CN108264924A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 一种多产汽油的烃催化裂化方法
CN109305686A (zh) * 2017-07-28 2019-02-05 中国石油天然气股份有限公司 一种y型分子筛的制备方法
CN108786901A (zh) * 2018-06-05 2018-11-13 中国石油天然气股份有限公司 一种抗重金属型催化裂化催化剂及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
QIN, YUCAI : "Adsorption and catalytic conversion of thiophene on Y-type zeolites modified with rare-earth metal ions", JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY, vol. 41, no. 7, 31 July 2013 (2013-07-31), JP, pages 889 - 896, XP009532948, ISSN: 0253-2409 *
QIN, YUCAI : "Adsorption and catalytic conversion ofthiophene on Y-type zeolites modified with rare-earth metal ions", RANLIAO HUAXUE XUEBAO - JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY, vol. 41, no. 7, 31 July 2013 (2013-07-31), CN , pages 889 - 896, XP009532948, ISSN: 0253-2409 *
See also references of EP3998118A4
YU SHANQING; TIAN HUIPING; ZHU YUXIA; LONG JUN: "Hyperpolarized 129Xe NMR Study on Y Zeolite Modified by Rare Earth Cations", ACTA PETROLEL SINICA, PETROLEUM PROCESSING SECTION, vol. 29, no. 5, 31 October 2013 (2013-10-31), pages 745 - 751, XP055882106, ISSN: 1001-8719, DOI: 10.3969/j.issn.1001-8719.2013.05.001 *
YU SHANQING;TIAN HUIPING;ZHU YUXIA;LONG JUN: "Hyperpolarized 129Xe NMR Study on Y Zeolites Modified by Rare Earth Cations", ACTA PETROLEI SINICA(PETROLEUM PROCESSING SECTION) , vol. 29, no. 5, 25 October 2013 (2013-10-25), pages 745 - 751, XP055882106, ISSN: 1001-8719, DOI: 10.3969/j.issn.1001-8719.2013.05.001 *

Also Published As

Publication number Publication date
US20220259055A1 (en) 2022-08-18
JP2022540629A (ja) 2022-09-16
KR20220025200A (ko) 2022-03-03
EP3998118A1 (en) 2022-05-18
EP3998118A4 (en) 2023-08-30
TW202102439A (zh) 2021-01-16

Similar Documents

Publication Publication Date Title
TWI554604B (zh) Catalytic cracking catalyst comprising modified Y zeolite and preparation method thereof
CN102029177A (zh) 一种裂化催化剂及其制备方法
WO2020192724A1 (zh) 一种催化裂化催化剂及其制备方法
WO2021004502A1 (zh) 含稀土的y型分子筛及其制备方法、含该分子筛的催化裂化催化剂
WO2021004503A1 (zh) 含稀土的y型分子筛及其制备方法、含该分子筛的催化裂化催化剂
CN110203945A (zh) 一种高结晶度和高硅铝比的改性y型分子筛的制备方法
CN113318778B (zh) 一种催化裂化催化剂
CN112206810B (zh) 一种制备方法和一种稀土y型分子筛
CN112808298B (zh) 含多级孔y型分子筛的催化剂及其制备方法
JP3949336B2 (ja) 炭化水素接触分解用触媒組成物の製造方法
CN113318776B (zh) 裂化催化剂
CN112209401B (zh) 一种改性方法和一种稀土y型分子筛
CN107970973A (zh) 一种催化裂化催化剂及其制备方法
CN1388213A (zh) 一种石油烃裂化催化剂的制备方法
RU2808676C2 (ru) Содержащий редкоземельные элементы цеолит y, способ его изготовления и содержащий цеолит катализатор каталитического крекинга
CN108455625B (zh) 一种高稳定性的改性y型分子筛及其制备方法
CN113318777A (zh) 一种含稀土y型分子筛的催化裂化催化剂
RU2803816C2 (ru) Содержащий редкоземельные элементы цеолит y, способ его изготовления и содержащий цеолит катализатор каталитического крекинга
CN112209400B (zh) 一种稀土y型分子筛及其制备方法
CN114425401B (zh) 一种固体超强酸催化剂及其制备方法和应用
WO2022148475A1 (zh) 一种催化裂化催化剂、其制备方法和制备系统
CN114433219B (zh) 烃油催化裂解催化剂及其应用
CN115055203B (zh) 一种重油催化裂化催化剂
CN110652999B (zh) 一种多产异构c4的高稳定性改性y型分子筛及其制备方法
CN110652997B (zh) 一种多产双甲基异构烃的高稳定性改性y型分子筛及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501268

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227004473

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020837442

Country of ref document: EP

Effective date: 20220209