WO2013146212A1 - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2013146212A1
WO2013146212A1 PCT/JP2013/056634 JP2013056634W WO2013146212A1 WO 2013146212 A1 WO2013146212 A1 WO 2013146212A1 JP 2013056634 W JP2013056634 W JP 2013056634W WO 2013146212 A1 WO2013146212 A1 WO 2013146212A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
terminal
circuit
module
main terminal
Prior art date
Application number
PCT/JP2013/056634
Other languages
English (en)
French (fr)
Inventor
飯塚 祐二
真史 堀尾
秀世 仲村
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to EP13770354.2A priority Critical patent/EP2833405A4/en
Priority to CN201380012416.9A priority patent/CN104170086B/zh
Priority to JP2014507624A priority patent/JP5954410B2/ja
Publication of WO2013146212A1 publication Critical patent/WO2013146212A1/ja
Priority to US14/455,184 priority patent/US9379083B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/115Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/117Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor

Definitions

  • the present invention relates to a semiconductor device which is constituted by a semiconductor module provided with a power device or the like and which shares external connection, and a method of manufacturing the semiconductor device.
  • Power inverter devices are widely used as one of power converters.
  • a motor is usually used as a drive source of an electric vehicle or the like, an inverter device is often used to control this type of motor.
  • semiconductor modules provided with power devices such as IGBTs (Insulated Gate Bipolar Transistors) or FWDs (Free Wheeling Diodes) are used.
  • IGBTs Insulated Gate Bipolar Transistors
  • FWDs Free Wheeling Diodes
  • FIG. 19 is a cross-sectional view showing an example of a conventional semiconductor module.
  • a semiconductor chip 11 such as an IGBT or FWD is joined to the insulating substrate 12.
  • the insulating substrate 12 is formed of a ceramic substrate or the like, and conductor layers 12a and 12b are formed on both the front and back sides.
  • the semiconductor chip is bonded to the conductor layer 12a on the front surface as the first main surface.
  • the conductor layer 12b on the back surface as the second main surface of the insulating substrate 12 is joined to the base plate 13 made of a material having high thermal conductivity.
  • the gap in the contact interface is filled with a compound, or fixed to the heat dissipating fin 14 via a thermally conductive sheet or the like.
  • the conductor layer 12 a constitutes a circuit pattern, and the conductor layer 12 a and the electrode on the back surface of the semiconductor chip 11 are joined.
  • the front surface electrode is generally joined by a wire such as an aluminum wire 15 or the like.
  • a plurality of external terminals 16 a to 16 c are also connected to the conductor layer 12 a of the insulating substrate 12.
  • a frame-like resin case 17 is fixed on the base plate 13 with an adhesive or the like so as to surround the insulating substrate 12 described above.
  • the sealing material 18 such as silicone gel is filled so as to cover the semiconductor chip 11 and the like.
  • the lid 17a is fixed so as to close the opening of the resin case 17, and the semiconductor chip 11 and the wiring configuration inside are protected from the external environment.
  • a plurality of semiconductor chips 11 are disposed in the conductor layer 12 a on the insulating substrate 12, and the semiconductor chips 11 are connected with each other by the aluminum wires 15 in parallel or in series. Realize the connection configuration and increase the capacity or withstand voltage. Further, a plurality of insulating substrates 12 are mounted on the base plate 13, and the conductor layer 12 a on the insulating substrate 12 and the semiconductor chip 11 are mutually connected by the aluminum wires 15. Thus, a parallel or series circuit configuration is realized to achieve a large capacity or a high breakdown voltage.
  • Such a semiconductor module is a large-sized semiconductor module formed as a circuit configuration having a desired capacity and withstand voltage.
  • the base plate 13 is fastened to the radiation fin 14 by a plurality of bolts 19. They have to be held in pressure contact with each other (see, for example, Patent Document 1).
  • Patent Documents 2 and 3 disclose a semiconductor device that can be manufactured at low cost while securing a high yield using a wide band gap semiconductor that causes a yield decrease due to a crystal defect of a wafer.
  • the semiconductor module is provided with segments (semiconductor elements) capable of operating individually on a silicon carbide (SiC) substrate, and a trench or Schottky for electrically separating adjacent segments from each other. An element isolation region such as a diode is formed.
  • SiC silicon carbide
  • An element isolation region such as a diode is formed.
  • the power conversion device of Patent Document 4 includes a bus bar connecting the power conversion circuit and an external device, and a base for fixing at least the power module and the control substrate, and fixing one arm's worth of modules to a common base They are connected to each other by bus bars.
  • a bus bar connecting the power conversion circuit and an external device, and a base for fixing at least the power module and the control substrate, and fixing one arm's worth of modules to a common base They are connected to each other by bus bars.
  • Patent Document 5 discloses a technology related to a power drive unit including a plurality of power modules.
  • a power drive unit includes a heat sink to which a plurality of power modules and a current detection unit are fixed in parallel.
  • the power drive unit has a positioning pin disposed in the power module, and an insertion hole in the electronic circuit board through which the positioning pin is inserted.
  • one electronic circuit board and a plurality of power modules can be connected at one time (simultaneously) and can be easily assembled, the assembling work efficiency is improved.
  • Patent Documents 6 and 7 disclose that the external terminals are fastened by connection conductors such as bus bars across the external terminals of the module.
  • a full bridge circuit needs to be configured as follows using the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 19, the external terminals 16a to 16c exposed on the lid 17a are connected by an external connection conductor such as a wiring board or a bus bar outside the semiconductor device, and wiring between the individual semiconductor devices is performed. To form external lead terminals for output and input power (see, for example, Patent Document 6).
  • the semiconductor device as a single module, while the number of the insulating substrates 12 and the internal arrangement of the external terminals 16a to 16c are determined along with the internal structure of the aforementioned semiconductor device according to the application, In the above, there are restrictions on the external connection conductors and the overall shape of the device. Therefore, in order to improve the type by rating, the semiconductor chip 11, the insulating substrate 12, the external terminals 16a to 16c, the resin case 17, and the lid 17a are variously selected according to the current capacity required for the rating. There is a problem that the production efficiency is reduced.
  • the present invention has been made in view of these points, and it is an object of the present invention to provide a semiconductor device and a method of manufacturing the semiconductor device capable of improving the production efficiency by modularizing according to the current rating. Do.
  • a semiconductor module having a circuit board and at least one semiconductor circuit mounted on the circuit board, and an external part of the semiconductor module between at least two of the semiconductor modules. Between the terminals drawn out from the semiconductor circuit and electrically connected between the terminals, and the main terminal plate is connected between the terminals by the main terminal plate; There is provided a semiconductor device comprising: a composite module in which two semiconductor modules are integrated; and a protective case having an insertion hole through which the connection terminal portion is inserted to the outside of the composite module.
  • the present invention further comprises local laser light on the surface of each terminal extracted from the semiconductor circuit to the outside of at least two semiconductor modules having a circuit board and at least one semiconductor circuit mounted on the circuit board.
  • Manufacture of a semiconductor device which joins the terminal heated and heated by heating, and is heated and melted, and the main terminal plate common to at least two of the semiconductor modules to form a conductive path between at least two of the semiconductor modules A method is provided.
  • FIG. 4 is a plan view showing the composite module of FIG. 3 housed in a protective case, in which (A) is a state before forming a main terminal, and (B) is a state after forming the main terminal.
  • FIG. 5 is a cross-sectional view taken along the VV cross section of FIG. 4 (B). It is an equivalent circuit schematic which shows the semiconductor circuit comprised by the composite module of FIG.
  • FIG. 9 is a sectional view taken along the line XX in FIG. 8;
  • FIG. 3 is further composited, wherein (A) shows the semiconductor module before being stored in the protective case, and (B) is a state where the main terminal segment is bent on the surface of the protective case
  • FIG. It is a top view showing the compound module which compounded the power semiconductor module concerning a 5th embodiment. It is a top view which shows the state after the main terminal formation accommodated in the protective case of the composite module of FIG.
  • It is a top view showing the compound module which compounded the power semiconductor module concerning a 6th embodiment.
  • FIG. 17 is an equivalent circuit diagram showing a semiconductor circuit configured by the composite module of FIG. 16; It is sectional drawing which shows an example of the conventional semiconductor module.
  • FIG. 1 is a cross-sectional view and a plan view showing a power semiconductor module according to a first embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram showing a semiconductor circuit configured by the power semiconductor module of FIG.
  • the power semiconductor module 1 includes two sets of semiconductor circuits configured by mounting the semiconductor chips 21a and 21b on the respective insulating substrates 22 and 22, and a wiring substrate 23 forming a common wiring circuit above them. Have.
  • the semiconductor chips 21a and 21b are each formed of power devices such as IGBTs or power MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) or FWDs.
  • IGBTs or power MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • FWDs Metal-Oxide-Semiconductor Field-Effect Transistors
  • FIG. 1 only one semiconductor chip 21 a (21 b) is displayed on one insulating substrate 22 in order to make the illustration easy to understand.
  • switching devices such as IGBTs and FWDs are disposed on the conductor layer on the front surface side of one insulating substrate 22 and connected as shown in the equivalent circuit of FIG.
  • These semiconductor chips 21a and 21b are various power devices as described above, but may be formed on a silicon substrate or may be formed on a SiC substrate.
  • the insulating substrate 22 is made of ceramic having good heat conductivity such as alumina, and copper foils 22a and 22b constituting a conductor layer are attached to the front and back surfaces thereof.
  • a predetermined circuit pattern for connecting a plurality of power devices disposed on the conductor layer is formed on the conductor layer (copper foil 22a) on the front surface side.
  • the semiconductor chip (power device) disposed on one insulating substrate 22 may be equivalently configured as an anti-parallel circuit of the transistor and the diode shown in FIG. Therefore, a plurality of semiconductor chips with either or both of the same ratings may be mounted on the transistor and the diode.
  • FIG. 1 shows a state in which the semiconductor chip 21a constituting the transistor Q1 and the semiconductor chip (not shown) constituting the diode D1 are arranged in the front-rear direction on the copper foil 22a of the insulating substrate 22. There is. Similarly, on the copper foil 22b of the insulating substrate 22, the semiconductor chip 21b constituting the transistor Q2 and the semiconductor chip constituting the diode D2 are arranged side by side behind the semiconductor chip 21b. That is, the transistor Q1 and the diode D1, and the transistor Q2 and the diode D2 are connected in reverse parallel by the copper foils 22a and 22b on the insulating substrates 22 and 22 and the wiring substrate 23, respectively. Then, two pairs of reverse parallel circuits each including a pair of transistors Q1 and Q2 and diodes D1 and D2 are connected in series via a wiring board 23 disposed on the upper surface and a post-like electrode member 24.
  • the two semiconductor chips 21a may be arranged side by side in the left-right direction without being arranged in the front-rear direction on the copper foil 22a of the insulating substrate 22 as shown in FIG.
  • the semiconductor chips 21b can also be arranged side by side in the same manner.
  • the collector electrode of the transistor Q1 is formed on the lower surface of one semiconductor chip 21a, and a pin-shaped conductor (pin) constituting an external input terminal (collector terminal C1) of the power semiconductor module 1 via the copper foil 22a. Terminal) 25 is connected.
  • the collector electrode of the transistor Q2 formed on the back surface of the other semiconductor chip 21b is also connected to a pin-shaped conductor (pin terminal) 26 which constitutes an external output terminal (collector / emitter terminal C2 / E1) through the copper foil 22a. It is connected.
  • the emitter electrodes and the gate electrodes of the transistors Q1 and Q2 are formed on the front surfaces of the semiconductor chips 21a and 21b, and are connected to the wiring substrate 23 through the electrode members 24 respectively.
  • the emitter electrode of the transistor Q1 is connected to the pin terminal 26 through the wiring board 23, and the emitter electrode of the transistor Q2 is a pin-shaped conductor constituting an external input terminal (emitter terminal E2) through the wiring board 23. (Pin terminal) 27 is connected.
  • the power semiconductor module 1 further includes four pin-shaped conductors (pin terminals) 28 whose tip ends long on the pin-shaped conductors 25 to 27 or more. Two of these pin-shaped conductors 28 are connected to the wiring board 23, and constitute gate terminals G1 and G2 for supplying gate control signals to the gate electrodes of the transistors Q1 and Q2 of the half bridge circuit. The remaining two terminals are control (auxiliary) terminals, and constitute inspection terminals C1Aux, E2Aux, etc. which output sense signals for sensing the current flowing between the collectors and emitters of the transistors Q1 and Q2.
  • Each component of the power semiconductor module 1 is molded and protected by, for example, an epoxy resin material of a thermosetting resin.
  • the outer shape of the power semiconductor module 1 is formed into a rectangular parallelepiped having a rectangular shape in plan view as a whole as shown in FIGS. 1A and 1B, and a predetermined diameter is formed in the central portion thereof.
  • a cylindrical through hole 29 is provided.
  • the end portions of the ten pin-shaped conductors 25 to 28 project from the top surface of the power semiconductor module 1.
  • a plurality of copper plates 30 are disposed on the bottom surface of the power semiconductor module 1 so as to be flush with the copper foils 22 b on the bottom surface side of each insulating substrate 22.
  • the copper plates 30 When these copper plates 30 are inserted through bolts or the like from the front surface side of the power semiconductor module 1 into the through holes 29 to fasten the radiation fins to the bottom surface, the copper plates 30 closely contact with the radiation fins to dissipate the heat of the power semiconductor module 1. It constitutes a face.
  • the power semiconductor module 1 having a sealing structure of such a resin material has the same function as the conventional module shown in FIG. Further, the power semiconductor module 1 forms a unit unit of an integrated semiconductor device (composite module) described below, and the whole is protected by the sealing resin in the state of individual semiconductor circuit elements.
  • the power semiconductor module 1 can ensure that the bottom surface of the insulating substrate 22 is in close contact with the radiation fin 14 as shown in FIG. 19 by inserting and fastening a bolt in the through hole 29.
  • the collector terminal C1, the collector / emitter terminal C2 / E1, and the emitter terminal E2 correspond to the pin-shaped conductors (pin terminals) 25 to 27, respectively, but the present invention is not limited to this.
  • the collector terminal C1, the collector / emitter terminal C2 / E1, and the emitter terminal E2 are arbitrarily set in the pin conductors (pin terminals) 25 to 27. It can correspond.
  • FIG. 3 is a plan view showing a composite module in which the power semiconductor module of FIG. 1 is combined.
  • three power semiconductor modules 1 are arranged in the same plane, and pin conductors 25 to 27 drawn out from the power semiconductor module 1 are three main terminal boards 2A to 2C respectively. By being connected, they are integrated.
  • the main terminal plate 2A is formed with six through holes 31a to 31f into which the pin-shaped conductors 25 constituting the external input terminals (collector terminals C1) of the three power semiconductor modules 1 are inserted.
  • six through holes 32a to 32f into which the pin-shaped conductor 27 constituting the external output terminal (collector and emitter terminal C2 / E1) of the three power semiconductor modules 1 is inserted are formed. Be done.
  • six through holes 33a to 33f are formed in the main terminal plate 2C, into which the pin-shaped conductors 26 constituting the external input terminals (emitter terminals E2) of the three power semiconductor modules 1 are inserted.
  • Each of the main terminal boards 2A to 2C is a conductor provided across the respective power semiconductor modules 1, and connects the internal semiconductor circuits. Further, the main terminal boards 2A to 2C have erected pieces 3A to 3C which are partially bent. These standing pieces 3A to 3C are formed at predetermined positions at predetermined positions so as to be drawn out as protective main terminal segments from the protective case 3 described later (see FIGS. 4 and 5 described later). Further, round holes 3h (see FIG. 5 described later) are provided in the vicinity of the tip end portions of the rising pieces 3A to 3C.
  • the pin-shaped conductors 25 to 27 of the power semiconductor module 1 are inserted into the through holes 31a to 33f of the main terminal boards 2A to 2C.
  • the main terminal boards 2A to 2C are mutually joined to the power semiconductor modules 1 to form conductive paths among the semiconductor circuits in the three power semiconductor modules 1.
  • the lead (Pb) -free solder containing, for example, tin (Sn) is used to join the main terminal boards 2A to 2C and the pin-like conductors 25 to 27, for example, the pin-like conductive Paste solder can be post-applied to the bodies 25-27 and heated for joining. Such bonding may be performed using a conventional flow solder, but can be firmly adhered by the following method.
  • the material of the pin-like conductors 25 to 27 be copper (Cu) or aluminum (Al) based material having excellent conductivity.
  • the pin-like conductors 25 to 27 may be surface-treated with nickel (Ni) or tin to improve the wettability of the solder bond, thereby enhancing the mounting efficiency. It is possible.
  • the external main terminal plates 2A to 2C are joined by spot-projecting the excited laser light onto the individual pin terminals (pin-like conductors 25 to 27) of the power semiconductor module 1 and performing local heating. It is also good.
  • silver having excellent conductivity is optimal in consideration of heat receiving stability in a short time.
  • tin-based coating configuration is applied to the surface of the pin terminal, so that the tin-gold bonding has a low melting point, and the bonding power is compared to the copper, aluminum, and silver configurations. There is a merit that can be reduced.
  • the eutectic component of tin-gold forms a joint after solidification, higher heat resistance can be expected compared to general solder joint.
  • FIG. 4 is a plan view showing the composite module of FIG. 3 housed in a protective case, in which (A) shows a state before forming the main terminal, and (B) shows a state after forming the main terminal.
  • FIG. 5 is a cross-sectional view taken along the line V-V in FIG. 4 (B).
  • the protective case 3 is a resin case having an insulating property, and as shown in FIG. 3, the outer surface is provided with an opening which can be stored in a state where the three power semiconductor modules 1 are compounded by the main terminal boards 2A to 2C. It is configured as an enclosure.
  • the protective case 3 has the size corresponding to the cross-sectional shape of the rising pieces 3A to 3C of the main terminal boards 2A to 2C, and is formed in the insertion holes 31 to 33 penetrating from the surface to the inside and the rising pieces 3A to 3C Counterbore holes 34A to 34C of a size corresponding to the round hole 3h are provided.
  • the control board 39 in which the through holes 39 h corresponding to the 12 pin conductors 28 are formed is disposed on the surface of the protective case 3, and the composite module in the protective case 3.
  • the tip portions of the rising pieces 3A to 3C projecting outward from above the protective case 3 are bent Be
  • the main terminal segments 4A to 4C having round holes 3h for fastening bolts and screws form a positive electrode terminal, a negative electrode terminal, and an output terminal in a shape parallel to the upper surface of the protective case 3.
  • the counterbore holes 34A to 34C of the protective case 3 are at positions corresponding to the round holes 3h of the bent main terminal segments 4A to 4C, and the main terminal plates 2A to 2C Functions as a bolt hole for fastening.
  • FIG. 6 is an equivalent circuit diagram showing a semiconductor circuit configured by the composite module of FIG.
  • the semiconductor circuits Ca to Cc configured by the three power semiconductor modules 1 constitute half bridge circuits connected in parallel between the positive electrode terminal P (C1) and the negative electrode terminal N (E2).
  • the semiconductor circuits Ca to Cc as composite modules have the function of improving the current capacity of the single power semiconductor module 1 by three times.
  • the composite module of FIG. 3 is integrated with the protective case 3 by bolts inserted into the through holes 29 of the respective power semiconductor modules 1 from the openings 35 to 37 on the upper surface of the protective case 3.
  • the copper plate 30 (see FIG. 1) that constitutes the heat dissipation surface of the power semiconductor module 1 is exposed to the outside. Therefore, if the radiation fins are attached to the lower surface of the protective case 3 using the three bolts inserted into the openings 35 to 37 of the protective case 3, the bottom surface of each power semiconductor module 1 can be closely attached.
  • the semiconductor circuit formed of the plurality of power semiconductor modules 1 is integrated as one unit by the main terminal boards 2A to 2C, and is integrated in the protective case 3 as a composite module. It can be integrated.
  • the cooling fins can be securely attached only by collectively fastening one cooling fin to the integrated module in the protective case 3 with a minimum of bolts. Therefore, the production equipment for each product type can be reduced. As a result, the types of jigs and tools can be reduced, the cost of quality control can be reduced by arranging the product types, and mass production efficiency can be enhanced.
  • the present invention can provide a semiconductor device with high area efficiency of cooling fins.
  • the contact interface of the semiconductor module mounted on the heat dissipating fins may be fluctuated including the thermal deformation on the heat dissipating fin side at the time of cooling, thereby improving the adhesion between the base plate and the fins. It was not easy to secure the heat dissipation efficiency.
  • the module configuration itself is miniaturized as compared with the conventional one, and the individual power semiconductor modules 1 are held by their own fastening means. Therefore, the composite module has an action of following the deformation and displacement of its component members. That is, even when the current capacity of the semiconductor circuit is increased and the size of the semiconductor module mounted on the radiation fin is increased, the cooling state at the time of operation of the actual machine is stable, which is excellent also from the viewpoint of reliability improvement. Characteristics can be expected.
  • the composite module mentioned above shall be comprised by three power semiconductor modules 1, four or more may be sufficient according to the use, or two may be sufficient.
  • FIG. 7 is a cross-sectional view and a plan view showing a power semiconductor module according to a second embodiment.
  • the power semiconductor module 10 shown in FIG. 7 is obtained by replacing the pin conductors 25 to 27 of the power semiconductor module 1 described in the first embodiment with plate conductors 41 to 43.
  • These plate-like conductors 41 to 43 constitute an external input terminal (collector terminal C1), an external input terminal (emitter terminal E2), and an external output terminal (collector / emitter terminal C2 / E1).
  • a fastening opening 4 h is provided in the front end portion. That is, after each component of the power semiconductor module 10 is molded with an epoxy resin material of a thermosetting resin, the plate-like conductors 41 to 43 are provided with fastening openings 4h by bending their tip ends by 90 °.
  • the three terminal portions 44 to 46 are formed.
  • the collector terminal C1, the collector / emitter terminal C2 / E1, the emitter terminal E2 can be arbitrarily associated.
  • counter bores 47 to 49 are provided on the resin surface of the power semiconductor module 10 at positions corresponding to the fastening openings 4 h of the respective terminal portions 44 to 46. These counter bores 47 to 49 are formed to a depth corresponding to the length of a bolt or screw used at the time of fastening.
  • FIG. 8 is a plan view showing a composite module in which the power semiconductor module of FIG. 7 is combined.
  • 9 is a cross-sectional view taken along the line XX in FIG.
  • Three terminal portions 44 to 46 are formed in the three power semiconductor modules 10A to 10C housed in the inside of the protective case 3, respectively.
  • the main terminal plate 2D is fixed to the terminal portions 44 of the power semiconductor modules 10A to 10C by bolts 54 inserted into the fastening openings 4h, respectively, to form conductive paths.
  • the main terminal plate 2D has a size that can be integrally fastened with the fastening opening 4h formed in the terminal portion 44, and is provided with three bolt insertion holes 55 to 57 at predetermined positions.
  • main terminal plate 2E is fixed to each of the terminal portions 45 of the power semiconductor modules 10A to 10C
  • main terminal plate 2F is fixed to each of the terminal portions 46, and a conductive path is formed between them.
  • these main terminal boards 2D to 2F have erected pieces 3D to 3F formed by bending a part of the main terminal boards 2D to 2F.
  • the power semiconductor module 1 shown in FIG. 1 is compact and corresponds to a small capacity application.
  • the power semiconductor module 10 of the second embodiment between the plate-like conductors 41 to 43 and the main terminal plates 2D to 2F using the plate-like conductors 41 to 43 having a large current-carrying capacity. , And can be firmly fastened by means of screws or bolts.
  • the protective case 3 is a resin case having an insulating property, and an envelope having an opening on the bottom surface which can be stored in a state in which the three power semiconductor modules 10A to 10C are compounded by the main terminal boards 2D to 2F. Is configured as.
  • a through hole 39 h corresponding to the pin-shaped conductor 28 is formed in the control substrate 39 and is disposed on the upper surface of the protective case 3.
  • the control board 39 is the same as that shown in FIG. 5 (Embodiment 1), and the corresponding parts are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • the three power semiconductor modules 10A to 10C are connected to one another, and the rising pieces 3D to 3F formed on the main terminal boards 2D to 2F are drawn out of the protective case 3 and bent respectively.
  • the terminal segments 4D to 4F are used. Therefore, in the semiconductor device of the second embodiment, the semiconductor circuits formed by power semiconductor modules 10A to 10C can be connected by plate-like conductors 41 to 43 having a large current-carrying capacity, and the current capacity as a composite module is increased. The case can be handled with certainty.
  • FIG. 10 shows a composite module according to the third embodiment, wherein (A) shows the semiconductor module before being stored in the protective case, and (B) shows the main terminal segment bent on the surface of the protective case It is a figure which shows a state.
  • the composite module shown here is comprised of three power semiconductor modules 1A to 1C and main terminal boards 2B, 2C and 2G (2GU, 2GV, 2GW).
  • Each of the power semiconductor modules 1A to 1C includes, like the power semiconductor module 1 according to the first embodiment, pin conductors 25 to 27 serving as external input / output terminals and a pin conductor 28 configuring a control (auxiliary) terminal. (See Figure 1) is used.
  • the point different from the first embodiment is that main conductors are provided outside the protective case 5 from the pin-like conductors (pin terminals) that constitute the external input terminals (collector terminal C1) of the power semiconductor modules 1A to 1C.
  • the terminal segment 4G (4GU, 4GV, 4GW) is pulled out.
  • the conductive paths of the semiconductor circuits in the power semiconductor modules are constituted only by the two main terminal boards 2B and 2C, and as the main terminal segments 4B and 4C outside the protective case 5 respectively. It has been taken out.
  • the main terminal plate 2G is connected to the pin-shaped conductor, and the respective standing pieces 3G (3GU, 3GV, 3GW) are pulled out from the protective case 5, and three independent main terminals Segment 4G is configured.
  • FIG. 11 is an equivalent circuit diagram showing a semiconductor circuit configured by the composite module of FIG.
  • a semiconductor circuit constituted by three power semiconductor modules 1A to 1C constitutes a three-phase full bridge circuit connected in parallel between the positive electrode terminal P (C1) and the negative electrode terminal N (E2).
  • the main terminal segment 4GU is drawn out as a U terminal from the middle terminal of the bridge.
  • the main terminal segments 4GV and 4GW are drawn independently as V terminals and W terminals from the middle terminals of the bridge, respectively. .
  • the circuit configuration shown in FIG. 11 is an example, and in the semiconductor device of the third embodiment, various semiconductor circuits can be configured according to how the main terminal segments 4B, 4C and 4G are drawn out. .
  • FIG. 12 is a top composite module obtained by further combining the composite module of FIG. 3, wherein (A) shows the semiconductor module before being stored in the protective case, (B) shows the main terminal segment on the protective case surface It is a figure which shows the state which bend
  • the three composite modules accommodated in the protective case 3 are connected as the upper semiconductor circuit by the second main terminal boards 6A to 6C to improve the current capacity of the semiconductor element. It is configured as a full bridge circuit.
  • the compound module shown in FIG. 5 may be used.
  • the second main terminal boards 6A are mutually connected by main terminal segments 4D formed in the three protective cases 3 and bolts 58, and are provided with rising pieces 7A at predetermined positions. Further, the second main terminal plate 6B of each protective case 3 is connected to the main terminal segment 4E by the bolt 58, and the rising pieces 7B constituting the upper main terminal segments 8B independent of each other are formed. Have. Further, the second main terminal boards 6C are mutually connected by the main terminal segments 4F of the three protective cases 3 and the bolts 58, and are provided with rising pieces 7C at predetermined positions.
  • FIG. 12B shows a state in which the three protective cases 3 are accommodated in the upper protective case 7 and bent as the upper main terminal segments 8A to 8C.
  • the upper protective case 7 On the surface of the upper protective case 7, five upper main terminal segments 8A, 8B (x 3), 8C and three control boards 60 are arranged. Further, nine openings 61 to 69 penetrating the upper protective case 7 are formed to communicate with the openings 35 to 37 of the respective protective cases 3.
  • the openings 61 to 69 are formed in the same shape as the through holes of a total of nine power semiconductor modules arranged in the three protective cases 3 respectively.
  • the radiation fins can be fixed on the bottom surface of the upper protective case 7.
  • the three power semiconductor modules, each of which constitutes a composite module are easily integrated by the upper protective case 7 and are securely in pressure contact with the heat dissipating fins.
  • FIG. 13 is a plan view showing a composite module obtained by compounding the power semiconductor module according to the fifth embodiment
  • FIG. 14 is a plan view showing a state after forming the main terminal housed in the protective case of the composite module of FIG. FIG.
  • the composite module shown here is comprised of three power semiconductor modules 1D to 1F, main terminal boards 2H to 2K, and wiring boards 2L and 2M formed of conductive members.
  • wiring portions 2Ia to 2Ka are parts of main terminal boards 2I to 2K, and a portion where the main terminal board is connected to a pin-shaped conductor of a power semiconductor module to be described later It connects with 3K.
  • Each of the power semiconductor modules 1D to 1F includes, like the power semiconductor module 1 according to the first embodiment, pin conductors 25 to 27 serving as external input / output terminals and a pin conductor 28 configuring a control (auxiliary) terminal. The same configuration (see FIG. 1) is used.
  • the main terminal plate 2H is connected to the pin conductors 25 of the power semiconductor modules 1D and 1E, and the main terminal plate 2I is connected to the pin conductors 25 of the power semiconductor module 1F.
  • the standing pieces 3H are formed on the main terminal plate 2H, and the standing pieces 3I are formed on the main terminal plate 2I via the wiring portion 2Ia.
  • the main terminal plate 2J is connected to the pin-shaped conductor 27 of the power semiconductor module 1D.
  • An upright piece 3J is formed on the main terminal board 2J via the wiring portion 2Ja.
  • the main terminal plate 2K is connected to the pin-shaped conductor 26 of the power semiconductor module 1D.
  • An upright piece 3K is formed on the main terminal plate 2K via the wiring portion 2Ka.
  • the wiring board 2L is connected to the pin conductors 26 of the power semiconductor modules 1E and 1F, and the wiring board 2M is connected to the pin conductors 27 of the power semiconductor modules 1E and 1F.
  • the standing pieces 3H to 3K are respectively formed so as to be arranged linearly.
  • the connection between the main terminal boards 2H to 2K, the wiring boards 2L and 2M, and the pin conductors 25 to 27 can be made to the main terminal boards 2H to 2K and the wiring boards 2L and 2M as described in the first embodiment.
  • the pin-shaped conductors 25 to 27 of the power semiconductor modules 1D to 1F are inserted into the formed through holes 31a to 33f. As a result, the main terminal boards 2H to 2K, the wiring boards 2L and 2M, and the power semiconductor modules 1D to 1F are mutually joined.
  • Such composite modules are respectively drawn out in the through holes formed corresponding to the erecting pieces 3H to 3K, and stored in the protective case 8, and the erecting pieces 3H to 3K are bent.
  • the main terminal segments as output terminal U (4H), negative terminal N (4J), middle terminal M (4I), and positive terminal P (4K) are linearly arranged. Is configured.
  • FIG. 15 is an equivalent circuit diagram showing a semiconductor circuit configured by the composite module of FIG.
  • the semiconductor circuit constituted by the three power semiconductor modules 1D to 1F in FIG. 13 has a reverse parallel connection circuit of a transistor Q1 and a diode D1 between a positive electrode terminal P (C1) and a negative electrode terminal N (E2), and a transistor Q2.
  • the diode D2 and the anti-parallel circuit are connected in series.
  • the semiconductor circuit Ca configured by the power semiconductor module 1D is a half bridge circuit, and the output terminal U is drawn out from a middle point m1 in which anti-parallel circuits are connected in series.
  • the power semiconductor modules 1E and 1F are connected in series in antiparallel circuits to form semiconductor circuits (half bridge circuits) Cb and Cc. Furthermore, the reverse parallel connection circuit of the transistor Q1 and the diode D1 of the semiconductor circuit Cb, and the reverse parallel connection circuit of the transistor Q1 of the Cc and the diode D1 are connected in series in reverse polarity. In the example of FIG. 15, the collector of the transistor Q1 of the semiconductor circuit Cb and the collector of the transistor Q1 of the semiconductor circuit Cc are connected.
  • the reverse parallel connection circuit of the transistor Q2 and the diode D2 of the semiconductor circuit Cb, and the reverse parallel connection circuit of the transistor Q2 of the Cc and the diode D2 are connected in series in reverse polarity.
  • the emitter of the transistor Q2 of the semiconductor circuit Cb is connected to the emitter of the transistor Q2 of the semiconductor circuit Cc.
  • FIG. 16 is a plan view showing a composite module obtained by compounding the power semiconductor module according to the sixth embodiment
  • FIG. 17 is a plan view showing a state after forming the main terminals housed in the protective case of the composite module of FIG. FIG.
  • the composite module shown here is composed of two power semiconductor modules 1G and 1H and main terminal boards 2Q to 2T.
  • wiring portions 2Qa to 2Ta are parts of main terminal plates 2Q to 2T, and a portion where the main terminal plate is connected to a pin-shaped conductor of a power semiconductor module described later, and rising pieces 3Q to It connects with 3T.
  • the power semiconductor module 1G includes the pin conductors 25 to 27 serving as external input / output terminals and the pin conductor 28 configuring a control (auxiliary) terminal ( 1) is used.
  • power semiconductor module 1H has the same shape as power semiconductor module 1 of the first embodiment, and pin conductors 25 to 27 serving as external input / output terminals and a pin conductor 28 constituting a control (auxiliary) terminal.
  • a reverse blocking IGBT is used as a switching device.
  • the main terminal plate 2Q is connected to the pin conductor 25 of the power semiconductor module 1G and the pin conductors 26 and 27 of the power semiconductor module 1G. Further, the main terminal plate 2S is connected to the pin-shaped conductor 25 of the power semiconductor module 1H.
  • An upright piece 3Q is formed on the main terminal plate 2Q via a wiring portion 2Qa. Moreover, the standing piece 3S is formed in the main terminal board 2S via wiring part 2Sa.
  • the main terminal plate 2R is connected to the pin-shaped conductor 27 of the power semiconductor module 1G.
  • An upright piece 3R is connected to the main terminal plate 2R via a wiring portion 2Ra.
  • the main terminal plate 2T is connected to the pin-like conductor 26 of the power semiconductor module 1G.
  • An upright piece 3T is formed on the main terminal board 2T via the wiring portion 2Ta.
  • the rising pieces 3Q to 3T are respectively formed to be arranged in a straight line as shown in FIG.
  • the connection between the main terminal plates 2Q to 2T and the pin-shaped conductors 25 to 27 can be made through the through holes 31a to 33f formed in the main terminal plates 2Q to 2T as described in the first embodiment. , 1H pin conductors 25 to 27 are inserted. As a result, the power terminal modules 2G to 2T of the main terminal boards 2Q to 2T are mutually joined.
  • Such composite modules are drawn out in the through holes formed corresponding to the rising pieces 3Q to 3T, respectively, stored in the protective case 9, and the rising pieces 3Q to 3T are bent.
  • the main terminal segments as output terminal U (4Q), negative electrode terminal N (4R), middle terminal M (4S), and positive electrode terminal P (4T) are linearly arranged. Is configured.
  • FIG. 18 is an equivalent circuit diagram showing a semiconductor circuit configured by the composite module of FIG.
  • the semiconductor circuit configured by the power semiconductor module 1G of FIG. 16 has a reverse parallel connection circuit of the transistor Q1 and the diode D1 between the positive electrode terminal P (C1) and the negative electrode terminal N (E2), and the transistor Q2 and the diode D2.
  • the antiparallel circuit is connected in series.
  • the output terminal U is drawn out from the middle point m1 in which the anti-parallel circuits are connected in series.
  • transistors (reverse blocking IGBTs) Q3 and Q4 are connected in series to form a semiconductor circuit Cd.
  • An intermediate terminal M is drawn from an intermediate point m2 of the transistors Q3 and Q4 connected in series in the semiconductor circuit Cd.
  • both ends of the series circuit of the transistors Q3 and Q4 of the semiconductor circuit Cd are both connected to the middle point m1 of the semiconductor circuit Ca configured by the power semiconductor module 1G and connected to the output terminal U.
  • the power semiconductor modules 1G and 1H having the same outer shape are connected as shown in FIG. 16 and FIG. 17 to form a composite module, which is divided into one phase. It is possible to configure a semiconductor device applicable to the three-level inverter known in
  • the present invention has been described above based on the first to sixth embodiments shown in the drawings, the present invention is not limited to these.
  • a circuit having a necessary current capacity can be realized only by preparing the protective cases 3 and 7 sequentially as the upper form. That is, in the fourth embodiment, the protection case 3 is integrated by the upper protection case 7 to form a semiconductor circuit, but by further performing element aggregation recursively using the upper protection case, A semiconductor circuit with a large current capacity can be easily realized.
  • the present invention is not limited to the power inverter device by the power semiconductor module 1 and the like described above.

Abstract

 冷却体への密着性を高めるとともにその生産効率の向上を図ることができる半導体装置及び半導体装置の製造方法を提供する。 半導体装置は、三つのパワー半導体モジュール(1)が所定の間隔で同一平面内に並べられ、パワー半導体モジュール(1)から外部に引き出されたピン状導電体(25~27)がそれぞれ3枚の主端子板(2A~2C)と接続されることで、それらが一体に構成された複合モジュールである。複合モジュール全体を保護ケースに収納し、さらに放熱フィンを配置する場合には、貫通孔(29)に挿入されるボルトで保護ケースと放熱フィンを締結することによって、絶縁基板の底面を放熱フィンと確実に密着させて保護ケースに収納することができる。

Description

半導体装置及び半導体装置の製造方法
 本発明は、パワーデバイス等を備えた半導体モジュールによって構成され、外部接続を共通化した半導体装置及び半導体装置の製造方法に関する。
 電力用インバータ装置は、電力変換装置のひとつとして広く用いられている。例えば、電気自動車等の駆動源には通常モータが用いられるが、インバータ装置はこの種のモータを制御するうえで多く利用されている。
 このような電力変換装置には、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)やFWD(Free Wheeling Diode:フリーホイーリングダイオード)等のパワーデバイスを備えた半導体モジュールが用いられている。
 図19は、従来の半導体モジュールの一例を示す断面図である。
 図に示す従来の半導体モジュールは、IGBTやFWD等の半導体チップ11が絶縁基板12に接合される。絶縁基板12は、セラミック基板等で形成され、その表裏両面にそれぞれ導体層12a,12bが形成されている。半導体チップは第1の主面としてのおもて面の導体層12aに接合されている。また、絶縁基板12の第2の主面として裏面の導体層12bは熱伝導性の高い材質で構成されるベース板13に接合されている。また、ベース板13の絶縁基板12が接合された面とは反対側の面は、接触界面の隙間にコンパウンドが充填され、または、熱伝導性のシート等を介して放熱フィン14に固定される。
 また、絶縁基板12のおもて面側では、導体層12aが回路パターンを構成しており、導体層12aと半導体チップ11の裏面の電極が接合されるとともに、導体層12aと半導体チップ11のおもて面電極とが、通常アルミワイヤ15等の配線によって接合される。また、絶縁基板12の導体層12aには、複数の外部端子16a~16cも接続されている。
 さらに、上記の絶縁基板12を囲むように、ベース板13上に枠状の樹脂ケース17が接着剤等で固着される。このような樹脂ケース17及びベース板13との内部では、上記の半導体チップ11等を覆うようにシリコーンゲル等の封止材18が充填される。そして、樹脂ケース17の開口を塞ぐように蓋体17aが固着され、半導体チップ11や内部の配線構成が外部環境から保護された構成を有する。
 近年の、省電力を志向した再生可能な発電設備の普及に付随して、電力変換用の半導体装置に対するニーズが高まっている。そこでは、特に前述のような半導体モジュールでは大容量化あるいは高耐圧化が課題となっている。
 即ち、上記のような半導体装置では、絶縁基板12上の導体層12aに複数の半導体チップ11を配置し、半導体チップ11との間をアルミワイヤ15で相互に接続することで並列、あるいは直列の接続構成を実現し、大容量化あるいは高耐圧化を図る。さらに、ベース板13上に、複数の絶縁基板12を載置し、これらの絶縁基板12上の導体層12aと半導体チップ11との間をアルミワイヤ15で相互に接続する。これにより並列、あるいは直列の回路構成を実現して、大容量化あるいは高耐圧化を図る。このような半導体モジュールは、所望の容量や耐圧を持った回路構成として形成される大型の半導体モジュールとなる。
 ここで、半導体チップ11の発生熱(損失)をベース板13に伝熱させ、それらを効率よく系外に放熱するために、ベース板13は複数本のボルト19によって放熱フィン14と締結され、それらが互いに圧接された状態に保持される必要があった(例えば、特許文献1参照)。
 また、特許文献2,3には、ウェハの結晶欠陥による歩留まり低下を起こすワイドバンドギャップ半導体を用いて、高い歩留まりを確保しつつ、低コストで製造することが可能な半導体デバイスが開示されている。ここでは、半導体モジュールは、SiC(炭化ケイ素)基板上に、個別に動作することが可能なセグメント(半導体素子)を備え、相隣接するセグメント同士間を電気的に分離するためのトレンチ、ショットキーダイオード等の素子分離領域が形成されている。このような半導体モジュールでは、検査で良品であることが確認されたセグメントの電極パッドのみを電極端子に接続している。
 特許文献4の電力変換装置は、電力変換回路と外部の機器を接続するブスバーと、少なくともパワーモジュールと制御基板とを固定するベースとを備え、1アーム分のモジュールを共通のベースに固定し、ブスバーによって互いに接続したものである。ここでは、電力変換装置を取付け空間の事情に応じた最適の構成として、空間制約の多い車両のとくにエンジン室等への搭載の自由度が増す。しかも、制御基板の剛性が高くなり耐振性を高め、且つ冷却効果を高めることができる。
 特許文献5は、複数のパワーモジュールを含むパワードライブユニットに関する技術が開示されている。このようなパワードライブユニットは、複数のパワーモジュールと電流検出部が並列に固定される放熱板を備えている。さらに、当該パワードライブユニットは、パワーモジュールに配置される位置決めピン、及び電子回路基板に穿設された、位置決めピンが挿通される挿通孔を備えている。ここでは、1枚の電子回路基板と複数のパワーモジュールを1度に(同時に)接続可能であり、それらを容易に組付けることができるので、組付け作業効率が向上する。
 特許文献6,7には、モジュールの外部端子間にまたがって、ブスバー等の接続導体により外部端子間を締結するものが示されている。
特開2007-194442号公報 特開2004-289103号公報 特開2010-251772号公報 特開2007-209184号公報 特開2006-81308号公報 特開平05-218252号公報 特開平07-123738号公報 特開2008-193779号公報
 図19に示す半導体装置を用いて、例えばフルブリッジ回路を以下のように構成する必要がある。即ち、図19に示す半導体装置では、蓋体17a上に露出した外部端子16a~16cを半導体装置外部の配線基板やバスバーのような外付け接続導体で接続し、個別の半導体装置間を配線して、出力及び入力電源用の外部導出端子を構成する(例えば、特許文献6参照)。
 ところが、単体のモジュールとしての半導体装置では、用途に応じた前述の半導体装置の内部構造に付随して、その絶縁基板12の枚数や外部端子16a~16cの内部配置が定まる一方で、半導体装置外部では外付け接続導体や装置全体の外形上の制約がある。そのため、定格別に型式を充実させるためには、半導体チップ11と、絶縁基板12、外部端子16a~16c、樹脂ケース17、その蓋体17aは、その定格上必要とされる電流容量に応じて種々に用意する必要があり、生産効率が低下するという問題があった。
 本発明はこのような点に鑑みてなされたものであり、電流定格に応じてモジュール化することで生産効率の向上を図ることができる半導体装置及び半導体装置の製造方法を提供することを目的とする。
 本発明では、上記問題を解決するために、回路基板と、前記回路基板上に搭載された少なくとも一つの半導体回路とを有する半導体モジュールと、少なくとも二つの前記半導体モジュール間において、前記半導体モジュールの外部に前記半導体回路からそれぞれ引き出された端子間を電気的に接続し、外部配線と接続される接続端子部が形成された主端子板と、前記主端子板により前記端子間が接続されて少なくとも二つの前記半導体モジュールが一体化された複合モジュールを収納し、前記接続端子部が前記複合モジュールの外部に挿通される挿通孔を有する保護ケースと、を備えている半導体装置が提供される。
 本発明は、さらに回路基板と、前記回路基板上に搭載された少なくとも一つの半導体回路とを有する、少なくとも二つの半導体モジュールの外部に前記半導体回路からそれぞれ引き出された端子の表面に局部レーザ光を照射して昇温加熱し、加熱溶融させた前記端子と、少なくとも二つの前記半導体モジュールに共通する主端子板とを接合し、少なくとも二つの前記半導体モジュール相互の導電路を構成する半導体装置の製造方法が提供される。
 本発明によれば、電流定格に応じてモジュール化して、その生産効率の向上を図る半導体装置及び半導体装置の製造方法が提供できる。
 本発明の上記及び他の目的、特徴及び利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
第1の実施の形態に係るパワー半導体モジュールを示す断面及び平面図である。 図1のパワー半導体モジュールによって構成される半導体回路を示す等価回路図である。 図1のパワー半導体モジュールを複合化した複合モジュールを示す平面図である。 図3の複合モジュールを保護ケースに収納したものであって、(A)は主端子形成前の状態、(B)は主端子形成後の状態を示す平面図である。 図4(B)のV-V断面に沿って示す断面矢視図である。 図3の複合モジュールによって構成される半導体回路を示す等価回路図である。 第2の実施の形態に係るパワー半導体モジュールを示す断面及び平面図である。 図7のパワー半導体モジュールを複合化した複合モジュールを示す平面図である。 図8のX-X断面に沿って示す断面矢視図である。 第3の実施の形態に係る複合モジュールであって、(A)は保護ケースへの収納前の半導体モジュールを示す図、(B)は保護ケース表面で主端子用セグメントを折り曲げた状態を示す図である。 図10の複合モジュールによって構成される半導体回路を示す等価回路図である。 図3の複合モジュールをさらに複合化した上位複合モジュールであって、(A)は保護ケースへの収納前の半導体モジュールを示す図、(B)は保護ケース表面で主端子用セグメントを折り曲げた状態を示す図である。 第5の実施の形態に係るパワー半導体モジュールを複合化した複合モジュールを示す平面図である。 図13の複合モジュールの保護ケースに収納した主端子形成後の状態を示す平面図である。 図13の複合モジュールによって構成される半導体回路を示す等価回路図である。 第6の実施の形態に係るパワー半導体モジュールを複合化した複合モジュールを示す平面図である。 図16の複合モジュールの保護ケースに収納した主端子形成後の状態を示す平面図である。 図16の複合モジュールによって構成される半導体回路を示す等価回路図である。 従来の半導体モジュールの一例を示す断面図である。
 以下、図面を参照してこの発明の実施の形態について説明する。
 (実施の形態1)
 図1は、本発明の第1の実施の形態に係るパワー半導体モジュールを示す断面及び平面図である。また、図2は、図1のパワー半導体モジュールによって構成される半導体回路を示す等価回路図である。
 パワー半導体モジュール1は、半導体チップ21a,21bをそれぞれの絶縁基板22,22上に搭載して構成される2組の半導体回路と、それらの上方で共通の配線回路を構成する配線基板23とを備えている。これらの半導体回路は、それぞれ半導体チップ21a,21bがIGBTまたはパワーMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:電界効果トランジスタ)やFWD等のパワーデバイスにより構成されている。なお、図示をわかりやすくするために、図1においては、一つの絶縁基板22上に一つの半導体チップ21a(21b)のみを表示している。実際は、一つの絶縁基板22のおもて面側の導体層上に、IGBT等のスイッチングデバイスとFWDを配置して、図2の等価回路に示すように接続している。
 なお、これらの半導体チップ21a,21bは、上記のような各種パワーデバイスであるが、シリコン基板上に形成したものでもよいし、SiC基板上に形成したものでもよい。
 絶縁基板22は、伝熱性の良いアルミナ等のセラミックスで構成され、その表裏面には導体層を構成する銅箔22a,22bが貼り付けられている。おもて面側の導体層(銅箔22a)には、導体層上に配置された複数のパワーデバイスの間を接続するための所定の回路パターンが形成されている。
 図2に示す等価回路図から分かるように、絶縁基板22,22の銅箔22a,22bには、スイッチングデバイス(以下、単にトランジスタという)Q1とFWD(以下、ダイオードという)D1の逆並列接続回路と、トランジスタQ2とダイオードD2との逆並列回路とが、直列に接続されている。
 ここで、一つの絶縁基板22上に配置される半導体チップ(パワーデバイス)は、図2に示すトランジスタとダイオードの逆並列回路を等価的に構成すればよい。このため、トランジスタとダイオードは、どちらかあるいは双方が同定格の複数個の半導体チップを搭載するようにしてもよい。
 図1では、絶縁基板22の銅箔22a上で、トランジスタQ1を構成する半導体チップ21aと、その背後にダイオードD1を構成する半導体チップ(図示せず)が前後方向に配置された状態を示している。同様に、絶縁基板22の銅箔22b上では、トランジスタQ2を構成する半導体チップ21bと、その背後にダイオードD2を構成する半導体チップとが、前後して並んでいる。即ち、トランジスタQ1とダイオードD1、トランジスタQ2とダイオードD2は、絶縁基板22,22上の銅箔22a,22bと配線基板23とによって、それぞれ逆並列に接続されている。そして、一対のトランジスタQ1,Q2とダイオードD1,D2からなる2組の逆並列回路は、さらに上面に配置された配線基板23とポスト状の電極用部材24を介して直列に接続される。
 なお、図1のように2つの半導体チップ21aを絶縁基板22の銅箔22a上で前後方向に配置せずに、左右方向に並べて配置することもできる。また、半導体チップ21bについても、同様に左右方向に並べて配置することもできる。
 ここでは、一方の半導体チップ21aの下面にはトランジスタQ1のコレクタ電極が形成され、銅箔22aを介してパワー半導体モジュール1の外部入力用端子(コレクタ端子C1)を構成するピン状導電体(ピン端子)25に接続されている。他方の半導体チップ21bの裏面に形成されたトランジスタQ2のコレクタ電極も、銅箔22aを介して外部出力用端子(コレクタ兼エミッタ端子C2/E1)を構成するピン状導電体(ピン端子)26に接続されている。また、半導体チップ21a,21bのおもて面には、トランジスタQ1,Q2のエミッタ電極及びゲート電極が形成され、それぞれ電極用部材24を介して配線基板23に接続される。このうちトランジスタQ1のエミッタ電極は、配線基板23を介してピン端子26と接続され、トランジスタQ2のエミッタ電極は配線基板23を介して外部入力用端子(エミッタ端子E2)を構成するピン状導電体(ピン端子)27に接続されている。
 これらのピン状導電体25~27は、図1(B)に示すようにパワー半導体モジュール1のA-A線に対して対称の位置に2本ずつ形成されている。また、パワー半導体モジュール1はピン状導電体25~27以上に先端が長く突起している4本のピン状導電体(ピン端子)28をさらに有している。これらのピン状導電体28のうちの2本は配線基板23に接続されて、ハーフブリッジ回路のトランジスタQ1,Q2のゲート電極にゲート制御信号を供給するゲート端子G1,G2を構成している。また、残りの2本は制御(補助)端子であって、トランジスタQ1,Q2のコレクタ-エミッタ間に流れる電流をセンシングするセンス信号を出力する検査端子C1Aux,E2Aux等を構成している。
 パワー半導体モジュール1の各構成要素は、例えば熱硬化性樹脂のエポキシ樹脂材料によってモールドされ、保護される。その結果、パワー半導体モジュール1の外形は、全体として図1(A)及び(B)に示すように平面視で矩形形状をなす直方体に形成されるとともに、その中央部分には、所定の径を有する円筒形状の貫通孔29が設けられている。10本のピン状導電体25~28は、その端部がパワー半導体モジュール1の上面から突出している。パワー半導体モジュール1の底面には、各絶縁基板22の底面側の銅箔22bに対応して、複数の銅板30がそれぞれ面一となるように配置されている。これらの銅板30は、パワー半導体モジュール1のおもて面側から貫通孔29にボルト等を挿通して底面に放熱フィンを締着したとき、それぞれ放熱フィンと密着してパワー半導体モジュール1の放熱面を構成するものである。
 こうした樹脂材料による封止構造のパワー半導体モジュール1は、図19に示された従来のモジュールと同一の機能を有するものである。また、パワー半導体モジュール1は、以下で説明する一体化された半導体装置(複合モジュール)の単位ユニットを成し、個別の半導体回路要素の状態で全体が封止樹脂によって保護されている。パワー半導体モジュール1は、貫通孔29にボルトを挿入して締結することにより、図19に示すような放熱フィン14に対して、絶縁基板22の底面を確実に密着させることが可能である。
 なお、上記の例では、ピン状導電体(ピン端子)25~27に、それぞれ、コレクタ端子C1、コレクタ兼エミッタ端子C2/E1、エミッタ端子E2を対応させているが、これに限定されない。ピン状導電体(ピン端子)25~27に、絶縁基板22の銅箔22a,22b及び配線基板23の配線に応じて、コレクタ端子C1、コレクタ兼エミッタ端子C2/E1、エミッタ端子E2を任意に対応付けることができる。
 つぎに、パワー半導体モジュール1を単位ユニットとして構成される、複合化された半導体装置の一例を説明する。
 図3は、図1のパワー半導体モジュールを複合化した複合モジュールを示す平面図である。
 図3の複合モジュールは、三つのパワー半導体モジュール1が同一平面内に並べられ、パワー半導体モジュール1から外部に引き出されたピン状導電体25~27がそれぞれ3枚の主端子板2A~2Cと接続されることで、それらが一体に構成される。主端子板2Aには、三つのパワー半導体モジュール1の外部入力用端子(コレクタ端子C1)を構成するピン状導電体25が挿入される六つの貫通孔31a~31fが形成される。また、主端子板2Bには、三つのパワー半導体モジュール1の外部出力用端子(コレクタ兼エミッタ端子C2/E1)を構成するピン状導電体27が挿入される六つの貫通孔32a~32fが形成される。さらに、主端子板2Cには、三つのパワー半導体モジュール1の外部入力用端子(エミッタ端子E2)を構成するピン状導電体26が挿入される六つの貫通孔33a~33fが形成されている。
 主端子板2A~2Cは、いずれも各パワー半導体モジュール1を跨いで設けられる導電体であって、それぞれ内部の半導体回路の間を接続する。また、主端子板2A~2Cは、一部が折り曲げられた起立片3A~3Cを有している。これらの起立片3A~3Cは、後述する保護ケース3(後述する図4,5参照)から外部の主端子用セグメントとして引き出されるべく、所定の位置に所定の長さで形成されている。また、起立片3A~3Cは、先端部近傍にはそれぞれ丸孔3h(後述する図5参照)が設けられている。
 これら主端子板2A~2Cは、その貫通孔31a~33fにパワー半導体モジュール1のピン状導電体25~27が挿入される。これにより主端子板2A~2Cは各パワー半導体モジュール1と相互に接合されて、三つのパワー半導体モジュール1内の半導体回路相互の導電路が構成される。また、これら主端子板2A~2Cとピン状導電体25~27の接合は、例えば錫(Sn)を含む鉛(Pb)フリーはんだを用いる場合、図3の形状に組み立てた後、ピン状導電体25~27にペーストはんだを後塗布し、加熱して接合することができる。このような接合では、通常のフローはんだを用いて行ってもよいが、以下の方法によれば強固に接着することができる。
 即ち、ピン状導電体25~27の材質は、導電性に優れた銅(Cu)、あるいはアルミニウム(Al)系のものであることが望ましい。はんだ接合の容易さを考慮するとき、ピン状導電体25~27にはニッケル(Ni)あるいは錫系の表面処理を施して、はんだ接合の濡れ性を改善することによって、実装効率を高めることが可能である。
 また、パワー半導体モジュール1の個別のピン端子(ピン状導電体25~27)に励起されたレーザ光をスポット投射して局部加熱を行うことで、外部の主端子板2A~2Cを接合してもよい。この場合は、導電性に優れた銅、あるいはアルミニウム系の母材構成に加えて、銀(Ag)、金(Au)系の合金材料等を用いることができる。銅、アルミニウム、銀を用いた場合は、局部的な同種拡散接合の形態となるが、短時間での受熱安定性を考慮すると、伝導性に優れた銀が最適である。さらに、金を用いる場合はピン端子の表面に錫系の被膜構成を施すことで、錫-金系の接合が低融点の構成となって、銅、アルミニウム、銀の構成と比較して接合パワーが少なくて済むメリットが生じる。しかも、凝固後には錫-金の共晶成分が接合部を形成するために、一般的なはんだ接合より高耐熱性が期待できる。
 つぎに、上述した半導体装置を複合化された状態で所定の保護ケースに収納し、一体化する手順について説明する。
 図4は、図3の複合モジュールを保護ケースに収納したものであって、(A)は主端子形成前の状態、(B)は主端子形成後の状態を示す平面図である。また、図5は、図4(B)のV-V断面に沿って示す断面矢視図である。
 保護ケース3は絶縁性を有する樹脂ケースであって、三つのパワー半導体モジュール1が図3に示すように主端子板2A~2Cによって複合化された状態で収納可能な開口を底面に備えた外囲器として構成されている。保護ケース3には、主端子板2A~2Cの起立片3A~3Cの断面形状に対応した大きさで、その表面から内部まで貫通する挿通孔31~33と、起立片3A~3Cに形成された丸孔3hに対応する大きさの座繰り穴34A~34Cとが設けられている。
 また、保護ケース3の表面には、各パワー半導体モジュール1の貫通孔29に対応して、直径が貫通孔29より大きな開口部35~37と、各パワー半導体モジュール1のピン状導電体28を外部に引き出すための開口部38も形成されている。さらに、図4(B)に示すように、12本のピン状導電体28に対応する貫通孔39hが形成された制御基板39が保護ケース3の表面に配置され、保護ケース3内の複合モジュールによって構成される半導体回路に対する所望の制御回路を形成している。
 三つのパワー半導体モジュール1は、主端子板2A~2Cにより複合化された状態で保護ケース3に収納されると、起立片3A~3Cの保護ケース3の上方から外部に突出する先端部分が折り曲げられる。これにより、ボルトやねじの締結用の丸孔3hを有する主端子用セグメント4A~4Cは、保護ケース3の上面と並行する形状で、それぞれ正極端子、負極端子、及び出力端子を構成する。このとき、保護ケース3の座繰り穴34A~34Cは、折り曲げられた主端子用セグメント4A~4Cの丸孔3hに対応する位置にあって、主端子板2A~2Cを外部接続板(バスバー等)と締結する際に、締結用のボルト穴として機能する。
 図6は、図3の複合モジュールによって構成される半導体回路を示す等価回路図である。
 三つのパワー半導体モジュール1によって構成された半導体回路Ca~Ccは、それぞれ正極端子P(C1)、負極端子N(E2)の間で並列接続されたハーフブリッジ回路を構成している。これにより、複合モジュールとしての半導体回路Ca~Ccは、パワー半導体モジュール1の単体での電流容量を3倍に向上した機能を持つことになる。また、図3の複合モジュールは、保護ケース3の上面の開口部35~37からそれぞれのパワー半導体モジュール1の貫通孔29に挿入されるボルトによって、保護ケース3と一体化される。その際に、保護ケース3の下面には、パワー半導体モジュール1の放熱面を構成する銅板30(図1参照)が外部に露出する。したがって、保護ケース3の開口部35~37に挿入された3本のボルトを用いて、保護ケース3の下面に放熱フィンを装着すれば、各パワー半導体モジュール1の底面と密着させることができる。
 以上に説明したように、実施の形態1の半導体装置は、複数のパワー半導体モジュール1からなる半導体回路が主端子板2A~2Cによって一体のものとして集約されて、複合モジュールとして保護ケース3内に一体化できる。また、個別のパワー半導体モジュール1毎に冷却フィンにマウントする必要がない。保護ケース3内で一体化された複合モジュールに対して一枚の冷却フィンを最小限のボルトで一括して締結するだけで、当該冷却フィンを確実に装着できる。したがって、製品種別ごとの生産設備が低減できる。それにより、治具、工具類の種類を低減することができるうえ、製品種別の整理によって品質管理のコストを低減でき、量産効率を高めることも可能である。
 即ち、個々のパワー半導体モジュール1にそれぞれ締結用の貫通孔29が設けられている。そのため、主端子板2A~2Cで接続された複数個のパワー半導体モジュール1に対して、それぞれ確実に冷却フィンとの間の熱伝導路が安定して確保できる。したがって、従来の半導体装置の構成と比較して、電流密度増大への対応に優れた構造となり、個別の半導体装置の小型化が可能となり、複合モジュールを構成する各半導体チップ21a,21bの放熱効率、冷却フィンの面積効率等の高い半導体装置を提供できる。
 また、従来の半導体装置では、冷却時の放熱フィン側の熱変形も含めて、放熱フィンにマウントされる半導体モジュールの接触界面に変動を与える場合があり、ベース板とフィンとの密着性を高めて、放熱効率を確保することが容易ではなかった。一方、上述した実施の形態では、従来のものと比較してモジュール構成自体が小型化され、かつ個別のパワー半導体モジュール1がそれぞれ固有の締結手段によって保持されている。そのために、複合モジュールはその構成部材の変形、変位に追従する作用が得られる。即ち、半導体回路の電流容量が大きくなって、放熱フィンにマウントされる半導体モジュールのサイズが大型化した場合でも、実機動作の際の冷却状態が安定しているために信頼性向上の観点でも優れた特性が期待できる。
 このように半導体装置の基本構成を共通化することにより、必要定格に応じた一体化が容易となって、様々な定格のニーズに即した回路構成を簡易に実現できる。また、冷却体への伝熱効率を向上させて、マウントサイズが大径化した場合に顕在化する熱変形も容易に回避できる。したがって、半導体装置の生産効率向上、特性向上、信頼性向上が実現できる。なお、上述した複合モジュールは三つのパワー半導体モジュール1によって構成されるものとしたが、その用途に応じて四つ以上であってもよいし、あるいは二つであってもよい。
 (実施の形態2)
 図7は、第2の実施の形態に係るパワー半導体モジュールを示す断面及び平面図である。
 図7に示すパワー半導体モジュール10は、実施の形態1で説明したパワー半導体モジュール1のピン状導電体25~27を板状導電体41~43に置き換えたものである。
 これらの板状導電体41~43は、外部入力用端子(コレクタ端子C1)、外部入力用端子(エミッタ端子E2)、外部出力用端子(コレクタ兼エミッタ端子C2/E1)を構成するものであって、先端部分には締結用開口部4hを有している。即ち、パワー半導体モジュール10の各構成要素が熱硬化性樹脂のエポキシ樹脂材料によってモールドされた後、板状導電体41~43はその先端部を90°折り曲げることにより、締結用開口部4hを備えた三つの端子部44~46となる。
 なお、実施の形態2でも、板状導電体41~43に、絶縁基板22の銅箔22a,22b及び配線基板23の配線に応じて、コレクタ端子C1、コレクタ兼エミッタ端子C2/E1、エミッタ端子E2を任意に対応付けることができる。
 樹脂モールドに際して、パワー半導体モジュール10の樹脂表面には座繰り穴47~49が、各端子部44~46の締結用開口部4hと対応する位置に設けられる。これらの座繰り穴47~49は、締結時に使用されるボルト、あるいはねじの長さに応じた深さに形成される。
 図8は、図7のパワー半導体モジュールを複合化した複合モジュールを示す平面図である。また、図9は、図8のX-X断面に沿って示す断面矢視図である。
 保護ケース3の内部に収納される三つのパワー半導体モジュール10A~10Cには、それぞれ三つの端子部44~46が形成されている。このうち、パワー半導体モジュール10A~10Cの各端子部44には、それぞれ締結用開口部4hに挿入されるボルト54によって主端子板2Dが固着されて導電路が形成される。この主端子板2Dは、端子部44に形成された締結用開口部4hと一体に締結可能な大きさで、所定位置に三つのボルト挿通穴55~57を備えている。同様に、パワー半導体モジュール10A~10Cの各端子部45には主端子板2Eが固着され、各端子部46には主端子板2Fが固着され、それぞれの間に導電路が形成される。これらの主端子板2D~2Fは、実施の形態1で用いられている主端子板2A~2Cと同様、その一部が折り曲げられて形成された起立片3D~3Fを有している。
 図1に示すパワー半導体モジュール1はコンパクトで小容量の用途に対応していた。これに対して、実施の形態2のパワー半導体モジュール10では、通電能力の大きな板状導電体41~43を用いて、各板状導電体41~43と主端子板2D~2Fとの間が、ねじあるいはボルトによって強固に締結可能な構成となっている。
 ここで、保護ケース3は絶縁性を有する樹脂ケースであり、三つのパワー半導体モジュール10A~10Cが主端子板2D~2Fによって複合化された状態で収納可能な開口を底面に備えた外囲器として構成されている。制御基板39には、ピン状導電体28に対応する貫通孔39hが形成され、保護ケース3の上面に配置されている。なお、制御基板39は、図5(実施の形態1)に示したものと同様であって、対応する部分は同じ符号をつけて詳細な説明を省略する。なお、主端子板2D~2Fをボルト54によってそれぞれ端子部44~46と接続する際には、必要に応じて端子部44~46の裏面の、パワー半導体モジュール10A~10Cとの隙間に座金51~53を挟み込むとよい。
 これにより、三つのパワー半導体モジュール10A~10Cが互いに連結されるとともに、各主端子板2D~2Fに形成された起立片3D~3Fが保護ケース3の外部に引き出され、それぞれ折り曲げられることによって主端子用セグメント4D~4Fとされる。したがって、実施の形態2の半導体装置は、パワー半導体モジュール10A~10Cによって形成された半導体回路の間が通電能力の大きな板状導電体41~43によって接続でき、複合モジュールとしての電流容量が増大した場合にも確実に対応できる。
 (実施の形態3)
 図10は、第3の実施の形態に係る複合モジュールであって、(A)は保護ケースへの収納前の半導体モジュールを示す図、(B)は保護ケース表面で主端子用セグメントを折り曲げた状態を示す図である。
 ここに示す複合モジュールは、三つのパワー半導体モジュール1A~1Cと、主端子板2B,2C及び2G(2GU,2GV,2GW)とから構成される。
 各パワー半導体モジュール1A~1Cは、実施の形態1のパワー半導体モジュール1と同様、外部入出力端子となるピン状導電体25~27と制御(補助)端子を構成するピン状導電体28を備えたもの(図1参照)が使用される。実施の形態1のものと異なる点は、それぞれパワー半導体モジュール1A~1Cの外部入力用端子(コレクタ端子C1)を構成するピン状導電体(ピン端子)から、保護ケース5の外側に独立した主端子用セグメント4G(4GU,4GV,4GW)が引き出されていることである。
 このために、パワー半導体モジュール1A~1Cは、その内部の半導体回路の導電路が2本の主端子板2B,2Cだけで構成され、それぞれ保護ケース5の外側で主端子用セグメント4B,4Cとして取り出されている。パワー半導体モジュール1A~1Cには、それぞれ主端子板2Gがピン状導電体に接続され、それぞれの起立片3G(3GU,3GV,3GW)が保護ケース5から引き出されて、三つの独立した主端子用セグメント4Gを構成している。
 図11は、図10の複合モジュールによって構成される半導体回路を示す等価回路図である。
 三つのパワー半導体モジュール1A~1Cによって構成された半導体回路は、それぞれ正極端子P(C1)、負極端子N(E2)の間で並列接続された3相のフルブリッジ回路を構成している。パワー半導体モジュール1Aにより構成された半導体回路Caでは、主端子用セグメント4GUがブリッジの中間端子からのU端子として引き出される。そして、パワー半導体モジュール1B,1Cによりそれぞれ構成された半導体回路Cb,Ccからは、主端子用セグメント4GV,4GWがブリッジの中間端子からのV端子、W端子として、それぞれ独立して引き出されている。
 なお、図11に示した回路構成は一例であって、実施の形態3の半導体装置では、どのように主端子用セグメント4B,4C及び4Gを引き出すかに応じて、各種の半導体回路が構成できる。
 (実施の形態4)
 図12は、図3の複合モジュールをさらに複合化した上位複合モジュールであって、(A)は保護ケースへの収納前の半導体モジュールを示す図、(B)は保護ケース表面で主端子用セグメントを折り曲げた状態を示す図である。
 図12(A)に示す上位複合モジュールは、それぞれ保護ケース3に収納された三つの複合モジュールが第2の主端子板6A~6Cによって上位の半導体回路として接続され、半導体素子の電流容量を向上させたフルブリッジ回路として構成されたものである。ここでは、複合モジュールとして例えば図9に示すものが想定されているが、図5に示す複合モジュールであってもよい。
 第2の主端子板6Aは、三つの保護ケース3に形成された主端子用セグメント4Dとボルト58によって相互に接続されるものであって、その所定の位置に起立片7Aを備えている。また、それぞれの保護ケース3の第2の主端子板6Bは、主端子用セグメント4Eとボルト58によって接続されていて、それぞれが互いに独立した上位の主端子用セグメント8Bを構成する起立片7Bを備えている。さらに、第2の主端子板6Cは、三つの保護ケース3の主端子用セグメント4Fとボルト58によって相互に接続されるものであって、その所定の位置に起立片7Cを備えている。ここで、第2の主端子板6A~6Cの形状や配置については、各保護ケース3の開口部35~37を塞がないようにする必要がある。
 図12(B)には、三つの保護ケース3を上位の保護ケース7に収納し、上位の主端子用セグメント8A~8Cとして折り曲げた状態を示している。上位の保護ケース7の表面には、五つの上位の主端子用セグメント8A,8B(×3),8Cと、3枚の制御基板60が配置される。また、上位の保護ケース7を貫通する9個の開口部61~69が、各保護ケース3の開口部35~37に連通するように形成されている。
 開口部61~69は、それぞれ三つの保護ケース3に配置された合計9個のパワー半導体モジュールの貫通孔と同形状に構成されている。これらの開口部61~69にボルトを挿入し、最小限のボルト締結によって、上位の保護ケース7の底面で放熱フィンが固着できる。しかも、それぞれが複合モジュールを構成する三つのパワー半導体モジュールが上位の保護ケース7によって簡単に一体化され、かつ放熱フィンと確実に圧接される。
 (実施の形態5)
 図13は、第5の実施の形態に係るパワー半導体モジュールを複合化した複合モジュールを示す平面図、図14は、図13の複合モジュールの保護ケースに収納した主端子形成後の状態を示す平面図である。
 ここに示す複合モジュールは、三つのパワー半導体モジュール1D~1Fと、主端子板2H~2Kと、導電部材により構成された配線板2L,2Mとから構成される。図13において、配線部分2Ia~2Kaは、主端子板2I~2Kの一部であり、主端子板が後述するパワー半導体モジュールのピン状導電体と接続される部分と、後述する起立片3H~3Kとを結ぶものである。
 各パワー半導体モジュール1D~1Fは、実施の形態1のパワー半導体モジュール1と同様、外部入出力端子となるピン状導電体25~27と制御(補助)端子を構成するピン状導電体28を備えた同じ構成のもの(図1参照)が使用される。
 図13の複合モジュールでは、パワー半導体モジュール1D,1Eのピン状導電体25に主端子板2Hが接続され、パワー半導体モジュール1Fのピン状導電体25に主端子板2Iが接続されている。主端子板2Hには起立片3Hが、主端子板2Iには配線部分2Iaを介して起立片3Iがそれぞれ形成されている。
 また、図13の複合モジュールでは、パワー半導体モジュール1Dのピン状導電体27に主端子板2Jが接続されている。主端子板2Jには配線部分2Jaを介して、起立片3Jが形成されている。
 また、図13の複合モジュールでは、パワー半導体モジュール1Dのピン状導電体26に主端子板2Kが接続されている。主端子板2Kには配線部分2Kaを介して、起立片3Kが形成されている。
 パワー半導体モジュール1E,1Fのピン状導電体26に配線板2Lが接続され、同じくパワー半導体モジュール1E,1Fのピン状導電体27に配線板2Mが接続されている。
 また、上記起立片3H~3Kは、図13に示すように、直線状に配置されるようにそれぞれ形成されている。
 なお、主端子板2H~2K、配線板2L,2Mと、ピン状導電体25~27との接続は、実施の形態1で説明したように主端子板2H~2K、配線板2L,2Mに形成した貫通孔31a~33fにパワー半導体モジュール1D~1Fのピン状導電体25~27が挿入される。これにより主端子板2H~2K、配線板2L,2Mと、各パワー半導体モジュール1D~1Fは相互に接合される。
 このような複合モジュールを、起立片3H~3Kに対応して形成された貫通孔に当該起立片3H~3Kをそれぞれ引き出して保護ケース8に収納し、起立片3H~3Kを折り曲げる。これにより、図14に示されるように、出力端子U(4H)、負極端子N(4J)、中間端子M(4I)、正極端子P(4K)である主端子用セグメントが直線状に配置されて構成される。
 このような図13の複合モジュールで実現される等価回路について図15を用いて説明する。
 図15は、図13の複合モジュールによって構成される半導体回路を示す等価回路図である。
 図13の三つのパワー半導体モジュール1D~1Fにより構成される半導体回路は、正極端子P(C1)、負極端子N(E2)の間でトランジスタQ1とダイオードD1の逆並列接続回路と、トランジスタQ2とダイオードD2との逆並列回路とが直列に接続されている。パワー半導体モジュール1Dにより構成される半導体回路Caはハーフブリッジ回路であり、出力端子Uが逆並列回路が直列に接続された中間点m1から引き出される。
 パワー半導体モジュール1E,1Fは、パワー半導体モジュール1Dと同様に逆並列回路が直列に接続されて半導体回路(ハーフブリッジ回路)Cb,Ccを構成する。さらに、半導体回路CbのトランジスタQ1とダイオードD1の逆並列接続回路とCcのトランジスタQ1とダイオードD1の逆並列接続回路とが、逆極性で直列接続されている。図15の例では、半導体回路CbのトランジスタQ1のコレクタと半導体回路CcのトランジスタQ1のコレクタが接続されている。同様に、半導体回路CbのトランジスタQ2とダイオードD2の逆並列接続回路とCcのトランジスタQ2とダイオードD2の逆並列接続回路とが、逆極性で直列接続されている。図15の例では、半導体回路CbのトランジスタQ2のエミッタと半導体回路CcのトランジスタQ2のエミッタが接続されている。
 半導体回路Cbの逆並列回路が直列に接続された中間点m2と半導体回路Caの中間点m1とが接続され、半導体回路Ccは逆並列回路が直列に接続された中間点m3から中間端子Mが引き出されている。
 このように接続することで、出力端子U(4H)と中間端子M(4I)との間に、上記の逆極性で直列接続された回路が接続される。
 このように、同一の構成であるパワー半導体モジュールを3個用いて、図13,図15に示すように接続して複合モジュールを構成し、これを1相分とすることにより、特開2008-193779号公報(特許文献8)で知られる3レベルインバータに適用可能な半導体装置を構成することが可能となる。
 (実施の形態6)
 実施の形態6では、実施の形態5の複合モジュールの半導体回路について、逆阻止(RB(Reverse Blocking))IGBTを利用した場合について説明する。
 図16は、第6の実施の形態に係るパワー半導体モジュールを複合化した複合モジュールを示す平面図、図17は、図16の複合モジュールの保護ケースに収納した主端子形成後の状態を示す平面図である。
 ここに示す複合モジュールは、二つのパワー半導体モジュール1G,1Hと、主端子板2Q~2Tから構成される。図16において、配線部分2Qa~2Taは、主端子板2Q~2Tの一部であり、主端子板が後述するパワー半導体モジュールのピン状導電体と接続される部分と、後述する起立片3Q~3Tとを結ぶものである。
 パワー半導体モジュール1Gは、実施の形態1のパワー半導体モジュール1と同様、外部入出力端子となるピン状導電体25~27と制御(補助)端子を構成するピン状導電体28を備えたもの(図1参照)が使用される。
 一方、パワー半導体モジュール1Hは、実施の形態1のパワー半導体モジュール1と同形状であり、外部入出力端子となるピン状導電体25~27と制御(補助)端子を構成するピン状導電体28を備えるが、後述するように、スイッチングデバイスとして逆阻止IGBTが用いられている。
 図16の複合モジュールでは、パワー半導体モジュール1Gのピン状導電体25と、パワー半導体モジュール1Gのピン状導電体26,27に主端子板2Qが接続される。また、パワー半導体モジュール1Hのピン状導電体25に主端子板2Sが接続されている。主端子板2Qには配線部分2Qaを介して起立片3Qが形成されている。また、主端子板2Sには配線部分2Saを介して起立片3Sが形成されている。
 また、図16の複合モジュールでは、パワー半導体モジュール1Gのピン状導電体27に主端子板2Rが接続されている。主端子板2Rには配線部分2Raを介して、起立片3Rが接続されている。
 さらに、図16の複合モジュールでは、パワー半導体モジュール1Gのピン状導電体26に主端子板2Tが接続されている。主端子板2Tには配線部分2Taを介して、起立片3Tが形成されている。
 また、上記起立片3Q~3Tは、図16に示すように、直線状に配置されるようにそれぞれ形成されている。
 なお、主端子板2Q~2Tと、ピン状導電体25~27との接続は、実施の形態1で説明したように主端子板2Q~2Tに形成した貫通孔31a~33fにパワー半導体モジュール1G,1Hのピン状導電体25~27が挿入される。これにより主端子板2Q~2T各パワー半導体モジュール1G,1Hは相互に接合される。
 このような複合モジュールを、起立片3Q~3Tに対応して形成された貫通孔に当該起立片3Q~3Tをそれぞれ引き出して保護ケース9に収納し、起立片3Q~3Tを折り曲げる。これにより、図17に示されるように、出力端子U(4Q)、負極端子N(4R)、中間端子M(4S)、正極端子P(4T)である主端子用セグメントが直線状に配置されて構成される。
 このような図16の複合モジュールで実現される等価回路について図18を用いて説明する。
 図18は、図16の複合モジュールによって構成される半導体回路を示す等価回路図である。
 図16のパワー半導体モジュール1Gにより構成される半導体回路は、正極端子P(C1)、負極端子N(E2)の間でトランジスタQ1とダイオードD1の逆並列接続回路と、トランジスタQ2とダイオードD2との逆並列回路とが直列に接続されている。パワー半導体モジュール1Gにより構成される半導体回路Caでは、出力端子Uが逆並列回路が直列に接続された中間点m1から引き出される。
 パワー半導体モジュール1Hは、トランジスタ(逆阻止IGBT)Q3,Q4が直列に接続されて、半導体回路Cdを構成する。半導体回路Cdの直列に接続されたトランジスタQ3,Q4の中間点m2から中間端子Mが引き出されている。
 さらに、半導体回路CdのトランジスタQ3,Q4の直列回路の両端は、ともにパワー半導体モジュール1Gにより構成される半導体回路Caの中間点m1に接続され、出力端子Uに接続される。
 このように、外形状が同一のパワー半導体モジュール1G,1Hを用いて、図16,図17に示すように接続して複合モジュールを構成し、これを1相分とすることにより、特許文献8で知られる3レベルインバータに適用可能な半導体装置を構成することが可能となる。
 以上、本発明を図面に示した実施の形態1~6に基づいて説明したが、これらのものに限られない。とくに、本発明の複合モジュール構成では、保護ケース3,7等を順次に上位の形態として用意しておくだけで、必要な電流容量を有する回路を実現することができる。即ち、実施の形態4は、保護ケース3を上位の保護ケース7により一体化して半導体回路を構成したものであるが、さらに上位の保護ケースを用いて再帰的に素子集約を行うことによって、より大きな電流容量の半導体回路が簡単に実現できる。
 また、半導体モジュールの端子接続の組み合わせだけで所望する回路構成が得られることから、本発明は上述したパワー半導体モジュール1等による電力用インバータ装置だけに限定されるものではない。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成及び応用例に限定されるものではなく、対応するすべての変形例及び均等物は、添付の請求項及びその均等物による本発明の範囲とみなされる。
 1,1A~1H,10,10A~10C パワー半導体モジュール
 2A~2K,2Q~2T 主端子板
 2L,2M 配線板
 2Ia~2Ka,2Qa~2Ta 配線部分
 3,5,7~9 保護ケース
 3A~3K,3Q~3T,7A~7C 起立片
 3h 丸孔
 4A~4K 主端子用セグメント
 4h 締結用開口部
 6A~6C 第2の主端子板
 8A~8C 上位の主端子用セグメント
 14 放熱フィン
 21a,21b 半導体チップ
 22 絶縁基板
 22a,22b 銅箔
 23 配線基板
 24 電極用部材
 25~28 ピン状導電体(ピン端子)
 29,39h,31a~33f 貫通孔
 30 銅板
 31~33 挿通孔
 34A~34C,47~49 座繰り穴
 35~38,61~69 開口部
 39,60 制御基板
 41~43 板状導電体
 44~46 端子部
 51~53 座金
 54,58 ボルト
 55~57 ボルト挿通穴
 Ca~Cd 半導体回路
 m1~m3 中間点

Claims (15)

  1.  回路基板と、前記回路基板上に搭載された少なくとも一つの半導体回路とを有する半導体モジュールと、
     少なくとも二つの前記半導体モジュール間において、前記半導体モジュールの外部に前記半導体回路からそれぞれ引き出された端子間を電気的に接続し、外部配線と接続される接続端子部が形成された主端子板と、
     前記主端子板により前記端子間が接続されて少なくとも二つの前記半導体モジュールが一体化された複合モジュールを収納し、前記接続端子部が前記複合モジュールの外部に挿通される挿通孔を有する保護ケースと、
     を備えていることを特徴とする半導体装置。
  2.  前記半導体モジュールの外面には、前記半導体回路の前記端子とそれぞれ接続する、複数のピン端子が引き出されて形成され、
     前記主端子板は、前記各半導体モジュールを跨いで前記半導体回路の間を接続する導電体となる板体であって、前記ピン端子がそれぞれ挿入可能な大きさで前記板体に形成された複数の貫通穴を有し、
     前記接続端子部は前記板体の一部を折り曲げて形成された起立片を有し、
     前記起立片が前記挿通孔から前記保護ケースの外部に引き出されて、主端子用セグメントを構成することを特徴とする請求の範囲第1項記載の半導体装置。
  3.  前記半導体モジュールの外面には締結用の開口部を有する、前記半導体回路の前記端子とそれぞれ接続する、複数の端子板が引き出されて形成され、
     前記主端子板は、前記各半導体モジュールを跨いで前記半導体回路の間を接続する導電体となる板体であって、前記端子板とそれぞれ前記締結用の開口部で一体に締結可能な大きさで前記板体に形成された複数のボルト挿通穴を有し、
     前記接続端子部は前記板体の一部を折り曲げて形成された起立片を有し、
     前記起立片が前記挿通孔から前記保護ケースの外部に引き出されて、主端子用セグメントを構成することを特徴とする請求の範囲第1項記載の半導体装置。
  4.  前記保護ケースは、前記複数の半導体モジュールに対して共通する放熱フィンが取り付け可能な開口を備え、
     前記保護ケースに前記複数の半導体モジュールを収納し、前記放熱フィンを前記保護ケースと固着することによって、前記半導体モジュールと前記放熱フィンとを圧接するようにしたことを特徴とする請求の範囲第1項記載の半導体装置。
  5.  前記半導体モジュールには、前記保護ケースの外部に露出するように、前記回路基板と熱的に接続された金属板が配置されていることを特徴とする請求の範囲第1項記載の半導体装置。
  6.  前記半導体モジュールの外部に引き出された前記半導体回路の前記端子、及び前記主端子板の主端子用セグメントをなす部分は、銅(Cu)、アルミニウム(Al)、銀(Ag)あるいは金(Au)、もしくはこれらのいずれかの合金材料によって形成されていることを特徴とする請求の範囲第1項記載の半導体装置。
  7.  前記保護ケースの外部に引き出された前記主端子板の間を接続するとともに、前記保護ケースに収納された複数の前記複合モジュール相互の導電路を構成する第2の主端子板と、
     前記第2の主端子板によって互いに接続された少なくとも二つ以上の前記複合モジュールが、上位複合モジュールとして前記第2の主端子板と一体に収納される上位の保護ケースと、
     を備えたことを特徴とする請求の範囲第1項記載の半導体装置。
  8.  前記半導体回路は、前記回路基板上でIGBT及びフリーホイーリングダイオードから構成されたハーフブリッジ回路を形成していることを特徴とする請求の範囲第1項記載の半導体装置。
  9.  回路基板と、前記回路基板上に搭載された少なくとも一つの半導体回路とを有する、少なくとも二つの半導体モジュールの外部に前記半導体回路からそれぞれ引き出された端子の表面に局部レーザ光を照射して昇温加熱し、
     加熱溶融させた前記端子と、少なくとも二つの前記半導体モジュールに共通する主端子板とを接合し、
     少なくとも二つの前記半導体モジュール相互の導電路を構成することを特徴とした半導体装置の製造方法。
  10.  回路基板と、前記回路基板上に搭載された少なくとも一つの半導体回路とを有する、少なくとも二つの半導体モジュールの外部に前記半導体回路からそれぞれ引き出された端子の表面に、ニッケル(Ni)系あるいは錫(Sn)系の合金被膜を形成し、
     前記端子に、前記合金被膜に鉛(Pb)フリーはんだを後塗布形成してから、少なくとも二つ以上の前記半導体モジュールに共通する主端子板を接合して、
     少なくとも二つの前記半導体モジュール相互の導電路を構成することを特徴とした半導体装置の製造方法。
  11.  前記鉛フリーはんだは、その融点が前記半導体モジュールを封止するモールド樹脂材料のガラス転移温度より低いことを特徴とする請求の範囲第10項記載の半導体装置の製造方法。
  12.  前記複合モジュールは、三つの前記半導体モジュールからなり、前記ハーフブリッジ回路の一端に接続される第1の端子、前記ハーフブリッジ回路の中点に接続される第2の端子及び前記ハーフブリッジ回路の他端に接続される第3の端子が前記半導体モジュールからそれぞれ引き出されて、
     第1の接続端子部が形成された第1の主端子板を、三つの前記半導体モジュールの前記第1の端子間を電気的に接続し、
     第2の接続端子部が形成された第2の主端子板を、三つの前記半導体モジュールの前記第3の端子間を電気的に接続し、
     第3の接続端子部が形成された第3の主端子板、第4の接続端子部が形成された第4の主端子板、第5の接続端子部が形成された第5の主端子板を、前記第2の端子に個々に接続する、
     ことを特徴とする請求の範囲第8項記載の半導体装置。
  13.  三つの前記半導体モジュールが一体化された複合モジュールの前記第3,4,5の接続端子部が直線状に配置されている、
     ことを特徴とする請求の範囲第12項記載の半導体装置。
  14.  前記複合モジュールは、三つの前記半導体モジュールからなり、前記ハーフブリッジ回路の一端に接続される第1の端子、前記ハーフブリッジ回路の中点に接続される第2の端子及び前記ハーフブリッジ回路の他端に接続される第3の端子が前記半導体モジュールからそれぞれ引き出されて、
     第1の接続端子部が形成された第1の主端子板を、三つの前記半導体モジュールのうち一つの前記半導体モジュールの前記第1の端子に接続し、
     第2の接続端子部が形成された第2の主端子板を、前記一つの半導体モジュールの前記第3の端子に接続し、
     第3の接続端子部が形成された第3の主端子板を、前記一つの半導体モジュールと他の一つの半導体モジュールの第2の端子間に接続し、
     第4の接続端子部が形成された第4の主端子板を、残る一つの半導体モジュールの前記第2の端子に接続し、
     第5の主端子板が、残る2つの前記第1端子間を接続し、
     第6の主端子板が、残る2つの前記第3端子間を接続する、
     ことを特徴とする請求の範囲第8項記載の半導体装置。
  15.  前記複合モジュールは、前記半導体回路として、前記回路基板上でIGBT及びフリーホイーリングダイオードから構成されたハーフブリッジ回路が形成された第1の半導体モジュールと、前記半導体回路として、前記回路基板上で逆阻止IGBTの直列回路が形成された第2の半導体モジュールと、からなり、
     前記ハーフブリッジ回路の一端に接続される第1の端子、前記ハーフブリッジ回路の中点に接続される第2の端子及び前記ハーフブリッジ回路の他端に接続される第3の端子が前記第1の半導体モジュールから引き出され、
     前記直列回路の一端に接続される第1の端子、前記直列回路の中点に接続される第2の端子及び前記直列回路の他端に接続される第3の端子が前記第2の半導体モジュールから引き出され、
     第1の接続端子部が形成された第1の主端子板を、前記第1の半導体モジュールの前記第1の端子と、前記第2の半導体モジュールの前記第1の端子並びに第3の端子とに接続し、
     第2の接続端子部が形成された第2の主端子板を、前記第1の半導体モジュールの前記第3の端子に接続し、
     第3の接続端子部が形成された第3の主端子板を、前記第2の半導体モジュールの前記第2の端子に接続し、
     第4の接続端子部が形成された第4の主端子板を、前記第1の半導体モジュールの前記第3の端子に接続する、
     ことを特徴とする請求の範囲第1項記載の半導体装置。
PCT/JP2013/056634 2012-03-28 2013-03-11 半導体装置及び半導体装置の製造方法 WO2013146212A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13770354.2A EP2833405A4 (en) 2012-03-28 2013-03-11 SEMICONDUCTOR DEVICE, AND MANUFACTURING METHOD THEREOF
CN201380012416.9A CN104170086B (zh) 2012-03-28 2013-03-11 半导体装置及半导体装置的制造方法
JP2014507624A JP5954410B2 (ja) 2012-03-28 2013-03-11 半導体装置
US14/455,184 US9379083B2 (en) 2012-03-28 2014-08-08 Semiconductor device and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-072673 2012-03-28
JP2012072673 2012-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/455,184 Continuation US9379083B2 (en) 2012-03-28 2014-08-08 Semiconductor device and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2013146212A1 true WO2013146212A1 (ja) 2013-10-03

Family

ID=49259480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056634 WO2013146212A1 (ja) 2012-03-28 2013-03-11 半導体装置及び半導体装置の製造方法

Country Status (5)

Country Link
US (1) US9379083B2 (ja)
EP (1) EP2833405A4 (ja)
JP (2) JP5954410B2 (ja)
CN (1) CN104170086B (ja)
WO (1) WO2013146212A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119105A (ja) * 2013-12-19 2015-06-25 パナソニックIpマネジメント株式会社 回路モジュール、電力制御装置及び電力制御回路の製造方法
WO2015116924A1 (en) * 2014-01-30 2015-08-06 Arkansas Power Electronics International, Inc. Low profile, highly configurable, current sharing paralleled wide band gap power device power module
WO2015128104A1 (de) * 2014-02-27 2015-09-03 Robert Bosch Gmbh Elektrisches antriebssystem
US9504154B2 (en) 2013-06-04 2016-11-22 Fuji Electric Co., Ltd. Semiconductor device
JP2017112250A (ja) * 2015-12-17 2017-06-22 富士電機株式会社 半導体モジュール
US10083935B2 (en) 2016-08-18 2018-09-25 Fuji Electric Co., Ltd. Semiconductor device and a manufacturing method of the semiconductor device
US10136529B2 (en) 2014-01-30 2018-11-20 Cree Fayetteville, Inc. Low profile, highly configurable, current sharing paralleled wide band gap power device power module
US10187973B2 (en) 2014-04-14 2019-01-22 Fuji Electric Co., Ltd. Semiconductor device
JP2021057592A (ja) * 2019-10-01 2021-04-08 株式会社デンソー 半導体モジュール
WO2021100747A1 (ja) * 2019-11-20 2021-05-27 三菱電機株式会社 電力用半導体装置およびその製造方法、ならびに電力変換装置
US11127714B2 (en) 2019-07-19 2021-09-21 Fuji Electric Co., Ltd. Printed board and semiconductor device
US11189608B2 (en) 2018-03-07 2021-11-30 Fuji Electric Co., Ltd. Semiconductor device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013000119A1 (en) * 2011-06-28 2013-01-03 Telefonaktiebolaget L M Ericsson (Publ) Electronic device with heat-dissipating structure
JP2014112583A (ja) * 2012-12-05 2014-06-19 Toyota Motor Corp 冷却器付き半導体モジュール
US9177943B2 (en) * 2013-10-15 2015-11-03 Ixys Corporation Power device cassette with auxiliary emitter contact
WO2015121900A1 (ja) * 2014-02-11 2015-08-20 三菱電機株式会社 電力用半導体モジュール
JP6354392B2 (ja) * 2014-07-03 2018-07-11 株式会社デンソー 半導体装置
JP6196195B2 (ja) * 2014-08-19 2017-09-13 株式会社東芝 半導体モジュール
JP6369228B2 (ja) * 2014-08-29 2018-08-08 富士電機株式会社 半導体装置
EP3226294B1 (en) * 2014-11-28 2021-04-07 Nissan Motor Co., Ltd. Half-bridge power semiconductor module and method for manufacturing same
JP6511979B2 (ja) * 2015-06-18 2019-05-15 富士電機株式会社 半導体装置及び半導体装置の製造方法
JP6623811B2 (ja) * 2016-02-16 2019-12-25 富士電機株式会社 半導体モジュールの製造方法及び半導体モジュール
CN107305886B (zh) * 2016-04-25 2024-04-05 华北电力大学 一种便于串联使用的大功率igbt模块
JP6103122B1 (ja) 2016-08-17 2017-03-29 富士電機株式会社 パワー半導体モジュール用信号中継基板
DE102016216207A1 (de) 2016-08-29 2018-03-01 Robert Bosch Gmbh Verfahren zum Herstellen eines mikromechanischen Sensors
DE102016218207A1 (de) * 2016-09-22 2018-03-22 Robert Bosch Gmbh Elektronische Baugruppe, insbesondere eine elektronische Leistungsbaugruppe für Hybridfahrzeuge oder Elektrofahrzeuge
US11183485B2 (en) * 2016-11-24 2021-11-23 Sumitomo Electric Industries, Ltd. Semiconductor module
FR3060243B1 (fr) * 2016-12-12 2019-08-23 Institut Vedecom Module de commutation de puissance, convertisseur integrant celui-ci et procede de fabrication
JP6108026B1 (ja) 2016-12-16 2017-04-05 富士電機株式会社 圧接型半導体モジュール
JP6809294B2 (ja) * 2017-03-02 2021-01-06 三菱電機株式会社 パワーモジュール
EP3392908B1 (de) * 2017-04-20 2019-07-24 Infineon Technologies AG Leistungshalbleiteranordnung mit einem stapel von eine verbesserte geometrie aufweisenden anschlussplatten zur gemeinsamen elektrischen kontaktierungen mehrerer, gleichartiger leistungshalbleiter-schaltelemente
US10319659B2 (en) * 2017-10-13 2019-06-11 Semiconductor Components Industries, Llc Semiconductor package and related methods
WO2019146246A1 (ja) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 ブスバー及び電源装置
JP7183594B2 (ja) 2018-07-04 2022-12-06 富士電機株式会社 半導体装置
JP7094447B2 (ja) * 2019-06-03 2022-07-01 三菱電機株式会社 パワーモジュール及び電力変換装置
EP3751605A1 (de) * 2019-06-11 2020-12-16 Siemens Aktiengesellschaft Elektronischer schaltkreis und verfahren zur herstellung eines elektronischen schaltkreises

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133391A (ja) * 1990-09-25 1992-05-07 Hitachi Ltd 半導体装置及びそれ用はんだ合金
JPH05218252A (ja) 1992-02-06 1993-08-27 Fuji Electric Co Ltd 半導体装置
JPH0613539A (ja) * 1992-06-26 1994-01-21 Fuji Electric Co Ltd 半導体装置
JPH07123738A (ja) 1993-10-29 1995-05-12 Toshiba Fa Syst Eng Kk インバータ装置
JP2004289103A (ja) 2002-06-13 2004-10-14 Matsushita Electric Ind Co Ltd 半導体デバイス及びその製造方法
JP2006081308A (ja) 2004-09-09 2006-03-23 Keihin Corp パワードライブユニット
JP2007194442A (ja) 2006-01-20 2007-08-02 Fuji Electric Holdings Co Ltd 半導体装置
JP2007209184A (ja) 2006-02-06 2007-08-16 Mitsubishi Electric Corp 電力変換装置
JP2008193779A (ja) 2007-02-02 2008-08-21 Fuji Electric Systems Co Ltd 半導体モジュール
WO2008142758A1 (ja) * 2007-05-18 2008-11-27 Sansha Electric Manufacturing Co., Ltd. 電力用半導体モジュール
JP2010103343A (ja) * 2008-10-24 2010-05-06 Fuji Electric Systems Co Ltd 半導体装置
JP2010251772A (ja) 2002-06-13 2010-11-04 Panasonic Corp 半導体デバイス及びその製造方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132760U (ja) * 1980-03-06 1981-10-08
FR2588438B1 (fr) 1985-10-09 1989-05-05 Telemecanique Electrique Dispositif d'assemblage de blocs modulaires d'appareillage electrique
US5202578A (en) * 1989-09-11 1993-04-13 Kabushiki Kaisha Toshiba Module-type semiconductor device of high power capacity
JP2692449B2 (ja) 1991-10-01 1997-12-17 三菱電機株式会社 パワーモジュール
JPH06286900A (ja) 1993-04-06 1994-10-11 Shinko Kogyo Kk プレス機
US5408128A (en) 1993-09-15 1995-04-18 International Rectifier Corporation High power semiconductor device module with low thermal resistance and simplified manufacturing
JPH1093016A (ja) 1996-09-19 1998-04-10 Hitachi Ltd パワー半導体装置
JP3430192B2 (ja) 1996-11-12 2003-07-28 株式会社日立産機システム インバータ装置
WO1999055935A1 (de) * 1998-04-23 1999-11-04 Atotech Deutschland Gmbh Verfahren zum überziehen von oberflächen auf kupfer oder einer kupferlegierung mit einer zinn- oder zinnlegierungsschicht
US5927504A (en) 1998-06-23 1999-07-27 Samsung Electronics Co., Ltd. Apparatus for carrying plural printed circuit boards for semiconductor module
JP2001036005A (ja) 1999-07-23 2001-02-09 Fuji Electric Co Ltd 半導体装置
JP4127645B2 (ja) * 2002-10-17 2008-07-30 三菱電機株式会社 電子部品実装装置
JP3852698B2 (ja) 2003-04-10 2006-12-06 富士電機デバイステクノロジー株式会社 半導体装置の製造方法
JP2005065414A (ja) 2003-08-13 2005-03-10 Fuji Electric Fa Components & Systems Co Ltd インバータ装置
JP2005142189A (ja) 2003-11-04 2005-06-02 Toyota Industries Corp 半導体装置
JP4313273B2 (ja) 2004-09-09 2009-08-12 株式会社ケーヒン パワードライブユニット
JP2006332291A (ja) 2005-05-25 2006-12-07 Keihin Corp パワードライブユニット
CN101041901A (zh) * 2006-03-24 2007-09-26 中国科学院金属研究所 可焊性良好的铁镍合金镀层及其应用
US7577068B2 (en) 2006-04-18 2009-08-18 Mediatek Inc. Dynamic write strategy modification method and apparatus
JP4129027B2 (ja) 2006-06-06 2008-07-30 三菱電機株式会社 半導体装置
KR101081724B1 (ko) 2007-05-18 2011-11-08 가부시키가이샤 산샤덴키세이사쿠쇼 아크방전장치
JP5061717B2 (ja) 2007-05-18 2012-10-31 富士電機株式会社 半導体モジュール及び半導体モジュールの製造方法
JP5120605B2 (ja) * 2007-05-22 2013-01-16 アイシン・エィ・ダブリュ株式会社 半導体モジュール及びインバータ装置
JP5098951B2 (ja) * 2008-10-22 2012-12-12 富士電機株式会社 半導体装置
US8237260B2 (en) * 2008-11-26 2012-08-07 Infineon Technologies Ag Power semiconductor module with segmented base plate
JP2010147116A (ja) 2008-12-17 2010-07-01 Mitsubishi Electric Corp 半導体装置
JP5260347B2 (ja) 2009-02-06 2013-08-14 日立オートモティブシステムズ株式会社 電力変換装置
JP5100694B2 (ja) * 2009-04-01 2012-12-19 三菱電機株式会社 半導体装置
WO2010131679A1 (ja) 2009-05-14 2010-11-18 ローム株式会社 半導体装置
DE102009037257B4 (de) * 2009-08-12 2014-07-31 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitermodul mit Schaltungsträger und Lastanschlusselement sowie Herstellungsverfahren hierzu
US8907477B2 (en) 2010-01-05 2014-12-09 Fuji Electric Co., Ltd. Unit for semiconductor device and semiconductor device
DE102010005048A1 (de) 2010-01-20 2011-07-21 SEMIKRON Elektronik GmbH & Co. KG, 90431 Anordnung mit mindestens einem Leistungshalbleitermodul und mit einer Transportverpackung
JP5557585B2 (ja) 2010-04-26 2014-07-23 日立オートモティブシステムズ株式会社 パワーモジュール
JP5211364B2 (ja) 2010-05-07 2013-06-12 三菱電機株式会社 半導体装置
WO2012029164A1 (ja) 2010-09-02 2012-03-08 トヨタ自動車株式会社 半導体モジュール
JP5994785B2 (ja) 2011-09-28 2016-09-21 富士電機株式会社 半導体装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133391A (ja) * 1990-09-25 1992-05-07 Hitachi Ltd 半導体装置及びそれ用はんだ合金
JPH05218252A (ja) 1992-02-06 1993-08-27 Fuji Electric Co Ltd 半導体装置
JPH0613539A (ja) * 1992-06-26 1994-01-21 Fuji Electric Co Ltd 半導体装置
JPH07123738A (ja) 1993-10-29 1995-05-12 Toshiba Fa Syst Eng Kk インバータ装置
JP2004289103A (ja) 2002-06-13 2004-10-14 Matsushita Electric Ind Co Ltd 半導体デバイス及びその製造方法
JP2010251772A (ja) 2002-06-13 2010-11-04 Panasonic Corp 半導体デバイス及びその製造方法
JP2006081308A (ja) 2004-09-09 2006-03-23 Keihin Corp パワードライブユニット
JP2007194442A (ja) 2006-01-20 2007-08-02 Fuji Electric Holdings Co Ltd 半導体装置
JP2007209184A (ja) 2006-02-06 2007-08-16 Mitsubishi Electric Corp 電力変換装置
JP2008193779A (ja) 2007-02-02 2008-08-21 Fuji Electric Systems Co Ltd 半導体モジュール
WO2008142758A1 (ja) * 2007-05-18 2008-11-27 Sansha Electric Manufacturing Co., Ltd. 電力用半導体モジュール
JP2010103343A (ja) * 2008-10-24 2010-05-06 Fuji Electric Systems Co Ltd 半導体装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9504154B2 (en) 2013-06-04 2016-11-22 Fuji Electric Co., Ltd. Semiconductor device
JP2015119105A (ja) * 2013-12-19 2015-06-25 パナソニックIpマネジメント株式会社 回路モジュール、電力制御装置及び電力制御回路の製造方法
WO2015116924A1 (en) * 2014-01-30 2015-08-06 Arkansas Power Electronics International, Inc. Low profile, highly configurable, current sharing paralleled wide band gap power device power module
JP2017504968A (ja) * 2014-01-30 2017-02-09 クリー ファイエットヴィル インコーポレイテッド 薄型で高度に構成可能な電流共有並列化広バンドギャップ電力デバイス電力モジュール
EP3100301A4 (en) * 2014-01-30 2017-12-27 Cree Fayetteville, Inc. Low profile, highly configurable, current sharing paralleled wide band gap power device power module
EP3582598A1 (en) * 2014-01-30 2019-12-18 Cree Fayetteville, Inc. Low profile, highly configurable, current sharing paralleled wide band gap power device power module
US10136529B2 (en) 2014-01-30 2018-11-20 Cree Fayetteville, Inc. Low profile, highly configurable, current sharing paralleled wide band gap power device power module
JP2019140418A (ja) * 2014-01-30 2019-08-22 クリー ファイエットヴィル インコーポレイテッド 薄型で高度に構成可能な電流共有並列化広バンドギャップ電力デバイス電力モジュール
WO2015128104A1 (de) * 2014-02-27 2015-09-03 Robert Bosch Gmbh Elektrisches antriebssystem
US10398023B2 (en) 2014-04-14 2019-08-27 Fuji Electric Co., Ltd. Semiconductor device
US10187973B2 (en) 2014-04-14 2019-01-22 Fuji Electric Co., Ltd. Semiconductor device
US20190150268A1 (en) * 2014-04-14 2019-05-16 Fuji Electric Co., Ltd. Semiconductor device
JP2017112250A (ja) * 2015-12-17 2017-06-22 富士電機株式会社 半導体モジュール
US10083935B2 (en) 2016-08-18 2018-09-25 Fuji Electric Co., Ltd. Semiconductor device and a manufacturing method of the semiconductor device
US11189608B2 (en) 2018-03-07 2021-11-30 Fuji Electric Co., Ltd. Semiconductor device
US11127714B2 (en) 2019-07-19 2021-09-21 Fuji Electric Co., Ltd. Printed board and semiconductor device
JP2021057592A (ja) * 2019-10-01 2021-04-08 株式会社デンソー 半導体モジュール
WO2021065957A1 (ja) * 2019-10-01 2021-04-08 株式会社デンソー 半導体モジュール
JP7173108B2 (ja) 2019-10-01 2022-11-16 株式会社デンソー 半導体モジュール
WO2021100747A1 (ja) * 2019-11-20 2021-05-27 三菱電機株式会社 電力用半導体装置およびその製造方法、ならびに電力変換装置
JPWO2021100747A1 (ja) * 2019-11-20 2021-05-27
JP7170908B2 (ja) 2019-11-20 2022-11-14 三菱電機株式会社 電力用半導体装置およびその製造方法、ならびに電力変換装置

Also Published As

Publication number Publication date
CN104170086B (zh) 2018-01-16
JP5954410B2 (ja) 2016-07-20
US9379083B2 (en) 2016-06-28
EP2833405A1 (en) 2015-02-04
EP2833405A4 (en) 2016-01-13
US20140367736A1 (en) 2014-12-18
JPWO2013146212A1 (ja) 2015-12-10
JP2016086186A (ja) 2016-05-19
CN104170086A (zh) 2014-11-26
JP6065995B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6065995B2 (ja) 半導体装置及び半導体装置の製造方法
JP5831626B2 (ja) 半導体装置及び半導体装置の製造方法
JP6075380B2 (ja) 半導体装置
JP5971263B2 (ja) 半導体装置
JP5835466B2 (ja) 半導体装置
US20040089934A1 (en) Stacked semiconductor module and assembling method of the same
US20120256194A1 (en) Semiconductor device
JP2000164800A (ja) 半導体モジュール
JP5659938B2 (ja) 半導体ユニットおよびそれを用いた半導体装置
JP5895220B2 (ja) 半導体装置の製造方法
US11101241B2 (en) Semiconductor device having terminals and semiconductor elements electrically connected to a respective side surface of the terminals
JP2019029410A (ja) 半導体モジュール
JP4594831B2 (ja) 電力用半導体素子
JP2022053401A (ja) 半導体モジュール
WO2018151010A1 (ja) 半導体装置
JP5242629B2 (ja) 電力用半導体素子
JP2010178523A (ja) インバータ装置
JP7113936B1 (ja) 電力用半導体モジュール
WO2022137811A1 (ja) 半導体ユニット及び半導体装置
WO2023100980A1 (ja) 半導体モジュール、電力変換装置および電力変換装置の製造方法
JP2013085477A (ja) インバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507624

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013770354

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE