WO2015121900A1 - 電力用半導体モジュール - Google Patents

電力用半導体モジュール Download PDF

Info

Publication number
WO2015121900A1
WO2015121900A1 PCT/JP2014/003465 JP2014003465W WO2015121900A1 WO 2015121900 A1 WO2015121900 A1 WO 2015121900A1 JP 2014003465 W JP2014003465 W JP 2014003465W WO 2015121900 A1 WO2015121900 A1 WO 2015121900A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
positive
negative
power semiconductor
semiconductor module
Prior art date
Application number
PCT/JP2014/003465
Other languages
English (en)
French (fr)
Inventor
純一 中嶋
美子 玉田
中山 靖
林田 幸昌
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480075303.8A priority Critical patent/CN106030796B/zh
Priority to US15/117,963 priority patent/US9941255B2/en
Priority to DE112014006353.3T priority patent/DE112014006353B4/de
Priority to JP2015562569A priority patent/JP6320433B2/ja
Publication of WO2015121900A1 publication Critical patent/WO2015121900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/049Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being perpendicular to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48111Disposition the wire connector extending above another semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49433Connecting portions the connecting portions being staggered outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present invention relates to an inductance reduction structure for a power semiconductor module.
  • Insulated power semiconductor modules used in power converters such as inverters have a wiring pattern formed on a metal plate serving as a heat sink via an insulating substrate, on which a power semiconductor element is provided, and electrode terminals The power semiconductor element is sealed with resin.
  • the large inductance elements in the power semiconductor module having positive and negative arms in the package are a positive electrode, a negative electrode, and an output (alternating current) electrode connected to an external circuit.
  • the conventional power semiconductor module has a structure in which a P power line as a positive electrode, an N power line as a negative electrode, and an output line U as an output electrode are stacked in the order of PUN. Since the direction of the magnetic flux generated by the current flowing in the line U and the direction of the magnetic flux generated by the current flowing in the direction opposite to the output line U in either the P power line or the N power line are opposite, the respective magnetic fluxes are canceled and reduced. Therefore, the inductance is reduced. However, the magnetic flux is effectively canceled between PU and UN, and the inductance can be reduced. However, since the output line U exists between PN between PN, the magnetic flux canceling effect There is a problem that the effect of reducing inductance is reduced.
  • the present invention has been made to solve the above-described problems, and obtains a power semiconductor module capable of suppressing destruction of a power semiconductor element due to a surge voltage by reducing inductance between all wirings. Is.
  • a power semiconductor module comprises a self-extinguishing semiconductor element connected in series, a positive / negative arm having a series connection point of the self-extinguishing semiconductor element, and a positive electrode side connected to the positive / negative arm
  • the positive electrode, the negative electrode, and the AC electrode are insulated from each other, and two of the electrodes are arranged to face each other.
  • the positive electrode, the negative electrode, and the AC electrode are arranged so as to face each other, between the opposed positive electrode and the AC electrode, between the AC electrode and the negative electrode, and the positive electrode Since the di / dt directions are reversed between the negative electrode and the negative electrode, the magnetic flux is canceled, and the inductance can be reduced between the opposing electrodes.
  • FIG. 2 is an equivalent circuit diagram of the power semiconductor module according to the first embodiment of the present invention. It is a switching operation circuit diagram of the positive arm side self-extinguishing semiconductor element in the two-level circuit of the power semiconductor module according to the first embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing a state of magnetic flux cancellation between electrodes facing each other when the commutation loop shown in FIG. 11 is generated. It is the upper side figure and schematic side view of the power semiconductor module of the power semiconductor module of Embodiment 3 of this invention. It is a top view at the time of removing the electrode of the power semiconductor module of the power semiconductor module of Embodiment 3 of this invention.
  • FIG. 18 is a schematic diagram showing a state of magnetic flux cancellation between electrodes facing each other in the power semiconductor module 400 (c) when the commutation loop shown in FIG. 17 is generated.
  • FIG. 1 It is a schematic diagram showing the mode of the magnetic flux cancellation between the electrodes which oppose another power semiconductor module 400 (c) at the time of commutation loop generation
  • FIG. 1 is a schematic top view and a schematic side view of a power semiconductor module according to Embodiment 1 of the present invention.
  • FIG. 1A is a schematic top view of the power semiconductor module 100.
  • FIG. 1 (b) shows a schematic side view when viewed from the B side in FIG. 1 (a)
  • FIG. 1 (c) shows a schematic side view when viewed from the A side in FIG. 1 (a).
  • FIG. 2 is a top view when the electrode of the power semiconductor module according to the first embodiment of the present invention is removed.
  • FIG. 3 is a top external view of the power semiconductor module according to the first embodiment of the present invention.
  • the direction viewed from the B side is the B direction
  • the direction viewed from the A side is the A direction.
  • the power semiconductor module 100 includes a base plate 1, a collector (drain) wiring pattern 3, an emitter (source) wiring pattern 4, a ceramic insulating substrate 5, a self Arc extinguishing type semiconductor element 6, freewheeling diode 7, solder 9, positive electrode 10 that is a positive electrode, negative electrode 11 that is a negative electrode, AC electrode 12, bonding wire 21, positive electrode terminal that is a terminal part of positive electrode 10 40, a negative electrode terminal 41 which is a terminal portion of the negative electrode 11, an AC terminal 42 which is a terminal portion of the AC electrode 12, a sealing material 50, a case 51, a lid 52, and a nut 53.
  • the power semiconductor module 100 has one surface of the base plate 1 that is a metal radiator that dissipates heat generated by the self-extinguishing semiconductor element 6 and the free-wheeling diode 7 constituting the power semiconductor module 100.
  • a ceramic insulating substrate 5 which is an insulating material to which metal foil is bonded by brazing or the like, is bonded by solder 9.
  • wiring patterns 3 and 4 are bonded to the surface of the ceramic insulating substrate 5 opposite to the surface bonded to the base plate 1 by brazing or the like with a metal foil.
  • the insulating substrate 2 is constituted by the ceramic insulating substrate 5 and the wiring patterns 3 and 4 to which the metal foil is bonded.
  • the material of the insulating substrate is not limited to ceramics, and may be a metal substrate using a resin insulating material.
  • a self-extinguishing semiconductor element 6 and a free-wheeling diode 7 are formed by solder 9 on the surface of the collector (drain) wiring pattern 3 and the emitter (source) wiring pattern 4 facing the surface where the ceramic insulating substrate 5 is bonded. It is joined. Further, a positive electrode 10, a negative electrode 11, and an AC electrode 12 are joined to the collector (drain) wiring pattern 3 and the emitter (source) wiring pattern 4.
  • solder 9 is used as the bonding material, the bonding material is not limited to the solder 9 and may be based on other bonding methods.
  • the positive electrode 10, the negative electrode 11, and the alternating current electrode 12 are each provided with a positive terminal 40, a negative terminal 41, and an alternating current terminal 42 for connecting to an external circuit on the module upper surface.
  • the positive terminal 40, the negative terminal 41, and the AC terminal 42 have holes for screw insertion, and a case in which a nut is embedded is installed under these terminals.
  • the power semiconductor module 100 is surrounded by a case 51, and a sealing material 50 is injected into the case 51 in order to insulate the inside of the case 51. Thereafter, the lid 52 is fitted into the case 51 and bonded with an adhesive or the like.
  • the self-extinguishing semiconductor element 6 and the emitter (source) wiring pattern 4 of the free-wheeling diode 7 and the surface not soldered are joined to the wiring pattern or the like by bonding wires 21.
  • the self-extinguishing semiconductor element 6 is illustrated as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), other self-extinguishing semiconductor elements such as IGBTs (Insulated Gate Bipolar Transistors) and bipolar transistors may be used.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBTs Insulated Gate Bipolar Transistors
  • bipolar transistors Bipolar transistors
  • the effect of the present invention can be obtained.
  • a material of the semiconductor element not only Si (Silicon) but also a semiconductor element using SiC (Silicon Carbide), GaN (Gallium nitride), or diamond as a raw material can be obtained. In particular, when SiC, GaN, or the like capable of high-speed operation is used, a more remarkable effect can be obtained.
  • the power semiconductor module 100 is a module having a positive arm and a negative arm of a power conversion circuit in the same case (same package) generally called “2 in 1”.
  • a component of the arm is a circuit in which a self-extinguishing semiconductor element 6 and a free-wheeling diode 7 are connected in antiparallel. Further, when the self-extinguishing semiconductor element 6 has a built-in diode, it is not necessary to separately provide the free-wheeling diode 7, and the arm can be configured with only the diode built-in self-extinguishing semiconductor element.
  • the insulating substrate 101 constitutes a positive arm, and the insulating substrate 111 constitutes a negative arm.
  • the series connection point of the self-extinguishing semiconductor element is a portion where the positive arm and the negative arm are connected.
  • the number of self-extinguishing semiconductor elements 6 and free-wheeling diodes 7 varies depending on the current capacity of the power semiconductor module.
  • the size of the insulating substrate itself increases. In that case, there arises a problem of reliability such as cracks in the insulating substrate 2 due to the difference in coefficient of thermal expansion with the constituent members of the power semiconductor module such as the base plate 1 and the solder 9. Therefore, when the number of elements is large, it is preferable to consider division of the insulating substrate 2 (multiple sheets) according to the current capacity.
  • the positive electrode 10 is connected to the collector (drain) wiring pattern 3 of the insulating substrate 101 arranged on the positive arm, and the AC electrode 12 is connected to the emitter (source) wiring pattern 4. .
  • the AC electrode 12 is connected to the collector (drain) wiring pattern 3 of the insulating substrate 111 arranged on the negative arm, and the negative electrode 11 is connected to the emitter (source) wiring pattern 4. It is.
  • the AC electrode 12 is provided with a parallel surface that is a parallel surface portion and a vertical surface that is a vertical surface portion with respect to the surface on which the wiring patterns 3 and 4 of the insulating substrate 2 are formed. 2 is secured at a position where an insulation distance from 2 is secured.
  • the positive electrode 10 includes a parallel surface that is a parallel surface portion and a vertical surface that is a vertical surface portion with respect to the surface on which the wiring patterns 3 and 4 of the insulating substrate 2 are formed, and the parallel surface is insulated from the AC electrode. In this state, they are arranged in parallel above the parallel surface of the AC electrode.
  • the negative electrode 11 has a parallel surface which is a parallel surface portion and a vertical surface which is a vertical surface portion with respect to the surface on which the wiring patterns 3 and 4 of the insulating substrate 2 are formed, and the parallel surface is insulated from the AC electrode. In this state, they are arranged in parallel above the parallel surface of the AC electrode.
  • the vertical surface of the positive electrode and the vertical surface of the negative electrode are arranged in parallel so as to face each other while being insulated.
  • the parallel plane refers to a portion of the electrode parallel to the plane on which the wiring patterns 3 and 4 of the insulating substrate 2 are formed
  • the vertical plane refers to the plane on which the wiring patterns 3 and 4 of the insulating substrate 2 are formed. The vertical part of the electrode is shown.
  • FIG. 4 is an equivalent circuit diagram of the power semiconductor module according to the first embodiment of the present invention.
  • the power semiconductor module 100 includes a self-extinguishing semiconductor element 6, a freewheeling diode 7, a gate resistor 8, a positive terminal 40, a negative terminal 41, an AC terminal 42, a positive arm side insulating substrate 101, and a negative arm side insulation.
  • a substrate 111 is provided.
  • Each of the positive arm side insulating substrate 101 and the negative arm side insulating substrate 111 includes a plurality of self-extinguishing semiconductor elements 6, freewheeling diodes 7, and gate resistors 8.
  • the self-extinguishing semiconductor element 6 is represented as a MOSFET by way of example, and the self-extinguishing semiconductor element 6 is also represented as a MOSFET in the subsequent drawings. *
  • the gate control circuit of the self-extinguishing semiconductor element 6 is shown in the equivalent circuit of FIG. 4, and the positive side gate 13G, the positive side control source 13E, the negative side gate 14G, and the negative side control source 14E are shown as terminals.
  • FIGS. 1 to 3 relating to the internal structure of the module only the structure relating to the circuit of the main circuit is shown, and the structure relating to the control circuit is omitted and simplified.
  • a wiring pattern for controlling the self-extinguishing semiconductor element 6 is formed on the insulating substrate 2, and a gate or gate for connecting the gate or control source electrode on the self-extinguishing semiconductor element 6 to the outside or the like.
  • a control source electrode is electrically connected, and is exposed to the upper surface of the power semiconductor module, and has a mechanism that can be connected to an external conductor. These are the same in the other embodiments and do not affect the effects of the present invention.
  • the wiring pattern of the control circuit is susceptible to induction by the main circuit current of the self-extinguishing semiconductor element 6, that is, the current flowing through the wiring patterns 3 and 4, in order to suppress current imbalance,
  • the shape is preferably such that the gate and the control source are parallel.
  • FIG. 5 is a switching operation circuit diagram of the positive arm side self-extinguishing semiconductor element in the two-level circuit of the power semiconductor module according to the first embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing a commutation loop during the switching operation of the positive arm side self-extinguishing semiconductor element of the power semiconductor module according to the first embodiment of the present invention.
  • the mode in which the MOSFET on the positive arm side switches is described by taking as an example the case where the self-extinguishing semiconductor element 6 is a MOSFET. To do.
  • FIGS. 5 and 6 a plurality of self-extinguishing semiconductor elements 6, freewheeling diodes 7, and gate resistors 8 in each arm are collectively shown.
  • both ends of the capacitor 32 are connected between the positive DC bus P and the negative DC bus N, and the positive terminal 40 of the power semiconductor module 100 is connected to the positive DC bus P.
  • the negative terminal 41 is connected to the negative DC bus N to form a two-level circuit.
  • a portion surrounded by a dotted line in FIG. 5A indicates the power semiconductor module 100, and white circles indicate the positive terminal 40, the negative terminal 41, and the AC terminal 42 exposed on the surface of the power semiconductor module 100. Is shown.
  • a current path when the positive arm side MOSFET 6 ⁇ / b> P is switched is shown superimposed on the circuit by an arrow.
  • FIG. 5A when the positive arm side MOSFET 6P is on, the current passes from the positive electrode of the capacitor 32 through the positive arm side MOSFET 6P, through the AC terminal 42, and through the load 31 such as a motor. A current flows through the negative arm 25N and the negative electrode of the capacitor 32. 5 and 6, the load 31 is shown as an inductance. In the following drawings, the load 31 is expressed as an inductance.
  • the positive arm side MOSFET 6P switches from on to off, as shown in FIG. 5B, the current flowing in the load 31 is returned to the negative arm side freewheeling diode 7N.
  • the commutation loop at the time of turn-off of the positive arm side MOSFET 6P is a loop that returns from the positive electrode of the capacitor 32 to the negative electrode of the capacitor 32 through the positive arm side MOSFET 6P and the negative arm side reflux diode 7N as shown in FIG. It becomes. 5 (a), 5 (b), and 6 show only the MOSFET, the freewheeling diode, and the capacitor, but in practice, the inductance and resistance components of the wiring to which the semiconductor elements are connected are included in the circuit.
  • This commutation loop includes its wiring inductance and resistance component.
  • the commutation loop when the negative arm side MOSFET 6N switches is a loop in which the positive electrode of the capacitor 32 passes through the positive arm side freewheeling diode 7P and the negative arm side MOSFET 6N and returns to the negative electrode of the capacitor 32.
  • a loop passing through the positive terminal 40 and the negative terminal 41 of the power semiconductor module 100 it can be said that the case where the positive arm side MOSFET 6P is switched and the case where the negative arm side MOSFET 6N is switched are almost the same.
  • the surge voltage applied when the self-extinguishing semiconductor element 6 is turned off is proportional to the inductance of the commutation loop.
  • the commutation loop inductance factor can be divided into three elements: the inductance of the bus bar connecting the power semiconductor module and the capacitor, the inductance of the capacitor itself, and the inductance inside the power semiconductor module. It is invention regarding reduction of the wiring inductance inside a semiconductor module.
  • FIG. 7 is a schematic diagram showing a state of magnetic flux cancellation between the electrodes facing each other when the commutation loop shown in FIG. 6 is generated.
  • the positive electrode 10 includes a parallel surface 10L that is a parallel surface portion and a vertical surface 10V that is a vertical surface portion
  • the negative electrode 11 includes a parallel surface 11L that is a parallel surface portion and a vertical surface 11V that is a vertical surface portion
  • the AC electrode 12 includes a parallel surface 12L that is a parallel surface portion.
  • the direction of current flow is schematically indicated by an arrow, and each wiring portion is indicated as an inductance.
  • the locations where magnetic flux cancellation occurs in each wiring portion are clearly indicated by double arrows.
  • the current path when the commutation loop occurs is as follows.
  • FIG. 7 shows a part of the loop inside the power semiconductor module in the commutation loop shown in FIG. 6.
  • Positive terminal 40 (not shown) ⁇ vertical surface 10V of positive electrode 10 ⁇ positive electrode 10 parallel surface 10L ⁇ positive arm side insulating substrate 101 ⁇ parallel surface 12L of AC electrode 12 ⁇ negative arm side insulating substrate 111 ⁇ parallel surface 11L of negative electrode 11 ⁇ vertical surface 11V of negative electrode 11 ⁇ negative electrode terminal 41 (not shown) )).
  • the vertical surface 10V of the positive electrode 10 and the vertical surface 11V of the negative electrode 11 that are arranged to face each other, the parallel surface 10L of the positive electrode 10, the parallel surface 12L of the AC electrode 12, and the parallel surface of the negative electrode 11 11L and the parallel surface 12L of the AC electrode 12 have the di / dt directions reversed to cancel the magnetic flux, thereby reducing the inductance.
  • the positive electrode 10, the negative electrode 11, and the AC electrode 12 are arranged so as to face each other, they are generated between the electrodes when a current flows through each electrode.
  • the magnetic flux to be canceled can be canceled.
  • the inductance due to the positive electrode 10, the negative electrode 11, and the AC electrode 12 is reduced, and the surge voltage applied to the semiconductor element is reduced, so that the reliability of the power semiconductor module can be improved.
  • FIG. The second embodiment is different from the first embodiment in that the circuit is configured by using one insulating substrate used in the first embodiment as a plurality of insulating substrates.
  • the positive electrode 10, the negative electrode 11, and the AC electrode 12 are arranged so as to face each other, the inductance can be reduced.
  • FIG. 8 is a top view and a schematic side view of the power semiconductor module according to the second embodiment of the present invention.
  • FIG. 8A shows a top view of the power semiconductor module 200.
  • FIG. 8B shows a schematic side view when viewed from the B side in FIG. 8A, and
  • FIG. 8C shows a schematic side view when viewed from the A side in FIG. 8A.
  • FIG. 9 is an equivalent circuit diagram of a power semiconductor module when a plurality of insulating substrates are provided as positive and negative arms according to the second embodiment of the present invention.
  • the direction viewed from the B side is the B direction
  • the direction viewed from the A side is the A direction.
  • the power semiconductor module 200 of the second embodiment includes a base plate 1, an insulating substrate 2, a collector (drain) wiring pattern 3, an emitter (source) wiring pattern 4, a self-extinguishing semiconductor element 6, a reflux circuit.
  • Diode 7, solder 9 positive electrode 10 that is a positive electrode, negative electrode 11 that is a negative electrode, AC electrode 12, bonding wire 21, positive terminal 40 that is a terminal part of positive electrode 10, and terminal part of negative electrode 11
  • An AC branch electrode 62, which is a branch electrode portion, a sealing material 50, a case 51, a lid 52, and a nut 53 are provided.
  • the positive electrode 10, the negative electrode 11, and the AC electrode 12 are disposed across the plurality of insulating substrates 2 in order to connect the plurality of insulating substrates 2.
  • the positive electrode 10 and the negative electrode 11 have, as parallel surfaces, a substantially rectangular shape having a long side in a direction (A direction) in which a plurality of insulating substrates 2 are connected in parallel.
  • the AC electrode 12 has a short side in the direction (B direction) straddling the positive and negative arms, and a long side in the direction (A direction) in which a plurality of insulating substrates 2 are connected in parallel.
  • the substantially rectangular shape as a parallel plane.
  • each electrode branches from the parallel surface of each electrode toward the wiring patterns 3 and 4, and is connected to each of the insulating substrates 101, 102, 111, and 112, respectively.
  • the branch electrode of the positive electrode 10 is a positive branch electrode 60
  • the branch electrode of the negative electrode 11 is a negative branch electrode 61
  • the branch electrode of the AC electrode 12 is an AC branch electrode 62.
  • the positive electrode branch electrode 60 and the AC branch electrode 62 are insulated and arranged in parallel. Moreover, the part arrange
  • the inductance can be reduced as in the case where there are one insulating substrate 2 as a positive arm and a negative arm.
  • FIG. 9 is an equivalent circuit diagram of the power semiconductor module when two insulating substrates are provided as the positive and negative arms of the power semiconductor module according to the second embodiment of the present invention. The difference is that the power semiconductor module 100 of the first embodiment is replaced with a power semiconductor module 200.
  • the power semiconductor module 200 includes a self-extinguishing semiconductor element 6, a freewheeling diode 7, a gate resistor 8, a positive electrode 10, a negative electrode 11, an output electrode 12, positive arm side insulating substrates 101 and 102, and a negative arm.
  • Each of the positive arm side insulating substrates 101 and 102 and the negative arm side insulating substrates 111 and 112 includes a plurality of self-extinguishing semiconductor elements 6, freewheeling diodes 7, and gate resistors 8.
  • the gate control circuit of the self-extinguishing semiconductor element 6 is shown in the equivalent circuit of FIG. 9, and the positive side gate 13G, the positive side control source 13E, the negative side gate 14G, and the negative side control source 14E are shown as terminals.
  • FIG. 8 relating to the internal structure of the module, only the structure relating to the circuit of the main circuit is shown, and the structure relating to the control circuit is omitted and simplified.
  • a wiring pattern for controlling the self-extinguishing semiconductor element 6 is formed on the insulating substrate 2, and the gate or control for connecting the gate or control source electrode on the self-extinguishing semiconductor element 6 to the outside.
  • a source electrode is electrically connected, exposed to the upper surface of the power semiconductor module, and provided with a mechanism that can be connected to an external conductor. These are the same in the other embodiments and do not affect the effects of the present invention. However, since the wiring pattern of the control circuit is likely to be induced by the main circuit current of the self-extinguishing semiconductor element 6, that is, the current flowing in the wiring patterns 3 and 4, the wiring pattern of the control circuit is used to suppress current imbalance. It is desirable that the gate and the control source be parallel to each other.
  • FIG. 10 is a switching operation circuit diagram of the positive arm side self-extinguishing semiconductor element in the two-level circuit according to the second embodiment of the present invention.
  • FIG. 11 is a circuit diagram showing a commutation loop during the switching operation of the positive arm side self-extinguishing semiconductor element of the power semiconductor module according to the second embodiment of the present invention.
  • FIGS. 10A, 10B, and 11 With reference to the operation circuit diagrams shown in FIGS. 10A, 10B, and 11, a mode in which the MOSFET 6P on the positive arm side switches is described by taking as an example the case where the self-extinguishing semiconductor element 6 is a MOSFET.
  • a plurality of self-extinguishing semiconductor elements 6, freewheeling diodes 7, and gate resistors 8 in each arm are collectively shown.
  • both ends of the capacitor 32 are connected between the positive DC bus P and the negative DC bus N, and the positive terminal 40 of the power semiconductor module 200 is connected to the positive DC bus P.
  • the negative terminal 41 is connected to the negative DC bus N to form a two-level circuit.
  • a portion surrounded by a dotted line in FIG. 10A shows the power semiconductor module 200, and white circles indicate external terminals exposed on the surface of the power semiconductor module 100 of the positive electrode terminal 40, the negative electrode terminal 41, and the output terminal 42. Show. Further, in FIG. 10, the current path when the positive arm side MOSFET 6P is switched is shown by being superimposed on the circuit by an arrow.
  • FIG. 10A when the positive arm side MOSFET 6P is turned on, the current passes through the positive arm side MOSFET 6P from the positive electrode of the capacitor 32, passes through the output terminal 42, and passes through the load 31 such as a motor. A current flows through the negative arm 25N and the negative electrode of the capacitor 32. Since the inductance component affects the load when the MOSFET is switched, the load 31 is shown as an inductance in FIG. On the other hand, when the positive arm side MOSFET 6P switches from on to off, as shown in FIG. 10B, the current flowing in the load 31 is returned to the negative arm side freewheeling diode 7N.
  • the commutation loop at the time of turn-off of the positive arm side MOSFET 6P is a loop that returns from the positive electrode of the capacitor 32 to the negative electrode of the capacitor 32 through the positive arm side MOSFET 6P and the negative arm side freewheeling diode 7N as shown in FIG. Become. 10 (a), 10 (b), and 11 show only the MOSFET, the freewheeling diode, and the capacitor, but the circuit actually includes the inductance and resistance components of the wiring connecting the semiconductors.
  • This commutation loop includes wiring inductance and resistance components.
  • the commutation loop is a loop in which the positive electrode of the capacitor 32 passes through the positive arm side freewheeling diode 7P and the negative arm side MOSFET 6N and returns to the negative electrode of the capacitor 32 as described above.
  • the surge voltage applied when the self-extinguishing semiconductor element 6 is turned off is proportional to the inductance of the commutation loop. Therefore, in the two-level circuit, it is necessary to reduce the inductance of the commutation loop shown in FIG.
  • the commutation loop inductance factor can be divided into three elements: the inductance of the bus bar connecting the power semiconductor module and the capacitor, the inductance of the capacitor itself, and the inductance inside the power semiconductor module. It is invention regarding reduction of the wiring inductance inside a semiconductor module.
  • FIG. 12 is a schematic diagram showing a state of magnetic flux cancellation between the electrodes facing each other when the commutation loop shown in FIG. 11 is generated.
  • the positive electrode 10 includes a parallel surface 10L that is a parallel surface portion, a vertical surface 10V that is a vertical surface portion, and positive electrode branch electrodes 60a and 60b that are branch electrode portions of the positive electrode 10.
  • a parallel surface 11L that is a parallel surface portion, a vertical surface 11V that is a vertical surface portion, and negative electrode branch electrodes 61a and 61b that are branch electrode portions of the negative electrode 11 are provided, and the AC electrode 12 is connected to the parallel surface 12L that is a parallel surface portion and an alternating current.
  • AC branch electrodes 62a, 62b, 62c, and 62d which are branch electrode portions of the electrode 12, are provided.
  • the direction of current flow is schematically indicated by an arrow, and each wiring portion is indicated as an inductance.
  • the locations where magnetic flux cancellation occurs in each wiring portion are clearly indicated by double arrows.
  • the current path when the commutation loop occurs is as follows.
  • FIG. 12 shows a part of the loop inside the power semiconductor module among the commutation loops shown in FIG. 11.
  • Positive terminal 40 (not shown) ⁇ vertical surface 10V of positive electrode 10 ⁇ positive electrode 10 parallel surfaces 10L ⁇ positive electrode branch electrodes 60a, 60b ⁇ positive arm side insulating substrate 101 (not shown) ⁇ AC branch electrodes 62a, 62b ⁇ parallel surface 12L of AC electrode 12 ⁇ AC branch electrodes 62c, 62d ⁇ negative arm side
  • the insulating substrate 111 (not shown) ⁇ the negative branch electrodes 61a and 61b ⁇ the parallel surface 11L of the negative electrode 11 ⁇ the vertical surface 11V of the negative electrode 11 ⁇ the negative terminal 41 (not shown).
  • the vertical surface 10V of the positive electrode 10, the vertical surface 11V of the negative electrode 11, the parallel surface 10L of the positive electrode 10 and the parallel surface 12L of the AC electrode 12, the positive branch electrodes 60a and 60b, the AC branch electrode 62a, 62b, the parallel surface 11L of the negative electrode, the parallel surface 12L of the AC electrode, and the negative electrode branch electrodes 61a and 61b and the AC branch electrodes 62c and 62d, the di / dt directions are reversed to cancel the magnetic flux.
  • the inductance can be reduced at each of the opposing portions between the positive electrode 10, the negative electrode 11, and the AC electrode 12 that are arranged to face each other.
  • the vertical surface 10V of the positive electrode 10 and the vertical surface 11V of the negative electrode 11 have long surfaces in the longitudinal direction, the current spreads in the longitudinal direction on the vertical surface 10V of the positive electrode 10 and flows.
  • a current spreading in the longitudinal direction flows so as to gather at the negative electrode terminal 41. Therefore, the magnetic flux is canceled in the entire vertical plane between the vertical plane 10V of the positive electrode 10 and the vertical plane 11V of the negative electrode 11, and the inductance can be effectively reduced.
  • the parallel surface 10L of the positive electrode 10 and the parallel surface 12L of the AC electrode 12 and the parallel surface 11L of the negative electrode 11 and the parallel surface 12L of the AC electrode 12 also have a current spreading in the longitudinal direction. The magnetic flux is canceled over the entire parallel surface, and the inductance can be effectively reduced.
  • the inductance can be reduced by a loop passing from the positive terminal 10 to the negative terminal 11. Further, the inductance can be reduced by spreading the current in the longitudinal direction.
  • the positive electrode 10, the negative electrode 11, and the AC electrode 12 are arranged so as to face each other, they are generated between the electrodes when a current flows through each electrode.
  • the magnetic flux to be canceled can be canceled.
  • the inductance due to the positive electrode 10, the negative electrode 11, and the AC electrode 12 is reduced and the surge voltage applied to the power semiconductor element is reduced, the reliability of the power semiconductor module can be improved. It becomes.
  • Embodiment 3 FIG.
  • the third embodiment is different in that the positive electrode terminal 40 and the negative electrode terminal 41 used in the second embodiment are arranged in the central portion of the power semiconductor module.
  • the positive electrode terminal and the negative electrode terminal are arranged in the central portion of the power semiconductor module.
  • FIG. 13 is a schematic top view and a schematic side view of a power semiconductor module according to Embodiment 3 of the present invention.
  • FIG. 13A shows a schematic top view of the power semiconductor module 300.
  • FIG. 13B shows a schematic side view when viewed from the B side in FIG.
  • FIG. 13C shows a schematic side view when viewed from the A side in FIG.
  • the direction viewed from the B side is the B direction
  • the direction viewed from the A side is the A direction.
  • FIG. 14 is a schematic top view when the electrode of the power semiconductor module according to the third embodiment of the present invention is removed.
  • FIG. 15 is a top external view of a power semiconductor module according to Embodiment 3 of the present invention. Both the positive and negative arms are provided with four insulating substrates 2.
  • a positive terminal 40 and a negative terminal 41 are arranged near the center of the module. Further, the AC terminal 41 is characterized in that it is disposed at a location where the positive electrode terminal 40 and the negative electrode terminal 41 are not disposed.
  • the AC terminal 41 is characterized in that it is disposed at a location where the positive electrode terminal 40 and the negative electrode terminal 41 are not disposed.
  • an example is shown in which four insulating substrates 2 are provided on each of the positive and negative arms, but the number of the insulating substrates 2 is not particularly limited, and in this embodiment, in order to explain the effects of the present invention in an easy-to-understand manner. This will be described below with reference to FIGS.
  • a power semiconductor module 300 includes a base plate 1, an insulating substrate 2, a collector (drain) wiring pattern 3, an emitter (source) wiring pattern 4, a self-extinguishing semiconductor element 6, a reflux circuit.
  • Diode 7, solder 9 positive electrode 10 that is a positive electrode, negative electrode 11 that is a negative electrode, AC electrode 12, bonding wire 21, positive terminal 40 that is a terminal part of positive electrode 10, and terminal part of negative electrode 11
  • An AC branch electrode 62, which is a branch electrode portion, a sealing material 50, a case 51, a lid 52, and a nut 53 are provided.
  • the positive electrode terminal 40 and the negative electrode terminal 41 are arranged near the center of the power semiconductor module 300, and the distances (electrode lengths) from the positive electrode terminal 40 and the negative electrode terminal 41 to the wiring patterns 3 and 4 are equal, or
  • the positive electrode branch electrode 60 and the negative electrode branch electrode 61 are configured so that the wiring inductance and the wiring resistance are equalized even when the distance is not exactly equal due to the configuration of the electrodes, and the same as the positive electrode branch electrode 60 and the negative electrode branch electrode 61.
  • the AC branch electrode 62 is configured to be parallel in shape. Further, by adjusting the positions of the connecting portions of the wiring patterns 3 and 4 with the positive branch electrode 60, the negative branch electrode 61, and the AC branch electrode 62, the wiring inductance and the wiring resistance can be equalized.
  • the distances (electrode lengths) from the positive electrode terminal 40 and the negative electrode terminal 41 to the wiring patterns 3 and 4 are not equal distances or strictly equal distances depending on the electrode configuration, they are branched from both ends of the long side of each electrode. Since the branch electrode has a V shape starting from the long side of the electrode, the current path length can be equalized.
  • FIG. 16 is a schematic top view of the power semiconductor module according to the third embodiment of the present invention in which a slit is formed in the branch electrode portion of the power semiconductor module.
  • the positive electrode 10 and the negative electrode 11 are provided with slits 600 surrounded by dotted lines.
  • the electrode is divided into two from substantially the same position.
  • the positive electrode terminal 40, the negative electrode are formed by inserting slits 600 in the parallel or vertical surfaces of the electrodes. Even when the distance (electrode length) from the terminal 41 to the wiring patterns 3 and 4 is not equal distance or strictly equal distance due to the configuration of the electrodes, the wiring inductance and the wiring resistance are equalized.
  • slits having the same shape as that of the positive electrode 10 and the negative electrode 11 are provided in the flat portion of the AC electrode 12 facing the flat portions of the positive electrode 10 and the negative electrode 11 in FIG.
  • the wiring resistance can be equalized, by arranging the positive terminal 40 and the negative terminal 41 at the center of the power semiconductor module, the distance to each insulating substrate or the wiring inductance and the wiring resistance are equalized. There is an easy effect.
  • the positive electrode 10, the negative electrode 11, and the AC electrode 12 are arranged so as to face each other, they are generated between the electrodes when a current flows through each electrode.
  • the magnetic flux to be canceled can be canceled.
  • the inductance due to the positive electrode 10, the negative electrode 11, and the AC electrode 12 is reduced, and the surge voltage applied to the semiconductor element is reduced, so that the reliability of the power semiconductor module can be improved.
  • an example is shown in which four insulating substrates 2 are provided for each of the positive and negative arms.
  • the number of the insulating substrates 2 is not particularly limited, and two or more insulating substrates are provided for each of the positive and negative arms. If it is a semiconductor module for electric power, the effect equivalent to this invention will be acquired.
  • Embodiment 4 is different in that a 3-level circuit is configured using the 2-in-1 module used in the first to third embodiments.
  • the positive electrode 10, the negative electrode 11, and the AC electrode 12 are arranged so as to face each other. Therefore, during the operation of the three-level circuit, the positive electrode 10, the negative electrode 11 and the AC / electrode 12 are opposite to each other in the direction of di / dt to cancel the magnetic flux, and the positive electrode 10, the negative electrode 11, and the AC electrode 12 are opposed to each other. Inductance can be reduced.
  • FIG. 17 is a circuit diagram showing a commutation loop during the switching operation of the self-extinguishing semiconductor element in the three-level circuit of the power semiconductor module according to the fourth embodiment of the present invention.
  • FIG. 17 shows an example of a three-level circuit.
  • a three-level circuit is configured by using three power semiconductor modules 400 (400 (a), 400 (b), 400 (c)).
  • the power semiconductor module 400 (400 (a), 400 (b), 400 (c)) may use any of the power semiconductor modules 100, 200, 300 of the first to third embodiments.
  • FIG. 17 what is connected to the positive DC bus P is the power semiconductor module 400 (a), what is connected to the negative DC bus N is the power semiconductor module 400 (b), and clamps.
  • a power semiconductor module 400 (c) is used as a diode.
  • MOSFETs arranged in parallel can also be used for synchronous rectification as shown in the power semiconductor module 400 (c) of FIG.
  • what can be used as synchronous rectification is not limited to the MOSFET arranged in the power semiconductor module 400 (c), but the MOSFET in the power semiconductor module 400 (a) and the power semiconductor module 400 (b). But it is possible.
  • FIG. 17 shows an example of a commutation loop when the three-level circuit is operating.
  • the negative arm MOSFET 6N of the power semiconductor module 400 (a) is turned off since the positive arm MOSFET 6P of the power semiconductor module 400 (a) is turned off and the negative arm MOSFET 6N is turned on. Occurs when.
  • the power semiconductor module 400 of the three-level circuit shown in FIG. 17 is the power semiconductor module 100 of the first embodiment, this commutation loop is arranged at the position of the power semiconductor module 400 (c).
  • FIG. 18 is a schematic diagram showing a state of magnetic flux cancellation between the electrodes facing each other in the power semiconductor module 400 (c) when the commutation loop shown in FIG. 17 is generated.
  • FIG. 18 shows a case where the power semiconductor module 400 (c) is the power semiconductor module 100 of the first embodiment.
  • the positive electrode 10 includes a parallel surface 10L that is a parallel surface portion and a vertical surface 10V that is a vertical surface portion
  • the negative electrode 11 includes a parallel surface 11L that is a parallel surface portion and a vertical surface 11V that is a vertical surface portion
  • the AC electrode 12 includes a parallel surface 12L that is a parallel surface portion.
  • the direction of current flow is schematically indicated by an arrow, and each wiring portion is indicated as an inductance.
  • the locations where magnetic flux cancellation occurs in each wiring portion are clearly indicated by double arrows.
  • the current path when the commutation loop occurs is as follows.
  • FIG. 18 shows a part of the internal loop of the power semiconductor module among the commutation loops shown in FIG. 17.
  • the AC terminal 42 (not shown) is parallel to the parallel electrode 12 ⁇ / b> L ⁇ the positive arm side.
  • the insulating substrate 101 (not shown) ⁇ the parallel surface 10L of the positive electrode 10 ⁇ the vertical surface 10V of the positive electrode 10 ⁇ the positive terminal 40 (not shown) is passed.
  • FIG. 19 is a schematic diagram showing the state of magnetic flux cancellation between the electrodes facing each other in another power semiconductor module 400 (c) when the commutation loop shown in FIG. 17 is generated.
  • FIG. 19 shows a case where the power semiconductor module 400 (c) is the power semiconductor module 200 of the first embodiment.
  • the positive electrode 10 includes a parallel surface 10L that is a parallel surface portion, a vertical surface 10V that is a vertical surface portion, and positive electrode branch electrodes 60a and 60b that are branch electrode portions of the positive electrode 10.
  • a parallel surface 11L that is a parallel surface portion, a vertical surface 11V that is a vertical surface portion, and negative electrode branch electrodes 61a and 61b that are branch electrode portions of the negative electrode 11 are provided, and the AC electrode 12 is connected to the parallel surface 12L that is a parallel surface portion and an alternating current.
  • AC branch electrodes 62a, 62b, 62c, and 62d, which are branch electrode portions of the electrode 12, are provided.
  • the direction of current flow is schematically indicated by an arrow, and each wiring portion is indicated as an inductance.
  • the locations where magnetic flux cancellation occurs in each wiring portion are clearly indicated by double arrows.
  • the current path when the commutation loop occurs is as follows.
  • FIG. 19 shows a part of the internal loop of the power semiconductor module among the commutation loops shown in FIG. 17.
  • the AC terminal 42 (not shown) ⁇ the parallel surface 12 ⁇ / b> L of the AC electrode 12 ⁇ AC branching.
  • Electrodes 62a, 62b ⁇ positive arm side insulating substrate 101 (not shown) ⁇ positive electrode branch electrodes 60a, 60b ⁇ parallel surface 10L of electrode 10 ⁇ vertical surface 10V of electrode 10 ⁇ positive electrode terminal 40 (not shown) .
  • the vertical surface 10V of the positive electrode 10 and the vertical surface 11V of the negative electrode 11 have long surfaces in the longitudinal direction, the current flows in the longitudinal direction on the vertical surface 10V of the positive electrode 10, An eddy current is generated on the entire vertical surface 11V of the negative electrode 11, and the magnetic flux is canceled over the entire vertical surface of the positive electrode 10 and the negative electrode 11, so that the inductance can be effectively reduced.
  • the parallel surface 10L of the positive electrode 10 and the parallel surface 12L of the AC electrode 12 also have a current spreading in the longitudinal direction, so that the magnetic flux is canceled in the entire parallel surface of the positive electrode 10 and the AC electrode 12. And the inductance can be effectively reduced.
  • FIG. 20 is a schematic diagram showing the state of magnetic flux cancellation between the electrodes facing each other of the power semiconductor module 400 (a) when the commutation loop shown in FIG. 17 is generated.
  • FIG. 20 shows a case where the power semiconductor module 400 (a) is the power semiconductor module 100 of the first embodiment.
  • the positive electrode 10 includes a parallel surface 10L that is a parallel surface portion and a vertical surface 10V that is a vertical surface portion
  • the negative electrode 11 includes a parallel surface 11L that is a parallel surface portion and a vertical surface 11V that is a vertical surface portion
  • the AC electrode 12 includes a parallel surface 12L that is a parallel surface portion.
  • the direction of current change with time is schematically indicated by an arrow, and each wiring portion is indicated by an inductance.
  • the locations where magnetic flux cancellation occurs in each wiring portion are clearly indicated by double arrows.
  • the current path when the commutation loop occurs is as follows.
  • FIG. 20 shows a part of the loop inside the power semiconductor module among the commutation loops shown in FIG. 17.
  • the AC terminal 42 (not shown) ⁇ the parallel surface 12 ⁇ / b> L of the AC electrode 12 ⁇ the negative arm Side insulating substrate 111 (not shown) ⁇ parallel surface 11L of negative electrode 11 ⁇ vertical surface 11V of negative electrode 11 ⁇ negative electrode terminal 41 (not shown).
  • FIG. 21 is a schematic diagram showing a state of magnetic flux cancellation between the electrodes facing each other of another power semiconductor module 400 (a) when the commutation loop shown in FIG. 17 is generated.
  • FIG. 21 shows a case where the power semiconductor module 400 (a) is the power semiconductor module 200 of the second embodiment.
  • the positive electrode 10 includes a parallel surface 10L that is a parallel surface portion, a vertical surface 10V that is a vertical surface portion, and positive electrode branch electrodes 60a and 60b that are branch electrode portions of the positive electrode 10
  • the negative electrode 11 is A parallel surface 11L that is a parallel surface portion, a vertical surface 11V that is a vertical surface portion, and negative electrode branch electrodes 61a and 61b that are branch electrode portions of the negative electrode 11 are provided.
  • the AC electrode 12 is connected to the parallel surface 12L that is a parallel surface portion and an AC current.
  • AC branch electrodes 62a, 62b, 62c, and 62d which are branch electrode portions of the electrode 12, are provided.
  • the direction of current flow is schematically indicated by an arrow, and each wiring portion is indicated as an inductance.
  • the locations where magnetic flux cancellation occurs in each wiring portion are clearly indicated by double arrows.
  • the current path when the commutation loop occurs is as follows.
  • FIG. 21 shows a part of the loop inside the power semiconductor module among the commutation loops shown in FIG. 17, and the AC terminal 42 (not shown) ⁇ the parallel surface 12 ⁇ / b> L of the AC electrode 12 ⁇ AC branching.
  • Electrodes 62c, 62d ⁇ negative arm side insulating substrate 111 (not shown) ⁇ negative electrode branch electrodes 61a, 61b ⁇ parallel surface 11L of negative electrode 11 ⁇ vertical surface 11V of negative electrode 11 ⁇ negative electrode terminal 41 (not shown). .
  • the vertical surface 10V of the positive electrode 10 and the vertical surface 11V of the negative electrode 11 have long surfaces in the longitudinal direction, the current flows spreading in the longitudinal direction on the vertical surface 11V of the negative electrode 11, so that the positive electrode An eddy current is generated on the entire vertical surface 10V of the electrode 10, and the magnetic flux is canceled over the entire vertical surface of the positive electrode 10 and the negative electrode 11, so that the inductance can be effectively reduced.
  • the parallel surface 11L of the negative electrode 11 and the parallel surface 12L of the AC electrode 12 also have a current spreading in the longitudinal direction, so that the magnetic flux is canceled in the entire parallel surface of the negative electrode 11 and the AC electrode 12. And the inductance can be effectively reduced.
  • the inductance is reduced in the loop passing from the positive terminal 40 to the AC terminal 42 and in the loop passing from the negative terminal 41 to the AC terminal 42, thereby suppressing variations in the current flowing through the wiring patterns 3 and 4 of each insulating substrate 2. Therefore, it is possible to suppress current variations in power semiconductor elements such as the self-extinguishing semiconductor element 6 and the freewheeling diode 7 mounted on each insulating substrate 2. Moreover, by suppressing the current variation of the power semiconductor element, the temperature variation of the power semiconductor element can be suppressed, and the thermal cycle life can be improved.
  • the power semiconductor module 100 of the first embodiment is arranged at the position of the power semiconductor module 400 (b) when the commutation loop is generated as shown in FIG.
  • the power semiconductor module 200 of the second embodiment is arranged, the same effect as the inductance reduction described in FIG. 12 of the second embodiment is obtained. It is done. Also, this time, only the commutation loop shown in FIG. 17 has been described.
  • the negative arm MOSFET 6N of the power semiconductor module 400 (b) is off and the positive arm MOSFET 6P is on
  • the power semiconductor module 400 (b) Since the commutation loop generated when the positive arm MOSFET 6P is turned off can be considered in the same manner, the effect of the present invention can be obtained.
  • the fourth embodiment when a three-level circuit is configured, a commutation loop that passes through the positive terminal 40, the alternating current terminal 42, the negative terminal 41, and the alternating current terminal 42 is generated as described above.
  • the positive arm When there is a difference in wiring inductance and wiring resistance in a loop passing through the positive electrode terminal 40 and the AC terminal 42, and the negative electrode terminal 41 and the AC terminal 42 during circuit operation, the positive arm operates in the power semiconductor module 400. When the negative arm operates, current variations are likely to occur.
  • the distances between the positive terminal 40 and the AC terminal 42 and between the negative terminal 41 and the AC terminal 42 are substantially equal.
  • Arrangement can suppress variations in wiring inductance and wiring resistance in a loop passing through the positive terminal 40, the AC terminal 42, the negative terminal 41, and the AC terminal 42, and the self mounted on each insulating substrate 2 can be suppressed. It is possible to suppress current variations in power semiconductor elements such as the arc extinguishing semiconductor element 6 and the freewheeling diode 7. Furthermore, by suppressing the current variation, the temperature variation of the semiconductor element can be suppressed, and the thermal cycle life can be improved.
  • wiring inductance and wiring resistance can be reduced.
  • the AC terminal 42 is disposed close to the positive terminal 40 and the negative terminal 41 as shown in the power semiconductor module 100 of the first embodiment, this effect can be further obtained.
  • the positive electrode 10, the negative electrode 11, and the AC electrode 12 are arranged so as to face each other, and the AC terminal 42 is connected to the positive terminal 40 and the negative electrode terminal 41. Therefore, even when any commutation loop occurs, the magnetic flux generated between the electrodes when current flows through each electrode can be canceled. As a result, the inductance due to the positive electrode 10, the negative electrode 11, and the AC electrode 12 is reduced, and the surge voltage applied to the semiconductor element is reduced, so that the reliability of the power semiconductor module can be improved. .
  • the positive electrode terminal 40 and the negative electrode terminal 41 in the third embodiment are arranged near the center of the module, and the distances (electrode lengths) from the positive electrode terminal 40 and the negative electrode terminal 41 to the wiring patterns 3 and 4 are the same distance or the electrode configuration Even if the distance is not exactly equal, the positive electrode branch electrode 60 and the negative electrode branch electrode 61 are configured so that the wiring inductance and the wiring resistance are equalized, and the same shape as the positive electrode branch electrode 60 and the negative electrode branch electrode 61, Since the AC branch electrode 62 is configured to be parallel, even in the three-level circuit configuration diagram, when a commutation loop is generated from the positive terminal 40 to the negative terminal 41, a plurality of insulating substrates mounted on the module are used.
  • the effect of the fourth embodiment can be obtained even when a module having only a clamp diode without a MOSFET mounted thereon is used as the power semiconductor module 400 (c) in FIG. Further, when the MOSFET is mounted in the power semiconductor module, the effect of the fourth embodiment can be obtained even when the MOSFET is used after being synchronously rectified. Further, even if the portion described as MOSFET in FIG. 17 is another self-extinguishing semiconductor element such as IGBT or bipolar transistor, the same effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inverter Devices (AREA)

Abstract

電力用半導体モジュール内部における配線間でのインダクタンスを低減し、サージ電圧による電力用半導体素子の破壊が抑制可能な電力用半導体モジュールを得る。自己消弧型半導体素子(6)を直列接続して構成され、自己消弧型半導体素子(6)間に接続点を有する正負アームと、正負アームに接続される正極側直流電極(10)、負極側直流電極(11)、および交流電極(12)と、正負アームの自己消弧型半導体素子(6)と正極側直流電極(10)、負極側直流電極(11)、および交流電極(12)とを接続する配線パターン(3,4)が形成された基板(2)とを備えた電力用半導体モジュールであって、正極側直流電極(10)、負極側直流電極(11)、および交流電極(12)は、それぞれが絶縁され、それぞれの電極のうち2つが対向して配置されたことを特徴とする電力用半導体モジュール。

Description

電力用半導体モジュール
 この発明は、電力用半導体モジュールのインダクタンス低減構造に関するものである。
 インバータなどの電力変換装置に使用される絶縁型の電力用半導体モジュールは、放熱板となる金属板に絶縁基板を介して配線パターンが形成され、その上に電力用半導体素子が設けられ、電極端子とワイヤボンドなどにより接続され、この電力用半導体素子は樹脂にて封止されている。
 大電流、高電圧でスイッチング動作する電力用半導体モジュールは、電力用半導体素子がオフする際の電流の時間変化率di/dtと電力変換装置に含まれる配線インダクタンスLとによりサージ電圧ΔV=L・di/dtが電力用半導体素子に印加される。配線インダクタンスが大きいと電力用半導体素子の耐圧を超えるサージ電圧が発生し、電力用半導体素子の破壊の原因となることがある。そのため、電力変換装置として低インダクタンス化が求められ、電力用半導体モジュールにも低インダクタンス化が求められている。
 パッケージ内に正、負アームを備える電力用半導体モジュール内のインダクタンスの大きな要素は外部回路と接続される正極電極、負極電極、および出力(交流)電極である。
 そこで、近年、モジュール内の電極を積層することにより、電流が流れる時に電極間で磁束がキャンセルされることによって低インダクタンス化が図られている(例えば、特許文献1)。
特許公報第3692906号(第4頁、第1図)
 しかしながら、従来の電力用半導体モジュールにおいては、正極電極であるP電力線と負極電極であるN電力線と出力電極である出力線UがP-U-Nの順に積層された構造をとっており、出力線Uに流れる電流により発生する磁束の向きとP電力線またはN電力線のどちらかに出力線Uと反対方向に流れる電流により発生する磁束の向きが逆であるため、それぞれの磁束が相殺されて減少するため、インダクタンスが低減されている。しかし、P-U間、U-N間では効果的に磁束がキャンセルされインダクタンスの低減が可能であるが、P-N間では出力線UがP-N間に存在するため、磁束のキャンセル効果が小さくなり、インダクタンスの低減効果が薄れるという問題点があった。
 本発明は、上記の問題点を解決するためになされたもので、すべての配線間でのインダクタンスを低減することで、サージ電圧による電力用半導体素子の破壊が抑制可能な電力用半導体モジュールを得るものである。
 この発明に係る電力用半導体モジュールは、自己消弧型半導体素子を直列接続して構成され、前記自己消弧型半導体素子の直列接続点を有する正負アームと、前記正負アームに接続される正極側電極、負極側電極、および交流電極と、前記正負アームの前記自己消弧型半導体素子と前記正極側電極、前記負極側電極、および前記交流電極とを接続する配線パターンが形成された基板とを備え、前記正極側電極、前記負極側電極、および前記交流電極は、それぞれが絶縁され、それぞれの電極のうち2つが対向して配置されたものである。
 この発明によれば、正極側電極、負極側電極、および交流電極をそれぞれが対向するように配置したので、対向した正極側電極と交流電極間、交流電極と負極側電極間、および正極側電極と負極側電極間において互いにdi/dtの向きが逆になり磁束のキャンセルが行われ、対向した各電極間でインダクタンスを低減することができる。
この発明の実施の形態1の電力用半導体モジュールの上面模式図、および概略側面図である。 この発明の実施の形態1の電力用半導体モジュールの電極を取り除いた場合の上面図である。 この発明の実施の形態1の電力用半導体モジュールの上面外観図である。 この本発明の実施の形態1の電力用半導体モジュールの等価回路図である。 この発明の実施の形態1の電力用半導体モジュールの2レベル回路における正アーム側自己消弧型半導体素子のスイッチング動作回路図である。 この発明の実施の形態1の電力用半導体モジュールの正アーム側自己消弧型半導体素子のスイッチング動作時の転流ループを示す回路図である。 図6で示した転流ループ発生時の対向しあう電極間の磁束キャンセルの様子を表す模式図である。 この発明の実施の形態2の電力用半導体モジュールの上面模式図、および概略側面図である。 この発明の実施の形態2の電力用半導体モジュールの正負アームとして絶縁基板を2枚備える場合の電力用半導体モジュールの等価回路図である。 この発明の実施の形態2の2レベル回路における正アーム側自己消弧型半導体素子のスイッチング動作回路図である。 この発明の実施の形態2の電力用半導体モジュールの正アーム側自己消弧型半導体素子のスイッチング動作時の転流ループを示す回路図である。 図11で示した転流ループ発生時の対向しあう電極間の磁束キャンセルの様子を表す模式図である。 この発明の実施の形態3の電力用半導体モジュールの電力用半導体モジュールの上面図、および概略側面図である。 この発明の実施の形態3の電力用半導体モジュールの電力用半導体モジュールの電極を取り除いた場合の上面図である。 この発明の実施の形態3の電力用半導体モジュールの電力用半導体モジュールの上面外観図である。 この発明の実施の形態3の電力用半導体モジュールの電力用半導体モジュールにおける分岐電極部分にスリットを入れた場合の上面模式図である。 この発明の実施の形態4の電力用半導体モジュールの3レベル回路における自己消弧型半導体素子のスイッチング動作時の転流ループを示す回路図である。 図17に示した転流ループ発生時の電力用半導体モジュール400(c)の対向しあう電極間の磁束キャンセルの様子を表す模式図である。 図17に示した転流ループ発生時の別の電力用半導体モジュール400(c)の対向しあう電極間の磁束キャンセルの様子を表す模式図である。 図17に示した転流ループ発生時のさらに別の電力用半導体モジュール400(a)の対向しあう電極間の磁束キャンセルの様子を表す模式図である。 図17に示した転流ループ発生時のさらに別の電力用半導体モジュール400(a)の対向しあう電極間の磁束キャンセルの様子を表す模式図である。
実施の形態1.
 図1は、この発明の実施の形態1の電力用半導体モジュールの上面模式図、および概略側面図である。図1(a)には、電力用半導体モジュール100の上面模式図を示す。図1(b)には、図1(a)におけるB側から見た場合の、図1(c)には、図1(a)におけるA側から見た場合の概略側面図を示す。また、図2は、この発明の実施の形態1の電力用半導体モジュールの電極を取り除いた場合の上面図である。さらに、図3は、この発明の実施の形態1の電力用半導体モジュールの上面外観図である。ここで、B側から見た方向をB方向、A側から見た方向をA方向とする。
 図1、図2、および図3において、本実施の形態1の電力用半導体モジュール100は、ベース板1、コレクタ(ドレイン)配線パターン3、エミッタ(ソース)配線パターン4、セラミクス絶縁基板5、自己消弧型半導体素子6、還流ダイオード7、はんだ9、正極側電極である正極電極10、負極側電極である負極電極11、交流電極12、ボンディングワイヤ21、正極電極10の端子部である正極端子40、負極電極11の端子部である負極端子41、交流電極12の端子部である交流端子42、封止材50、ケース51、蓋52、ナット53を備える。
 本実施の形態1の電力用半導体モジュール100は、電力用半導体モジュール100を構成する自己消弧型半導体素子6と還流ダイオード7との発熱を放熱する金属放熱体であるベース板1の一方の面に、金属箔がロウ付けなどで接合された絶縁材であるセラミクス絶縁基板5が、はんだ9により接合されている。一方、セラミクス絶縁基板5のベース板1と接合された面と対向する面には、金属箔により配線パターン3,4がロウ付けなどにより接合されている。金属箔が接合されたセラミクス絶縁基板5と配線パターン3,4とにより絶縁基板2が構成されている。ただし、絶縁基板の材料としては、セラミクスに限定されるものではなく、樹脂絶縁材を用いた金属基板であっても良い。
 また、コレクタ(ドレイン)配線パターン3とエミッタ(ソース)配線パターン4とのセラミクス絶縁基板5が接合された面と対向する面には、自己消弧型半導体素子6と還流ダイオード7がはんだ9により接合されている。さらに、コレクタ(ドレイン)配線パターン3、エミッタ(ソース)配線パターン4に正極電極10、負極電極11、および交流電極12が接合されている。ただし、接合材としては、はんだ9を用いているが、はんだ9に限定されるものではなく、その他の接合方法によるものでも良い。
 正極電極10、負極電極11、および交流電極12には、それぞれに大電流が流れるため、外部回路と接続するためにネジを使用するのが一般的である。しかし、ネジに限定されるものではなく、大電流を流すことが可能であればその他の接合方法であっても良い。本実施の形態1では、正極電極10、負極電極11、および交流電極12は、それぞれモジュール上面に外部回路と接続するための、正極端子40、負極端子41、交流端子42を備えている。そして、これら正極端子40、負極端子41、および交流端子42にはネジ挿入用の穴があり、これらの端子の下にはナットの埋め込まれたケースが設置されている。また、電力用半導体モジュール100は、ケース51で周囲を囲われており、ケース51内部を絶縁するためにケース51内部に封止材50が注入される。その後、ケース51に蓋52を嵌合し、接着剤などで接着させる。
 自己消弧型半導体素子6と還流ダイオード7のエミッタ(ソース)配線パターン4と、はんだ接合されていない面は、ボンディングワイヤ21により配線パターン等に接合される。
 ここで、本実施の形態1の電力用半導体モジュール100の等価回路を図4に示す。自己消弧型半導体素子6をMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)として図示したが、IGBT(Insulated Gate Bipolar Transistor)やバイポーラトランジスタなどのその他の自己消弧型半導体素子であっても、本発明の効果は得られる。また、半導体素子の材料として、Si(Silicon)だけでなく、SiC(Silicon Carbide)やGaN(Gallium nitride)やダイヤモンドが原料となる半導体素子でも効果は得られる。特に、高速動作が可能なSiCやGaNなどを用いた場合は、より顕著な効果を得ることが可能である。
 電力用半導体モジュール100は、一般的に「2in1」と呼ばれる同一ケース(同一パッケージ)内に電力変換回路の正アーム、負アームを備えるモジュールである。アームの構成要素としては自己消弧型半導体素子6と還流ダイオード7が逆並列に接続された回路である。また、自己消弧型半導体素子6に内蔵ダイオードがある場合、別途還流ダイオード7を配置する必要はなく、ダイオード内蔵自己消弧型半導体素子のみで、アームを構成することができる。絶縁基板101は正アームを構成しており、絶縁基板111は負アームを構成している。自己消弧型半導体素子の直列接続点は、正アームと負アームとが接続される部分である。
 図1における電力用半導体モジュール100では、各アームを構成する絶縁基板2は1枚ずつであるが、電力用半導体モジュールの電流容量によって自己消弧型半導体素子6や還流ダイオード7の数は異なるため、絶縁基板1枚に多数のチップを配置すると、絶縁基板自体のサイズが大きくなる。その場合、ベース板1やはんだ9などの電力用半導体モジュールの構成部材との熱膨張率の違いから絶縁基板2にクラックが入るなどの信頼性の問題が発生する。従って、素子数の多い場合など、電流容量に応じて絶縁基板2の分割(複数枚化)を考慮すると良い。
 正アームに配置されている絶縁基板101のコレクタ(ドレイン)配線パターン3に接続しているのが正極電極10であり、エミッタ(ソース)配線パターン4に接続しているのが交流電極12である。また、負アームに配置されている絶縁基板111のコレクタ(ドレイン)配線パターン3に接続しているのが交流電極12であり、エミッタ(ソース)配線パターン4に接続しているのが負極電極11である。
 交流電極12は絶縁基板2の配線パターン3,4が形成された面に対して、平行面部である平行面と垂直面部である垂直面とを備えており、平行面は正負アームの各絶縁基板2との絶縁距離を確保した位置に配置されている。また、正極電極10は絶縁基板2の配線パターン3,4が形成された面に対して、平行面部である平行面と垂直面部である垂直面を備えており、平行面は交流電極と絶縁された状態で交流電極の平行面上部に平行に配置されている。さらに、負極電極11は絶縁基板2の配線パターン3,4が形成された面に対して、平行面部である平行面と垂直面部である垂直面を備えており、平行面は交流電極と絶縁された状態で交流電極の平行面上部に平行に配置されている。正極電極の垂直面と負極電極の垂直面とは、絶縁された状態で対向させて平行に配置されている。
 以後、平行面とは絶縁基板2の配線パターン3,4が形成された面に対して電極の平行な部分を示し、垂直面は絶縁基板2の配線パターン3,4が形成された面に対して電極の垂直な部分を示す。
 次に、2in1の電力用半導体モジュール100を用いた2レベル回路について説明する。図4は、この本発明の実施の形態1の電力用半導体モジュールの等価回路図である。図4において、電力用半導体モジュール100は、自己消弧型半導体素子6、還流ダイオード7、ゲート抵抗8、正極端子40、負極端子41、交流端子42、正アーム側絶縁基板101、負アーム側絶縁基板111を備える。正アーム側絶縁基板101、負アーム側絶縁基板111は、それぞれ複数の、自己消弧型半導体素子6、還流ダイオード7、ゲート抵抗8を備える。図4では自己消弧型半導体素子6を例としてMOSFETとして表記しており、以降の図においても自己消弧型半導体素子6をMOSFETとして表記する。 
 ただし、図4の等価回路中には自己消弧型半導体素子6のゲート制御回路を記載し、端子として正極側ゲート13G、正極側制御ソース13E、負極側ゲート14G、負極側制御ソース14Eを示したが、モジュール内部構造に関する図1~3においては、主回路の回路に関する構造のみ図示し制御回路に関する構造は省略し簡素化して図示している。実際には、絶縁基板2上に自己消弧型半導体素子6の制御用の配線パターンが構成され、自己消弧型半導体素子6上のゲートまたは制御ソース電極と外部との接続のためのゲートまたは制御ソース電極とが電気的に接続され、電力用半導体モジュールの上面などに露出し、外部導体と接続できるような機構を備える。これらは、その他の実施例においても同じであり、本発明の効果には影響を及ぼさない。ただし、制御回路の配線パターンは自己消弧型半導体素子6の主回路電流つまり配線パターン3,4に流れる電流による誘導を受けやすいので、電流アンバランスを抑制するには、制御回路の配線パターンの形状はゲートと制御ソースとが平行であることが望ましい。
 図5は、この発明の実施の形態1の電力用半導体モジュールの2レベル回路における正アーム側自己消弧型半導体素子のスイッチング動作回路図である。図6は、この発明の実施の形態1の電力用半導体モジュールの正アーム側自己消弧型半導体素子のスイッチング動作時の転流ループを示す回路図である。図5(a)、図5(b)および図6に示した動作回路図を用いて、自己消弧型半導体素子6がMOSFETである場合を例として正アーム側のMOSFETがスイッチングするモードについて説明する。また、図5、図6中では、各アームにおける複数ある自己消弧型半導体素子6、還流ダイオード7、およびゲート抵抗8をひとつとしてまとめて記載している。
 図5(a)に示すように、正側直流母線Pと負側直流母線Nとの間にコンデンサ32の両端が接続されており、電力用半導体モジュール100の正極端子40を正側直流母線Pに、負極端子41を負側直流母線Nに接続して、2レベル回路を構成している。図5(a)中の点線で囲まれた部分は電力用半導体モジュール100を示しており、白丸は電力用半導体モジュール100の表面に露出している正極端子40、負極端子41、および交流端子42を示している。また、図5には、正アーム側MOSFET6Pがスイッチングする場合の電流経路を矢印で回路に重ねて示している。
 図5(a)において、正アーム側MOSFET6Pがオンしている場合、電流はコンデンサ32の正極から正アーム側MOSFET6Pを通り、交流端子42を通り、モーターなどの負荷31を経由して他相の負アーム25Nを通り、コンデンサ32の負極に電流が流れる。図5、図6中では負荷31をインダクタンスとして表記した。また以降の図においても負荷31はインダクタンスとして表記する。一方、正アーム側MOSFET6Pがオンからオフにスイッチングする時は、図5(b)に示すように、負荷31に流れていた電流が負アーム側還流ダイオード7Nに還流する。このとき、正アーム側MOSFET6Pのターンオフ時の転流ループは、図6に示すように、コンデンサ32の正極から正アーム側MOSFET6P、負アーム側還流ダイオード7Nを通り、コンデンサ32の負極に戻るというループとなる。図5(a)、図5(b)、および図6にはMOSFETと還流ダイオードとコンデンサのみを記載しているが、実際には半導体素子同士が接続される配線のインダクタンスや抵抗成分が回路に含まれ、この転流ループにはその配線インダクタンスや抵抗成分が含まれる。
 一方、負アーム側MOSFET6Nがスイッチングする場合の転流ループは、コンデンサ32の正極から正アーム側還流ダイオード7P、負アーム側MOSFET6Nを通り、コンデンサ32の負極に戻るというループとなる。電力用半導体モジュール100の正極端子40と負極端子41を通るループという点で、正アーム側MOSFET6Pがスイッチングする場合と負アーム側MOSFET6Nがスイッチングする場合はほぼ同じと言える。自己消弧型半導体素子6のターンオフ時に印加されるサージ電圧は転流ループのインダクタンスに比例する。したがって、2レベル回路では図6に記載の転流ループのインダクタンスを低減させることが必要となる。転流ループのインダクタンス要因としては、電力用半導体モジュールとコンデンサを接続するブスバーのインダクタンス、コンデンサ自体のインダクタンス、電力用半導体モジュール内部のインダクタンスの3つの要素に分けられるが、本発明は3つめの電力用半導体モジュール内部の配線インダクタンスの低減に関する発明である。
 図7は、図6で示した転流ループ発生時の対向しあう電極間の磁束キャンセルの様子を表す模式図である。図7において、正極電極10は、平行面部である平行面10Lと垂直面部である垂直面10Vとを備え、負極電極11は、平行面部である平行面11Lと垂直面部である垂直面11Vとを備え、交流電極12は、平行面部である平行面12Lを備える。また、模式的に電流の流れる方向を矢印で、各配線部分をインダクタンスとして表記している。さらに、各配線部分の磁束キャンセルが発生する箇所には両矢印で対応箇所を明記した。上記転流ループ発生時の電流経路は次の様になる。
 図7には、図6で示した転流ループのうち、電力用半導体モジュール内部のループの一部を示しており、正極端子40(図示せず)→正極電極10の垂直面10V→正極電極10の平行面10L→正アーム側絶縁基板101→交流電極12の平行面12L→負アーム側絶縁基板111→負極電極11の平行面11L→負極電極11の垂直面11V→負極端子41(図示せず)を通る。この過程において、対向して配置された正極電極10の垂直面10Vと負極電極11の垂直面11Vと、正極電極10の平行面10Lと交流電極12の平行面12Lと、負極電極11の平行面11Lと交流電極12の平行面12Lとにおいて互いにdi/dtの向きが逆になり磁束のキャンセルが行われ、インダクタンスの低減が可能となる。
 以上のように構成された電力用半導体モジュールにおいては、正極電極10、負極電極11、および交流電極12を、それぞれが対向するように配置したので、各電極に電流が流れる時の電極間に発生する磁束をキャンセルすることができる。その結果、正極電極10、負極電極11、および交流電極12によるインダクタンスが低減され、半導体素子に印加されるサージ電圧が低減されるため、電力用半導体モジュールの信頼性を向上することが可能となる。
実施の形態2.
 本実施の形態2においては、実施の形態1で用いた1枚の絶縁基板を複数枚の絶縁基板として回路を構成した点が異なる。このように複数枚の絶縁基板を用いた回路においても、正極電極10、負極電極11、および交流電極12をそれぞれが対向するように配置したのでインダクタンスを低減することができる。
 図8は、この発明の実施の形態2の電力用半導体モジュールの上面図、および概略側面図である。図8(a)には、電力用半導体モジュール200の上面図を示す。図8(b)には、図8(a)におけるB側から見た場合の、図8(c)には、図8(a)におけるA側から見た場合の概略側面図を示す。図9は、この発明の実施の形態2の正負アームとして絶縁基板を複数備える場合の電力用半導体モジュールの等価回路図である。ここで、B側から見た方向をB方向、A側から見た方向をA方向とする。
 図8において、本実施の形態2の電力用半導体モジュール200は、ベース板1、絶縁基板2、コレクタ(ドレイン)配線パターン3、エミッタ(ソース)配線パターン4、自己消弧型半導体素子6、還流ダイオード7、はんだ9、正極側電極である正極電極10、負極側電極である負極電極11、交流電極12、ボンディングワイヤ21、正極電極10の端子部である正極端子40、負極電極11の端子部である負極端子41、交流電極12の端子部である交流端子42、正極電極10の分岐電極部である正極分岐電極60、負極電極11の分岐電極部である負極分岐電極61、交流電極12の分岐電極部である交流分岐電極62、封止材50、ケース51、蓋52、ナット53を備える。
 図8に示すように、正極電極10、負極電極11、および交流電極12は、複数枚の絶縁基板2を接続するために、複数枚の絶縁基板2に跨って配置される。正極電極10、負極電極11は、複数枚の絶縁基板2を並列に接続する方向(A方向)を長辺とした略長方形を平行面として有している。また、交流電極12は、正負アームを直列に接続するために、正負アームを跨ぐ方向(B方向)を短辺とし、複数枚の絶縁基板2を並列に接続する方向(A方向)を長辺とした略長方形を平行面として有している。さらに各電極は、各電極の平行面から配線パターン3,4へ向かって分岐し、各絶縁基板101,102,111,112それぞれに接続している。この分岐において、正極電極10の分岐電極を正極分岐電極60、負極電極11の分岐電極を負極分岐電極61、交流電極12の分岐電極を交流分岐電極62とする。
 正極分岐電極60と交流分岐電極62は絶縁され、平行に配置されている。また平行に配置されている部分は同形状となっている。また、負極分岐電極61と交流分岐電極62は絶縁され、平行に配置されている。また平行に配置されている部分は同形状となっている。
 このように絶縁基板2が複数枚の場合でも、正アーム、負アームとしてそれぞれ絶縁基板2が1枚の場合と同様にインダクタンスの低減が可能である。
 次に、2in1の電力用半導体モジュール200を用いた2レベル回路におけるスイッチング動作について説明する。例として、正アーム側のMOSFETがスイッチング動作するモードについて説明する。図9は、この発明の実施の形態2の電力用半導体モジュールの正、負アームとして絶縁基板を2枚備える場合の電力用半導体モジュールの等価回路図である。実施の形態1の電力用半導体モジュール100を電力用半導体モジュール200に置き換えたことが異なる。図9において、電力用半導体モジュール200は、自己消弧型半導体素子6、還流ダイオード7、ゲート抵抗8、正極電極10、負極電極11、出力電極12、正アーム側絶縁基板101,102、負アーム側絶縁基板111,112を備える。正アーム側絶縁基板101,102、負アーム側絶縁基板111,112は、それぞれ複数の、自己消弧型半導体素子6、還流ダイオード7、ゲート抵抗8を備える。
 ただし、図9の等価回路中には自己消弧型半導体素子6のゲート制御回路を記載し、端子として正極側ゲート13G、正極側制御ソース13E、負極側ゲート14G、負極側制御ソース14Eを示したが、モジュール内部構造に関する図8においては、主回路の回路に関する構造のみ図示し制御回路に関する構造は省略し簡素化して図示している。実際には絶縁基板2上に自己消弧型半導体素子6の制御用の配線パターンが構成され、自己消弧型半導体素子6上のゲートまたは制御ソース電極と外部との接続のためのゲートまたは制御ソース電極とが電気的に接続され、電力用半導体モジュールの上面などに露出し、外部導体と接続できるような機構を備える。これらは、その他の実施例においても同じであり、本発明の効果には影響を及ぼさない。ただし、制御回路の配線パターンは自己消弧型半導体素子6の主回路電流つまり配線パターン3,4に流れる電流による誘導を受けやすいので、電流のアンバランスを抑制するには、制御回路の配線パターンの形状はゲートと制御ソースとが平行であることが望ましい。
 図10は、この発明の実施の形態2の2レベル回路における正アーム側自己消弧型半導体素子のスイッチング動作回路図である。図11は、この発明の実施の形態2の電力用半導体モジュールの正アーム側自己消弧型半導体素子のスイッチング動作時の転流ループを示す回路図である。図10(a)、図10(b)および図11に示した動作回路図を用いて、自己消弧型半導体素子6がMOSFETである場合を例として正アーム側のMOSFET6Pがスイッチングするモードについて説明する。図10、図11中では、各アームにおける複数ある自己消弧型半導体素子6、還流ダイオード7、およびゲート抵抗8をひとつとしてまとめて記載している。
 図10(a)に示すように、正側直流母線Pと負側直流母線Nとの間にコンデンサ32の両端が接続されており、電力用半導体モジュール200の正極端子40を正側直流母線Pに、負極端子41を負側直流母線Nに接続して、2レベル回路を構成している。図10(a)の点線で囲まれた部分は電力用半導体モジュール200を示しおり、白丸は正極端子40、負極端子41、および出力端子42の電力用半導体モジュール100の表面に露出する外部端子を示している。また、図10には、正アーム側MOSFET6Pがスイッチングする場合の電流経路を矢印で回路に重ねて示している。
 図10(a)において、正アーム側MOSFET6Pがオンしている場合、電流はコンデンサ32の正極から正アーム側MOSFET6Pを通り、出力端子42を通り、モーターなどの負荷31を経由して他相の負アーム25Nを通り、コンデンサ32の負極に電流が流れる。MOSFETのスイッチング時には負荷に対してインダクタンス成分が影響するため、図10中では負荷31をインダクタンスとして表記した。一方、正アーム側MOSFET6Pがオンからオフにスイッチングする時は、図10(b)に示すように、負荷31に流れていた電流が負アーム側還流ダイオード7Nに還流する。したがって、正アーム側MOSFET6Pのターンオフ時の転流ループは、図15に示すように、コンデンサ32の正極から正アーム側MOSFET6P、負アーム側還流ダイオード7Nを通り、コンデンサ32の負極に戻るというループとなる。図10(a)、図10(b)、および図11にはMOSFETと還流ダイオードとコンデンサのみを記載しているが、実際には半導体同士が接続される配線のインダクタンスや抵抗成分が回路に含まれ、この転流ループにはその配線インダクタンスや抵抗成分が含まれる。
 一方、負アーム側MOSFET6Nがスイッチングする場合は、上記と同様に転流ループは、コンデンサ32の正極から正アーム側還流ダイオード7P、負アーム側MOSFET6Nを通り、コンデンサ32の負極に戻るというループとなる。前述したように、自己消弧型半導体素子6のターンオフ時に印加されるサージ電圧は転流ループのインダクタンスに比例する。したがって、2レベル回路では、図11に記載の転流ループのインダクタンスを低減させることが必要となる。転流ループのインダクタンス要因としては、電力用半導体モジュールとコンデンサを接続するブスバーのインダクタンス、コンデンサ自体のインダクタンス、電力用半導体モジュール内部のインダクタンスの3つの要素に分けられるが、本発明は3つめの電力用半導体モジュール内部の配線インダクタンスの低減に関する発明である。
 図12は、図11で示した転流ループ発生時の対向しあう電極間の磁束キャンセルの様子を表す模式図である。図12において、正極電極10は、平行面部である平行面10L、垂直面部である垂直面10V、および正極電極10の分岐電極部である正極分岐電極60a,60bとを備え、負極電極11は、平行面部である平行面11L、垂直面部である垂直面11V、および負極電極11の分岐電極部である負極分岐電極61a,61bとを備え、交流電極12は、平行面部である平行面12Lと交流電極12の分岐電極部である交流分岐電極62a,62b,62c,62dとを備える。また、模式的に電流の流れる方向を矢印で、各配線部分をインダクタンスとして表記している。さらに、各配線部分の磁束キャンセルが発生する箇所には両矢印で対応箇所を明記した。上記転流ループ発生時の電流経路は次の様になる。
 図12には、図11で示した転流ループのうち、電力用半導体モジュール内部のループの一部を示しており、正極端子40(図示せず)→正極電極10の垂直面10V→正極電極10の平行面10L→正極分岐電極60a,60b→正アーム側絶縁基板101(図示せず)→交流分岐電極62a,62b→交流電極12の平行面12L→交流分岐電極62c,62d→負アーム側絶縁基板111(図示せず)→負極分岐電極61a,61b→負極電極11の平行面11L→負極電極11の垂直面11V→負極端子41(図示せず)を通る。この過程において、正極電極10の垂直面10Vと負極電極11の垂直面11Vと、正極電極10の平行面10Lと交流電極12の平行面12Lと、正極分岐電極60a,60bと交流分岐電極62a,62bと、負極電極の平行面11Lと交流電極の平行面12Lと、および負極分岐電極61a,61bと交流分岐電極62c,62dとにおいて互いにdi/dtの向きが逆になり磁束のキャンセルが行われ、対向して配置された正極電極10、負極電極11、および交流電極12との間のそれぞれの対向部分でインダクタンスの低減が可能となる。
 ここで、正極電極10の垂直面10Vと負極電極11の垂直面11Vは長手方向に長い面を有しているため、正極電極10の垂直面10Vにおいて電流は長手方向に広がって流れる。一方、負極電極11の垂直面11Vでは長手方向に広がった電流が負極端子41に集まる様に流れる。よって、正極電極10の垂直面10Vと負極電極11の垂直面11Vとでは垂直面全体で磁束のキャンセルが発生し、効果的にインダクタンスの低減が可能となる。
 また、正極電極10の平行面10Lと交流電極12の平行面12Lと、および負極電極11の平行面11Lと交流電極12の平行面12Lとにおいても同様に電流の長手方向への広がりがあるため、平行面全体で磁束のキャンセルが発生し、効果的にインダクタンスの低減が可能となる。
 上記のように、電力用半導体モジュール200は、正アーム、負アームとして、絶縁基板2を複数備える場合においても、正極端子10から負極端子11を通るループでインダクタンスの低減が可能となる。また、電流が長手方向に広がることによってもインダクタンスの低減が可能となる。
 以上のように構成された電力用半導体モジュールにおいては、正極電極10、負極電極11、および交流電極12を、それぞれが対向するように配置したので、各電極に電流が流れる時の電極間に発生する磁束をキャンセルすることができる。その結果、正極電極10、負極電極11、および交流電極12によるインダクタンスが低減され、電力用半導体素子に印加されるサージ電圧が低減されるため、電力用半導体モジュールの信頼性を向上することが可能となる。
 また、本実施の形態では、絶縁基板2が正負アームにそれぞれ2枚配置された場合について説明したが、それ以上の枚数配置された場合においても本発明の効果は得られる。絶縁基板2が各アームに複数枚配置されたモジュール構造においても、自己消弧型半導体素子6のスイッチング時の転流ループは電極の分岐電極の並列数が増えただけで、2枚配置の場合と同様である。
実施の形態3.
 本実施の形態3においては、実施の形態2で用いた正極端子40と負極端子41を電力用半導体モジュールの中央部に配置した点が異なる。このように、正極端子と負極端子を電力用半導体モジュールの中央部に配置することで、正極端子40から負極端子41を通る転流ループ発生時に、電力用半導体モジュールに搭載される複数の絶縁基板2に対して電流の経路長を均等化し、配線インダクタンス、及び配線抵抗の均等化が図れる。これにより、各絶縁基板2の配線パターン3,4に流れる電流のばらつきを抑制することができ、各絶縁基板2に搭載された自己消弧型半導体素子や還流ダイオードなど半導体素子の電流ばらつきを抑制することが可能となる。また、電流ばらつきを抑制することで、半導体素子の温度ばらつきを抑制することができ、熱サイクル寿命の向上が可能となる。
 図13は、この発明の実施の形態3の電力用半導体モジュールの上面模式図、および概略側面図である。図13(a)には、電力用半導体モジュール300の上面模式図を示す。図13(b)には、図13(a)のB側から見た場合の概略側面図を示す。図13(c)には、図13(a)のA側から見た場合の概略側面図を示す。ここで、B側から見た方向をB方向、A側から見た方向をA方向とする。図14は、この発明の実施の形態3の電力用半導体モジュールの電極を取り除いた場合の上面模式図である。図15は、この発明の実施の形態3の電力用半導体モジュールの上面外観図である。正負アームともに4枚の絶縁基板2を備えている。正極端子40と負極端子41とがモジュール中央付近に配置されている。また、交流端子41が正極端子40、負極端子41の配置されていない箇所に配置されているのが特徴である。本実施の形態では、絶縁基板2が正負アームにそれぞれ4枚備わっている例を示しているが、特に枚数に限定はなく、本発明の効果をわかりやすく説明するために、本実施の形態では図13~図16を元に以下に説明する。
 図13において、本実施の形態3の電力用半導体モジュール300は、ベース板1、絶縁基板2、コレクタ(ドレイン)配線パターン3、エミッタ(ソース)配線パターン4、自己消弧型半導体素子6、還流ダイオード7、はんだ9、正極側電極である正極電極10、負極側電極である負極電極11、交流電極12、ボンディングワイヤ21、正極電極10の端子部である正極端子40、負極電極11の端子部である負極端子41、交流電極12の端子部である交流端子42、正極電極10の分岐電極部である正極分岐電極60、負極電極11の分岐電極部である負極分岐電極61、交流電極12の分岐電極部である交流分岐電極62、封止材50、ケース51、蓋52、ナット53を備える。
 図13において、正極端子40と負極端子41を電力用半導体モジュール300の中央付近に配置し、正極端子40、負極端子41から配線パターン3,4までの距離(電極長さ)が等距離、または電極の構成により厳密に等距離とならない場合も、配線インダクタンス、および配線抵抗が均等化されるように正極分岐電極60、負極分岐電極61が構成され、正極分岐電極60および負極分岐電極61と同形状で、平行を成すように交流分岐電極62が構成される。また、配線パターン3,4の正極分岐電極60、負極分岐電極61、および交流分岐電極62との接続部分の位置を調整することで、配線インダクタンスや配線抵抗を均等化することができる。
 正極端子40、負極端子41から配線パターン3,4までの距離(電極長さ)が等距離、または電極の構成により厳密に等距離とならない場合においても、各電極の長辺の両端から分岐される分岐電極が、電極の長辺を起点としたV字形状とすることにより、電流の経路長を均等化することができる。
 図16は、この発明の実施の形態3の電力用半導体モジュールの電力用半導体モジュールにおける分岐電極部分にスリットを入れた場合の上面模式図である。図16において、正極電極10と負極電極11とに、点線で囲んだようなスリット600を備える。図13では、ほぼ同位置より電極が2分割されているが、図16に示すように、分岐位置が異なる場合でも、電極の平行面または垂直面にスリット600を入れることにより正極端子40、負極端子41から配線パターン3,4までの距離(電極長さ)が等距離、または電極の構成により厳密に等距離とならない場合も、配線インダクタンス、及び配線抵抗が均等化される。また、図16の正極電極10、負極電極11の各平面部と対向する交流電極12の平面部にも正極電極10、負極電極11と同じ形状のスリットを設けている。これにより、正極電極10と交流電極12、負極電極11と交流電極12を通る転流ループの経路が重なることにより、より効率的にインダクタンスの低減が可能となる。上記のようにスリットによって、正極端子40、負極端子41から配線パターン3,4までの距離(電極長さ)が等距離、または電極の構成により厳密に等距離とならない場合も、配線インダクタンス、及び配線抵抗が均等化することが可能ではあるが、正極端子40・負極端子41を電力用半導体モジュールの中央部に配置することにより、各絶縁基板までの距離もしくは配線インダクタンス、及び配線抵抗を均等化しやすい効果がある。
 以上のように構成された電力用半導体モジュールにおいては、正極電極10、負極電極11、および交流電極12を、それぞれが対向するように配置したので、各電極に電流が流れる時の電極間に発生する磁束をキャンセルすることができる。その結果、正極電極10、負極電極11、および交流電極12によるインダクタンスが低減され、半導体素子に印加されるサージ電圧が低減されるため、電力用半導体モジュールの信頼性を向上することが可能となる。なお、本実施の形態では、絶縁基板2が正負アームにそれぞれ4枚備わっている例を示しているが、特に枚数に限定はなく、正負アームにそれぞれ2枚以上の絶縁基板が備わったような電力用半導体モジュールであれば、本発明と同等の効果は得られる。
実施の形態4. 
 本実施の形態4においては、実施の形態1~3で用いた2in1モジュールを用いて3レベル回路を構成した点が異なる。このように、3レベル回路を構成した場合でも、正極電極10、負極電極11、および交流電極12を、それぞれが対向するように配置したので、3レベル回路の動作時に、正極電極10、負極電極11、および交流電極12との間のそれぞれの対向部分で互いにdi/dtの向きが逆になり磁束のキャンセルが行われ、正極電極10、負極電極11、および交流電極12のそれぞれの対向部分でインダクタンスの低減が可能となる。
 図17は、この発明の実施の形態4の電力用半導体モジュールの3レベル回路における自己消弧型半導体素子のスイッチング動作時の転流ループを示す回路図である。図17は3レベル回路の一例を示している。図17において、回路構成としては、電力用半導体モジュール400を3個(400(a),400(b),400(c))用いて3レベル回路を構成している。この電力用半導体モジュール400(400(a),400(b),400(c))は実施の形態1~3の電力用半導体モジュール100,200,300のいずれを用いても良い。
 図17において、正側直流母線Pに接続されているものを、電力用半導体モジュール400(a)、負側直流母線Nに接続されているものを、電力用半導体モジュール400(b)、またクランプダイオードとして電力用半導体モジュール400(c)を用いて構成している。クランプダイオードとしてダイオードを用いる以外に、図17の電力用半導体モジュール400(c)に示すように、並列配置されているMOSFETを同期整流として用いることもできる。なお、同期整流として用いることができるのは、電力用半導体モジュール400(c)内に配置されたMOSFETに限らず、電力用半導体モジュール400(a)、電力用半導体モジュール400(b)内のMOSFETでも可能である。
 図17には、3レベル回路動作時の転流ループの一例を示す。図17に示した転流ループは、電力用半導体モジュール400(a)の正アームMOSFET6Pがオフ、負アームMOSFET6Nがオン状態から、電力用半導体モジュール400(a)の負アームMOSFET6Nがオフとなった場合に発生する。ここで、図17に示した3レベル回路の電力用半導体モジュール400を実施の形態1の電力用半導体モジュール100とした場合、この転流ループは電力用半導体モジュール400(c)の位置に配置された電力用半導体モジュール100の交流端子42から正アームMOSFET6P、正極端子40を通り、次に、電力用半導体モジュール400(a)の位置に配置された電力用半導体モジュール100の交流端子42から負アームMOSFET6N、負極端子41を通り、次に、電力用半導体モジュール400(b)の位置に配置された電力用半導体モジュール100の正極端子40から正アーム還流ダイオード7P、負アーム還流ダイドード7N、負極端子41を通る。
 図18は、図17に示した転流ループ発生時の電力用半導体モジュール400(c)の対向しあう電極間の磁束キャンセルの様子を表す模式図である。図18には、電力用半導体モジュール400(c)が、実施の形態1の電力用半導体モジュール100の場合を示す。図18において、正極電極10は、平行面部である平行面10Lと垂直面部である垂直面10Vとを備え、負極電極11は、平行面部である平行面11Lと垂直面部である垂直面11Vとを備え、交流電極12は、平行面部である平行面12Lを備える。また、模式的に電流の流れる方向を矢印で、各配線部分をインダクタンスとして表記している。さらに、各配線部分の磁束キャンセルが発生する箇所には両矢印で対応箇所を明記した。上記転流ループ発生時の電流経路は次の様になる。
 図18には、図17で示した転流ループのうち、電力用半導体モジュール内部のループの一部を示しており、交流端子42(図示せず)交流電極12の平行面12L→正アーム側絶縁基板101(図示せず)→正極電極10の平行面10L→正極電極10の垂直面10V→正極端子40(図示せず)を通る。
 この過程において、正極電極10の垂直面10Vで発生するdi/dtにより、負極電極11の垂直面11Vに渦電流が発生し、対向して配置された正極電極10と負極電極11との間で磁束のキャンセルが発生し、インダクタンスの低減が可能となる。また、正極電極10の平行面10Lと交流電極12の平行面12Lにおいて互いにdi/dtの向きが逆になり磁束のキャンセルが行われ、対向して配置された正極電極10と交流電極12との間でインダクタンスの低減が可能となる。
 図19は、図17に示した転流ループ発生時の別の電力用半導体モジュール400(c)の対向しあう電極間の磁束キャンセルの様子を表す模式図である。図19には、電力用半導体モジュール400(c)が、実施の形態1の電力用半導体モジュール200の場合を示す。図19において、正極電極10は、平行面部である平行面10L、垂直面部である垂直面10V、および正極電極10の分岐電極部である正極分岐電極60a,60bとを備え、負極電極11は、平行面部である平行面11L、垂直面部である垂直面11V、および負極電極11の分岐電極部である負極分岐電極61a,61bとを備え、交流電極12は、平行面部である平行面12Lと交流電極12の分岐電極部である交流分岐電極62a,62b,62c,62dとを備える。また、模式的に電流の流れる方向を矢印で、各配線部分をインダクタンスとして表記している。さらに、各配線部分の磁束キャンセルが発生する箇所には両矢印で対応箇所を明記した。上記転流ループ発生時の電流経路は次の様になる。
 図19には、図17で示した転流ループのうち、電力用半導体モジュール内部のループの一部を示しており、交流端子42(図示せず)→交流電極12の平行面12L→交流分岐電極62a,62b→正アーム側絶縁基板101(図示せず)→正極分岐電極60a,60b→極電極10の平行面10L→正極電極10の垂直面10V→正極端子40(図示せず)を通る。
 この過程において、正極電極10の垂直面10Vで発生するdi/dtにより、負極電極11の垂直面11Vに渦電流が発生し、対向して配置された正極電極10と負極電極11との間で磁束のキャンセルが発生し、インダクタンスの低減が可能となる。また、正極電極10の平行面10Lと交流電極12の平行面12L、および正極分岐電極60a,60bと交流分岐電極62a,62bにおいて互いにdi/dtの向きが逆になり磁束のキャンセルが行われ、対向して配置された正極電極10と交流電極12との間でインダクタンスの低減が可能となる。
 ここで、正極電極10の垂直面10Vと負極電極11の垂直面11Vとは長手方向に長い面を有しているため、正極電極10の垂直面10Vにおいて電流は長手方向に広がって流れるため、負極電極11の垂直面11V全面に渦電流が発生し、正極電極10と負極電極11との垂直面全体で磁束のキャンセルが発生し、効果的にインダクタンスの低減が可能となる。
 また、正極電極10の平行面10Lと交流電極12の平行面12Lとにおいても同様に電流の長手方向への広がりがあるため、正極電極10と交流電極12との平行面全体で磁束のキャンセルが発生し、効果的にインダクタンスの低減が可能となる。
 図20は、図17に示した転流ループ発生時のさらに別の電力用半導体モジュール400(a)の対向しあう電極間の磁束キャンセルの様子を表す模式図である。図20には、電力用半導体モジュール400(a)が、実施の形態1の電力用半導体モジュール100の場合を示す。図20において、正極電極10は、平行面部である平行面10Lと垂直面部である垂直面10Vとを備え、負極電極11は、平行面部である平行面11Lと垂直面部である垂直面11Vとを備え、交流電極12は、平行面部である平行面12Lを備える。また、模式的に電流の時間変化の向きを矢印で、各配線部分をインダクタンスとして表記している。さらに、各配線部分の磁束キャンセルが発生する箇所には両矢印で対応箇所を明記した。上記転流ループ発生時の電流経路は次の様になる。
 図20には、図17で示した転流ループのうち、電力用半導体モジュール内部のループの一部を示しており、交流端子42(図示せず)→交流電極12の平行面12L→負アーム側絶縁基板111(図示せず)→負極電極11の平行面11L→負極電極11の垂直面11V→負極端子41(図示せず)を通る。
 この過程において、負極電極11の垂直面11Vで発生するdi/dtにより、正極電極10の垂直面10Vに渦電流が発生し、対向して配置された正極電極10と負極電極11との間で磁束のキャンセルが発生し、インダクタンスの低減が可能である。また、負極電極11の平行面11Lと交流電極12の平行面12Lにおいて互いにdi/dtの向きが逆になり磁束のキャンセルが行われ、対向して配置された負極電極11と交流電極12との間でインダクタンスの低減が可能となる。
 図21は、図17に示した転流ループ発生時のさらに別の電力用半導体モジュール400(a)の対向しあう電極間の磁束キャンセルの様子を表す模式図である。図21には、電力用半導体モジュール400(a)が、実施の形態2の電力用半導体モジュール200の場合を示す。図21において、正極電極10は、平行面部である平行面10L、垂直面部である垂直面10V、および正極電極10の分岐電極部である正極分岐電極60a,60bとを備え、負極電極11は、平行面部である平行面11L、垂直面部である垂直面11V、および負極電極11の分岐電極部である負極分岐電極61a,61bとを備え、交流電極12は、平行面部である平行面12Lと交流電極12の分岐電極部である交流分岐電極62a,62b,62c,62dとを備える。また、模式的に電流の流れる方向を矢印で、各配線部分をインダクタンスとして表記している。さらに、各配線部分の磁束キャンセルが発生する箇所には両矢印で対応箇所を明記した。上記転流ループ発生時の電流経路は次の様になる。
 図21には、図17で示した転流ループのうち、電力用半導体モジュール内部のループの一部を示しており、交流端子42(図示せず)→交流電極12の平行面12L→交流分岐電極62c,62d→負アーム側絶縁基板111(図示せず)→負極分岐電極61a,61b→負極電極11の平行面11L→負極電極11の垂直面11V→負極端子41(図示せず)を通る。
 この過程において、負極電極11の垂直面11Vで発生するdi/dtにより、正極電極10の垂直面10Vに渦電流が発生し、対向して配置された正極電極10と負極電極11との間で磁束のキャンセルが発生し、インダクタンスの低減が可能である。また、負極電極11の平行面11Lと交流電極12の平行面12L、および負極分岐電極61a,61bと交流分岐電極62c,62dにおいて互いにdi/dtの向きが逆になり磁束のキャンセルが行われ、対向して配置された負極電極11と交流電極12との間でインダクタンスの低減が可能となる。
 ここで、正極電極10の垂直面10Vと負極電極11の垂直面11Vは長手方向に長い面を有しているため、負極電極11の垂直面11Vにおいて電流は長手方向に広がって流れるため、正極電極10の垂直面10V全面に渦電流が発生し、正極電極10と負極電極11との垂直面全体で磁束のキャンセルが発生し、効果的にインダクタンスの低減が可能となる。
 また、負極電極11の平行面11Lと交流電極12の平行面12Lとにおいても同様に電流の長手方向への広がりがあるため、負極電極11と交流電極12との平行面全体で磁束のキャンセルが発生し、効果的にインダクタンスの低減が可能となる。
 さらに、正極端子40から交流端子42を通るループ、および負極端子41から交流端子42を通るループにおいてインダクタンスを低減したことで、各絶縁基板2の配線パターン3,4に流れる電流のばらつきを抑制することができ、各絶縁基板2に搭載された自己消弧型半導体素子6や還流ダイオード7など電力用半導体素子の電流ばらつきを抑制することが可能となる。また、電力用半導体素子の電流ばらつきを抑制することで、電力用半導体素子の温度ばらつきを抑制することができ、熱サイクル寿命の向上が可能となる。
 また、図17で示した転流ループ発生時の電力用半導体モジュール400(b)の位置に実施の形態1の電力用半導体モジュール100が配置された場合は、実施の形態1の図7で説明したインダクタンスの低減と同様の効果が得られ、また、実施の形態2の電力用半導体モジュール200が配置された場合は、実施の形態2の図12で説明したインダクタンスの低減と同様の効果が得られる。また、今回は図17で示す転流ループについてのみ説明をしたが、電力用半導体モジュール400(b)の負アームMOSFET6Nがオフ、正アームMOSFET6Pがオン状態から、電力用半導体モジュール400(b)の正アームMOSFET6Pがオフとなった場合に発生する転流ループについても同様に考えることができるので、本発明の効果が得られる。
 本実施の形態4において、3レベル回路を構成したときには、上記で説明したように正極端子40と交流端子42と、負極端子41と交流端子42とを通る転流ループが発生する。回路動作時に、正極端子40と交流端子42と、負極端子41と交流端子42とを通るループでの配線インダクタンスおよび配線抵抗に差があると、電力用半導体モジュール400内で正アームが動作する場合と、負アームが動作する場合で、電流のばらつきが発生しやすい。実施の形態1~3の電力用半導体モジュール100、200、300で示したようなモジュールにおいて、特に正極端子40と交流端子42間、負極端子41と交流端子42間の距離をほぼ等しくなるように配置することで、正極端子40と交流端子42と、負極端子41と交流端子42とを通るループでの配線インダクタンスおよび配線抵抗のばらつきを抑制することができ、各絶縁基板2に搭載された自己消弧型半導体素子6や還流ダイオード7など電力用半導体素子の電流ばらつきを抑制することが可能となる。さらに、この電流ばらつきを抑制することで、半導体素子の温度ばらつきを抑制することができ、熱サイクル寿命の向上が可能となる。
 また、電力用半導体モジュール100~300において交流端子42を正極端子40と負極端子41に近づくように配置するほど、正極端子40と交流端子42、負極端子41と交流端子42を通るループが小さくなり、配線インダクタンス及び配線抵抗を低減することができる。例えば、実施の形態1の電力用半導体モジュール100で示したような正極端子40と負極端子41に対して、交流端子42を近接して配置すると、この効果をより得ることが可能となる。ただし、各端子間の絶縁距離は確保して配置する必要がある。
 以上のように構成された電力用半導体モジュール100~300においては、正極電極10、負極電極11、および交流電極12を、それぞれが対向するように配置し交流端子42を正極端子40と負極 端子41に近づくように配置したためたので、どのような転流ループが発生した場合でも各電極に電流が流れる時の電極間に発生する磁束をキャンセルすることができる。その結果、正極電極10、負極電極11、および交流電極12によるインダクタンスが低減され、半導体素子に印加されるサージ電圧が低減されるため、電力用半導体モジュールの信頼性を向上することが可能となる。
 また、対向された電極の一方だけに電流が流れた場合においても、もう一方の電極に渦電流が発生し、磁束のキャンセルが行われ、電極間でインダクタンスを低減することができる。
 また実施の形態3における正極端子40と負極端子41をモジュール中央付近に配置し、正極端子40、負極端子41から配線パターン3,4までの距離(電極長さ)が等距離、または電極の構成により厳密に等距離とならない場合も、配線インダクタンス、及び配線抵抗が均等化されるように正極分岐電極60、負極分岐電極61が構成され、正極分岐電極60及び負極分岐電極61と同形状で、平行を成すように交流分岐電極62が構成されているため、3レベル回路構成図においても正極端子40から負極端子41を通る転流ループ発生時に、モジュールに搭載される複数の絶縁基板に対して経路長を均等化し、配線インダクタンス、及び配線抵抗の均等化が図れる。これにより各絶縁基板の配線パターンに流れる電流のばらつきを抑制することができ、各絶縁基板に搭載された自己消弧型半導体素子や還流ダイオードなど半導体素子の電流ばらつきを抑制することができる。電流ばらつきを抑制することは、半導体素子の温度ばらつきを抑制することに繋がり、熱サイクル寿命の向上に繋がるといった効果も得られる。
 なお、図17の電力用半導体モジュール400(c)としては、MOSFETの搭載されていないクランプダイオードのみのモジュールを用いても、本実施の形態4の効果を得ることができる。また、電力用半導体モジュール内にMOSFETを搭載した場合は、MOSFETを同期整流して用いた場合でも、本実施の形態4の効果を得ることができる。さらに、図17においてMOSFETとして記載している部分は、IGBTやバイポーラトランジスタなどのその他の自己消弧型半導体素子であっても、同様の効果を得ることができる。
 1 ベース板、2 絶縁基板、3,4 配線パターン、5 セラミクス絶縁基板、6,6P,6N 自己消弧型半導体素子、7,7P,7N 還流ダイオード、8,8P,8N ゲート抵抗、9 はんだ、10 正極電極、11 負極電極、12 交流電極、13E,13G 正アーム側制御端子、14E,14G 負アーム側制御端子、21 ボンディングワイヤ、22 制御用ワイヤボンド、25P 他相の正アーム、25N 他相の負アーム、31 負荷、32 コンデンサ、40 正極端子、41 負極端子、42 交流端子、50 封止材、51ケース、52 蓋、53 ナット、60 正極分岐電極、61 負極分岐電極、62 交流分岐電極、100,200,300,400(a),400(b),400(c),500 電力用半導体モジュール、101,102,103,104 正アーム側絶縁基板、111,112,113,114 負アーム側絶縁基板、600 スリット。

Claims (17)

  1. 自己消弧型半導体素子を直列接続して構成され、前記自己消弧型半導体素子の直列接続点を有する正負アームと、
    前記正負アームに接続される正極側電極、負極側電極、および交流電極と、
    前記正負アームの前記自己消弧型半導体素子と前記正極側電極、前記負極側電極、および前記交流電極とを接続する配線パターンが形成された基板とを備え、
    前記正極側電極、前記負極側電極、および前記交流電極は、それぞれが絶縁され、それぞれの電極のうち2つが対向して配置されたことを特徴とする電力用半導体モジュール。
  2. 前記正極側電極、前記負極側電極、および前記交流電極は、それぞれ前記基板の前記配線パターンが形成された面に対して平行に配置された平行面部を有し、
    前記正極側電極、前記負極側電極は前記基板の前記配線パターンが形成された面に対して垂直に配置された垂直面部とを有し、
    前記正極側電極の垂直面部は、前記負極側電極の垂直面部と対向して平行に配置され、
    前記交流電極の平行面部は、前記正極側電極の平行面部と前記負極側電極の平行面部とのそれぞれに対向して平行に配置されたことを特徴とする請求項1に記載の電力用半導体モジュール。
  3. 前記正極側電極、前記負極側電極、および前記交流電極は、それぞれ外部回路に接続される端子部と前記配線パターンに接続し前記平行面部から分岐された複数の分岐電極部とを有することを特徴とする請求項1または請求項2に記載の電力用半導体モジュール。
  4. 前記基板は、複数であり、
    前記分岐電極部は、前記複数の基板に対応して複数設けられ、前記平面部から前記配線パターンまでの距離が略等距離であり、前記配線パターンを並列接続したことを特徴とする請求項3に記載の電力用半導体モジュール。
  5. 前記正極側電極の分岐電極部と前記交流電極の分岐電極部とは、絶縁され、少なくとも一部が同一形状で対向して配置され、
    前記負極側電極の分岐電極部と前記交流電極の分岐電極部とは、絶縁され、少なくとも一部が同一形状で対向して配置されることを特徴とする請求項3または請求項4に記載の電力用半導体モジュール。
  6. 前記平行面部は、略長方形の形状であり、前記略長方形の長辺部に前記分岐電極部が配置されたことを特徴とする請求項2~5のいずれか1項に記載の電力用半導体モジュール。
  7. 前記交流電極の端子部は、前記正極側電極の端子部と前記負極側電極の端子部とに前記交流電極の端子部の同一辺側で対向して配置されたことを特徴とする請求項1~6のいずれか1項に記載の電力用半導体モジュール。
  8. 前記正極側電極および前記負極側電極は、スリットを有し、前記正極側電極の端子部および前記負極側電極の端子部から前記配線パターンまでの距離が略等距離であり、前記配線パターンを並列接続したことを特徴とする請求項7に記載の電力用半導体モジュール。
  9. 前記交流電極の端子部は、前記正極負アームに跨って配置されたことを特徴とする請求項7または請求項8に記載の電力用半導体モジュール。
  10. 前記電力用半導体モジュールの外形に略四角形の面を有し、
    前記正極側電極の端子部と前記負極側電極の端子部とが、前略四角形の面内の中央部に配置されたことを特徴とする請求項1~9のいずれか1項に記載の電力用半導体モジュール。
  11. 自己消弧型半導体素子を直列接続して構成され、前記自己消弧型半導体素子の直列接続点を有する正負アームと、
    前記正負アームに接続される正極側電極、負極側電極、および交流電極と、
    前記正負アームの前記自己消弧型半導体素子と前記正極側電極、前記負極側電極、および前記交流電極とを接続する配線パターンが形成された基板とを備え、
    前記電力用半導体モジュールの外形に略四角形の面を有し、
    前記正極側電極の端子部と前記負極側電極の端子部とが、前略四角形の面内の中央部に配置されたことを特徴とする電力用半導体モジュール。
  12. 前記正極側電極の端子部と前記交流電極の端子部と、前記負極側電極の端子部と前記交流電極の端子部との距離が略等距離であることを特徴とする請求項8~11のいずれか1項に記載の電力用半導体モジュール。
  13. 前記正負アームとして前記基板を複数備えたことを特徴とする請求項1~12のいずれか1項に記載の電力用半導体モジュール。
  14. 前記自己消弧型半導体素子に対して逆並列に接続されるように前記配線パターンに接合されるダイオードを有し、
    前記正極負極アームは、自己消弧型半導体素子と前記ダイオードとの並列回路を直列接続して構成されることを特徴とする請求項1~13のいずれか1項に記載の電力用半導体モジュール。
  15. 前記ダイオードが珪素よりバンドギャップが広いワイドギャップ半導体で形成されることを特徴とする請求項14に記載の電力用半導体モジュール。
  16. 前記自己消弧型半導体素子が珪素よりバンドギャップの広いワイドギャップ半導体で形成されることを特徴とする請求項1~15のいずれか1項に記載の電力用半導体モジュール。
  17. 前記ワイドギャップ半導体は、炭化珪素、窒化ガリウム材料、およびダイヤモンドのうちのいずれか1つであることを特徴とする請求項15または請求項16に記載の電力用半導体モジュール。
PCT/JP2014/003465 2014-02-11 2014-06-30 電力用半導体モジュール WO2015121900A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480075303.8A CN106030796B (zh) 2014-02-11 2014-06-30 功率用半导体模块
US15/117,963 US9941255B2 (en) 2014-02-11 2014-06-30 Power semiconductor module
DE112014006353.3T DE112014006353B4 (de) 2014-02-11 2014-06-30 Leistungshalbleitermodul
JP2015562569A JP6320433B2 (ja) 2014-02-11 2014-06-30 電力用半導体モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-023923 2014-02-11
JP2014023923 2014-02-11

Publications (1)

Publication Number Publication Date
WO2015121900A1 true WO2015121900A1 (ja) 2015-08-20

Family

ID=53799672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003465 WO2015121900A1 (ja) 2014-02-11 2014-06-30 電力用半導体モジュール

Country Status (5)

Country Link
US (1) US9941255B2 (ja)
JP (1) JP6320433B2 (ja)
CN (1) CN106030796B (ja)
DE (1) DE112014006353B4 (ja)
WO (1) WO2015121900A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314102A (zh) * 2016-05-27 2019-02-05 通用电气公司 半导体电源模块
WO2019202866A1 (ja) * 2018-04-18 2019-10-24 富士電機株式会社 半導体装置
JP2019207922A (ja) * 2018-05-28 2019-12-05 株式会社デンソー 半導体装置
JP2020171163A (ja) * 2019-04-04 2020-10-15 富士電機株式会社 電力変換装置および電源装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107155387B (zh) * 2014-09-11 2019-08-23 三菱电机株式会社 半导体装置
CN107155372B (zh) 2014-11-28 2019-10-01 日产自动车株式会社 半桥功率半导体模块及其制造方法
WO2016129097A1 (ja) * 2015-02-13 2016-08-18 株式会社日産アーク ハーフブリッジパワー半導体モジュール及びその製造方法
JP6672908B2 (ja) * 2016-03-10 2020-03-25 富士電機株式会社 半導体装置及び半導体装置の製造方法
JP6576580B2 (ja) * 2017-05-12 2019-09-18 三菱電機株式会社 半導体モジュールおよび電力変換装置
JP7099938B2 (ja) * 2018-11-16 2022-07-12 株式会社日立製作所 パワー半導体装置
JP7088094B2 (ja) * 2019-03-19 2022-06-21 株式会社デンソー 半導体装置
JP7238565B2 (ja) * 2019-04-12 2023-03-14 富士電機株式会社 半導体装置及び半導体装置の製造方法
JP6906583B2 (ja) * 2019-10-29 2021-07-21 三菱電機株式会社 半導体パワーモジュール
KR102162361B1 (ko) * 2020-05-28 2020-10-07 에이펙스인텍 주식회사 직병렬 호환형 다회로 다채널 분배기

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397257A (ja) * 1989-09-11 1991-04-23 Toshiba Corp 大電力半導体装置
JP2007042796A (ja) * 2005-08-02 2007-02-15 Toshiba Corp 電力用半導体素子及びインバータ装置
JP2007059737A (ja) * 2005-08-26 2007-03-08 Hitachi Ltd 半導体装置及びそれを用いた電力変換装置
WO2007142038A1 (ja) * 2006-06-09 2007-12-13 Honda Motor Co., Ltd. 半導体装置
JP2009105454A (ja) * 2009-02-10 2009-05-14 Mitsubishi Electric Corp パワー半導体モジュール
JP2010118699A (ja) * 2010-02-24 2010-05-27 Mitsubishi Electric Corp 電力用半導体装置
JP2011097053A (ja) * 2009-10-30 2011-05-12 General Electric Co <Ge> インダクタンスを低減した電力モジュール組立体
WO2013128787A1 (ja) * 2012-03-01 2013-09-06 三菱電機株式会社 電力用半導体モジュール及び電力変換装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202578A (en) 1989-09-11 1993-04-13 Kabushiki Kaisha Toshiba Module-type semiconductor device of high power capacity
EP0597144A1 (de) 1992-11-12 1994-05-18 IXYS Semiconductor GmbH Hybride leistungselektronische Anordnung
JPH07231071A (ja) 1994-02-16 1995-08-29 Toshiba Corp 半導体モジュール
JP3692906B2 (ja) 2000-05-25 2005-09-07 日産自動車株式会社 電力配線構造及び半導体装置
DE10352671A1 (de) 2003-11-11 2005-06-23 eupec Europäische Gesellschaft für Leistungshalbleiter mbH Leistungsmodul
JP4977430B2 (ja) 2006-10-10 2012-07-18 本田技研工業株式会社 半導体装置
JP5099417B2 (ja) * 2007-05-22 2012-12-19 アイシン・エィ・ダブリュ株式会社 半導体モジュール及びインバータ装置
JP5451994B2 (ja) 2008-07-30 2014-03-26 本田技研工業株式会社 電力変換装置の導体配置構造
JP5249365B2 (ja) 2011-01-26 2013-07-31 三菱電機株式会社 電力変換装置
WO2013146212A1 (ja) * 2012-03-28 2013-10-03 富士電機株式会社 半導体装置及び半導体装置の製造方法
EP2804212A4 (en) * 2012-03-28 2015-12-09 Fuji Electric Co Ltd SEMICONDUCTOR DEVICE
WO2014002442A1 (ja) * 2012-06-29 2014-01-03 株式会社デンソー 半導体装置および半導体装置の接続構造
JP5978151B2 (ja) * 2013-02-27 2016-08-24 日立オートモティブシステムズ株式会社 電力変換装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397257A (ja) * 1989-09-11 1991-04-23 Toshiba Corp 大電力半導体装置
JP2007042796A (ja) * 2005-08-02 2007-02-15 Toshiba Corp 電力用半導体素子及びインバータ装置
JP2007059737A (ja) * 2005-08-26 2007-03-08 Hitachi Ltd 半導体装置及びそれを用いた電力変換装置
WO2007142038A1 (ja) * 2006-06-09 2007-12-13 Honda Motor Co., Ltd. 半導体装置
JP2009105454A (ja) * 2009-02-10 2009-05-14 Mitsubishi Electric Corp パワー半導体モジュール
JP2011097053A (ja) * 2009-10-30 2011-05-12 General Electric Co <Ge> インダクタンスを低減した電力モジュール組立体
JP2010118699A (ja) * 2010-02-24 2010-05-27 Mitsubishi Electric Corp 電力用半導体装置
WO2013128787A1 (ja) * 2012-03-01 2013-09-06 三菱電機株式会社 電力用半導体モジュール及び電力変換装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314102A (zh) * 2016-05-27 2019-02-05 通用电气公司 半导体电源模块
JP2019517733A (ja) * 2016-05-27 2019-06-24 ゼネラル・エレクトリック・カンパニイ 半導体パワーモジュール
CN109314102B (zh) * 2016-05-27 2022-07-08 通用电气公司 半导体电源模块
WO2019202866A1 (ja) * 2018-04-18 2019-10-24 富士電機株式会社 半導体装置
JPWO2019202866A1 (ja) * 2018-04-18 2020-12-03 富士電機株式会社 半導体装置
US11521933B2 (en) 2018-04-18 2022-12-06 Fuji Electric Co., Ltd. Current flow between a plurality of semiconductor chips
JP2019207922A (ja) * 2018-05-28 2019-12-05 株式会社デンソー 半導体装置
WO2019230176A1 (ja) * 2018-05-28 2019-12-05 株式会社デンソー 半導体装置
JP2020171163A (ja) * 2019-04-04 2020-10-15 富士電機株式会社 電力変換装置および電源装置
CN111800011A (zh) * 2019-04-04 2020-10-20 富士电机株式会社 功率转换装置及电源装置
JP7263893B2 (ja) 2019-04-04 2023-04-25 富士電機株式会社 電力変換装置および電源装置

Also Published As

Publication number Publication date
JPWO2015121900A1 (ja) 2017-03-30
US9941255B2 (en) 2018-04-10
CN106030796A (zh) 2016-10-12
US20160358895A1 (en) 2016-12-08
DE112014006353B4 (de) 2024-05-02
CN106030796B (zh) 2018-07-06
DE112014006353T5 (de) 2016-10-20
JP6320433B2 (ja) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6320433B2 (ja) 電力用半導体モジュール
JP6188902B2 (ja) 電力用半導体モジュール及び電力変換装置
JP6366612B2 (ja) 電力用半導体モジュール
US9418975B1 (en) Semiconductor module, power conversion device, and method for manufacturing semiconductor module
US10398023B2 (en) Semiconductor device
US9704831B2 (en) Power semiconductor module
WO2018143429A1 (ja) 電力用半導体モジュールおよび電力変換装置
US9515061B2 (en) Semiconductor module and semiconductor device
US9379049B2 (en) Semiconductor apparatus
JP6154104B2 (ja) 少なくとも一つの電子部品を、第1および第2端子の間のループインダクタンスを低減する手段を含む電力供給装置に電気的に相互接続するための装置
CN111052325B (zh) 半导体模块以及电力转换装置
JP7428019B2 (ja) 半導体モジュール
JP2005236108A (ja) 半導体装置
US11145634B2 (en) Power converter
CN215835344U (zh) 用于操作带中间电路电容器的电动车辆驱动器的功率模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562569

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15117963

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006353

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882185

Country of ref document: EP

Kind code of ref document: A1