WO2013118561A1 - 亜鉛二次電池 - Google Patents

亜鉛二次電池 Download PDF

Info

Publication number
WO2013118561A1
WO2013118561A1 PCT/JP2013/050904 JP2013050904W WO2013118561A1 WO 2013118561 A1 WO2013118561 A1 WO 2013118561A1 JP 2013050904 W JP2013050904 W JP 2013050904W WO 2013118561 A1 WO2013118561 A1 WO 2013118561A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
zinc
zinc secondary
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2013/050904
Other languages
English (en)
French (fr)
Inventor
直仁 山田
一博 山本
崇弘 冨田
春男 大塚
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP13746835.1A priority Critical patent/EP2814104B1/en
Priority to CN201380006285.3A priority patent/CN104067437B/zh
Priority to JP2013557452A priority patent/JP5600815B2/ja
Publication of WO2013118561A1 publication Critical patent/WO2013118561A1/ja
Priority to US14/323,133 priority patent/US9293791B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/32Silver accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a zinc secondary battery such as a nickel zinc secondary battery, a silver zinc oxide secondary battery, a manganese zinc secondary battery, a zinc-air secondary battery, and other alkaline zinc secondary batteries.
  • a zinc secondary battery such as a nickel zinc secondary battery, a silver zinc oxide secondary battery, a manganese zinc secondary battery, a zinc-air secondary battery, and other alkaline zinc secondary batteries.
  • Nickel-zinc secondary batteries have been developed and studied for a long time, but have not yet been put into practical use. This is because the zinc constituting the negative electrode produces dendritic crystals called dendrite during charging, and this dendrite breaks through the separator and causes a short circuit with the positive electrode.
  • nickel cadmium batteries and nickel metal hydride batteries have already been commercialized.
  • the nickel-zinc secondary battery has an extremely high theoretical capacity density of about 5 times that of the nickel-cadmium secondary battery, 2.5 times that of the nickel-hydrogen secondary battery, and 1.3 times that of the lithium-ion battery. And the raw material price is low. Therefore, a technique for preventing a short circuit due to zinc dendrite in a nickel zinc secondary battery is strongly desired.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-196199 proposes suppression of dendrite by a separator in a nickel zinc battery.
  • a multilayer metal oxide layer having fine pores on a resin separator ions involved in the battery reaction are transmitted, but dendrite-grown metal is difficult to pass.
  • the material of the multilayer metal oxide one or more selected from alumina, titanium oxide, silica, cerium oxide, zirconia, magnesium oxide, chromium oxide, calcium oxide, tin oxide, indium oxide and germanium oxide are disclosed. Has been.
  • Patent Document 2 Japanese Patent Laid-Open No. 11-0541073 discloses that a dendritic resistance is improved by slowing the growth rate of dendrites by using a porous membrane separator in which a partially saponified polyvinyl alcohol crosslinked membrane is impregnated with glycerin. Yes.
  • Patent Document 3 Japanese Patent Publication No. 2008-539559 discloses a separator having a barrier layer that suppresses dendrite formation and a wet layer that holds an electrolyte.
  • This separator is desirably a structure having pores, and is preferably a laminated structure of two or more layers. A dendrite short-circuit is suppressed by forming a meandering path of zinc dendrite by such a structure.
  • M 2+ 1-x M 3+ x (OH) 2 A n- x / n ⁇ mH 2 O becomes the general formula (wherein, M 2+ is a divalent of a cation, M 3+ is a trivalent cation, a n-are known layered double hydroxide (LDH) is represented by a is) n-valent anion, direct alcohol fuel cell It has been proposed to use a layered double hydroxide film as the alkaline electrolyte film (see, for example, Patent Document 4 (WO 2010/109670 pamphlet)).
  • the present inventors can prevent a short circuit between positive and negative electrodes due to zinc dendrite during charging by using a hydroxide ion conductive inorganic solid electrolyte as a separator in a zinc secondary battery. As a result, it was found that the reliability of the zinc secondary battery can be greatly improved.
  • an object of the present invention is to provide a zinc secondary battery capable of preventing a short circuit between positive and negative electrodes due to zinc dendrite.
  • An electrolyte solution which is an aqueous solution containing an alkali metal hydroxide, in which the positive electrode and the negative electrode are immersed or contacted with each other, and a hydroxide ion disposed between the positive electrode and the negative electrode to isolate the positive electrode and the negative electrode from each other
  • a zinc secondary battery comprising a separator made of a conductive inorganic solid electrolyte body is provided.
  • FIG. 3 is a schematic cross-sectional view showing a nickel zinc secondary battery produced in Example 2.
  • FIG. 3 is a schematic cross-sectional view showing a nickel zinc secondary battery produced in Example 2.
  • the zinc secondary battery of the present invention is not particularly limited as long as it is a secondary battery using zinc as a negative electrode and using an alkali metal hydroxide aqueous solution as an electrolyte. Therefore, it can be a nickel zinc secondary battery, a silver zinc oxide secondary battery, a manganese zinc oxide secondary battery, a zinc-air secondary battery, and other various types of alkaline zinc secondary batteries. Among these, a nickel zinc secondary battery is preferable because of its high theoretical capacity density per weight and low raw material price.
  • the energy density of a commercially available silver zinc oxide primary battery is 116 Wh / kg
  • the energy density of a commercially available manganese zinc oxide primary battery is 160 Wh / kg
  • the theoretical energy density of an alkaline zinc secondary battery is 334 Wh / kg. And quite expensive.
  • FIG. 1 conceptually shows the configuration of a zinc secondary battery according to the present invention.
  • a zinc secondary battery 10 shown in FIG. 1 is for conceptually explaining the battery configuration of the present invention, and is generally applicable to the various zinc secondary batteries including a nickel zinc secondary battery.
  • a zinc secondary battery 10 according to the present invention includes a positive electrode 12, a negative electrode 14, an electrolytic solution 16, and a separator 18 in a battery container 11.
  • the negative electrode 14 contains zinc.
  • Zinc may be contained in the negative electrode 14 in any form of zinc metal, zinc compound and zinc alloy as long as it has an electrochemical activity suitable for the negative electrode.
  • the positive electrode 12 is appropriately selected according to the type of the zinc secondary battery employed.
  • nickel oxyhydroxide is used in the case of a nickel zinc secondary battery
  • silver oxide is used in the case of a silver zinc zinc secondary battery.
  • manganese oxide zinc secondary battery manganese dioxide can be included
  • an air electrode that takes in oxygen in the air can be included.
  • the electrolytic solution 16 is an aqueous solution containing an alkali metal hydroxide with which the positive electrode 12 and the negative electrode 14 are immersed or contacted.
  • the separator 18 is made of a hydroxide ion conductive inorganic solid electrolyte, and is disposed between the positive electrode 12 and the negative electrode 14 to isolate the positive electrode 12 and the negative electrode 14 from each other.
  • the positive electrode 12 and the electrolytic solution 16 are not necessarily separated from each other, and may be configured as a positive electrode mixture in which the positive electrode and the electrolytic solution are mixed.
  • the negative electrode 14 and the electrolytic solution 16 are not necessarily separated from each other, and may be configured as a negative electrode mixture in which the negative electrode and the electrolytic solution are mixed.
  • the positive electrode 12, the negative electrode 14, and the electrolytic solution 16 may be appropriately configured according to a known technique according to the type of zinc secondary battery to be employed, and are not particularly limited.
  • the positive electrode 12 may be further provided with a positive electrode current collector 12 a, and the positive electrode current collector 12 a may be connected to the positive electrode terminal 13.
  • the negative electrode 14 may further be provided with a negative electrode current collector 14 a and connected to the negative electrode terminal 15.
  • the zinc secondary battery of the present invention has a configuration in which zinc is used as the negative electrode 14 and an aqueous alkali metal hydroxide solution is used as the electrolytic solution 16.
  • a hydroxide ion conductive inorganic solid electrolyte as the separator 18, the electrolyte solution between the positive and negative electrodes is isolated and the hydroxide ion conductivity is ensured.
  • the inorganic solid electrolyte which comprises the separator 18 is typically a dense and hard inorganic solid, the penetration of the separator by the zinc dendrite produced
  • the separator 18 is composed of an inorganic solid electrolyte body having hydroxide ion conductivity, and any member that can function as a separator can be used. Since the inorganic solid electrolyte is typically composed of a dense and hard inorganic solid, a short circuit between positive and negative electrodes due to zinc dendrite can be prevented.
  • the inorganic solid electrolyte body preferably has a relative density of 90% or more, more preferably 92% or more, and still more preferably 95% or more, calculated by the Archimedes method, but to the extent of preventing penetration of zinc dendrite. It is not limited to this as long as it is dense and hard. Such a dense and hard inorganic solid electrolyte body can be produced by a hydrothermal solidification method.
  • a simple green compact that has not undergone hydrothermal solidification is not preferable as the inorganic solid electrolyte body of the present invention because it is not dense and is brittle in solution.
  • any solidification method can be adopted as long as a dense and hard inorganic solid electrolyte body can be obtained without using the hydrothermal solidification method.
  • the separator 18 may be a composite of a particle group including an inorganic solid electrolyte having hydroxide ion conductivity and an auxiliary component that helps densification and hardening of the particle group.
  • the separator 18 is composed of an open-porous porous body as a base material and an inorganic solid electrolyte (for example, layered double hydroxide) deposited and grown in the pores so as to fill the pores of the porous body. It may be a complex.
  • the substance constituting the porous body include ceramics such as alumina and zirconia, and insulating substances such as a porous sheet made of a foamed resin or a fibrous substance.
  • the inorganic solid electrolyte body has the general formula: M 2+ 1-x M 3+ x (OH) 2 A n- x / n ⁇ mH 2 O (Wherein, M 2+ is at least one or more divalent cations, M 3+ is at least one or more trivalent cations, A n-is the n-valent anion, n represents (An integer of 1 or more, x is 0.1 to 0.4, and m is an arbitrary number exceeding 0 meaning the number of moles of water.)
  • a layered double hydroxide (LDH) having the basic composition is preferable.
  • M 2+ examples include Mg 2+ , Ca 2+ , Sr 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , and Zn 2+
  • examples of M 3+ include Al 3+ , Fe 3+ , Ti 3+ , Y 3+, Ce 3+, Mo 3+ , and Cr 3+
  • examples of a n- is CO 3 2- and OH - are exemplified.
  • M 2+ and M 3+ can be used alone or in combination of two or more.
  • Patent Document 4 discloses use as an alkaline electrolyte membrane of an alcohol fuel cell directly as having OH ⁇ ion conductivity.
  • the alkaline electrolyte film in Patent Document 4 is a film obtained by merely hardening an Mg—Al type layered double hydroxide powder with a cold press or the like, and the bonding between the powders is not strong. It is understood that such a technique has been adopted since hydroxide cannot be densified by sintering like so-called oxide ceramics.
  • the hydrothermal solidification method is performed by placing pure water and a plate-shaped green compact in a pressure vessel, and a temperature of 120 to 250 ° C., preferably 180 to 250 ° C., 2 to 24 hours, preferably 3 to 10 hours. it can.
  • the shape of the separator 18 is not particularly limited, and may be a dense plate shape or a film shape. However, it is preferable that the separator 18 is formed in a plate shape because the penetration of zinc dendrite can be effectively prevented.
  • the preferred thickness of the plate-like inorganic solid electrolyte body is 0.01 to 0.5 mm, more preferably 0.02 to 0.2 mm, and still more preferably 0.05 to 0.1 mm. Further, the higher the hydroxide ion conductivity of the inorganic solid electrolyte body is, the higher is desirable, but typically it has a conductivity of 10 ⁇ 4 to 10 ⁇ 1 S / m.
  • a porous substrate may be provided on one side or both sides of the separator 18.
  • a method of preparing a porous substrate and depositing an inorganic solid electrolyte on the porous substrate can be considered.
  • the inorganic solid electrolyte raw material powder is sandwiched between two porous base materials for densification.
  • Nickel-zinc secondary battery A particularly preferable zinc secondary battery is a nickel-zinc secondary battery, and the configuration shown in FIG. 1 is directly applied to the nickel-zinc battery. Therefore, the configuration of the nickel zinc battery will be described below with reference to FIG.
  • the positive electrode 12 only needs to contain a nickel hydroxide compound that is a positive electrode active material, and examples of such a compound include nickel oxyhydroxide, nickel hydroxide, and the like. Among these, nickel oxyhydroxide is more preferable in terms of high battery voltage and large discharge capacity.
  • the battery reaction during discharge when nickel oxyhydroxide is used for the positive electrode 12 is as follows. Positive electrode: 2NiOOH + 2H 2 O + 2e ⁇ ⁇ 2Ni (OH) 2 + 2OH ⁇ Negative electrode: Zn + 2OH ⁇ ⁇ Zn (OH) 2 + 2e ⁇ Overall: 2NiOOH + Zn + 2H 2 O ⁇ Zn (OH) 2 + 2Ni (OH) 2
  • the positive electrode 12 may be configured as a positive electrode mixture by further containing an electrolytic solution or the like.
  • the positive electrode mixture can include nickel hydroxide compound particles and, if desired, a positive electrode active material composed of manganese dioxide particles, optionally a conductive material such as carbon particles, an electrolytic solution, and optionally a binder.
  • the positive electrode mixture is preferably obtained by mixing and pressing these components and forming into a hollow cylindrical shape whose outer diameter is substantially equal to the inner diameter of the metal can.
  • the positive electrode active material particles and the conductive material particles are typically bound to each other, and the grain boundary between the particles is filled with an electrolytic solution.
  • the nickel hydroxide-based compound itself which is the positive electrode active material, may be eutectic with zinc or cobalt alone or both.
  • the preferred amount of zinc or cobalt that may be eutectic with the nickel hydroxide compound is 4-12%.
  • the capacity retention rate during storage may be improved by adding a compound of Y, Er, Yb, or Ca to the positive electrode active material of nickel hydroxide.
  • examples of such compounds include metal oxides such as Y 2 O 3 , Er 2 O 3 and Yb 2 O 3 , and metal fluorides such as CaF 2 . These metal oxides and metal fluorides are preferably used in an amount of 0.1 to 10% by mass with respect to nickel hydroxide as the positive electrode active material.
  • the addition of metal oxide or metal fluoride to nickel hydroxide may be performed by adding metal oxide particles or metal fluoride particles to nickel hydroxide particles dispersed in an aqueous medium.
  • Manganese dioxide that may be contained in the positive electrode 12 or the positive electrode mixture may be manganese dioxide particles used in ordinary manganese dry batteries, but electrolytic manganese dioxide is preferred.
  • the mixing ratio of these substances is the mass ratio of nickel hydroxide compound to manganese dioxide is the discharge characteristics and discharge capacity. For example, it is in the range of 60:40 to 40:60.
  • the positive electrode 12 or the positive electrode composite material may contain carbon particles such as carbon black such as graphite, ketjen black, and acetylene black in order to improve conductivity.
  • carbon particles such as carbon black such as graphite, ketjen black, and acetylene black in order to improve conductivity.
  • the content of carbon particles is preferably 2 to 10% by mass from the viewpoint of discharge capacity, and more preferably 3 to 7% by mass.
  • the negative electrode 14 contains zinc.
  • Zinc may be contained in any form of zinc metal, zinc compound and zinc alloy as long as it has an electrochemical activity suitable for the negative electrode.
  • Preferred examples of the negative electrode material include zinc oxide, zinc metal, calcium zincate and the like, and zinc metal or zinc alloy is more preferable.
  • the negative electrode 14 may be configured in a gel form, or may be mixed with an electrolytic solution to form a negative electrode mixture.
  • a gelled negative electrode can be easily obtained by adding an electrolytic solution and a thickener to the negative electrode active material.
  • the thickener include polyvinyl alcohol, polyacrylate, CMC, alginic acid and the like. Polyacrylic acid is preferable because it has excellent chemical resistance to strong alkali.
  • the zinc alloy it is possible to use a zinc alloy that does not contain mercury and lead, which is known as a non-free zinc alloy.
  • a zinc alloy containing 0.01 to 0.06 mass% indium, 0.005 to 0.02 mass% bismuth, and 0.0035 to 0.015 mass% aluminum has an effect of suppressing hydrogen gas generation. Therefore, it is preferable.
  • indium and bismuth are advantageous in improving the discharge performance.
  • the use of the zinc alloy for the negative electrode can improve the safety by suppressing the generation of hydrogen gas by slowing the self-dissolution rate in the alkaline electrolyte.
  • the shape of the negative electrode material is not particularly limited, it is preferably a powder form, which increases the surface area and makes it possible to cope with large current discharge.
  • the preferable average particle diameter of the negative electrode material is in the range of 90 to 210 ⁇ m. If the average particle diameter is within this range, the surface area is large, so that it is suitable for dealing with a large current discharge. Easy to mix evenly and easy to handle during battery assembly.
  • an aqueous solution containing an alkali metal hydroxide is used.
  • the alkali metal hydroxide include potassium hydroxide, sodium hydroxide, lithium hydroxide, ammonium hydroxide and the like, and potassium hydroxide is more preferable.
  • a zinc compound such as zinc oxide or zinc hydroxide may be added to the electrolytic solution.
  • the electrolytic solution 16 may be mixed with the positive electrode 12 and / or the negative electrode 14 to be present in the form of a positive electrode mixture and / or a negative electrode mixture.
  • Electrolytic solution may be gelled to prevent leakage of the electrolytic solution.
  • the gelling agent it is desirable to use a polymer that swells by absorbing the solvent of the electrolytic solution, and polymers such as polyethylene oxide, polyvinyl alcohol, and polyacrylamide, and starch are used.
  • Example 1 Preparation of inorganic solid electrolyte body by hydrothermal solidification A mixed aqueous solution containing Mg (NO 3 ) 2 and Al (NO 3 ) 3 so that the molar ratio of Mg / Al was 3/1 was prepared. This mixed aqueous solution was dropped into an aqueous Na 2 CO 3 solution to obtain a precipitate. At that time, the pH in the solution was controlled to be constant at about 10 by adding a sodium hydroxide solution. The obtained precipitate was filtered, washed and dried to obtain a layered double hydroxide powder having an average primary particle size of 0.5 ⁇ m or less and an average secondary particle size of 5 ⁇ m or less.
  • This layered double hydroxide powder was pressed by a uniaxial pressing method to obtain a plate-like green compact. Pure water and a plate-shaped green compact were placed in a pressure vessel and heated at 200 ° C. for 4 hours to obtain a plate-shaped inorganic solid electrolyte body. The relative density of the obtained inorganic solid electrolyte was measured by Archimedes method and found to be 95%.
  • Example 2 Production of Nickel Zinc Secondary Battery Using the inorganic solid electrolyte produced in Example 1, a coin cell type nickel zinc secondary battery having the configuration shown in FIG. 2 is produced according to the procedure shown below.
  • a nickel zinc secondary battery 20 shown in FIG. 2 includes a positive electrode mixture 22 containing beta-type nickel oxyhydroxide together with an electrolyte in a battery can 21, and a negative electrode mixture 24 containing zinc as a negative electrode active material together with the electrolyte.
  • Nickel sulfate is dissolved in water to prepare a nickel salt aqueous solution having a predetermined concentration.
  • An aqueous nickel salt solution and an aqueous sodium hydroxide solution are mixed to produce insoluble nickel hydroxide.
  • the produced nickel hydroxide is washed with water to remove unnecessary by-product salts and further dried to obtain beta-type nickel hydroxide.
  • the obtained beta-type nickel hydroxide is subjected to a chemical oxidation method using hypochlorous acid to obtain beta-type nickel oxyhydroxide.
  • a mixed powder was obtained by adding and mixing manganese dioxide powder to beta-type nickel oxyhydroxide powder. To 90 parts by mass of the mixed powder, 5.4 parts by mass of graphite powder is added as a conductive agent, and dry stirring is performed for 10 minutes. To the stirred powder mixture, 4.6 parts by weight of a 40% strength by weight potassium hydroxide aqueous solution is added as an electrolytic solution, and mixed for 30 minutes to obtain a mixed powder. The mixed powder is subjected to a compacting step and a crushing step to obtain a granular positive electrode mixture. This positive electrode mixture is press-molded into a disk shape to obtain a positive electrode mixture pellet.
  • a zinc alloy powder having an average particle size of 90 to 210 ⁇ m containing 0.01% by mass of indium, 0.01% by mass of bismuth and 0.003% by mass of aluminum is prepared.
  • To 65 parts by mass of this zinc alloy powder 0.3 part by mass of polyacrylic acid is added as a gelling agent and stirred for 5 minutes to obtain a uniform mixture.
  • 0.0006 parts by mass of tetrabutylammonium hydroxide was added to 35 parts by mass of a 35% by mass potassium hydroxide aqueous solution in which 3.5% by mass of zinc oxide was dissolved, and sufficiently dispersed by mixing and stirring for 10 minutes.
  • the mixture of the zinc alloy powder obtained above is gradually added over 4 minutes, stirred and mixed in a reduced pressure state of 150 mmHg or less, and further in a reduced pressure state of 10 mmHg or less for 5 minutes. Stir to obtain a uniform gelled negative electrode mixture.
  • a coin cell type nickel zinc secondary battery having the configuration shown in FIG. 2 is produced according to the procedure shown below.
  • a battery can 21 is prepared in which nickel is plated on iron so as to serve as an external positive terminal of the battery.
  • the positive electrode mixture 22 is disposed at the center of the bottom in the battery can 21 so as to be separated from the inner wall of the battery can 21.
  • the solid electrolyte plate obtained in Example 1 was disposed as the separator 28 on the positive electrode mixture 22.
  • a negative electrode mixture 24 is disposed on the separator 28, and a negative electrode current collector 24a is disposed thereon.
  • a negative electrode terminal plate 25 is provided on the negative electrode current collector 24a to form an external negative electrode terminal, and the inner wall of the battery can 21 and the battery stack are sealed with a sealing material 29 made of an insulating resin. In this way, a coin cell type nickel zinc secondary battery is obtained.
  • both the positive electrode mixture 22 and the negative electrode mixture 24 contain potassium hydroxide as an electrolyte, a hydroxide ion conduction path is ensured via the separator 28 made of a hydroxide ion conductive inorganic solid electrolyte.
  • the separator 28 made of a hydroxide ion conductive inorganic solid electrolyte.
  • the solid electrolyte plate is disposed as the separator 28, and after dropping the potassium hydroxide aqueous solution onto the separator 28, the negative electrode mixture 24 is disposed.
  • a porous substrate may be provided on one side or both sides of the separator 28 to contain an aqueous potassium hydroxide solution.

Abstract

 亜鉛デンドライトによる正負極間の短絡を防止することが可能な亜鉛二次電池が提供される。本発明の亜鉛二次電池は、正極と、亜鉛を含んでなる負極と、正極及び負極が浸漬又は接触されるアルカリ金属水酸化物水溶液からなる電解液と、正極及び負極の間に配置されて正極及び負極を互いに隔離する、水酸化物イオン伝導性の無機固体電解質体からなるセパレータとを備えてなる。

Description

亜鉛二次電池 関連出願の相互参照
 この出願は、2012年2月6日に出願された日本国特許出願2012-23377号に基づく優先権を主張するものであり、その全体の開示内容が参照により本明細書に組み込まれる。
 本発明は、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、及びその他のアルカリ亜鉛二次電池等の亜鉛二次電池に関するものである。
 ニッケル亜鉛二次電池は古くから開発及び検討がなされてきたものの、未だ実用化に至っていない。これは、充電時に負極を構成する亜鉛がデンドライトという樹枝状結晶を生成し、このデンドライトがセパレータを突き破って正極と短絡を引き起こすという問題があるためである。一方で、ニッケルカドミウム電池やニッケル水素電池が既に商品化されている。しかしながら、ニッケル亜鉛二次電池は、ニッケルカドミウム二次電池と比べて約5倍、ニッケル水素二次電池と比べて2.5倍、リチウムイオン電池と比べて1.3倍という極めて高い理論容量密度を有し、かつ、原料価格も低いとの長所を有している。したがって、ニッケル亜鉛二次電池において、亜鉛デンドライトによる短絡を防止する技術が強く望まれている。
 特許文献1(特開平6-196199号公報)には、ニッケル亜鉛電池におけるセパレータによるデンドライトの抑制が提案されている。この文献においては、樹脂セパレータ上に微細孔を有する多層金属酸化物層を設けることで、電池反応に関与するイオンは透過するが、デンドライト成長した金属は通しにくくするとされている。多層金属酸化物の材質としては、アルミナ、酸化チタン、シリカ、酸化セリウム、酸化ジルコニア、酸化マグネシウム、酸化クロム、酸化カルシウム、酸化スズ、酸化インジウム、酸化ゲルマニウムから選択される一種又は二種以上が開示されている。
 特許文献2(特開平11-054103号公報)には、部分鹸化ポリビニルアルコール架橋膜にグリセリンを含浸させた多孔膜セパレータによって、デンドライトの成長速度を遅らせて耐デンドライト性を向上することが開示されている。
 特許文献3(特表2008-539559号公報)には、デンドライト形成を抑制する障壁層と電解質を保持する湿潤層を有するセパレータが開示されている。このセパレータは、細孔を有する構造であることが望ましく、2層以上の積層構造であることが好ましいとされている。このような構造によって亜鉛デンドライトの蛇行経路が形成されることで、デンドライト短絡を抑制している。
 ところで、近年、水酸化物イオン伝導性を有する固体電解質として、M2+ 1-x3+ (OH)n- x/n・mHOなる一般式(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An-はn価の陰イオンである)で表わされる層状複水酸化物(LDH)が知られており、直接アルコール燃料電池のアルカリ電解質膜として、層状複水酸化物の膜を用いることが提案されている(例えば、特許文献4(国際公開第2010/109670号パンフレット)を参照)。
特開平6-196199号公報 特開平11-54103号公報 特表2008-539559号公報 国際公開第2010/109670号パンフレット
 本発明者らは、今般、亜鉛二次電池において、セパレータとして水酸化物イオン伝導性の無機固体電解質体を用いることにより、充電時における亜鉛デンドライトによる正負極間の短絡を防止することができ、その結果、亜鉛二次電池の信頼性を大いに高められるとの知見を得た。
 したがって、本発明の目的は、亜鉛デンドライトによる正負極間の短絡を防止することが可能な亜鉛二次電池を提供することにある。
 本発明の一態様によれば、
 正極と、
 亜鉛を含んでなる負極と、
 前記正極及び前記負極が浸漬又は接触される、アルカリ金属水酸化物を含む水溶液である電解液と
 前記正極及び前記負極の間に配置されて前記正極及び前記負極を互いに隔離する、水酸化物イオン伝導性の無機固体電解質体からなるセパレータと
を備えた、亜鉛二次電池が提供される。
本発明による亜鉛二次電池の構成を示す概念図である。 例2で作製したニッケル亜鉛二次電池を示す模式断面図である。
 亜鉛二次電池
 本発明の亜鉛二次電池は、亜鉛を負極として用い、かつ、アルカリ金属水酸化物水溶液を電解液として用いた二次電池であれば特に限定されない。したがって、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、その他各種のアルカリ亜鉛二次電池であることができる。中でも、重量あたりの理論容量密度が高く、原料価格も低いことから、ニッケル亜鉛二次電池が好ましい。例えば、市販の酸化銀亜鉛一次電池のエネルギー密度が116Wh/kgであり、市販の酸化マンガン亜鉛一次電池のエネルギー密度が160Wh/kgであるが、アルカリ亜鉛二次電池の理論エネルギー密度は334Wh/kgとかなり高い。
 図1に、本発明による亜鉛二次電池の構成を概念的に示す。図1に示される亜鉛二次電池10は本発明の電池構成を概念的に説明するためのものであり、ニッケル亜鉛二次電池を始めとする上記各種の亜鉛二次電池に概ね当てはまる。図1に示されるように、本発明による亜鉛二次電池10は、電池容器11内に、正極12と、負極14と、電解液16と、セパレータ18とを備える。負極14は亜鉛を含んでなる。亜鉛は、負極に適した電気化学的活性を有するものであれば、亜鉛金属、亜鉛化合物及び亜鉛合金のいずれの形態で負極14に含まれていてもよい。正極12は、採用される亜鉛二次電池の種類に応じて適宜選択され、例えば、ニッケル亜鉛二次電池の場合にはオキシ水酸化ニッケルを、酸化銀亜鉛二次電池の場合には酸化銀を、酸化マンガン亜鉛二次電池の場合には二酸化マンガンを、亜鉛空気二次電池にあっては空気中の酸素を取り込む空気極を含むものであることができる。電解液16は、正極12及び負極14が浸漬又は接触される、アルカリ金属水酸化物を含む水溶液である。セパレータ18は、水酸化物イオン伝導性の無機固体電解質体からなり、正極12及び負極14の間に配置されて正極12及び負極14を互いに隔離する。正極12及び電解液16は必ずしも分離している必要はなく、正極と電解液が混合された正極合材として構成されてもよい。同様に、負極14及び電解液16は必ずしも分離している必要はなく、負極と電解液が混合された負極合材として構成されてもよい。いずれにせよ、正極12、負極14及び電解液16は、採用しようとする亜鉛二次電池の種類に応じて公知技術に従い適宜構成すればよく、特に限定されるものではない。正極12には所望により正極集電体12aが更に設けられ、正極集電体12aが正極端子13に接続されることができる。負極14には所望により負極集電体14aが更に設けられ、負極端子15に接続されることができる。
 このように、本発明の亜鉛二次電池は、亜鉛を負極14として用い、かつ、アルカリ金属水酸化物水溶液を電解液16として用いた構成を有している。そして、セパレータ18として水酸化物イオン伝導性の無機固体電解質体を用いることで、正負極間の電解液を隔離するとともに水酸化物イオン伝導性を確保する。そして、セパレータ18を構成する無機固体電解質は典型的には緻密で硬い無機固体であるため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止することが可能となる。その結果、上記各種の亜鉛二次電池の信頼性を大幅に向上することができる。
 セパレータ18は、水酸化物イオン伝導性を有する無機固体電解質体で構成され、セパレータとして機能しうるあらゆる部材が使用可能である。無機固体電解質は典型的には緻密で硬い無機固体で構成されているため、亜鉛デンドライトによる正負極間の短絡を防止することができる。無機固体電解質体は、アルキメデス法で算出して、90%以上の相対密度を有するのが好ましく、より好ましくは92%以上、さらに好ましくは95%以上であるが、亜鉛デンドライトの貫通を防止する程度に緻密で硬いものであればこれに限定されない。このような緻密で硬い無機固体電解質体は水熱固化法によって製造することが可能である。したがって、水熱固化を経ていない単なる圧粉体は、緻密でなく、溶液中で脆いことから本発明の無機固体電解質体として好ましくない。もっとも、水熱固化法によらなくても、緻密で硬い無機固体電解質体が得られるかぎりにおいて、あらゆる固化法が採用可能である。
 セパレータ18は、水酸化物イオン伝導性を有する無機固体電解質を含んで構成される粒子群と、これら粒子群の緻密化や硬化を助ける補助成分との複合体であってもよい。あるいは、セパレータ18は、基材としての開気孔性の多孔質体と、この多孔質体の孔を埋めるように孔中に析出及び成長させた無機固体電解質(例えば層状複水酸化物)との複合体であってもよい。この多孔質体を構成する物質の例としては、アルミナ、ジルコニア等のセラミックスや、発泡樹脂又は繊維状物質からなる多孔性シート等の絶縁性の物質が挙げられる。
 無機固体電解質体は、一般式:
 M2+ 1-x3+ (OH)n- x/n・mH
(式中、M2+は少なくとも1種以上の2価の陽イオンであり、M3+は少なくとも1種以上の3価の陽イオンであり、An-はn価の陰イオンであり、nは1以上の整数、xは0.1~0.4であり、mは水のモル数を意味する0を越える任意の数である。)
の基本組成を有する層状複水酸化物(LDH)からなるものが好ましい。M2+の例としてはMg2+、Ca2+、Sr2+、Ni2+、Co2+、Fe2+、Mn2+、及びZn2+が挙げられ、M3+の例としては、Al3+、Fe3+、Ti3+、Y3+、Ce3+、Mo3+、及びCr3+が挙げられ、An-の例としてはCO 2-及びOHが挙げられる。M2+及びM3+としては、それぞれ1種単独で又は2種以上を組み合わせて用いることもできる。特に、M2+がMg2+であり、M3+がAl3+であり、An-がCO 2-であるMg-Al型LDHが好ましく、この化合物は、特許文献4(国際公開第2010/109670号パンフレット)において、OHイオン伝導性を有するものとして、直接アルコール燃料電池のアルカリ電解質膜としての利用が開示されている。しかし、特許文献4におけるアルカリ電解質膜は、Mg-Al型層状複水酸化物の粉末をコールドプレス等で固めただけの膜であり、粉末同士の結合は強固なものではない。水酸化物はいわゆる酸化物セラミックスのように焼結によって粉末を一体緻密化することはできないため、このような手法が採られてきたものと理解される。また、上記一般式においてM3+の一部または全部を4価またはそれ以上の価数の陽イオンで置き換えてもよく、その場合は、上記一般式における陰イオンAn-の係数x/nは適宜変更されてよい。
 そこで、本発明に使用可能な無機固体電解質体とするために、原料粉末を圧力で固めたペレットを水熱固化法によって緻密化するのが好ましい。この手法は、層状複水酸化物、とりわけMg-Al型層状複水酸化物の一体緻密化に極めて有効である。水熱固化法は、耐圧容器に純水と板状の圧粉体を入れ、120~250℃、好ましくは180~250℃の温度、2~24時間、好ましくは3~10時間で行うことができる。
 セパレータ18の形状は特に限定されず、緻密な板状及び膜状のいずれであってもよいが、板状に形成されてなるのが亜鉛デンドライトの貫通を効果的に阻止できる点で好ましい。板状の無機固体電解質体の好ましい厚さは、0.01~0.5mmであり、より好ましくは0.02~0.2mm、さらに好ましくは0.05~0.1mmである。また、無機固体電解質体の水酸化物イオン伝導度は高ければ高い方が望ましいが、典型的には10-4~10-1S/mの伝導度を有する。
 セパレータ18上により安定に水酸化物イオンを保持するために、セパレータ18の片面又は両面に多孔質基材を設けてもよい。セパレータ18の片面に多孔質基材を設ける場合には、多孔質基材を用意して、この多孔質基材に無機固体電解質を成膜する手法が考えられる。一方、セパレータ18の両面に多孔質基材を設ける場合には、2枚の多孔質基材の間に無機固体電解質の原料粉末を挟んで緻密化を行うことが考えられる。
 ニッケル亜鉛二次電池
 特に好ましい亜鉛二次電池はニッケル亜鉛二次電池であり、図1に示される構成はニッケル亜鉛電池にそのまま当てはまる。したがって、以下、図1を参照しながらニッケル亜鉛電池の構成を説明する。
 正極12としては、正極活物質である水酸化ニッケル系化合物を含むものであればよく、そのような化合物の例としては、オキシ水酸化ニッケル、水酸化ニッケル等が挙げられる。中でも、オキシ水酸化ニッケルが、電池電圧が高く放電容量も大きい点でより好ましい。オキシ水酸化ニッケルを正極12に用いた場合の放電時における電池反応は、以下のとおりとなる。
 正極:2NiOOH+2HO+2e → 2Ni(OH)+2OH
 負極:Zn+2OH→Zn(OH)+2e
 全体:2NiOOH+Zn+2HO→Zn(OH)+2Ni(OH)
 正極12は電解液等をさらに含むことにより正極合材として構成されてもよい。正極合剤は、水酸化ニッケル系化合物粒子及び所望により二酸化マンガン粒子からなる正極活物質、所望により炭素粒子等の導電材、電解液、並びに所望によりバインダー等を含んでなることができる。正極合材は、これらの成分を混合してプレスすることにより、その外径が金属缶の内径にほぼ等しい中空円筒形状に成形することにより得るのが好ましい。成形された正極合剤は、典型的には、正極活物質粒子及び導電材粒子が相互に結着し、粒子間の粒界には電解液が充填されている。
 正極活物質である水酸化ニッケル系化合物自体が、亜鉛もしくはコバルト単独あるいはその両方と共晶しているものであってもよい。水酸化ニッケル系化合物に共晶させてもよい亜鉛もしくはコバルトの好ましい量は4~12%である。また、ニッケル水酸化物の正極活物質にY、Er、Yb、Caの化合物を添加して貯蔵時の容量維持率を改善してもよい。このような化合物の例としては、Y、Er、Yb等の金属酸化物、CaF等の金属フッ化物が挙げられる。これらの金属酸化物及び金属フッ化物は、正極活物質であるニッケル水酸化物に対して0.1~10質量%で用いるのが好ましい。ニッケル水酸化物への金属酸化物や金属フッ化物の添加は、水性媒体に分散したニッケル水酸化物粒子に金属酸化物粒子や金属フッ化物粒子を添加することにより行えばよい。
 正極12又は正極合材に含まれてよい二酸化マンガンは、通常のマンガン乾電池において用いられている二酸化マンガン粒子であってよいが、電解二酸化マンガンが好ましい。
水酸化ニッケル系化合物粒子と二酸化マンガン粒子とを配合して正極活物質として用いる場合には、これらの物質の配合の比率は、水酸化ニッケル系化合物対二酸化マンガンの質量比は放電特性や放電容量を考慮して適宜決定すればよく、例えば60:40~40:60の範囲である。
 正極12又は正極合材は、導電性の改善のため、黒鉛、ケッチェンブラックやアセチレンブラックなどのカーボンブラック等の炭素粒子を含んでいてもよい。正極合剤中に炭素粒子を含む場合、炭素粒子の含有量を2~10質量%とすることが放電容量の観点から好ましく、より好ましくは3~7質量%である。
 負極14は亜鉛を含んでなる。亜鉛は、負極に適した電気化学的活性を有するものであれば、亜鉛金属、亜鉛化合物及び亜鉛合金のいずれの形態で含まれていてもよい。負極材料の好ましい例としては、酸化亜鉛、亜鉛金属、亜鉛酸カルシウム等が挙げられるが、亜鉛金属又は亜鉛合金がより好ましい。負極14はゲル状に構成してもよいし、電解液と混合して負極合材としてもよい。例えば、負極活物質に電解液及び増粘剤を添加することにより容易にゲル化した負極を得ることができる。増粘剤の例としては、ポリビニルアルコール、ポリアクリル酸塩、CMC、アルギン酸等が挙げられるが、ポリアクリル酸が強アルカリに対する耐薬品性に優れているため好ましい。
 亜鉛合金として、無汞化亜鉛合金として知られている水銀及び鉛を含まない亜鉛合金を用いることができる。例えば、インジウムを0.01~0.06質量%、ビスマスを0.005~0.02質量%、アルミニウムを0.0035~0.015質量%を含む亜鉛合金が水素ガス発生の抑制効果があるので好ましい。とりわけ、インジウムやビスマスは放電性能を向上させる点で有利である。亜鉛合金の負極への使用は、アルカリ性電解液中での自己溶解速度を遅くすることで、水素ガス発生を抑制して安全性を向上できる。
 負極材料の形状は特に限定されないが、粉末状とすることが好ましく、それにより表面積が増大して大電流放電に対応可能となる。好ましい負極材料の平均粒径は、亜鉛合金の場合、90~210μmの範囲であり、この範囲内であると表面積が大きいことから大電流放電への対応に適するとともに、電解液及びゲル化剤と均一に混合しやすく、電池組み立て時の取り扱い性も良い。
 電解液16は、アルカリ金属水酸化物を含む水溶液が用いられる。アルカリ金属水酸化物の例としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化アンモニウム等が挙げられるが、水酸化カリウムがより好ましい。亜鉛合金の自己溶解を抑制するために、電解液中に酸化亜鉛、水酸化亜鉛等の亜鉛化合物を添加してもよい。前述のとおり、電解液16は正極12及び/又は負極14と混合させて正極合材及び/又は負極合材の形態で存在させてもよい。
 電解液の漏洩を防止するために電解液をゲル化してもよい。ゲル化剤としては電解液の溶媒を吸収して膨潤するようなポリマーを用いるのが望ましく、ポリエチレンオキサイド,ポリビニルアルコール,ポリアクリルアミドなどのポリマーやデンプンが用いられる。
 本発明の亜鉛二次電池の製造例を以下に示す。
 例1:水熱固化による無機固体電解質体の作製
 Mg(NO及びAl(NOをMg/Alのモル比が3/1となるように含む混合水溶液を用意した。この混合水溶液をNaCO水溶液中に滴下することによって沈殿物を得た。その際、水酸化ナトリウム溶液を添加することにより、溶液中のpHを約10で一定になるように制御した。得られた沈殿物を濾過し、洗浄及び乾燥をして、平均一次粒径が0.5μm以下で平均二次粒径が5μm以下の層状複水酸化物粉末を得た。
この層状複水酸化物粉末を一軸加圧成形法で加圧して板状の圧粉体とした。耐圧容器に、純水と板状の圧粉体とを入れ、200℃で4時間加熱して、板状の無機固体電解質体を得た。得られた無機固体電解質体の相対密度をアルキメデス法で測定したところ95%であった。
 例2:ニッケル亜鉛二次電池の作製
 例1で作製された無機固体電解質体を用いて、図2に示される構成のコインセル型ニッケル亜鉛二次電池を以下に示される手順で作製する。図2に示されるニッケル亜鉛二次電池20は、電池缶21内に、ベータ型オキシ水酸化ニッケルを電解液と共に含む正極合材22、負極活物質としての亜鉛を電解液と共に含む負極合材24と、例1で作製された無機固体電解質体であるセパレータ28とを収容してなる。
(1)正極合材の作製
 硫酸ニッケルを水に溶解して所定濃度のニッケル塩水溶液を調整する。ニッケル塩水溶液と水酸化ナトリウム水溶液を混合して不溶性の水酸化ニッケルを生成させる。生成した水酸化ニッケルを水洗することにより不要な副生塩を除去し、更に乾燥してベータ型水酸化ニッケルを得る。得られたベータ型水酸化ニッケルを、次亜塩素酸を用いた化学酸化法に付して、ベータ型オキシ水酸化ニッケルを得る。
 ベータ型オキシ水酸化ニッケル粉末に二酸化マンガン粉末を添加及び混合して混合粉末を得た。この混合粉末90質量部に、黒鉛粉末5.4質量部を導電剤として加えて、乾式攪拌を10分間行う。攪拌された混合粉末に40質量%濃度の水酸化カリウム水溶液4.6質量部を電解液として添加し、30分間混合して混合粉末を得る。この混合粉末に圧粉工程及び破砕工程を施して顆粒状の正極合材を得る。この正極合材を円盤状に加圧成形して正極合剤ペレットを得る。
(2)負極合材の作製
 インジウムを0.01質量%、ビスマスを0.01質量%、アルミニウムを0.003質量%含む、平均粒径90~210μmの亜鉛合金粉末を用意する。この亜鉛合金粉末65質量部に、ポリアクリル酸0.3質量部をゲル化剤として加えて5分間攪拌して均一な混合物を得る。一方、酸化亜鉛を3.5質量%溶解した35質量%濃度の水酸化カリウム水溶液35質量部に、水酸化テトラブチルアンモニウム0.0006質量部を添加して、10分間混合攪拌して十分に分散させる。得られた分散体に、先に得られた亜鉛合金粉末の混合物を4分間かけて徐々に添加すると共に、150mmHg以下の減圧状態で攪拌及び混合し、更に、10mmHg以下の減圧状態にして5分間攪拌して均一なゲル状負極合材を得る。
(3)電池の作製
 上記のとおり得られた正極合材及び負極合材を用いて、図2に示される構成のコインセル型ニッケル亜鉛二次電池を以下に示される手順で作製する。電池の外部正極端子となるように鉄にニッケルめっきが施されてなる電池缶21を用意する。電池缶21内の底部中央に、電池缶21の内側壁から離間させるように正極合材22を配置する。正極合材22上に例1で得られた固体電解質板をセパレータ28として配置した。セパレータ28上に負極合材24を配置し、その上に負極集電体24aを配置する。負極集電体24a上に負極端子板25を設けて外部負極端子にするとともに、電池缶21内の内壁と電池積層体との間を絶縁性樹脂からなる封口材29により封口する。こうしてコインセル型ニッケル亜鉛二次電池を得る。
 正極合材22及び負極合材24は共に電解質として水酸化カリウムを含有しているため、水酸化物イオン伝導性の無機固体電解質体からなるセパレータ28を経由した水酸化物イオンの伝導パスは確保されている。より確実には、正極合材22上に水酸化カリウム水溶液を滴下後、固体電解質板をセパレータ28として配置し、セパレータ28上にも水酸化カリウム水溶液を滴下後、負極合材24を配置してもよい。さらに、セパレータ28上により安定に水酸化物イオンを保持するために、セパレータ28の片面又は両面に多孔体基材を設けて、水酸化カリウム水溶液を含ませてもよい。

Claims (11)

  1.  正極と、
     亜鉛を含んでなる負極と、
     前記正極及び前記負極が浸漬又は接触される、アルカリ金属水酸化物を含む水溶液である電解液と
     前記正極及び前記負極の間に配置されて前記正極及び前記負極を互いに隔離する、水酸化物イオン伝導性の無機固体電解質体からなるセパレータと
    を備えた、亜鉛二次電池。
  2.  前記無機固体電解質体が90%以上の相対密度を有する、請求項1に記載の亜鉛二次電池。
  3.  前記無機固体電解質体が、一般式:
     M2+ 1-x3+ (OH)n- x/n・mH
    (式中、M2+は少なくとも1種以上の2価の陽イオンであり、M3+は少なくとも1種以上の3価の陽イオンであり、An-はn価の陰イオンであり、nは1以上の整数、xは0.1~0.4である)
    の基本組成を有する層状複水酸化物からなる、請求項1又は2に記載の亜鉛二次電池。
  4.  M2+がMg2+であり、M3+がAl3+であり、An-がCO 2-である、請求項3に記載の亜鉛二次電池。
  5.  前記無機固体電解質体が水熱固化法によって緻密化されたものである、請求項1~4のいずれか一項に記載の亜鉛二次電池。
  6.  前記無機固体電解質体が板状に形成されてなる、請求項1~5のいずれか一項に記載の亜鉛二次電池。
  7.  前記亜鉛二次電池が、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、及びその他のアルカリ亜鉛二次電池からなる群から選択される、請求項1~6のいずれか一項に記載の亜鉛二次電池。
  8.  前記亜鉛二次電池がニッケル亜鉛二次電池である、請求項1~7のいずれか一項に記載の亜鉛二次電池。
  9.  前記正極がオキシ水酸化ニッケルを含む請求項8に記載の亜鉛二次電池。
  10.  前記アルカリ金属水酸化物が水酸化カリウムである、請求項9に記載の亜鉛二次電池。
  11.  前記セパレータの片面又は両面に多孔質基材をさらに備えた、請求項1~10のいずれか一項に記載の亜鉛二次電池。
PCT/JP2013/050904 2012-02-06 2013-01-18 亜鉛二次電池 WO2013118561A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13746835.1A EP2814104B1 (en) 2012-02-06 2013-01-18 Zinc secondary cell
CN201380006285.3A CN104067437B (zh) 2012-02-06 2013-01-18 锌二次电池
JP2013557452A JP5600815B2 (ja) 2012-02-06 2013-01-18 亜鉛二次電池
US14/323,133 US9293791B2 (en) 2012-02-06 2014-07-03 Zinc secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-023377 2012-02-06
JP2012023377 2012-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/323,133 Continuation US9293791B2 (en) 2012-02-06 2014-07-03 Zinc secondary battery

Publications (1)

Publication Number Publication Date
WO2013118561A1 true WO2013118561A1 (ja) 2013-08-15

Family

ID=48947330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050904 WO2013118561A1 (ja) 2012-02-06 2013-01-18 亜鉛二次電池

Country Status (5)

Country Link
US (1) US9293791B2 (ja)
EP (1) EP2814104B1 (ja)
JP (1) JP5600815B2 (ja)
CN (1) CN104067437B (ja)
WO (1) WO2013118561A1 (ja)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167910A (ja) * 2013-02-01 2014-09-11 Nippon Shokubai Co Ltd 亜鉛負極及び電池
WO2015030525A1 (ko) * 2013-08-29 2015-03-05 주식회사 엘지화학 아연 공기 전지용 전해액 및 이를 포함하는 아연 공기 전지
WO2015098610A1 (ja) * 2013-12-27 2015-07-02 日本碍子株式会社 層状複水酸化物含有複合材料及びその製造方法
WO2015098612A1 (ja) * 2013-12-27 2015-07-02 日本碍子株式会社 層状複水酸化物配向膜及びその製造方法
WO2016006331A1 (ja) * 2014-07-09 2016-01-14 日本碍子株式会社 ニッケル亜鉛電池
WO2016006348A1 (ja) * 2014-07-09 2016-01-14 日本碍子株式会社 ニッケル亜鉛電池
WO2016006350A1 (ja) * 2014-07-09 2016-01-14 日本碍子株式会社 ニッケル亜鉛電池
WO2016006349A1 (ja) * 2014-07-09 2016-01-14 日本碍子株式会社 ニッケル亜鉛電池
WO2016039349A1 (ja) * 2014-09-10 2016-03-17 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
WO2016051934A1 (ja) * 2014-10-01 2016-04-07 日本碍子株式会社 層状複水酸化物を用いた電池
WO2016067885A1 (ja) * 2014-10-28 2016-05-06 日本碍子株式会社 層状複水酸化物含有複合材料
JP2016072207A (ja) * 2014-10-01 2016-05-09 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP2016071948A (ja) * 2014-09-26 2016-05-09 日本碍子株式会社 固体アルカリ形燃料電池
JP2016076373A (ja) * 2014-10-06 2016-05-12 株式会社日本触媒 アニオン伝導性材料
WO2016076047A1 (ja) * 2014-11-13 2016-05-19 日本碍子株式会社 亜鉛二次電池に用いられるセパレータ構造体
WO2016084557A1 (ja) * 2014-11-25 2016-06-02 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP2016115540A (ja) * 2014-12-15 2016-06-23 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
WO2016121168A1 (ja) * 2015-01-28 2016-08-04 日本碍子株式会社 水酸化物イオン伝導緻密膜及び複合材料
JP2016139535A (ja) * 2015-01-28 2016-08-04 日本碍子株式会社 水酸化物イオン伝導緻密膜の評価方法
WO2016147497A1 (ja) * 2015-03-19 2016-09-22 日本碍子株式会社 電池及びその組み立て方法
JP2016170946A (ja) * 2015-03-12 2016-09-23 日本碍子株式会社 亜鉛二次電池用セパレータの評価方法、及び亜鉛二次電池用セパレータ
JP2016170944A (ja) * 2015-03-12 2016-09-23 日本碍子株式会社 多層多孔質セパレータ及びそれを用いた二次電池
CN106104909A (zh) * 2014-03-28 2016-11-09 日本碍子株式会社 金属空气电池用空气极
JP6030780B2 (ja) * 2014-11-13 2016-11-24 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP2016201199A (ja) * 2015-04-08 2016-12-01 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
WO2016204050A1 (ja) * 2015-06-15 2016-12-22 日本碍子株式会社 ニッケル亜鉛電池セルパック及びそれを用いた組電池
JP2017004854A (ja) * 2015-06-12 2017-01-05 日本碍子株式会社 ニッケル亜鉛電池
JP2017059529A (ja) * 2015-09-14 2017-03-23 日本碍子株式会社 ラミネート型ニッケル亜鉛電池セルパック及びそれを用いた電池
WO2017086278A1 (ja) 2015-11-16 2017-05-26 日本碍子株式会社 電極カートリッジ及びそれを用いた亜鉛二次電池
WO2017110285A1 (ja) * 2015-12-24 2017-06-29 日本碍子株式会社 電極積層体及びそれを用いたニッケル亜鉛電池
JP6243583B1 (ja) * 2016-06-24 2017-12-06 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
WO2017221497A1 (ja) * 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
WO2017221531A1 (ja) * 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
JP6262921B1 (ja) * 2016-06-24 2018-01-17 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
KR20180014762A (ko) 2015-06-03 2018-02-09 가부시키가이샤 닛폰 쇼쿠바이 아니온 전도성막
JP2018032646A (ja) * 2017-12-01 2018-03-01 日本碍子株式会社 亜鉛二次電池用セパレータの評価方法、及び亜鉛二次電池用セパレータ
WO2018078738A1 (ja) * 2016-10-26 2018-05-03 日本碍子株式会社 ニッケル亜鉛電池
WO2018150898A1 (ja) * 2017-02-17 2018-08-23 国立大学法人名古屋工業大学 ニッケル亜鉛電池
JP2018147738A (ja) * 2017-03-06 2018-09-20 日立化成株式会社 亜鉛負極二次電池用セパレータの製造方法及び亜鉛負極二次電池用セパレータ
WO2018198607A1 (ja) * 2017-04-26 2018-11-01 日本碍子株式会社 二次電池
JP2019021518A (ja) * 2017-07-18 2019-02-07 日本碍子株式会社 亜鉛二次電池用負極及び亜鉛二次電池
JP2019057373A (ja) * 2017-09-20 2019-04-11 株式会社東芝 二次電池、電池パック及び車両
WO2019077953A1 (ja) 2017-10-20 2019-04-25 日本碍子株式会社 亜鉛二次電池
WO2019124270A1 (ja) 2017-12-18 2019-06-27 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
WO2019131688A1 (ja) 2017-12-27 2019-07-04 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
DE112017006176T5 (de) 2016-12-07 2019-09-12 Ngk Insulators, Ltd. Elektroden/Trennelement-Schichtkörper und damit ausgestattete Nickel-Zink-Batterie
US10431799B2 (en) 2015-04-14 2019-10-01 Ngk Insulators, Ltd. Layered double hydroxide, layered double hydroxide dense film, and composite material
US11145935B2 (en) 2017-12-18 2021-10-12 Ngk Insulators, Ltd. LDH separator and zinc secondary cell
US11158906B2 (en) 2017-12-18 2021-10-26 Ngk Insulators, Ltd. LDH separator and zinc secondary battery
US11158858B2 (en) 2018-12-07 2021-10-26 Ngk Insulators, Ltd. Positive electrode structure for secondary cell
WO2021220627A1 (ja) * 2020-05-01 2021-11-04 日本碍子株式会社 ニッケル亜鉛二次電池
CN113782702A (zh) * 2021-08-25 2021-12-10 华中科技大学 一种水系锌离子电池负极、制备方法及电池
US11211672B2 (en) 2018-12-13 2021-12-28 Ngk Insulators, Ltd. LDH separator and zinc secondary battery
US11217784B2 (en) 2018-12-07 2022-01-04 Ngk Insulators, Ltd. Positive electrode structure for secondary battery
US11239489B2 (en) 2017-10-20 2022-02-01 Ngk Insulators, Ltd. Zinc secondary battery
DE112020003246T5 (de) 2019-08-06 2022-03-31 Ngk Insulators, Ltd. Alkalische sekundärbatterie und alkalisches sekundärbatteriemodul
US11387446B2 (en) 2018-09-03 2022-07-12 Ngk Insulators, Ltd. Negative electrode and zinc secondary battery
US11431034B2 (en) 2019-06-19 2022-08-30 Ngk Insulators, Ltd. Hydroxide ion conductive separator and zinc secondary battery
US11532855B2 (en) 2017-12-18 2022-12-20 Ngk Insulators, Ltd. LDH separator and secondary zinc battery
DE112021001633T5 (de) 2020-05-11 2022-12-29 Ngk Insulators, Ltd. Ldh-separator und zinksekundärelement
DE112021003617T5 (de) 2020-12-01 2023-04-27 Ngk Insulators, Ltd. Separator mit ldh-ähnlicher verbindung und zink-sekundärbatterie
DE112021003508T5 (de) 2020-12-01 2023-05-11 Ngk Insulators, Ltd. Separator mit ldh-ähnlicher verbindung und zink-sekundärbatterie
DE112021003234T5 (de) 2020-08-11 2023-05-25 Ngk Insulators, Ltd. Ldh-separator
DE112021004624T5 (de) 2020-12-03 2023-06-15 Ngk Insulators, Ltd. Negative elektrode und zink-sekundärbatterie
DE112021004583T5 (de) 2020-12-03 2023-06-15 Ngk Insulators, Ltd. Negative elektrode und zink- sekundärbatterie
DE112021005259T5 (de) 2020-11-30 2023-07-20 Ngk Insulators, Ltd. Batterie, die eine Verbindung nach Art eines geschichteten Doppelhydroxids verwendet
DE112021005103T5 (de) 2020-11-30 2023-08-03 Ngk Insulators, Ltd. Separator mit ldh-ähnlicher verbindung und zink-sekundärbatterie
DE112021005200T5 (de) 2020-11-30 2023-08-10 Ngk Insulators, Ltd. Separator mit LDH-ähnlicher Verbindung und Zink-Sekundärbatterie
DE112021005040T5 (de) 2020-11-24 2023-09-14 Ngk Insulators, Ltd. Zink-sekundärbatterie
DE112021007021T5 (de) 2021-03-26 2023-11-16 Ngk Insulators, Ltd. Zink-sekundärbatterie
DE112021006933T5 (de) 2021-03-15 2023-11-30 Ngk Insulators, Ltd. Negative elektrode und zink-sekundärbatterie
US11942650B2 (en) 2019-08-06 2024-03-26 Ngk Insulators, Ltd. Battery module with multiple secondary batteries

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104981923B (zh) * 2013-02-01 2018-09-11 株式会社日本触媒 电极前体、电极以及电池
JP6615111B2 (ja) * 2014-10-28 2019-12-04 日本碍子株式会社 層状複水酸化物緻密膜の形成方法
JP6067925B2 (ja) * 2014-12-02 2017-01-25 日本碍子株式会社 亜鉛空気二次電池
WO2016098513A1 (ja) * 2014-12-17 2016-06-23 日本碍子株式会社 層状複水酸化物膜及び層状複水酸化物含有複合材料
FR3033669B1 (fr) * 2015-03-13 2017-03-24 Peugeot Citroen Automobiles Sa Dispositif de stockage electrique comportant au moins un assemblage a electrode positive hybride et vehicule equipe d’un tel dispositif
CN114695834A (zh) * 2015-05-13 2022-07-01 劲量品牌有限责任公司 具有改进的放电效率的碱性电池
KR102246849B1 (ko) * 2015-05-29 2021-04-30 주식회사 리크릭스 선택적 이온 이동이 가능한 분리막 및 이를 포함하는 이차전지
JP6643132B2 (ja) * 2016-02-12 2020-02-12 Fdk株式会社 アルカリ二次電池用の正極活物質及びこの正極活物質を含むアルカリ二次電池
KR101943469B1 (ko) 2016-06-20 2019-04-18 김동환 공기주입식 아연공기 2차전지
JP6383038B1 (ja) * 2017-03-22 2018-08-29 株式会社東芝 二次電池、電池パック及び車両
CN107681132A (zh) * 2017-09-03 2018-02-09 河南师范大学 锌镍二次电池负极材料锌钛二元层状氢氧化物及其制备方法和使用该负极材料的电池
WO2019124213A1 (ja) * 2017-12-18 2019-06-27 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
CN110364692A (zh) * 2018-04-10 2019-10-22 中国科学院上海硅酸盐研究所 一种具有多相材料复合锌负极
US20210399383A1 (en) * 2018-11-22 2021-12-23 Phinergy Ltd. Separators with layered double hydroxides for electrochemical cells
JP7325748B2 (ja) * 2019-03-26 2023-08-15 国立大学法人東海国立大学機構 二次電池システム及び二次電池システムの使用方法
US20220336856A1 (en) * 2019-08-30 2022-10-20 Kyocera Corporation Secondary battery, secondary battery system, and control method
JP7167903B2 (ja) * 2019-11-11 2022-11-09 トヨタ自動車株式会社 亜鉛二次電池
CA3229571A1 (en) * 2021-08-20 2023-02-23 Duke University Layered double hydroxide particles in hydrogel matrices
CN114464931B (zh) * 2021-12-30 2023-07-21 西北工业大学 一种双功能锌-炔电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196199A (ja) 1992-12-24 1994-07-15 Canon Inc 二次電池
JPH1154103A (ja) 1997-07-31 1999-02-26 Nippon Oil Co Ltd 二次電池用セパレーター
JP2007227032A (ja) * 2006-02-21 2007-09-06 Osaka Prefecture Univ 全固体アルカリ二次電池用無機ヒドロゲル電解質とその製法及び全固体アルカリ二次電池
JP2008539559A (ja) 2005-04-26 2008-11-13 パワージェニックス システムズ, インコーポレーテッド ニッケル亜鉛電池構造
WO2010109670A1 (ja) 2009-03-27 2010-09-30 住友商事株式会社 アルカリ電解質膜、電極接合体及び直接アルコール燃料電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2695254B1 (fr) * 1992-09-02 2003-01-10 Conservatoire Nal Arts Metiers Electrolyte polymère solide alcalin, électrode et générateur électrochimique comportant un tel électrolyte.
FR2745959B1 (fr) * 1996-03-08 1998-07-10 Sorapec Lab Perfectionnements apportes a l'accumulateur ni-zn au moyen d'anolyte, de catholyte et de membrane remediant a la formation de dendrites
JP5158150B2 (ja) * 2010-08-17 2013-03-06 トヨタ自動車株式会社 金属空気電池用空気極、及び当該空気極を備える金属空気電池
JP5221626B2 (ja) * 2010-10-29 2013-06-26 国立大学法人京都大学 金属空気二次電池用空気極、並びに当該空気極を備える金属空気二次電池用膜・空気極接合体及び金属空気二次電池
EP2750225A4 (en) * 2011-08-23 2015-07-29 Nippon Catalytic Chem Ind NEGATIVE ELECTRODE MIXTURE OR GEL ELECTROLYTE AND BATTERY WITH THIS NEGATIVE ELECTRODE MIXTURE OR THIS GEL ELECTROLYTE
JP5574516B2 (ja) * 2011-11-16 2014-08-20 日本碍子株式会社 亜鉛空気二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196199A (ja) 1992-12-24 1994-07-15 Canon Inc 二次電池
JPH1154103A (ja) 1997-07-31 1999-02-26 Nippon Oil Co Ltd 二次電池用セパレーター
JP2008539559A (ja) 2005-04-26 2008-11-13 パワージェニックス システムズ, インコーポレーテッド ニッケル亜鉛電池構造
JP2007227032A (ja) * 2006-02-21 2007-09-06 Osaka Prefecture Univ 全固体アルカリ二次電池用無機ヒドロゲル電解質とその製法及び全固体アルカリ二次電池
WO2010109670A1 (ja) 2009-03-27 2010-09-30 住友商事株式会社 アルカリ電解質膜、電極接合体及び直接アルコール燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2814104A4

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167910A (ja) * 2013-02-01 2014-09-11 Nippon Shokubai Co Ltd 亜鉛負極及び電池
WO2015030525A1 (ko) * 2013-08-29 2015-03-05 주식회사 엘지화학 아연 공기 전지용 전해액 및 이를 포함하는 아연 공기 전지
CN106163990B (zh) * 2013-12-27 2018-02-09 日本碍子株式会社 含有层状双氢氧化物的复合材料及其制造方法
WO2015098612A1 (ja) * 2013-12-27 2015-07-02 日本碍子株式会社 層状複水酸化物配向膜及びその製造方法
JP5824186B1 (ja) * 2013-12-27 2015-11-25 日本碍子株式会社 層状複水酸化物含有複合材料及びその製造方法
US11152668B2 (en) 2013-12-27 2021-10-19 Ngk Insulators, Ltd. Layered-double-hydroxide-containing composite material and method for producing same
US10020480B2 (en) 2013-12-27 2018-07-10 Ngk Insulators, Ltd. Layered-double-hydroxide-containing composite material and method for producing same
WO2015098610A1 (ja) * 2013-12-27 2015-07-02 日本碍子株式会社 層状複水酸化物含有複合材料及びその製造方法
JP5866071B2 (ja) * 2013-12-27 2016-02-17 日本碍子株式会社 層状複水酸化物配向膜及びその製造方法
US9793529B2 (en) 2013-12-27 2017-10-17 Ngk Insulators, Ltd. Layered-double-hydroxide-oriented film and method for producing same
JP2016040228A (ja) * 2013-12-27 2016-03-24 日本碍子株式会社 層状複水酸化物含有複合材料及びその製造方法
JPWO2015098612A1 (ja) * 2013-12-27 2017-03-23 日本碍子株式会社 層状複水酸化物配向膜及びその製造方法
CN106163990A (zh) * 2013-12-27 2016-11-23 日本碍子株式会社 含有层状双氢氧化物的复合材料及其制造方法
CN106104909B (zh) * 2014-03-28 2019-07-05 日本碍子株式会社 金属空气电池用空气极
CN106104909A (zh) * 2014-03-28 2016-11-09 日本碍子株式会社 金属空气电池用空气极
EP3168921A4 (en) * 2014-07-09 2018-02-28 NGK Insulators, Ltd. Nickel-zinc battery
CN106463785B (zh) * 2014-07-09 2019-11-22 日本碍子株式会社 镍锌电池
JP5914775B1 (ja) * 2014-07-09 2016-05-11 日本碍子株式会社 ニッケル亜鉛電池
WO2016006349A1 (ja) * 2014-07-09 2016-01-14 日本碍子株式会社 ニッケル亜鉛電池
JP5917780B1 (ja) * 2014-07-09 2016-05-18 日本碍子株式会社 ニッケル亜鉛電池
EP3168922A4 (en) * 2014-07-09 2018-01-17 NGK Insulators, Ltd. Nickel-zinc battery
WO2016006350A1 (ja) * 2014-07-09 2016-01-14 日本碍子株式会社 ニッケル亜鉛電池
JP5936788B1 (ja) * 2014-07-09 2016-06-22 日本碍子株式会社 ニッケル亜鉛電池
JP5936787B1 (ja) * 2014-07-09 2016-06-22 日本碍子株式会社 ニッケル亜鉛電池
JP5936789B1 (ja) * 2014-07-09 2016-06-22 日本碍子株式会社 ニッケル亜鉛電池
EP3168920A4 (en) * 2014-07-09 2018-01-17 NGK Insulators, Ltd. Nickel-zinc battery
US10276896B2 (en) 2014-07-09 2019-04-30 Ngk Insulators, Ltd. Nickel-zinc battery
JP2016129156A (ja) * 2014-07-09 2016-07-14 日本碍子株式会社 ニッケル亜鉛電池
WO2016006331A1 (ja) * 2014-07-09 2016-01-14 日本碍子株式会社 ニッケル亜鉛電池
WO2016006330A1 (ja) * 2014-07-09 2016-01-14 日本碍子株式会社 ニッケル亜鉛電池
CN106463783A (zh) * 2014-07-09 2017-02-22 日本碍子株式会社 镍锌电池
US10734685B2 (en) 2014-07-09 2020-08-04 Ngk Insulators, Ltd. Nickel-zinc battery
CN106575799A (zh) * 2014-07-09 2017-04-19 日本碍子株式会社 镍锌电池
US10128542B2 (en) 2014-07-09 2018-11-13 Ngk Insulators, Ltd. Nickel-zinc battery
CN106463785A (zh) * 2014-07-09 2017-02-22 日本碍子株式会社 镍锌电池
EP3076476A4 (en) * 2014-07-09 2017-07-19 NGK Insulators, Ltd. Nickel-zinc battery
EP3076477A4 (en) * 2014-07-09 2017-07-19 NGK Insulators, Ltd. Nickel-zinc battery
CN106575799B (zh) * 2014-07-09 2019-03-08 日本碍子株式会社 镍锌电池
CN106463782A (zh) * 2014-07-09 2017-02-22 日本碍子株式会社 镍锌电池
CN106463784B (zh) * 2014-07-09 2019-03-08 日本碍子株式会社 镍锌电池
US10381689B2 (en) 2014-07-09 2019-08-13 Ngk Insulators, Ltd. Nickel-zinc battery
WO2016006348A1 (ja) * 2014-07-09 2016-01-14 日本碍子株式会社 ニッケル亜鉛電池
US10297869B2 (en) 2014-07-09 2019-05-21 Ngk Insulators, Ltd. Nickel-zinc battery
US10263292B2 (en) 2014-07-09 2019-04-16 Ngk Insulators, Ltd. Nickel-zinc Battery
CN106463784A (zh) * 2014-07-09 2017-02-22 日本碍子株式会社 镍锌电池
CN106463782B (zh) * 2014-07-09 2019-05-07 日本碍子株式会社 镍锌电池
JPWO2016039349A1 (ja) * 2014-09-10 2017-04-27 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
US9692026B2 (en) 2014-09-10 2017-06-27 Ngk Insulators, Ltd. Secondary cell using hydroxide-ion-conductive ceramic separator
WO2016039349A1 (ja) * 2014-09-10 2016-03-17 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP5986697B2 (ja) * 2014-09-10 2016-09-06 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP2016071948A (ja) * 2014-09-26 2016-05-09 日本碍子株式会社 固体アルカリ形燃料電池
US10700385B2 (en) 2014-10-01 2020-06-30 Ngk Insulators, Ltd. Battery using layered double hydroxide
JP2016072207A (ja) * 2014-10-01 2016-05-09 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP6001198B2 (ja) * 2014-10-01 2016-10-05 日本碍子株式会社 層状複水酸化物を用いた電池
JPWO2016051934A1 (ja) * 2014-10-01 2017-04-27 日本碍子株式会社 層状複水酸化物を用いた電池
US20170200981A1 (en) * 2014-10-01 2017-07-13 Ngk Insulators, Ltd. Battery using layered double hydroxide
WO2016051934A1 (ja) * 2014-10-01 2016-04-07 日本碍子株式会社 層状複水酸化物を用いた電池
JP2016076373A (ja) * 2014-10-06 2016-05-12 株式会社日本触媒 アニオン伝導性材料
US20170194614A1 (en) * 2014-10-28 2017-07-06 Ngk Insulators, Ltd. Layered double hydroxide-containing composite material
JPWO2016067885A1 (ja) * 2014-10-28 2017-04-27 日本碍子株式会社 層状複水酸化物含有複合材料
WO2016067885A1 (ja) * 2014-10-28 2016-05-06 日本碍子株式会社 層状複水酸化物含有複合材料
US10199624B2 (en) 2014-10-28 2019-02-05 Ngk Insulators, Ltd. Layered double hydroxide-containing composite material
JP6043442B2 (ja) * 2014-10-28 2016-12-14 日本碍子株式会社 層状複水酸化物含有複合材料
US10290847B2 (en) 2014-11-13 2019-05-14 Ngk Insulators, Ltd. Separator structure body for use in zinc secondary battery
JP2016189356A (ja) * 2014-11-13 2016-11-04 日本碍子株式会社 亜鉛二次電池に用いられるセパレータ構造体
JP6030780B2 (ja) * 2014-11-13 2016-11-24 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
US10446821B2 (en) 2014-11-13 2019-10-15 Ngk Insulators, Ltd. Secondary battery using hydroxide ion-conductive ceramic separator
JP5989931B1 (ja) * 2014-11-13 2016-09-07 日本碍子株式会社 亜鉛二次電池に用いられるセパレータ構造体
WO2016076047A1 (ja) * 2014-11-13 2016-05-19 日本碍子株式会社 亜鉛二次電池に用いられるセパレータ構造体
JPWO2016075995A1 (ja) * 2014-11-13 2017-04-27 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
US10483596B2 (en) 2014-11-25 2019-11-19 Ngk Insulators, Ltd. Secondary battery with hydroxide-ion-conducting ceramic separator
JP5940237B1 (ja) * 2014-11-25 2016-06-29 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
WO2016084557A1 (ja) * 2014-11-25 2016-06-02 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
JP2016115540A (ja) * 2014-12-15 2016-06-23 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
KR101681013B1 (ko) 2015-01-28 2016-11-29 엔지케이 인슐레이터 엘티디 수산화물 이온 전도 치밀막 및 복합 재료
WO2016121168A1 (ja) * 2015-01-28 2016-08-04 日本碍子株式会社 水酸化物イオン伝導緻密膜及び複合材料
JP2016139535A (ja) * 2015-01-28 2016-08-04 日本碍子株式会社 水酸化物イオン伝導緻密膜の評価方法
JP6038410B1 (ja) * 2015-01-28 2016-12-07 日本碍子株式会社 水酸化物イオン伝導緻密膜及び複合材料
US10193118B2 (en) 2015-01-28 2019-01-29 Ngk Insulators, Ltd. Hydroxide-ion-conductive dense membrane and composite material
JP2016170946A (ja) * 2015-03-12 2016-09-23 日本碍子株式会社 亜鉛二次電池用セパレータの評価方法、及び亜鉛二次電池用セパレータ
JP2016170944A (ja) * 2015-03-12 2016-09-23 日本碍子株式会社 多層多孔質セパレータ及びそれを用いた二次電池
EP3273522A4 (en) * 2015-03-19 2018-12-05 NGK Insulators, Ltd. Battery and assembly method therefor
JPWO2016147497A1 (ja) * 2015-03-19 2017-04-27 日本碍子株式会社 電池及びその組み立て方法
US10522868B2 (en) 2015-03-19 2019-12-31 Ngk Insulators, Ltd. Battery and assembly method therefor
WO2016147497A1 (ja) * 2015-03-19 2016-09-22 日本碍子株式会社 電池及びその組み立て方法
JP2016201199A (ja) * 2015-04-08 2016-12-01 日本碍子株式会社 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池
US10431799B2 (en) 2015-04-14 2019-10-01 Ngk Insulators, Ltd. Layered double hydroxide, layered double hydroxide dense film, and composite material
KR20180014762A (ko) 2015-06-03 2018-02-09 가부시키가이샤 닛폰 쇼쿠바이 아니온 전도성막
US10804518B2 (en) 2015-06-03 2020-10-13 Nippon Shokubai Co., Ltd. Anion conducting membrane
JP2017004854A (ja) * 2015-06-12 2017-01-05 日本碍子株式会社 ニッケル亜鉛電池
US10700328B2 (en) 2015-06-15 2020-06-30 Ngk Insulators, Ltd. Nickel-zinc battery cell pack and battery pack using same
JPWO2016204050A1 (ja) * 2015-06-15 2017-06-29 日本碍子株式会社 ニッケル亜鉛電池セルパック及びそれを用いた組電池
WO2016204050A1 (ja) * 2015-06-15 2016-12-22 日本碍子株式会社 ニッケル亜鉛電池セルパック及びそれを用いた組電池
JP2017059529A (ja) * 2015-09-14 2017-03-23 日本碍子株式会社 ラミネート型ニッケル亜鉛電池セルパック及びそれを用いた電池
JPWO2017086278A1 (ja) * 2015-11-16 2018-08-30 日本碍子株式会社 電極カートリッジ及びそれを用いた亜鉛二次電池
US10686177B2 (en) 2015-11-16 2020-06-16 Ngk Insulators, Ltd. Electrode cartridge and zinc secondary cell using same
WO2017086278A1 (ja) 2015-11-16 2017-05-26 日本碍子株式会社 電極カートリッジ及びそれを用いた亜鉛二次電池
WO2017110285A1 (ja) * 2015-12-24 2017-06-29 日本碍子株式会社 電極積層体及びそれを用いたニッケル亜鉛電池
JPWO2017110285A1 (ja) * 2015-12-24 2018-08-02 日本碍子株式会社 電極積層体及びそれを用いたニッケル亜鉛電池
US10940668B2 (en) 2016-06-24 2021-03-09 Ngk Insulators, Ltd. Functional layer including layered double hydroxide, and composite material
JP6243583B1 (ja) * 2016-06-24 2017-12-06 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
WO2017221497A1 (ja) * 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
WO2017221531A1 (ja) * 2016-06-24 2017-12-28 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
US10773486B2 (en) 2016-06-24 2020-09-15 Ngk Insulators, Ltd. Functional layer including layered double hydroxide, and composite material
JP6262921B1 (ja) * 2016-06-24 2018-01-17 日本碍子株式会社 層状複水酸化物を含む機能層及び複合材料
WO2018078738A1 (ja) * 2016-10-26 2018-05-03 日本碍子株式会社 ニッケル亜鉛電池
US11404748B2 (en) 2016-12-07 2022-08-02 Ngk Insulators, Ltd. Electrode/separator layered body and nickel zinc battery equipped therewith
DE112017006176T5 (de) 2016-12-07 2019-09-12 Ngk Insulators, Ltd. Elektroden/Trennelement-Schichtkörper und damit ausgestattete Nickel-Zink-Batterie
WO2018150898A1 (ja) * 2017-02-17 2018-08-23 国立大学法人名古屋工業大学 ニッケル亜鉛電池
JPWO2018150898A1 (ja) * 2017-02-17 2019-12-12 国立大学法人 名古屋工業大学 ニッケル亜鉛電池
JP2018147738A (ja) * 2017-03-06 2018-09-20 日立化成株式会社 亜鉛負極二次電池用セパレータの製造方法及び亜鉛負極二次電池用セパレータ
JPWO2018198607A1 (ja) * 2017-04-26 2020-03-12 日本碍子株式会社 二次電池
WO2018198607A1 (ja) * 2017-04-26 2018-11-01 日本碍子株式会社 二次電池
JP7007372B2 (ja) 2017-04-26 2022-01-24 日本碍子株式会社 二次電池
JP2019021518A (ja) * 2017-07-18 2019-02-07 日本碍子株式会社 亜鉛二次電池用負極及び亜鉛二次電池
JP7007123B2 (ja) 2017-07-18 2022-02-10 日本碍子株式会社 亜鉛二次電池用負極及び亜鉛二次電池
JP2019057373A (ja) * 2017-09-20 2019-04-11 株式会社東芝 二次電池、電池パック及び車両
WO2019077953A1 (ja) 2017-10-20 2019-04-25 日本碍子株式会社 亜鉛二次電池
US11342551B2 (en) 2017-10-20 2022-05-24 Ngk Insulators, Ltd. Zinc secondary battery
US11239489B2 (en) 2017-10-20 2022-02-01 Ngk Insulators, Ltd. Zinc secondary battery
JP2018032646A (ja) * 2017-12-01 2018-03-01 日本碍子株式会社 亜鉛二次電池用セパレータの評価方法、及び亜鉛二次電池用セパレータ
US11532855B2 (en) 2017-12-18 2022-12-20 Ngk Insulators, Ltd. LDH separator and secondary zinc battery
US11545719B2 (en) 2017-12-18 2023-01-03 Ngk Insulators, Ltd. LDH separator and secondary zinc battery
US11158906B2 (en) 2017-12-18 2021-10-26 Ngk Insulators, Ltd. LDH separator and zinc secondary battery
WO2019124270A1 (ja) 2017-12-18 2019-06-27 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
US11145935B2 (en) 2017-12-18 2021-10-12 Ngk Insulators, Ltd. LDH separator and zinc secondary cell
US11335973B2 (en) 2017-12-27 2022-05-17 Ngk Insulators, Ltd. LDH separator and secondary zinc battery with dendrite buffer layer
WO2019131688A1 (ja) 2017-12-27 2019-07-04 日本碍子株式会社 Ldhセパレータ及び亜鉛二次電池
US11387446B2 (en) 2018-09-03 2022-07-12 Ngk Insulators, Ltd. Negative electrode and zinc secondary battery
US11217784B2 (en) 2018-12-07 2022-01-04 Ngk Insulators, Ltd. Positive electrode structure for secondary battery
US11158858B2 (en) 2018-12-07 2021-10-26 Ngk Insulators, Ltd. Positive electrode structure for secondary cell
US11211672B2 (en) 2018-12-13 2021-12-28 Ngk Insulators, Ltd. LDH separator and zinc secondary battery
US11431034B2 (en) 2019-06-19 2022-08-30 Ngk Insulators, Ltd. Hydroxide ion conductive separator and zinc secondary battery
DE112020003246T5 (de) 2019-08-06 2022-03-31 Ngk Insulators, Ltd. Alkalische sekundärbatterie und alkalisches sekundärbatteriemodul
US11942650B2 (en) 2019-08-06 2024-03-26 Ngk Insulators, Ltd. Battery module with multiple secondary batteries
WO2021220627A1 (ja) * 2020-05-01 2021-11-04 日本碍子株式会社 ニッケル亜鉛二次電池
DE112021001633T5 (de) 2020-05-11 2022-12-29 Ngk Insulators, Ltd. Ldh-separator und zinksekundärelement
DE112021003234T5 (de) 2020-08-11 2023-05-25 Ngk Insulators, Ltd. Ldh-separator
DE112021005040T5 (de) 2020-11-24 2023-09-14 Ngk Insulators, Ltd. Zink-sekundärbatterie
DE112021005259T5 (de) 2020-11-30 2023-07-20 Ngk Insulators, Ltd. Batterie, die eine Verbindung nach Art eines geschichteten Doppelhydroxids verwendet
DE112021005200T5 (de) 2020-11-30 2023-08-10 Ngk Insulators, Ltd. Separator mit LDH-ähnlicher Verbindung und Zink-Sekundärbatterie
DE112021005103T5 (de) 2020-11-30 2023-08-03 Ngk Insulators, Ltd. Separator mit ldh-ähnlicher verbindung und zink-sekundärbatterie
DE112021003617T5 (de) 2020-12-01 2023-04-27 Ngk Insulators, Ltd. Separator mit ldh-ähnlicher verbindung und zink-sekundärbatterie
DE112021003508T5 (de) 2020-12-01 2023-05-11 Ngk Insulators, Ltd. Separator mit ldh-ähnlicher verbindung und zink-sekundärbatterie
DE112021004583T5 (de) 2020-12-03 2023-06-15 Ngk Insulators, Ltd. Negative elektrode und zink- sekundärbatterie
DE112021004624T5 (de) 2020-12-03 2023-06-15 Ngk Insulators, Ltd. Negative elektrode und zink-sekundärbatterie
DE112021006933T5 (de) 2021-03-15 2023-11-30 Ngk Insulators, Ltd. Negative elektrode und zink-sekundärbatterie
DE112021007021T5 (de) 2021-03-26 2023-11-16 Ngk Insulators, Ltd. Zink-sekundärbatterie
CN113782702A (zh) * 2021-08-25 2021-12-10 华中科技大学 一种水系锌离子电池负极、制备方法及电池

Also Published As

Publication number Publication date
US9293791B2 (en) 2016-03-22
JPWO2013118561A1 (ja) 2015-05-11
CN104067437A (zh) 2014-09-24
US20140315099A1 (en) 2014-10-23
EP2814104A4 (en) 2015-11-04
EP2814104B1 (en) 2018-09-26
JP5600815B2 (ja) 2014-10-01
CN104067437B (zh) 2015-06-17
EP2814104A1 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5600815B2 (ja) 亜鉛二次電池
EP2782185B1 (en) Zinc-air secondary battery
JP6206971B2 (ja) リチウム空気二次電池
US10892530B2 (en) Air electrode for metal-air battery
US10601094B2 (en) Separator-equipped air electrode for air-metal battery
US8771876B2 (en) Positive electrode active material, method for manufacturing positive electrode active material and nonaqueous electrolyte battery
WO2008007288A2 (en) Primary alkaline battery containing bismuth metal oxide
KR20120023806A (ko) 이차 아연 배터리용의 페이스트된 아연 전극
DK2834874T3 (en) Zinc electrode for use in rechargeable batteries
JP6081863B2 (ja) 金属空気二次電池の使用方法
JP6284680B2 (ja) アルカリ二次電池およびその製造方法
WO2014049966A1 (ja) アルカリ蓄電池用正極活物質、それを含むアルカリ蓄電池用正極およびアルカリ蓄電池、ならびにニッケル水素蓄電池
JP7007372B2 (ja) 二次電池
JPH10199520A (ja) アルカリ蓄電池用非焼結式ニッケル極
KR20220112160A (ko) 전고체 이차전지
JP2023113974A (ja) ニッケル亜鉛二次電池
JP2022162827A (ja) 正極活物質用銀酸化物およびその製造方法、ならびにそれを用いたアルカリ二次電池用正極およびアルカリ二次電池
JP2023150498A (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557452

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013746835

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE