JPH10199520A - アルカリ蓄電池用非焼結式ニッケル極 - Google Patents

アルカリ蓄電池用非焼結式ニッケル極

Info

Publication number
JPH10199520A
JPH10199520A JP9003269A JP326997A JPH10199520A JP H10199520 A JPH10199520 A JP H10199520A JP 9003269 A JP9003269 A JP 9003269A JP 326997 A JP326997 A JP 326997A JP H10199520 A JPH10199520 A JP H10199520A
Authority
JP
Japan
Prior art keywords
nickel
storage battery
alkaline storage
active material
yttrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9003269A
Other languages
English (en)
Other versions
JP3557063B2 (ja
Inventor
Mikiaki Tadokoro
幹朗 田所
Akifumi Yamawaki
章史 山脇
Yoshitaka Baba
良貴 馬場
Takayuki Yano
尊之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP00326997A priority Critical patent/JP3557063B2/ja
Publication of JPH10199520A publication Critical patent/JPH10199520A/ja
Application granted granted Critical
Publication of JP3557063B2 publication Critical patent/JP3557063B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 厚みを厚くしても高率充放電特性、高温充電
特性あるいは過放電特性を低下させることなく、電池の
高容量化が可能なアルカリ蓄電池用非焼結式ニッケル極
を提供することを目的する。 【解決手段】 水酸化ニッケルを主体とする活物質粉末
が発泡ニッケルに充填され、0.80mm以上の厚みに
成形されてなるアルカリ蓄電池用非焼結式ニッケル極で
あって、その活物質充填密度を2.9g/cc−voi
d以下に設定することで高率充放電特性および高温充電
特性の低下は抑制される。また、発泡ニッケルの幅方向
の平均孔数を3.6個/mm以上にすることで、過放電
特性の低下は抑制される。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、水酸化ニッケルを
主成分とする活物質が充填されたアルカリ蓄電池用非焼
結式ニッケル極に関する。
【0002】
【従来の技術】ニッケル−カドミウム二次電池やニッケ
ル−水素二次電池に代表されるニッケル極を正極に用い
たアルカリ蓄電池は、水酸化ニッケルを活物質として含
む正極と、カドミウムや水素吸蔵合金を活物質として含
む負極とが、セパレータを介して配されて電極群が構成
され、それがアルカリ電解液で含浸された状態で外装缶
に収納されている。
【0003】このようなアルカリ蓄電池において高容量
を実現する上で、電池の容量支配極である正極すなわち
ニッケル極の容量を如何にして増大させるかが課題であ
る。ニッケル3次元多孔体にニッケル活物質を充填した
非焼結式ニッケル極は活物質の充填密度を大きくできる
点で高容量化に適しているが、更なる高容量化のための
一つの方法として、セパレータ等の電気化学反応に直接
関与しない部材の占有体積を減少させて、ニッケル極の
占有体積を増加させることが挙げられる。
【0004】これを達成するには、ニッケル極の厚みを
大きく設定すればよい。すなわち、円筒形電池であれば
ニッケル極の厚みを大きくして巻き数を減らし、極板の
長さを短くすればよく、また、角形電池であれば同様に
ニッケル極の厚みを大きくして構成極板数を減らせばよ
い。
【0005】
【発明が解決しようとする課題】ところが、上記のよう
に単にニッケル極の厚みを大きくして電池の高容量化を
試みると、高率充放電特性、高温充電特性あるいは過放
電特性が低下してしまうという問題があり、実用化する
にはこれを解決する必要がある。一方、セパレータの厚
みを薄くして電極の占有体積を大きくすることも考えら
れるが、セパレータが薄くなればショートしやすくなっ
て望ましいとは言えない。
【0006】本発明は、上記課題に鑑みてなされたもの
であって、電池の高率充放電特性、高温充電特性あるい
は過放電特性を低下させることなく、電池の高容量化が
可能なアルカリ蓄電池用非焼結式ニッケル極を提供する
ことを目的としている。
【0007】
【課題を解決するための手段】本発明は、上記目的を達
成するために、水酸化ニッケルを主体とする活物質粉末
がニッケル3次元多孔体に充填,圧延されてなるアルカ
リ蓄電池用非焼結式ニッケル極において、圧延後の厚み
を0.80mm以上とすると共に、活物質充填密度を
2.9g/cc−void以下にした。
【0008】活物質充填密度(g/cc−void)
は、ニッケル3次元多孔体の孔の体積に対する充填され
ている活物質の重量を意味する。このように厚みと活物
質充填密度を設定することで、電池の高容量化を実現
し、かつ、高率充放電特性、高温充電特性の低下を抑制
することができる。この場合、活物質充填密度は2.5
g/cc−void以上の範囲とすることがより望まし
い。
【0009】さらに、前記ニッケル3次元多孔体とし
て、厚み方向の平均孔数が3.6個/mm以上のものを
用いれば、ニッケル極の厚みを大きくしても高率充放電
特性および過放電特性は損なわれにくい。この場合、平
均孔数が5.6個/mm以下の範囲であればより望まし
い。さらに、活物質粉末として、水酸化ニッケル粒子の
表面にナトリウム含有コバルト化合物からなる被覆層が
形成された複合体粒子に、2価以下のコバルト化合物と
金属イットリウム、および/または、イットリウム化合
物を添加した混合粉末を用いれば、ニッケル極の厚みを
大きくしても電池の高率充放電特性および過放電特性は
損なわれにくい。
【0010】この2価以下のコバルト化合物の添加量
は、活物質粉末100に対して0.05〜5重量%とす
ることが望ましい。また、金属イットリウムおよび/ま
たはイットリウム化合物は、活物質粉末に対して0.0
5〜5重量%含有されていることが望ましい。また、前
記複合体粒子として、水酸化ニッケル粒子の表面に金属
コバルトまたはコバルト化合物が添加されたものに、水
酸化ナトリウム水溶液を添加し、酸素存在下で加熱処理
することにより形成されたものを用いれば、活物質の導
電性をより向上させることができる。
【0011】ここで、被覆層中のナトリウム含量を前記
複合体粒子に対して0.1〜10重量%とすることが望
ましい。また、前記ナトリウム含有コバルト化合物とし
ては、ナトリウム含有水酸化コバルト、ナトリウム含有
オキシ水酸化コバルトまたはこれらの混合物を挙げるこ
とができる。
【0012】前記イットリウム化合物としては、三酸化
二イットリウム、炭酸イットリウムおよびフッ化イット
リウムを挙げることができる。また、前記水酸化ニッケ
ル粒子として、コバルト、亜鉛、カドミウム、カルシウ
ム、マグネシウム、ビスマス、アルミニウムおよびイッ
トリウムからなる群から選ばれた少なくとも1種の元素
が固溶したものを用いることができる。
【0013】
【発明の実施の形態】
〔実施の形態1〕 (アルカリ蓄電池の全体的な構成についての説明)図1
は、本実施の形態に係る円筒形アルカリ蓄電池の斜視図
である。このアルカリ蓄電池は、ニッケル活物質を含む
ニッケル正極1(以降、単に正極という。)と水素吸蔵
合金を含む負極2とがセパレータ3を介して積層され渦
巻状に巻かれてなる円柱状の電極群4と、これらを収容
する円筒状の外装缶6等から構成されたニッケル−水素
アルカリ蓄電池であって、電極群4にはアルカリ電解液
が含浸されている。
【0014】正極1は、水酸化ニッケルを主成分とする
粉末からなる正極活物質が、結着剤によって結着された
状態でニッケル3次元多孔体に充填され、所定の厚さに
圧延成形されたものである。負極2は、渦巻板状のパン
チングメタルの両面に、水素吸蔵合金が結着剤によって
結着されて、所定の厚さに圧延成形されたものである。
【0015】外装缶6上端の円形の開口部には、ガスケ
ット11を介在させて、中央部が開口された封口板12
が配設され、この封口板12に正極端子13が装着され
ている。この封口板12には弁板8、おさえ板9が載置
され、おさえ板9はコイルスプリング10で押圧する構
造となっている。そして、弁板8、おさえ板9、コイル
スプリング10は、電池内圧が上昇したときに矢印A方
向に押圧されて、弁板部に間隙が生じ、内部のガスが大
気中に放出されるようになっている。
【0016】負極2は、負極集電体5により外装缶6の
底辺部に電気的に接続され、外装缶6が負極端子を兼ね
ており、正極端子13は、正極集電体7及び封口板12
を介して正極1と電気的に接続されている。電池の理論
容量は正極1によって規定されており、負極2の容量は
それより大きく設定されている。
【0017】(正極の厚さ,活物質充填密度及びニッケ
ル3次元多孔体の多孔度についての説明)正極1は、圧
延後の厚さが0.80mm〜1.00mmの範囲に設定
されている。また、正極活物質の充填密度は、2.5〜
2.9g/ccの範囲に設定されている。これによっ
て、以下に説明するように、電池の高率充放電特性や高
温充電特性を損なうことなしに、電池の高容量化を達成
することができる。
【0018】従来の円筒形ニッケル−水素アルカリ蓄電
池において、正極の圧延後の厚さは通常0.6mm程度
に設定されていたが、このように正極1の厚さをより大
きく設定することによって、電極群4の体積は変えずに
正極1の占有体積をより大きくすることが可能となる。
これは、電極群4の体積を一定としたとき、正極1の厚
さを大きく設定するほど、正極1の長さは短くなり、そ
れに伴って、セパレータ3の長さも短くなり、電極群4
中のセパレータ3の占有体積が減少するため、その分だ
け正極1及び負極2の体積を増やすことが可能となるか
らである。なお、正極1の長さが短く設定されると、負
極2の長さもそれに伴って短く設定されることになる。
【0019】従来は、正極の活物質充填密度は3.0g
/cc−void程度であって、この場合は、正極1の
厚さを大きく設定すると電池の高率充放電特性および高
温充電特性は低下する。高率充放電特性が低下するの
は、一般的に電極の厚みを大きくすると電極中のイオン
の移動距離は大きくなり、イオンの移動性が低下する傾
向が現れるが、電極の空隙が少ない場合、電極中に含ま
れる電解液量が少ないので、その傾向がより顕著に現れ
るためと考えられる。
【0020】一方、高温充電特性が低下するのは、正極
の厚みが大きくなると容量比を確保するために対向する
負極の厚みを大きくする必要があるため、従来の充填密
度では過充電時の負極での酸素ガス吸収に伴う発熱反応
量が増大し、正極温度が上昇するためと考えられる。し
かし、正極1の活物質の充填密度を2.9g/cc以下
の低い範囲に設定することによって、厚みを大きくして
も電池の高率充放電特性および高温充電特性の低下を抑
制することができる。
【0021】高率充放電特性の低下が抑制されるのは、
活物質充填密度が緩和されるので、厚みが大きくなって
も電極中の空隙に電解液が十分確保されることとなり、
イオンの移動が妨げられないためと考えられる。また、
高温充電特性の低下が抑制されるのは、電解液が電極中
に十分に確保されるため、正極でのトータル比熱が上昇
することにより正極の温度上昇が抑制されるためと考え
られる。
【0022】正極の厚みを0.80mmとした場合、高
率充放電特性や高温充電特性は、充填密度が低いほど効
果はあるが、従来(正極厚さ0.6mm)と比べ高い電
池容量を得るためには、2.5g/cc−void以上
に設定することが必要と思われる。また、正極1の基体
であるニッケル3次元多孔体としては、厚み方向の平均
孔数が3.6〜5.6個/mmのものを用いている。
【0023】過放電の過程では活物質間のコバルト化合
物が水酸化ニッケル粒子内部に拡散して活物質間の導電
性が低下し、正極の厚みが大きくなると活物質間の導電
性低下の影響が顕著に現れて過放電特性が低下する傾向
があるが、このように基体の厚み方向の平均孔数が3.
6個/mm以上のものを用いれば、基体と活物質との接
触が良好となり、基体−活物質間の抵抗による電圧降下
が小さくなり、過放電特性および高率充放電特性を向上
させる効果がある。
【0024】一方、平均孔数が5.6個/mmを越える
と、特性向上の効果はあるが、活物質充填作業において
抵抗が増して充填しにくくなり生産性が低下する。 (正極活物質についての説明)正極活物質としては、ニ
ッケル電極の活物質に通常用いられている水酸化ニッケ
ルを主成分とする粉末を用いることができるが、水酸化
ニッケルの表面にナトリウムを含有する高次のコバルト
化合物からなる被覆層が形成された複合体粒子に対し
て、2価以下のコバルト化合物,金属イットリウムまた
はイットリウム化合物が添加された混合粉末を用いるこ
とが好ましい。
【0025】ここで被覆層を形成する高次のコバルト化
合物は、導電性が良好であるため活物質の利用率を向上
させ、これにナトリウムが含有されていることによっ
て、更に導電性の向上効果が高められるものと考えられ
る。被覆層におけるナトリウムの含有量としては、複合
体粒子に対して0.1〜10重量%が適当である。
【0026】また、このように2価以下のコバルト化合
物を添加することによって、それが初回充電時に上記高
導電性水酸化ニッケル(ナトリウム含有コバルト化合物
被覆水酸化ニッケル)の粒子間、あるいは当該粒子−ニ
ッケル3次元多孔体間に導電性ネットワークを形成し、
さらに、導電性が向上される。また、金属イットリウム
やイットリウム化合物を添加することによって、過放電
時、被覆層に含まれるコバルトが水酸化ニッケル粒子内
部へ拡散するのを抑制することができるので、電池の過
放電特性および高率充放電特性は損なわれにくい。
【0027】また、金属イットリウムやイットリウム化
合物を添加することによって正極の酸素発生過電圧が増
大し、高温での充電効率も向上する。なお、水酸化ニッ
ケルを主成分とする粉末中に、亜鉛、カドミウム、カル
シウム、マグネシウム、ビスマス、アルミニウムおよび
イットリウムの何れか一元素あるいは複数元素の混合物
を固溶させてもよい。
【0028】上記のような正極活物質は、次のようにし
て作成することができる。硫酸ニッケル水溶液を攪拌し
ながら、アルカリでpHを調整して水酸化ニッケル粒子
を作製する。ここで、硫酸ニッケル溶液中に亜鉛,カド
ミウム,コバルトの塩等を混合しておけば、これらを固
溶させた水酸化ニッケル粒子を作製することができる。
【0029】水酸化ニッケルを主成分とする粒子を分散
させた水溶液を攪拌しながら、硫酸コバルト水溶液と水
酸化ナトリウム水溶液とを滴下してpHを弱アルカリ性
に維持することによって、水酸化ニッケルの結晶を核と
し、その表面に水酸化コバルトが析出した粒状物が生成
する。この粒状物を攪拌しながら、これに水酸化ナトリ
ウム水溶液を加えて含浸させると共に所定温度(50〜
200℃)で加熱するというアルカリ熱処理を行う。
【0030】このアルカリ熱処理で、表面の水酸化コバ
ルトの一部が高次化されると共にナトリウムが含有さ
れ、水酸化ニッケルの結晶の状態も電池の過放電特性に
とって有利に変化すると考えられる。そして、このよう
にアルカリ熱処理した粒状物に対して、2価以下のコバ
ルト化合物(例えば、水酸化コバルト粉末),イットリ
ウム,イットリウム化合物(例えば、三酸化二イットリ
ウム,炭酸イットリウム,フッ化イットリウム),或は
これらの混合物を添加し混合することによって、正極活
物質が作製される。
【0031】コバルト化合物,イットリウム,イットリ
ウム化合物等の添加量は、活物質全体に対して0.05
〜5重量%が適当である。なお、高次のコバルト化合物
の被覆層を形成する方法としては、金属コバルトを水酸
化ニッケル粒子に添加して付着させ、その後同様にアル
カリ熱処理する方法もある。
【0032】さらに、上記の正極活物質において、被覆
層のコバルト化合物が高次化されていない場合でも、ナ
トリウムが含有されていれば、ある程度の高率充放電特
性や過放電特性を向上する効果があるものと考えられ
る。 〔実施の形態2〕図2は、本実施の形態に係る角形アル
カリ蓄電池の斜視図である。
【0033】この角形アルカリ蓄電池は、ニッケル活物
質を含む複数枚の正極21と水素吸蔵合金を含有する複
数枚の負極22とがセパレータ23を介して積層されて
なる直方体状の電極群24と、これらを収容する外装缶
25等からなるニッケル−水素アルカリ蓄電池であっ
て、電極群24にはアルカリ電解液が含浸され、電極群
24と外装缶25との間は絶縁シート26で仕切られて
いる。
【0034】そして、外装缶25の上面25aには、正
極21と接続された正極端子27,負極22と接続され
た負極端子28,安全弁29が設けられている。正極2
1及び負極22は、長方形の平板状であるが、ニッケル
3次元多孔体及び正極活物質等の基本的な構成は、実施
の形態1の正極1及び負極2と同様である。
【0035】この正極21においても、圧延後の厚さは
0.80mm〜1.00mmの範囲に設定されており、
正極活物質の充填密度は、2.5〜2.9g/ccの範
囲に設定されている。このように正極21を従来の0.
6mm程度より厚くすることによって、セパレータ23
の枚数を少なくし、その分正極21の容量を大きく設定
できる。
【0036】これによって、実施の形態1の場合と同様
の理由で、電池の高率充放電特性や高温充電特性、ま
た、過放電特性の低下を抑制することができる。。
【0037】
【実施例】
〔実施例1〕 (ニッケル正極の作製)硫酸コバルト13.1gの水溶
液1リットルに、亜鉛:2.5重量%,コバルト:1重
量%が固溶した水酸化ニッケル粉末を入れ、これを攪拌
しながら1Mの水酸化ナトリウム水溶液を徐々に滴下
し、反応中pHを11に保持することによって、水酸化
ニッケル粒子を核とし、その表面に水酸化コバルトの被
覆層が形成された粒状物を作製した。
【0038】このようにして作製された粒状物を分取し
て洗浄,乾燥する(粉末A)。そして、粉末Aをビーカ
中で攪拌しながら、これに25重量%の水酸化ナトリウ
ム水溶液を重量比で10倍量加えて含浸させ、8時間、
攪拌しながら空気中,85℃で加熱処理することによる
アルカリ熱処理した。これを分取,水洗および脱水して
65℃で乾燥することによって、水酸化コバルト被覆層
に1重量%のナトリウムを含有する複合体粒子(粉末B
とする)を作製した。
【0039】このアルカリ熱処理工程で、水酸化コバル
トの一部が高次化されると共に、ナトリウムが含有され
る。このようにして得られた複合体粒子である粉末B
と、水酸化コバルト,酸化亜鉛,三酸化二イットリウム
(Y23)を表1に示す所定の重量比(重量%)で混合
することによって活物質を作製した。
【0040】
【表1】 以上のようにして作製したニッケル活物質を用いて、次
のように正極を作製した。活物質粉末100重量部に対
して0.2wt%のヒドロキシプロピルセルロース水溶
液を50重量部とを混合し活物質スラリー液とした。
【0041】この活物質スラリー液を、多孔度95%,
厚み2.1mmで、厚み方向に4.0個/mmの平均孔
数を有するニッケル3次元多孔体である発泡ニッケル基
体に、充填し、乾燥後、所定の厚み(0.80,0.9
0,1.00mm)に圧延して、50mm×50mmの
寸法に切断し、正極1〜15を作製した。ここで、圧延
後の活物質充填密度が所定の値(2.5,2.6,2.
7,2.8,2.9g/cc−void)となるように
設定した。
【0042】下記表2には、作製した正極1〜15につ
いて、厚みと活物質充填密度(g/cc−void)が
示されている。
【0043】
【表2】 [ニッケル3次元多孔体の厚み方向の孔数の計数]電子
顕微鏡によって50箇所で所定径の円形状の孔に換算し
て計数し、その平均値を算出した。 [充填密度の測定方法]まず正極の重量と体積を測定し
ておく。
【0044】次に、正極を溶媒中、超音波洗浄器で洗浄
することによって正極活物質を脱落させ、乾燥したのち
残された発泡ニッケルの重量を測定する。その重量値を
ニッケル比重で除して発泡ニッケルの体積を求め、これ
と先に測定した正極の体積との差を正極の孔の体積とす
る。一方、溶媒で脱落されたものを乾燥しその重量も測
定し、その値を正極に保持されていた正極活物質の重量
とする。
【0045】そして、孔の体積に対する正極活物質の重
量の値を、正極における正極活物質の充填密度とする。 [ナトリウム含有量の測定]水酸化コバルト被覆層中の
ナトリウム含量の測定は原子吸光分析法により行い、粉
末Bでのナトリウム含量を算出し、その数値からアルカ
リ熱処理を施す前段階の粉末Aのナトリウム含量を減算
した。
【0046】(負極の作製)市販の金属元素をMmNi
3.4Co0.8Al0.2Mn0.6となるように秤量し、高周波
溶解炉にて溶解したのち、この溶湯を鋳型に流し込み、
水素吸蔵合金インゴットを作製した。次にこのインゴッ
トをあらかじめ阻粉砕したのち、不活性ガス雰囲気中で
平均粒径が150μm程度になるまで機械的に粉砕を行
った。
【0047】この合金粉末に結着剤としてポリエチレン
オキサイド等、および、適量の水を加えて混合してスラ
リーを作製した。このスラリーをパンチングメタルから
なる集電体の両面に塗着した。塗着量は、圧延のちの活
物質密度が5g/ccとなるように調整した。その後、
乾燥、圧延を行ったのち、50×50mmの寸法に切断
して負極とする。
【0048】(電池の作製)そして、前記各正極と負極
を用いて角形の密閉式ニッケル−水素蓄電池を次のよう
にして作製した。まず、所定寸法に切断した正極を厚み
0.2mmのポリプロピレン製不織布からなるセパレー
タで包み、この正極を理論容量比が正極の1.8倍以上
となるような十分大きな容量を持つ負極2枚で挟んで電
極群とする。この電極群をこれよりも若干大きめのサイ
ズの外装缶に挿入し、これにLiOHおよびNaOHを
含有した7〜8.5NのKOH水溶液を注入したのち、
正極リード線が溶接された封口体とこの外装缶とをレー
ザーにて溶接した。
【0049】なお、電極群の厚みが一定となるように負
極厚みは正極厚みに応じて調整し、電極群の電池内の占
有体積を一様にしたものを作製した。 (実験1)正極1〜15を用いて作製された各電池およ
び比較例の電池について、高率放電特性を評価し、正極
の厚み及び活物質充填密度と高率放電特性との関係を調
べた。
【0050】比較例の電池は、表2に示すように厚みを
0.70mmとし、また、活物質充填密度を3.0,
3.1,3.2g/cc−voidとした以外は正極8
と同様にして作製された正極38〜54を用いて作製し
た。高率放電特性の評価は以下のようにして行った。 [電池活性化]まず、正極活物質1g当たり30mA
(以下、正極活物質1g当たりの電流値mAを単にmA
/gと表記する。)の電流値で16時間充電し、次いで
60mA/gの電流値で電池電圧が1.0Vに達するま
で放電するというサイクルを6サイクル繰り返して電池
を活性化した。この6サイクル目の放電容量(mAh,
表2の電池容量)を測定し、この容量を正極活物質1g
当たりの容量(以下、基準容量と表記する。mAh/
g)を算出した。
【0051】[高率放電特性の評価]次に、基準容量測
定後の電池を30mA/gの電流値で16時間充電し、
1時間の休止の後、300mA/gの電流値で電池電圧
が1.0Vに達するまで放電し、このときの正極活物質
1g当たり放電容量の各電池の基準容量に対する割合
(放電容量/基準容量;%)を高率放電特性とした。
【0052】実験の結果を表2に示す。この表では高率
放電特性の値は、正極8の電池の場合を100とした相
対値で示している。なお、以下の表4〜表8においても
高率放電特性,過放電特性および基準容量の値は同様
に、正極8を用いた電池の場合を100とした相対値で
表記する。これに示すように、正極厚みが0.7mmで
は充填密度が3.0〜3.2g/cc−voidと大き
いものでも、高率放電特性の低下は殆どみられない。一
方、充填密度が3.0〜3.2g/cc−voidの場
合、正極厚みが0.80mm以上では厚みが大きくなる
ほど特性低下の割合が大きいが、充填密度を2.9g/
cc−void以下に規制することにより、特性低下は
抑制されることがわかる。
【0053】本実験ではニッケル3次元多孔体の幅方向
の孔数が4.0個/mmのものを用いて行ったが、孔数
の少ないものを用いた場合でも、同様の傾向があること
を確認した。 (実験2)前記正極8を用いた電池において、活物質に
おける水酸化コバルトの添加形態を変えた場合の高率放
電特性および過放電特性について検討した。
【0054】比較例の電池には、亜鉛:2.5重量%、
コバルト:1重量%が固溶した水酸化ニッケル粉末10
0重量部と水酸化コバルト粉末7.85重量部とを混合
した粉末C(粉末Bの水酸化コバルト量と同量の水酸化
コバルトを含有することになる。)と酸化亜鉛、水酸化
コバルト、三酸化二イットリウムとを正極8と同様の比
率で混合して活物質とし、正極8と同様にして作製した
正極56を用いて作製した。
【0055】また、粉末Cの代わりに粉末Aを用いて正
極56と同様にして作製した正極55も用いた。過放電
特性の評価は以下のようにして行った。 [過放電特性の評価]前記基準容量測定後の電池を30
0mA/gの電流値で、電池電圧がピークに達し、ピー
ク電圧値からの電圧降下量(−ΔV値)が10mVに達
するまで充電を行う。そして、1時間休止ののち300
mA/gの電流値で電池電圧が1.0Vに達するまで放
電を行う。ここでこのときの放電容量を初回値として記
録しておき、引き続いて15mA/gの電流値で16時
間の強制放電を行う。このような操作を5サイクル繰り
返し、5サイクル目の放電容量を測定する。このときの
放電容量の初回値に対する割合(5サイクル目/初回
値;%)を電池の過放電特性とした。
【0056】表3に実験の結果を示す。
【0057】
【表3】 これに示すように、正極8を用いた電池は、同じ水酸化
コバルト量である正極56を用いた電池に比べ高率放電
特性が優れるのは、その正極8において導電性付与剤で
ある水酸化コバルトが水酸化ニッケル粒子表面に均一に
被覆され、かつ、アルカリ熱処理によってコバルトが高
次化されるとともにナトリウムを含有させるので、活物
質の導電性がより向上するためと考えられる。
【0058】また、正極8を用いた電池では、正極56
を用いた電池に比べて過放電特性が優れるのは、水酸化
ニッケル粒子表面のコバルト化合物が過放電状態にあっ
ても安定であり、水酸化ニッケル粒子内へのコバルトの
拡散が防止されるためと考えられる。 〔実施例2〕本実施例の電池は、ニッケル3次元多孔体
の厚み方向の平均孔数を3.6〜5.6個/mmと変化
させた以外は前記実験1で最も優れていた正極8と同様
にして作製された正極16〜21を用い、実施例1の電
池と同様にして作製されたものである(表4参照)。
【0059】なお、電池の作製方法については、以降の
各実施例でも実施例1と同様である。
【0060】
【表4】 (実験3)前記正極8,正極16〜21を用いた電池お
よび比較例の電池について高率充放電特性および過放電
特性を評価し、ニッケル3次元多孔体の厚み方向の孔数
との関係を調べた。
【0061】比較例の電池は、表4に示すようにニッケ
ル3次元多孔体の厚み方向の孔数を3.0,3.2,
3.3,3.45,3.5と変化させて正極8と同様に
して作製された正極57〜61を用いて作製した。表4
に実験の結果を示す。これに示すようにニッケル3次元
多孔体の厚み方向の平均孔数が、3.6個/mm未満で
は各特性が低下するが、3.6個/mm以上に設定すれ
ば、高率放電特性及び過放電特性が良好であることがわ
かる。
【0062】〔実施例3〕本実施例の電池は、活物質に
おける三酸化二イットリウムの添加量を0.05〜5重
量%の範囲で変化させた以外は、前記正極8と同様にし
て作製された正極22〜25を用いたものである(表5
参照)。
【0063】
【表5】 (実験4)本実験では、正極8,正極22〜25を用い
た電池および比較例の電池の高率放電特性および過放電
特性を評価し、それら特性と三酸化二イットリウムの添
加量との関係について調べた。
【0064】比較例の電池は、表5に示すように三酸化
二イットリウムを0,0.01,7.5,10重量部と
変化させて正極8と同様にして作製された正極62〜6
5を用いて作製した。実験結果を表5に示した。これに
示すように両特性を維持する上で三酸化二イットリウム
の添加量は、0.05重量%〜5重量%が最適であるこ
とがわかる。
【0065】添加量が0.05重量%未満の場合に過放
電特性が低下するのは、過放電時に被覆層に含まれるコ
バルトの水酸化ニッケル粒子内部への拡散を十分に抑制
することができないためと考えられる。一方、添加量が
5重量%を越えると高率放電特性が低下するのは、一つ
には活物質間の導電性が低下するため、並びに、主活物
質である水酸化ニッケルの相対量が減少し、電極容量が
低下するためであると考えられる。
【0066】なお、本実験ではイットリウム化合物とし
て三酸化二イットリウムを用いたが、金属イットリウ
ム,炭酸イットリウム,フッ化イットリウムを用いた場
合でも同様の効果があることを確認した。 〔実施例4〕本実施例の電池は、粉末Bと混合する水酸
化コバルトの添加量を活物質に対して0.05〜5重量
%の範囲で変化させてある以外は正極8と同様に作製さ
れた正極26〜29を用いたものである(表6参照)。
【0067】
【表6】 (実験5)本実験では、正極8,正極26〜29を用い
た電池および比較例の電池について高率放電特性および
過放電特性を評価し、活物質中の水酸化コバルトの添加
量との関係について調べた。
【0068】比較例の電池は、表6に示すように水酸化
コバルトの添加量を0,0.01,7.5,10重量部
と変化させて正極8と同様に作製された正極66〜69
を用いて作製した。実験結果を表6に示した。これに示
すように両特性を維持する上で、水酸化コバルトの添加
量は、活物質全体に対して0.05重量%〜5重量%が
好ましことがわかる。
【0069】水酸化コバルトの添加量が0.05重量%
未満になると高率放電特性が低下するのは、2価以下の
コバルトによる導電性ネットワークが十分形成されず、
さらに、接触抵抗を低減するに到らないからと考えられ
る。また、前述の過放電特性向上に効果のある酸化イッ
トリウムの添加による導電性の低下を抑制できないため
と考えられる。
【0070】一方、添加量が5重量%を越えると過放電
特性が低下する。これは、2価以下のコバルト化合物が
多すぎると、初充電時に十分高次化が進行せず、コバル
トの平均価数が2近くになり、この状態で過放電状態に
おかれると活物質粒子間のコバルトが水酸化ニッケル粒
子内部に拡散し、結果として導電性ネットワークが破壊
されるためと考えられる。また、前述の過放電特性に効
果のあるナトリウム含有コバルト化合物が相対的に少な
くなるためとも考えられる。
【0071】なお、本実験では2価以下のコバルト化合
物として水酸化コバルトを用いたが、金属コバルト、酸
化コバルトを用いた場合にも同様の結果を得た。 〔実施例5〕本実施例の電池では、アルカリ熱処理の水
酸化ナトリウム水溶液の濃度を10,15,35,40
重量%と変化させることにより、含有ナトリウム量が
0.1,0.5,5,10重量%の粉末Bを作製してあ
る以外は正極8と同様に作製された正極30〜33を用
いたものである(表7参照)。
【0072】
【表7】 (実験6)本実験では、正極8,正極30〜33を用い
た電池および比較例の電池の基準容量を測定し、ナトリ
ウム含有量と基準容量との関係を調べた。比較例の電池
は、表7に示すように水酸化ナトリウム水溶液の濃度が
5重量%,45重量%,50重量%と変化させて得た粉
末Bから正極8のようにして作製した正極70〜72を
用いて作製した。実験結果を表7に示す。
【0073】これに示すように、活物質利用率の高い非
焼結式ニッケル極を得る上で、ナトリウム含有コバルト
化合物のナトリウム含有率は粉末Bに対して0.1〜1
0重量%が好ましいことがわかる。 〔実施例6〕本実施例の電池は、活物質作製時のアルカ
リ熱処理における処理温度を50,100,150,2
00℃と変化させて粉末Bを作製してある以外は、正極
8と同様に作製された正極34〜37を用いたものであ
る(表8参照)。
【0074】
【表8】 (実験7)本実験では、正極8,正極34〜37を用い
た電池および比較例の電池の基準容量(mAh/g)を
測定し、アルカリ熱処理の処理温度と基準容量との関係
について調べた。
【0075】比較例の電池は、処理温度を45℃,22
0℃および250℃と変化させて得た粉末Bから正極8
のようにして作製した正極73〜75を用いて作製し
た。実験結果を表8に示した。これに示すように、活物
質利用率の高い非焼結式ニッケル極を得る上で、50〜
200℃の温度で加熱処理することが好ましいことがわ
かる。
【0076】これは50℃未満になるとコバルト高次化
のための酸化が十分なされず、一方、200℃を越える
と酸化が進行し過ぎてしまって、水酸化ニッケルまでも
酸化されるためと考えられる。
【0077】
【発明の効果】以上述べてきたように、本発明のアルカ
リ蓄電池用比非焼結式ニッケル極によれば、その厚みが
0.80mm以上の場合にも、その活物質充填密度を
2.9g/cc−void以下に設定することにより、
電池の高容量化を実現すると共に、高率充放電特性およ
び高温充電特性の低下を抑制することができる。この場
合、2.5g/cc−void以上の範囲において、よ
り望ましい。
【0078】また、ニッケル3次元多孔体の厚み方向の
孔数は平均値で3.6個/mm以上にすることで、厚み
が大きくなっても活物質間の接触が十分になり、ニッケ
ル多孔体と活物質間の電圧効果が軽減されるので、過放
電効率の低下を抑制することができる。この場合、孔数
は平均値で5.6個/mm以下の範囲でれば、活物質を
ニッケル3次元多孔体に充填しやすいのでより望まし
い。
【図面の簡単な説明】
【図1】実施の形態1の係る円筒形アルカリ蓄電池の斜
視図である。
【図2】実施の形態2に係る角形アルカリ蓄電池の斜視
図である。
【符号の説明】
1 ニッケル正極 2 負極 3 セパレータ 4 電極群 5 負極集電体 6 外装缶 7 正極集電体 8 弁板 9 おさえ板 10 コイルスプリング 11 ガスケット 12 封口板 13 正極端子 21 ニッケル正極 22 負極 23 セパレータ 24 電極群 25 外装缶 26 絶縁シート 27 正極端子 28 負極端子 29 安全弁
───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 尊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】 水酸化ニッケルを主体とする活物質粉末
    がニッケル3次元多孔体に充填,圧延されてなるアルカ
    リ蓄電池用非焼結式ニッケル極であって、 圧延後の厚みは0.80mm以上であり、かつ、活物質
    充填密度は2.9g/cc−void以下であることを
    特徴とするアルカリ蓄電池用非焼結式ニッケル極。
  2. 【請求項2】 前記アルカリ蓄電池用非焼結式ニッケル
    極は、活物質充填密度が2.5g/cc−void以上
    であることを特徴とする請求項1記載のアルカリ蓄電池
    用非焼結式ニッケル極。
  3. 【請求項3】 前記ニッケル3次元多孔体は、厚み方向
    の孔数が平均値で3.6個/mm以上であることを特徴
    とする請求項1若しくは2記載のアルカリ蓄電池用非焼
    結式ニッケル極。
  4. 【請求項4】 前記ニッケル3次元多孔体は、厚み方向
    の孔数が平均値で5.6個/mm以下であることを特徴
    とする請求項3記載のアルカリ蓄電池用非焼結式ニッケ
    ル極。
  5. 【請求項5】 前記活物質粉末は、 水酸化ニッケル粒子の表面にナトリウム含有コバルト化
    合物からなる被覆層が形成された複合体粒子に、2価以
    下のコバルト化合物と 金属イットリウム、および/または、イットリウム化合
    物が添加されてなることを特徴とする請求項1〜4何れ
    かに記載のアルカリ蓄電池用非焼結式ニッケル極。
  6. 【請求項6】 前記複合体粒子は、水酸化ニッケル粒子
    の表面に金属コバルトまたはコバルト化合物が添加され
    たものに、水酸化ナトリウム水溶液を添加し、酸素存在
    下で加熱処理することにより形成されたものであること
    を特徴とする請求項5記載のアルカリ蓄電池用非焼結式
    ニッケル極。
  7. 【請求項7】 前記被覆層には、複合体粒子に対して
    0.1〜10重量%のナトリウムが含有されていること
    を特徴とする請求項5又は6記載のアルカリ蓄電池用非
    焼結式ニッケル極。
  8. 【請求項8】 前記ナトリウム含有コバルト化合物は、
    ナトリウム含有水酸化コバルト、ナトリウム含有オキシ
    水酸化コバルトまたはこれらの混合物であることを特徴
    とする請求項5〜7何れかに記載のアルカリ蓄電池用非
    焼結式ニッケル極。
  9. 【請求項9】 前記2価以下のコバルト化合物は、活物
    質粉末に対して0.05〜5重量%含有されていること
    を特徴とする請求項5〜8何れか記載のアルカリ蓄電池
    用非焼結式ニッケル極。
  10. 【請求項10】 前記金属イットリウムおよび/または
    イットリウム化合物は、活物質粉末に対して0.05〜
    5重量%含有されていることを特徴とする請求項5〜9
    何れかに記載のアルカリ蓄電池用非焼結式ニッケル極。
  11. 【請求項11】 前記イットリウム化合物は、三酸化二
    イットリウム、炭酸イットリウムおよびフッ化イットリ
    ウムからなる群より選ばれたものであることを特徴とす
    る請求項10記載のアルカリ蓄電池用非焼結式ニッケル
    極。
  12. 【請求項12】 前記水酸化ニッケル粒子には、 コバルト、亜鉛、カドミウム、カルシウム、マグネシウ
    ム、ビスマス、アルミニウムおよびイットリウムからな
    る群より選ばれた少なくとも1種の元素が固溶されてい
    ることを特徴とする請求項5〜11何れかに記載のアル
    カリ蓄電池用非焼結式ニッケル極。
JP00326997A 1997-01-10 1997-01-10 アルカリ蓄電池用非焼結式ニッケル極 Expired - Lifetime JP3557063B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00326997A JP3557063B2 (ja) 1997-01-10 1997-01-10 アルカリ蓄電池用非焼結式ニッケル極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00326997A JP3557063B2 (ja) 1997-01-10 1997-01-10 アルカリ蓄電池用非焼結式ニッケル極

Publications (2)

Publication Number Publication Date
JPH10199520A true JPH10199520A (ja) 1998-07-31
JP3557063B2 JP3557063B2 (ja) 2004-08-25

Family

ID=11552744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00326997A Expired - Lifetime JP3557063B2 (ja) 1997-01-10 1997-01-10 アルカリ蓄電池用非焼結式ニッケル極

Country Status (1)

Country Link
JP (1) JP3557063B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279993A (ja) * 2001-03-22 2002-09-27 Hitachi Maxell Ltd アルカリ蓄電池
JP2006059807A (ja) * 2004-07-23 2006-03-02 M & G Eco Battery Institute Co Ltd ニッケル電極及びそれを用いたアルカリ蓄電池
JP2006100154A (ja) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd アルカリ蓄電池およびその製造方法
CN1301564C (zh) * 2003-08-04 2007-02-21 三洋电机株式会社 圆筒形碱性蓄电池
US8309243B2 (en) 2003-08-04 2012-11-13 Sanyo Electric Co., Ltd. Cylindrical alkaline storage battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056762A (ja) * 1991-06-26 1993-01-14 Shin Kobe Electric Mach Co Ltd 極板用スポンジ状金属多孔体の製造方法
JPH056763A (ja) * 1991-06-26 1993-01-14 Shin Kobe Electric Mach Co Ltd 極板用スポンジ状金属多孔体の製造方法
JPH05205735A (ja) * 1992-01-24 1993-08-13 Yuasa Corp 電池用電極の製造法
JPH07130365A (ja) * 1993-11-05 1995-05-19 Matsushita Electric Ind Co Ltd アルカリ蓄電池
JPH08130012A (ja) * 1994-10-28 1996-05-21 Furukawa Battery Co Ltd:The アルカリ二次電池用ニッケル極

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056762A (ja) * 1991-06-26 1993-01-14 Shin Kobe Electric Mach Co Ltd 極板用スポンジ状金属多孔体の製造方法
JPH056763A (ja) * 1991-06-26 1993-01-14 Shin Kobe Electric Mach Co Ltd 極板用スポンジ状金属多孔体の製造方法
JPH05205735A (ja) * 1992-01-24 1993-08-13 Yuasa Corp 電池用電極の製造法
JPH07130365A (ja) * 1993-11-05 1995-05-19 Matsushita Electric Ind Co Ltd アルカリ蓄電池
JPH08130012A (ja) * 1994-10-28 1996-05-21 Furukawa Battery Co Ltd:The アルカリ二次電池用ニッケル極

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279993A (ja) * 2001-03-22 2002-09-27 Hitachi Maxell Ltd アルカリ蓄電池
CN1301564C (zh) * 2003-08-04 2007-02-21 三洋电机株式会社 圆筒形碱性蓄电池
US7378182B2 (en) 2003-08-04 2008-05-27 Sanyo Electric Co., Ltd. Cylindrical alkaline storage battery
US8309243B2 (en) 2003-08-04 2012-11-13 Sanyo Electric Co., Ltd. Cylindrical alkaline storage battery
JP2006059807A (ja) * 2004-07-23 2006-03-02 M & G Eco Battery Institute Co Ltd ニッケル電極及びそれを用いたアルカリ蓄電池
JP2006100154A (ja) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd アルカリ蓄電池およびその製造方法

Also Published As

Publication number Publication date
JP3557063B2 (ja) 2004-08-25

Similar Documents

Publication Publication Date Title
KR100286210B1 (ko) 알칼리축전지용 니켈양극 및 그 양극을 사용한 니켈.금속수소화물전지
JP2004179064A (ja) ニッケル水素二次電池
JP5959003B2 (ja) ニッケル水素二次電池及びニッケル水素二次電池用の負極
JP6422111B2 (ja) ニッケル水素二次電池
JP6730055B2 (ja) アルカリ二次電池用の負極、この負極を含むアルカリ二次電池及びこの負極の製造方法
JP5754802B2 (ja) ニッケル水素二次電池用の負極及びこの負極を用いたニッケル水素二次電池
JP3557063B2 (ja) アルカリ蓄電池用非焼結式ニッケル極
JP2016149299A (ja) ニッケル水素二次電池
JPH09102307A (ja) アルカリ蓄電池
JP2004235088A (ja) ニッケル水素蓄電池
JP2000012011A (ja) ニッケル−水素蓄電池の製造方法
JP3639494B2 (ja) ニッケル−水素蓄電池
JP7128069B2 (ja) アルカリ二次電池用の正極及びこの正極を備えたアルカリ二次電池
JP2019091533A (ja) ニッケル水素二次電池用の負極及びこの負極を含むニッケル水素二次電池
JP7125218B2 (ja) アルカリ二次電池用の負極及びアルカリ二次電池
JP7495196B2 (ja) アルカリ二次電池用の正極及びアルカリ二次電池
JPH0714578A (ja) アルカリ蓄電池用ニッケル正極および密閉型ニッケル−水素蓄電池
JP7197250B2 (ja) 二次電池
JP3393978B2 (ja) アルカリ二次電池
JP3462563B2 (ja) 水素吸蔵合金電極
JP2017182925A (ja) アルカリ二次電池用の負極及びこの負極を含むアルカリ二次電池
JP4567990B2 (ja) 二次電池
JP2005056679A (ja) 円筒型アルカリ蓄電池
JPH1021904A (ja) アルカリ蓄電池
JP2023144769A (ja) 亜鉛電池

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term