WO2013099863A1 - 液晶ポリエステルマルチフィラメント - Google Patents

液晶ポリエステルマルチフィラメント Download PDF

Info

Publication number
WO2013099863A1
WO2013099863A1 PCT/JP2012/083461 JP2012083461W WO2013099863A1 WO 2013099863 A1 WO2013099863 A1 WO 2013099863A1 JP 2012083461 W JP2012083461 W JP 2012083461W WO 2013099863 A1 WO2013099863 A1 WO 2013099863A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polyester
polyester multifilament
fusion
fiber
Prior art date
Application number
PCT/JP2012/083461
Other languages
English (en)
French (fr)
Inventor
榮亮介
荻原由嗣
眞鍋隆雄
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48697348&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013099863(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201280064589.0A priority Critical patent/CN104024495A/zh
Priority to EP12862987.0A priority patent/EP2799600B1/en
Priority to ES12862987T priority patent/ES2873513T3/es
Priority to US14/367,966 priority patent/US20150004409A1/en
Priority to JP2013515437A priority patent/JP6183210B2/ja
Publication of WO2013099863A1 publication Critical patent/WO2013099863A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/08Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Definitions

  • the present invention relates to a liquid crystal polyester multifilament. Specifically, the present invention relates to a high-strength and high-modulus liquid crystal polyester multifilament suitable for industrial materials such as ropes, fishing nets, and tension members.
  • Liquid crystalline polyester fibers have extremely high strength and elastic modulus compared to general-purpose fibers because rigid molecular chains are highly oriented in the fiber axis direction, and are further solidified by heat treatment in fiber form.
  • the polymerization reaction proceeds, and the degree of polymerization of the liquid crystal polyester can be increased to further improve the performance.
  • a method of performing solid phase polymerization using fibers as a package shape is widely used industrially.
  • liquid crystal polyester multifilaments fusion between single fibers is likely to occur in the temperature range near the melting point at which the solid-state polymerization reaction can proceed, and the fusion part on the fiber surface peels off when unpacking from the package. Defects such as streak and fibrillation are likely to occur.
  • the rigid molecular chain is highly oriented in the fiber axis direction, but the interaction in the direction perpendicular to the fiber axis is low, so that fibrils may be generated starting from such defects. The occurrence of defects and fibrils causes deterioration of fiber properties, deterioration of workability in higher processing steps, and deterioration of product quality and performance.
  • polyarylate fiber comprising 0.03 to 5.0% by mass of inorganic fine particles having an average particle size of 0.01 to 15 ⁇ m, mainly composed of silicic acid having a Mohs hardness of 4 or less, and magnesium (patented) Reference 4) and after solid-phase polymerization by adhering an anti-fusing agent to the liquid crystalline polyester fiber, the package comprising the solid-phase polymerized liquid crystalline polyester fiber is washed in the state of the package to remove the anti-fusing agent.
  • Patent Document 5 a method for producing a liquid crystal polyester fiber (refer to Patent Document 5), wherein the adhesion amount of the anti-fusing agent to the fiber is 4.0% by weight or less with respect to the fiber weight, and a specific five-component repeating structure
  • Patent Document 6 characterized by being composed of a liquid crystal polyester composed of units has also been proposed.
  • Patent Documents 1 to 5 it is impossible to uniformly apply the anti-fusing agent between the single fibers inside the multifilament only by applying the anti-fusing agent from one direction with an oiling roller or the like. It can be said that the inter-fusing suppression effect is insufficient.
  • Patent Document 6 it is difficult to think that the anti-fusing agent can be uniformly applied between the single fibers of the multifilament, and even when the number of filaments is 10 or 36 described in the examples, the effect of suppressing the fusion between the single fibers. Is not sufficient, the strength development is inferior. This becomes a serious problem as the number of filaments increases.
  • an object of the present invention is to provide a liquid crystal polyester multifilament with much less fusion between single fibers as compared with the prior art.
  • the liquid crystal polyester multifilament of the present invention has the following constitution. That is, A liquid crystal polyester multifilament having a fusion degree between single fibers of 0 to 20.
  • the manufacturing method of the liquid crystalline polyester multifilament of this invention has the following structure. That is, In at least one step selected from the following steps (1) and (2), the melt-spun liquid crystalline polyester multifilament is melted from application directions different from each other by 90 to 180 ° in a plane perpendicular to the yarn running direction. A method for producing a liquid crystal polyester multifilament in which an anti-sticking agent is adhered to the fiber surface.
  • (1) Melt spinning step (2) Rewinding step The liquid crystal polyester multifilament of the present invention preferably has 30 to 500 single fibers.
  • the liquid crystal polyester multifilament of the present invention preferably has a total fineness of 200 to 3,000 dtex.
  • the liquid crystal polyester multifilament of the present invention is preferably composed of the structural units (I), (II), (III), (IV) and (V) represented by the following chemical formula.
  • the structural unit (I) is 40 to 85 mol% with respect to the total of the structural units (I), (II) and (III), and the structural unit (II) is the structural unit (II).
  • ) And (III) is preferably 60 to 90 mol%, and the structural unit (IV) is preferably 40 to 95 mol% based on the total of the structural units (IV) and (V).
  • liquid crystal polyester multifilament of the present invention has a very low degree of fusion between single fibers of 0 to 20, the process passability in high-order processing is improved. In addition, since there are few defects due to fusion, it becomes a high-strength and high-elasticity fiber, which is useful for industrial materials.
  • the liquid crystal polyester used in the present invention refers to a polyester that exhibits optical anisotropy (liquid crystallinity) when heated and melted. This can be recognized by placing a sample made of liquid crystalline polyester on a hot stage, heating and heating in a nitrogen atmosphere, and observing the transmitted light of the sample with a polarizing microscope.
  • liquid crystal polyester used in the present invention examples include (a) a polymer of aromatic oxycarboxylic acid, (b) a polymer of aromatic dicarboxylic acid and aromatic diol, and aliphatic diol, (c) the above (a) and The copolymer of the said (b) etc. are mentioned, Especially the polymer comprised only by the aromatic is preferable. Polymers composed only of aromatics exhibit excellent strength and elastic modulus when made into fibers. Moreover, conventionally well-known method can be used for the polymerization prescription of liquid crystalline polyester.
  • examples of the aromatic oxycarboxylic acid include hydroxybenzoic acid, hydroxynaphthoic acid and the like, or alkyl, alkoxy and halogen substituted products thereof.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, naphthalenedicarboxylic acid, diphenylether dicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylethanedicarboxylic acid, and the like, or alkyl, alkoxy, and halogen substitution thereof. Examples include the body.
  • examples of the aromatic diol include hydroquinone, resorcin, dihydroxybiphenyl, naphthalene diol, and the like, or alkyl, alkoxy, and halogen-substituted products thereof.
  • examples of the aliphatic diol include ethylene glycol, propylene glycol, and butanediol. And neopentyl glycol.
  • the liquid crystal polyester used in the present invention can be copolymerized with other monomers as long as the liquid crystallinity is not impaired.
  • examples include adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
  • examples thereof include aliphatic dicarboxylic acids, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, polyethers such as polyethylene glycol, polysiloxanes, aromatic iminocarboxylic acids, aromatic diimines, and aromatic hydroxyimines.
  • liquid crystal polyester obtained by polymerizing the monomers and the like used in the present invention include a liquid crystal polyester in which a p-hydroxybenzoic acid component and a 6-hydroxy-2-naphthoic acid component are copolymerized, and a p-hydroxybenzoic acid component and 4 , 4'-dihydroxybiphenyl component, liquid crystalline polyester copolymerized with isophthalic acid component and / or terephthalic acid component, p-hydroxybenzoic acid component, 4,4'-dihydroxybiphenyl component, isophthalic acid component, terephthalic acid component and hydroquinone Examples thereof include liquid crystal polyester in which components are copolymerized.
  • a liquid crystal polyester composed of structural units (I), (II), (III), (IV) and (V) represented by the following chemical formula is particularly preferable.
  • the structural unit refers to a unit that can constitute a repeating structure in the main chain of the polymer.
  • the fiber has a good spinning property at the spinning temperature set between the melting point of the polymer and the thermal decomposition temperature, and a uniform fiber is obtained in the longitudinal direction. The rate can be increased.
  • the present invention it is important to combine components composed of diols that are not bulky and have high linearity like the structural units (II) and (III).
  • the molecular chains in the fiber have an ordered and less disturbed structure, and the crystallinity is not excessively increased and the interaction in the direction perpendicular to the fiber axis can be maintained.
  • excellent wear resistance is also obtained.
  • the structural unit (I) is preferably 40 to 85 mol%, more preferably 65 to 80 mol%, still more preferably 68 to 75 mol% with respect to the total of the structural units (I), (II) and (III). .
  • crystallinity can be made into an appropriate range, high intensity
  • the structural unit (II) is preferably 60 to 90 mol%, more preferably 60 to 80 mol%, still more preferably 65 to 75 mol%, based on the total of the structural units (II) and (III). By setting it as such a range, since crystallinity does not become high too much and the interaction of a fiber axis perpendicular
  • the structural unit (IV) is preferably 40 to 95 mol%, more preferably 50 to 90 mol%, still more preferably 60 to 85 mol%, based on the total of the structural units (IV) and (V).
  • the melting point of the polymer becomes an appropriate range, and has a good spinning property at a spinning temperature set between the melting point of the polymer and the thermal decomposition temperature. Uniform fibers can be obtained.
  • each structural unit of the liquid crystal polyester used in the present invention is as follows.
  • the liquid crystal polyester fiber of the present invention can be suitably obtained by adjusting the composition so as to satisfy the above conditions within this range.
  • Mw polystyrene equivalent weight average molecular weight of the liquid crystalline polyester used in the present invention is preferably 30,000 or more, and more preferably 50,000 or more.
  • Mw polystyrene equivalent weight average molecular weight
  • Mw is preferably less than 250,000, and more preferably less than 150,000.
  • Mw is a value determined by the method described in the examples.
  • the melting point of the liquid crystalline polyester of the present invention is preferably in the range of 200 to 380 ° C., more preferably 250 to 350 ° C., more preferably 290 to 340 ° C. from the viewpoint of melt spinning and heat resistance. is there.
  • fusing point is observation of the endothermic peak temperature ( Tm1 ) observed when the temperature rising conditions of 50 to 20 degree-C / min are measured in the differential calorimetry performed with a differential scanning calorimeter (DSC by Perkin Elmer). Then, after holding at a temperature of about T m1 + 20 ° C. for 5 minutes, the temperature is decreased to 50 ° C. at a temperature lowering rate of 20 ° C./min, and the endothermic peak temperature observed when the measurement is again performed at a temperature rising condition of 20 ° C./min. (T m2 ) was defined as the melting point.
  • Addition / combination means mixing two or more polymers, using one component or two or more components partially mixed in a composite spinning of two or more components, or using all of them.
  • other polymers include polyester, vinyl polymers such as polyolefin and polystyrene, polycarbonate, polyamide, polyimide, polyphenylene sulfide, polyphenylene oxide, polysulfone, aromatic polyketone, aliphatic polyketone, semi-aromatic polyesteramide, and polyether. Polymers such as ether ketone and fluororesin may be added.
  • the melting point is within the melting point of the liquid crystal polyester ⁇ 30 ° C. so as not to impair the spinning property, and to improve the strength and elastic modulus of the obtained fiber. Is preferably added or used in an amount of 50% by weight or less, more preferably 5% by weight or less, and most preferably no other polymer is added or used in combination.
  • the liquid crystalline polyester used in the present invention includes various metal oxides, inorganic substances such as kaolin and silica, colorants, matting agents, flame retardants, antioxidants and ultraviolet absorbers within the range not impairing the effects of the present invention.
  • additives such as infrared absorbers, crystal nucleating agents, fluorescent brighteners, end group capping agents, and compatibilizers may be contained in small amounts.
  • the manufacturing method of the liquid crystal polyester multifilament of the present invention can adopt a known method and is not limited at all.
  • the liquid crystal polyester multifilament obtained in the present invention has high strength, high elastic modulus, low water absorption, and has few defects and fibrils, and is excellent in workability in higher processing.
  • melt spinning a known method can be used for melt extrusion of the liquid crystalline polyester, but an extruder type extruder is preferably used in order to eliminate the ordered structure generated during polymerization.
  • the extruded polymer is measured by a known measuring device such as a gear pump via a pipe, and after passing through a filter for removing foreign matter, is guided to a base.
  • the temperature from the polymer pipe to the die is preferably not lower than the melting point of the liquid crystalline polyester and not higher than the thermal decomposition temperature, more preferably not lower than the melting point of the liquid crystalline polyester + 10 ° C. or higher and 400 ° C. or lower. More preferably, the melting point is + 20 ° C. or higher and 370 ° C. or lower.
  • the discharge is stabilized by making the temperature of the part close to the base higher than the temperature on the upstream side.
  • liquid crystal polyester fiber of the present invention it is better to improve the stability at the time of discharge and the stability of the thinning behavior.
  • industrial melt spinning one is necessary to reduce energy cost and improve productivity. Since a large number of base holes are perforated in the base, it is better to stabilize the discharge and thinning of each hole.
  • the hole diameter is preferably 0.03 mm or more and 1.00 mm or less, more preferably 0.05 mm or more and 0.8 mm or less, and further preferably 0.08 mm or more and 0.60 mm or less.
  • the L / D defined by the quotient obtained by dividing the land length L by the hole diameter D is preferably 0.5 or more and 3.0 or less, preferably 0.8 or more. 5 or less is more preferable, 1.0 or more and 2.0 or less are still more preferable.
  • the number of holes in one die is preferably 2 or more and 1,000 or less, more preferably 10 or more and 700 or less, and still more preferably 30 or more and 500 or less.
  • the introduction hole located immediately above the die hole is a straight hole having a diameter of 5 times or more the diameter of the die hole in terms of not increasing pressure loss. It is preferable to taper the connection part between the introduction hole and the base hole in order to suppress abnormal stagnation. However, the length of the taper part should be less than twice the land length without increasing pressure loss and stabilizing the streamline. This is preferable.
  • the polymer discharged from the mouthpiece hole passes through the heat retaining region and the cooling region, solidifies, and then taken up by a roller (godet roller) that rotates at a constant speed.
  • a roller godet roller
  • the heat retention region is excessively long, the yarn-forming property is deteriorated, so that it is preferably up to 400 mm from the base surface, more preferably up to 300 mm, and still more preferably up to 200 mm.
  • the temperature range is preferably 100 ° C. or higher and 500 ° C. or lower, more preferably 200 ° C. or higher and 400 ° C. or lower.
  • an inert gas, air, water vapor or the like can be used. However, it is preferable to use a parallel or annular air flow from the viewpoint of reducing the environmental load.
  • the take-up speed is preferably 50 m / min or more, more preferably 300 m / min or more, and further preferably 500 m / min or more for improving productivity. Since the liquid crystalline polyester used in the present invention has a suitable spinnability at the spinning temperature, the take-up speed can be increased. Although the upper limit is not particularly limited, the liquid crystal polyester used in the present invention is about 3,000 m / min from the viewpoint of spinnability.
  • the spinning draft defined by the quotient obtained by dividing the take-off speed by the discharge linear speed is preferably 1 or more and 500 or less, more preferably 5 or more and 200 or less, and still more preferably 12 or more and 100 or less. Since the liquid crystalline polyester used in the present invention has suitable spinnability, the draft can be increased, which is advantageous in improving productivity.
  • the polymer discharge rate is preferably set to 10 to 2,000 g / min, and preferably set to 30 to 1,000 g / min from the viewpoint of improving the spinning performance and productivity. More preferably, it is more preferably set to 50 to 500 g / min. By setting it to 10 to 2,000 g / min, a liquid crystal polyester can be obtained with good yarn forming properties.
  • the winding can be made into a package of a shape such as cheese, parn, corn or the like using a known winding machine, but it is preferably a cheese winding that can set the winding amount high.
  • OR oiling roller
  • the liquid crystal polyester fiber thus obtained is preferably subjected to solid phase polymerization in order to further improve the strength and elastic modulus.
  • Solid-phase polymerization can be processed into a package shape, a crushed shape, a tow shape (for example, on a metal net) or continuously as a thread between rollers, but the equipment can be simplified and produced. It is preferable to use a package shape from the viewpoint of improving the performance.
  • the melt-spun liquid crystal polyester multifilament is mutually bonded in a plane perpendicular to the yarn running direction in at least one step of the melt spinning step or the rewinding step.
  • An anti-fusing agent is attached to the fiber surface from different application directions by 90 to 180 °.
  • the vertical plane is not necessarily limited to a single plane, and may be a plurality of vertical planes. In the case of a plurality of vertical planes, the anti-fusing agent is applied in multiple stages.
  • the application direction means a normal direction in contact with the roller surface when an oiling roller is used, and an injection direction when an injection nozzle is used.
  • the timing at which the anti-fusing agent is attached to the melt-spun liquid crystalline polyester multifilament There is no limitation on the timing at which the anti-fusing agent is attached to the melt-spun liquid crystalline polyester multifilament. For example, a small amount is attached in the melt spinning process from melt spinning to winding, and then further added in the rewinding process. Is preferable in terms of increasing the adhesion efficiency.
  • the method of additionally attaching the anti-fusing agent using the oil bath dipping method and the two-way one-stage OR oiling method in the subsequent rewinding step is preferable because the anti-fusing agent can be uniformly attached to the surface of each single fiber.
  • the two-direction one-stage OR refueling method referred to here is a method in which, in the melt spinning step or the rewinding step, both side surfaces of the running yarn are brought into contact with a pair of opposed ORs to adhere the anti-fusing agent.
  • the application direction in the case of this two-direction one-stage OR refueling method is 180 °.
  • the application direction for each of the 4 stages is 180 °, and the application direction that becomes the reference in the OR of each stage is changed to the application direction that becomes the reference in the upper OR.
  • the angle may be shifted by an arbitrary angle, for example, 45 °, but may not be shifted.
  • the number of installations, the installation method, and the number of steps of the OR are not limited, but the adhesion direction of the anti-fusing agent to the fiber surface is 2 as described above. It is preferably more than the direction, more preferably more than 4 directions, still more preferably more than 8 directions, and most preferably more than 16 directions. In the present invention, when using a pair of opposing ORs, the adhesion direction of the anti-fusing agent to the fiber surface is two directions.
  • the adhesion direction of the anti-fusing agent to the fiber surface is four directions, and when four pairs of opposing ORs are used, the anti-fusing agent is directed to the fiber surface.
  • the adhesion direction is 8 directions, and when 8 pairs of opposed ORs are used, the adhesion direction of the anti-fusing agent to the fiber surface is 16 directions.
  • a single OR in addition to using a pair of opposed ORs, a single OR can be used in combination as necessary.
  • the anti-fusing agent By attaching the anti-fusing agent from two or more directions using a plurality of ORs, the anti-fusing agent can be uniformly attached to the surface of the multifilament single fiber, and the effect of suppressing the fusion between single fibers is remarkably exhibited.
  • the upper limit of the direction in which the anti-fusing agent is applied to the fiber surface is not particularly limited, but the effect of uniform adhesion of the anti-fusing agent is saturated at 32 or more directions.
  • the oil bath dipping method is a method in which the yarn is passed through an oil bath in which an anti-fusing agent is dispersed and filled, and the yarn is passed through a package for solid phase polymerization.
  • a method of attaching an anti-fusing agent to the surface of each single fiber using an injection nozzle is preferable because it has excellent uniform adhesion and is easy to handle.
  • the solvent for dispersing the solid anti-fusing agent water is preferable because it is easy to handle and has a low environmental load. Further, when the anti-fusing agent is a liquid, it is preferable to use a non-ionic, anionic or cationic emulsifier to emulsify the anti-fusing agent in water.
  • the anti-fusing agent used at this time is preferably one that is easily emulsified, has low reactivity, and is excellent in smoothness.
  • the solution may contain any surfactants used for ordinary oils and various additives for promoting the solid-phase polymerization reaction as long as they do not interfere with dispersion and emulsion. .
  • the anti-fusing agent used in the present invention is an agent that suppresses fusion between fibers when the agent is attached to the surface of each single fiber of a liquid crystal polyester multifilament and subjected to solid-phase polymerization, and known ones can be used.
  • inorganic particles, highly heat-resistant organic substances such as fluorine compounds, aromatic polyamides, polyimides, polyether ketones, dimethylpolysiloxane, diphenylpolysiloxane Polysiloxane compounds such as methylphenyl polysiloxane and modified products thereof, and mixtures thereof are preferred.
  • the inorganic particles referred to in the present invention are known inorganic particles, and examples include minerals, metal hydroxides such as magnesium hydroxide, metal oxides such as silica and alumina, carbonate compounds such as calcium carbonate and barium carbonate, In addition to sulfate compounds such as calcium sulfate and barium sulfate, carbon black and the like can be mentioned.
  • the inorganic particles are preferably handled in consideration of the coating process, and are preferably easily dispersed in water from the viewpoint of reducing the environmental load, and are preferably inert under solid-state polymerization conditions.
  • silica or silicate it is preferable to use silica or silicate.
  • a silicate a phyllosilicate having a layered structure is particularly preferable.
  • examples of the phyllosilicate include kaolinite, halloyite, serpentine, silica nickel ore, smectite group, granite, talc, mica, etc.
  • talc in consideration of availability Most preferably, mica is used.
  • the amount of adhesion of the anti-fusing agent to the liquid crystal polyester multifilament is preferably larger in order to suppress the fusing, and preferably 0.5% by weight or more when the yarn weight is 100% by weight, and 1.0% by weight. The above is more preferable.
  • 50.0% by weight or less is preferable, and 30.0% by weight or less is preferable. More preferred is 15.0% by weight or less.
  • the adhesion amount of the anti-fusing agent to the liquid crystal polyester multifilament refers to a value obtained by the method described in the examples.
  • the adhesion amount of the anti-fusing agent when measuring the adhesion amount of the anti-fusing agent, if there is an oil agent applied in melt spinning, the adhesion amount is also added, but depending on the type of the oil agent applied by melt spinning, the effect of preventing fusion can be obtained.
  • the adhesion amount of the oil agent or the like applied in melt spinning is also the total amount with the anti-fusing agent. calculate.
  • the components of the deposit can be identified by selecting the cleaning liquid after ultrasonic cleaning and / or the dried and evaporated water according to the purpose from the following items, or by combining these.
  • X-ray fluorescence analysis (elemental analysis)
  • X-ray diffraction (powder method or orientation method)
  • iv) Infrared absorption spectrum measurement (v) Display thermal analysis (vi) SEM observation
  • the anti-fusing agent is uniformly attached to the surface of each single fiber of the liquid crystal polyester multifilament before solid-phase polymerization. If it is 0.03 g / cm 3 or more which does not collapse, there is no problem.
  • Winding density in terms of production efficiency and handling property 0.1 g / cm 3 or more, more preferably as long as 0.3 g / cm 3 or more, particularly preferably equal to 0.5 g / cm 3 or more.
  • the winding density is a value calculated by Wf / Vf from the occupied volume (Vf) of the package and the weight (Wf) of the fiber obtained from the dimensions of the package and the bobbin serving as the core material.
  • the package may be formed by any method because the winding density is 0.03 g / cm 3 or more which does not cause the package to be unwound as described above.
  • it may be formed by winding in melt spinning, but it is more preferable to form the package wound by melt spinning by rewinding because the amount of adhesion of the anti-fusing agent can be easily controlled.
  • the winding density is 0.03 g / cm 3 or more, there is no problem, and the winding tension in the rewinding may be 0.001 cN / dtex or more.
  • the winding shape is preferably a taper end winding with both ends tapered.
  • Solid-phase polymerization can be carried out in an inert gas atmosphere such as nitrogen, an oxygen-containing active gas atmosphere such as air, or under reduced pressure, but it can simplify equipment and prevent oxidation of fibers or deposits. Therefore, it is preferable to carry out in a nitrogen atmosphere.
  • the atmosphere of the solid phase polymerization is preferably a low-humidity gas having a dew point of ⁇ 40 ° C. or less.
  • the solid phase polymerization temperature is preferably a melting point of liquid crystal polyester fiber to be used for solid phase polymerization at ⁇ 60 ° C. or higher. By setting the temperature close to the melting point, solid phase polymerization proceeds promptly. Moreover, since the melting point of the liquid crystal polyester fiber increases with the progress of the solid phase polymerization, the solid phase polymerization temperature can be increased to the melting point of the liquid crystal polyester fiber subjected to the solid phase polymerization + about 100 ° C. Increasing the solid-phase polymerization temperature stepwise or continuously with respect to time is more preferable because it can prevent fusion and increase the time efficiency of solid-phase polymerization. At this time, the solid phase polymerization is performed for several minutes to several tens of hours depending on the target performance. In order to obtain a fiber having excellent strength and elastic modulus, the maximum temperature is preferably 5 hours or more, and more preferably 10 hours or more. . Further, since the solid phase polymerization reaction saturates with the passage of time, about 100 hours is sufficient.
  • the package after solid-phase polymerization can be used as a product as it is, but it is preferable to increase the winding density by rewinding the package after solid-phase polymerization in order to increase the product transport efficiency.
  • the solid-state polymerization package is prevented from collapsing due to unraveling, and the solid-state polymerization package is rotated while rotating the solid-state polymerization package to prevent fibrillation when peeling a slight fusion.
  • the yarn is unwound by so-called side-drawing in which the yarn is unwound in the direction (fiber circulation direction), and the solid-phase polymerization package is preferably rotated by positive driving rather than free rotation.
  • the liquid crystal polyester fiber according to the present invention may be provided with various finishing oils depending on the purpose.
  • the Mw in terms of polystyrene after the solid-phase polymerization of the liquid crystalline polyester fiber of the present invention is preferably 250,000 to 1,500,000. Having a high Mw of 250,000 or more has high strength, elongation, and elastic modulus and improves fabric performance. In particular, when the fineness is reduced, the impact absorption is increased and yarn breakage in higher processes is suppressed. And wear resistance is improved. Moreover, since it has a high melting point, it has excellent heat resistance. Since these characteristics are improved as Mw is higher, 300,000 or more is preferable, and 350,000 or more is more preferable.
  • the upper limit of Mw is not particularly limited, but the upper limit that can be reached in the present invention is about 1.5 million.
  • a mixed solvent of pentafluorophenol / chloroform 35/65 (weight ratio) is used as a solvent, and the concentration of liquid crystal polyester is 0.04 to 0.08 weight / volume%.
  • the sample was dissolved to obtain a GPC measurement sample, and this was measured using a GPC measurement apparatus manufactured by Waters, and Mw was determined by polystyrene conversion.
  • the degree of fusion between single fibers of the liquid crystalline polyester multifilament of the present invention is 0 to 20, more preferably 0 to 10, and still more preferably 0 to 1.
  • the degree of fusion between single fibers refers to a value obtained by the method described in the examples.
  • the number of single fibers of the liquid crystal polyester multifilament of the present invention is preferably 30 to 500, and more preferably 200 to 500.
  • the number to 30 to 500 the surface area to which the anti-fusing agent adheres is increased, the anti-fusing effect is remarkably exhibited, and a liquid crystal polyester multifilament excellent in high-order process passability is obtained.
  • the total fineness after solid phase polymerization of the liquid crystalline polyester multifilament of the present invention is preferably 200 to 3,000 dtex, and more preferably 500 to 3,000 dtex.
  • 200 to 3,000 dtex By setting it to 200 to 3,000 dtex, it is suitable for industrial material applications where production efficiency is high and the amount of raw yarn used is extremely large.
  • the single fiber fineness after solid phase polymerization of the liquid crystalline polyester multifilament of the present invention is preferably 100 dtex or less, more preferably 50 dtex or less, and further preferably 30 dtex or less. By setting it to 100 dtex or less, it becomes possible to cool uniformly to the inside of the single fiber after discharging, and a liquid crystal polyester multifilament with a stable yarn forming property and a good fluff quality can be obtained.
  • the single fiber fineness referred to in the present invention is the quotient obtained by dividing the total fineness by the number of single fibers as the single fiber fineness (dtex).
  • the strength after solid phase polymerization of the liquid crystalline polyester multifilament of the present invention is preferably 10.0 cN / dtex or more, more preferably 12.0 cN / dtex or more, and further preferably 15.0 cN / dtex or more.
  • the upper limit of strength is not particularly limited, but the upper limit that can be reached in the present invention is about 30.0 cN / dtex.
  • the strength said by this invention points out the tensile strength by the strong elongation and elastic modulus measurement described in the Example.
  • the elongation after solid phase polymerization of the liquid crystalline polyester multifilament of the present invention is 1.0% or more, preferably 2.0% or more.
  • the upper limit of the elongation is not particularly limited, but the upper limit that can be reached in the present invention is about 5.0%.
  • the elongation said by this invention points out the breaking elongation by the strong elongation and elastic modulus measurement described in the Example.
  • the elastic modulus after solid-phase polymerization of the liquid crystalline polyester multifilament of the present invention is preferably 600 cN / dtex or more, more preferably 700 cN / dtex or more, and still more preferably 800 cN / dtex or more.
  • the elastic modulus is 600 cN / dtex or more, the dimensional change when subjected to stress is small and suitable for industrial materials.
  • the upper limit of the elastic modulus is not particularly limited, but the upper limit that can be achieved by the present invention is about 1,500 cN / dtex.
  • the elasticity modulus said by this invention points out the initial stage tensile resistance degree in the strong elongation and elastic modulus measurement described in the Example.
  • the liquid crystalline polyester multifilament of the present invention can be used as a multifilament, and can be used as a monofilament after being split, for example, and can also be suitably used for staple fibers, cut fibers and the like. Furthermore, it can also be used as a fiber structure such as a woven fabric, a knitted fabric, a non-woven fabric, and a braided string. Specific applications of the liquid crystal polyester multifilament of the present invention include general industrial materials, civil engineering / building materials, sports applications, protective clothing, rubber reinforcement materials, electrical materials (particularly as tension members), acoustic materials, and general clothing. Widely used in such fields.
  • Effective applications include screen rods, filters, ropes, nets, fishing nets, computer ribbons, printed circuit board substrates, paper canvases, airbags, airships, dome substrates, rider suits, fishing lines, various lines (Yachts, paragliders, balloons, kites), blind cords, support cords for screen doors, various cords for automobiles and aircraft, power transmission cords for electrical products and robots, etc.
  • low-hygroscopic liquid crystalline polyester multifilaments It is suitable for fishing net applications that conventionally use polyethylene terephthalate fibers or the like.
  • Example 1 In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 870 parts by weight of p-hydroxybenzoic acid, 327 parts by weight of 4,4′-dihydroxybiphenyl, 157 parts by weight of isophthalic acid, 292 parts by weight of terephthalic acid, 89 parts by weight of hydroquinone Then, 1433 parts by weight of acetic anhydride (1.08 equivalent of the total phenolic hydroxyl group) was charged, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Thereafter, the temperature was raised to 330 ° C. for 4 hours.
  • the polymerization temperature was maintained at 330 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) over 1.5 hours, and the reaction was further continued for 20 minutes. When the predetermined torque was reached, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a base having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • This liquid crystal polyester is composed of 54 mol% of p-hydroxybenzoic acid units, 16 mol% of 4,4′-dihydroxybiphenyl units, 8 mol% of isophthalic acid units, 15 mol% of terephthalic acid units, and 7 mol% of hydroquinone units.
  • the melting point was 318 ° C.
  • the melt viscosity measured using a Koka flow tester at a temperature of 328 ° C. and a shear rate of 1,000 / sec was 16 Pa ⁇ sec.
  • Mw was 91,000.
  • the discharged polymer is cooled and solidified at room temperature, and a 75% filament is added at 1,250 m / min while adhering a 1% by weight dispersion solution of talc, which is an anti-fusing agent, to water using an 8-way 4-stage OR oiling method.
  • talc which is an anti-fusing agent
  • the 8-direction 4-stage OR oiling method uses a pair of ORs facing each stage, and each of the anti-fusing agents from the application directions different from each other by 180 ° in a plane perpendicular to the yarn running direction. This is a method of uniformly adhering to the surface of a single fiber.
  • Winding machine (SSP-WV8P type precision winder manufactured by Kozu Seisakusho Co., Ltd.) that unwinds four fibers from the spun fiber package in the longitudinal direction (perpendicular to the fiber circulation direction) and unwinds them at a constant speed. ) At 400 m / min. At this time, talc was additionally attached to the surface of each single fiber by using a solution in which 1% by weight of talc was dispersed in water using an oil bath dipping method and a two-way one-stage OR oiling method in combination.
  • the two-direction one-stage OR refueling method referred to here uses a pair of ORs, and the anti-fusing agent is uniformly applied to the surface of each single fiber from different application directions that are 180 ° different from each other in a plane perpendicular to the yarn running direction It is the method of making it adhere.
  • any oil supply there was no scattering or return of the oil agent, and it adhered uniformly to the surface of each single fiber.
  • a stainless steel bobbin was used as the core material for rewinding, the tension during rewinding was 0.005 cN / dtex, the winding density was 0.5 g / cm 3, and the winding amount was 3 kg. Further, the package shape was a taper end winding with a taper angle of 65 °.
  • the rewinded sample having a total fineness of 1,680 dtex and 300 single fibers thus obtained was heated from room temperature to 240 ° C., held at 240 ° C. for 3 hours, then heated to 290 ° C., Furthermore, solid state polymerization was performed under the condition of maintaining at 290 ° C. for 20 hours.
  • the atmosphere was supplied with dehumidified nitrogen at a flow rate of 100 m 3 / hr, and exhausted from the exhaust port so that the inside of the chamber was not pressurized.
  • the solid-phase polymerization package thus obtained was attached to a feeding device that can be rotated by an inverter motor, unwound while sending the fibers in the transverse direction (fiber circumferential direction) at 200 m / min, and wound around the product package with a winder.
  • the fiber properties were as shown in Table 1, and the degree of fusion between single fibers was 0.9.
  • Mw of the fiber after solid phase polymerization is 420,000, and the measurement method is the same as that of the liquid crystal polyester polymer.
  • the liquid crystal polyester multifilament was used to evaluate process passability, the number of fluffs was 0 / 10,000 m, and the process passability was excellent.
  • Example 2 Except for using a solution in which 1 wt% of a fluorine compound CF 3 CF 2 (CF 2 CF 2 ) 2 CH 2 CH 2 OPO (ONH 4 ) 2 [hereinafter referred to as C8F compound] is dispersed in water as an anti-fusing agent.
  • a solid-state polymerization package was obtained in the same manner as in Example 1.
  • the solid phase polymerization package thus obtained was unwound in the same manner as in Example 1 and wound up with a winder. As a result, it was unwound with almost no resistance and no yarn breakage occurred.
  • the degree of fusion between single fibers was 2.1.
  • Example 3 A solid phase was prepared in the same manner as in Example 1 except that a polydimethylsiloxane (SH200-350cs manufactured by Toray Dow Corning Co., Ltd., viscosity 350cSt) was dispersed in water at 1% by weight as an anti-fusing agent. A polymerization package was obtained. The solid phase polymerization package thus obtained was unwound in the same manner as in Example 1 and wound up with a winder. As a result, it was unwound with almost no resistance and no yarn breakage occurred.
  • a polydimethylsiloxane SH200-350cs manufactured by Toray Dow Corning Co., Ltd., viscosity 350cSt
  • the degree of fusion between single fibers was 2.4.
  • the number of fluffs was 0 / 10,000 m, and the process passability was excellent.
  • Example 4 In the spinning step and the rewinding step, a solid-state polymerization package was obtained in the same manner as in Example 1 except that a solution in which 3% by weight of talc as an anti-fusing agent was dispersed in water was used.
  • the solid phase polymerization package thus obtained was unwound in the same manner as in Example 1 and wound up with a winder. As a result, it was unwound with almost no resistance and no yarn breakage occurred.
  • the degree of fusion between single fibers was 0.6.
  • Example 5 In the spinning step and the rewinding step, a solid phase polymerization package was obtained in the same manner as in Example 1 except that a solution in which 5% by weight of talc as an anti-fusing agent was dispersed in water was used. The solid phase polymerization package thus obtained was unwound in the same manner as in Example 1 and wound up with a winder. As a result, it was unwound with almost no resistance and no yarn breakage occurred. The degree of fusion between single fibers was 0.4.
  • Example 6 A spinning sample with a total fineness of 420 dtex and a single fiber number of 75 obtained in the spinning process was split and used as a sample with a total fineness of 213 dtex and a single fiber number of 38. A phase polymerization package was obtained. The solid phase polymerization package thus obtained was unwound in the same manner as in Example 1 and wound up with a winder. As a result, it was unwound with almost no resistance and no yarn breakage occurred. The degree of fusion between single fibers was 0.2.
  • Example 7 Similar to Example 5 except that 6 spinning samples with a total fineness of 420 dtex and 75 single fibers obtained in the spinning process were combined and used as a sample with a total fineness of 2,520 dtex and 450 single fibers. Thus, a solid phase polymerization package was obtained. The solid phase polymerization package thus obtained was unwound in the same manner as in Example 1 and wound up with a winder. As a result, it was unwound with almost no resistance and no yarn breakage occurred. The degree of fusion between single fibers was 0.5.
  • Example 8 When the liquid crystal polyester multifilament was used to evaluate process passability, the number of fluffs was 0 / 10,000 m, and the process passability was excellent.
  • Example 8 In the spinning process, talc, which is an anti-fusing agent, is not used, and only water is attached.
  • talc which is an anti-fusing agent
  • a solid-state polymerization package was obtained in the same manner as in Example 1 except that it was adhered.
  • the solid phase polymerization package thus obtained was unwound in the same manner as in Example 1 and wound up with a winder.
  • Example 9 Example except that in the spinning process, a solution in which 1% by weight of talc, which is an anti-fusing agent, was dispersed in water was adhered by an 8-way 4-stage OR oiling method, and only water was adhered in the rewinding process without using talc. 1 was used to obtain a solid phase polymerization package.
  • the solid phase polymerization package thus obtained was unwound in the same manner as in Example 1 and wound up with a winder. As a result, it was unwound with almost no resistance and no yarn breakage occurred. The degree of fusion between single fibers was 17.
  • Example 10 A solid phase was prepared in the same manner as in Example 1 except that a liquid crystal polyester resin comprising 73 mol% of p-hydroxybenzoic acid units and 27 mol% of 6-hydroxy-2-naphthoic acid units was used as the liquid crystal polyester resin. A polymerization package was obtained. The solid phase polymerization package thus obtained was unwound in the same manner as in Example 1 and wound up with a winder. As a result, it was unwound with almost no resistance and no yarn breakage occurred. The degree of fusion between single fibers was 11.
  • the number of fluffs was 0 / 10,000 m, and the process passability was excellent.
  • the physical properties after solidification were lower than those in Examples 1 to 9, with a strength of 19.8 cN / dtex and an elastic modulus of 615 cN / dtex.
  • Example 1 The fiber physical properties of Examples 1 to 10 are shown in Table 1 and Table 2.
  • Example 1 Example except that a solution in which 1% by weight of talc as an anti-fusing agent was dispersed in water was adhered by a one-way one-stage OR oiling method in the spinning process and a one-way one-stage OR oiling method in the rewinding process. 1 was used to obtain a solid phase polymerization package. The solid phase polymerization package thus obtained was unwound in the same manner as in Example 1 and wound up with a winder. As a result, it was unwound with almost no resistance and no yarn breakage occurred.
  • the fiber properties were as shown in Table 2, and the degree of fusion between single fibers was 25.
  • Example 3 Example except that in the spinning process, a solution in which 1% by weight of talc, which is an anti-fusing agent, was dispersed in water by a one-way one-stage OR refueling method was adhered, and only water was adhered in the rewinding process without using talc. 1 was used to obtain a solid phase polymerization package. The solid phase polymerization package thus obtained was unwound by the same method as in Example 1 and wound by a winder.
  • Example 4 A solid phase polymerization package was obtained in the same manner as in Example 1 except that only the water was attached without using the anti-fusing agent in the spinning step and the rewinding step. The solid phase polymerization package thus obtained was unwound by the same method as in Example 1, but the fusion was severe and yarn breakage occurred frequently. The degree of fusion between single fibers was 113.
  • the solid phase polymerization package thus obtained was unwound by the same method as in Example 1, but the fusion was severe and yarn breakage occurred frequently. The degree of fusion between single fibers was 95. When the liquid crystal polyester multifilament was used to evaluate the process passability, the number of fluffs was 118 pieces / 10,000 m, and the process passability was poor.
  • An anti-fusing agent is not used in the spinning process and the rewinding process, and the obtained spinning sample is 100 W / 180 sec in an atmosphere containing a fluorine compound CF 4 under reduced pressure (1 Torr) proposed in Patent Document 2.
  • a solid-state polymerization package was obtained in the same manner as in Example 1 except that low-temperature plasma treatment was performed for solid-phase polymerization and that the number of single fibers was 100.
  • the solid phase polymerization package thus obtained was unwound by the same method as in Example 1, but the fusion was severe and yarn breakage occurred frequently.
  • the degree of fusion between single fibers was 87.
  • the number of fluffs was 97 / 10,000 m, and the process passability was poor.
  • Example 7 Example 1 except that the anti-fusing agent was not used in the spinning process and the rewinding process, and the stainless steel bobbin was removed from the spun sample that was wound around the stainless bobbin proposed in Patent Document 3 and solid phase polymerization was performed.
  • a solid-state polymerization package was obtained in the same manner as above.
  • the solid phase polymerization package thus obtained was unwound by the same method as in Example 1, but the fusion was severe and yarn breakage occurred frequently.
  • the degree of fusion between single fibers was 102.
  • the liquid crystal polyester multifilament was used to evaluate the process passability, the number of fluffs was 121 / 10,000 m, and the process passability was poor.
  • Table 3 shows the fiber properties of Comparative Examples 1 to 7.
  • the anti-fusing agent is uniformly attached to the fiber surface to obtain a single fiber
  • the degree of interfusion can be greatly reduced to 0 to 20, and a liquid crystal polyester multifilament having excellent processability in high-order processing can be obtained.
  • the liquid crystalline polyester multifilament having a degree of fusion between single fibers of 0 to 20 of the present invention is excellent in process passability in high-order processing and improves the strength and elastic modulus of the product. It is useful because it can be widely used in the fields of building materials, sports applications, protective clothing, rubber reinforcement materials, electrical materials (particularly as tension members), acoustic materials, and general clothing.
  • the low hygroscopic liquid crystal polyester multifilament is suitable for fishing net applications that conventionally use polyethylene terephthalate fibers or the like.

Abstract

 単繊維間融着度が0~20の範囲である液晶ポリエステルマルチフィラメント。溶融紡糸した液晶ポリエステルマルチフィラメントに、溶融紡糸工程または巻き返し工程の少なくとも1つの工程において、糸条走行方向に対して垂直な面内において互いに90~180°異なる付与方向から融着防止剤を繊維表面に付着させる液晶ポリエステルマルチフィラメントの製造方法。 従来技術に比較して格段に単繊維間融着の少ない液晶ポリエステルマルチフィラメントを提供できる。

Description

液晶ポリエステルマルチフィラメント
 本発明は、液晶ポリエステルマルチフィラメントに関する。詳しくはロープ、漁網、テンションメンバー等の産業資材用途に好適な高強度・高弾性率の液晶ポリエステルマルチフィラメントに関する。
 液晶ポリエステル繊維は、剛直な分子鎖が繊維軸方向に高度に配向していることから、汎用繊維に比べ著しく高い強度および弾性率を有しており、更に繊維形態で熱処理を行うことによって固相重合反応が進行し、液晶ポリエステルの重合度を高めて性能を更に向上させることができる。このとき、単位時間当たりの処理量を高めるため、繊維をパッケージ形状として固相重合を行う方法が工業的に広く用いられている。
 しかしながら、液晶ポリエステルマルチフィラメントでは、固相重合反応が進行し得る融点近傍の温度域では単繊維間融着が発生しやすく、パッケージからの解舒の際に繊維表面の融着部分がはがれ、融着痕やフィブリル化の起点等の欠陥が生じ易い。また、剛直な分子鎖が繊維軸方向へ高配向する一方、繊維軸垂直方向への相互作用が低いため、このような欠陥を起点としてフィブリルが発生することもある。欠陥やフィブリルの発生は、繊維物性低下、高次加工工程での加工性悪化、および製品の品位・性能低下の原因となる。
 これらの問題を解決する方法として、熱可塑性重合体からなる繊維に非融着性重合体の有機溶剤溶液を塗布した後、延伸又は熱処理することを特徴とする解繊性の良好な繊維の製造方法(特許文献1参照)や、溶融時に異方性を示す芳香族ポリエステル繊維を減圧下、フッ素化合物を存在させて低温プラズマ処理を行った後、熱処理することを特徴とする芳香族ポリエステル繊維の製造方法(特許文献2参照)、芳香族ポリエステル繊維をボビンなしで熱処理を行うことを特徴とする芳香族ポリエステル繊維の製造方法(特許文献3参照)などが提案されている。
 さらに、モース硬度4以下のケイ酸およびマグネシウムを主成分とする、平均粒径0.01~15μmの無機微粒子0.03~5.0質量%を繊維表面に付着させてなるポリアリレート繊維(特許文献4参照)や、液晶ポリエステル繊維に融着防止剤を付着させて固相重合した後、固相重合された液晶ポリエステル繊維からなるパッケージをパッケージの状態で洗浄して融着防止剤を除去し、繊維への融着防止剤の付着量を繊維重量に対して4.0重量%以下とすることを特徴とする液晶ポリエステル繊維の製造方法(特許文献5参照)、特定の5成分の繰り返し構造単位からなる液晶ポリエステルからなることを特徴とする液晶ポリエステル繊維(特許文献6参照)なども提案されている。
特開昭54-015020号公報 特開昭63-112767号公報 特開昭62-045743号公報 特開2004-107826号公報 特開2009-235634号公報 特開2008-240229号公報
 しかしながら、本発明者らが特許文献1記載の方法を追試したところ、単繊維数5本の液晶ポリエステルマルチフィラメントを解繊することができず、融着抑制効果が不十分であるとの結果であった。また、特許文献2、3で得られた芳香族ポリエステル繊維の単繊維間融着度を本発明で用いたエンタングルメントテスターで評価したところ、特許文献2、3で得られる芳香族ポリエステル繊維の単繊維間融着度は不十分なものであった。
 すなわち、融着防止に関する先行技術(特許文献1~5)では、融着防止剤をオイリングローラー等で1方向から付与するのみで、マルチフィラメント内部の単繊維間に均一に付与できないため、単繊維間融着抑制効果が不十分といえる。
 特許文献6についても、マルチフィラメントの各単繊維間にまで融着防止剤を均一に付与できるとは考えにくく、実施例に記載のフィラメント数10本、36本においても単繊維間融着抑制効果は十分ではないため、強度発現性が劣っている。これは、フィラメント数が多くなればなるほど、重大な問題となる。
 そこで本発明では、従来技術に比較して格段に単繊維間融着の少ない液晶ポリエステルマルチフィラメントを提供することを課題とする。
 上記課題を達成するため、本発明の液晶ポリエステルマルチフィラメントは次の構成を有する。すなわち、
 単繊維間融着度が0~20の範囲である液晶ポリエステルマルチフィラメント、である。
 また、本発明の液晶ポリエステルマルチフィラメントの製造方法は、次の構成を有する。すなわち、
 溶融紡糸した液晶ポリエステルマルチフィラメントに、以下の工程(1)および(2)から選ばれる少なくとも1つの工程において、糸条走行方向に対して垂直な面内において互いに90~180°異なる付与方向から融着防止剤を繊維表面に付着させる液晶ポリエステルマルチフィラメントの製造方法、である。
(1)溶融紡糸工程
(2)巻き返し工程
 本発明の液晶ポリエステルマルチフィラメントは、単繊維数が30~500本であることが好ましい。
 本発明の液晶ポリエステルマルチフィラメントは、総繊度200~3,000dtexであることが好ましい。
 本発明の液晶ポリエステルマルチフィラメントは、液晶ポリエステルが下記化学式に示す構造単位(I)、(II)、(III)、(IV)および(V)からなることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 本発明の液晶ポリエステルマルチフィラメントは、構造単位(I)が構造単位(I)、(II)および(III)の合計に対して40~85mol%であり、構造単位(II)は構造単位(II)および(III)の合計に対して60~90mol%であり、構造単位(IV)は構造単位(IV)および(V)の合計に対して40~95mol%であることが好ましい。
 本発明の液晶ポリエステルマルチフィラメントは、単繊維間融着度が0~20と極めて低いため、高次加工での工程通過性が向上する。また融着による欠点が少ないことで高強度・高弾性繊維となるため、産業資材用繊維として有用である。
 以下に本発明を詳細に説明する。
 本発明に用いられる液晶ポリエステルとは、加熱して溶融した際に光学異方性(液晶性)を呈するポリエステルを指す。これは、液晶ポリエステルからなる試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、偏光顕微鏡で試料の透過光を観察することにより認定できる。
 本発明に用いられる液晶ポリエステルとしては、例えば(a)芳香族オキシカルボン酸の重合物、(b)芳香族ジカルボン酸と芳香族ジオール、脂肪族ジオールの重合物、(c)上記(a)と上記(b)の共重合物等が挙げられ、中でも芳香族のみで構成された重合物が好ましい。芳香族のみで構成された重合物は、繊維にした際に優れた強度および弾性率を発現する。また、液晶ポリエステルの重合処方は従来公知の方法を用いることができる。
 ここで、芳香族オキシカルボン酸としては、例としてヒドロキシ安息香酸、ヒドロキシナフトエ酸等、またはこれらのアルキル、アルコキシ、ハロゲン置換体等が挙げられる。
 また、芳香族ジカルボン酸としては、例としてテレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエタンジカルボン酸等、またはこれらのアルキル、アルコキシ、ハロゲン置換体等が挙げられる。
 更に、芳香族ジオールとしては、例としてヒドロキノン、レゾルシン、ジヒドロキシビフェニル、ナフタレンジオール等、またはこれらのアルキル、アルコキシ、ハロゲン置換体等が挙げられ、脂肪族ジオールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール等が挙げられる。
 本発明に用いる液晶ポリエステルは、上記モノマー以外に、液晶性を損なわない程度の範囲で更に他のモノマーを共重合させることができ、例としてアジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、ポリエチレングリコール等のポリエーテル、ポリシロキサン、芳香族イミノカルボン酸、芳香族ジイミン、および芳香族ヒドロキシイミン等が挙げられる。
 本発明に用いる前記モノマー等を重合した液晶ポリエステルの好ましい例としては、p-ヒドロキシ安息香酸成分と6-ヒドロキシ-2-ナフトエ酸成分が共重合された液晶ポリエステル、p-ヒドロキシ安息香酸成分と4,4’-ジヒドロキシビフェニル成分とイソフタル酸成分および/またはテレフタル酸成分が共重合された液晶ポリエステル、p-ヒドロキシ安息香酸成分と4,4’-ジヒドロキシビフェニル成分とイソフタル酸成分とテレフタル酸成分とヒドロキノン成分が共重合された液晶ポリエステルが挙げられる。
 本発明では特に、下記化学式に示す構造単位(I)、(II)、(III)、(IV)および(V)からなる液晶ポリエステルであることが好ましい。なお、本発明において構造単位とはポリマーの主鎖における繰り返し構造を構成し得る単位を指す。
Figure JPOXMLDOC01-appb-C000003
 この組み合わせにより、分子鎖は適切な結晶性と非直線性すなわち溶融紡糸可能な融点を有するようになる。したがって、ポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な製糸性を有するようになり長手方向に均一な繊維が得られ、かつ適度な結晶性を有するため繊維の強度、弾性率を高めることができる。
 さらに本発明においては、構造単位(II)、(III)のような嵩高くなく、直線性の高いジオールからなる成分を組み合わせることが重要である。この成分を組み合わせることにより繊維中で分子鎖は秩序だった乱れの少ない構造を取ると共に、結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できる。これにより高い強度、弾性率に加えて優れた耐摩耗性も得られるのである。
 上記した構造単位(I)は構造単位(I)、(II)および(III)の合計に対して40~85mol%が好ましく、より好ましくは65~80mol%、さらに好ましくは68~75mol%である。このような範囲とすることで結晶性を適切な範囲とすることができ高い強度、弾性率が得られ、かつ融点も溶融紡糸可能な範囲となる。
 構造単位(II)は構造単位(II)および(III)の合計に対して60~90mol%が好ましく、より好ましくは60~80mol%、さらに好ましくは65~75mol%である。このような範囲とすることで結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できるため耐摩耗性を高めることができる。
 構造単位(IV)は構造単位(IV)および(V)の合計に対して40~95mol%が好ましく、より好ましくは50~90mol%、さらに好ましくは60~85mol%である。このような範囲とすることでポリマーの融点が適切な範囲となり、ポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な製糸性を有するようになり単繊維繊度が細く、長手方向に均一な繊維が得られる。
 本発明に用いる液晶ポリエステルの各構造単位の特に好ましい範囲は以下のとおりである。この範囲の中で上記した条件を満たすよう組成を調整することで本発明の液晶ポリエステル繊維が好適に得られる。
 構造単位(I)45~65mol%
 構造単位(II)12~18mol%
 構造単位(III)3~10mol%
 構造単位(IV)5~20mol%
 構造単位(V)2~15mol%
 本発明に用いる液晶ポリエステルのポリスチレン換算の重量平均分子量(以下、Mw)は3万以上が好ましく、5万以上がより好ましい。Mwを3万以上とすることで紡糸温度において適切な粘度を持ち製糸性高めることができ、Mwが高いほど得られる繊維の強度、伸度、弾性率は高まる。また流動性を優れたものとする観点から、Mwは25万未満が好ましく、15万未満がより好ましい。なお本発明で言うMwとは実施例記載の方法により求められた値とする。
 本発明の液晶ポリエステルの融点は、溶融紡糸のし易さ、耐熱性の面から200~380℃の範囲のものが好ましく、より好ましくは250~350℃であり、更に好ましくは290~340℃である。なお、融点は、示差走査熱量計(パーキンエルマー社製DSC)で行う示差熱量測定において、50℃から20℃/minの昇温条件測定した際に観測される吸熱ピーク温度(Tm1)の観測後、およそTm1+20℃の温度で5分間保持した後、20℃/minの降温速度で50℃まで冷却し、再度20℃/minの昇温条件で測定した際に観測される吸熱ピーク温度(Tm2)を融点とした。
 また、本発明に用いる液晶ポリエステルには、本発明の効果を損なわない範囲で他のポリマーを添加・併用することができる。添加・併用とは、ポリマー同士を混合する場合や、2成分以上の複合紡糸において一方の成分、乃至は複数の成分に他のポリマーを部分的に混合使用すること、あるいは全面的に使用することをいう。他のポリマーとしては、例としてポリエステル、ポリオレフィンやポリスチレン等のビニル系重合体、ポリカーボネート、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、芳香族ポリケトン、脂肪族ポリケトン、半芳香族ポリエステルアミド、ポリエーテルエーテルケトン、フッ素樹脂等のポリマーを添加しても良く、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ナイロン6、ナイロン66、ナイロン46、ナイロン6T、ナイロン9T、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリシクロヘキサンジメタノールテレフタレート、ポリエステル99M等が好適な例として挙げられる。なお、これらのポリマーを添加・併用する場合、その融点は液晶ポリエステルの融点±30℃以内にすることが製糸性を損なわないために好ましく、また、得られる繊維の強度、弾性率を向上させるためには添加・併用する量は50重量%以下が好ましく、5重量%以下がより好ましく、実質的に他のポリマーを添加・併用しないことが最も好ましい。
 本発明に用いられる液晶ポリエステルには、本発明の効果を損なわない範囲内で、各種金属酸化物、カオリン、シリカ等の無機物、着色剤、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、蛍光増白剤、末端基封止剤、相溶化剤等の添加剤を少量含有していても良い。
 本発明の液晶ポリエステルマルチフィラメントの製造方法は、公知の手法を採用することができ、何ら限定されない。本発明で得られる液晶ポリエステルマルチフィラメントは、高強度、高弾性率、低吸水性で、かつ欠点やフィブリルが少なく高次加工での加工性に優れる。
 溶融紡糸において、液晶ポリエステルの溶融押出は公知の手法を用いることができるが、重合時に生成する秩序構造をなくすためにエクストルーダー型の押出機を用いることが好ましい。押し出されたポリマーは配管を経由しギアーポンプ等公知の計量装置により計量され、異物除去のフィルターを通過した後、口金へと導かれる。このときポリマー配管から口金までの温度(紡糸温度)は液晶ポリエステルの融点以上、熱分解温度以下とすることが好ましく、液晶ポリエステルの融点+10℃以上、400℃以下とすることがより好ましく、液晶ポリエステルの融点+20℃以上、370℃以下とすることが更に好ましい。なお、ポリマー配管から口金までの温度をそれぞれ独立して調整することも可能である。この場合、口金に近い部位の温度をその上流側の温度より高くすることで吐出が安定する。
 また、本発明の液晶ポリエステル繊維を得るには、吐出時の安定性、細化挙動の安定性を高めた方が良く、工業的な溶融紡糸ではエネルギーコストの低減、生産性向上のため1つの口金に多数の口金孔を穿孔するため、それぞれの孔の吐出、細化を安定させた方が良い。
 これを達成するためには口金孔の孔径を小さくするとともに、ランド長(口金孔の孔径と同一の直管部の長さ)を長くすることが好ましい。ただし孔の詰まりを有効に防止する観点から孔径は0.03mm以上、1.00mm以下が好ましく、0.05mm以上、0.8mm以下がより好ましく、0.08mm以上、0.60mm以下が更に好ましい。圧力損失が高くなるのを有効に防止する観点から、ランド長Lを孔径Dで除した商で定義されるL/Dは0.5以上、3.0以下が好ましく0.8以上、2.5以下がより好ましく、1.0以上、2.0以下が更に好ましい。また、マルチフィラメントの生産性を向上させるために1つの口金の孔数は2孔以上1,000孔以下が好ましく、10孔以上700孔以下がより好ましく、30孔以上500孔以下が更に好ましい。なお、口金孔の直上に位置する導入孔は直径が口金孔径の5倍以上のストレート孔とすることが圧力損失を高めない点で好ましい。導入孔と口金孔の接続部分はテーパーとすることが異常滞留を抑制する上で好ましいが、テーパー部分の長さはランド長の2倍以下とすることが圧力損失を高めず、流線を安定させる上で好ましい。
 口金孔より吐出されたポリマーは保温領域、冷却領域を通過させ固化させた後、一定速度で回転するローラー(ゴデットローラー)により引き取られる。保温領域は過度に長いと製糸性が悪くなるため口金面から400mmまでとすることが好ましく、300mmまでとすることがより好ましく、保温領域を200mmまでとすることが更に好ましい。保温領域は加熱手段を用いて雰囲気温度を高めることも可能であり、その温度範囲は100℃以上、500℃以下が好ましく、200℃以上、400℃以下がより好ましい。冷却は不活性ガス、空気、水蒸気等を用いることができるが、平行あるいは環状の空気流を用いることが環境負荷を低くする点から好ましい。
 引き取り速度は生産性向上のため50m/min以上が好ましく、300m/min以上がより好ましく、500m/min以上が更に好ましい。本発明に用いる液晶ポリエステルは紡糸温度において好適な曳糸性を有することから引き取り速度を高速にできる。上限は特に制限されないが、本発明に用いる液晶ポリエステルにおいては曳糸性の点から3,000m/min程度となる。
 引き取り速度を吐出線速度で除した商で定義される紡糸ドラフトは1以上500以下とすることが好ましく、5以上200以下とすることがより好ましく、12以上100以下とすることが更に好ましい。本発明に用いる液晶ポリエステルは好適な曳糸性を有することからドラフトを高くでき、生産性向上に有利である。
 本発明では製糸性および生産性向上の観点から、上記紡糸ドラフトを得るためにポリマー吐出量を10~2,000g/minと設定することが好ましく、30~1,000g/minと設定することがより好ましく、50~500g/minと設定することが更に好ましい。10~2,000g/minと設定することで、液晶ポリエステルが製糸性良く得られる。
 巻き取りは公知の巻き取り機を用いチーズ、パーン、コーン等の形状のパッケージとすることができるが、巻量を高く設定できるチーズ巻きとすることが好ましい。巻き取りの際、ガイドやローラーとの摩擦抵抗を低減させるためにオイリングローラー(以下、OR)を用いて各種油剤を使用しても何ら差し支えない。
 このようにして得られた液晶ポリエステル繊維は、更に強度および弾性率を向上させるために固相重合を行うことが好ましい。固相重合はパッケージ形状、カセ形状、トウ形状(例えば、金属網等にのせて行う)、あるいはローラー間で連続的に糸条として処理することも可能であるが、設備が簡素化でき、生産性も向上できる点からパッケージ形状で行うことが好ましい。
 パッケージ形状で固相重合を行う場合、マルチフィラメントであるがゆえに顕著となる単繊維間融着を防止する技術が必要となる。
 本発明の如き単繊維間融着度が0~20の液晶ポリエステルマルチフィラメントを得るために重要かつ最も特徴的な点は、固相重合の前に各単繊維表面に融着防止剤を均一に付着させることである。そのために本発明の液晶ポリエステルマルチフィラメントの製造方法においては、溶融紡糸した液晶ポリエステルマルチフィラメントに、溶融紡糸工程または巻き返し工程の少なくとも1つの工程において、糸条走行方向に対して垂直な面内において互いに90~180°異なる付与方向から融着防止剤を繊維表面に付着させる。ここで、垂直な面内は必ずしも単一の面内に限定されず、複数の垂直面内であっても良い。複数の垂直面内の場合は多段で融着防止剤を付与することになる。また、付与方向とは、オイリングローラーを用いる場合にはローラー表面に接する法線方向を意味し、噴射ノズルを用いる場合には噴射方向を意味する。
 溶融紡糸した液晶ポリエステルマルチフィラメントに融着防止剤を付着するタイミングは何ら限定されないが、例えば、溶融紡糸から巻き取りまでの溶融紡糸工程で少量を付着させた後、巻き返し工程でさらに追加付着させることが付着効率を高める点で好ましい。融着防止剤を均一に付着させる具体的な方法としては、例えば、溶融紡糸工程で2方向1段OR給油法を用いて融着防止剤を水等の溶媒に分散させた溶液を付着させ、続く巻き返し工程で油浴浸漬法と2方向1段OR給油法を用いて融着防止剤を追加付着させる方法は、各単繊維表面に融着防止剤を均一に付着させることができるため好ましい。ここでいう2方向1段OR給油法とは、溶融紡糸工程や巻き返し工程において、対向する一対のORに走行糸条の両側面を接触させて融着防止剤を付着させる方法である。この2方向1段OR給油法の場合の付与方向は180°となる。また、後述する8方向4段OR給油法の場合の付与方向は4段の各段とも180°となり、それぞれの段のORにおいて基準となる付与方向を、上段のORにおいて基準となる付与方向に対して任意の角度、例えば45°づつずらしても良いが、ずらさなくとも良い。
 この際、繊維表面に融着防止剤を均一に付着させることができれば、ORの設置数や設置方法、段数は何ら限定されないが、融着防止剤の繊維表面への付着方向は上記のとおり2方向以上であることが好ましく、4方向以上であることがより好ましく、8方向以上であることがさらに好ましく、16方向以上であることが最も好ましい。なお、本発明において、対向する一対のORを用いる場合、融着防止剤の繊維表面への付着方向を2方向とする。対向する一対のORを2段用いる場合には、融着防止剤の繊維表面への付着方向は4方向となり、対向する一対のORを4段用いる場合には、融着防止剤の繊維表面への付着方向は8方向となり、対向する一対のORを8段用いる場合には、融着防止剤の繊維表面への付着方向は16方向となる。また、本発明においては、対向する一対のORを用いるのに加えて、単独のORを併用することも必要に応じて行うことができる。
 複数のORを用いて2方向以上から融着防止剤を付着させることで、マルチフィラメントの単繊維表面に融着防止剤を均一に付着でき、単繊維間融着抑制効果が顕著に発現する。融着防止剤の繊維表面への付与方向の上限は特に制限されないが、32方向以上では融着防止剤の均一付着効果が飽和する。また、油浴浸漬法とは、融着防止剤を分散充填した油剤浴に糸条を通過させながら固相重合用のパッケージに巻き返す方法である。
 また、噴射ノズルを用いて融着防止剤を各単繊維表面に付着させる方法は均一付着性に優れ、ハンドリングも簡便であるため好ましい。
 固体の融着防止剤を分散させる溶媒としては、取扱いが容易であることや環境負荷が小さいことから水が好ましい。また、融着防止剤が液体である場合、ノニオン系、アニオン系およびカチオン系乳化剤を使用して融着防止剤を水中でエマルジョン化して用いることが好ましい。このとき用いる融着防止剤としては、エマルジョン化が容易であり、反応性が低く平滑性に優れるものが好ましい。また、溶液中には、分散およびエマルジョンの妨げにならない範囲内で、通常の油剤に用いるような界面活性剤や固相重合反応を促進させるための各種添加剤が含まれていても何等差し支えない。
 本発明で用いる融着防止剤とは、その剤を液晶ポリエステルマルチフィラメントの各単繊維表面に付着させ固相重合した際に繊維間の融着を抑制する剤であり、公知のものが使用できるが、固相重合での高温熱処理で揮発させないため耐熱性が高い方が好ましく、例えば無機粒子、フッ素化合物や芳香族ポリアミド、ポリイミド、ポリエーテルケトンなどの高耐熱有機物、ジメチルポリシロキサン、ジフェニルポリシロキサン、メチルフェニルポリシロキサンおよびその変性物などのポリシロキサン系化合物、ならびにこれらの混合物が好ましい。
 本発明でいう無機粒子とは、公知の無機粒子であり、例として鉱物、水酸化マグネシウム等の金属水酸化物、シリカやアルミナ等の金属酸化物、炭酸カルシウムや炭酸バリウム等の炭酸塩化合物、硫酸カルシウムや硫酸バリウム等の硫酸塩化合物の他、カーボンブラック等が挙げられる。このような耐熱性の高い無機粒子を繊維上へ塗布することで単繊維間の接触面積を減らし、固相重合時に発生する融着を回避することが可能となる。無機粒子は、塗布工程を考慮して取扱いが容易であり環境負荷低減の観点から水分散が容易であることが好ましく、かつ、固相重合条件下において不活性であることが望ましい。これらの観点からシリカやケイ酸塩を用いることが好ましい。ケイ酸塩の場合は特に層状構造を持つフィロケイ酸塩が好ましい。なお、フィロケイ酸塩としては、カオリナイト、ハロイ石、蛇紋石、珪ニッケル鉱、スメクタイト族、葉ろう石、滑石、雲母などが挙げられるが、これらの中でも入手の容易性を考慮して滑石、雲母を用いることが最も好ましい。
 液晶ポリエステルマルチフィラメントへの融着防止剤の付着量は融着抑制のためには多い方が好ましく、糸重量を100重量%とした場合に0.5重量%以上が好ましく、1.0重量%以上がより好ましい。一方、繊維のべたつきを防いでハンドリングを良好にし、また、付着物除去後の残分を少なくして工程通過性を良好にするため50.0重量%以下が好ましく、30.0重量%以下がより好ましく、15.0重量%以下が特に好ましい。なお液晶ポリエステルマルチフィラメントへの融着防止剤の付着量は実施例に記載した手法により求められる値を指す。この場合、融着防止剤の付着量を測定する際に、溶融紡糸において付与した油剤がある場合、その付着量も合算されるが、溶融紡糸で付与する油剤も種類によっては融着防止効果を示し、また付着量が多い場合にはハンドリングの悪化など融着防止剤と同様の問題が生じるため、本発明においては溶融紡糸において付与した油剤等の付着量も融着防止剤との合計量として算出する。
 また、付着物の成分は、超音波洗浄後の洗浄液および/または乾燥し水分を蒸発させたものについて次の項目から目的に応じて選び、あるいはこれらを組み合わせて実施することにより同定できる。
(i)蛍光X線分析(元素分析)
(ii)X線回折(粉末法あるいは定方位法)
(iii)NMR
(iv)赤外線吸収スペクトル測定
(v)示査熱分析
(vi)SEM観察
 本発明の重要な点は、固相重合の前に、液晶ポリエステルマルチフィラメントの各単繊維表面に融着防止剤を均一に付着させることであって、パッケージの巻密度はパッケージが巻き崩れない0.03g/cm以上であれば何等差し支えない。生産効率とハンドリング性の点から巻密度は0.1g/cm以上が好ましく、0.3g/cm以上であればより好ましく、0.5g/cm以上であれば特に好ましい。ここで巻密度とは、パッケージ外寸法と芯材となるボビンの寸法から求められるパッケージの占有体積(Vf)と繊維の重量(Wf)からWf/Vfにより計算される値である。
 本発明では、上記のように巻密度はパッケージが巻き崩れない0.03g/cm以上であれば何等差し支えないため、パッケージはどのような方法で形成しても良い。例えば、溶融紡糸における巻き取りで形成しても良いが、溶融紡糸で巻き取ったパッケージを巻き返して形成する方が融着防止剤の付着量制御が容易となるためより好ましい。また、巻密度は0.03g/cm以上であれば何等差し支えないため、巻き返しにおける巻取張力は0.001cN/dtex以上であれば良い。また低張力巻き取りにおいても安定したパッケージを形成するためには巻き形状は両端にテーパーがついたテーパーエンド巻取とすることが好ましい。
 固相重合は窒素等の不活性ガス雰囲気中や、空気のような酸素含有の活性ガス雰囲気中または減圧下で行うことが可能であるが、設備の簡素化および繊維あるいは付着物の酸化防止のため窒素雰囲気下で行うことが好ましい。この際、固相重合の雰囲気は露点が-40℃以下の低湿気体が好ましい。
 固相重合温度は、固相重合に供する液晶ポリエステル繊維の融点-60℃以上であることが好ましい。このような融点近傍の高温とすることで固相重合が速やかに進行する。また固相重合の進行と共に液晶ポリエステル繊維の融点は上昇するため、固相重合温度は、固相重合に供する液晶ポリエステル繊維の融点+100℃程度まで高めることができる。なお固相重合温度を時間に対し段階的にあるいは連続的に高めることは、融着を防ぐと共に固相重合の時間効率を高めることができ、より好ましい。このとき、固相重合は目的性能により数分から数十時間行われるが、優れた強度および弾性率を有した繊維を得るためには最高到達温度で5時間以上が好ましく、10時間以上がより好ましい。また、固相重合反応は経過時間と共に飽和するため100時間程度で十分である。
 固相重合後のパッケージはそのまま製品として供することもできるが、製品運搬効率を高めるために固相重合後のパッケージを再度巻き返して巻き密度を高めることが好ましい。固相重合後の巻き返しにおいては、解舒による固相重合パッケージの崩れを防ぎ、更に軽微な融着を剥がす際のフィブリル化を抑制するために固相重合パッケージを回転させながら、回転軸と垂直方向(繊維周回方向)に糸を解舒する、いわゆる横取りにより解舒することが好ましく、更に固相重合パッケージの回転は自由回転ではなく積極駆動により回転させることが好ましい。
 また、本発明における液晶ポリエステル繊維は、目的に応じて各種仕上げ油剤を付与しても良い。
 本発明の液晶ポリエステル繊維の固相重合後のポリスチレン換算のMwは、25万以上150万以下が好ましい。25万以上の高いMwを有することで高い強度、伸度、弾性率を有し織物性能が向上する他、特に細繊度化した際には衝撃吸収性が高まり高次工程での糸切れを抑制でき、耐摩耗性も向上する。また融点も高いため優れた耐熱性を有する。Mwが高いほどこれらの特性は向上するため、30万以上が好ましく、35万以上がより好ましい。Mwの上限は特に限定されないが、本発明で達し得る上限としては150万程度である。なお本発明で言うMwの測定方法は、溶媒としてペンタフルオロフェノール/クロロホルム=35/65(重量比)の混合溶媒を用い、液晶ポリエステルの濃度が0.04~0.08重量/体積%となるように溶解させGPC測定用試料とし、これをWaters社製GPC測定装置を用いて測定し、ポリスチレン換算によりMwを求めた。
 カラム:ShodexK-806M 2本、K-802 1本
 検出器:示差屈折率検出器RI(2414型)
 温度:23±2℃
 流速:0.8mL/min
 注入量:200μL
 本発明の液晶ポリエステルマルチフィラメントの単繊維間融着度は0~20であり、0~10がより好ましく、0~1が更に好ましい。単繊維間融着度を0~20とすることで、得られた高強度・高弾性の液晶ポリエステルマルチフィラメントの高次加工での工程通過性が飛躍的に向上する。また製品における耐摩耗性も向上する。単繊維間融着度が20を超える場合、単繊維間融着により液晶ポリエステルマルチフィラメントの高次加工での工程通過性が悪化する。なお単繊維間融着度は実施例に記載した手法により求められる値を指す。
 本発明の液晶ポリエステルマルチフィラメントの単繊維数は30~500本が好ましく、200~500本であることがより好ましい。30~500本とすることで、融着防止剤の付着する表面積が大きくなり、融着防止効果が顕著に発現して、高次工程通過性に優れる液晶ポリエステルマルチフィラメントが得られる。また、紡糸サンプルを分繊あるいは合糸して単繊維数が30~500の液晶ポリエステルマルチフィラメントとすることも何等差し支えない。
 本発明の液晶ポリエステルマルチフィラメントの固相重合後の総繊度は、200~3,000dtexが好ましく、500~3,000dtexであることがより好ましい。200~3,000dtexとすることで、生産効率が高く、原糸使用量が極めて多い産業資材用途に好適である。また、紡糸サンプルを分繊あるいは合糸して総繊度が200~3,000dtexの液晶ポリエステルマルチフィラメントとすることも何等差し支えない。
 本発明の液晶ポリエステルマルチフィラメントの固相重合後の単繊維繊度は、100dtex以下が好ましく、50dtex以下であることがより好ましく、30dtex以下であることがさらに好ましい。100dtex以下とすることで、吐出後に単繊維内部まで均一な冷却が可能となり、製糸性が安定し、毛羽品位の良好な液晶ポリエステルマルチフィラメントが得られる。なお、本発明でいう単繊維繊度は総繊度を単繊維数で除した商を単繊維繊度(dtex)とした。
 本発明の液晶ポリエステルマルチフィラメントの固相重合後の強度は、10.0cN/dtex以上が好ましく、12.0cN/dtex以上がより好ましく、15.0cN/dtex以上が更に好ましい。強度が10.0cN/dtex以上あることで、高強度かつ軽量化が求められる産業資材用途に好適である。強度の上限は特に限定されないが、本発明で達し得る上限としては30.0cN/dtex程度である。なお、本発明で言う強度は実施例に記載した強伸度・弾性率測定での引張強さを指す。
 本発明の液晶ポリエステルマルチフィラメントの固相重合後の伸度は、1.0%以上であり、2.0%以上が好ましい。伸度が1.0%以上あることで繊維の衝撃吸収性が高まり、高次加工工程での工程通過性、取扱い性に優れる。伸度の上限は特に限定されないが、本発明で達し得る上限としては5.0%程度である。なお、本発明で言う伸度は実施例に記載した強伸度・弾性率測定での破断伸度を指す。
 また、本発明の液晶ポリエステルマルチフィラメントの固相重合後の弾性率は、600cN/dtex以上が好ましく、700cN/dtex以上がより好ましく、800cN/dtex以上が更に好ましい。弾性率が600cN/dtex以上あることで、応力を受けた際の寸法変化が小さく産業資材用途に好適である。弾性率の上限は特に限定されないが、本発明で達しえる上限としては弾性率1,500cN/dtex程度である。なお、本発明で言う弾性率とは実施例に記載した強伸度・弾性率測定での初期引張抵抗度を指す。
 本発明の液晶ポリエステルマルチフィラメントは、マルチフィラメントとして使用できる他、例えば分繊してモノフィラメントとして使用することができ、またステープルファイバー、カットファイバー等に用いても好適に使用できる。さらに、織物、編物、不織布、組み紐等の繊維構造物として利用することもできる。
本発明の液晶ポリエステルマルチフィラメントの具体的な用途としては、一般産業用資材、土木・建築資材、スポーツ用途、防護衣、ゴム補強資材、電気材料(特に、テンションメンバーとして)、音響材料、一般衣料等の分野で広く用いられる。有効な用途としては、スクリーン紗、フィルター、ロープ、ネット、漁網、コンピューターリボン、プリント基板用基布、抄紙用のカンバス、エアバッグ、飛行船、ドーム用等の基布、ライダースーツ、釣糸、各種ライン(ヨット、パラグライダー、気球、凧糸)、ブラインドコード、網戸用支持コード、自動車や航空機内各種コード、電気製品やロボットの力伝達コード等が挙げられ、特に、低吸湿性の液晶ポリエステルマルチフィラメントは従来ポリエチレンテレフタレート繊維等を使用している漁網用途に好適である。
 次に、実施例により本発明を更に詳細に説明するが、本発明はこれにより何等限定されるものではない。なお、実施例で挙げられている物性の測定方法を以下に示す。
(1)融着防止剤濃度
 融着防止剤を水等の溶媒に分散させた溶液を100重量%とした場合の溶液に含まれる融着防止剤の重量%を濃度(%)とした。
(2)単繊維数
 JIS L 1013 (2010) 8.4の方法で算出した。
(3)総繊度
 JIS L 1013 (2010) 8.3.1 A法により、所定荷重0.045cN/dtexで正量繊度を測定して総繊度(dtex)とした。
(4)強伸度、弾性率
 JIS L 1013(2010) 8.5.1標準時試験に示される定速伸長条件で測定した。試料をオリエンテック社製“テンシロン”(TENSILON) UCT-100を用い、掴み間隔は25cm、引張り速度は30cm/minで行った。強度・伸度は破断時の応力および伸びとし、弾性率はゼロ点と破断点とを結ぶ直線の傾きから算出した。
(5)融着防止剤付着量
 検尺機にて繊維を100mカセ取りして重量を測定した後、カセを100mlの水に浸して超音波洗浄機を用いて1hr洗浄を行った。超音波洗浄後のカセを乾燥させて重量を測定し、洗浄前重量と洗浄後重量の差を洗浄前重量で除した商に100を乗じた値を融着防止剤の付着量(重量%)とした。
(6)単繊維間融着度
 単繊維間融着度は、交絡度測定に用いられるRothschild社製エンタングルメントテスターR-2072を用いて以下の条件で算出した。初期張力(cN)={繊度(dtex)0.5}×0.7、糸速10m/min、トリップレベル(cN)={繊度(dtex)0.35}×3.31での触針トリップ回数30回の平均開繊長L(mm)を測定し、以下の式で定義して単繊維間融着度を算出した。
 単繊維間融着度=1,000(mm)/平均開繊長L(mm)
(7)工程通過性評価
 液晶ポリエステルマルチフィラメントを500m/minで解舒し、1万m当たりの毛羽個数を算出し、毛羽個数0個/1万mの場合はexcellent、1~10個/1万mの場合はgood、10~20個/1万mの場合はfair、20個/1万mを超える場合はpoorとした。
 以下、実施例により本発明を具体的に説明する。
[実施例1]
 攪拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル327重量部、イソフタル酸157重量部、テレフタル酸292重量部、ヒドロキノン89重量部および無水酢酸1433重量部(フェノール性水酸基合計の1.08当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30minで昇温した後、145℃で2hr反応させた。その後、330℃まで4hrで昇温した。
 重合温度を330℃に保持し、1.5hrで1.0mmHg(133Pa)に減圧し、更に20min間反応を続け、所定トルクに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1個持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
 この液晶ポリエステルはp-ヒドロキシ安息香酸単位が全体の54mol%、4,4’-ジヒドロキシビフェニル単位が16mol%、イソフタル酸単位が8mol%、テレフタル酸単位が15mol%、ヒドロキノン単位が7mol%からなり、融点は318℃であり、高化式フローテスターを用いて温度328℃、剪断速度1,000/secで測定した溶融粘度が16Pa・secであった。また、Mwは91,000であった。
 この液晶ポリエステルを用い、130℃、15hrの真空乾燥を行った後、単軸のエクストルーダにて(ヒーター温度290~340℃)溶融押し出しし、ギアーポンプで計量しつつ紡糸パックにポリマーを供給した。このときのエクストルーダー出から紡糸パックまでの紡糸温度は335℃とした。紡糸パックでは15μmの金属不織布フィルターを用いてポリマーを濾過し、孔径0.13mm、ランド長0.26mmの孔を75個有する口金より吐出量52.5g/min(単孔あたり0.6g/min)でポリマーを吐出した。
 吐出したポリマーは室温で冷却し固化させ、8方向4段OR給油法を用いて融着防止剤であるタルクを水に1重量%分散させた溶液を付着させながら75フィラメントともに1,250m/minのネルソンローラーで引き取った。ここでいう8方向4段OR給油法とは、各段に対向する1対のORを用い、糸条走行方向に対して垂直な面内において互いに180°異なる付与方向から融着防止剤を各単繊維表面に均一付着させる方法である。なお、それぞれの段のORにおいて基準となる付与方向を、上段のORにおいて基準となる付与方向に対して45°づつずらして配置した。このときの紡糸ドラフトは29である。ネルソンローラーで引き取った糸条は、そのままダンサーアームを介し羽トラバース型のワインダーを用いてチーズ形状に巻き取った。約18minの巻取時間中、糸切れは発生せず製糸性は良好であった。
 この紡糸繊維パッケージから繊維を縦方向(繊維周回方向に対し垂直方向)に4本合糸しながら解舒し、速度を一定とした巻取機((株)神津製作所製SSP-WV8P型プレシジョンワインダー)にて400m/minで巻き返しを行った。このとき、タルクを水に1重量%分散させた溶液を油浴浸漬法と2方向1段OR給油法とを併用して、各単繊維表面にタルクを追加付着させた。ここでいう2方向1段OR給油法とは、1対のORを用い、糸条走行方向に対して垂直な面内において互いに180°異なる付与方向から融着防止剤を各単繊維表面に均一付着させる方法である。いずれの給油に際しても油剤の飛散やリターンは無く、各単繊維表面に均一に付着した。なお、巻き返しの芯材にはステンレス製のボビンを用い、巻き返し時の張力は0.005cN/dtex、巻き密度を0.5g/cmとし、巻量は3kgとした。更にパッケージ形状はテーパー角65°のテーパーエンド巻きとした。
 こうして得られた総繊度1,680dtex、単繊維数300本の巻き返しサンプルを密閉型オーブンを用い、室温から240℃まで昇温し、240℃にて3hr保持した後、290℃まで昇温し、更に290℃で20hr保持する条件にて固相重合を行った。なお雰囲気は除湿窒素を流量100m/hrにて供給し、庫内が加圧にならないよう排気口より排気させた。
 こうして得られた固相重合パッケージをインバーターモーターにより回転できる送り出し装置に取り付け、繊維を横方向(繊維周回方向)に200m/minで送り出しつつ解舒を行い巻取機にて製品パッケージに巻き取ったところ、ほぼ抵抗無く解舒でき糸切れは発生しなかった。なお、繊維物性は表1に記載の通りであり、単繊維間融着度は0.9であった。固相重合後の繊維のMwは420,000であり、測定法は液晶ポリエステルポリマーと同様である。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は0個/1万mであり、工程通過性はexcellentであった。
[実施例2]
 融着防止剤としてフッ素化合物CFCF(CFCFCHCHOPO(ONH〔以下、C8F化合物〕を水に1重量%分散させた溶液を用いたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、ほぼ抵抗無く解舒でき糸切れは発生しなかった。単繊維間融着度は2.1であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は0個/1万mであり、工程通過性はexcellentであった。
[実施例3]
 融着防止剤としてポリジメチルシロキサン(東レ・ダウコーニング(株)製SH200-350cs、粘度350cSt)を水に1重量%分散させた溶液を用いたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、ほぼ抵抗無く解舒でき糸切れは発生しなかった。単繊維間融着度は2.4であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は0個/1万mであり、工程通過性はexcellentであった。
[実施例4]
 紡糸工程ならびに巻き返し工程において、融着防止剤であるタルクを水に3重量%分散させた溶液を用いたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、ほぼ抵抗無く解舒でき糸切れは発生しなかった。単繊維間融着度は0.6であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は0個/1万mであり、工程通過性はexcellentであった。
[実施例5]
 紡糸工程ならびに巻き返し工程において、融着防止剤であるタルクを水に5重量%分散させた溶液を用いたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、ほぼ抵抗無く解舒でき糸切れは発生しなかった。単繊維間融着度は0.4であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は0個/1万mであり、工程通過性はexcellentであった。
[実施例6]
 紡糸工程で得られた総繊度420dtex、単繊維数75本の紡糸サンプルを分繊して、総繊度213dtex、単繊維数38本のサンプルとして用いたこと以外は実施例5と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、ほぼ抵抗無く解舒でき糸切れは発生しなかった。単繊維間融着度は0.2であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は0個/1万mであり、工程通過性はexcellentであった。
[実施例7]
 紡糸工程で得られた総繊度420dtex、単繊維数75本の紡糸サンプルを6本合糸して、総繊度2,520dtex、単繊維数450本のサンプルとして用いたこと以外は実施例5と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、ほぼ抵抗無く解舒でき糸切れは発生しなかった。単繊維間融着度は0.5であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は0個/1万mであり、工程通過性はexcellentであった。
[実施例8]
 紡糸工程では融着防止剤であるタルクを使用せず水のみ付着させ、巻き返し工程では油浴浸漬法と2方向1段OR給油法との併用によってタルクを水に1重量%分散させた溶液を付着させたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、ほぼ抵抗無く解舒でき糸切れは発生しなかった。単繊維間融着度は4.3であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は3個/1万mであり、工程通過性はgoodであった。
 [実施例9]
 紡糸工程では8方向4段OR給油法によって融着防止剤であるタルクを水に1重量%分散させた溶液を付着させ、巻き返し工程ではタルクを使用せず水のみ付着させたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、ほぼ抵抗無く解舒でき糸切れは発生しなかった。単繊維間融着度は17であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は9個/1万mであり、工程通過性はgoodであった。
[実施例10]
 液晶ポリエステル樹脂として、p-ヒドロキシ安息香酸単位が全体の73mol%、6-ヒドロキシ-2-ナフトエ酸単位が27mol%からなる液晶ポリエステル樹脂を用いたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、ほぼ抵抗無く解舒でき糸切れは発生しなかった。単繊維間融着度は11であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は0個/1万mであり、工程通過性はexcellentであった。一方で、固重後の物性は、強度19.8cN/dtex、弾性率615cN/dtexと実施例1~9に比べ低めとなった。
 実施例1~10の繊維物性を表1および表2に示す。
[比較例1]
 紡糸工程での1方向1段OR給油法と巻き返し工程での1方向1段OR給油法によって融着防止剤であるタルクを水に1重量%分散させた溶液を付着させたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、ほぼ抵抗無く解舒でき糸切れは発生しなかった。なお、繊維物性は表2に記載の通りであり、単繊維間融着度は25であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は12個/1万mであり、工程通過性はfairであった。
[比較例2]
 紡糸工程では融着防止剤であるタルクを使用せず水のみ付着させ、巻き返し工程では1方向1段OR給油法によってタルクを水に1重量%分散させた溶液を付着させたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、僅かな抵抗はあったが解舒でき糸切れは発生しなかった。単繊維間融着度は31であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は17個/1万mであり、工程通過性はfairであった。
[比較例3]
 紡糸工程では1方向1段OR給油法によって融着防止剤であるタルクを水に1重量%分散させた溶液を付着させ、巻き返し工程ではタルクを使用せず水のみ付着させたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を行い巻取機にて巻き取ったところ、僅かな抵抗はあったが解舒でき糸切れは発生しなかった。単繊維間融着度は53であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は29個/1万mであり、工程通過性はpoorであった。
[比較例4]
 紡糸工程ならびに巻き返し工程で融着防止剤を使用せず水のみ付着させたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を試みたが、融着が酷く、糸切れが多発した。単繊維間融着度は113であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は145個/1万mであり、工程通過性はpoorであった。
[比較例5]
 紡糸工程では融着防止剤を使用せず水のみ付着させ、巻き返し工程では1方向1段OR給油法によって特許文献1で提案されている融着防止剤ポリメタフェニレンイソフタルアミド(1重量%)のN-メチル-2-ピロリドン溶液を用いたこと、また単繊維数を5本として総繊度190dtexとしたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を試みたが、融着が酷く、糸切れが多発した。単繊維間融着度は95であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は118個/1万mであり、工程通過性はpoorであった。
[比較例6]
 紡糸工程ならびに巻き返し工程で融着防止剤を使用せず、得られた紡糸サンプルを特許文献2で提案されている減圧下(1Torr)、フッ素化合物CFを存在させた雰囲気中で100W/180secの低温プラズマ処理を施して固相重合したこと、また単繊維数を100本としたこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を試みたが、融着が酷く、糸切れが多発した。単繊維間融着度は87であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は97個/1万mであり、工程通過性はpoorであった。
[比較例7]
 紡糸工程ならびに巻き返し工程で融着防止剤を使用せず、特許文献3で提案されているステンレス製のボビンに巻き返した紡糸サンプルからステンレス製のボビンを取り除いて固相重合したこと以外は実施例1と同様の方法で固相重合パッケージを得た。こうして得られた固相重合パッケージについて、実施例1と同様の方法で解舒を試みたが、融着が酷く、糸切れが多発した。単繊維間融着度は102であった。この液晶ポリエステルマルチフィラメントを用いて工程通過性評価を行ったところ、毛羽個数は121個/1万mであり、工程通過性はpoorであった。
 比較例1~7の繊維物性を表3に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1および表2から明らかなように、紡糸工程または巻き返し工程において、全方向多段OR給油法や油浴浸漬法を用いて、融着防止剤を繊維表面に均一に付着させることで、単繊維間融着度が0~20と大きく低減でき、高次加工での工程通過性に優れる液晶ポリエステルマルチフィラメントが得られる。
 表3の比較例1~3から明らかなように、紡糸工程または巻き返し工程において、全方向多段OR給油法や油浴浸漬法を使用せずに、融着防止剤を付着させた場合、繊維表面に均一に付着できず、単繊維間融着度が20以上と大きくなることが分かった。また、比較例4のように、融着防止剤を使用しない場合は、単繊維間融着度は100以上となった。また、比較例5では特許文献1で提案されている融着防止剤ポリメタフェニレンイソフタルアミド(1重量%)のN-メチル-2-ピロリドン溶液を巻き返し工程の1方向1段OR給油法により付着させて固相重合したが、単繊維間融着度は95と大きくなり、融着抑制効果が低いことが分かった。また、比較例6では特許文献2で提案されているように、減圧下、フッ素化合物を存在させた雰囲気中で低温プラズマ処理を施して固相重合を実施したが、融着抑制効果は十分でないことが分かった。さらに、比較例7では特許文献3で提案されているように、ステンレス製のボビンを取り除いて固相重合を実施したが、融着抑制効果は十分でないことが分かった。このように、単繊維間融着度が20以上である場合、高次加工での工程通過性が悪化し、原糸使用量の極めて多い産業資材用として好適に使用できない。
 本発明の単繊維間融着度が0~20の液晶ポリエステルマルチフィラメントは、高次加工での工程通過性に優れ、また製品の強度・弾性率も向上するため、一般産業用資材、土木・建築資材、スポーツ用途、防護衣、ゴム補強資材、電気材料(特に、テンションメンバーとして)、音響材料、一般衣料等の分野で広く使用できるため、有用である。特に、低吸湿性の液晶ポリエステルマルチフィラメントは従来ポリエチレンテレフタレート繊維等を使用している漁網用途に好適である。

Claims (6)

  1. 単繊維間融着度が0~20の範囲である液晶ポリエステルマルチフィラメント。
  2. 単繊維数が30~500本である請求項1に記載の液晶ポリエステルマルチフィラメント。
  3. 総繊度200~3,000dtexである請求項1または2に記載の液晶ポリエステルマルチフィラメント。
  4. 液晶ポリエステルが下記化学式に示す構造単位(I)、(II)、(III)、(IV)および(V)からなる請求項1~3のいずれかに記載の液晶ポリエステルマルチフィラメント。
    Figure JPOXMLDOC01-appb-C000001
  5. 構造単位(I)が構造単位(I)、(II)および(III)の合計に対して40~85mol%であり、構造単位(II)は構造単位(II)および(III)の合計に対して60~90mol%であり、構造単位(IV)は構造単位(IV)および(V)の合計に対して40~95mol%である請求項4に記載の液晶ポリエステルマルチフィラメント。
  6. 溶融紡糸した液晶ポリエステルマルチフィラメントに、以下の工程(1)および(2)から選ばれる少なくとも1つの工程において、糸条走行方向に対して垂直な面内において互いに90~180°異なる付与方向から融着防止剤を繊維表面に付着させる液晶ポリエステルマルチフィラメントの製造方法。
    (1)溶融紡糸工程
    (2)巻き返し工程
PCT/JP2012/083461 2011-12-27 2012-12-25 液晶ポリエステルマルチフィラメント WO2013099863A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280064589.0A CN104024495A (zh) 2011-12-27 2012-12-25 液晶聚酯复丝
EP12862987.0A EP2799600B1 (en) 2011-12-27 2012-12-25 Liquid-crystalline polyester multifilament
ES12862987T ES2873513T3 (es) 2011-12-27 2012-12-25 Multifilamento de poliéster cristalino líquido
US14/367,966 US20150004409A1 (en) 2011-12-27 2012-12-25 Liquid-crystalline polyester multifilament
JP2013515437A JP6183210B2 (ja) 2011-12-27 2012-12-25 液晶ポリエステルマルチフィラメント

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-285996 2011-12-27
JP2011285996 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099863A1 true WO2013099863A1 (ja) 2013-07-04

Family

ID=48697348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083461 WO2013099863A1 (ja) 2011-12-27 2012-12-25 液晶ポリエステルマルチフィラメント

Country Status (6)

Country Link
US (1) US20150004409A1 (ja)
EP (1) EP2799600B1 (ja)
JP (1) JP6183210B2 (ja)
CN (1) CN104024495A (ja)
ES (1) ES2873513T3 (ja)
WO (1) WO2013099863A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078462A (ja) * 2013-10-18 2015-04-23 Kbセーレン株式会社 芳香族ポリエステル繊維の製造方法
JP2015078461A (ja) * 2013-10-18 2015-04-23 Kbセーレン株式会社 芳香族ポリエステル繊維の製造方法
JP2016176161A (ja) * 2015-03-20 2016-10-06 東レ株式会社 液晶ポリエステルマルチフィラメント
CN106103026A (zh) * 2014-03-31 2016-11-09 东丽株式会社 液晶性聚酯树脂颗粒的制造装置及制造方法
JP2016191169A (ja) * 2015-03-31 2016-11-10 東レ株式会社 液晶ポリエステルマルチフィラメントおよびその製造方法
WO2019172108A1 (ja) * 2018-03-07 2019-09-12 株式会社クラレ 溶融異方性芳香族ポリエステルマルチフィラメント
WO2019225644A1 (ja) * 2018-05-23 2019-11-28 株式会社クラレ 液晶ポリエステルからなるマルチフィラメントの製造方法および液晶ポリエステルマルチフィラメント
WO2023058563A1 (ja) * 2021-10-08 2023-04-13 株式会社クラレ 液晶ポリエステル繊維およびその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11766835B2 (en) 2016-03-25 2023-09-26 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing welded substrates
CA3021729A1 (en) 2016-05-03 2017-11-09 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
EP3626868A4 (en) * 2017-07-24 2020-06-10 Kuraray Co., Ltd. LIQUID CRYSTALLINE POLYESTER FIBER AND PROCESS FOR PRODUCING THE SAME
TWI829660B (zh) * 2017-11-11 2024-01-21 美商天然纖維焊接股份有限公司 紗與熔接紗
EP3926081A4 (en) * 2019-02-12 2023-07-05 Toray Industries, Inc. LIQUID CRYSTAL POLYESTER MULTIFILAMENT, AND HIGH-PROCESS PRODUCT COMPRISING THEM

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415020A (en) 1977-07-07 1979-02-03 Teijin Ltd Produdtion of fibers having good openability
JPS6245743A (ja) 1985-08-23 1987-02-27 住友化学工業株式会社 芳香族ポリエステル繊維の製造法
JPS63112767A (ja) 1986-10-27 1988-05-17 住友化学工業株式会社 芳香族ポリエステル繊維の製造法
JPH0765275B2 (ja) * 1985-06-20 1995-07-12 住友化学工業株式会社 芳香族ポリエステル繊維の製造法
JP2004107826A (ja) 2002-09-19 2004-04-08 Kuraray Co Ltd 高強度ポリアリレート繊維
JP2008240229A (ja) 2007-02-28 2008-10-09 Toray Ind Inc 液晶ポリエステル繊維
JP2009235633A (ja) * 2008-03-28 2009-10-15 Toray Ind Inc 液晶ポリエステル繊維の製造方法
JP2009235634A (ja) 2008-03-28 2009-10-15 Toray Ind Inc 液晶ポリエステル繊維の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179818A (ja) 1983-03-29 1984-10-12 Teijin Ltd 繊維表面改質法
DE3684168D1 (de) * 1985-04-02 1992-04-16 Sumitomo Chemical Co Verfahren zum herstellen von aromatischen polyesterfasern.
JPH0814043B2 (ja) * 1985-08-23 1996-02-14 住友化学工業株式会社 芳香族ポリエステル繊維の熱処理方法
JPS62149934A (ja) * 1985-09-24 1987-07-03 帝人株式会社 熱可塑性合成繊維の製造方法
JPH0832975B2 (ja) * 1986-10-08 1996-03-29 住友化学工業株式会社 芳香族ポリエステル繊維の製造法
JPS63256738A (ja) * 1987-04-07 1988-10-24 住友化学工業株式会社 芳香族ポリエステルマルチフイラメント糸
JP2753978B2 (ja) * 1995-10-11 1998-05-20 東洋ナイロン株式會社 産業用ポリエステル繊維及びその製造方法
JPH09256240A (ja) 1996-03-22 1997-09-30 Toray Ind Inc 液晶性芳香族ポリエステル長繊維の熱処理方法
JP4896433B2 (ja) * 2005-06-02 2012-03-14 株式会社クラレ 極細溶融異方性芳香族ポリエステル繊維
JP2007126759A (ja) 2005-10-31 2007-05-24 Toray Ind Inc 極細ポリアミド繊維の溶融紡糸方法
JP2008057085A (ja) 2006-08-31 2008-03-13 Toray Ind Inc ポリアミドモノフィラメントの製造方法および製造装置
EP2594668B1 (en) * 2007-02-28 2015-01-07 Toray Industries, Inc. Liquid crystalline polyester fiber
JP5239439B2 (ja) * 2008-03-25 2013-07-17 東レ株式会社 液晶ポリエステル繊維およびその製造方法
WO2012132851A1 (ja) * 2011-03-29 2012-10-04 東レ株式会社 液晶ポリエステル繊維およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415020A (en) 1977-07-07 1979-02-03 Teijin Ltd Produdtion of fibers having good openability
JPH0765275B2 (ja) * 1985-06-20 1995-07-12 住友化学工業株式会社 芳香族ポリエステル繊維の製造法
JPS6245743A (ja) 1985-08-23 1987-02-27 住友化学工業株式会社 芳香族ポリエステル繊維の製造法
JPS63112767A (ja) 1986-10-27 1988-05-17 住友化学工業株式会社 芳香族ポリエステル繊維の製造法
JP2004107826A (ja) 2002-09-19 2004-04-08 Kuraray Co Ltd 高強度ポリアリレート繊維
JP2008240229A (ja) 2007-02-28 2008-10-09 Toray Ind Inc 液晶ポリエステル繊維
JP2009235633A (ja) * 2008-03-28 2009-10-15 Toray Ind Inc 液晶ポリエステル繊維の製造方法
JP2009235634A (ja) 2008-03-28 2009-10-15 Toray Ind Inc 液晶ポリエステル繊維の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799600A1

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078462A (ja) * 2013-10-18 2015-04-23 Kbセーレン株式会社 芳香族ポリエステル繊維の製造方法
JP2015078461A (ja) * 2013-10-18 2015-04-23 Kbセーレン株式会社 芳香族ポリエステル繊維の製造方法
CN106103026A (zh) * 2014-03-31 2016-11-09 东丽株式会社 液晶性聚酯树脂颗粒的制造装置及制造方法
JP2016176161A (ja) * 2015-03-20 2016-10-06 東レ株式会社 液晶ポリエステルマルチフィラメント
JP2016191169A (ja) * 2015-03-31 2016-11-10 東レ株式会社 液晶ポリエステルマルチフィラメントおよびその製造方法
JPWO2019172108A1 (ja) * 2018-03-07 2021-02-12 株式会社クラレ 溶融異方性芳香族ポリエステルマルチフィラメント
KR20200110804A (ko) * 2018-03-07 2020-09-25 주식회사 쿠라레 용융 이방성 방향족 폴리에스테르 멀티 필라멘트
US20200399788A1 (en) * 2018-03-07 2020-12-24 Kuraray Co., Ltd. Melt-anisotropic aromatic polyester multifilament
WO2019172108A1 (ja) * 2018-03-07 2019-09-12 株式会社クラレ 溶融異方性芳香族ポリエステルマルチフィラメント
JP7042328B2 (ja) 2018-03-07 2022-03-25 株式会社クラレ 溶融異方性芳香族ポリエステルマルチフィラメント
KR102407299B1 (ko) * 2018-03-07 2022-06-13 주식회사 쿠라레 용융 이방성 방향족 폴리에스테르 멀티 필라멘트
TWI822736B (zh) * 2018-03-07 2023-11-21 日商可樂麗股份有限公司 熔融異向性芳香族聚酯多絲纖維
EP3763872B1 (en) * 2018-03-07 2024-01-10 Kuraray Co., Ltd. Melt-anisotropic aromatic polyester multifilament
WO2019225644A1 (ja) * 2018-05-23 2019-11-28 株式会社クラレ 液晶ポリエステルからなるマルチフィラメントの製造方法および液晶ポリエステルマルチフィラメント
WO2023058563A1 (ja) * 2021-10-08 2023-04-13 株式会社クラレ 液晶ポリエステル繊維およびその製造方法

Also Published As

Publication number Publication date
CN104024495A (zh) 2014-09-03
EP2799600A4 (en) 2015-07-15
ES2873513T3 (es) 2021-11-03
US20150004409A1 (en) 2015-01-01
JPWO2013099863A1 (ja) 2015-05-07
EP2799600A1 (en) 2014-11-05
EP2799600B1 (en) 2021-04-21
JP6183210B2 (ja) 2017-08-23

Similar Documents

Publication Publication Date Title
JP6183210B2 (ja) 液晶ポリエステルマルチフィラメント
JP5286827B2 (ja) 液晶ポリエステル繊維
KR20090115227A (ko) 액정 폴리에스테르 섬유 및 그의 제조 방법
WO2012132851A1 (ja) 液晶ポリエステル繊維およびその製造方法
JP5470930B2 (ja) 液晶ポリエステル繊維の製造方法
JP6855683B2 (ja) 液晶ポリエステルマルチフィラメント
JP2008240229A (ja) 液晶ポリエステル繊維
JP6753110B2 (ja) 液晶ポリエステルマルチフィラメント、その製造方法および高次加工製品
JP5428271B2 (ja) 液晶ポリエステル繊維の製造方法
JP2010242246A (ja) 液晶ポリエステル繊維の製造方法
JP2013133576A (ja) 液晶ポリエステルマルチフィラメント
JP2017031525A (ja) 液晶ポリエステルマルチフィラメントの製造方法
JP5239439B2 (ja) 液晶ポリエステル繊維およびその製造方法
JP2013133575A (ja) 分繊用液晶ポリエステルマルチフィラメント
JP6395054B2 (ja) 液晶ポリエステルマルチフィラメント
JP6753231B2 (ja) 液晶ポリエステルマルチフィラメント
JP6617626B2 (ja) 液晶ポリエステルマルチフィラメントおよびその製造方法
JP6834270B2 (ja) 液晶ポリエステルマルチフィラメント
JP5327116B2 (ja) 液晶ポリエステル繊維およびその製造方法
JP6953776B2 (ja) 液晶ポリエステルマルチフィラメント
JP2018040076A (ja) 液晶ポリエステルマルチフィラメント
JP2016089308A (ja) 液晶ポリエステル繊維の製造方法
JP5239454B2 (ja) 液晶ポリエステル繊維およびその製造方法
JP2015030920A (ja) 液晶ポリエステル繊維およびその製造方法
JP5915227B2 (ja) 液晶ポリエステル繊維およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013515437

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862987

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012862987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14367966

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE