JP2015030920A - 液晶ポリエステル繊維およびその製造方法 - Google Patents

液晶ポリエステル繊維およびその製造方法 Download PDF

Info

Publication number
JP2015030920A
JP2015030920A JP2013158959A JP2013158959A JP2015030920A JP 2015030920 A JP2015030920 A JP 2015030920A JP 2013158959 A JP2013158959 A JP 2013158959A JP 2013158959 A JP2013158959 A JP 2013158959A JP 2015030920 A JP2015030920 A JP 2015030920A
Authority
JP
Japan
Prior art keywords
fiber
temperature
phase polymerization
solid phase
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013158959A
Other languages
English (en)
Inventor
千絵子 川俣
Chieko Kawamata
千絵子 川俣
義嗣 船津
Yoshiji Funatsu
義嗣 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013158959A priority Critical patent/JP2015030920A/ja
Publication of JP2015030920A publication Critical patent/JP2015030920A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

【課題】高強度、高弾性率で、かつ耐摩耗性に優れる液晶ポリエステル繊維およびその製造方法を提供する。【解決手段】p−オキシベンゾエート単位、4,4?−ジオキシビフェニル単位、1,4−ジオキシベンゼン単位、テレフタレート単位およびイソフタレート単位から構成され、特定の組成比を有する液晶ポリエステルからなり、示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm1)におけるピーク半値幅が15℃以上、かつ強度20cN/dtex以上、かつ弾性率900cN/dtex以上の液晶ポリエステル繊維。【選択図】なし

Description

本発明は液晶ポリエステルを溶融紡糸した後に固相重合するに際して、固相重合に先立ち特定条件で熱処理を行う前駆体形成工程を設けることにより得られる、高強度、高弾性率で、かつ産業資材用途において要求の強い耐摩耗性に優れた液晶ポリエステル繊維およびその製造方法に関するものである。
液晶ポリエステルは剛直な分子鎖からなるポリマーであり、溶融紡糸においてはその分子鎖を繊維軸方向に高度に配向させ、さらに高温下で固相重合するため、溶融紡糸で得られる繊維の中では最も高い強度、弾性率が得られる(非特許文献1参照)。液晶ポリエステル繊維はさらに低吸湿特性を有するため、水産資材用のロープやネット類などに用いられている。
一方で、このような用途においては末端加工や結びが行われるが、液晶ポリエステルは通常の引張強さに対する結んだ状態での引張強さの強度保持率がポリオレフィン系繊維に比べ低いことが明らかになっている(非特許文献2参照)。結びでのストランド相互の摩擦による損傷が破断原因となっていると考えられ、液晶ポリエステル繊維の耐摩耗性の向上が望まれている。
液晶ポリエステル繊維の例としては、固相重合した繊維について特許文献1、2に記載がある。また、固相重合後の繊維をさらに高温熱処理して結晶を融解させることで耐摩耗性を向上する技術が公知である(特許文献3、4)。
特許文献1においては樹脂組成の構造単位の比率に由来して結晶性が低いため固相重合後繊維の弾性率が低く用途が限定されていた。また、特許文献2では固相重合後の繊維の結晶の完全性が高く結晶/非晶間での構造差が大きいことに由来して耐摩耗性が低かった。特許文献3、4においては固相重合後に高温熱処理を行うことで結晶が融解し繊維構造の均一化が進んでおり、耐摩耗性の向上が確認されたものの、高温熱処理により結晶を融解することで繊維の強度、弾性率が低下するといった課題があった。
このように、液晶ポリエステル繊維においては、耐摩耗性と固相重合繊維並みの高強度、高弾性率を両立する技術は見出されていなかった。
特開2004−19021号公報(第12〜18頁) 特開2008−240229号公報(第25〜35頁) 特開2008−240230号公報(第21〜43頁) 特開2008−240228号公報(第12〜22頁)
技術情報協会編、「液晶ポリマーの改質と最新応用技術」(2006)(第235頁〜第256頁) 杉浦清治、加藤八郎、"繊維ロープのアイスプライス結節強さ"、[online]、三河繊維技術センター、[平成25年7月18日検索]、インターネット<URL: http://www.aichi−inst.jp/mikawa/research/report/mikawa_2003_04.pdf>

本発明の課題は、固相重合繊維並に高強度、高弾性率であり、かつ耐摩耗性に優れる液晶ポリエステル繊維およびその製造方法を提供することにある。
本願発明者らは上記課題に対し、液晶ポリエステル繊維を得る際に重要となる液晶ポリエステル樹脂組成の最適化を行うとともに、固相重合に先立って特定の前駆体形成工程を設けることで、引き続く固相重合工程における高分子の結晶成長を阻害することが可能となし、固相重合繊維並みに高強度、高弾性率で、かつ耐摩耗性に優れる液晶ポリエステル繊維が得られることを見出し、本発明を得るに至った。
すなわち前記した本発明の課題は以下の手段により達成される。
(1)下記構造単位(I)、(II)、(III)、(IV)、(V)からなる液晶ポリエステルからなり、以下の条件1〜4を満たす液晶ポリエステル繊維。
条件1.構造単位(I) が構造単位(I)、(II)および(III)の合計に対して40mol% 以上85mol% 以下であり、構造単位(II)は構造単位(II)および(III)の合計に対して60mol%以上90mol%以下であり、構造単位(IV)が構造単位(IV)および(V)の合計に対して40mol%以上95mol%以下である。
条件2.示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm)におけるピーク半値幅が15℃以上。
条件3.強度20cN/dtex以上。
条件4.弾性率900cN/dtex以上。
Figure 2015030920
(2)下記構造単位(I)、(II)、(III)、(IV)、(V)からなる液晶ポリエステルからなり、構造単位(I) が構造単位(I)、(II)および(III)の合計に対して40mol% 以上85mol% 以下であり、構造単位(II)は構造単位(II)および(III)の合計に対して60mol%以上90mol%以下であり、構造単位(IV)が構造単位(IV)および(V)の合計に対して40mol%以上95mol%以下である液晶ポリエステルを溶融紡糸した後に固相重合するにあたり、固相重合に先立ち前駆体形成工程として開始温度を50℃として紡糸繊維の融点(Tm)−40℃以上融点(Tm)以下の範囲の前駆体形成温度(T)まで昇温速度80℃/hr以上で昇温した後に、前記駆体形成温度(T)にて0.5時間以上保持することを特徴とする上記(1)項記載の液晶ポリエステル繊維の製造方法。
Figure 2015030920

本発明の液晶ポリエステル繊維は高強度、高弾性率で、かつ耐摩耗性に優れる。このため、一般産業用資材、土木・建築資材、スポーツ用途、防護衣、補強資材、電気材料(特に、テンションメンバーとして好適)、音響材料、一般衣料等の分野で広く用いられる。有効な用途としては、スクリーン紗、フィルター、ロープ、ネット、魚網、コンピューターリボン、プリント基板用基布、抄紙用のカンバス、エアーバッグ、飛行船、ドーム用等の基布、ライダースーツ、釣糸、各種ライン(ヨット、パラグライダー、気球、凧糸)、ブラインドコード、網戸用支持コード、自動車や航空機内各種コード、電気製品やロボットの力伝達コード等が挙げられ、中でも耐摩耗性への要求が強いロープ、ネット、魚網、ケーブル、テンションメンバー、防護衣といった幅広い用途に特に好適に用いることができる。
以下、本発明の液晶ポリエステル繊維について詳細に説明する。
本発明で用いられる液晶ポリエステルとは、溶融時に異方性溶融相(液晶性)を形成し得るポリエステルである。この特性は例えば、液晶ポリエステルからなる試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を偏光下で観察することにより確認できる。
本発明に用いられる液晶ポリエステルは、下記化学式に示す構造単位(I)、(II)、(III)、(IV)および(V)からなる。
Figure 2015030920
なお、本発明において構造単位とはポリマーの主鎖における繰り返し構造を構成し得る単位を示す。上記(I)〜(V)の組み合わせは直線性が高いため、弾性率を高めることができるので好ましい。
構造単位(II)、(III)のような嵩高くなく、直線性の高いジオールからなる成分を組み合わせることで分子鎖は秩序だった乱れの少ない構造を取ると共に、結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できる。これにより高い強度、弾性率が得られることに加えて、優れた耐摩耗性も得られる。
また、上記した構造単位(I)は構造単位(I)、(II)および(III)の合計に対して40〜85mol%が好ましく、より好ましくは65〜80mol%、さらに好ましくは68〜75mol%である。このような範囲とすることで結晶性を適切な範囲とすることができ高い強度、弾性率が得られ、かつ融点も溶融紡糸可能な範囲となる。
構造単位(II)は構造単位(II)および(III)の合計に対して60〜90mol%が好ましく、より好ましくは60〜80mol%、さらに好ましくは65〜75mol%である。このような範囲とすることで結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できるため、耐摩耗性を高めることができる。
構造単位(IV)は構造単位(IV)および(V)の合計に対して40〜95mol%が好ましく、より好ましくは50〜90mol%、さらに好ましくは60〜85mol%である。このような範囲とすることでポリマーの融点が適切な範囲となり、ポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な紡糸性を有するため長手方向に均一な繊維が得られる上、適度な結晶性を有することで後述の固相重合条件との組み合わせにより高強度、高弾性率かつ耐摩耗性に優れる固相重合繊維が得られる。
なお、上記本発明で好ましく用いる液晶ポリエステルの各構造単位の好ましい範囲は以下のとおりである。なお、下記構造単位(I)〜(V)の合計を100mol%とする。この範囲の中で組成を調整することで本発明の液晶ポリエステル繊維が好適に得られる。
構造単位(I):45〜65mol%
構造単位(II):12〜18mol%
構造単位(III):3〜10mol%
構造単位(IV):5〜20mol%
構造単位(V):2〜15mol%
さらに、構造単位(IV)と構造単位(V)の合計量と構造単位(II)と構造単位(III)の合計量は、実質的に等モルであることが好ましい。
なお、本発明の液晶ポリエステルは、上記モノマー以外に、液晶性を損なわない程度の範囲で更に他のモノマーを共重合させることができ、例としてアジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、ポリエチレングリコール等のポリエーテル、ポリシロキサン、芳香族イミノカルボン酸、芳香族ジイミン、および芳香族ヒドロキシイミン等が挙げられる。
また、本発明の液晶ポリエステルには、本発明の効果を損なわない範囲で他のポリマーを添加・併用することができる。添加・併用とは、ポリマー同士を混合する場合や、2成分以上の複合紡糸において一方の成分、乃至は複数の成分に他のポリマーを部分的に混合使用すること、あるいは全面的に使用することをいう。他のポリマーとしては、例としてポリエステル、ポリオレフィンやポリスチレン等のビニル系重合体、ポリカーボネート、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、芳香族ポリケトン、脂肪族ポリケトン、半芳香族ポリエステルアミド、ポリエーテルエーテルケトン、フッ素樹脂等のポリマーを添加しても良く、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ナイロン6、ナイロン66、ナイロン46、ナイロン6T、ナイロン9T、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリシクロヘキサンジメタノールテレフタレート、ポリエステル99M等が好適な例として挙げられる。なお、これらのポリマーを添加・併用する場合、その融点は液晶ポリエステルの融点±30℃以内にすることが製糸性を損なわないために好ましい。なお、得られる繊維の強度、弾性率を向上させるため、またポリマー界面での剥がれによる毛羽発生や糸切れを抑制するためには添加・併用する量は50重量%以下が好ましく、5重量%以下がより好ましく、実質的に他のポリマーを添加・併用しないことが最も好ましい。
本発明に用いられる液晶ポリエステルには、本発明の効果を損なわない範囲内で、各種金属酸化物、カオリン、シリカ等の無機物、着色剤、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、蛍光増白剤、末端基封止剤、相溶化剤等の添加剤を少量含有していても良い。
本発明の液晶ポリエステル繊維は、示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm)におけるピーク半値幅が15℃以上である。この測定法におけるTmは繊維の融点を表し、ピーク形状はその面積が広いほど、即ち融解熱量ΔHmが大きいほど結晶化度が高く、またその半値幅が狭いほど結晶の完全性は高いと言える。すなわち、本発明の液晶ポリエステル繊維は結晶の完全性が低いことが特徴である。
本発明の構成単位(I)〜(V)からなる液晶ポリエステルは通常、紡糸した後固相重合を施すことで分子量増加とともにTmが上昇、ΔHmが増加、半値幅は減少し、結晶化度、結晶の完全性が高くなることで繊維の強度、伸度、弾性率が増加、耐熱性が向上することが公知である。一方で耐摩耗性が悪化するが、これは結晶の完全性が高まることにより、結晶部と非晶部の構造差が顕著となるため、その界面で破壊が起こるためと考えられている。そこで、固相重合繊維をさらに高温熱処理を行うことで結晶を融解させ、従来の固相重合した繊維の特徴であるピーク半値幅を固相重合していない液晶ポリエステル繊維のような15℃以上という値に増加させることで、結晶/非晶の構造差を減少させ、フィブリル構造を乱し、繊維全体を柔軟化させることで耐摩耗性を高める技術も公知である。これらの従来技術に対し、本発明の液晶ポリエステル繊維においては、固相重合後の繊維であるにも関らずピーク半値幅が15℃以上であり、すなわち、結晶の完全性が低いため破壊の起点となる結晶/非晶の構造差が小さく、良好な耐摩耗性を発現するのである。なお、Tmにおけるピーク半値幅はより広い方が耐摩耗性は高いため、好ましくは17℃以上、より好ましくは19℃以上である。なお、上限は特に制限されないが、工業的に達し得る上限は25℃程度である。
なお、本発明の液晶ポリエステル繊維においては、吸熱ピークは1つであるが、固相重合が不十分な場合など繊維構造によっては2つ以上のピークが観測されることがある。この場合のピーク半値幅はそれぞれのピークの半値幅を合計した値とする。
本発明の繊維の融点(Tm)は320℃以上が好ましく、330℃以上がより好ましく、340℃以上がさらに好ましい。このような高い融点を有することで耐熱性、熱寸法安定性が優れるため、製品とした後も高温で加工ができ、後加工性に優れる。Tmの上限は特に限定されないが、後述の製造方法により達し得る上限としては400℃程度である。
また融解熱量ΔHmの値は、液晶ポリエステルの構成単位の組成、固相重合の条件により若干変化するが、6.0J/gを超えることが好ましい。ΔHmが6.0J/gを超えるような結晶化度は固相重合繊維の特徴であり、このような高い結晶化度であることにより高強度、高弾性率となる。ΔHmは高いほど強度、弾性率が向上するため8.0J/gを超えることがより好ましい。ΔHmの上限は特に限定されないが、工業的に達しうる上限は10.0J/g程度である。
なお、上述の液晶ポリエステル繊維のTm、Tmにおけるピーク半値幅、融解熱量ΔHmは実施例記載の方法により得られる値を指す。
このような繊維構造を達成するためには、上記組成の液晶ポリエステルを溶融紡糸した後に固相重合するにあたり、後述のように固相重合に先立ち前駆体形成工程として50℃を開始温度として紡糸繊維の融点(Tm)−40℃以上融点(Tm)以下の範囲から選択した前駆体形成温度(T)まで昇温速度80℃/hr以上で昇温した後に、前駆体形成温度(T)にて0.5時間以上保持することで可能となる。
本発明の液晶ポリエステル繊維のポリスチレン換算の重量分子量は15.0万以上が好ましく、20.0万以上がより好ましく、25.0万以上がさらに好ましい。分子量を15.0万以上とすることで高い強度、伸度、弾性率が得られ、工程通過性に優れる。分子量の上限は特に規定されないが、本発明で到達し得る分子量は50万程度である。ここでいう、ポリスチレン換算の重量平均分子量は実施例記載の方法で測定される値をいう。なお、本発明においては繊維状態で固相重合を行うことで分子量を大きくできる。
本発明の液晶ポリエステル繊維の総繊度は、過度に小さいと固相重合時に糸条間での融着が生じやすく、解舒の際に欠点となり、工程通過性を悪化させるため、5dtex以上が好ましく、20dtex以上がより好ましく、100dtex以上がさらに好ましい。ここでいう総繊度とは実施例記載の手法により求める値である。また総繊度が過度に大きいと、固相重合時に糸条の内部と外部に差ができてしまい、単糸切れしやすくなり、工程通過性を悪化させるため10000dtex以下が好ましく、2000dtex以下がより好ましい。
本発明の液晶ポリエステル繊維の単繊維繊度は18.0dtex以下が好ましい。ここでいう単繊維繊度とは実施例記載の手法により求める値である。単繊維繊度を18.0dtex以下と細くすることで、繊維のしなやかさが向上し繊維の加工性が向上する、表面積が増加するため接着剤や樹脂との密着性が高まると言った特性を有することに加え、織加工する場合は厚みを薄くできる、織密度を高くできる、オープニング(開口部の面積)を広くできるという利点も有する。単繊維繊度はより好ましくは10.0dtex以下、さらに好ましくは7.0dtex以下である。なお、単繊維繊度の下限は特に限定されないが、前述の製造方法により達し得る下限としては1.0dtex程度である。
糸条に含まれる単糸数、すなわちフィラメント数は1以上が好ましく、5以上がより好
ましく、50以上がさらに好ましく、100以上が最も好ましい。フィラメント数を大き
くすることで、単繊維繊度が小さい場合でも総繊度を大きくでき、糸条のしなやかさと高
い強力(強度と総繊度の積)を併せ持つため工程通過性に優れる。フィラメント数は過度
に大きいと取り扱い性に劣ることから上限は5000程度である。
本発明の液晶ポリエステル繊維の強度は20.0cN/dtex以上である。なお、強度は22.0cN/dtex以上がより好ましく、25.0cN/dtex以上がさらに好ましい。強度の上限は特に限定されないが、後述の製造方法により達し得る上限としては30.0cN/dtex程度である。なおここで言う強度とは実施例記載の手法により求める値である。
本発明の繊維の伸度は1.0%以上が好ましく2.0%以上がより好ましい。伸度が1.0%以上あることで繊維の衝撃吸収性が高まり、高次加工工程での工程通過性、取り扱い性に優れる他、衝撃吸収性が高まるため耐摩耗性も高まる。なお、伸度の上限は特に限定されないが、後述の製造方法により達し得る上限としては10.0%程度である。なお、ここでいう伸度とは実施例記載の手法により求める値である。
本発明の繊維の弾性率は900cN/dtex以上である。なお、弾性率は1000cN/dtex以上がより好ましく、1100cN/dtex以上がさらに好ましい。弾性率の上限は特に限定されないが、後述の製造方法により達し得る上限としては弾性率1500cN/dtex程度である。なお本発明でいう弾性率とは実施例記載の手法により求める値である。
次に、本発明の液晶ポリエステル繊維の製造方法について詳細に説明する。
本発明の液晶ポリエステルの融点は、溶融紡糸可能な温度範囲を広くするため好ましくは200〜380℃であり、紡糸性を高めるためにより好ましいのは250〜360℃である。なお液晶ポリエステルポリマーの融点は実施例記載の方法で測定される値をいう。
本発明で用いる液晶ポリエステルのポリスチレン換算の重量平均分子量(以下、分子量と記載)は3.0万以上が好ましい。分子量を3.0万以上とすることで紡糸温度において適切な粘度を持ち製糸性を高めることができる。分子量が高いほど得られる繊維の強度、伸度、弾性率は高まるが、分子量が高すぎると粘度が高くなり流動性が悪くなり、ついには流動しなくなるため分子量は25.0万未満が好ましく、20.0万未満がより好ましい。ここでいう、ポリスチレン換算の重量平均分子量は実施例記載の方法で測定される値をいう。
本発明に用いる液晶ポリエステルの溶融粘度は、0.5〜200Pa・sが好ましく、特に1〜100Pa・sが好ましく、紡糸性の点から10〜50Pa・sがより好ましい。なお、この溶融粘度は、融点(Tm)+10℃の条件で、ずり速度1,000(1/s)の条件下で高化式フローテスターによって測定した値である。
本発明に用いる液晶ポリエステルは溶融紡糸に供する前に乾燥することが水分混入による発泡を抑え、製糸性を高める上で好ましい。また真空乾燥を行うことで、液晶ポリエステルに残存するモノマーも除去できるため、製糸性をさらに高めることができ、より好ましい。乾燥条件としては100〜200℃にて、8〜24時間の真空乾燥が通常用いられる。
溶融紡糸において、液晶ポリエステルの溶融押出は公知の手法を用いることができるが、重合時に生成する秩序構造をなくすためにエクストルーダー型の押出機を用いることが好ましい。押し出されたポリマーは配管を経由しギアーポンプなど公知の計量装置により計量され、異物除去のフィルターを通過した後、口金へと導かれる。このときポリマー配管から口金までの温度(紡糸温度)は流動性を高めるため液晶ポリエステルの融点以上とすることが好ましく、液晶ポリエステルの融点+10℃以上がより好ましい。ただし紡糸温度が過度に高いと液晶ポリエステルの粘度が増加し、流動性の悪化、製糸性の悪化を招くため500℃以下とすることが好ましく、400℃以下がより好ましい。なお、ポリマー配管から口金までの温度をそれぞれ独立して調整することも可能である。この場合、口金に近い部位の温度をその上流側の温度より高くすることで吐出が安定する。
吐出においては口金孔の孔径を小さくするとともに、ランド長(口金孔の孔径と同一の直管部の長さ)を長くすることが製糸性を高め、繊度の均一性を高める点で好ましい。ただし孔径が過度に小さいと孔の詰まりが発生しやすくなるため直径0.05mm以上0.50mm以下が好ましく、0.10mm以上0.30mm以下がより好ましい。ランド長は過度に長いと圧力損失が高くなるため、ランド長を孔径で除した商で定義されるL/Dは0.5以上3.0以下が好ましく0.8以上2.5以下がより好ましい。
また均一性を維持するために1つの口金の孔数は500孔以下が好ましく、100孔以下がより好ましい。孔数の下限としては1孔でもよい。なお、口金孔の直上に位置する導入孔はストレート孔とすることが圧力損失を高めない点で好ましい。導入孔と口金孔の接続部分はテーパーとすることが異常滞留を抑制する上で好ましい。
口金孔より吐出されたポリマーは保温、冷却領域を通過させ固化させた後、一定速度で回転するローラー(ゴデットローラー)により引き取られる。保温領域は過度に長いと製糸性が悪くなるため口金面から200mmまでとすることが好ましく、100mmまでとすることがより好ましい。保温領域は加熱手段を用いて雰囲気温度を高めることも可能であり、その温度範囲は100℃以上500℃以下が好ましく、200℃以上400℃以下がより好ましい。冷却は不活性ガス、空気、水蒸気等を用いることができるが、平行あるいは環状に噴き出す空気流を用いることが環境負荷を低くする点から好ましい。
引き取り速度は生産性、単糸繊度の低減のため50m/分以上が好ましく、500m/分以上がより好ましい。本発明で好ましい例として挙げた液晶ポリエステルは紡糸温度において好適な曳糸性を有することから引き取り速度を高速にでき、上限は特に制限されないが、曳糸性の点から2000m/分程度となる。
引き取り速度を吐出線速度で除した商で定義される紡糸ドラフトは1以上500以下とすることが好ましく製糸性を高め、繊度の均一性を高める点で10以上100以下とすることがより好ましい。
溶融紡糸においてはポリマーの冷却固化から巻き取りまでの間に油剤を付与することが繊維の取り扱い性を向上させる上で好ましい。油剤は公知のものを使用できるが、固相重合前の巻き返し工程において溶融紡糸で得られた繊維(以下、紡糸原糸と記載する)を解舒する際の解舒性を向上させる点で一般的な紡糸油剤や後述の無機粒子(A)/リン酸系化合物(B)の混合油剤を用いることが好ましい。
巻き取りは公知の巻取機を用いパーン、チーズ、コーンなどの形態のパッケージとすることができるが、巻き取り時にパッケージ表面にローラーが接触しないパーン巻きとすることが繊維に摩擦力を与えずフィブリル化させない点で好ましい。
つづいて、融着抑制の目的で液晶ポリエステル繊維に無機粒子(A)およびリン酸系化合物(B)を塗布した後に前駆体形成工程および固相重合を実施することが好ましい。液晶ポリエステル繊維は、剛直な分子構造のため分子鎖間の絡み合いが小さく、特に固相重合繊維では分子鎖が繊維軸方向に高度に配列している。このため、繊維軸に対して垂直方向への力が加わるとフィブリル化や物性低下が発生しやすいといった特徴がある。前駆体形成工程あるいは固相重合工程において融着が発生すると、固相重合後の繊維を解舒する際に、融着箇所を起点として繊維に対して垂直方向の力が加わるため、繊維のフィブリル化や物性低下が発生してしまう。このため、前駆体形成工程および固相重合における繊維間の融着を抑制し、解舒時に発生する融着に起因した糸欠陥を減少させる目的で固相重合油剤の選択は重要なポイントである。
無機粒子(A)およびリン酸系化合物(B)を塗布することで前駆体形成工程および固相重合工程において繊維間で発生する融着を抑制する効果に加え、該成分が前駆体形成工程および固相重合工程において熱変性することで、後工程での工程通過性に優れ、さらに製品にする際の後加工性に優れる。なお、本発明においては固相重合用油剤として無機粒子(A)およびリン酸系化合物(B)を用いるため、オイル分を使用しないが、無機粒子(A)およびリン酸系化合物(B)も「固相重合用油剤」として表記する。
本発明における無機粒子(A)とは、公知の無機粒子であり、例として鉱物、水酸化マグネシウム等の金属水酸化物、シリカやアルミナ等の金属酸化物、炭酸カルシウムや炭酸バリウム等の炭酸塩化合物、硫酸カルシウムや硫酸バリウム等の硫酸塩化合物の他、カーボンブラック等が挙げられる。このような耐熱性の高い無機粒子を繊維上へ塗布することで単糸間の接触面積を減らし、前駆体形成工程および固相重合工程において発生し得る融着を回避することが可能となる。
無機粒子(A)は、塗布工程を考慮して取扱いが容易であり環境負荷低減の観点から水分散が容易であることが好ましく、かつ、高温となる前駆体形成工程および固相重合条件下において不活性であることが望ましい。これらの観点からシリカやケイ酸塩を用いることが好ましい。ケイ酸塩の場合は特に層状構造を持つフィロケイ酸塩が好ましい。なおフィロケイ酸塩としては、カオリナイト、ハロイ石、蛇紋石、珪ニッケル鉱、スメクタイト族、葉ろう石、滑石、雲母などが挙げられるが、これらの中でも入手の容易性を考慮して滑石、雲母を用いることが最も好ましい。
また、無機粒子(A)のメディアン径(D50)としては、10μm以下が好ましい。D50を10μm以下とすることで無機粒子(A)が繊維間に保持される確率が高まり、融着抑制効果が顕著となるためである。同様の理由より、より好ましくはD50が5μm以下である。また、D50の下限としてはコスト面、また固相重合後の洗浄工程における洗浄性を考慮し0.01μm以上が好ましい。なお、ここでいうメディアン径(D50)とは実施例記載の方法により測定される値をいう。
また、本発明におけるリン酸系化合物(B)とは、下式下記化学式(1)〜(3)で示される化合物が使用できる。
Figure 2015030920
ここで、R,Rは炭化水素、Mはアルカリ金属、Mはアルカリ金属、水素、炭化水素、含酸素炭化水素のいずれかを指す。
なお、nは1以上の整数を表す。なお、nの上限は熱分解抑制の観点から好ましくは100以下、より好ましくは10以下である。
は、フェニル基またはアルキル基からなる。フェニル基やアルキル基の水素は各種置換基により置換可能であるが、熱分解による発生ガスを考慮し、環境負荷を低減する観点から炭素と水素からなる構造が好ましい。アルキル基で構成される場合の炭素数としては、繊維表面への親和性の観点から2以上が好ましく、かつ、加熱に伴う有機成分の分解による重量減量率を押さえ、分解により発生する炭化物が繊維表面へ残存することを防ぐ観点から20以下が好ましい。
また、Rとしては、水への溶解性の観点から炭素数5以下の炭化水素が好ましく、より好ましいのは炭素数2または3である。
としては製造コストの観点からナトリウム、カリウムが好ましい。
また、繊維への無機粒子(A)とリン酸系化合物(B)の塗布方法としては、溶融紡糸から巻き取りまでの間に行っても良いが、付着効率を高めるためには溶融紡糸して巻き取った糸条を巻き返しながら該糸条に塗布する、あるいは溶融紡糸で少量を付着させ、巻き取った糸条を巻き返しながら追加塗布することが好ましい。
リン酸系化合物(B)を無機粒子(A)と併用することにより無機粒子(A)の水等の媒体への分散性を高め、繊維への均一塗布が可能となり優れた融着抑制効果が発現する。このため、得られる固相重合繊維を解舒する際にも強度、弾性率を損なわずに高次加工へと供することができるのである。また、リン酸系化合物(B)が前駆体形成工程あるいは固相重合中に熱変性する、すなわち脱水反応およびリン酸系化合物(B)に含まれる有機成分の分解によりリン酸塩の縮合塩が形成されることによる相乗効果も得られる。
この効果の1つは、本発明の特徴である後述の前駆体形成工程での急激な昇温においてもリン酸塩の縮合塩が形成され、この縮合塩は高い耐熱性を有し、粉黛あるいは液体として存在することで繊維間の融着を抑制可能なことである。従来技術として知られているポリシロキサン系化合物や一般的な有機化合物である紡糸油剤等では前駆体形成工程での急激な昇温においてゲル化や炭化により繊維間を擬似的に接着するため、固相重合後の繊維を解舒する際に融着箇所においてダメージを受けるため繊維のフィブリル化や物性低下が免れないのである。
2つ目の効果は固相重合後の繊維表面に均一に無機粒子(A)とリン酸塩の縮合塩が付着することによる、工程通過性向上である。繊維表面に粉体である塩と粒子がコーティングされることで、粉体離型の作用により走行抵抗は低下し、繊維の擦過によるフィブリル化を防ぐことができる。またリン酸塩の縮合塩が存在することで無機粒子(A)が繊維表面に固着するのを抑制しつつ、一方では過剰に付着してしまった無機粒子(A)が繊維表面から脱落するのを抑制し、工程通過性および後加工性を向上させることができる。一方、従来技術として知られているポリシロキサン系化合物では、ポリシロキサンのゲル状物が生成するため表面の粘着性が高く、走行抵抗は高いため工程通過性は安定化できないのである。
3つ目の効果は、無機粒子(A)とリン酸塩の縮合塩が共存することで、水により容易に両者とも洗浄除去できることである。この効果により、薬液や樹脂との接着性が要求される補強材などの用途においては製品とする際に水洗することで繊維表面の付着物が実質的にない状態を作り出し、薬液や樹脂との接着性を高めることができるのである。この洗浄性向上のメカニズムは無機粒子(A)を併用することにより、無機粒子(A)が吸湿性を持つため、リン酸系化合物(B)の縮合塩が自然に吸湿し潮解することを防ぎ、水と接した際にのみリン酸系化合物(B)の縮合塩が吸水することで膨張し、無機粒子(A)と共に繊維表面から層状にはがれ落ちるためと推測している。なお、リン酸系化合物(B)を単独塗布した場合、縮合塩の潮解性により通常の繊維の保管条件においても繊維表面でリン酸塩が吸湿、潮解し粘性を帯びるため、工程通過性および洗浄性が低下する。また、従来技術として知られているポリシロキサン系化合物では、ポリシロキサンのゲル状物が生成するため、表面にゲル状物が残ってしまうのである。
無機粒子(A)およびリン酸系化合物(B)の付着量を適性化しつつ均一塗布するためにはリン酸系化合物(B)の希釈液に無機粒子(A)を添加した混合油剤を用いることが好ましく、希釈液としては安全性の観点から水を用いることが好ましい。なお、融着抑制の観点から希釈液中の無機粒子(A)の濃度は高いことが望ましく0.01重量%以上、より好ましくは0.1重量%以上であり、上限としては均一分散の観点から10重量%以下が好ましく、より好ましく5重量%以下である。また、希釈液中のリン酸系化合物(B)の濃度は無機粒子(A)の均一分散の観点からは高いことが望ましく、0.1重量%以上、より好ましくは1.0重量%以上である。なお、リン酸系化合物(B)の濃度の上限としては特に制限はないが、混合油剤の粘度上昇による付着過多、粘度の温度依存性増大による付着斑を避ける目的で50重量%以下が好ましく、より好ましくは30重量%以下である。
また、繊維への無機粒子(A)およびリン酸系化合物(B)の塗布方法としては、溶融紡糸から巻き取りまでの間に行っても良いが、付着効率を高めるためには紡糸原糸を巻き返しながら塗布する、あるいは溶融紡糸で少量を付着させ、巻き返しながら追加塗布することが好ましい。
付着方法はガイド給油法でも良いが、モノフィラメントなど総繊度の細い繊維に均一に付着させるためには金属製あるいはセラミック製のキスロール(オイリングロール)による付着が好ましい。なお、繊維がカセ状、トウ状の場合は混合油剤へ浸漬することで塗布できる。
なお、繊維への無機粒子(A)の付着率を(a)重量%、リン酸系化合物(B)の付着率を(b)重量%としたとき、以下条件を満たすことが好ましい。
条件1. 30≧a+b≧2.0
条件2. a≧0.05
条件3. 10≧b/a≧1
上記条件1において、固相重合油剤の油分付着率(a+b)が多いほど融着は抑制できるため、2.0重量%以上が好ましい一方で、多すぎると繊維がべたつきハンドリングが悪化し、また製造工程や後加工工程での汚れが発生するため30重量%以下が好ましい。より好ましくは4.0重量%以上20重量%以下である。なお繊維への固相重合油剤の油分付着率(a+b)は固相重合油剤塗布後の繊維について実施例に記載した手法により求められる油分付着率の値を指す。
条件2において、無機粒子(A)の付着率(a)は0.05重量%以上とすることで無機粒子による融着抑制効果が顕著となる。付着率(a)の上限としては均一付着の観点から5重量%以下が目安である。
条件3において、リン酸系化合物(B)の付着率(b)の無機粒子(A)の付着率(a)に対する割合(b/a)を1以上とすることでリン酸系化合物(B)の前駆体形成工程および固相重合工程での縮合塩形成に由来した優れた洗浄性がより顕著に現れ、また無機粒子(A)と繊維間の固着や脱落を抑制する観点からも好ましい。また無機粒子(A)の吸湿性によりリン酸系化合物(B)の縮合塩が吸湿、潮解するのを抑制し、優れた工程通過性および洗浄性を得るためには、(b/a)を10以下とすることが好ましい。
なお、ここでいう無機粒子(A)の付着率(a)および、リン酸系化合物(B)の付着率(b)とは、下式にて算出される値を指す。
(無機粒子(A)の付着率(a))=(a+b)×Ca÷(Ca+Cb)
(リン酸系化合物(B)の付着率(b))=(a+b)×Cb÷(Ca+Cb)
ここで、Caは固相重合油剤中の無機粒子(A)の濃度、Cbは固相重合油剤中のリン酸系化合物(B)の濃度を指す。
本発明においては、固相重合に先立ち前駆体形成工程として50℃を開始温度として紡糸繊維の融点(Tm)−40℃以上融点(Tm)以下の範囲から選択した前駆体形成温度(T)まで昇温速度50℃/hr以上で昇温した後に、前駆体形成温度(T)にて0.5時間以上保持することを特徴とする。この前駆体形成工程では、結晶化を抑制し分子量を高めることで、つづく固相重合工程での繊維中の結晶成長による結晶/非晶間の構造差の増大を抑制し、得られる固相重合繊維の耐摩耗性の向上を達成する。
本願発明者らは鋭意検討の末、液晶ポリエステルの組成および構造単位の比率を前述のように最適化し、かつ固相重合に先立ち上述の条件において前駆体形成工程を行うことで、高強度、高弾性率かつ耐摩耗性に優れる固相重合繊維が得られることを見出したのである。すなわち、本願における固相重合繊維の耐摩耗性向上の理由については以下のようであると推定している。まず、結晶化度が適度に高い液晶ポリエステルを使用し、固相重合に先立ち前駆体形成工程として50℃を開始温度として紡糸繊維の融点(Tm)−40℃以上融点(Tm)以下の範囲から選択した前駆体形成温度(T)まで昇温速度80℃/hr以上で昇温した後に、前駆体形成温度(T)にて0.5時間以上保持することで分子鎖の熱運動により結晶化を阻害しつつ重合反応が優先的に進行することで分子量を著しく増大させることが可能となる。加えて、続く固相重合工程においては更なる分子量増加と結晶成長が進行するが、液晶ポリエステルは剛直な分子鎖であることから、前駆体形成工程において分子量が増大すればするほど結晶成長時に必要な分子鎖の配列が阻害され、結晶の完全性が低下する。このため、結晶と非晶の構造差が小さくなるために得られる固相重合繊維の耐摩耗性が向上するのである。
なお、前駆体形成工程の開始温度を50℃とするのは、液晶ポリエステル紡糸繊維のガラス転位温度より十分に低い温度であり、かつ室温より十分に高い温度とすることで季節によらず昇温速度を同じにするためである。すなわち、固相重合後に得られる液晶ポリエステル繊維の諸物性が季節による変動を受けにくくするためである。
前駆体形成温度(T)は融点(Tm)−40℃以上融点(Tm)以下の範囲から選択するが、結晶化抑制および重合促進の観点から、より好ましくはTm−35℃以上、最も好ましくはTm−30℃以上とすることである。一方、融点に近づくことにより融着が発生しやすくなるため、融着回避の観点から上限はTm以下である。より好ましくはTm−10℃以下、最も好ましくはTm−15℃である。
なお、前駆体形成温度(T)をTm−40℃未満とした場合、結晶化が進行することで分子鎖が拘束され、反応性の末端基の運動性が低下するために続く固相重合工程において重合反応が阻害される。このため得られる固相重合繊維の分子量低下が起き強度、伸度、弾性率の低下が起きる。加えて、つづく固相重合工程において結晶成長が進行するため、得られる固相重合繊維の結晶の完全性は高くなり、耐摩耗性は低いものとなる。
前駆体形成工程において50℃を開始温度とし、前駆体形成温度(T)までの昇温速度は80℃/hr以上である。急速に昇温することで結晶化を抑制し重合度を上げる観点から昇温速度はより好ましくは100℃/hr以上である。結晶化抑制および重合度増加の観点から昇温速度は速ければ速いほど好ましく、予め前駆体形成温度(T)に加熱した雰囲気下に繊維を投入することも可能である。しかしながら処理装置の保全や作業者の安全確保の観点から室温で繊維を投入後に昇温することが望ましく、処理装置の仕様によりとり得る昇温速度の上限は異なるが、概ね400℃/hr程度が上限である。なお、処理装置に室温で繊維を投入する場合は、前駆体形成工程の開始温度50℃まで昇温が必要であるが、この時の昇温速度としてはオーバーシュートを避ける目的で1℃/分以下で行うことが望ましい。
なお、前駆体形成温度(T)までの昇温速度は80℃/hr未満とすると、結晶化の抑制効果が十分得られず、結晶化が進行することで固相重合後に得られる液晶ポリエステル繊維の耐摩耗性は低いものとなる。
前駆体形成工程における結晶化抑制および重合促進の観点から、前駆体形成温度(T)における保持時間は0.5時間以上である。より好ましくは1時間以上であり特に上限はないが、生産性の観点から最大でも5時間程度とすることが好ましい。
なお、前駆体形成温度(T)における保持時間を0.5時間未満とすると、結晶化の抑制効果が十分得られず、結晶化が進行することで固相重合後に得られる液晶ポリエステル繊維の耐摩耗性は低いものとなる。
本発明においては、前駆体形成工程の後に固相重合工程を行う。固相重合を行うことで分子量が高まり、これにより強度、弾性率、伸度が高まる。
前駆体形成工程および固相重合工程は別工程で行っても良いが、生産性の観点から前駆体形成工程と連続して固相重合を行うことが好ましい。
前駆体形成および固相重合は窒素等の不活性ガス雰囲気中や、空気のような酸素含有の活性ガス雰囲気中または減圧下で行うことが可能であるが、設備の簡素化および繊維あるいは芯材の酸化防止のため窒素雰囲気下で行うことが好ましい。この際、露点が−40℃以下の低湿気体が好ましい。
前駆体形成および固相重合はカセ状、トウ状(例えば金属網等に載せて行う)、あるいはローラー間で連続的に糸条として処理することも可能であるが、設備が簡素化でき、生産性も向上できる点から繊維を芯材に巻き取ったパッケージ状で行うことが好ましい。
パッケージ状で前駆体形成および固相重合を行う場合、融着防止のためには固相重合を行う際の繊維パッケージの巻密度が重要であり、巻き崩れを防ぐために巻き密度を0.01g/cc以上とし、かつ融着を回避するためには巻き密度を1.00g/cc以下とすることが好ましく、0.80g/cc以下とすることがより好ましい。ここで巻密度とは、パッケージ外寸法と心材となるボビンの寸法から求められるパッケージの占有体積Vf(cc)と繊維の重量Wf(g)からWf/Vfにより計算される値である。また巻密度が過度に小さいとパッケージが巻き崩れるため0.03g/cc以上とすることが好ましい。なお占有体積Vfはパッケージの外形寸法を実測することで求められる値であり、Wfは繊度と巻取長から計算される値、もしくは巻取前後での重量差により実測される値である。
このような巻密度が小さいパッケージは、溶融紡糸における巻き取りで形成した場合には、設備生産性、生産効率化が向上するために望ましく、一方、溶融紡糸で巻き取ったパッケージを巻き返して形成した場合には、巻き張力を小さくすることができ、巻密度をより小さくできるため好ましい。巻き返しにおいては巻き張力を小さくするほど巻き密度は小さくできるので、巻き張力は0.30cN/dtex以下が好ましく、0.20cN/dtex以下がより好ましい。なお下限は特に定められるものではないが、本発明で到達し得る下限は0.01cN/dtex程度である。
巻き密度を低くするためには巻き返し速度を500m/分以下とすることが好ましく、400m/分以下とすることがより好ましい。一方、巻き返し速度は生産性のためには高い方が有利であり、50m/分以上、特に100m/分以上とすることが好ましい。
また低張力でも安定したパッケージを形成するためには巻き形態は両端にテーパーがついたテーパーエンド巻き取りとすることが好ましい。この際、テーパー角は60°以下が好ましく、45°以下がより好ましい。またテーパー角が小さい場合、繊維パッケージを大きくすることができず長尺の繊維が必要な場合には1°以上が好ましく、5°以上がより好ましい。なお本発明で言うテーパー角とは以下の式で定義される。
Figure 2015030920
さらにパッケージ形成にはワインド数も重要である。ワインド数とはトラバースが半往復する間にスピンドルが回転する回数であり、トラバース半往復の時間(分)とスピンドル回転数(rpm)の積で定義され、ワインド数が大きいことは綾角が小さいことを示す。ワインド数は小さい方が繊維間の接触面積が小さく融着回避には有利であるが、ワインド数が高いほど端面での綾落ち、パッケージの膨らみが軽減でき、パッケージ形状が良好となる。これらの点からワインド数は2以上20以下が好ましく、5以上15以下がより好ましい。
繊維パッケージを形成するために用いられるボビンは円筒形状のものであればいかなるものでも良く、繊維パッケージとして巻き取る際に巻取機に取り付けこれを回転させることで繊維を巻き取り、パッケージを形成する。固相重合に際しては繊維パッケージをボビンと一体で処理することもできるが、繊維パッケージからボビンのみを抜き取って処理することもできる。ボビンに巻いたまま処理する場合、該ボビンは固相重合温度に耐える必要があり、アルミや真鍮、鉄、ステンレスなどの金属製であることが好ましい。またこの場合、ボビンには多数の穴の空いていることが、重合反応副生物を速やかに除去でき固相重合を効率的に行えるため好ましい。また繊維パッケージからボビンを抜き取って処理する場合には、ボビン外層に外皮を装着しておくことが好ましい。また、いずれの場合にもボビンの外層にはクッション材を巻き付け、その上に液晶ポリエステル溶融紡糸繊維を巻き取っていくことが、パッケージ最内層の繊維とボビン外層との融着を防ぐ点で好ましい。クッション材の材質は、有機繊維または金属繊維からなるフェルトが好ましく、厚みは0.1mm以上、20mm以下が好ましい。前述の外皮を該クッション材で代用することもできる。
繊維パッケージの繊維重量はいかなる重量でも良いが、生産性を考慮すると0.1kg以上、20kg以下が好ましい範囲である。なお、糸長としては1万m以上200万m以下が好ましい範囲である。
固相重合温度は、液晶ポリエステル紡糸繊維の吸熱ピーク温度をTm(℃)とした場合、最高到達温度(T)がTm−60℃以上であることが好ましい。このような融点近傍の高温とすることで固相重合が速やかに進行し、繊維の強度を向上させることができる。なお、ここで言うTmは一般には液晶ポリエステル繊維の融点であり、本発明においては実施例記載の測定方法により求められた値を指す。なお最高到達温度(T)はTm(℃)未満とすることが融着防止のために好ましい。また固相重合温度を時間に対し段階的にあるいは連続的に高めることは、融着を防ぐと共に固相重合の時間効率を高めることができ、より好ましい。この場合、固相重合の進行と共に液晶ポリエステル繊維の融点は上昇するため、固相重合温度は、固相重合前の液晶ポリエステル繊維のTm+100℃程度まで高めることができる。ただしこの場合においても固相重合での最高到達温度は固相重合後の繊維のTm−60(℃)以上Tm(℃)未満とすることが固相重合速度を高めかつ融着を防止できる点から好ましい。
なお、ここで言うTmは一般には液晶ポリエステル繊維の融点であり、本発明においては実施例記載の測定方法により求められた値を指す。
固相重合時間は、分子量を高め繊維の強度、弾性率、伸度を十分に高くするためには最高到達温度で5時間以上とすることが好ましく、10時間以上がより好ましい。一方、強度、弾性率、伸度増加の効果は経過時間と共に飽和するため、生産性を高めるためには50時間以下とすることが好ましい。
本発明においては、後加工工程通過性および製品収率向上の観点から、固相重合した後、洗浄を行ってもよい。洗浄を行い融着防止用の固相重合油剤を除去することで、後の工程、たとえば製織工程での固相重合油剤のガイド等への堆積による工程通過性の悪化、堆積物の製品への混入による欠点生成などを抑制することが可能となる。
本発明の製造方法により得られる液晶ポリエステル繊維は高強度、高弾性率であり、かつ耐摩耗性に優れる。このため、一般産業用資材、土木・建築資材、スポーツ用途、防護衣、補強資材、電気材料(特に、テンションメンバーとして)、音響材料、一般衣料等の分野で広く用いられる。有効な用途としては、スクリーン紗、フィルター、ロープ、ネット、魚網、コンピューターリボン、プリント基板用基布、抄紙用のカンバス、エアーバッグ、飛行船、ドーム用等の基布、ライダースーツ、釣糸、各種ライン(ヨット、パラグライダー、気球、凧糸)、ブラインドコード、網戸用支持コード、自動車や航空機内各種コード、電気製品やロボットの力伝達コード等が挙げられ、中でも耐摩耗性への要求が強いロープ、ネット、魚網、ケーブル、テンションメンバー、防護衣といった幅広い用途に特に好適に用いることができる。
以下、実施例により本発明をより具体的に説明する。なお実施例中の各特性値は次の方法で求めた。
A.総繊度、単繊維繊度
検尺機にて繊維を10mカセ取りし、その重量(g)を1000倍し、1水準当たり10回の測定を行い、平均値を総繊度(dtex)とした。これをフィラメント数で除した商を単繊維繊度(dtex)とした。
B.強度、伸度、弾性率
JIS L1013:1999記載の方法に準じて、試料長100mm、引張速度50mm/分の条件で、オリエンテック社製テンシロンUCT−100を用い1水準当たり10回の測定を行い、平均値を強力(cN)、強度(cN/dtex)、伸度(%)、弾性率(cN/dtex)とした。なお、弾性率とは初期引張抵抗度のことである。
C.油分付着率
100±10mgの繊維を採取し、60℃にて10分間乾燥させた後の重量を測定し(W)、繊維重量に対し100倍以上の水にドデシルベンゼンスルホン酸ナトリウムを繊維重量に対し2.0重量%添加した溶液に繊維を浸漬させ、室温にて20分超音波洗浄し、洗浄後の繊維を水洗し、60℃にて10分間乾燥させた後の重量(W)を測定し、次式により油分付着率を算出した。
(油分付着率(重量%))=(W−W)×100/W
D.液晶ポリエステル繊維のTm、Tmにおけるピーク半値幅、融解熱量ΔHm、液晶ポリエステルポリマーの融点
TA instruments社製DSC2920により示差熱量測定を行い、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度をTm(℃)とし、Tmにおけるピーク半値幅(℃)、融解熱量(ΔHm)(J/g)を測定した。
なお、参考例に示した液晶ポリエステルポリマーについてはTmの観測後、Tm+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピークをTmとし、Tmをもってポリマーの融点(Tm)とした。
E.ポリスチレン換算の重量平均分子量(分子量)
溶媒としてペンタフルオロフェノール/クロロホルム=35/65(重量比)の混合溶媒を用い、液晶ポリエステルの濃度が0.04〜0.08重量/体積%となるように溶解させGPC測定用試料とした。なお、室温24時間の放置でも不溶物がある場合は、さらに24時間静置し、上澄み液を試料とした。これを、Waters社製GPC測定装置を用いて測定し、ポリスチレン換算により重量平均分子量(Mw)を求めた。
カラム:ShodexK−806M 2本、K−802 1本
検出器:示差屈折率検出器RI
温度 :23±2℃
流速 :0.8mL/分
注入量:200μL
F.耐摩耗性:セラミック素材に対する耐摩耗性C
セラミック素材に対する耐摩耗性Cの評価はマルチフィラメントから単糸を抜き出して行った。直径4mmのセラミック棒ガイド(湯浅糸道工業(株)製棒ガイド:材質YM−99C、硬度1800)に接触角90°でかけた繊維の両端をストローク装置(東洋精機製作所社製糸摩擦抱合力試験機)に把持し、棒ガイドに0.88cN/dtexの応力を付与しつつ(繊維に0.62cN/dtexの応力がかかる方向に付与する)、ストローク長30mm、ストローク速度100回/分で繊維を擦過させ、ストローク回数1回毎に停止して、棒ガイド上の白粉または繊維表面のフィブリルの発生が確認されたストローク回数を測定し、5回の測定の平均値として求め、以下の基準により判定を行った。
耐摩耗性C≧20:良好◎
20>耐摩耗性C≧15:可○
15>耐摩耗性C:不良×
G.耐摩耗性:金属素材に対する耐摩耗性M
金属素材に対する耐摩耗性Mの評価はマルチフィラメントから単糸を抜き出して行った。2.45cN/dtex(2.5g重/dtex)の荷重をかけた繊維を垂直に垂らし、繊維に対して垂直になるように直径3.8mmの硬質クロム梨地加工金属棒ガイド(湯浅糸道工業(株)製棒ガイド)を接触角2.7°で押し付け、ストローク長30mm、ストローク速度600回/分でガイドを繊維軸方向に擦過させ、実体顕微鏡観察を行い、棒ガイド上もしくは繊維表面上に白粉またはフィブリルの発生が確認されるまでの時間を測定し、7回の測定のうち最大値および最小値を除いた5回の平均値を求め耐摩耗性Mとして求め、以下の基準により判定を行った。
耐摩耗性M≧20:良好◎
20>耐摩耗性M≧15:可○
15>耐摩耗性M:不良×
参考例1
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸870重量部、4,4’−ジヒドロキシビフェニル327重量部、ハイドロキノン89重量部、テレフタル酸292重量部、イソフタル酸157重量部および無水酢酸1433重量部(フェノール性水酸基合計の1.08当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、330℃まで4時間で昇温した。
重合温度を330℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例2
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸808重量部、4,4’−ジヒドロキシビフェニル411重量部、ハイドロキノン104重量部、テレフタル酸314重量部、イソフタル酸209重量部および無水酢酸1364重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、300℃まで4時間で昇温した。
重合温度を300℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例3
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸323重量部、4,4’−ジヒドロキシビフェニル436重量部、ハイドロキノン109重量部、テレフタル酸359重量部、イソフタル酸194重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、325℃まで4時間で昇温した。
重合温度を325℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例4
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸895重量部、4,4’−ジヒドロキシビフェニル168重量部、ハイドロキノン40重量部、テレフタル酸135重量部、イソフタル酸75重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、365℃まで4時間で昇温した。
重合温度を365℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例5
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル235重量部、ハイドロキノン89重量部、テレフタル酸224重量部、イソフタル酸120重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、340℃まで4時間で昇温した。
重合温度を340℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例6
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル335重量部、ハイドロキノン30重量部、テレフタル酸224重量部、イソフタル酸120重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、305℃まで4時間で昇温した。
重合温度を305℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例7
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル268重量部、ハイドロキノン69重量部、テレフタル酸314重量部、イソフタル酸30重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、355℃まで4時間で昇温した。
重合温度を355℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例8
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル268重量部、ハイドロキノン69重量部、テレフタル酸150重量部、イソフタル酸194重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、310℃まで4時間で昇温した。
重合温度を310℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例9
攪拌翼、留出管を備えた5Lの反応容器に p−ヒドロキシ安息香酸1586重量部と4,4’−ジヒドロキシビフェニル406重量部、ハイドロキノン230重量部、テレフタル酸206重量部、イソフタル酸502重量部及び無水酢酸2104重量部(フェノール性水酸基合計の1.03モル当量)を仕込み、窒素ガス雰囲気下で攪拌しながら150℃で2時間反応させた後、250℃まで2.5時間で昇温し、1時間保持後さらに1.5時間で320℃まで昇温した。その後1.5時間で1.0mmHg(133Pa)に減圧し、更に30分間反応を続け重縮合を完了させた。次に反応容器内を2.0kg/cm2(0.2MPa)に加圧し、直径5mmの円形吐出口を1ケ持つ口金を経由してポリマーをストンド状物に吐出し、カッターによりペレタイズした。
参考例10
攪拌翼、留出管を備えた5Lの反応容器に p−ヒドロキシ安息香酸907重量部と6−ヒドロキシ−2−ナフトエ酸457重量部及び無水酢酸946重量部(フェノール性水酸基合計の1.03モル当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、325℃まで4時間で昇温した。
重合温度を325℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例1〜10で得られた液晶性ポリエステルの特性を表1に示す。なおいずれの樹脂もホットステージにて窒素雰囲気下で昇温加熱し、試料の透過光を偏光下で観察したところ光学的異方性(液晶性)が確認された。また、溶融粘度は高化式フローテスターを用い、融点(Tm)+10℃の温度にて、剪断速度1000/sで測定した。
Figure 2015030920
実施例1
参考例1の液晶ポリエステルを用い、160℃、12時間の真空乾燥を行った後、大阪精機工作株式会社製φ15mm単軸エクストルーダーにて溶融押し出しし、ギアーポンプで計量しつつ紡糸パックにポリマーを供給した。この時のエクストルーダー出から紡糸パックまでの紡糸温度は345℃とした。紡糸パックでは金属不織布フィルターを用いてポリマーを濾過し、孔径0.13μm、ランド長0.26mmの孔を300個有する口金より吐出量100g/分でポリマーを吐出した。吐出したポリマーは40mmの保温領域を通過させた後、環状冷却風により糸条の外側から冷却し固化させ、その後、脂肪酸エステル化合物を主成分とする紡糸油剤を付与し全フィラメントを600m/分の第1ゴデットロールに引き取った。これを同じ速度である第2ゴデットロールを介した後、ダンサーアームを介しパーンワインダー(神津製作所社製EFT型テークアップワインダー、巻取パッケージに接触するコンタクトロール無し)にてパーンの形状に巻き取った。得られた液晶ポリエステルの紡糸繊維の融点(Tm)は318℃であった。
この紡糸繊維パッケージから神津製作所社製SSP−MV型リワインダー(接触長(最内層の巻きストローク)200mm、ワインド数8.7、テーパー角45°)を用いて巻き返しを行った。紡糸繊維の解舒は、縦方向(繊維周回方向に対し垂直方向)に行い、調速ローラーは用いず、オイリングローラー(梨地仕上げのステンレスロール)を用いてリン酸系化合物(B)として下記化学式(4)で示されるリン酸系化合物(B)を6.0重量%含有する水溶液に無機粒子(A)として表2に滑石1として示すメディアン径1.0μmのタルク、SG−2000(日本タルク株式会社製)を1.0重量%分散させた固相重合油剤の給油を行った。
Figure 2015030920
巻き返しの芯材にはステンレス製の穴あきボビンにケブラーフェルト(目付280g/m、厚み1.5mm)を巻いたものを用い、面圧は100gfとした。巻き返し後の繊維への固相重合油剤の油分付着率(a+b)は15.0重量%であった。
次に巻き返したパッケージからステンレスの穴あきボビンを外し、ケブラーフェルトに繊維を巻き取ったパッケージの状態として固相重合を行なった。固相重合は、密閉型オーブンを用いて室温25℃にてパッケージを投入し、50℃までを30分で昇温した後、前駆体形成工程として50℃から表2記載の前駆体形成温度(T)293℃まで125℃/hrで昇温し1時間温度保持した後、ひきつづき表2記載の固相重合の最高到達温度(T)293℃にて更に20時間保持して固相重合を行った。なお、雰囲気は除湿窒素を流量20NL/分にて供給し、庫内が加圧にならないように排気口より排気させた。
得られた固相重合後の繊維の物性は表2に記載のとおりであり、固相重合により発現する高い強度、弾性率を有するとともに、繊維のTmにおけるピーク半値幅は15℃以上であり、耐摩耗性が良好であることが確認でき固相重合後にも関らず完全性の低い結晶構造を有するため耐磨耗性が良好であった。以上の結果から、特に耐摩耗性への要求が強いロープ、ネット、魚網、ケーブル、テンションメンバー、防護衣といった幅広い用途において良好な特性発現が期待される。
実施例2〜6
ここでは前駆体形成温度(T)、固相重合の最高到達温度(T)を変更する実験をおこなった。
前駆体形成工程において50℃から表2記載の前駆体形成温度(T)まで125℃/hrで昇温し1時間保持した後、表2記載の固相重合の最高到達温度(T)まで4℃/hrで昇温し20時間保持して固相重合を行った以外は実施例1と同様にして液晶ポリエステル繊維を得た。
得られた固相重合後の繊維の物性は表2に記載のとおりであり、固相重合により発現する高い強度、弾性率を有するとともに、繊維のTmにおけるピーク半値幅は15℃以上であり、固相重合後にも関らず完全性の低い結晶構造を有するため耐磨耗性は良好もしくは可であった。以上の結果から、特に耐摩耗性への要求が強いロープ、ネット、魚網、ケーブル、テンションメンバー、防護衣といった幅広い用途において良好な特性発現が期待される。
なお、実施例2、3において実施例1対比若干の耐摩耗性低下が発生した理由としては、前駆体形成温度(T)が低下するにつれて繊維のTmにおけるピーク半値幅が狭くなっていることからも、結晶/非晶の構造差が増大したためと推測する。また、実施例4〜6において実施例1対比若干の弾性率低下および耐摩耗性低下が発生した理由としては前駆体形成温度(T)が紡糸繊維のTmに近くなることで糸-糸間に若干の融着が発生し、これに伴い弾性率および耐磨耗性低下が発生したと推測する。
実施例7、8
最高到達温度(T)での固相重合時間を表2記載の通りとしたこと以外は実施例1と同様にして液晶ポリエステル繊維を得た。
得られた固相重合後の繊維の物性は表2に記載のとおりであり、固相重合により発現する高い強度、弾性率を有するとともに、繊維のTmにおけるピーク半値幅は15℃以上であり、固相重合後にも関らず完全性の低い結晶構造を有するため耐磨耗性が良好または可であった。以上の結果から、特に耐摩耗性への要求が強いロープ、ネット、魚網、ケーブル、テンションメンバー、防護衣といった幅広い用途において良好な特性発現が期待される。
Figure 2015030920
実施例9〜15
参考例2〜8の液晶ポリエステルを用いた他は実施例1と同様にして液晶ポリエステル繊維を得た。
得られた固相重合後の繊維の物性は表3に記載のとおりであり、固相重合により発現する高い強度、弾性率を有するとともに、繊維のTmにおけるピーク半値幅は15℃以上であり、耐摩耗性が良好であることが確認でき固相重合後にも関らず完全性の低い結晶構造を有するため耐磨耗性が良好であった。以上の結果から、特に耐摩耗性への要求が強いロープ、ネット、魚網、ケーブル、テンションメンバー、防護衣といった幅広い用途において良好な特性発現が期待される。
Figure 2015030920
実施例16〜19
実施例16〜19においては固相重合用油剤の成分の変更を行った。
実施例16、17ではリン酸系化合物(B)として表4のとおり、下記化学式(5)で示されるリン酸系化合物(B)、または下記化学式(6)で示されるリン酸系化合物(B)に変更した以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Figure 2015030920
Figure 2015030920
実施例18においてはリン酸系化合物(B)の代わりにポリエチレングリコールラウリレート主成分の紡糸油剤を用いたこと以外は実施例1と同様にして液晶ポリエステル繊維を得た。実施例19においては 固相重合用油剤として無機粒子(A)とリン酸系化合物(B)の代わりにポリジメチルシロキサン(PDMS)を主成分とする油剤を使用したこと以外は実施例1と同様にして液晶ポリエステル繊維を得た。
得られた繊維の物性は表4に示すとおりであり、固相重合により発現する高い強度、弾性率を有するとともに、繊維のTmにおけるピーク半値幅は15℃以上であり、固相重合後にも関らず完全性の低い結晶構造を有するため耐磨耗性は良好または可の判定であった。以上の結果から、特に耐摩耗性への要求が強いロープ、ネット、魚網、ケーブル、テンションメンバー、防護衣といった幅広い用途において良好な特性発現が期待される。
なお、実施例18、19において実施例1、16、17対比、強度、伸度、弾性率、耐摩耗性がやや低いものであった。これは前駆体形成工程および固相重合工程において固相重合油剤が熱変性により炭化あるいはゲル化することで繊維間が擬似接着を起こし、固相重合後の繊維を解舒する際に糸への垂直方向の力が加わることで糸へのダメージが発生し強度、伸度、弾性率、耐摩耗性の低下が起きたものと推測する。
実施例20〜22
実施例20〜22においては繊維への無機粒子(A)の付着率(a)および無機粒子(A)の粒径の変更を行った。
実施例20では固相重合油剤中の無機粒子(A)の分散量を変え、繊維への無機粒子の付着率(a)重量%を表4の通り変えた以外は実施例1と同様にして液晶ポリエステル繊維を得た。
実施例21では無機粒子(A)として表4に滑石2として示すメディアン径7.0μmのタルク、“ミクロエース”(登録商標)P−2(日本タルク株式会社製)を用いた以外は実施例1と同様にして液晶ポリエステル繊維を得た。
実施例22では無機粒子(A)として表4に滑石3として示すメディアン径11μmのタルク、“タルカンパウダー”(登録商標)PK−C(林化成株式会社製)を用いた以外は実施例1と同様にして液晶ポリエステル繊維を得た。
得られた繊維の物性は表4に示すとおりであり、固相重合により発現する高い強度、弾性率を有するとともに、繊維のTmにおけるピーク半値幅は15℃以上であり、固相重合後にも関らず完全性の低い結晶構造を有するため耐磨耗性も良好あるいは可の判定であった。以上の結果から、特に耐摩耗性への要求が強いロープ、ネット、魚網、ケーブル、テンションメンバー、防護衣といった幅広い用途において良好な特性発現が期待される。
なお、実施例20〜22において実施例1対比強度、伸度、弾性率、耐摩耗性がやや低いものであった。実施例20においては無機粒子(A)の添加量が低いため、前駆体形成工程および固相重合工程において若干の融着が発生しており、固相重合後の繊維を解舒する際に糸への垂直方向の力が加わることで糸へのダメージが発生し強度、伸度、弾性率、耐摩耗性の低下が起きたものと推測する。実施例21、22においては、実施例1対比無機粒子のメディアン径が大きいため、前駆体形成工程および固相重合工程において若干の融着が発生しており、固相重合後の繊維を解舒する際に糸への垂直方向の力が加わることで糸へのダメージが発生し強度、伸度、弾性率、耐摩耗性の低下が起きたものと推測する。
実施例23
実施例23では巻き返し工程での巻き張力を調整し表4記載の通り巻き密度を変更した他は実施例1と同様にして液晶ポリエステル繊維を得た。
得られた繊維の物性は表4に示すとおりであり、固相重合により発現する高い強度、弾性率を有するとともに、繊維のTmにおけるピーク半値幅は15℃以上であり、固相重合後にも関らず完全性の低い結晶構造を有するため耐磨耗性が良好または可の判定であった。以上の結果から、特に耐摩耗性への要求が強いロープ、ネット、魚網、ケーブル、テンションメンバー、防護衣といった幅広い用途において良好な特性発現が期待される。
なお、実施例1対比強度、伸度、弾性率、耐摩耗性がやや低いものであった。実施例23は巻き密度が実施例1対比高いため、パッケージ中での繊維同士の接着面積が増え、前駆体形成工程および固相重合工程においてごく軽微な融着が発生しており、固相重合後の繊維を解舒する際に糸への垂直方向の力が加わることで糸へのダメージが発生し強度、伸度、弾性率、耐摩耗性の低下が起きたものと推測する。
Figure 2015030920
実施例24
実施例24では前駆体形成温度(T)までの昇温速度を表5記載の値に変更した他は実施例1と同様にして液晶ポリエステル繊維を得た。
得られた繊維の物性は表5に示すとおりであり、固相重合により発現する高い強度、弾性率を有するとともに、繊維のTmにおけるピーク半値幅は15℃以上であり固相重合後にも関らず完全性の低い結晶構造を有するため耐磨耗性が良好または可であった。以上の結果から、特に耐摩耗性への要求が強いロープ、ネット、魚網、ケーブル、テンションメンバー、防護衣といった幅広い用途において良好な特性発現が期待される。
なお、実施例1対比強度、伸度、弾性率、耐摩耗性がやや低いものであった。実施例24は前駆体形成工程における昇温工程が実施例1対比遅いことから、前駆体形成工程において結晶化が進行し、固相重合工程での分子量増加を阻害し強度、伸度、弾性率が若干低下し、結晶/非晶の構造差が増大したことで耐摩耗性の低下が起きたものと推測する。
実施例25
実施例25では前駆体形成温度(T)における保持時間を表5記載の値に変更した他は実施例2と同様にして液晶ポリエステル繊維を得た。
得られた繊維の物性は表5に示すとおりであり、固相重合により発現する高い強度、弾性率を有するとともに、繊維のTmにおけるピーク半値幅は15℃以上であり固相重合後にも関らず完全性の低い結晶構造を有するため耐磨耗性は可の判定であった。以上の結果から、特に耐摩耗性への要求が強いロープ、ネット、魚網、ケーブル、テンションメンバー、防護衣といった幅広い用途において良好な特性発現が期待される。
なお、実施例2対比強度、伸度、弾性率、耐摩耗性がやや低いものであった。実施例25は前駆体形成温度(T)における保持時間が実施例2対比短いことから、前駆体形成工程における分子量増分が小さく、このため、固相重合における結晶化が進み、結晶/非晶の構造差が実施例2対比増大したことで耐摩耗性の低下が起きたものと推測する。
比較例1
固相重合を行わなかったこと以外は実施例1と同様にして液晶ポリエステル繊維を得た。
得られた繊維の物性は表5に示すとおりであり、固相重合していないため強度、伸度、弾性率が低いものであった。また、耐摩耗性も低く、これは固相重合をしていないため耐磨耗試験における擦過抵抗に対する耐性が低下したためと推測する。
比較例2
固相重合の際に、表5記載の前駆体形成温度(T)を変更したこと以外は実施例1と同様にして液晶ポリエステル繊維を得た。
得られた繊維の物性は表5に示すとおりであり、Tmにおけるピーク半値幅が15℃未満と小さく、耐摩耗性が悪いものであった。これは前駆体形成温度が低かったため、結晶化が進行して結晶核が形成され、固相重合が進むにつれ結晶の完全性が向上したために結晶と非晶部分での構造差が大きくなり、磨耗における破壊が進行しやすくなったものと推測する。
比較例3
参考例9の液晶ポリエステルを用いたこと以外は実施例1と同様に紡糸して紡糸繊維を得た。得られた紡糸繊維の融点は285℃であった。この紡糸繊維は実施例1と同様に巻き返しを行い、前駆体形成工程において50℃を開始温度として表5記載の前駆体形成温度(T)まで125℃/hrで昇温し1時間温度保持した後、表5記載の固相重合の最高到達温度(T)まで4℃/hrで昇温し20時間保持して固相重合を行った以外は実施例1と同様にして液晶ポリエステル繊維を得た。得られた繊維の物性は表4に示すとおりであり、繊維の強度は高いものの、弾性率は低く、耐摩耗性も低かった。これは液晶ポリエステル樹脂の組成比に由来した樹脂特性の影響によるものと考えられる。
比較例4
参考例10の液晶ポリエステルを用い、紡糸温度を325℃とすること以外は実施例1と同様に紡糸して紡糸繊維を得た。得られた紡糸繊維の融点は286℃であった。この紡糸繊維は実施例1と同様に巻き返しを行い、前駆体形成工程において50℃を開始温度として表5記載の前駆体形成温度(T)まで125℃/hrで昇温し1時間温度保持した後、表5記載の固相重合の最高到達温度(T)まで4℃/hrで昇温し20時間保持して固相重合を行った以外は実施例1と同様にして液晶ポリエステル繊維を得た。
得られた繊維の物性は表4に示すとおりであり、繊維の強度、伸度、弾性率は低く、耐摩耗性も低かった。これは液晶ポリエステルの樹脂特性の影響によるものと考えられる。
比較例5
ここでは前駆体形成温度(T)までの昇温速度を表5記載の値に変更した他は実施例3と同様にして液晶ポリエステル繊維を得た。
得られた繊維の物性は表5に示すとおりであり、Tmにおけるピーク半値幅が15℃未満と小さく、耐摩耗性が悪いものであった。これは前駆体形成温度(T)までの昇温速度が遅かったため、結晶化が進行して結晶核が形成され、固相重合が進むにつれ結晶の完全性が向上したために結晶と非晶部分での構造差が大きくなり、磨耗による破壊が進行しやすくなったものと推測する。
比較例6
ここでは前駆体形成温度(T)における保持時間を表5記載の値に変更した他は実施例3と同様にして液晶ポリエステル繊維を得た。
得られた繊維の物性は表5に示すとおりであり、Tmにおけるピーク半値幅が15℃未満と小さく、耐摩耗性が悪いものであった。これは前駆体形成温度(T)における保持時間が不十分であったため、固相重合が進むにつれ結晶の完全性が向上したために結晶と非晶部分での構造差が大きくなり、磨耗による破壊が進行しやすくなったものと推測する。
Figure 2015030920

Claims (2)

  1. 下記構造単位(I)、(II)、(III)、(IV)、(V)からなる液晶ポリエステルからなり、以下条件1〜4を満たす液晶ポリエステル繊維。
    条件1.構造単位(I) が構造単位(I)、(II)および(III)の合計に対して40mol% 以上85mol% 以下であり、構造単位(II)は構造単位(II)および(III)の合計に対して60mol%以上90mol%以下であり、構造単位(IV)が構造単位(IV)および(V)の合計に対して40mol%以上95mol%以下である。
    条件2.示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm)におけるピーク半値幅が15℃以上。
    条件3.強度20cN/dtex以上。
    条件4.弾性率900cN/dtex以上。
    Figure 2015030920
  2. 下記構造単位(I)、(II)、(III)、(IV)、(V)からなる液晶ポリエステルからなり、構造単位(I) が構造単位(I)、(II)および(III)の合計に対して40mol% 以上85mol% 以下であり、構造単位(II)は構造単位(II)および(III)の合計に対して60mol%以上90mol%以下であり、構造単位(IV)が構造単位(IV)および(V)の合計に対して40mol%以上95mol%以下である液晶ポリエステルを溶融紡糸した後に固相重合するにあたり、固相重合に先立ち前駆体形成工程として開始温度を50℃として紡糸繊維の融点(Tm)−40℃以上融点(Tm)以下の範囲の前駆体形成温度(T)まで昇温速度80℃/hr以上で昇温した後に、前記駆体形成温度(T)にて0.5時間以上保持することを特徴とする請求項1記載の液晶ポリエステル繊維の製造方法。
    Figure 2015030920
JP2013158959A 2013-07-31 2013-07-31 液晶ポリエステル繊維およびその製造方法 Pending JP2015030920A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158959A JP2015030920A (ja) 2013-07-31 2013-07-31 液晶ポリエステル繊維およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158959A JP2015030920A (ja) 2013-07-31 2013-07-31 液晶ポリエステル繊維およびその製造方法

Publications (1)

Publication Number Publication Date
JP2015030920A true JP2015030920A (ja) 2015-02-16

Family

ID=52516497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158959A Pending JP2015030920A (ja) 2013-07-31 2013-07-31 液晶ポリエステル繊維およびその製造方法

Country Status (1)

Country Link
JP (1) JP2015030920A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611195B2 (en) 2015-07-31 2020-04-07 Kb Seiren, Ltd. Tire bead fiber
JP2021014645A (ja) * 2019-07-11 2021-02-12 株式会社クラレ 液晶ポリエステル繊維の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611195B2 (en) 2015-07-31 2020-04-07 Kb Seiren, Ltd. Tire bead fiber
JP2021014645A (ja) * 2019-07-11 2021-02-12 株式会社クラレ 液晶ポリエステル繊維の製造方法
JP7239410B2 (ja) 2019-07-11 2023-03-14 株式会社クラレ 液晶ポリエステル繊維の製造方法

Similar Documents

Publication Publication Date Title
JP6183210B2 (ja) 液晶ポリエステルマルチフィラメント
KR101310008B1 (ko) 액정 폴리에스테르 섬유 및 그의 제조 방법
TWI602963B (zh) 液晶聚酯纖維及其製造方法
JP5286827B2 (ja) 液晶ポリエステル繊維
TWI655328B (zh) 液晶聚酯纖維及其製造方法
KR20090115227A (ko) 액정 폴리에스테르 섬유 및 그의 제조 방법
JP6855683B2 (ja) 液晶ポリエステルマルチフィラメント
JP5428271B2 (ja) 液晶ポリエステル繊維の製造方法
JP4983689B2 (ja) 液晶ポリエステル繊維の製造方法
JP5298597B2 (ja) 液晶ポリエステル繊維の製造方法
JP2017031525A (ja) 液晶ポリエステルマルチフィラメントの製造方法
JP2013133575A (ja) 分繊用液晶ポリエステルマルチフィラメント
JP6395054B2 (ja) 液晶ポリエステルマルチフィラメント
JP2015030920A (ja) 液晶ポリエステル繊維およびその製造方法
JP6040549B2 (ja) 液晶ポリエステル繊維およびその製造方法
JP6834270B2 (ja) 液晶ポリエステルマルチフィラメント
JP6753231B2 (ja) 液晶ポリエステルマルチフィラメント
JP5327116B2 (ja) 液晶ポリエステル繊維およびその製造方法
JP2016089308A (ja) 液晶ポリエステル繊維の製造方法
JP2018040076A (ja) 液晶ポリエステルマルチフィラメント
JP6953776B2 (ja) 液晶ポリエステルマルチフィラメント
JP5915227B2 (ja) 液晶ポリエステル繊維およびその製造方法
JP5115471B2 (ja) 液晶性ポリエステル繊維及びその製造方法
JP5729200B2 (ja) 液晶ポリエステル繊維およびその製造方法
JP2014167174A (ja) 液晶ポリエステル繊維およびその製造方法