JP5298597B2 - 液晶ポリエステル繊維の製造方法 - Google Patents

液晶ポリエステル繊維の製造方法 Download PDF

Info

Publication number
JP5298597B2
JP5298597B2 JP2008085269A JP2008085269A JP5298597B2 JP 5298597 B2 JP5298597 B2 JP 5298597B2 JP 2008085269 A JP2008085269 A JP 2008085269A JP 2008085269 A JP2008085269 A JP 2008085269A JP 5298597 B2 JP5298597 B2 JP 5298597B2
Authority
JP
Japan
Prior art keywords
fiber
weight
liquid crystal
phase polymerization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008085269A
Other languages
English (en)
Other versions
JP2009235633A (ja
Inventor
義嗣 船津
勇将 小野
裕平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008085269A priority Critical patent/JP5298597B2/ja
Publication of JP2009235633A publication Critical patent/JP2009235633A/ja
Application granted granted Critical
Publication of JP5298597B2 publication Critical patent/JP5298597B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Description

本発明は繊維長手方向の均一性に優れ、かつ融着防止剤等の繊維表面付着物が少なく、高次工程通過性に優れる液晶ポリエステル繊維の製造方法に関するものである。
液晶ポリエステルは剛直な分子鎖からなるポリマーであり、溶融紡糸においてはその分子鎖を繊維軸方向に高度に配向させ、さらに熱処理(固相重合)を施すことにより溶融紡糸で得られる繊維の中では最も高い強度、弾性率が得られることが知られている。また液晶ポリエステルは固相重合により分子量が増加し、融点が上昇するため耐熱性、寸法安定性が向上することも知られている(非特許文献1参照)。このように液晶ポリエステル繊維においては固相重合を施すことにより高強度、高弾性率、優れた耐熱性、熱寸法安定性が発現する。
液晶ポリエステル繊維の固相重合は、設備の簡素化、生産性の向上の点から、繊維をパッケージとし、これを処理する方法が工業的には採用されているが、固相重合反応が進行しうる温度域では単糸間融着が発生しやすく、パッケージ形状からの解舒の際に融着部分がはがれ欠陥が生じるという問題がある。欠陥は強度低下など繊維長手方向の均一性を損ねる他、欠陥を起点として繊維がフィブリル化するという問題も引き起こす。
近年、特にモノフィラメントからなるフィルター、スクリーン印刷用紗に対し、性能向上のため織密度の高密度化(高メッシュ化)、紗厚の低減、開口部(オープニング)の開口率向上の要望が強まり、これを達成するために単繊維繊度の細繊度化、高強度化が強く要求されると同時に、高性能化のために開口部の欠点減少も要求されている。開口部の欠点は前記したフィブリルが繊維の製造工程または高次加工工程での摩擦により生じるため、固相重合での融着に起因する欠陥を減少させ、繊維長手方向の強度、繊度の均一性を向上することが求められている。
さらに製織など繊維高次加工工程での工程通過性悪化もフィブリルの引っ掛かりやガイドへのフィブリルの堆積による張力変動が要因であり、固相重合での融着に起因する欠陥を減少させ、繊維長手方向の強度、繊度の均一性を向上することが求められている。
固相重合での融着を低減させる技術として、タルクやシリカ等で処理した後に熱処理(固相重合)する方法(特許文献1参照)、分解温度が200℃以上のフッ素原子を含む界面活性剤を付着させた後、該繊維を熱処理(固相重合)する方法(特許文献2参照)などが開示されている。これらの方法では融着低減の効果は認められ、その付着量が多いほど融着は低減されるが、タルクやシリカ、フッ素化合物などの融着防止剤が繊維表面に付着物として残るため、製織など繊維の高次加工工程で融着防止剤がガイド等に付着し工程通過性を悪化させる他、付着物が脱落し製品に混入して欠点となるなどの課題があった。これを回避するため付着量を低減させると、融着改善効果が減少し、融着に起因する欠陥が増加して繊維長手方向の均一性を損ねると言う問題があった。
なお特許文献2には「熱処理した繊維は所望により冷却後に洗浄、乾燥される」との記載があるが、洗浄の具体的な方法とその効果については何ら記載されていない。
技術情報協会編、「液晶ポリマーの改質と最新応用技術」(2006)(第235頁〜第256頁) 特開昭58−91817号公報(第5頁) 特開昭63−99328号公報(第1頁)
本発明の課題は固相重合での融着に起因する欠陥を減少させ、繊維長手方向の均一性を高めると共に、融着防止剤等の繊維表面付着物が少なく高次工程通過性に優れる液晶ポリエステル繊維の製造方法を提供することにある。
本発明者等は、同一の繊維表面付着物の量では固相重合での融着抑制と高次工程通過性向上の両立が困難であるため、固相重合後に繊維表面付着物を効率的に除去することで両者を満足できることを見出した。
すなわち、本発明はモノフィラメントである液晶ポリエステル繊維ポリシロキサン系化合物を含む融着防止剤を4.1重量%以上付着させて固相重合した後、固相重合された液晶ポリエステル繊維を走行させつつ、(液体の沸点)−60℃以上の液体に繊維を接触させて融着防止剤を除去し、繊維への融着防止剤の付着量を繊維重量に対して4.0重量%以下とすることを特徴とする液晶ポリエステル繊維の製造方法である。
本発明は繊維表面の欠陥が少なく、繊維長手方向の均一性に優れ、高次工程通過性の良好な固相重合された液晶ポリエステル繊維が効率よく得られるため、特にフィルター、スクリーン印刷用紗に用いると、製織性向上や織物開口部の欠点が減少して品位の向上した織物が得られる。
以下、本発明の液晶ポリエステル繊維の製造方法について詳細に説明する。
本発明で用いられる液晶ポリエステルとは、溶融時に異方性溶融相(液晶性)を形成し得るポリエステルである。この特性は例えば、液晶ポリエステルからなる試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を偏光下で観察することにより確認できる。
本発明に用いる液晶ポリエステルとしては、例えばa.芳香族オキシカルボン酸の重合物、b.芳香族ジカルボン酸と芳香族ジオール、脂肪族ジオールの重合物、c.aとbとの共重合物などが挙げられるが、高強度、高弾性率、高耐熱のためには脂肪族ジオールを用いない全芳香族ポリエステルが好ましい。ここで芳香族オキシカルボン酸としては、ヒドロキシ安息香酸、ヒドロキシナフトエ酸など、または上記芳香族オキシカルボン酸のアルキル、アルコキシ、ハロゲン置換体などが挙げられる。また、芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエタンジカルボン酸など、または上記芳香族ジカルボン酸のアルキル、アルコキシ、ハロゲン置換体などが挙げられる。さらに、芳香族ジオールとしては、ハイドロキノン、レゾルシン、ジオキシジフェニール、ナフタレンジオールなど、または上記芳香族ジオールのアルキル、アルコキシ、ハロゲン置換体などが挙げられ、脂肪族ジオールとしてはエチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコールなどが挙げられる。
本発明に用いる液晶ポリエステルの好ましい例としては、p−ヒドロキシ安息香酸成分と4,4’−ジヒドロキシビフェニル成分とハイドロキノン成分とテレフタル酸成分および/またはイソフタル酸成分とが共重合されたもの、p−ヒドロキシ安息香酸成分と6−ヒドロキシ2−ナフトエ酸成分とが共重合されたもの、p−ヒドロキシ安息香酸成分と6−ヒドロキシ2−ナフトエ酸成分とハイドロキノン成分とテレフタル酸成分とが共重合されたもの、などが挙げられる。
本発明では特に、下記構造単位(I)、(II)、(III)、(IV)および(V)からなる液晶ポリエステルであることが好ましい。なお、本発明において構造単位とはポリマーの主鎖における繰り返し構造を構成し得る単位を指す。
Figure 0005298597
この組み合わせにより分子鎖は適切な結晶性と非直線性、すなわち溶融紡糸可能な融点を有するようになる。したがってポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な製糸性を有するようになり長手方向に均一な繊維が得られ、かつ適度な結晶性を有するため繊維の強度、弾性率を高めることができる。
さらに構造単位(II)、(III)のような嵩高くなく、直線性の高いジオールからなる成分を組み合わせることが重要であり、この成分を組み合わせることにより繊維中で分子鎖は秩序だった乱れの少ない構造を取ると共に、結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できる。これにより高い強度、弾性率が得られることに加えて、優れた耐摩耗性も得られるのである。
また、上記した構造単位(I)は構造単位(I)、(II)および(III)の合計に対して40〜85モル%が好ましく、より好ましくは65〜80モル%、さらに好ましくは68〜75モル%である。このような範囲とすることで結晶性を適切な範囲とすることができ高い強度、弾性率が得られ、かつ融点も溶融紡糸可能な範囲となる。
構造単位(II)は構造単位(II)および(III)の合計に対して60〜90モル%が好ましく、より好ましくは60〜80モル%、さらに好ましくは65〜75モル%である。このような範囲とすることで結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できるため、耐摩耗性に優れる。
構造単位(IV)は構造単位(IV)および(V)の合計に対して40〜95モル%が好ましく、より好ましくは50〜90モル%、さらに好ましくは60〜85モル%である。このような範囲とすることでポリマーの融点が適切な範囲となり、ポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な製糸性を有するようになり単繊維繊度が細く、長手方向に均一な繊維が得られる。
本発明に用いる液晶ポリエステルの各構造単位の好ましい範囲は以下のとおりである。この範囲の中で上記した条件を満たすよう組成を調整することで特に好適な液晶ポリエステル繊維が得られる。
構造単位(I)45〜65モル%
構造単位(II)12〜18モル%
構造単位(III)3〜10モル%
構造単位(IV)5〜20モル%
構造単位(V)2〜15モル%
なお本発明で用いる液晶ポリエステルには上記構造単位以外に3,3’−ジフェニルジカルボン酸、2,2’−ジフェニルジカルボン酸などの芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸などの脂肪族ジカルボン酸、ヘキサヒドロテレフタル酸(1,4−シクロヘキサンジカルボン酸)などの脂環式ジカルボン酸、クロロハイドロキノン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシベンゾフェノン等の芳香族ジオールおよびp−アミノフェノールなどを本発明の効果を損なわない5モル%程度以下の範囲で共重合させても良い。
また本発明の効果を損なわない5重量%程度以下の範囲で、ポリエステル、ポリオレフィンやポリスチレンなどのビニル系重合体、ポリカーボネート、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、芳香族ポリケトン、脂肪族ポリケトン、半芳香族ポリエステルアミド、ポリエーテルエーテルケトン、フッ素樹脂などのポリマーを添加しても良く、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ナイロン6、ナイロン66、ナイロン46、ナイロン6T、ナイロン9T、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリシクロヘキサンジメタノールテレフタレート、ポリエステル99Mなどが好適な例として挙げられる。なおこれらのポリマーを添加する場合、その融点は液晶ポリエステルの融点±30℃以内にすることが製糸性を損なわないために好ましい。
さらに本発明の効果を損なわない範囲内で、各種金属酸化物、カオリン、シリカなどの無機物や、着色剤、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、蛍光増白剤、末端基封止剤、相溶化剤等の各種添加剤を少量含有しても良い。
本発明に用いる液晶ポリエステルの製造方法は公知の製造方法に準じて製造でき、例えば以下の製造方法が好ましく挙げられる。
(1)p−アセトキシ安息香酸などのアセトキシカルボン酸および4,4’−ジアセトキシビフェニル、ジアセトキシベンゼンなどの芳香族ジヒドロキシ化合物のジアセチル化物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸から脱酢酸縮重合反応によって液晶性ポリエステルを製造する方法。
(2)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。
(3)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸のフェニルエステルおよび4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸のジフェニルエステルから脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。
(4)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸およびテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれジフェニルエステルとした後、4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。
なかでもp−ヒドロキシ安息香酸などのヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物、テレフタル酸、イソフタル酸などの芳香族ジカルボン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法が好ましい。さらに、4,4’−ジヒドロキシビフェニルおよびハイドロキノン等の芳香族ジヒドロキシ化合物の合計使用量とテレフタル酸およびイソフタル酸等の芳香族ジカルボン酸の合計使用量は、実質的に等モルである。無水酢酸の使用量は、p−ヒドロキシ安息香酸、4,4’−ジヒドロキシビフェニルおよびハイドロキノンのフェノール性水酸基の合計の1.12当量以下であることが好ましく、1.10当量以下であることがより好ましく、下限については1.0当量以上であることが好ましい。
本発明で用いる液晶ポリエステルを脱酢酸重縮合反応により製造する際には、液晶ポリエステルが溶融する温度で減圧下反応させ、重縮合反応を完了させる溶融重合法が好ましい。例えば、所定量のp−ヒドロキシ安息香酸等のヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノン等の芳香族ジヒドロキシ化合物、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸、無水酢酸を攪拌翼、留出管を備え、下部に吐出口を備えた反応容器中に仕込み、窒素ガス雰囲気下で攪拌しながら加熱し水酸基をアセチル化させた後、液晶性樹脂の溶融温度まで昇温し、減圧により重縮合し、反応を完了させる方法が挙げられる。アセチル化させる条件は、通常130〜300℃の範囲、好ましくは135〜200℃の範囲で通常1〜6時間、好ましくは140〜180℃の範囲で2〜4時間反応させる。重縮合させる温度は、液晶ポリエステルの溶融温度、例えば、250〜350℃の範囲であり、好ましくは液晶ポリエステルポリマーの融点+10℃以上の温度である。重縮合させるときの減圧度は通常13.3〜2660Paであり、好ましくは1330Pa以下、より好ましくは665Pa以下である。なお、アセチル化と重縮合は同一の反応容器で連続して行っても良いが、アセチル化と重縮合を異なる反応容器で行っても良い。
得られたポリマーは、それが溶融する温度で反応容器内を例えば、およそ0.1±0.05MPaに加圧し、反応容器下部に設けられた吐出口よりストランド状に吐出することができる。溶融重合法は均一なポリマーを製造するために有利な方法であり、ガス発生量がより少ない優れたポリマーを得ることができ、好ましい。
本発明に用いる液晶ポリエステルを製造する際に、固相重合法により重縮合反応を完了させることも可能である。例えば、液晶ポリエステルポリマーまたはオリゴマーを粉砕機で粉砕し、窒素気流下または減圧下、液晶ポリエステルの融点(Tm)−5℃〜融点(Tm)−50℃(例えば、200〜300℃)の範囲で1〜50時間加熱し、所望の重合度まで重縮合し、反応を完了させる方法が挙げられる。
ただし紡糸においては、固相重合法により製造した液晶性樹脂をそのまま用いると、固相重合によって生じた高結晶化部分が未溶融で残り、紡糸パック圧の上昇や糸中の異物の原因となる可能性があるため、一度二軸押出機などで混練して(リペレタイズ)、高結晶化部分を完全に溶融することが好ましい。
上記液晶ポリエステルの重縮合反応は無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウムおよび酢酸ナトリウム、三酸化アンチモン、金属マグネシウムなどの金属化合物を使用することもできる。
本発明に用いる液晶ポリエステルポリマーの融点は、溶融紡糸可能な温度範囲を広くするため好ましくは200〜380℃であり、より好ましくは250〜350℃であり、さらに好ましくは290〜340℃である。なお液晶ポリエステルポリマーの融点(吸熱ピーク)は実施例記載の方法で測定される値を指す。
本発明に用いる液晶ポリエステルポリマーの溶融粘度は、0.5〜200Pa・sが好ましく、特に1〜100Pa・sが好ましく、紡糸性の点から10〜50Pa・sがより好ましい。なお、この溶融粘度は、融点(Tm)+10℃の条件で、ずり速度1,000(1/s)の条件下で高化式フローテスターによって測定した値である。
本発明に用いる液晶ポリエステルのポリスチレン換算の重量平均分子量(以下、分子量と記載)は3.0万以上が好ましく、5.0万以上がより好ましい。分子量を3.0万以上とすることで紡糸温度において適切な粘度を持ち製糸性を高めることができ、分子量が高いほど得られる繊維の強度、伸度、弾性率は高まる。また分子量が高すぎると粘度が高くなり流動性が悪くなり、ついには流動しなくなるため分子量は25.0万未満が好ましく、15.0万未満がより好ましい。
溶融紡糸において、液晶ポリエステルの溶融押出は公知の手法を用いることができるが、重合時に生成する秩序構造をなくすためにエクストルーダー型の押出機を用いることが好ましい。押し出されたポリマーは配管を経由してギアーポンプなど公知の計量装置により計量され、異物除去のフィルターを通過した後、口金へと導かれる。このときポリマー配管から口金までの温度(紡糸温度)は液晶ポリエステルの融点以上、500℃以下とすることが好ましく、液晶ポリエステルの融点+10℃以上、400℃以下とすることがより好ましく、液晶ポリエステルの融点+20℃以上、370℃以下とすることがさらに好ましい。なお、ポリマー配管から口金までの温度をそれぞれ独立して調整することも可能である。この場合、口金に近い部位の温度をその上流側の温度より高くすることで吐出が安定する。
溶融紡糸においては、細繊度、低繊度変動率の繊維を得るためには、吐出時の安定性、細化挙動の安定性を高めるべきであり、工業的な溶融紡糸ではエネルギーコストの低減、生産性向上のため1つの口金に多数の口金孔を穿孔するため、それぞれの孔の吐出、細化を安定させる必要がある。
これを達成するためには口金孔の孔径を小さくするとともに、ランド長(口金孔の孔径と同一の直管部の長さ)を長くすることが重要である。ただし孔径が過度に小さいと孔の詰まりが発生しやすくなるため直径0.03mm以上0.30mm以下が好ましく、0.05mm以上0.25mm以下がより好ましく、0.08mm以上0.20mm以下がさらに好ましい。ランド長は過度に長いと圧力損失が高くなるため、ランド長を孔径で除した商で定義されるL/Dは0.5以上3.0以下が好ましく0.8以上2.5以下がより好ましく、1.0以上2.0以下がさらに好ましい。また均一性を維持するために1つの口金の孔数は50孔以下が好ましく、40孔以下がより好ましく、20孔以下がさらに好ましい。なお、口金孔の直上に位置する導入孔は直径が口金孔径の5倍以上のストレート孔とすることが圧力損失を高めない点で好ましい。導入孔と口金孔の接続部分はテーパーとすることが異常滞留を抑制する上で好ましいが、テーパー部分の長さはランド長の2倍以下とすることが圧力損失を高めず、流線を安定させる上で好ましい。
口金孔より吐出されたポリマーは保温、冷却領域を通過させ固化させた後、一定速度で回転するローラー(ゴデットローラー)により引き取られる。保温領域は過度に長いと製糸性が悪くなるため口金面から200mmまでとすることが好ましく、100mmまでとすることがより好ましい。保温領域は加熱手段を用いて雰囲気温度を高めることも可能であり、その温度範囲は100℃以上500℃以下が好ましく、200℃以上400℃以下がより好ましい。冷却は不活性ガス、空気、水蒸気等を用いることができるが、平行あるいは環状に噴き出す空気流を用いることが環境負荷を低くする点から好ましい。
引き取り速度は生産性、単糸繊度の低減のため50m/分以上が好ましく、300m/分以上がより好ましく、500m/分以上がさらに好ましい。好ましい例として前記した5成分からなる液晶ポリエステルは紡糸温度において好適な曳糸性を有することから引き取り速度を高速にできる。上限は特に制限されないが、曳糸性の点から2000m/分程度となる。
引き取り速度を吐出線速度で除した商で定義される紡糸ドラフトは1以上500以下とすることが好ましく、5以上200以下とすることがより好ましく、12以上100以下とすることがさらに好ましい。なお、好ましい例として挙げた5成分からなる液晶ポリエステルは好適な曳糸性を有することからドラフトを高くでき、細繊度化に有利である。
溶融紡糸においてはポリマーの冷却固化から巻き取りまでの間に油剤を付与することが繊維の取り扱い性を向上させる上で好ましい。油剤は公知のものを使用できるが、高温での固相重合に耐え得るポリシロキサン系のシリコーンオイルなどを主体とした油剤を用いることがより好ましい。
巻き取りは公知の巻き取り機を用いパーン、チーズ、コーンなどの形態のパッケージとすることができるが、巻き取り時にパッケージ表面にローラーが接触しないパーン巻きとすることが繊維に摩擦力を与えずフィブリル化させない点で好ましい。
次に、溶融紡糸で得られた繊維は固相重合されるが、本発明においては固相重合の前に、繊維表面に融着防止剤を付着させる。融着防止剤の付着は溶融紡糸から巻き取りまでの間に行っても良いが、付着効率を高めるためには巻き返しの際に行う、あるいは溶融紡糸で少量を付着させ、巻き返しの際にさらに追加することが好ましい。
本発明で言う融着防止剤とは、その剤を液晶ポリエステル繊維に付着させ固相重合させた際に繊維間の融着を抑制する剤であり、公知のものが使用できるが、固相重合での高温熱処理で揮発させないため耐熱性が高い方が好ましく、例えばジメチルポリシロキサン、ジフェニルポリシロキサン、メチルフェニルポリシロキサンおよびその変性物などのポリシロキサン系化合物、ならびにこれらの混合物が好ましい。リシロキサン系化合物は固相重合での融着防止効果に加え、易滑性にも効果を示すため特に好ましい。なおポリシロキサン系化合物は易滑性を示す油剤として良く知られているが、固相重合での融着防止にも高い効果を持つことは新しい事実である。
これらの成分は固体付着、液状物の直接塗布でも構わないが付着量を適正化しつつ均一塗布するためには溶液あるいはエマルジョンでの塗布が好ましく、可燃物を用いた際の引火を防ぎ、環境負荷を低減する点から水を用いた水溶液、水エマルジョンが特に好ましい。したがって融着防止剤としては水溶性あるいは水エマルジョンを形成しやすいことが望ましく、ジメチルポリシロキサンの水エマルジョンを主体とし、これに水溶性の塩や水膨潤性のスメクタイトを添加した混合物が最も好ましい。溶液あるいはエマルジョンの塗布はオイリングガイドなど公知の手法を採用できるが、長手方向の均一性を高めるためには金属やセラミック製のキスロール(オイリングロール)を用いて付着させる方法が好ましい。
繊維への融着防止剤の付着量は融着抑制のためには多い方が好ましく、4.1重量%以上である。一方、多すぎると繊維がべたつきハンドリングを悪化させる他、付着物を除去した後も残分が多くなり工程通過性を悪化させるため10.0重量%以下が好ましく、8.0重量%以下がより好ましく、6.0重量%以下が特に好ましい。なお繊維への融着防止剤の付着量は実施例に記載した手法により求められる値を指す。この場合、融着防止剤の付着量を測定する際に、溶融紡糸において付与した油剤等の付着量も合算されるが、溶融紡糸で付与する油剤も種類によっては融着防止効果を示し、また付着量が多い場合にはハンドリングの悪化など融着防止剤と同様の問題が生じるため、本発明においては溶融紡糸において付与した油剤等の付着量も融着防止剤との合計量として算出する。
固相重合はパッケージ状、カセ状、トウ状(例えば、金属網等にのせて行う)、あるいはローラー間で連続的に糸条として処理することも可能であるが、設備が簡素化でき、生産性も向上できる点からパッケージ状で行うことが好ましい。
パッケージ状で固相重合を行う場合、単繊維繊度を細くした際に顕著となる融着を防止する技術も重要となる。融着防止のためには固相重合を行う際の繊維パッケージの巻密度が重要であり、巻き密度が0.01g/cc以上、0.30g/cc未満の繊維パッケージとしてボビン上に形成し、これを固相重合することが好ましい。ここで巻密度とは、パッケージ外寸法と心材となるボビンの寸法から求められるパッケージの占有体積Vf(cc)と繊維の重量Wf(g)からWf/Vfにより計算される値である。なお占有体積Vfはパッケージの外形寸法を実測するか、写真を撮影し写真上で外形寸法を測定し、パッケージが回転対称であることを仮定し計算することで求められる値であり、Wfは繊度と巻取長から計算される値、もしくは巻取前後での重量差により実測される値である。巻密度が小さいほどパッケージにおける繊維間の密着力が弱まり融着が抑制できるため、0.15g/cc以下が好ましく、巻密度は過度に小さいとパッケージが巻き崩れるため0.03g/cc以上とすることが好ましい。したがって好ましい範囲は、0.03g/cc以上、0.15g/cc以下である。また取扱いの可能な総繊度1dtex以上、融着による悪影響の大きい総繊度500dtex以下の繊維を用いることが好ましい。
このような巻密度が小さいパッケージは溶融紡糸における巻き取りで形成する場合には、設備生産性、生産効率化が向上するために望ましく、一方、溶融紡糸で巻き取ったパッケージを巻き返して形成する場合には、巻き張力を小さくすることができ、巻密度をより小さくできるため好ましい。巻き返しにおいては巻き張力を小さくするほど巻き密度は小さくできるので、巻き張力は0.15cN/dtex以下が好ましく、0.10cN/dtex以下がより好ましく、0.05cN/dtex以下がさらに好ましい。巻き密度を低くするためにはパッケージ形状を整え巻き取り張力を安定化させるために通常用いられるコンタクトローラ等を用いず、繊維パッケージ表面を非接触の状態で巻き取ることや、溶融紡糸で巻き取られたパッケージから調速ローラーを介せず直接、速度制御された巻取機で巻き取ることも有効である。これらの場合、パッケージ形状を整えるためにはトラバースガイドと繊維の接点から繊維パッケージまでの距離(フリーレングス)を10mm以内とする方法が好ましく用いられる。さらに、巻き返し速度を500m/分以下、特に300m/分以下とすることも巻き密度を低くするために有効である。一方、巻き返し速度は生産性のためには高い方が有利であり、50m/分以上、特に100m/分以上とすることが好ましい。
また低張力巻き取りにおいても安定したパッケージを形成するため、ならびに端面部の融着を回避し安定したパッケージを形成するためには巻き形態は両端にテーパーがついたテーパーエンド巻取とすることが好ましい。この際、テーパー角は60°以下が好ましく、45°以下がより好ましい。またテーパー角が小さい場合、繊維パッケージを大きくすることができず長尺の繊維が必要な場合には1°以上が好ましく、5°以上がより好ましい。なお本発明で言うテーパー角とは以下の式で定義される。さらに巻き取りにおいてはトラバース幅を時間に対し周期的に揺動させることで、取り扱い、解舒性に優れるパッケージが得られる。
Figure 0005298597
さらにパッケージ形成にはワインド数も重要である。ここで言うワインド数とはトラバースが半往復する間にスピンドルが回転する回転数であり、トラバース半往復の時間(分)とスピンドル回転数(rpm)の積で定義され、ワインド数が高いことは綾角が小さいことを示す。ワインド数は小さい方が繊維間の接触面積が小さく融着回避には有利であるが、本発明で好適な巻取条件となる低張力、コンタクトロールなしなどの条件下においてはワインド数が高いほど端面での綾落ち、パッケージの膨らみが軽減でき、パッケージ形状が良好となる。これらの点からワインド数は2.0以上20.0以下が好ましく、5.0以上15.0以下がより好ましい。
該繊維パッケージを形成するために用いられるボビンは円筒形状のものであればいかなるものでも良く、繊維パッケージとして巻き取る際に巻取機に取り付けこれを回転させることで繊維を巻き取り、パッケージを形成する。固相重合に際しては繊維パッケージをボビンと一体で処理することもできるが、繊維パッケージからボビンのみを抜き取って処理することもできる。ボビンに巻いたまま処理する場合、該ボビンは固相重合温度に耐える必要があり、アルミや真鍮、鉄、ステンレスなどの金属製であることが好ましい。またこの場合、ボビンには多数の穴の空いていることが、重合反応副生物を速やかに除去でき固相重合を効率的に行えるため好ましい。また繊維パッケージからボビンを抜き取って処理する場合には、ボビン外層に外皮を装着しておくことが好ましい。また、いずれの場合にもボビンの外層にはクッション材を巻き付け、その上に液晶ポリエステル溶融紡糸繊維を巻き取っていくことが好ましい。クッション材の材質は、有機繊維または金属繊維からなるフェルトが好ましく、厚みは0.1mm以上、20mm以下が好ましい。前述の外皮を該クッション材で代用することもできる。
該繊維パッケージの繊維重量は、生産性を考慮すると0.01kg以上、10kg以下が好ましい範囲である。なお、糸長としては1万m以上200万m以下が好ましい範囲である。
固相重合は窒素等の不活性ガス雰囲気中や、空気のような酸素含有の活性ガス雰囲気中または減圧下で行うことが可能であるが、設備の簡素化および繊維あるいは付着物の酸化防止のため窒素雰囲気下で行うことが好ましい。この際、固相重合の雰囲気は露点が−40℃以下の低湿気体が好ましい。
固相重合温度は、固相重合に供する液晶ポリエステル繊維の吸熱ピーク(融点)をTm1(℃)とした場合、最高到達温度がTm1−60℃以上であることが好ましい。このような融点近傍の高温とすることで固相重合が速やかに進行し、繊維の強度を向上させることができる。なお、ここで言うTm1は実施例記載の測定方法により求められた値を指す。なお最高到達温度はTm1(℃)未満とすることが融着防止のために好ましい。また固相重合の進行と共に液晶ポリエステル繊維の融点は上昇するため、固相重合温度は、固相重合に供する液晶ポリエステル繊維の融点+100℃程度まで高めることができる。なお固相重合温度を時間に対し段階的にあるいは連続的に高めることは、融着を防ぐと共に固相重合の時間効率を高めることができ、より好ましい。ただしこの場合においても固相重合での最高到達温度は熱処理後の繊維のTm1−60(℃)以上Tm1(℃)未満とすることが固相重合速度を高めかつ融着を防止できる点から好ましい。
固相重合時間は、繊維の強度、弾性率、融点を十分に高くするためには最高到達温度で5時間以上とすることが好ましく、10時間以上がより好ましい。上限は特に制限されないが強度、弾性率、融点増加の効果は経過時間と共に飽和するため100時間程度で十分であり、生産性を高めるためには短時間が好ましく、50時間程度で十分である。
固相重合後のパッケージは運搬効率を高めるために固相重合後のパッケージを再度巻き返して巻き密度を高めることが好ましい。このとき、繊維を固相重合パッケージから解舒する際には解舒による固相重合パッケージの崩れを防ぎ、さらに軽微な融着を剥がす際のフィブリル化を抑制するために固相重合パッケージを回転させながら、回転軸と垂直方向(繊維周回方向)に糸を解舒する、いわゆる横取りにより解舒することが好ましく、さらに固相重合パッケージの回転は自由回転ではなく積極駆動により回転させることがパッケージからの糸離れ張力を低減させフィブリル化をより抑制できる点で好ましい。
次に本発明においては固相重合を行った繊維から融着防止剤を除去する。固相重合での融着抑制に対しては融着防止剤の付着量が多いほど効果が高いものの、固相重合以降の工程や製織工程では融着防止剤が多すぎるとガイド、筬への堆積による工程通過性の悪化、堆積物の製品への混入による欠点生成などを招くため融着防止剤の付着量は必要最低限まで低下させた方が好ましい。このため固相重合前に付着させた融着防止剤を固相重合後に除去することで融着抑制、長手方向の均一性向上と工程通過性向上を両立できる。
本発明においては固相重合を行った繊維を走行させつつ融着防止剤を除去する。走行させつつ除去することにより大量の繊維を連続かつ均一に処理できるため、繊維長手方向の除去効率が均一化できる他、前記した解舒工程と連続して処理ができるなど設備が簡素化できる。
本発明で言う除去とは繊維に付着している融着防止剤の付着量を減少せしめ、かつ除去した融着防止剤を再び繊維表面に堆積させないことを指す。高次・製品での融着防止剤付着量を抑制するとともに堆積させないことで、融着防止剤が繊維に再び不均一に付着して偏在的に付着量が増える欠点となることを抑制できる。
除去に供する繊維は、パッケージで固相重合を行った場合には、固相重合後のパッケージをそのまま用いても良いし、固相重合後のパッケージを再度巻き返して用いても良い。固相重合後のパッケージをそのまま用いる場合には再巻き返し工程が不要なため設備が簡素化でき好適である。また再度巻き返して用いる場合には、解舒と除去工程の工程速度を調節することで除去程度の調整が容易となり設備生産性に優れる。
除去方法は走行する繊維に布、紙、多孔質体などを押し当て拭き取る方法なども採用できるが、繊維に力学的な負荷を与えず除去効率を高められる点で融着防止剤が溶解または分散できる液体に繊維を接触させることが好ましい。液体との接触方法は繊維に連続的に液体を吹きかける、キスロールを用いて液体と接触させるなどの方法でも良いが、液体で満たされた浴内に繊維を走行させる方法が使用する液体量を低減でき、液体の周囲への飛散を防ぎ、かつ液体との接触時間を長くできる点で好ましい。このとき繊維は浴内を1回通過させるのみでも良いが、フリーローラー、ターンローラー、ネルソンローラーなどを用いて繊維が浴内を複数回通過できるようにすることが浴サイズを小さくでき、使用する液体量が低減できると共に接触時間を長くできる点で好ましい。また液体への界面活性剤の添加、液体の気泡あるいは超音波振動、液流の付与、液体中に浸されている繊維への振動の付与、液体中での繊維と他の物体との接触などは融着防止剤の液体への溶解あるいは分散速度を高める上で特に好ましい。なお、走行させつつ融着防止剤を除去する前に、パッケージの状態で液体を作用させる、すなわちパッケージに液体をかける、パッケージを液体が入った浴に浸漬させるなどの手法は融着防止剤の除去効率を高められる点で好ましく、さらにパッケージを液体が入った浴に浸漬させ超音波洗浄する手法は、融着防止剤の除去効率をより高められる点でさらに好ましい。
除去に用いる液体は水の他、各種有機溶剤が使用でき、例としてクロロホルム、四塩化炭素、1,2−ジクロルエタン、1,2−ジクロルエチレン、1,1,2,2−テトラクロルエタン、トリクロルエチレン、二硫化炭素、アセトン、イソブチルアルコール、イソプロピルアルコール、イソペンチルアルコール、エチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、オルト-ジクロルベンゼン、キシレン(オルト)、キシレン(メタ)、キシレン(パラ)、クレゾール(オルト)、クレゾール(メタ)、クレゾール(パラ)、クロルベンゼン、酢酸イソブチル、酢酸イソプロピル、酢酸イソペンチル、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸ペンチル、酢酸メチル、シクロヘキサノール、シクロヘキサノン、1,4−ジオキサン、ジクロルメタン、N,N−ジメチルホルムアミド、スチレン、テトラクロルエチレン、テトラヒドロフラン、1,1,1−トリクロルエタン、トルエン、ノルマルヘキサン、1−ブタノール、2−ブタノール、プロパノール、エタノール、メタノール、メチルイソブチルケトン、メチルエチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、メチルブチルケトン、工業ガソリン1〜5号、コールタールナフサ(ソルベントナフサ)1〜3号、石油エーテル、石油ナフサ(軽質、重質)、石油ベンジン(試薬)、テレビン油、ミネラルスピリットおよびこれらの混合物が挙げられるが、引火の可能性を無くし、環境負荷を低減するために水とすることが好ましい。
また、界面活性剤は融着防止剤の種類に応じて適宜使用でき、例えばアニオン系界面活性剤として脂肪酸塩、アルファスルホ脂肪酸エステル塩、アルキルベンゼンスルホン酸塩、直鎖アルキルベンゼンスルホン酸塩、アルキル硫酸塩、アルキルエーテル硫酸エステル塩、アルキル硫酸トリエタノールアミン、アルキルリン酸エステル、ノニオン系界面活性剤として脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルフェニルエーテル、ソルビタンアルキルエステル、カチオン系界面活性剤として高級アミンハロゲン酸塩、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウムクロリド、アルキルピリジニウムクロリド、両性イオン系界面活性剤としてアルキルカルボキシベタインおよびこれらの混合体が好適に使用できる。
液体の温度は高い方が除去効率を高められるため液体の沸点−60℃以上がより好ましく、液体の沸点−40℃以上がさらに好ましい。ただし温度が高すぎる場合には液体の蒸発が著しくなるため液体の沸点−10℃以下が好ましく、沸点−20℃以下がより好ましい。
液体との接触時間は長い方が除去効率を高められるため、0.01秒以上が好ましく、0.1秒以上がより好ましく、0.5秒以上がさらに好ましい。上限は定められるものではないが、設備を小さくするためには30秒以下程度となる。
液体との接触長は、速度にもよるが前記した処理時間が確保できる長さとするべきであり、30cm以上が好ましく、50cm以上がより好ましく、1m以上がさらに好ましい。上限は定められるものではないが、設備を小さくするためには20m以下程度となる。
繊維の走行速度は単位時間当たりの処理量を高めるためには高速である方が好ましく、10m/分以上が好ましく、50m/分以上がより好ましく、100m/分以上がさらに好ましい。ただし過度に高速とした場合には繊維による随伴流で液体が飛散したり、液体との抵抗が高まり、糸切れが発生することがあるため500m/分以下が好ましい。なお繊維の走行速度が速い場合には、液体と接触させた後繊維走行方向と逆方向に空気を吹き当てる、回転ガイドなどを押し当てるなどの方法により繊維から液体を除去することが、繊維による液体の持ち出しを抑制できる点で好ましい。
除去される融着防止剤の好ましい成分は、前記した固相重合前に付着させる融着防止剤の成分と同様であり、ジメチルポリシロキサンを主体とし、これに水溶性の塩や水膨潤性のスメクタイトを添加した混合物が最も好ましい。また除去に用いる液体は水が好ましいが、ジメチルポリシロキサンは元来親油性であるにも関わらず、固相重合後の除去においては水に良く分散することは驚くべきことである。この理由は定かでないが、固相重合での高温、長時間の加熱によりジメチルポリシロキサンが分解し、低分子となることで分散性が向上したものと推測される。
本発明で融着防止剤を除去した後の繊維の融着防止剤付着量は4.0重量%以下である。なお繊維への融着防止剤の付着量は実施例に記載した手法により求められる値を指す。4.0重量%以下とすることで高次加工工程での融着防止剤の堆積を軽減でき、工程通過性が向上できる。付着量は低いほどその効果は高まるため、3.0重量%以下がより好ましく、2.0重量%以下がさらに好ましい。またポリシロキサン系化合物など易滑性が高い成分を融着防止剤として用いた場合には、そのまま油剤として使用できるため、付着量はある程度多い方が好ましく、付着量は0.1重量%以上が好ましく、0.5重量%以上がより好ましい。
融着防止剤を除去した後に、易滑性の向上のため油剤等を塗布することは好ましい実施形態である。油剤種としては公知の成分が使用でき、例えば炭素数1〜20の一価もしくは多価アルコールのアルキレンオキサイドのブロックまたはランダム付加共重合体であるポリエーテル化合物もしくはその末端水酸基をアルキル基、脂肪酸等で封鎖したポリエーテル化合物やオレイルラウレート、オレイルオレート等の一価アルコールと一塩基性脂肪族カルボン酸のエステル、ジオクチルセバケート、ジオレイルアジペート等の一価アルコールと多価塩基性脂肪族カルボン酸のエステル、ジラウリルフタレート、トリオレイルトリメリテート等の一価アルコールと芳香族カルボン酸のエステル、エチレングリコールジオレート、トリメチロールプロパントリカプリレート、グリセリントリオレート、ビスフェノールジオレート等の多価アルコールと一塩基性脂肪族カルボン酸のエステル、またはこれらのエステルの誘導体としてラウリル(EO)nオクタノエート等のアルキレンオキサイド付加エステル、30℃で測定した粘度がレッドウッド秒で30秒以上の鉱物油例えばパラフィン類などの単独、あるいは混合使用を挙げることができる。
この場合、除去後の繊維の融着防止剤の付着量を測定する際に、追加した油剤等の付着量も合算されるが、最終的に繊維に付着している全てのものは、高次工程で脱落する可能性があり、同じように工程通過性を悪化させる可能性があるため、本発明においては融着防止剤の除去後に追加した油剤等の付着量も融着防止剤との合計量として算出する。すなわち本発明で言う「繊維への融着防止剤の付着量を繊維重量に対して4.0重量%以下とする」とは除去後の融着防止剤の付着量と追加した油剤等の付着量の合計を繊維重量に対して4.0重量%以下とすることを指す。なお除去後の融着防止剤の付着量と追加した油剤等の付着量の合計も実施例に記載した手法により求められる値とする。
除去工程における融着防止剤の除去率は高いほうが固相重合での融着防止と高次加工工程通過性の向上が両立できるため10%以上が好ましく、20%以上がより好ましく、30%以上がさらに好ましい。なお本発明でいう除去率とは実施例記載の方法により求められる値とする。除去率の上限は特に定められないが、ポリシロキサン系化合物など易滑性が高い成分を融着防止剤として用いた場合には、そのまま油剤として使用できるため、過度に除去する必要はなく90%程度で十分である。
本発明で得られる液晶ポリエステル繊維のポリスチレン換算の重量平均分子量(以下、分子量と記載する)は25.0万以上150.0万以下が好ましい。25.0万以上の高い分子量を有することで固相重合は十分進行し高い強度、伸度、弾性率を有し織物性能が向上する他、特に細繊度化した際には衝撃吸収性が高まり高次工程での糸切れを抑制でき、耐摩耗性も向上する。また融点も高いため優れた耐熱性を有する。分子量は高いほどこれらの特性は向上するため、30.0万以上が好ましく、35.0万以上がより好ましい。分子量の上限は特に限定されないが、本発明で達し得る上限としては150.0万程度である。なお本発明で言う分子量とは実施例記載の方法により求められた値とする。
本発明で得られる繊維は、示差熱量測定において50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm1)における融解熱量(ΔHm1)が、Tm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm2)における融解熱量(ΔHm2)に対して3.0倍以上であることが好ましく、4.0倍以上がより好ましく、6.0倍以上がさらに好ましい。
この測定法においてΔHm1は繊維の結晶化の程度(結晶化度)を表し、ΔHm2は繊維を構成する液晶ポリエステルが一度溶融し、冷却固化した後の再昇温過程で結晶化する程度を表す。ΔHm1がΔHm2に対し3.0倍以上あることで繊維の結晶化度は十分に高くなっており、高い強度、弾性率が得られる。ただし過度に結晶化度が高いと繊維の靭性が損なわれ加工性を悪化させるため、ΔHm1はΔHm2に対し15.0倍以下が好ましい。なお、本発明の液晶ポリエステル繊維においては上記した測定条件における昇温時および再昇温時の吸熱ピークは1つであるが、固相重合条件などによる構造変化によっては2つ以上のピークが観測されることがある。この場合のΔHm1は昇温過程での全ての吸熱ピークの融解熱量を合計した値とし、△Hm2は再昇温過程での全ての吸熱ピークの融解熱量を合計した値とする。
またΔHm1の絶対値は液晶ポリエステルの構成単位の組成により変化するが5.0J/g以上が好ましく、6.0J/g以上がより好ましく、7.0J/g以上がさらに好ましい。ΔHm1が大きいほど結晶化度が高く、繊維の強度、弾性率が増加、耐熱性が向上するため、織物など製品とした場合の力学特性、耐熱性を高めることができ、特に細繊度化した際の工程通過性を向上できる。ΔHm1の上限は特に限定されないが、本発明で達し得る上限としては20J/g程度である。
また本発明で得られる繊維はTm1におけるピーク半値幅が15℃未満であり、好ましくは13℃未満である。この測定法におけるピーク半値幅は結晶の完全性を表し、半値幅が小さいほど結晶の完全性は高いと言える。結晶の完全性が高いことで繊維の強度、弾性率が増加、耐熱性が向上し、織物など製品とした場合の力学特性、耐熱性を高めることができ、特に細繊度化した際の工程通過性を向上できる。ピーク半値幅の下限も特に限定されないが、本発明で達し得る下限としては3℃程度である。
また本発明で得られる繊維の融点(Tm1)は300℃以上が好ましく、310℃以上がより好ましく、320℃以上がさらに好ましい。このような高い融点を有することで耐熱性、熱寸法安定性が優れる。本発明においては溶融紡糸した繊維を固相重合することでこのような高い融点が得られる。またTm2は繊維を構成する液晶ポリエステルポリマーの融点が強く反映される。したがってTm2が高いほどポリマーの耐熱性は高く、本発明の繊維においてTm2は290℃以上が好ましく、より好ましくは310℃以上である。なお、Tm1、Tm2の上限は特に限定されないが、本発明で達し得る上限としては400℃程度である。
本発明で得られる繊維の単繊維繊度は18.0dtex以下が好ましい。単繊維繊度を18.0dtex以下と細くすることで、繊維のしなやかさが向上し繊維の加工性が向上する、表面積が増加するため接着剤などの薬液との密着性が高まると言った特性を有することに加え、モノフィラメントからなる紗とする場合は厚みを薄くできる、織密度を高くできる、オープニング(開口部の面積)を広くできるという利点を持つ。単繊維繊度はより好ましくは10.0dtex以下であり、さらに好ましくは7.0dtex以下である。なお、単繊維繊度の下限は特に限定されないが、本発明で達し得る下限としては1.0dtex程度である。
また本発明で得られる繊維の繊度変動率は30%以下が好ましく、より好ましくは20%以下、さらに好ましくは10%以下である。本発明で言う繊度変動率とは実施例記載の手法により測定された値を指す。繊度変動率が30%以下であることで長手方向の均一性が高まり、繊維の強力(強度と繊度の積)変動も小さくなるため、繊維製品の欠陥が減少する他、モノフィラメントの場合には直径変動が小さくなるため、紗とした際のオープニング(開口部の面積)の均一性が高まり紗の性能が向上できる。
本発明で得られる繊維の強度は14.0cN/dtex以上が好ましく、18.0cN/dtex以上がより好ましく、20.0cN/dtex以上がさらに好ましい。また弾性率は600cN/dtex以上が好ましく、700cN/dtex以上がより好ましく、800cN/dtex以上がさらに好ましい。強度、弾性率の上限は特に限定されないが、本発明で達しえる上限としては強度30cN/dtex、弾性率1500cN/dtex程度である。なお本発明で言う強度とはJISL1013:1999記載の引張強さを指し、弾性率とは初期引張抵抗度のことを指す。強度、弾性率が高いことにより細繊度とした場合でも高い強力を発現させ得るため、繊維材料の軽量化、薄物化が達成できるほか、製織など高次加工工程での糸切れも抑制できる。
また本発明で得られる繊維の強力変動率は20%以下が好ましく、15%以下がより好ましい。なお本発明で言う強力とはJISL1013:1999記載の引張強さの測定における切断時の強さを指し、強力変動率とは実施例記載の手法により測定された値を指す。強力変動率が20%以下であることで長手方向の均一性が高まり、繊維の強力(強度と繊度の積)変動も小さくなるため、繊維製品の欠陥が減少する他、低強度部分に起因する高次加工工程での糸切れも抑制できる。
本発明で得られる繊維の伸度は2.0%以上が好ましい。伸度が2.0%以上あることで繊維の衝撃吸収性が高まり、高次加工工程での工程通過性、取り扱い性に優れる。なお、伸度の上限は特に限定されないが、本発明で達し得る上限としては10%程度である。
本発明で得られる繊維の繊維軸垂直方向の圧縮弾性率(以下、圧縮弾性率と記載する)は1.00GPa以下が好ましく、0.50GPa以下がより好ましく、0.35GPa以下がさらに好ましい。圧縮弾性率が低いことで高次加工工程、あるいは織機で繊維がガイドや筬に押し付けられた際にその接触面積を広げ、荷重を分散する効果が発現する。この効果により繊維への押しつけ応力は低下し耐摩耗性は向上する。圧縮弾性率の下限は特に限定されないが、0.10GPa以上であれば繊維が押しつぶされて変形することはなく製品の品位を損ねない。なお本発明で言う圧縮弾性率とは実施例記載の手法により求められた値を指す。
本発明で得られる繊維は熱膨張係数が好ましくは−20〜0ppm/℃、より好ましくは−10〜0ppm/℃である。本発明で言う熱膨張係数とは実施例記載の手法により測定された値を指す。本発明の繊維は熱膨張係数が負であり、かつ−20〜0ppm/℃という低い値を取ることから熱寸法安定性が高く、回路基板用基布、回路印刷用スクリーン紗など高い位置精度が要求される用途に好適に使用できる。
本発明で得られる繊維の複屈折率(△n)は0.250以上0.450以下が好ましく、0.300以上0.400以下がより好ましい。△nがこの範囲であれば繊維軸方向の分子配向は十分に高く、高い強度、弾性率が得られる。
本発明で得られる繊維は広角X線回折において繊維軸に対し赤道線方向の2θ=18〜22°に観測されるピークの半値幅(Δ2θ)が1.8°未満であることが好ましく、1.6°以下がより好ましい。Δ2θが1.8°未満と小さいことで結晶の完全性は高く、強度、弾性率が高いため工程通過性が高まる。Δ2θの下限は特に限定されないが、下限としては0.8°程度である。なお本発明で言うΔ2θとは実施例記載の手法により求められた値を指す。
本発明で得られる繊維の耐摩耗性は5秒以上が好ましく、10秒以上がより好ましい。本発明で言う耐摩耗性とは実施例記載の手法により測定された値を指す。耐摩耗性が5秒以上であることで液晶ポリエステル繊維の高次加工工程での擦過によるフィブリル発生が抑制でき長手方向の均一性、工程通過性が向上する。またモノフィラメントからなる紗においてはフィブリルが紗に織り込まれることによる開口部の目詰まりが抑制できる。
本発明で得られる繊維フィラメント数が1であるモノフィラメントである。モノフィラメントからなるフィルターや印刷用スクリーン紗の高性能化には織密度増加、オープニングエリアの増加が特に求められており、このためには細繊度化ならびに製織性確保のための高強度化が特に強く求められている。しかし細繊度化、高強度化だけであれば細繊度化した液晶ポリエステル繊維を固相重合すれば得ることができるが、従来技術では細繊度化に伴う固重での融着増加により欠陥が発生するため長手方向の均一性、工程通過性に劣るものであった。本発明に得られる繊維は融着防止剤により融着による欠陥を軽減すると共に、その後の除去により工程通過性も向上できるのである。
本発明で得られる液晶ポリエステル繊維は、固相重合された液晶ポリエステル繊維の特徴である高強度、高弾性率、高耐熱性、高熱寸法安定性を有し、かつ長手方向の均一性、工程通過性が向上されたものであり、一般産業用資材、土木・建築資材、スポーツ用途、防護衣、ゴム補強資材、電気材料(特に、テンションメンバーとして)、音響材料、一般衣料等の分野で広く用いられる。有効な用途としては、スクリーン紗、フィルター、ロープ、ネット、魚網、コンピューターリボン、プリント基板用基布、抄紙用のカンバス、エアーバッグ、飛行船、ドーム用等の基布、ライダースーツ、釣糸、各種ライン(ヨット、パラグライダー、気球、凧糸)、ブラインドコード、網戸用支持コード、自動車や航空機内各種コード、電気製品やロボットの力伝達コード等が挙げられ、特に有効な用途として工業資材用織物等に用いるモノフィラメント、中でもフィルター用メッシュ織物や印刷用スクリーン紗が挙げられる。
以下、実施例により本発明を詳細に説明するが、本発明はこれにより何ら限定されるものではない。なお、本発明の各種特性の評価は次の方法で行った。
(1)ポリスチレン換算の重量平均分子量(分子量)
溶媒としてペンタフルオロフェノール/クロロホルム=35/65(重量比)の混合溶媒を用い、液晶ポリエステルの濃度が0.04〜0.08重量/体積%となるように溶解させGPC測定用試料とした。なお、室温24時間の放置でも不溶物がある場合は、さらに24時間静置し、上澄み液を試料とした。これを、Waters社製GPC測定装置を用いて測定し、ポリスチレン換算により重量平均分子量(Mw)を求めた。
カラム:ShodexK−806M 2本、K−802 1本
検出器:示差屈折率検出器RI(2414型)
温度 :23±2℃
流速 :0.8mL/分
注入量:200μL
(2)液晶ポリエステル繊維のTm1、Tm1におけるピーク半値幅、ΔHm1、Tc、ΔHc、Tm2、ΔHm2、液晶ポリエステルポリマーの融点
繊維の熱分析はTA instruments社製DSC2920により示差熱量測定を行い、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度をTm1(℃)とし、Tm1におけるピーク半値幅(℃)、融解熱量(ΔHm1)(J/g)を測定した。
続いて、Tm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピークの温度をTc(℃)とし、Tcにおける結晶化熱量(ΔHc)(J/g)を測定した。続けて50℃まで冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピークをTm2とし、Tm2における融解熱量(ΔHm2)(J/g)を測定した。
なお、参考例に示した液晶ポリエステルポリマーについてはTm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピークをTm2とし、Tm2をもってポリマーの融点とした。
(3)単繊維繊度および繊度変動率
検尺機にて繊維を100mカセ取りし、その重量(g)を100倍し、1水準当たり10回の測定を行い平均値を繊度(dtex)とした。これをフィラメント数で除した商を単繊維繊度(dtex)とした。繊度変動率は繊度の10回の平均値からの最大もしくは最小値の差の絶対値のうち、いずれか大きい方の値を用いて下式により算出した。
繊度変動率(%)=((|最大値もしくは最小値−平均値|/平均値)×100)
(4)強度、伸度、弾性率および強力変動率
JIS L1013:1999記載の方法に準じて、試料長100mm、引張速度50mm/分の条件で、オリエンテック社製テンシロンUCT−100を用い1水準当たり10回の測定を行い、平均値を強力(cN)、強度(cN/dtex)、伸度(%)、弾性率(cN/dtex)とした。強力変動率は強力の10回の平均値からの最大もしくは最小値の差の絶対値のうち、いずれか大きい方の値を用いて下式により算出した。
強力変動率(%)=((|最大値もしくは最小値−平均値|/平均値)×100)
(5)熱膨張係数
島津製作所社製TMA−50を用い、処理加重0.03cN/dtexを繊維軸方向に与え40℃から250℃まで5℃/分の速度で昇温した際の50℃での試料長L0と100℃での試料長L1を用いて下式で計算した。
熱膨張係数(ppm/℃)=((L1−L0)/(L0×50))×10
(6)繊維軸垂直方向の圧縮弾性率(圧縮弾性率)
単繊維1本をセラミックス製等の剛性の高いステージに静置し、圧子の辺を繊維とほぼ平行とした状態で、下記条件において直径方向に圧子を用いて圧縮負荷を一定の試験速度で加え、荷重−変位曲線を得た後、次式から繊維軸垂直方向の圧縮弾性率を算出した。
なお測定に当たっては、装置系の変形量の補正を行うため試料を置かない状態で荷重−変位曲線を得て、これを直線近似して荷重に対する装置の変形量を算出し、試料を置いて荷重−変位曲線を測定した際の各々のデータ点の変位から、その荷重に対する装置の変形量を減じて試料そのものの変位を求め、これを以下の算出に用いた。
算出に当たっては、荷重−変位曲線で線形性が成立する2点での荷重と変位を用いて圧縮弾性率を算出した。その低荷重側の点は荷重をかけた初期では圧子がサンプル全面にあたっていない可能性があるため、荷重約30mNの点とした。ただしここで定めた低荷重点が非線形領域内の場合には、降伏点を通過するように荷重−変位曲線に沿って低荷重側に直線を引き、その直線と変位のずれが0.1μm以内となる最小荷重の点とした。また高荷重側は荷重約100mNの点とした。なお高荷重側の点が降伏点荷重を超える場合には、低荷重側の点を通過するように荷重−変位曲線に沿って高荷重側に直線を引き、その直線との変位のずれが0.1μm以内となる最大荷重の点を高荷重側の点とした。なお下式中のlは500μmとして計算を行い、単繊維半径は試験前に光学顕微鏡を用いて試料の直径を10回測定し、これを平均して求めた平均直径を1/2にした値を用いた。また荷重−変位曲線は試料1水準について5回測定し、圧縮弾性率も5回算出し、これを平均したものを圧縮弾性率とした。
Figure 0005298597
装置 :Instron社製超精密材料試験機Model5848
圧子 :ダイヤモンド製平面圧子(1辺500μmの正方形)
試験速度 :50μm/分
サンプリング速度 :0.1秒
データ処理システム:Instron社製“Merlin”
測定雰囲気 :室温大気中(23±2℃、50±5%RH)
(7)広角X線回折でのピーク半値幅(Δ2θ)
繊維を4cmに切り出し、その20mgを秤量し試料とした。測定は繊維軸方向に対し赤道線方向に行い、その条件は下記とした。このとき2θ=18〜22°に観測されるピークの半値幅(Δ2θ)を測定した。
X線発生装置 :理学電気社製4036A2型
X線源 :CuKα線(Niフィルター使用)
出力 :40kV−20mA
ゴニオメーター:理学電気社製2155D型
スリット :2mmφ−1°−1°
検出器 :シンチレーションカウンター
計数記録装置 :理学電気社製RAD−C型
測定範囲 :2θ=5〜60°
ステップ :0.05°
積算時間 :2秒
(8)耐摩耗性
2.45cN/dtex(2.5g重/dtex)の荷重をかけた繊維を垂直に垂らし、繊維に対して垂直になるように直径3.8mmの硬質クロム梨地加工金属棒ガイド(湯浅糸道工業(株)製棒ガイド)を接触角2.7°で押し付け、ストローク長30mm、ストローク速度600回/分でガイドを繊維軸方向に擦過させ、実体顕微鏡観察を行い、棒ガイド上もしくは繊維表面上に白粉またはフィブリルの発生が確認されるまでの秒数を測定し、7回の測定のうち最大値および最小値を除いた5回の平均値を求め耐摩耗性とした。なお耐摩耗性評価はマルチフィラメントでも同様の試験法で行った。
(9)複屈折率(△n)
偏光顕微鏡(OLYMPUS社製BH−2)を用いコンペンセーター法により試料1水準当たり5回の測定を行い、平均値として求めた。
(10)融着防止剤の付着量、除去率
100mg以上の繊維を採取し、60℃にて10分間乾燥させた後の重量を測定し(W0)、繊維重量に対し100倍以上の溶媒または分散媒に繊維を浸漬させ、室温にて20分超音波洗浄し、洗浄後の繊維を水洗し、60℃にて10分間乾燥させた後の重量を測定し(W1)、次式により融着防止剤付着量を算出した。溶媒または分散媒は融着防止剤を溶液またはエマルジョンとして塗布した場合にはその溶媒または分散媒とし、それ以外の場合は水とした。また水を分散媒として用いる場合には界面活性剤としてドデシルベンゼンスルホン酸ナトリウムを繊維重量に対し2.0重量%水に添加した。
(融着防止剤付着量(重量%))=(W0−W1)×100/W1
また除去率は固相重合後、除去工程前の繊維の融着防止剤付着量(A0)ならびに除去後(油剤等を追加した場合にはその後)の繊維の融着防止剤付着量(A1)を測定し、時式より算出した。
(除去率(%))=(A0−A1)×100/A0
(11)工程通過性
直径4mmのセラミック棒ガイド(湯浅糸道工業(株)製棒ガイド:材質YM−99C、硬度1800)に接触角90°で繊維を当てながら5万mの繊維を200m/分で走行させ、ガイドへの付着物の堆積状況から工程通過性を評価した。評価基準を下記する。
目視にてフィブリル、スカムの堆積が認められない;優良(◎)
フィブリル、スカムは認められるが繊維走行には支障なし;良好(○)
フィブリル、スカムが認められ、糸揺れや糸道変動が起こる;不合格(△)
フィブリル、スカムが堆積し、評価を中止した;不良(×)
参考例1
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸870重量部、4,4’−ジヒドロキシビフェニル327重量部、ハイドロキノン89重量部、テレフタル酸292重量部、イソフタル酸157重量部および無水酢酸1433重量部(フェノール性水酸基合計の1.08当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、330℃まで4時間で昇温した。
重合温度を330℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例2
攪拌翼、留出管を備えた5Lの反応容器に p−ヒドロキシ安息香酸907重量部と6−ヒドロキシ−2−ナフトエ酸457重量部及び無水酢酸946重量部(フェノール性水酸基合計の1.03モル当量)を攪拌翼、留出管を備えた反応容器に仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、325℃まで4時間で昇温した。
重合温度を325℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例3
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸808重量部、4,4’−ジヒドロキシビフェニル411重量部、ハイドロキノン104重量部、テレフタル酸314重量部、イソフタル酸209重量部および無水酢酸1364重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、300℃まで4時間で昇温した。
重合温度を300℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例4
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸323重量部、4,4’−ジヒドロキシビフェニル436重量部、ハイドロキノン109重量部、テレフタル酸359重量部、イソフタル酸194重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、325℃まで4時間で昇温した。
重合温度を325℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例5
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸895重量部、4,4’−ジヒドロキシビフェニル168重量部、ハイドロキノン40重量部、テレフタル酸135重量部、イソフタル酸75重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、365℃まで4時間で昇温した。
重合温度を365℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例6
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル235重量部、ハイドロキノン89重量部、テレフタル酸224重量部、イソフタル酸120重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、340℃まで4時間で昇温した。
重合温度を340℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例7
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル335重量部、ハイドロキノン30重量部、テレフタル酸224重量部、イソフタル酸120重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、305℃まで4時間で昇温した。
重合温度を305℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例8
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル268重量部、ハイドロキノン69重量部、テレフタル酸314重量部、イソフタル酸30重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、355℃まで4時間で昇温した。
重合温度を355℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例9
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル268重量部、ハイドロキノン69重量部、テレフタル酸150重量部、イソフタル酸194重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、310℃まで4時間で昇温した。
重合温度を310℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。
参考例1〜9で得られた液晶性ポリエステルの特性を表1に示す。いずれの樹脂もホットステージにて窒素雰囲気下で昇温加熱し、試料の透過光を偏光下で観察したところ光学的異方性(液晶性)が確認された。なお、溶融粘度は高化式フローテスターを用い、温度を融点+10℃、剪断速度を1000/sとして測定した。
Figure 0005298597
実施例1
参考例1の液晶ポリエステルを用い、160℃、12時間の真空乾燥を行った後、大阪精機工作株式会社製φ15mm単軸エクストルーダーにて(ヒーター温度290〜340℃)溶融押し出しし、ギアーポンプで計量しつつ紡糸パックにポリマーを供給した。このときのエクストルーダー出から紡糸パックまでの紡糸温度は345℃とした。紡糸パックでは金属不織布フィルター(渡辺義一製作所社製WLF−10)を用いてポリマーを濾過し、孔径0.13mm、ランド長0.26mmの孔を5個有する口金より吐出量3.0g/分(単孔あたり0.6g/分)でポリマーを吐出した。
吐出したポリマーは40mmの保温領域を通過させた後、環状冷却風により糸条の外側から冷却し固化させ、その後、ポリジメチルシロキサンを主成分とする油剤を付与し5フィラメントともに1200m/分の第1ゴデットロールに引き取った。このときの紡糸ドラフトは32である。これを同じ速度である第2ゴデットロールを介した後、5フィラメント中の4本はサクションガンにて吸引し、残り1本を、ダンサーアームを介しパーンワインダー(巻取パッケージに接触するコンタクトロール無し)を用いてパーンの形状に巻き取った。約100分の巻取時間中、糸切れは発生せず製糸性は良好であった。この紡糸繊維の物性を表2に示す。なお油分付着量は1.0重量%であった。紡糸条件、紡糸繊維物性を表2に示す。
この紡糸繊維パッケージから繊維を縦方向(繊維周回方向に対し垂直方向)に解舒し、調速ローラーを介さず、速度を一定とした巻取機(神津製作所社製ET−68S調速巻取機)にて巻き返しを行った。なお、このときポリジメチルシロキサン(PDMS、東レ・ダウコーニング社製SH200)が5.0重量%の水エマルジョンを融着防止剤とし、巻取機前で梨地仕上げのステンレスロール(OR)を用い給油を行った。また巻き返しの心材にはステンレス製の穴あきボビンにケブラーフェルト(目付280g/m、厚み1.5mm)を巻いたものを用い、パッケージ形態はテーパー角30°のテーパーエンド巻きとし、コンタクトロールを用いず、またトラバースガイドと繊維の接点を繊維パッケージから5mmとし、ワインド数を9.0とし、テーパー幅調整機構の改造によりトラバース幅を常に揺動させるようにした。このときの巻張力、巻き返し速度、巻量、融着防止剤付着量、巻密度を表3に示す。
これを、密閉型オーブンを用い、室温から240℃までは約30分で昇温し、240℃にて3時間保持した後、4℃/時間で最終到達温度である295℃まで昇温し、さらに295℃で15時間保持する条件にて固相重合を行った。なお雰囲気は除湿窒素を流量25NL/分にて供給し、庫内が加圧にならないよう排気口より排気させた。
得られた固相重合パッケージをインバーターモーターにより回転できる送り出し装置に取り付け、繊維を横方向(繊維周回方向)に給糸速度約200m/分で送り出しつつ、巻取機(神津製作所社製ET型調速巻取機)にて巻き取ったところ、糸切れなく全量の解舒が可能であった。この繊維をもう一度縦方向に解舒しつつ、浴長100cm(接触長100cm)の水槽に40℃の水を張り、かつ水槽内をバブリング装置(約2cmの間隔で直径約0.3mmの穴を開けた外径6mmのナイロンチューブを配し、このチューブに0.1MPaの空気を導入する)を用いてバブリングさせつつ固相重合した繊維を100m/分の速度で通過させ、ニップロールを通過させた後、連続してポリエーテル化合物を主体とする平滑剤とラウリルアルコールを主体とする乳化剤の水エマルジョン(エマルジョン濃度4重量%)を仕上げ油剤とし、巻取機前で梨地仕上げのステンレスロールを用い給油を行い、巻取機(神津製作所社製ET型調速巻取機)にて巻き取った。得られた繊維の特性(固重・解舒・洗浄後繊維物性)を表3に示すが、固相重合された液晶ポリエステル繊維の特徴である高分子量、高強度、高弾性率、高融点、高ΔHm1を持ち、繊度変動率、強力変動率がさらに小さく長手方向の均一性も優れていることが分かる。なお、この繊維のΔnは0.35であり高い配向を有しており、熱膨張係数は−7ppm/℃であり優れた熱寸法安定性を有していた。この繊維を用いて工程通過性の評価を行った結果も表3に合わせて示す。工程通過性は優良であることが分かる。
Figure 0005298597
Figure 0005298597
比較例1
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。この繊維物性を表3に示す(固重・解舒・洗浄後繊維物性)。これを、洗浄を行わず工程通過性の評価を行った。結果を表3に示すが、評価中にガイドに融着防止剤に起因するスカムが堆積し約4万mの解舒を行った時点で糸切れが発生したため評価を中止した。
このように融着防止剤の付着量が多い場合には、繊度変動率、強力変動率から分かるように繊維長手方向の均一性は高いものの、融着防止剤の堆積により工程通過性は悪いことが分かる。
比較例2
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。これをもう一度解舒しつつ、ナイロン製のフェルトロール(外径80mm)の下面を室温(25℃)の水が入った浴に接触させつつ、5.3rpmの回転数で回転させ表面が水で濡れるようにした洗浄ロールに接触長2cmとなるよう繊維を200m/分の速度で接触させ、ニップロールを通過させた後、実施例1と同様の手法で仕上げ油剤を付与し巻き取った。得られた繊維の特性(固重・解舒・洗浄後繊維物性)を表3に示す。この繊維を用いた工程通過性の評価結果を表3に示すが、糸切れは生じなかったものの、ガイドにはスカムが堆積し糸道は一定せず不合格であった。
このように洗浄を行った場合でも、繊維の融着防止剤付着量が多い場合には工程通過性が悪いことが分かる。
実施例2、3
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。これを液温度、走行速度を表3記載の条件とすること以外は実施例1と同様の手法で洗浄、仕上げ油剤付与を行った。得られた繊維物性(固重・解舒・洗浄後繊維物性)を表3に示す。実施例1に比較して液温が高く、接触時間が長い方が除去率は高いことが分かる。これらの繊維の工程通過性評価結果も表3に記載しているが、工程通過性は優良であった。
実施例4
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。これを、液面に厚み2.27mm、目付215g/mのポリエステル不織布を設置し繊維を不織布の下側に通して不織布に接するようにしたこと以外は実施例1と同様の手法で洗浄、仕上げ油剤付与を行った。得られた繊維物性(固重・解舒・洗浄後繊維物性)を表3に示す。実施例1に比較して液浴内で繊維に接触する物体がある方が除去率は高いことが分かる。これらの繊維の工程通過性評価結果も表3に記載しているが、工程通過性は優良であった。
実施例5、6
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。これを、バブリングを行わず、浴長を150cm(接触長150cm)とし、実施例4と同様に液面にポリエステル不織布を設置したこと以外は実施例1と同様に洗浄、仕上げ油剤の付与を行った。このとき実施例5では液体として水にアセトンを50体積%加えた混合体とし、実施例6では液体として水にポリオキシエチレンアルキルエーテル、脂肪酸アルカノールアミド、アルキルエーテル硫酸エステルナトリウムを含む界面活性剤(ライオン社製「ナテラ」(登録商標))を0.2体積%加えた混合体とした。また液温、走行速度はそれぞれ表3記載の条件とした。
得られた繊維の物性を表3に記載しているが、走行速度を早くした場合でも洗浄条件を調整することで比較例2に比べて除去率は向上していることが分かる。これらの繊維の工程通過性評価結果も表3に記載しているが、実施例5では工程通過性は優良、実施例6ではスカムは発生するものの繊維走行には支障は見られず工程通過性は良好であった。
実施例7
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。これを浴長100cmの水槽を用い水槽外に外径30mmのフリーローラーを配し、繊維がフリーローラーを経由し浴槽内を合計3回通過(接触長300cm)させるようにし、実施例6で用いた水と界面活性剤の混合体を用いて、液温、処理速度を表3記載の条件として洗浄を行った。また洗浄の後、引き続き実施例1と同様の手法で仕上げ油剤の付与を行った。
得られた繊維の物性を表3に記載しているが、走行速度を早くした場合でも洗浄条件を調整することで比較例2に比べて除去率は大きく向上していることが分かる。これらの繊維の工程通過性評価結果も表3に記載しているが工程通過性は優良であった。
参考実施例8、9
吐出量、口金孔数を表2記載の条件とすること以外は実施例1と同様の条件で紡糸を行い、紡糸したフィラメントを全てまとめて巻き取りマルチフィラメントを得た。得られた繊維の物性を表2に示す。これを、巻量を6万mとしワインド数を12.1とすること以外は実施例1と同様の方法で巻き返しを行った。この際の巻張力、融着防止剤付着量、巻密度を表3に示す。これを実施例1と同様の方法で固相重合、解舒を行った。
次に、解舒後のパッケージ全体を、40℃の温水に界面活性剤(ライオン社製「ナテラ」(登録商標))を0.05体積%加えた溶液で満たされた超音波洗浄機に浸し、15分の超音波洗浄を6回行った。その後、パッケージを乾燥させない状態で繊維を解舒しつつ、実施例1と同様の方法で洗浄、仕上げ油剤付与を行った。
得られた繊維の物性、工程通過性評価結果を表3に記載しているが、マルチフィラメントの場合でも洗浄により融着防止剤は除去でき、工程通過性は優良であることが分かる。
実施例10、11
吐出量、口金孔径、ランド長、紡糸速度を表2記載の条件とすること以外は実施例1と同様の条件で紡糸を行った。得られた繊維の物性を表2に示す。これを、巻量を6万mとすること以外は実施例1と同様の方法で巻き返しを行った。この際の巻張力、融着防止剤付着量、巻密度を表4に示す。これを実施例1と同様の方法で固重、解舒、洗浄、仕上げ油剤付与を行った。
得られた繊維の物性、工程通過性評価結果を表4に記載しているが、単繊維繊度が異なっていても洗浄により融着防止剤は除去でき、工程通過性は優良であることが分かる。
Figure 0005298597
実施例12
吐出量、口金孔径、ランド長を表2記載の条件とすること以外は実施例1と同様の条件で紡糸を行った。このとき口金下に100mmの加熱筒(保温領域100mm)を設け、この温度を200℃とした。紡糸開始時に糸切れが発生したが、再度糸掛けを行ったところ約100分間の巻き取りが可能であった。得られた繊維の物性を表2に示す。これを、巻量を6万m、ワインド数を4.5とすること以外は実施例1と同様の方法で巻き返しを行った。この際の巻張力、融着防止剤付着量、巻密度を表4に示す。これを実施例1と同様の方法で固重、解舒、洗浄、仕上げ油剤付与を行った。なお解舒の際に糸切れが1度発生した。
得られた繊維の物性、工程通過性評価結果を表4に記載しているが、単繊維繊度が小さくとも洗浄により融着防止剤は除去でき、工程通過性は優良であることが分かる。
実施例13
吐出量、口金孔数、紡糸速度を表2記載の条件とすること以外は実施例12と同様の条件で紡糸を行った。紡糸開始時に糸切れが発生したが、再度糸掛けを行ったところ約100分間の巻き取りが可能であった。得られた繊維の物性を表2に示す。これを融着防止剤としてポリジメチルシロキサン(PDMS、東レ・ダウコーニング社製SH200)が4.0重量%、親水性スメクタイト(コープケミカル社製「ルーセンタイト(登録商標)SWN」)が0.2重量%の水エマルジョンを用いること以外は実施例12と同様の方法で巻き返しを行った。この際の巻張力、融着防止剤付着量、巻密度を表4に示す。これを実施例1と同様の方法で固重、解舒を行った。なお解舒の際に糸切れが1度発生したため、解舒速度を50m/分としたところ、その後糸切れは発生しなかった。その後、実施例8、9と同様の手法で洗浄、仕上げ油剤付与を行った。
得られた繊維の物性、工程通過性評価結果を表4に記載しているが、単糸繊度が2.5dtexの細繊度であっても洗浄により融着防止剤は除去でき、工程通過性は良好であることが分かる。
実施例14〜21
参考例2〜9の樹脂を用い、紡糸温度を表5記載の条件とすること以外は実施例10と同様の方法で紡糸を行った。参考例5の樹脂を用いた実施例17では紡糸開始時に糸切れが発生したが、再度糸掛けを行ったところ約100分間の巻き取りが可能であった。得られた繊維の物性を表5に示す。これを実施例10と同様の方法で巻き返した。この際の巻張力、融着防止剤付着量、巻密度を表4に示す。これを固相重合の最終到達温度を表4記載の条件とすること以外は実施例1と同様の手法で固相重合を行った。これを実施例1と同様の手法で解舒、洗浄、仕上げ油剤付与を行った。
得られた繊維の物性、工程通過性評価結果を表4に記載しているが、樹脂組成が異なっていても洗浄により融着防止剤は除去でき、工程通過性は優良もしくは良好であることが分かる。
Figure 0005298597

Claims (3)

  1. モノフィラメントである液晶ポリエステル繊維ポリシロキサン系化合物を含む融着防止剤を4.1重量%以上付着させて固相重合した後、固相重合された液晶ポリエステル繊維を走行させつつ、(液体の沸点)−60℃以上の液体に繊維を接触させて融着防止剤を除去し、繊維への融着防止剤の付着量を繊維重量に対して4.0重量%以下とすることを特徴とする液晶ポリエステル繊維の製造方法。
  2. 融着防止剤の除去率を10%以上としたことを特徴とする請求項1記載の液晶ポリエステル繊維の製造方法。
  3. 液体が水であることを特徴とする請求項1または2記載の液晶ポリエステル繊維の製造方法。
JP2008085269A 2008-03-28 2008-03-28 液晶ポリエステル繊維の製造方法 Expired - Fee Related JP5298597B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085269A JP5298597B2 (ja) 2008-03-28 2008-03-28 液晶ポリエステル繊維の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085269A JP5298597B2 (ja) 2008-03-28 2008-03-28 液晶ポリエステル繊維の製造方法

Publications (2)

Publication Number Publication Date
JP2009235633A JP2009235633A (ja) 2009-10-15
JP5298597B2 true JP5298597B2 (ja) 2013-09-25

Family

ID=41249926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085269A Expired - Fee Related JP5298597B2 (ja) 2008-03-28 2008-03-28 液晶ポリエステル繊維の製造方法

Country Status (1)

Country Link
JP (1) JP5298597B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692913B2 (en) * 2011-03-29 2022-03-02 Toray Industries, Inc. Liquid crystal polyester fibers and method for producing same
JP5915227B2 (ja) * 2011-03-29 2016-05-11 東レ株式会社 液晶ポリエステル繊維およびその製造方法
JP6040549B2 (ja) * 2011-03-30 2016-12-07 東レ株式会社 液晶ポリエステル繊維およびその製造方法
JP6183210B2 (ja) * 2011-12-27 2017-08-23 東レ株式会社 液晶ポリエステルマルチフィラメント
JP6395054B2 (ja) * 2015-03-31 2018-09-26 東レ株式会社 液晶ポリエステルマルチフィラメント

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765275B2 (ja) * 1985-06-20 1995-07-12 住友化学工業株式会社 芳香族ポリエステル繊維の製造法
JPS62149934A (ja) * 1985-09-24 1987-07-03 帝人株式会社 熱可塑性合成繊維の製造方法
JP2005002517A (ja) * 2003-06-13 2005-01-06 Teijin Techno Products Ltd 熱可塑性合成繊維の製造方法

Also Published As

Publication number Publication date
JP2009235633A (ja) 2009-10-15

Similar Documents

Publication Publication Date Title
KR101310008B1 (ko) 액정 폴리에스테르 섬유 및 그의 제조 방법
US10584429B2 (en) Method of producing liquid crystal polyester fibers
TWI440748B (zh) Liquid crystal polyester fiber and its manufacturing method
JP5286827B2 (ja) 液晶ポリエステル繊維
JP5098693B2 (ja) 液晶ポリエステル繊維
JP5327109B2 (ja) 液晶ポリエステル繊維および巻取パッケージ
JP6183210B2 (ja) 液晶ポリエステルマルチフィラメント
JP5470930B2 (ja) 液晶ポリエステル繊維の製造方法
WO2015115259A1 (ja) 液晶ポリエステル繊維およびその製造方法
JP4983689B2 (ja) 液晶ポリエステル繊維の製造方法
JP5428271B2 (ja) 液晶ポリエステル繊維の製造方法
JP5298597B2 (ja) 液晶ポリエステル繊維の製造方法
JP2008214842A (ja) 液晶ポリエステル繊維の製造方法
JP5239439B2 (ja) 液晶ポリエステル繊維およびその製造方法
JP6040549B2 (ja) 液晶ポリエステル繊維およびその製造方法
JP5239454B2 (ja) 液晶ポリエステル繊維およびその製造方法
JP2016089308A (ja) 液晶ポリエステル繊維の製造方法
JP5115471B2 (ja) 液晶性ポリエステル繊維及びその製造方法
JP2014167174A (ja) 液晶ポリエステル繊維およびその製造方法
JP5915227B2 (ja) 液晶ポリエステル繊維およびその製造方法
JP2018003219A (ja) 液晶ポリエステル繊維の製造方法
JP2019157331A (ja) 液晶ポリエステルモノフィラメントの製造方法
JP2016089285A (ja) 液晶ポリエステル繊維の製造方法
JP2016169464A (ja) 液晶ポリエステルモノフィラメント

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R151 Written notification of patent or utility model registration

Ref document number: 5298597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees