WO2012088854A1 - Sapo分子筛的溶剂热合成方法及由其制备的催化剂 - Google Patents

Sapo分子筛的溶剂热合成方法及由其制备的催化剂 Download PDF

Info

Publication number
WO2012088854A1
WO2012088854A1 PCT/CN2011/076332 CN2011076332W WO2012088854A1 WO 2012088854 A1 WO2012088854 A1 WO 2012088854A1 CN 2011076332 W CN2011076332 W CN 2011076332W WO 2012088854 A1 WO2012088854 A1 WO 2012088854A1
Authority
WO
WIPO (PCT)
Prior art keywords
sapo
molecular sieve
synthesis method
solvothermal synthesis
sieve according
Prior art date
Application number
PCT/CN2011/076332
Other languages
English (en)
French (fr)
Inventor
田鹏
刘中民
张莹
樊栋
苏雄
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to JP2013546566A priority Critical patent/JP5667311B2/ja
Priority to BR112013016489A priority patent/BR112013016489B1/pt
Priority to AU2011349908A priority patent/AU2011349908B2/en
Priority to KR1020137019783A priority patent/KR101461541B1/ko
Priority to SG2013050968A priority patent/SG191421A1/en
Priority to US13/976,458 priority patent/US9168516B2/en
Priority to DK11852524.5T priority patent/DK2660203T3/en
Priority to EP11852524.5A priority patent/EP2660203B1/en
Publication of WO2012088854A1 publication Critical patent/WO2012088854A1/zh
Priority to ZA2013/05421A priority patent/ZA201305421B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the invention relates to a method for synthesizing SAP0 molecular sieves.
  • the invention further relates to the catalytic use of the above materials in the conversion of oxygenates to light olefins. Background technique
  • the synthesis of SAPO molecular sieves typically employs a hydrothermal process. Water acts as a continuous phase and bulk solvent for the synthesis, and its molar ratio to the organic amine templating agent is typically greater than 10. After the synthesis, a large amount of waste liquid which is difficult to use is generated, and the pressure of environmental protection treatment is increased. At the same time, the synthesis yield is low, generally less than 80%. This is mainly due to the higher solubility of the precursor formed from the synthetic raw material in the aqueous solution.
  • SAPO-34 is a chabazite-type (CHA) molecular sieve with an eight-membered ring ellipsoidal cage and a three-dimensional cross-cell structure formed by a double six-membered ring stacked in an ABC manner, with a pore size of 0.38 x 0.38 nm.
  • the cage size is 1.0x0.67nm, which belongs to the small pore molecular sieve.
  • Its spatial symmetry group is R3m, which belongs to the trigonal system.
  • SAPO-34 is composed of four elements of Si, Al, P and 0, and its composition can be varied within a certain range, generally n(Si) ⁇ n(P) ⁇ n(Al).
  • the skeleton consists of Si0 4 , A10 4 " and P0 4 + tetrahedrons, and there are three bonds of [Al-0-P], [Si-O-Al] and [Si-O-Si], but there is no [Si- The presence of the 0-P] key.
  • SAPO-34 molecular sieves have generally been hydrothermally synthesized using water as a solvent in a closed autoclave.
  • the synthetic components include an aluminum source, a silicon source, a phosphorus source, a templating agent, and deionized water.
  • the ideal source of silicon and aluminum is silica sol and pseudo-thin aluminum Stone; Phosphorus source generally uses 85% phosphoric acid.
  • Common templating agents include tetraethylammonium hydroxide (TEAOH), morpholine (MOR), piperidine (Piperidine), isopropylamine (i-PrNH2), triethylamine (TEA), diethylamine (DEA), Propylamine and the like and mixtures thereof.
  • RHO-RHO SAPO molecular sieves having framework structure is a double eight-membered ring is connected by a cage formed by a ⁇ , it belongs to the cubic crystal system, the main channel is constituted by a double eight-membered ring, orifice size 0.36nmx0.36nm o
  • Robson, HE et al. first reported the synthesis of aluminosilicate zeolites with RHO structure using Na+ and Cs+ as structure-directing agents (Adv. Chem. Ser" 121, 106-115. 1987, Rouse, RC et al.
  • a class of natural ore with RHO structure was discovered (N. JbMiner.
  • ⁇ , ⁇ '-diisopropyl-1,3-propandiamine (N,N,-diisopropyl- 1 , 3-propanediamine) is a template for the synthesis of CoAPO-RHO, MgAPO-RHO, MnAPO-RHO molecular sieves (Microporous Mesoporous Mat., 23, 315-322).
  • the synthesis methods of RHO-SAPO molecular sieve mainly include: hydrothermal synthesis of surfactants in the presence of RHO-SAPO and dry gel synthesis without the participation of surfactants (see patent application 200910169329.X) o participation of surfactants
  • hydrothermal synthesis method on the one hand, water is used as the continuous phase and main solvent of the synthesis system, and a large amount of waste liquid which is difficult to use is generated after the synthesis, which increases the pressure of environmental protection treatment; on the other hand, the synthesis process uses relative Expensive surfactants increase the cost of synthesis.
  • the silicon phosphorus aluminum dry gel should be configured first, and the process is complicated; and the RHO-SAPO molecular sieve obtained by the synthesis method has low crystallinity, and the obtained RHO-SAPO molecular sieve is not high. Often with uncrystallized The silicon phosphorus aluminum dry gel is more difficult to separate by washing or the like.
  • the present invention employs an organic amine as an organic solvent and a templating agent for a solvothermal synthesis system, and synthesizes a SAPO molecular sieve in the presence of a small amount of water.
  • the present invention provides a solvothermal synthesis method for SAPO molecular sieves, the method comprising the following synthetic steps:
  • step b) maintaining the initial mixture obtained in the step a) at 30 to 60 ° C, and aging for no more than 24 hours under stirring to obtain an initial gel;
  • the initial gel obtained in the step b) is crystallized at 150 to 250 ° C for 0.5 to 15 days.
  • the initial mixture for preparing the SAPO molecular sieve may further contain an organic alcohol, and the molar ratio of the organic amine, the aluminum source, the phosphorus source, the silicon source, the organic alcohol and the water in the initial mixture is 6 ⁇ 30: 1: 0.5-5: 0.0 Bu 1.0: 0.01-0.50: 0.1-15.
  • the organic amine/water molar ratio is greater than 0.51, preferably greater than 1.0, more preferably greater than 1.5, most preferably greater than 3.0, and less than 300; aging time is 0-24h, preferably 0.5-15h ; crystallization The time is 0.5-15 days, preferably 1-7 days;
  • the method of the present invention further comprises the steps of separating, washing, and drying the crystallized product of step c) to obtain a SAPO-molecular sieve original powder.
  • the aluminum source used in the present invention is a mixture of pseudo-boehmite, aluminum isopropoxide, aluminum oxide, aluminum hydroxide, aluminum chloride, aluminum sulfate or any combination thereof;
  • the phosphorus source used is orthophosphoric acid, Any one or a mixture of any one of metaphosphoric acid, phosphate, phosphite;
  • the source of silicon used is Any one or a mixture of silica sol, tetraethyl orthosilicate, silica, silica;
  • the organic amine used is any one or any of organic primary, secondary and tertiary amines.
  • Mixture including morpholine, piperidine, isopropylamine, triethylamine, diethylamine, di-n-propylamine, diisopropylamine, hexamethyleneimine, ⁇ ', ⁇ ', ⁇ , ⁇ -tetramethyl-1 Any one or a mixture of any of a mixture of 6 hexamethylenediamine, hydrazine, hydrazine-diisopropylethylamine, preferably diethylamine, triethylamine, morpholine, hexamethyleneimine, hydrazine, hydrazine - any one or a mixture of any of several diisopropylethylamines.
  • the organic alcohol used in the initial mixture is any one of methanol, ethanol, n-propanol, isopropanol or a mixture of any of several.
  • the addition of organic alcohols mainly inhibits the formation of heterocrystalline phases, ensuring the repeatability of the synthesis process and high purity.
  • the prepared SAPO molecular sieves are SAPO-5, SAPO-34, SAPO-IK SAPO- 17. SAPO-18, SAPO-3 SAPO-35 SAPO-40, SAPO-4 SAPO-43, SAPO-56, Any one or a mixture of any of RHO-SAPO.
  • the initially prepared synthetic mixture is aged for a certain period of time at 30-600 C, and the main function of the process is to effectively increase the crystallinity of the product while improving the yield.
  • the synthesized SAPO molecular sieve can be used as a catalyst for acid-catalyzed reaction after being calcined in air at 400-700 °C.
  • the synthesized SAPO molecular sieve can be used as a catalyst for the conversion of an oxide to an olefin by calcination in air at 400-700 °C.
  • the organic amine Since the amount of water used in the synthesis is small, and each inorganic raw material and synthetic precursor are difficult to be dissolved in the organic amine, the organic amine can be conveniently separated from the gelled product after synthesis, recycled, and the amount of waste liquid generated is low. .
  • the prepared SAPO exhibits excellent catalytic performance in the methanol conversion to olefin reaction.
  • the prepared SAPO-34 has a longer reaction life than the SAPO-34 molecular sieve prepared by the usual hydrothermal synthesis method, and the ethylene propylene selectivity is improved.
  • DRAWINGS BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a scanning electron micrograph (SEM) of a synthetic product in Example 10 of the present invention.
  • Figure 2 is a scanning electron micrograph (SEM) of a synthetic product in Example 12 of the present invention.
  • Example 3 The proportion of the ingredients and the crystallization process were the same as in Example 2, but the addition of methanol was omitted. After washing and drying the crystallized product, XRD analysis was carried out. The results showed that the sample was SAPO-34 containing a small amount of SAPO-5, and the peak-to-height ratio of the first strongest peak of the two was SAPO-5/SAPO-34. 1/11.
  • Example 3 The proportion of the ingredients and the crystallization process were the same as in Example 2, but the addition of methanol was omitted. After washing and drying the crystallized product, XRD analysis was carried out. The results showed that the sample was SAPO-34 containing a small amount of SAPO-5, and the peak-to-height ratio of the first strongest peak of the two was SAPO-5/SAPO-34. 1/11.
  • Example 3 Example 3
  • Example 4 The proportion of the ingredients and the crystallization process were the same as in Example 3, but the low temperature aging process was omitted. After washing and drying the crystallized product, 11.5 g of raw powder (loss of calcination of 16.1%) was obtained and XRD analysis was performed. The results showed that the sample was pure SAPO-34 and the relative crystallinity was 80% (relative crystallinity of FDZ-38-3) defined as 100%).
  • Example 4 The proportion of the ingredients and the crystallization process were the same as in Example 3, but the low temperature aging process was omitted. After washing and drying the crystallized product, 11.5 g of raw powder (loss of calcination of 16.1%) was obtained and XRD analysis was performed. The results showed that the sample was pure SAPO-34 and the relative crystallinity was 80% (relative crystallinity of FDZ-38-3) defined as 100%).
  • Example 3 only l.Og of ethanol was changed to 1.0 g of n-propanol, and the remaining components and crystallization conditions were unchanged. The crystallization product was subjected to XRD diffraction analysis, and the results showed that the synthesized sample was a SAPO-34 molecular sieve.
  • Example 5
  • Example 3 only 7.03 g of activated alumina was changed to 20.65 g of aluminum isopropoxide, and the amount of deionized water was changed to 1.0 g, and the remaining components and crystallization conditions were unchanged.
  • the crystallization product was subjected to XRD diffraction analysis, and the results showed that the synthesized sample was SAPO-34 molecular sieve.
  • Example 1 only 7.03 g of activated alumina was changed to 20.65 g of aluminum isopropoxide, 5.69 g of silica sol (SiO 2 mass% 28.2%) was changed to 1.6 g of fumed silica, and the amount of deionized water was changed. It was 1.0 g, and the remaining components and crystallization conditions were unchanged. The crystallization product was subjected to XRD diffraction analysis, and the results showed that the synthesized sample was a SAPO-34 molecular sieve.
  • Example 1 In Example 1, only 7.03 g of activated alumina was changed to 5.2 g of Y -alumina, and 5.69 g of silica sol (SiO 2 mass% 28.2%) was changed to 1.6 g of fumed silica, and the amount of deionized water was changed. For O.lg, the remaining components and crystallization conditions are unchanged. The crystallization product was subjected to XRD diffraction analysis, and the results showed that the synthesized sample was a SAPO-34 molecular sieve.
  • Example 1 only 7.03 g of activated alumina 600 Q C was calcined at a high temperature and used as an aluminum source (removing moisture contained therein), and 5.69 g of silica sol (SiO 2 mass percentage 28.2%) was changed to 1.6 g. Fuming silica, the amount of deionized water was changed to 0.1 g, and the remaining components and crystallization conditions were unchanged. The crystallization product was subjected to XRD diffraction analysis, and the results showed that the synthesized sample was a SAPO-34 molecular sieve.
  • the samples obtained in Example 1, Comparative Example 2 and Example 7 were subjected to air baking at 600 ° C for 4 hours, and then tableted and crushed to 20 to 40 mesh.
  • the 1.0 g sample was weighed into a fixed bed reactor and evaluated for MT0 reaction.
  • the reaction was carried out by a nitrogen gas activation at 550 Torr for 1 hour and then cooling to 450 °C.
  • Methanol was carried by nitrogen, nitrogen flow rate was 40 ml/nii n , methanol weight space velocity 2.
  • Oh-' o reaction product was analyzed by on-line gas chromatography. The results are shown in Table 4.
  • Example 1 160 2.2 45.9 0.8 39.5 1.2 8.5 1.9 85.4 Comparative Example 2 140 2.7 44.3 0.8 38.1 1.9 10.1 2.1 82.4
  • Example 7 160 2.3 44.8 0.7 39.9 1.6 9.0 1.7 84.7
  • the XRD data are shown in Table 5. The results indicate that the synthesized product has an RHO structure.
  • the composition of the sample subjected to XRF analysis was Alo. 489 Po. 306 Sio. 2 o 5 , which indicates that the obtained sample was a RHO-SAPO molecular sieve.
  • the obtained sample was characterized by scanning electron microscopy, and the obtained electron micrograph is shown in Fig. 1. Comparative example 5
  • Example 10 only 8.34 g of activated alumina was changed to 24.5 g of aluminum isopropoxide, and the amount of deionized water was changed to 1.0 g, and the remaining components and crystallization conditions were unchanged.
  • the crystallization product was subjected to XRD diffraction analysis, and the results showed that the synthesized sample was a RHO-SAPO molecular sieve. Comparative example 7
  • Example 10 only 8.34 g of activated alumina was changed to 24.5 g of aluminum isopropoxide, and the amount of deionized water was changed to 10 g, and the remaining components and crystallization conditions were unchanged. The crystallization product is subjected to XRD diffraction analysis. The results showed that the synthetic sample was a SAPO-34 molecular sieve.
  • Example 12
  • Example 10 only 8.34 g of activated alumina was changed to 24.5 g of aluminum isopropoxide, 5.69 g of silica sol (SiO 2 mass% 28.2%) was changed to 1.6 g of fumed silica, and the amount of deionized water was changed. It was 1.2 g, and the remaining components and crystallization conditions were unchanged. The crystallization product was subjected to XRD diffraction analysis, and the results showed that the synthesized sample was a RHO-SAPO molecular sieve.
  • Example 10 only 8.34 g of activated alumina was changed to 6.1 ⁇ ⁇ -alumina, 5.69 g of silica sol (SiO 2 mass percent 28.2%) was changed to 1.6 g fuming silica, and the remaining components and The crystallization conditions are unchanged. The crystallization product was subjected to XRD diffraction analysis, and the results showed that the synthesized sample was a RHO-SAPO molecular sieve.
  • Example 15
  • Example 10 60 ml of diethylamine was changed to a mixed solution of 60 ml of diethylamine and 18 ml of morpholine, the amount of phosphoric acid (85 wt%) was changed to 12.35 g, and the amount of deionized water was changed to 0.5 g, keeping other components and The crystallization conditions were unchanged, and the obtained product was recorded as FDZ-31-2.
  • the results of XRD diffraction analysis are shown in Table 7, and the results indicate that the synthesized product is a RHO-SAPO molecular sieve. Table 5: XRD results for the sample of Example 10
  • Example 17 only the crystallization temperature was changed to 210 ° C, the crystallization time was changed to 48 h, and the silicon source was changed to 1.6 g of fumed silica. After the crystallization was completed, the solid product was centrifuged, washed, and dried in air at 100 ° C to obtain 12.2 g of the original powder (calcination loss of 14.0%). The sample was subjected to XRD analysis, and the results showed that the synthesized product was SAPO-18 molecular sieve.
  • Example 17 only the crystallization temperature was changed to 210 ° C, the crystallization time was changed to 48 h, and the silicon source was changed to 1.6 g of fumed silica. After the crystallization was completed, the solid product was centrifuged, washed, and dried in air at 100 ° C to obtain 12.2 g of the original powder (calcination loss of 14.0%). The sample was subjected to XRD analysis, and the results showed that the synthesized product was SAPO-18 mole
  • Example 1 only the organic amine was changed to 65 ml of ⁇ ', ⁇ -diisopropylethylamine, and the silicon source was changed to 1.6 g of fumed silica. After the completion of the crystallization, the solid product was centrifuged, washed, and dried in air at 100 ° C to obtain 12.6 g of the original powder (loss of calcination 15.2%). The sample was subjected to XRD analysis and the results showed that the synthesized product was SAPO-18 molecular sieve.
  • Example 18
  • Example 1 only the organic amine was changed to 65 ml of ⁇ ', ⁇ ', ⁇ , ⁇ -tetramethyl-1,6-hexanediamine. After the completion of the crystallization, the solid product was centrifuged, washed, and dried in air at 100 ° C to obtain 13.6 g of the original powder (loss of calcination of 16.8 %). The sample was subjected to XRD analysis and the results showed that the synthesized product was a SAPO-56 molecular sieve.
  • Example 19
  • Example 2 In Example 1, only the organic amine was changed to 60 ml of hexamethyleneimine. After the crystallization was completed, the solid product was centrifuged, washed, and dried in air at 100 ° C to obtain 12.1 g of the original powder (loss of calcination of 13.8 %). The sample was subjected to XRD analysis and the results showed that the synthesized product was SAPO-35 molecular sieve.
  • Example 20
  • Example 1 the organic amine was changed to 65 ml of hexamethyleneimine, the crystallization temperature was changed to 205 ° C, and the crystallization time was changed to 48 h, and the remaining conditions were unchanged. After the completion of the crystallization, the solid product was centrifuged, washed, and dried in air at 100 ° C to obtain 13.3 g of the original powder (calcination loss of 14%). The sample was subjected to XRD analysis and the results showed that the synthesized product was a SAPO-34 molecular sieve.
  • Example 21 In Example 1, the organic amine was changed to 60 ml of di-n-propylamine, and the rest of the conditions were unchanged.
  • the solid product was centrifuged, washed, and dried in air at 100 ° C to obtain 12.8 g of the original powder (calculation loss of 14.2%).
  • the sample was subjected to XRD analysis and the results showed that the synthesized product was SAPO-43 molecular sieve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

SAPO分子筛的溶剂热合成方法及由其制备的催化剂
技术领域
本发明涉及一种 SAP0分子筛的合成方法。
本发明还涉及上述材料的在含氧化合物转化制低碳烯烃反应中的催化 应用。 背景技术
自从 1982年, 美国联碳公司申请的专利 US 4310440中, 成功合成出 一系列的磷酸铝分子筛及其衍生物以来, 磷酸铝分子筛及其杂原子取代衍 生物一直是材料界和催化领域的研究热点之一。这类 SAPO分子筛合成的 技术特点是采用硅源、 铝源、 磷源以及不同的模板剂合成, 结构单元由 P02+、 八102_和 Si02四面体组成。 在这类分子筛中, 一些小孔结构的分子 筛如 SAPO-34等已成功应用于 MTG、 MTO等过程,并显示出很好的催化 性能。
SAPO分子筛的合成通常采用水热方法。水作为合成的连续相和主体溶 剂, 其与有机胺模板剂的摩尔比通常大于 10。合成后会产生大量难于利用 的废液, 增加环保处理的压力。 同时, 合成收率较低, 一般小于 80%。 这 主要是由于合成原料形成的前驱体在水溶液中具有较高的溶解度所导致。
以 SAPO-34为例, SAPO-34是菱沸石型 (CHA) 分子筛, 具有由双 六元环按照 ABC方式堆积而成的八元环椭球形笼和三维交叉孔道结构, 孔径为 0.38x0.38nm, 笼大小 1.0x0.67nm, 属于小孔分子筛。 其空间对称 群为 R3m, 属三方晶系。 SAPO-34由 Si、 Al、 P和 0四种元素构成, 其 组成可在一定范围内变化, 一般 n(Si)<n(P)<n(Al)。 其骨架由 Si04、 A104" 和 P04+四面体构成, 存在 [Al-0-P]、 [Si-O-Al]和 [Si-O-Si]三种键, 但没有 [Si-0-P]键的存在。
传统上, SAPO-34分子筛一般采用水热合成法, 以水为溶剂, 在密闭 高压釜内进行。 合成组分包括铝源、 硅源、 磷源、 模板剂和去离子水。 可 选作硅源的有硅溶胶、 活性二氧化硅和正硅酸酯, 铝源有活性氧化铝、 拟 薄水铝石和垸氧基铝, 理想的硅源与铝源是硅溶胶和拟薄水铝石; 磷源一 般采用 85%的磷酸。 常用的模板剂包括四乙基氢氧化铵 (TEAOH)、 吗啉 (MOR)、 哌啶 (Piperidine)、 异丙胺 (i-PrNH2)、 三乙胺 (TEA)、 二乙 胺 (DEA)、 二丙胺等以及它们的混合物。
SAPO-34的传统水热合成中,有机胺模板剂的摩尔用量要明显小于水 的摩尔用量, 且随着模板剂用量的逐渐增加, 产品收率和结晶度都有一定 程度的下降,见文献 Microporous and Mesoporous Materials, 2008, 114(1-3): 4163中的表 1。
作为另一种 SAPO分子筛, 具有 RHO骨架结构的 RHO-SAPO分子筛 是由 α笼通过双八元环连接形成, 属立方晶系, 主孔道由双八元环构成, 孔口尺寸 0.36nmx0.36nmo 1973年, Robson, H.E.等首次报道了以 Na+、 Cs+为结构导向剂合成出具有 RHO 结构的硅铝沸石分子筛 (Adv. Chem. Ser" 121, 106-115 )。 1987年, Rouse, R.C.等报道发现了一类具有 RHO结 构的天然矿石 (N. JbMiner. Mh,, 1987, 433-440)。 此后, 人们使用 Na+、 Cs+为结构导向剂又相继合成出具有 RHO结构的 BePO (Stud. Surf. Sci. Catal., 1989,49, 411-420)、 AlGeO (Microporous Mesoporous Mat., 1999, 28, 139-154)、 BeAsO ( 1991, Nature, 349, 508-510)、 GaSiO (J. Phys. Chem., 1995 , 99, 9924-9932) 分子筛。 1998年, Feng, RY.等报道了以 Ν,Ν'-二异 丙基 - 1,3 -丙二胺 (N,N,-diisopropyl- 1 ,3-propanediamine)为模板剂合成出 CoAPO-RHO、 MgAPO-RHO、 MnAPO-RHO 分子筛 ( Microporous Mesoporous Mat., 23, 315-322)。
RHO-SAPO分子筛的合成方法主要包括:表面活性剂参与下的水热合 成 RHO-SAPO 和无表面活性剂参与下的干凝胶合成法(见申请专利 200910169329.X) o表面活性剂参与下的水热合成法中,一方面由于合成过 程采用了水作为合成体系的连续相和主体溶剂, 合成后会产生大量难于利 用的废液, 增加了环保处理的压力; 另一方面合成过程使用了相对昂贵的 表面活性剂, 增加了合成成本。 无表面活性剂参与下的干凝胶合成法中, 首先要配置硅磷铝干凝胶, 工艺复杂; 而且该种合成方法得到的 RHO-SAPO分子筛晶化度不高, 得到的 RHO-SAPO分子筛往往与未晶化 的硅磷铝干凝胶较难通过洗涤等方式分离。
针对上述 SAPO合成方法中的问题, 本发明的发明人探索了采用溶剂 热合成方法来合成 SAPO, SP , 采用非水介质作为主体溶剂合成 SAPO分 子筛, 并且出人意料地发现, 可以在使用有机胺同时作为合成体系的主体 溶剂和模板剂, 并且仅存在少量水的情况下, 成功合成不同种类的 SAPO 分子筛。 发明内容
本发明的目的在于提供一种溶剂热体系下 SAPO分子筛的合成方法。 为实现上述目的,本发明采用有机胺作为溶剂热合成体系的有机溶剂 和模板剂, 在少量水的情况下, 合成 SAPO分子筛。
具体而言, 本发明提供一种 SAPO分子筛的溶剂热合成方法, 该方法 包括以下合成步骤:
a) 将有机胺、 铝源、 磷源、 硅源和水按照 6〜30: 1: 0.5-5: 0.01-1.0: 0.1-15的摩尔比混合, 得到制备 SAPO分子筛的初始混合物, 其中水与所 述有机胺的摩尔比值小于 2.0;
b)将所述步骤 a)得到的初始混合物保持在 30〜60°C, 搅拌状态下老化 不超过 24小时, 得到初始凝胶;
c) 将所述步骤 b) 得到的初始凝胶 150~250°C下晶化 0.5〜15天。
本发明的合成方法中,所述制备 SAPO分子筛的初始混合物中还可以含 有有机醇类, 所述初始混合物中有机胺、 铝源、 磷源、 硅源、 有机醇类和 水的摩尔比例为 6~30: 1: 0.5-5: 0.0卜 1.0: 0.01-0.50: 0.1-15。
本发明的合成方法中, 有机胺 /水的摩尔比值大于 0.51, 优选大于 1.0, 更优选大于 1.5, 最优选大于 3.0, 并且小于 300; 老化时间为 0-24h, 优选 为 0.5-15h; 晶化时间为 0.5-15天, 优选为 1-7天;
本发明的方法还包括将步骤 c) 的晶化产物分离, 洗涤, 干燥的步骤, 以得到 SAPO-分子筛原粉。
本发明所用的铝源为拟薄水铝石、 异丙醇铝、 氧化铝、 氢氧化铝、 氯化 铝、 硫酸铝中任意一种或任意几种的混合物; 所用的磷源为正磷酸、 偏磷 酸、 磷酸盐、 亚磷酸盐中的任意一种或任意几种的混合物; 所用的硅源为 硅溶胶、 正硅酸乙酯、 白炭黑、 二氧化硅中的任意一种或任意几种的混合 物;所用的有机胺为有机伯、仲、叔胺中的任意一种或任意几种的混合物, 包括吗啉、 哌啶、 异丙胺、 三乙胺、 二乙胺、 二正丙胺、 二异丙胺、 六亚 甲基亚胺、 Ν',Ν',Ν,Ν-四甲基 -1,6 己二胺、 Ν,Ν-二异丙基乙胺中的任意一 种或任意几种的混合物,优选二乙胺、三乙胺、吗啉、六亚甲基亚胺、 Ν,Ν- 二异丙基乙胺中的任意一种或任意几种的混合物。
初始混合物中所用的有机醇类为甲醇、 乙醇、 正丙醇、 异丙醇中的任 意一种或任意几种的混合物。在 SAPO分子筛的合成中,尤其是 SAPO-34, SAPO-18, SAPO-35, SAPO-56分子筛的合成中, 有机醇类的加入主要是 抑制杂晶相的生成, 确保合成过程的重复性和高纯度。
本发明中, 所制备的 SAPO分子筛为 SAPO-5、 SAPO-34、 SAPO- IK SAPO- 17. SAPO-18, SAPO-3 SAPO-35 SAPO-40、 SAPO-4 SAPO-43, SAPO-56, RHO-SAPO中任意一种或任意几种的混合物。
本发明中, 初始制备的合成混合物在 30-600C搅拌状态下老化一定时 间, 该过程的主要作用是有效增加产品的结晶度, 同时可以提高收率。
合成的 SAPO分子筛经 400-700°C空气中焙烧后, 可用做酸催化反应 的催化剂。
合成的 SAPO分子筛经 400-700 °C空气中焙烧后, 还可用做含氧化合 物转化制烯烃反应的催化剂。
本发明能产生的有益效果包括:
( 1 ) 合成收率高, 通常大于 90% (计算方法: 产品干基质量 /投料氧 化物干基总量 xl00% );
(2) 由于合成中水的用量少, 且各无机原料及合成前驱体难于溶解 在有机胺中, 有机胺可以在合成后方便地与凝胶状产物分离, 回收利用, 废液生成量低。
(3 )制备的 SAPO在甲醇转化制烯烃反应中表现出优良的催化性能。 例如, 所制备的 SAPO-34与通常的水热合成方法制备的 SAPO-34分子筛 相比, 反应寿命得以延长, 且乙烯丙烯选择性有一定提高。 附图说明 图 1是本发明实施例 10中合成产物的扫描电镜图 (SEM)
图 2是本发明实施例 12中合成产物的扫描电镜图 (SEM) 具体实施方式
下面通过实施例详述本发明, 但本发明并不局限于这些实施例。
实施例 1
将 7.03g活性氧化铝 (A1203质量百分含量 72.5%) 与 60ml三乙胺混 合搅匀, 并在搅拌状态下依次向其中加入 10.30g正磷酸(H3P04质量百分 含量 85%), 5.69g硅溶胶 (Si02质量百分含量 28.2%), 0.50g乙醇和 0.3g 去离子水, 剧烈搅拌使其混合均匀, 并在 40QC搅拌 10h后, 将凝胶转移 到不锈钢反应釜中,在 180°C的晶化温度下动态合成 60小时。晶化结束后, 将固体产物离心, 洗涤, 在 100Ό空气中烘干后, 得原粉 14.1g (焙烧失重 15 % )。样品做 XRD分析。 XRD数据见表 1,结果表明合成产物为 SAPO-34 分子筛。 对比例 1
配料比例及晶化过程同实施例 1, 但省去乙醇的加入。 晶化产品洗涤 烘干后,进行 XRD分析,结果显示,样品为含有少量 SAPO-5的 SAPO-34, 两者的第一个最强峰的峰高比为, SAPO-5/SAPO-34 = 1/9。 对比例 2
传统水热合成 SAPO-34, 参见文献 Microporous and Mesoporous Materials 53 (2002) 97—108。
将 7.03g活性氧化铝 ( A1203质量百分含量 72.5°/。)、 10.3g正磷酸 (H3P04 质量百分含量 85%), 5.69g硅溶胶 (Si02质量百分含量 28.2%) 与 35ml 的去离子水混合搅匀, 并在搅拌状态下加入 21ml三乙胺, 剧烈搅拌使其 混合均匀后, 将凝胶转移到不锈钢反应釜中, 在 200 °C的晶化温度下动态 合成 48小时。 晶化结束后, 将固体产物离心, 洗涤, 在 100°C空气中烘干 后, 得原粉 i LOg (焙烧失重 15.5 % )。 样品做 XRD分析, 结果表明合成 产物为 SAPO-34分子筛。 实施例 2
将 7.03g活性氧化铝 (A1203质量百分含量 72.5%) 与 50ml二乙胺及 15ml 的三乙胺混合搅匀, 并在搅拌状态下一次向其中加入 9.5g 正磷酸 (H3P04质量百分含量 85%), 4.55g硅溶胶 (Si02质量百分含量 28.2%), 0.38g甲醇, 剧烈搅拌使其混合均匀, 并在 55DC搅拌 12h后, 将凝胶转移 到不锈钢反应釜中, 在 180°C的晶化温度下动态合成 100小时。 晶化结束 后, 将固体产物离心, 鶴, 在 100°C空气中烘干后, 得原粉 13.0g (焙烧 失重 14.1 % )。样品做 XRD分析。 XRD数据见表 2, 结果表明合成产物为 SAPO-34分子筛。 对比例 3
配料比例及晶化过程同实施例 2, 但省去甲醇的加入。 晶化产品洗涤 烘干后,进行 XRD分析,结果显示,样品为含有少量 SAPO-5的 SAPO-34, 两者的第一个最强峰的峰高比为, SAPO-5/SAPO-34 = 1/11。 实施例 3
将 7.03g活性氧化铝 (A1203质量百分含量 72.5%) 与 23.13ml三乙胺 及 60ml的吗啉混合搅匀, 并在搅拌状态下一次向其中加入 10.30g正磷酸 (H3P04质量百分含量 85%), 4.55g硅溶胶 (Si02质量百分含量 28.2%), l.Og乙醇和 2.04g的去离子水, 剧烈搅拌使其混合均匀, 并在 35QC搅拌 12h后, 将凝胶转移到不锈钢反应釜中, 在 210°C的晶化温度下动态合成 24小时。 将固体产物离心分离, 用去离子水洗涤至中性, 并在 100°C空气 中烘干后, 得原粉 13.6g (焙烧失重 14.5 % )。 样品做 XRD分析, 数据见 表 3, XRD数据表明合成产物为 SAPO-34分子筛。 对比例 4
配料比例及晶化过程同实施例 3, 但省去低温老化过程。 晶化产品洗 涤烘干后, 得原粉 11.5g (焙烧失重 16.1 % ), 进行 XRD分析, 结果显示, 样品为纯 SAPO-34, 相对结晶度为 80% (FDZ-38-3的相对结晶度定义为 100% )。 实施例 4
在实施例 3中, 只将 l.Og乙醇变为 l.Og正丙醇, 其余组分和晶化条 件不变。 晶化产物做 XRD衍射分析, 结果显示合成样品为 SAPO-34分子 筛。 实施例 5
在实施例 3中, 只将 7.03g活性氧化铝改为 20.65g异丙醇铝, 去离子 水量改为 1.0g, 其余组分和晶化条件不变。 晶化产物做 XRD衍射分析, 结果显示合成样品为 SAPO-34分子筛。 实施例 6
在实施例 1 中, 只将 7.03g活性氧化铝改为 20.65g异丙醇铝, 5.69g 硅溶胶(Si02质量百分含量 28.2%)改为 1.6g发烟二氧化硅, 去离子水量 改为 1.0g, 其余组分和晶化条件不变。 晶化产物做 XRD衍射分析, 结果 显示合成样品为 SAPO-34分子筛。 实施例 7
在实施例 1中,只将 7.03g活性氧化铝改为 5.2g Y-氧化铝, 5.69g硅溶 胶(Si02质量百分含量 28.2%)改为 1.6g发烟二氧化硅, 去离子水量改为 O.lg, 其余组分和晶化条件不变。 晶化产物做 XRD衍射分析, 结果显示 合成样品为 SAPO-34分子筛。 实施例 8
在实施例 1中,只将 7.03g活性氧化铝 600QC高温焙烧后用作铝源(除 去其中所含的水分), 5.69g硅溶胶 (Si02质量百分含量 28.2%) 改为 1.6g 发烟二氧化硅, 去离子水量改为 0.1g, 其余组分和晶化条件不变。 晶化产 物做 XRD衍射分析, 结果显示合成样品为 SAPO-34分子筛。 将实施例 1, 对比例 2和实施例 7得到的样品于 600°C下通入空气焙 烧 4小时, 然后压片、破碎至 20〜40目。称取 l. Og样品装入固定床反 应器, 进行 MT0反应评价。 在 550Ό下通氮气活化 1小时, 然后降温至 450°C进行反应。 甲醇由氮气携带, 氮气流速为 40ml/niin, 甲醇重量空速 2. Oh-' o 反应产物由在线气相色谱进行分析。 结果示于表 4。
6
Figure imgf000010_0001
Z££9L0/U0Z l3/13d W8880 Z OAV 表 2: 实施例 2样品的 XRD结果
Figure imgf000011_0001
iff9z//:llil>d腾 OAV
Figure imgf000012_0001
22 32.2567 2.77296 1.81
23 33.3489 2.68459 3.5
24 34.3856 2.60599 7.75
25 34.8176 2.57463 2.19
26 35.8657 2.50177 6.32
27 38.1446 2.35738 0.91
28 39.1675 2.29814 0.95
29 39.5678 2.2758 3.48
30 42.6337 2.11897 4.78
31 43.2908 2.08832 3.63
32 44.9355 2.01563 0.64
33 47.5282 1.91155 3.84
34 48.6704 1.86932 5.17
35 49.0618 1.85532 2.93
表 4样品的甲醇转化制烯烃反应结果
样品 寿命 选择性 (质 i L%) *
(min) CH4 C2H4 C2H6 C3H6 C3H8 c4 + c5 + C2H4+C3H6 实施例 1 160 2.2 45.9 0.8 39.5 1.2 8.5 1.9 85.4 对比例 2 140 2.7 44.3 0.8 38.1 1.9 10.1 2.1 82.4 实施例 7 160 2.3 44.8 0.7 39.9 1.6 9.0 1.7 84.7
* 100%甲醇转化率时最高 (乙烯 +丙烯) 选择性
实施例 10
将 10.37g正磷酸 (H3P04质量百分含量 85%) 在冰水浴的条件下加入 到 60ml 二乙胺中,, 并在搅拌状态下依次向其中加入 8.34g 活性氧化铝 (A1203质量百分含量 72.5%) , 5.69g硅溶胶(Si02质量百分含量 28.2%), 和 0.2g去离子水,剧烈搅拌使其混合均匀后,将凝胶转移到不锈钢反应釜 中, 在 200°C的晶化温度下动态合成 48小时。 晶化结束后, 将固体产物离 心, 洗涤, 在 100°C空气中烘干后, 样品做 XRD分析。 XRD数据见表 5, 结果表明合成产物为具有 RHO 结构。 将样品做 XRF 分析的其组成为 Alo.489Po.306 Sio.2o5, 这表明所得样品为 RHO-SAPO分子筛。 将所得样品做 扫描电镜表征, 得到的电镜照片见图 1。 对比例 5
将 8.34g活性氧化铝(A1203质量百分含量 72.5%)与 60ml的二乙胺混 合搅匀, 并在搅拌状态下依次向其中加入 10.37g正磷酸(H3P04质量百分 含量 85%), 5.69g硅溶胶 (Si02质量百分含量 28.2%) 和 0.2g去离子水, 剧烈搅拌使其混合均匀后, 将凝胶转移到不锈钢反应釜中, 在 200°C的晶 化温度下动态合成 48小时。 晶化结束后, 将固体产物离心, 洗涤, 在 100 空气中烘干后,样品做 XRD分析。 XRD结果表明合成产物为 RHO-SAPO 和 SAPO-34分子筛的混晶。 对比例 6
将 8.34g活性氧化铝 (A1203质量百分含量 72.5%)、10.37g正磷酸 (H3P04 质量百分含量 85%), 5.69g硅溶胶 (Si02质量百分含量 28.2%) 与 45ml 的去离子水混合搅匀, 并在搅拌状态下加入 10ml二乙胺, 剧烈搅拌使其 混合均匀后, 将凝胶转移到不锈钢反应釜中, 在 200 °C的晶化温度下动态 合成 48小时。 晶化结束后, 将固体产物离心, 洗涤, 在 100°C空气中烘干 后, 样品做 XRD分析, 结果表明合成产物为 SAPO-34分子筛。 实施例 11
在实施例 10中, 只将 8.34g活性氧化铝改为 24.5g异丙醇铝, 去离子 水量改为 1.0g, 其余组分和晶化条件不变。 晶化产物做 XRD衍射分析, 结果显示合成样品为 RHO-SAPO分子筛。 对比例 7
在实施例 10中, 只将 8.34g活性氧化铝改为 24.5g异丙醇铝, 去离子 水量改为 10g, 其余组分和晶化条件不变。 晶化产物做 XRD衍射分析, 结果显示合成样品为 SAPO-34分子筛。 实施例 12
将 11.52g正磷酸 (¾P04质量百分含量 85%) 在冰水浴的条件下加入 到 60ml二乙胺和 15ml三乙胺的混合溶液中,并在搅拌状态下依次向其中 加入 7.03g活性氧化铝 (A1203质量百分含量 72.5%), 4.55g硅溶胶(Si02 质量百分含量 28.2%), 和 O.lg去离子水, 剧烈搅拌使其混合均匀后, 将 凝胶转移到不锈钢反应釜中,在 190°C的晶化温度下动态合成 48小时。晶 化结束后, 将固体产物离心, 洗涤, 在 100°C空气中烘干后, 样品做 XRD 分析。 XRD数据见表 6, 结果表明合成产物为具有 RHO结构。 所得样品 做扫描电镜表征, 得到的电镜照片见图 2。 实施例 13
在实施例 10中, 只将 8.34g活性氧化铝改为 24.5g异丙醇铝, 5.69g硅 溶胶(Si02质量百分含量 28.2%)改为 1.6g发烟二氧化硅, 去离子水量改 为 1.2g, 其余组分和晶化条件不变。 晶化产物做 XRD衍射分析, 结果显 示合成样品为 RHO-SAPO分子筛。 实施例 14
在实施例 10中,只将 8.34g活性氧化铝改为 6.1§ γ-氧化铝, 5.69g硅溶 胶(Si02质量百分含量 28.2%)改为 1.6g发烟二氧化硅, 其余组分和晶化 条件不变。 晶化产物做 XRD衍射分析, 结果显示合成样品为 RHO-SAPO 分子筛。 实施例 15
在实施例 10中, 将 60ml二乙胺改为 60ml二乙胺和 18ml吗啉的混合 溶液, 磷酸 (85wt%) 的用量改为 12.35g, 去离子水量改为 0.5g, 保持其 他组分和晶化条件不变, 所得产物记为 FDZ-31-2。 XRD衍射分析结果见 表 7, 结果表明合成产物为 RHO-SAPO分子筛。 表 5: 实施例 10样品的 XRD结果
Figure imgf000016_0001
表 6: 实施例 12样品的 XRD结果
Figure imgf000017_0001
表 7: 实施例 15样品的 XRD结果
Figure imgf000018_0001
实施例 16
在实施例 1 中, 只将晶化温度变为 210°C, 晶化时间变为 48h, 硅源 变为 1.6g发烟二氧化硅。 晶化结束后, 将固体产物离心, 洗漆, 在 100°C 空气中烘干后, 得原粉 12.2g (焙烧失重 14.0% )。 样品做 XRD分析, 结 果表明合成产物为 SAPO-18分子筛。 实施例 17
在实施例 1中, 只将有机胺变为 65ml Ν',Ν-二异丙基乙胺, 硅源变为 1.6g发烟二氧化硅。 晶化结束后, 将固体产物离心, 洗涤, 在 100°C空气 中烘干后, 得原粉 12.6g (焙烧失重 15.2% )。 样品做 XRD分析,结果表明 合成产物为 SAPO-18分子筛。 实施例 18
在实施例 1中, 只将有机胺变为 65ml Ν',Ν',Ν,Ν-四甲基 -1,6-己二胺。 晶化结束后,将固体产物离心,洗涤,在 100°C空气中烘干后,得原粉 13.6g (焙烧失重 16.8 % )。 样品做 XRD分析,结果表明合成产物为 SAPO-56分 子筛。 实施例 19
在实施例 1中, 只将有机胺变为 60ml六次甲基亚胺。 晶化结束后, 将 固体产物离心, 洗涤, 在 100°C空气中烘干后, 得原粉 12.1g (焙烧失重 13.8 % )。 样品做 XRD分析, 结果表明合成产物为 SAPO-35分子筛。 实施例 20
在实施例 1中,将有机胺变为 65ml六次甲基亚胺,晶化温度变为 205°C, 晶化时间变为 48h, 其余条件不变。 晶化结束后, 将固体产物离心, 洗涤, 在 100°C空气中烘干后, 得原粉 13.3g (焙烧失重 14% )。 样品做 XRD分 析, 结果表明合成产物为 SAPO-34分子筛。 实施例 21 在实施例 1中, 将有机胺变为 60ml二正丙胺, 其余条件不变。 晶化结 束后, 将固体产物离心, 洗涤, 在 100°C空气中烘干后, 得原粉 12.8g (焙 烧失重 14.2% )。 样品做 XRD分析, 结果表明合成产物为 SAPO-43分子 筛。

Claims

权 利 要 求
1、一种 SAPO分子筛的溶剂热合成方法, 其特征在于, 主要步骤如下: a) 将有机胺、 铝源、 磷源、 硅源和水按照 6~30: 1: 0.5-5: 0.01-1.0: 0.1-15的摩尔比混合, 得到制备 SAPO分子筛的初始混合物, 其中水与所 述有机胺的摩尔比值小于 2.0;
b)将所述步骤 a)得到的初始混合物保持在 30~60°C, 搅拌状态下老化 不超过 24小时, 得到初始凝胶;
c) 将所述步骤 b) 得到的初始凝胶 150〜250°C下晶化 0.5〜15天。
2、 根据权利要求 1所述的 SAPO分子筛的溶剂热合成方法, 其特征在 于, 所述制备 SAPO分子筛的初始混合物中还含有有机醇类。
3、 根据权利要求 2所述的 SAPO分子筛的溶剂热合成方法, 其特征在 于, 所述有机醇类为甲醇、 乙醇、 正丙醇、 异丙醇中的任意一种或任意几 种的混合物。
4、 根据权利要求 2所述的 SAPO分子筛的溶剂热合成方法, 其特征在 于, 所述初始混合物中有机胺、 铝源、 磷源、 硅源、 有机醇类和水的摩尔 比例为 6〜30: 1: 0.5-5: 0.0卜 1.0: 0.0 0.50: 0.1-15。
5、 根据权利要求 1或 2所述的 SAPO分子筛的溶剂热合成方法, 其特 征在于: 所述铝源为异丙醇铝、 氧化铝、 氢氧化铝、 氯化铝、 硫酸铝中任 意一种或任意几种的混合物。
6、 根据权利要求 1或 2所述的 SAPO-分子筛的溶剂热合成方法, 其特 征在于: 所述磷源为正磷酸、 偏磷酸、 磷酸盐、 亚磷酸盐中的任意一种或 任意几种的混合物。
7、 根据权利要求 1或 2所述的 SAPO分子筛的溶剂热合成方法, 其特 征在于: 所述硅源为硅溶胶、 正硅酸乙酯、 二氧化硅中的任意一种或任意 几种的混合物。
8、根据权利要求 1或 2所述的 SAPO-34分子筛的溶剂热合成方法, 其 特征在于: 所述有机胺为有机伯、 仲、 叔胺中的任意一种或任意几种的混 合物。
9、根据权利要求 1或 2所述的 SAPO-34分子筛的溶剂热合成方法, 其 特征在于: 所述有机胺为吗啉、 哌啶、 异丙胺、 三乙胺、 二乙胺、 二正丙 胺、 二异丙胺、 六亚甲基亚胺、 N,,N,,N,N-四甲基 -1,6 己二胺、 Ν,Ν-二异 丙基乙胺中的任意一种或任意几种的混合物。
10、根据权利要求 1或 2所述的 SAPO分子筛的溶剂热合成方法,其特 征在于: 所述有机胺为二乙胺、 三乙胺、 吗啉、 六亚甲基亚胺、 Ν,Ν-二异 丙基乙胺中的任意一种或任意几种的混合物。
11、根据权利要求 1或 2所述的 SAPO分子筛的溶剂热合成方法,其特 征在于: 所述 SAPO分子筛为 SAPO-5、 SAPO-34、 SAPO- IK SAPO-17、 SAPO- 18、 SAPO-35、 SAPO-40、 SAPO-41、 SAPO-43、 SAPO-56、 RHO-SAPO 中任意一种或任意几种的混合物。
12、根据权利要求 1或 2所述的 SAPO分子筛的溶剂热合成方法,其特 征在于: 所述有机胺与水的摩尔比值为 0.51~300。
13、根据权利要求 1或 2所述的 SAPO分子筛的溶剂热合成方法,其特 征在于: 所述有机胺与水的摩尔比值为 1.5~300。
14、根据权利要求 1或 2所述的 SAPO分子筛的溶剂热合成方法,其特 征在于: 所述有机胺与水的摩尔比值为 3.0〜300。
15、 根据权利要求 1或 2所述的 SAPO分子筛的溶剂热合成方法, 其 特征在于: 所述步骤 b) 中老化时间为 0.5〜15h。
16、根据权利要求 1或 2所述的 SAPO分子筛的溶剂热合成方法,其特 征在于: 所述步骤 c) 中晶化时间为 1~7天。
17、根据权利要求 1或 2所述的 SAPO分子筛的溶剂热合成方法,其特 征在于: 所述方法还包括将步骤 c)的晶化产物分离, 洗涤, 干燥的步骤。
18、 一种酸催化反应的催化剂, 其是根据权利要求 1或 2所述的 SAPO 分子筛的溶剂热合成方法合成的, 并且经 400〜700°C空气中焙烧。
19、 一种含氧化合物转化制烯烃反应的催化剂, 其是根据权利要求 1 或 2所述的 SAPO分子筛的溶剂热合成方法合成的, 并且经 400~700°C空 气中焙烧。
PCT/CN2011/076332 2010-12-29 2011-06-24 Sapo分子筛的溶剂热合成方法及由其制备的催化剂 WO2012088854A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2013546566A JP5667311B2 (ja) 2010-12-29 2011-06-24 Sapo分子篩の溶剤熱合成方法及びそれにより調製された触媒
BR112013016489A BR112013016489B1 (pt) 2010-12-29 2011-06-24 processo de síntese solvotérmico de peneiras moleculares.
AU2011349908A AU2011349908B2 (en) 2010-12-29 2011-06-24 Method for synthesizing SAPO molecular sieve by solvothermal method and catalyst prepared thereby
KR1020137019783A KR101461541B1 (ko) 2010-12-29 2011-06-24 Sapo 분자체의 용매열 합성 공정 및 이에 의하여 제조된 촉매들
SG2013050968A SG191421A1 (en) 2010-12-29 2011-06-24 Solvothermal synthesis process of sapo molecular sieves and catalysts prepared thereby
US13/976,458 US9168516B2 (en) 2010-12-29 2011-06-24 Solvothermal synthesis process of SAPO molecular sieves and catalysts prepared thereby
DK11852524.5T DK2660203T3 (en) 2010-12-29 2011-06-24 PROCEDURE FOR SYNTHETIZING SAPO MOLECULE SIGNS USING A SOLVOTERMAL PROCEDURE
EP11852524.5A EP2660203B1 (en) 2010-12-29 2011-06-24 Method for synthesizing sapo molecular sieve by solvothermal method
ZA2013/05421A ZA201305421B (en) 2010-12-29 2013-07-18 Solvothermal synthesis process of sapo molecular sieves and catalysts prepared thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010610515.5 2010-12-29
CN2010106105155A CN102530987A (zh) 2010-12-29 2010-12-29 Sapo分子筛的溶剂热合成方法及由其制备的催化剂

Publications (1)

Publication Number Publication Date
WO2012088854A1 true WO2012088854A1 (zh) 2012-07-05

Family

ID=46339208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076332 WO2012088854A1 (zh) 2010-12-29 2011-06-24 Sapo分子筛的溶剂热合成方法及由其制备的催化剂

Country Status (12)

Country Link
US (1) US9168516B2 (zh)
EP (1) EP2660203B1 (zh)
JP (1) JP5667311B2 (zh)
KR (1) KR101461541B1 (zh)
CN (2) CN102530987A (zh)
AU (1) AU2011349908B2 (zh)
BR (1) BR112013016489B1 (zh)
DK (1) DK2660203T3 (zh)
MY (1) MY157590A (zh)
SG (1) SG191421A1 (zh)
WO (1) WO2012088854A1 (zh)
ZA (1) ZA201305421B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012381962B2 (en) * 2012-06-08 2015-08-27 Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences Metal silicoaluminophosphate molecular sieve having RHO skeleton structure and preparation process therefor
JP2015533765A (ja) * 2012-09-26 2015-11-26 ダリアン インスティテュート オブ ケミカル フィジックス,チャイニーズ アカデミー オブ サイエンシズ Sapo−34分子篩及びその合成方法
JP2019001707A (ja) * 2013-08-05 2019-01-10 三菱ケミカル株式会社 ゼオライト及びその製造方法と用途
CN110817898A (zh) * 2018-08-13 2020-02-21 中国科学院大连化学物理研究所 一种具有ats骨架结构的磷酸硅铝分子筛及其制备方法和应用
CN114011457A (zh) * 2021-12-07 2022-02-08 万华化学集团股份有限公司 一种对乙氧基苯酚的制备方法
CN114988430A (zh) * 2022-06-06 2022-09-02 山西大学 一种纳米棒状zsm-23分子筛的合成方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103482646B (zh) * 2012-06-08 2016-01-20 中国科学院大连化学物理研究所 具有rho骨架结构的金属磷酸硅铝分子筛及其制备方法
CN103539154A (zh) * 2012-07-12 2014-01-29 中国石油化工股份有限公司 Sapo-56分子筛的制备方法
WO2014047802A1 (zh) * 2012-09-26 2014-04-03 中国科学院大连化学物理研究所 一种sapo-34分子筛及其合成方法
CN103864096B (zh) * 2012-12-10 2016-01-20 中国科学院大连化学物理研究所 一种sapo-35分子筛及其合成方法
WO2014089739A1 (zh) * 2012-12-10 2014-06-19 中国科学院大连化学物理研究所 一种sapo-35分子筛及其合成方法
CN103787371B (zh) * 2014-01-06 2015-08-19 神华集团有限责任公司 一种亚微米sapo-18分子筛的制备方法
CN103706394B (zh) * 2014-01-06 2015-08-05 神华集团有限责任公司 一种亚微米sapo-5/sapo-18复合分子筛及其制备方法
CN103833047B (zh) * 2014-03-28 2015-06-24 神华集团有限责任公司 一种sapo-5/sapo-18/sapo-34共生复合分子筛及其制备方法
CN103922361A (zh) * 2014-04-25 2014-07-16 江西师范大学 一种sapo-17分子筛的制备方法
CN105439170B (zh) * 2014-08-18 2017-12-19 中国科学院大连化学物理研究所 一种sapo‑35分子筛及其合成方法
CN104743574B (zh) * 2014-11-26 2017-03-29 济南大学 一种高纯度sapo‑44微孔分子筛的制备方法
WO2016119222A1 (zh) * 2015-01-30 2016-08-04 中国科学院大连化学物理研究所 一种金属改性sapo分子筛的制备方法
CN105984877B (zh) * 2015-02-12 2017-12-05 中国科学院大连化学物理研究所 Sapo‑17/sapo‑56共晶分子筛、其合成方法及应用
CN106694032B (zh) * 2015-11-12 2019-04-05 中触媒新材料股份有限公司 一种cha-rho型复合分子筛及其制备方法与应用
CN105964295B (zh) * 2016-05-24 2019-01-18 华南理工大学 一种富锰的Mn-SAPO-34分子筛催化剂及其制备方法与用途
CN105944756B (zh) * 2016-05-24 2019-01-29 华南理工大学 一种MnCu-SAPO-34分子筛催化剂及其制备方法与用途
CN106082269A (zh) * 2016-06-22 2016-11-09 华微科技(苏州)有限公司 以三乙胺和二乙胺为模板剂合成sapo‑34分子筛的方法
CN107673370B (zh) * 2016-08-02 2019-12-27 中国科学院大连化学物理研究所 纳米sapo-34分子筛的合成方法、sapo-34分子筛催化剂及其应用
CN106517229B (zh) * 2016-10-19 2018-05-15 浙江大学 水热合成法制备纳米片状sapo-11分子筛的方法
JP6970182B2 (ja) 2017-03-31 2021-11-24 日本碍子株式会社 アルミノフォスフェート系ゼオライト膜の合成方法
WO2018180527A1 (ja) * 2017-03-31 2018-10-04 日本碍子株式会社 アルミノフォスフェート系ゼオライト膜の合成方法
CN109833905A (zh) 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 分子筛催化剂及其制备方法和应用
CN108675317B (zh) * 2018-08-22 2022-01-11 江西西林科新材料有限公司 一种低成本sapo-34分子筛的合成方法
CN109354035B (zh) * 2018-11-24 2023-01-24 江西师范大学 一种利用双模板剂制备AlPO-18分子筛的方法
CN109502601B (zh) * 2018-12-18 2021-04-02 无锡阿科力科技股份有限公司 一种钛硅分子筛及其制备方法和用途
CN109437228B (zh) * 2018-12-18 2021-04-02 无锡阿科力科技股份有限公司 一种钛硅分子筛及其制备方法和用途
JP2022536736A (ja) * 2019-06-13 2022-08-18 エコヴィスト・カタリスト・テクノロジーズ・リミテッド・ライアビリティ・カンパニー 有機テンプレートを用いたチャバザイトゼオライト合成
CN112517058B (zh) * 2019-09-18 2023-07-04 中国石油化工股份有限公司 一种aei型分子筛及其制备方法和应用
CN112517057B (zh) * 2019-09-18 2023-08-08 中国石油化工股份有限公司 含aei型分子筛的复合催化剂及其制备方法和应用
CN111039303B (zh) * 2019-12-26 2023-04-14 洛阳建龙微纳新材料股份有限公司 改性m-sapo-rho型沸石分子筛作为乙烯选择吸附剂的应用
CN114054082B (zh) * 2021-11-10 2022-11-08 南昌大学 一种纳米多级孔sapo-11分子筛及其制备方法和应用
CN114702041B (zh) * 2022-03-25 2023-09-01 常州工学院 一种类球状多孔级sapo-20沸石分子筛的制备方法及应用
CN114890435B (zh) * 2022-06-22 2023-08-25 中国石油大学(华东) 一种利用mto废催化剂制备的中空结构sapo-34分子筛及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1351960A (zh) * 2000-11-08 2002-06-05 中国石油化工股份有限公司 一种硅磷酸铝分子筛及其制备方法
CN1488579A (zh) * 2002-10-10 2004-04-14 中国石油化工股份有限公司 一种硅磷酸铝分子筛及其制备方法
CN101121529A (zh) * 2006-08-08 2008-02-13 中国科学院大连化学物理研究所 一种磷硅铝sapo-34分子筛的快速合成方法
CN101121530A (zh) * 2006-08-08 2008-02-13 中国科学院大连化学物理研究所 骨架富含Si(4Al)结构的SAPO-34分子筛合成方法
CN101503201A (zh) * 2009-03-19 2009-08-12 中国石油大学(北京) Sapo-11分子筛及sapo-11分子筛基催化剂的制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
ZA849726B (en) 1983-12-19 1986-07-30 Mobil Oil Corp Crystalline silicophosphoaluminate
US5208005A (en) * 1988-02-12 1993-05-04 Chevron Research And Technology Company Synthesis of a crystalline silicoaluminophosphate
NZ228425A (en) 1988-04-08 1990-11-27 Mobil Oil Corp Method of synthesising a crystalline molecular sieve comprising oxides of aluminium and phosphorus, and other elements
US6540970B1 (en) * 1999-11-18 2003-04-01 Exxon Mobil Chemical Patents, Inc. Method for the synthesis of molecular sieves
CN1191991C (zh) * 2001-10-17 2005-03-09 中国科学院兰州化学物理研究所 一种sapo分子筛的制备方法
JP5401754B2 (ja) * 2006-03-31 2014-01-29 三菱化学株式会社 金属酸化物ナノ結晶の製造方法
JP5002208B2 (ja) * 2006-07-26 2012-08-15 三菱化学株式会社 金属酸化物ナノ結晶の製造方法
CN101121533B (zh) 2006-08-08 2010-05-19 中国科学院大连化学物理研究所 具有微孔、中孔结构的sapo-34分子筛及合成方法
CN101195492B (zh) * 2006-12-04 2010-09-29 中国科学院大连化学物理研究所 以二乙胺为模板剂合成sapo-11和sapo-34分子筛的方法
KR100915024B1 (ko) * 2007-06-27 2009-09-02 한국화학연구원 혼합 유기주형체를 이용한 경질 올레핀 제조용 실리코알루미노포스페이트 (sapo)-34 분자체 촉매의 제조방법
WO2009060471A2 (en) * 2007-08-27 2009-05-14 Bharat Petroleum Corporation Ltd. Microwave assisted process for synthesis of molecular sieves from pseudo and/or dry gels
CN101302015A (zh) * 2008-06-20 2008-11-12 上海第二工业大学 二乙胺为模板剂合成sapo-5及模板剂回收方法
CN101508446B (zh) * 2009-03-19 2011-12-07 中国石油大学(北京) 一种调控sapo-11分子筛孔径的制备方法
PL2440328T3 (pl) * 2009-06-12 2017-06-30 Albemarle Europe Sprl. Katalizatory z sitem molekularnym sapo, ich otrzymywanie i zastosowania
CN101993093B (zh) 2009-08-25 2012-10-31 中国科学院大连化学物理研究所 一种具有rho骨架结构的sapo分子筛及其制备方法
JP5656226B2 (ja) 2010-05-31 2015-01-21 独立行政法人産業技術総合研究所 −lit型合成アルミノシリケート、−lit型メタロシリケート及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1351960A (zh) * 2000-11-08 2002-06-05 中国石油化工股份有限公司 一种硅磷酸铝分子筛及其制备方法
CN1488579A (zh) * 2002-10-10 2004-04-14 中国石油化工股份有限公司 一种硅磷酸铝分子筛及其制备方法
CN101121529A (zh) * 2006-08-08 2008-02-13 中国科学院大连化学物理研究所 一种磷硅铝sapo-34分子筛的快速合成方法
CN101121530A (zh) * 2006-08-08 2008-02-13 中国科学院大连化学物理研究所 骨架富含Si(4Al)结构的SAPO-34分子筛合成方法
CN101503201A (zh) * 2009-03-19 2009-08-12 中国石油大学(北京) Sapo-11分子筛及sapo-11分子筛基催化剂的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012381962B2 (en) * 2012-06-08 2015-08-27 Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences Metal silicoaluminophosphate molecular sieve having RHO skeleton structure and preparation process therefor
JP2015533765A (ja) * 2012-09-26 2015-11-26 ダリアン インスティテュート オブ ケミカル フィジックス,チャイニーズ アカデミー オブ サイエンシズ Sapo−34分子篩及びその合成方法
JP2019001707A (ja) * 2013-08-05 2019-01-10 三菱ケミカル株式会社 ゼオライト及びその製造方法と用途
CN110817898A (zh) * 2018-08-13 2020-02-21 中国科学院大连化学物理研究所 一种具有ats骨架结构的磷酸硅铝分子筛及其制备方法和应用
CN110817898B (zh) * 2018-08-13 2021-09-03 中国科学院大连化学物理研究所 一种具有ats骨架结构的磷酸硅铝分子筛及其制备方法和应用
CN114011457A (zh) * 2021-12-07 2022-02-08 万华化学集团股份有限公司 一种对乙氧基苯酚的制备方法
CN114011457B (zh) * 2021-12-07 2023-09-19 万华化学集团股份有限公司 一种对乙氧基苯酚的制备方法
CN114988430A (zh) * 2022-06-06 2022-09-02 山西大学 一种纳米棒状zsm-23分子筛的合成方法
CN114988430B (zh) * 2022-06-06 2024-03-12 山西大学 一种纳米棒状zsm-23分子筛的合成方法

Also Published As

Publication number Publication date
US9168516B2 (en) 2015-10-27
JP5667311B2 (ja) 2015-02-12
JP2014506227A (ja) 2014-03-13
BR112013016489B1 (pt) 2020-04-07
AU2011349908B2 (en) 2014-11-27
CN102530987A (zh) 2012-07-04
MY157590A (en) 2016-06-30
US20130280161A1 (en) 2013-10-24
ZA201305421B (en) 2014-10-29
EP2660203B1 (en) 2018-08-22
BR112013016489A2 (pt) 2016-09-27
CN105110348A (zh) 2015-12-02
EP2660203A4 (en) 2017-04-12
DK2660203T3 (en) 2018-11-26
KR101461541B1 (ko) 2014-12-02
EP2660203A1 (en) 2013-11-06
KR20130108653A (ko) 2013-10-04
SG191421A1 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
WO2012088854A1 (zh) Sapo分子筛的溶剂热合成方法及由其制备的催化剂
US6903240B2 (en) Process for manufacturing a silicoalumino-phosphate molecular sieve
RU2700590C2 (ru) Способ синтеза молекулярных сит кремнийалюмофосфат-34
WO2008022532A1 (fr) Procédé destiné à synthétiser rapidement un tamis moléculaire de silicoaluminophosphate sapo-34
US9744526B2 (en) SAPO-34 molecular sieve and method for preparing the same
WO2012071889A1 (zh) 一种低硅sapo-34分子筛的合成方法
EP3495320A1 (en) Method for synthesizing nano sapo-34 molecular sieve, and sapo-34 molecular sieve catalyst and application thereof
US6773688B2 (en) Process for manufacture of molecular sieves
US20060147364A1 (en) Process for synthesising porous crystalline aluminophosphate molecular sieves
CN102557072B (zh) Sapo-34分子筛的溶剂热合成方法和由其制备的催化剂
RU2317253C2 (ru) Способ in-situ синтеза кристаллического микропористого металлоалюмофосфата в виде формованного материала
EP3183214B1 (en) Method for synthesizing silicoaluminophosphate-34 molecular sieves using monoisopropanolamine
JP5813858B2 (ja) モレキュラーシーブ材料を生成するためのプロセス
US10207259B2 (en) Hybrid SAPO-34/ZSM-5 catalyst, its preparation and its use
WO2014089738A1 (zh) 一种以n-甲基二乙醇胺为模板剂的sapo-34分子筛及其合成方法
KR100888467B1 (ko) 함산소화합물로 부터 경질올레핀 제조용 복합 촉매의제조방법 및 상기 복합 촉매를 이용한 경질올레핀의제조방법
JP6703772B2 (ja) ゼオライト触媒の製造方法、ゼオライト触媒及びシリコアルミノホスフェート型ゼオライト
RU2343114C1 (ru) Способ регулирования структуры кристаллических микропористых силикоалюмофосфатов
WO2014047804A1 (zh) 一种快速合成sapo-34分子筛的方法及由其制备的催化剂
Venkatathri Synthesis and characterization of Silicoaluminophosphate molecular sieve, SAPO-35 from aqueous medium using aluminium isopropoxide
WO2014047805A1 (zh) 一种具有cha结构sapo分子筛的合成方法及由其制备的催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852524

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13976458

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013546566

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011852524

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137019783

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011349908

Country of ref document: AU

Date of ref document: 20110624

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013016489

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013016489

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130626