WO2014047805A1 - 一种具有cha结构sapo分子筛的合成方法及由其制备的催化剂 - Google Patents

一种具有cha结构sapo分子筛的合成方法及由其制备的催化剂 Download PDF

Info

Publication number
WO2014047805A1
WO2014047805A1 PCT/CN2012/082007 CN2012082007W WO2014047805A1 WO 2014047805 A1 WO2014047805 A1 WO 2014047805A1 CN 2012082007 W CN2012082007 W CN 2012082007W WO 2014047805 A1 WO2014047805 A1 WO 2014047805A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
molecular sieve
sapo molecular
cha structure
sda
Prior art date
Application number
PCT/CN2012/082007
Other languages
English (en)
French (fr)
Inventor
田鹏
刘中民
樊栋
张莹
苏雄
杨越
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2012/082007 priority Critical patent/WO2014047805A1/zh
Publication of WO2014047805A1 publication Critical patent/WO2014047805A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds

Definitions

  • the invention belongs to the field of SAPO molecular sieves, and particularly relates to a synthesis method of SAPO molecular sieve with CHA structure, and a catalytic application of the above materials in the reaction of oxygenate conversion to low carbon olefin. Background technique
  • SAPO molecular sieves In 1984, JCC, a joint carbide company in the United States, developed a series of SAPO molecular sieves (USP 4440871).
  • the molecular sieve is a kind of crystalline silicoaluminophosphate whose three-dimensional skeleton structure is composed of ⁇ 0 2 + , ⁇ 10 2 ⁇ Si ⁇ 2 tetrahedron.
  • SAPO-34 is a chabazite-like structure, and the main channel is composed of eight rings with an orifice of 0.38 nm x 0.38 nm.
  • SAPO-34 molecular sieve has attracted much attention due to its suitable acidity and pore structure, and exhibits excellent catalytic performance in methanol to produce low carbon olefin (MTO).
  • SAPO-34 molecular sieves are generally hydrothermally synthesized using water as a solvent in a closed autoclave.
  • the synthetic components include an aluminum source, a silicon source, a phosphorus source, a templating agent, and deionized water.
  • silicon source with silica sol, active silica and orthosilicate, aluminum source with activated alumina, pseudoboehmite and alkoxy aluminum.
  • the ideal source of silicon and aluminum is silica sol and pseudo-thin water.
  • Aluminite; Phosphorus source generally uses 85% phosphoric acid.
  • Common templating agents include tetraethylammonium hydroxide (TEAOH), morpholine (MOR), piperidine (Piperidine), isopropylamine (i-PrNH2), triethylamine (TEA;), diethylamine (DEA). , dipropylamine, etc. and mixtures thereof.
  • Hexamethyleneimine ( ⁇ ) is commonly used as a structure directing agent for the synthesis of SAPO-35 molecular sieves in the synthesis of SAPO molecular sieves.
  • Chinese patent 200710175273.X reported the synthesis of SAPO-35 using HMI as a template. The initial synthesis mixture needs to be gelled at 35-100 Q C. The synthesis ratio is (0.5-1.8) R: (0.05-2) Si0 2 : 1A1 2 0 3 : (0.5-1.5 ) P 2 0 5 : ( 10- 150) H 2 0, crystallized at 150-210 ° C for 0.5-500 h.
  • Pastore et al. reported that a layered aluminum phosphate kanemite was used as a precursor.
  • a SAPO molecular sieve with a CHA structure was synthesized by adding hexamethyleneimine and a silicon source to the synthesis system, named CAL-1 (J Phys. Chem. C 2007, 111, 3116-3129).
  • CAL-1 J Phys. Chem. C 2007, 111, 3116-3129.
  • the initial gel silica-alumina ratio of CAL-1 can only be modulated in a narrow range.
  • the SAPO-35 molecular sieve belongs to the LEV structure, which is formed by stacking double six-membered rings in the order of AABCCABBC.
  • the CHA structure is formed by stacking double six-membered rings in the order of AABBCC. It can be seen that there is a big difference in the structure between the two.
  • the synthesis of SAPO molecular sieves requires organic amine/ammonium as a structure directing agent.
  • An organic amine can synthesize molecular sieves of various structures under different conditions.
  • a molecular sieve can be synthesized using a variety of different organic amines.
  • the relationship between the structure of the organic amine and the molecular sieve structure it is directed to is not clear.
  • Still another object of the present invention is to provide an SAP-catalyzed reaction catalyst having a CHA structure and an acid-catalyzed reaction catalyst or an oxygen-containing compound converted to an olefin-reactive catalyst synthesized by the above method.
  • hexamethyleneimine hereinafter referred to as hydrazine
  • a phosphorus source, a silicon source and an aluminum source used in conventional molecular sieve synthesis are used as raw materials, and synthesized under hydrothermal conditions.
  • SAPO molecular sieve with CHA structure The inventors have found through experiments that HMI can be used as a main structure directing agent for the synthesis system, and a highly crystalline CHAO molecular sieve having a CHA structure can be synthesized in the presence of a suitable batching sequence and a small amount of SAPO seed crystals.
  • the SDA is a mixture of hexamethyleneimine or hexamethyleneimine and other organic amine/ammonium R, and R is triethylamine, morpholine, diethylamine, di-n-propylamine, diisopropylamine or tetra One or a mixture of any two of ethyl ammonium hydroxide; the mass of the SAPO molecular sieve seed crystal having a CHA structure is 0.1 to 5% by mass of the total mass of the initial gel mixture.
  • step b) The initial gel mixture obtained in step a) is charged into a synthesis kettle, sealed, heated to 150 ⁇ 220 ° C and crystallized under autogenous pressure for 0.5 ⁇ 72 h;
  • the solid product is centrifuged, washed with deionized water to neutrality, and dried to obtain a silicoaluminophosphate molecular sieve having a CHA structure.
  • the SAPO molecular sieve having a CHA structure is a mixture of any one or any of SAPO-34, SAPO-44 or SAPO-47;
  • the SAPO molecular sieve seed crystal having a CHA structure is SAPO-34, SAPO-44 or SAPO Any one or a mixture of any of -47.
  • Step a) When SDA is a mixture of hexamethyleneimine and other organic amine/ammonium R in the initial gel mixture, the molar ratio of hexamethyleneimine to R is greater than 2.
  • the silicon source in step a) is a mixture of one or any of silica sol, active silica, orthosilicate, metakaolin; aluminum source is aluminum salt, activated alumina, alkoxy aluminum, partial a mixture of one or any of several kinds of kaolin; the phosphorus source is one or a mixture of any one of orthophosphoric acid, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, an organic phosphide or a phosphorus oxide.
  • Step a) The preferred 3 ⁇ 40/ ⁇ 1 2 3 molar ratio in the initial gel mixture is 26-120, and more preferably the H 2 0/A1 2 0 3 molar ratio is 31-100.
  • Step a) The preferred SDA/A1 2 ⁇ 3 molar ratio in the initial gel mixture is from 2.5 to 4.5.
  • Step a) The mass of the SAPO molecular sieve seed crystal having the CHA structure in the initial gel mixture is preferably 2-5% of the total mass of the initial gel mixture.
  • the order of the ingredients in the step a) is: firstly, the phosphorus source is diluted with a part of the ionized water, and the silicon source and the SAPO molecular sieve seed crystal having the CHA structure are added, and after continuously stirring for a period of time, the SDA is added in the closed system. Stir well, record as mixture A; additionally aluminum source and The deionized water was mixed and stirred, and then added to the mixture A, and stirred uniformly to obtain an initial gel mixture.
  • the synthesis method and composition of the molecular sieve seed crystal in the step a) are not particularly limited, and the SAPO molecular sieve having the CHA structure obtained by the present synthesis method can also be used as a synthetic seed crystal.
  • the crystallization is preferably carried out in the step b): the crystallization temperature is 170 to 210 ° C, and the crystallization time is 1 to 48 h; further preferred conditions are: the crystallization temperature is 180 to 210 ° C, and the crystallization time is 1 to 24 h. Further preferred conditions are: crystallization temperature is 190 ⁇ 21 (TC, crystallization time is l ⁇ 12h.
  • step b) The crystallization process in step b) can be carried out either statically or dynamically.
  • the synthesized SAPO molecular sieve with CHA structure contains an organic amine SDA.
  • the synthesized SAPO molecular sieve with CHA structure can be used as a catalyst for acid-catalyzed reaction after being calcined in air at 400 to 700 °C.
  • the synthesized SAPO molecular sieve having the CHA structure is calcined in air at 400 to 700 ° C, and can be used as a catalyst for the conversion of an oxygenate to an olefin.
  • the synthesized SAPO molecular sieve with CHA structure can be used as a gas adsorbent after being calcined in air at 400 ⁇ 700 °C.
  • the beneficial effects that can be produced by the present invention include:
  • HMI organic amine was used as the structure directing agent.
  • the SAPO molecular sieve with CHA structure was hydrothermally synthesized by using the phosphorus source, silicon source and aluminum source used in the synthesis of conventional molecular sieves.
  • the silica-alumina ratio of the synthesized SAPO molecular sieve can be modulated over a wide range.
  • the SAPO molecular sieve having the CHA structure obtained by the synthesis method of the present invention (suitable proportion of ingredients, specific order of ingredients, and addition of seed crystals to the synthesis system) has the characteristics of high crystallinity and high yield.
  • Example 1 Preparation of SAPO molecular sieve seed crystals having a CHA structure.
  • the amount of ingredients and crystallization conditions are shown in Table 1.
  • the specific compounding process is as follows. 16.4 g of phosphoric acid (H 3 P0 4 mass% 85%) is mixed with 30 g of deionized water, stirred uniformly, and then 2.1 g of silica sol (Si ⁇ 2 mass percent 30%) and 3.7 are added. g as a seed crystal of SAPO-34 molecular sieve raw powder, stirred vigorously for 1 h. 21.5 g of HMI (99% by mass) was added to the previous mixture, sealed and stirred for 30 min to obtain a homogeneous mixture, denoted as A.
  • Example 2 The sample obtained in Example 2 was subjected to XRF elemental analysis, and the result was Al. . 5 . P. 43 Si. . . . 7 .
  • Table 1 Molecular sieve synthesis ingredients and crystallization conditions table * Implementation of SDA aluminum source phosphorus source silicon source H 2 0 seed crystal crystallization crystallization temperature time
  • the aluminum source is pseudo-boehmite (A1 2 0 3 mass percentage 72.5%), the phosphorus source is phosphoric acid (H 3 P0 4 mass percentage 85%), and the silicon source is silica sol (Si0 2 mass) A content of 30%);
  • a: aluminum source is ⁇ -alumina, ⁇ 1 2 0 3 mass% 93%;
  • b: tetraethoxysilane is silicon source;
  • c aluminum source is aluminum isopropoxide;
  • the silicon source is fumed silica (Z0 2 mass percent 93%);
  • e TEA is triethylamine (mass percentage 99.5%);
  • f MO is morpholine (mass percentage 99.5).
  • the synthesized samples were subjected to XRD analysis.
  • the results showed that the products synthesized in Examples 3-17 have the structural characteristics of CHA.
  • the XRD data results are close to those of Table 2, that is, the peak positions and shapes are the same, and the peak relative intensity is ⁇ 10% depending on the synthesis conditions. Fluctuations within the range indicate that the synthesized product has the characteristics of a CHA structure.
  • Example 3 The sample of Example 3 was weighed to 17.8 g. The sample obtained in Example 3 was subjected to XRF elemental analysis, and the fruit was Al 05 oP 0 4oSio.io.
  • Example 4 The sample of Example 4 weighed 18.1 g. The sample obtained in Example 4 was subjected to XRF elemental analysis, and the fruit was Al 0 46P().35Sio.l 9. Example 18
  • Example 21 The seed crystal was changed to SAPO-44, and other conditions were the same as in Example 2.
  • the XRD analysis of the synthesized samples showed that the X D results of the synthesized products were close to those of Table 2, that is, the peak positions and shapes were the same, and the peak intensity of each peak fluctuated within ⁇ 10%, indicating that the synthesized product has the CHA structure.
  • the seed crystal was changed to SAPO-47, and other conditions were the same as in Example 2.
  • the XRD analysis of the synthesized samples showed that the XRD results of the synthesized products were close to those of Table 2, that is, the peak positions and shapes were the same, and the peak intensity of each peak fluctuated within ⁇ 10%, indicating that the synthesized product has the CHA structure.
  • Example 22
  • the XRD analysis of the synthesized samples showed that the XRD results of the synthesized products were close to those of Table 2, that is, the peak positions and shapes were the same, and the relative peak intensities of the peaks fluctuated within ⁇ 10%, indicating that the synthesized products have the CHA structure characteristics. Comparative Example 1 (no seed added)
  • the specific batch ratio, batching process and crystallization conditions were the same as in Example 3, but the addition of SAPO-34 seed crystals was omitted.
  • the synthetic sample weighed 10.7 g.
  • the XRD analysis of the sample showed that the XRD results of the product were close to those of Table 2, that is, the peak position and the peak shape were the same, indicating that the synthesized product had CHA.
  • the characteristics of the structure The relative crystallinity of the sample was 70% as compared with the sample of Example 3 (the crystallinity of the sample of Example 3 was defined as 100%).
  • Relative crystallinity (Ii + + Is lOOQ / oW + 1 2 ' +1 3 ') , 1 2 and 1 3 are the strongest three diffraction peak heights in the XRD spectrum of the sample of Comparative Example 1, 1 2 ' And 1 3 ' is the strongest three diffraction peaks in the XRD spectrum of the sample of Example 3. ) Comparative Example 2 (changing the order of ingredients)
  • the specific proportion of ingredients and crystallization conditions are the same as those in Example 3.
  • the specific batching process is as follows. 16.4g of phosphoric acid (H 3 P0 4 mass % 85%) is mixed with 55g of deionized water, and evenly stirred, 10g of pseudo-boehmite is added. (A1 2 0 3 mass percent 72.5%), stir 30mm to obtain a homogeneous mixture, then add 5.6g silica sol (Si ⁇ 2 mass percent 30%) and 3.7g SAPO-34 molecular sieve as seed crystal The original powder, stirred vigorously for 1 hour. 21.5 g of HMI (99%) was added to the previous mixture, and the mixture was uniformly stirred and stirred for 30 mm, and then transferred to a stainless steel reaction vessel. The synthesis kettle was heated to 200 Q C for 24 h.
  • Example 23 After the crystallization was completed, the solid product was centrifuged, and after drying in lCXTC air, 12.9 g of the original powder was obtained.
  • the XRD analysis of the sample showed that the XRD results of the product were close to those of Table 2, that is, the peak position and the peak shape were the same, indicating that the synthesized product had the CHA structure.
  • the relative crystallinity of the sample was 72% as compared with the sample of Example 3 (the crystallinity of the sample of Example 3 was defined as 100%).
  • Example 10 The sample obtained in Example 10 was used as a propylene adsorbent.
  • the adsorption isotherm of the sample was measured on ASAP2020 by Micromeritics, USA.
  • the adsorbed gas was propylene (99.99%), and propane (99.99%).
  • the sample was air-fired at 600 ° C for 4 hours before the isotherm test, and then further processed in ASAP2020 under the condition that it was extremely low. Under vacuum (5x10-3 mmHg), it was raised to 350 °C at a heating rate of rC/min for 8 hours.
  • the temperature of the gas adsorption was controlled by a constant temperature water bath (accuracy: plus or minus 0.05 Q C), and the adsorption temperature was 298 K.
  • the results showed that the adsorption amount of the sample to propylene and propane was 2.0 and 1.1 mmol/g, respectively (at a pressure of 10 kPa).
  • the sample was vacuumed at room temperature for 30 mm on the ASAP2020 device.
  • the adsorption isotherm was measured again, and the adsorption amount of propylene and propane in the sample was 2.0 and
  • Example 3 The sample obtained in Example 3 was calcined at 600 ° C for 4 hours, and then tableted and crushed to 20 to 40 mesh.
  • the l.Og sample was weighed into a fixed bed reactor for MTO reaction evaluation. The reaction was carried out by a nitrogen gas activation at 55 CTC for 1 hour, followed by cooling to 45 CTC. Methanol was carried by nitrogen with a nitrogen flow rate of 40 ml/min and a methanol weight space velocity of 2.0 h.
  • the reaction product was analyzed by on-line gas chromatography (Vanan 3800, FID detector, capillary column PoraPLOT Q-HT). The results are shown in Table 3. Table 3 sample methanol conversion to olefin' hydrocarbon reaction results

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

提供一种具有CHA结构SAPO分子筛的制备方法及其制备的催化剂。制备方法包括将硅源、铝源、磷源、具有CHA结构的SAPO分子筛晶种、去离子水和SDA混合,形成初始凝胶混合物,其中SDA为六亚甲基亚胺或六亚甲基亚胺与其他有机胺/铵的混合物;将初始凝胶混合物装入合成釜,密闭,升温到150-220°C在自生压力下晶化0.5-72h;待晶化完全后,固体产物经离心分离,洗涤,干燥后得到具有CHA结构的SAPO分子筛。该分子筛经400-700°C空气中焙烧得到催化剂,并可用作气体吸附剂。

Description

一种具有 CHA结构 SAPO分子筛的合成方法及由其制备的催化剂 技术领域
本发明属于 SAPO分子筛领域, 具体涉及一种具有 CHA结构 SAPO 分子筛的合成方法,以及上述材料在含氧化合物转化制低碳烯烃反应中的 催化应用。 背景技术
1984年, 美国联合碳化物公司 JCC)开发了磷酸硅铝系列 SAPO分子 筛 (USP 4440871)。 该分子筛是一类结晶硅铝磷酸盐, 其三维骨架结构由 Ρ02 +、 Α102 Π Si〇2四面体构成。 其中 SAPO-34为类菱沸石结构, 主孔道 由八圆环构成, 孔口为 0.38nmx0.38nm。 SAPO-34分子筛由于其适宜的酸 性和孔道结构,在甲醇制取低碳烯烃 (MTO)反应中呈现出优异的催化性能 而倍受关注。
SAPO-34分子筛一般采用水热合成法, 以水为溶剂,在密闭高压釜内 进行。 合成组分包括铝源、 硅源、 磷源、 模板剂和去离子水。 可选作硅源 的有硅溶胶、活性二氧化硅和正硅酸酯, 铝源有活性氧化铝、拟薄水铝石 和烷氧基铝, 理想的硅源与铝源是硅溶胶和拟薄水铝石; 磷源一般采用 85%的磷酸。常用的模板剂包括四乙基氢氧化铵(TEAOH)、吗啉(MOR)、 哌啶 (Piperidine;)、 异丙胺(i-PrNH2)、 三乙胺(TEA;)、 二乙胺(DEA)、 二丙胺等以及它们的混合物。
六亚甲基亚胺 (ΗΜΓ)在 SAPO 分子筛的合成中, 一般被用作合成 SAPO-35 分子筛的结构导向剂。 中国专利 200710175273.X报道了采用 HMI为模板剂合成 SAPO-35。 初始合成混合物需要在 35-100QC成胶, 合 成配比为 (0.5-1.8) R: (0.05-2) Si02: 1A1203: (0.5-1.5 ) P205: ( 10-150) H20, 于 150-210°C晶化 0.5-500h。 Pastore等报道了以一种层状磷酸铝材 料 kanemite为前驱体,通过向合成体系中添加六亚甲基亚胺和硅源合成了 一种具有 CHA结构的 SAPO分子筛,命名为 CAL-1 (J. Phys. Chem. C 2007, 111, 3116-3129)。 CAL-1的合成初始凝胶硅铝比只能在较窄的范围内调变 ( SiO2/Al2O3=0.8-l .6),对 CAL-1原粉进行 13C MAS NMR和 FT-IR表征, 结果显示分子筛样品中存在六亚甲基亚胺和正丁胺(制备前躯体 kanemite 的结构导向剂) 两种有机胺, 也就是说, CAL-1 的合成中, HMI和正丁 胺同时起结构导向作用。
SAPO-35分子筛属于 LEV结构, 其由双六元环按照 AABCCABBC的 顺序堆积而成。 CHA结构是由双六元环按照 AABBCC顺序堆积而成。可 以看到,两者在结构上存在较大的区别。通常 SAPO分子筛的合成需要有 机胺 /铵作为结构导向剂, 一种有机胺可以在不同的条件下合成多种结构 的分子筛, 同样, 一种分子筛可以使用多种不同的有机胺合成。但是到目 前为止,有机胺的结构和其所导向生成的分子筛结构之间的关联并不是很 清楚。虽然较多的研究者在这方面进行了大量的研究和尝试, 并且也取得 了一些进步,但要想做到结构导向剂和其所生成的分子筛结构之间的预测 仍是非常困难的。绝大多数分子筛合成所需要的有机胺都是通过实验被发 现的。 发明内容
本发明的目的在于提供一种具有 CHA结构 SAPO分子筛的合成方 法。
本发明的又一目的在于提供一种通过上述方法合成的具有 CHA结构 SAPO 分子筛及由其制备的酸催化反应催化剂或含氧化合物转化制烯烃 反应催化剂。
本发明所要解决的技术问题是直接以六亚甲基亚胺 (以下简称 ΗΜΓ) 为结构导向剂, 以常规分子筛合成所采用的磷源、硅源和铝源为原料, 在 水热条件下合成具有 CHA结构的 SAPO分子筛。 本发明人通过实验研究 发现, 以 HMI作为合成体系的主体结构导向剂, 在适宜的配料顺序和少 量 SAPO晶种存在的情况下,可以合成高结晶度的具有 CHA结构的 SAPO 分子筛。
本发明的特点在于制备过程如下- a) 将硅源、 铝源、 磷源、 具有 CHA结构的 SAPO分子筛晶种、 去离 子水和 SDA混合, 形成具有如下摩尔配比的初始凝胶混合物: Si02/Al203 =0.01 - 1.5;
P2O5/Al2O3 = 0.5 ~ 1.5;
H20/A1203 = 21 - 150;
SDA/Al2O3 = 2.0〜 5.0;
其中所述 SDA为六亚甲基亚胺或六亚甲基亚胺与其他有机胺 /铵 R的 混合物, R为三乙胺、 吗啉、 二乙胺、 二正丙胺、 二异丙胺或四乙基氢氧 化铵中的一种或任意两者的混合物; 具有 CHA结构的 SAPO分子筛晶种 的质量占初始凝胶混合物总质量的 0.1-5%。
b) 将步骤 a ) 所得初始凝胶混合物装入合成釜, 密闭, 升温到 150〜220°C在自生压力下晶化 0.5〜72h;
c) 待晶化完全后, 固体产物经离心分离, 用去离子水洗涤至中性, 干燥后即得到具有 CHA结构的磷酸硅铝分子筛。
其中, 具有 CHA 结构的 SAPO 分子筛为 SAPO-34、 SAPO-44 或 SAPO-47中的任意一种或任意几种的混合物; 具有 CHA结构的 SAPO分 子筛晶种为 SAPO-34、 SAPO-44或 SAPO-47中的任意一种或任意几种的 混合物。
步骤 a)初始凝胶混合物中 SDA为六亚甲基亚胺与其他有机胺 /铵 R的 混合物时, 六亚甲基亚胺与 R的摩尔比大于 2。
步骤 a)中的硅源为硅溶胶、活性二氧化硅、 正硅酸酯、偏高岭土中的 一种或任意几种的混合物; 铝源为铝盐、 活性氧化铝、 烷氧基铝、 偏高岭 土中的一种或任意几种的混合物;磷源为正磷酸、磷酸氢铵、磷酸二氢铵、 有机磷化物或磷氧化物中的一种或任意几种的混合物。
步骤 a) 初始凝胶混合物中优选的 ¾0/Α1203摩尔比为 26-120, 更优 选的 H20/A1203摩尔比为 31-100。
步骤 a) 初始凝胶混合物中优选的 SDA/A123的摩尔比为 2.5-4.5。 步骤 a) 初始凝胶混合物中具有 CHA结构的 SAPO分子筛晶种的质 量占初始凝胶混合物总质量优选 2-5%。
优选地, 所述步骤 a)中的配料顺序为, 首先将磷源用去部分离子水稀 释, 加入硅源和具有 CHA结构的 SAPO分子筛晶种, 连续搅拌一段时间 后, 加入 SDA, 在密闭体系中搅拌均匀, 记为混合物 A; 另外将铝源和 去离子水混合并搅匀后加入到混合物 A 中, 搅拌均匀, 得到初始凝胶混 合物。
所述步骤 a)中分子筛晶种的合成方法和组成不做特别限定,采用本合 成方法得到的具有 CHA结构的 SAPO分子筛也同样可以用作合成的晶 种。
步骤 b)中的晶化优选条件为:晶化温度 170~210°C,晶化时间 1 ~ 48h; 进一步的优选条件为: 晶化温度为 180~210°C, 晶化时间为 l ~ 24h; 再进 一步的优选条件为: 晶化温度为 190~21(TC, 晶化时间为 l ~ 12h。
步骤 b)中的晶化过程可以在静态进行, 也可以在动态进行。
合成的具有 CHA结构的 SAPO分子筛中含有有机胺 SDA。
合成的具有 CHA结构的 SAPO分子筛经 400〜700°C空气中焙烧后, 可用做酸催化反应的催化剂。
合成的具有 CHA结构的 SAPO分子筛经 400〜700°C空气中焙烧后, 可用做含氧化合物转化制烯烃反应的催化剂。
合成的具有 CHA结构的 SAPO分子筛经 400 ~ 700°C空气中焙烧后, 可用做气体吸附剂。 本发明能产生的有益效果包括:
( 1 ) 首次采用 HMI有机胺作为结构导向剂, 以常规分子筛合成所采 用的磷源、 硅源和铝源为原料, 水热合成了具有 CHA 结构的 SAPO分子筛。
(2) 合成的 SAPO分子筛的硅铝比可以在较宽范围内调变。
(3 ) 采用本发明合成方法(适宜的配料比例、特定的配料顺序并向合 成体系中添加晶种) 获得的具有 CHA结构的 SAPO分子筛, 具 有结晶度高, 收率高的特点。 具体实施方式
下面通过实施例详述本发明, 但本发明并不局限于这些实施例。 实施例 1 具有 CHA结构的 SAPO分子筛晶种的制备。
以二乙胺 (DEA)作为有机模板剂, 在摩尔配比为
1.0P2O5: 1.0Al2O3:0.3SiO2:2.0DEA:50H2O的体系下, 于 200 °C转动晶化 48 h后, 经离心、 洗搽和干燥而得到。
实施例 2
配料用量和晶化条件见表 1。具体配料过程如下,将 16.4g磷酸 (H3P04 质量百分含量 85%) 与 30g去离子水混合, 搅拌均匀, 然后加入 2.1g硅 溶胶(Si〇2质量百分含量 30%)和 3.7g作为晶种的 SAPO-34分子筛原粉, 强烈搅拌 lh。将 21.5gHMI (质量百分含量 99%)加入到前面的混合物中, 密闭并搅拌 30min以获得一个均匀的混合物, 记为 A。另外将 10g拟薄水 铝石 (A1203质量百分含量 72.5%) 和 27g去离子水混合搅匀, 加入到混 合物 A中, 密闭搅拌 30min使其混合均匀后, 将凝胶转移到不锈钢反应 釜中。 合成体系各组分的摩尔配比为 3.0HMI: 0.15SiO2: 1A1203:1P205: 将合成釜升温到 200QC动态下晶化 24h。 晶化结束后, 将固体产物离 心, 洗搽, 在 10CTC空气中烘干后, 得原粉。 样品做 XRD分析, 结果表 明合成产物具有 CHA结构的特征, XRD数据见表 2。
对实施例 2所得样品进行 XRF元素分析, 结果为 Al。.5。P。.43Si。.。7。 表 1 分子筛合成配料及晶化条件表 * 实 施 SDA 铝源 磷源 硅源 H20 晶种 晶化 晶化 例 温度 时间
2 HMI 21 ■5g lOg 16.4g 2- lg 57g 3.7g 200°C 24h
3 HMI 21 ■5g 10g 16.4g 5.6g 55g 3-7g 200°C 24h
4 HMI 21 ■5g lOg 16.4g 12.6g 50g 3.7g 200°C 24h
5 HMI 21 ■5g lOg 16.4g 18.2g 46g 3-7g 190°C 12h
6 HMI 21 ■5g 7.8g a 16.4g 5.6g b 55g 3.7g 200°C 24h
7 HMI 21 ■5g 20g c 16.4g 1.8g d 55g 3-7g 200°C 24h
8 HMI 21 ■5g lOg 16.4g 5.6g 118g 3.7g 200°C 24h
9 HMI 21 ■5g lOg 16.4g 5.6g 29.5g 3.9g 220°C 0.5h
10 HMI 21.5g lOg 16.4g 5.6g 183g 3.0g 200°C 24h
11 HMI 21.5g 10g 12.3g 5.6g 55g 3-7g 200°C 24h
12 HMI 21.5g 10g 20.5g 2- lg 55g 3-7g 180°C 24h
13 HMI 17.5g lOg 16.4g 2- lg 55g 3.7g 210°C lh
14 HMI 32.5g 10g 16.4g 5.6g 55g 3-7g 200°C 12h
15 HMI 21.5g lOg 16.4g 5.6g 55g 3.7g 150°C 72h
16 HMI 21.5g lOg 16.4g 5.6g 55g 3.0g 210°C lOh
17 HMI 21.5g 10g 16.4g 5.6g 55g 2.4g 170°C 48h
18 HMI 17.5g TEA7.4g e lOg 16.4g 5.6g 55g 3.7g 200°C 24h
19 HMI 14.3g 10g 16.4g 5.6g 55g 3-7g 200°C 24h
MO 3.6g r
*: 铝源为拟薄水铝石 (A1203质量百分含量 72.5%), 磷源为磷酸(H3P04质量百分含 量 85%), 硅源为硅溶胶 (Si02质量百分含量 30%) ; a: 铝源为 γ-氧化铝, Α1203质量 百分含量 93%; b: 四乙氧基硅烷为硅源; c: 铝源为异丙醇铝; d: 硅源为发烟二氧化 硅 (Si02质量百分含量 93%) ; e: TEA为三乙胺 (质量百分含量 99.5%) ; f: MO 为吗啉 (质量百分含量 99.5 )。 表 2实施例 2样品的 XRD结果
Figure imgf000007_0001
1 9.3839 9.42484 99.06
2 12.8501 6.8893 18.91
3 15.9553 5.55484 62.40
4 17.4034 5.09575 10.86
5 18.8856 4.69902 11.54
6 20.5578 4.32043 100
7 21.7095 4.09376 22.25
8 22.3866 3.97146 5.30
9 22.9278 3.87891 11.81
10 24.478 3.63666 62.30
11 25.917 3.43792 29.34
12 27.6348 3.228 9.92
29.4733 3.03069 30.2097 2.95847 19.87
15 30.5999 2.92163 53.69
16 32.9821 2.71585 3.65
17 34.5379 2.597 4.06
18 35.5404 2.52601 9.06
19 39.6681 2.27216 3.17
20 42.2638 2.13843 3.24
21 43.338 2.08788 4.53
22 47.7474 1.90486 4.89
23 48.517 1.87642 6.24
24 50.235 1.81471 9.2
25 53.4032 1.71569 3.85
26 54.0128 1.69776 2.72
27 56.103 1.63937 4.61
28 59.3137 1.55677 3.01 实施例 3-17
具体配料比例和晶化条件见表 1, 具体配料过程同实施例 2。
合成样品做 XRD分析, 结果表明实施例 3-17合成的产物具有 CHA 的结构特征, XRD数据结果与表 2接近, 即峰位置和形状相同, 依合成 条件的变化峰相对峰强度在 ±10%范围内波动,表明合成产物具有 CHA结 构的特征。
实施例 3样品称重为 17.8g。对实施例 3所得样品进行 XRF元素分析, 吉果为 Al05oP0 4oSio.i o。
实施例 4样品称重为 18.1g。对实施例 4所得样品进行 XRF元素分析, 吉果为 Al0 46P().35Sio.l 9。 实施例 18
具体配料比例和晶化条件见表 1, 具体配料过程同实施例 2。 只将有 机胺变为 HMI和三乙胺的混合物, 另外, 合成过程在静态进行。 合成样 品做 XRD分析, 结果表明合成产物 XRD结果与表 2接近, 即峰位置和 形状相同, 各峰相对峰强度在 ±10%范围内波动, 表明合成产物具有 CHA 结构的特征。 实施例 19
具体配料比例和晶化条件见表 1, 具体配料过程同实施例 2。 只将有 机胺变为 HMI和吗啉的混合物。合成样品做 XRD分析, 结果表明合成产 物 XRD结果与表 2接近, 即峰位置和形状相同, 各峰相对峰强度在 ±10% 范围内波动, 表明合成产物具有 CHA结构的特征。 实施例 20
将晶种换成 SAPO-44, 其他条件同实施例 2。合成样品做 XRD分析, 结果表明合成产物 X D结果与表 2接近, 即峰位置和形状相同, 各峰相 对峰强度在 ±10%范围内波动, 表明合成产物具有 CHA结构的特征。 实施例 21
将晶种换成 SAPO-47, 其他条件同实施例 2。合成样品做 XRD分析, 结果表明合成产物 XRD结果与表 2接近, 即峰位置和形状相同, 各峰相 对峰强度在 ±10%范围内波动, 表明合成产物具有 CHA结构的特征。 实施例 22
将晶种换成质量比为 SAPO-34: SAPO-44: SAPO-47=l :1 :1的混合物, 其他条件同实施例 2。合成样品做 XRD分析, 结果表明合成产物 XRD结 果与表 2接近, 即峰位置和形状相同, 各峰相对峰强度在 ±10%范围内波 动, 表明合成产物具有 CHA结构的特征。 对比例 1 (无晶种添加)
具体配料比例、 配料过程和晶化条件同实施例 3, 但省去 SAPO-34 晶种的添加。 合成样品称重为 10.7g。 样品经 XRD分析, 结果表明产物 XRD结果与表 2接近, 即峰位置和峰形状相同, 表明合成产物具有 CHA 结构的特征。 样品的相对结晶度与实施例 3 样品相比为 70% (实施例 3 样品结晶度定义为 100%)。
相对结晶度 =(Ii + + Is lOOQ/oW + 12' +13') 、 12禾口 13为对比例 1样 品 XRD谱图中最强的三个衍射峰高 , 、 12' 和 13' 为实施例 3样品 XRD谱图中最强的三个衍射峰高。 ) 对比例 2 (改变配料顺序)
具体配料比例和晶化条件同实施例 3, 具体配料过程如下, 将 16.4g 磷酸(H3P04质量百分含量 85%)与 55g去离子水混合, 搅拌均匀后加入 10g拟薄水铝石 (A1203质量百分含量 72.5%), 搅拌 30mm以获得一个均 匀的混合物, 然后加入 5.6g硅溶胶 (Si〇2质量百分含量 30%) 和 3.7g作 为晶种的 SAPO-34分子筛原粉, 强烈搅拌 lh。 将 21.5gHMI (99%)加入 到前面的混合物中,密闭搅拌 30mm使其混合均匀后,将凝胶转移到不锈 钢反应釜中。 将合成釜升温到 200QC动态下晶化 24h。
晶化结束后, 将固体产物离心, 職, 在 lCXTC空气中烘干后, 得原 粉 12.9g。 样品做 XRD分析, 结果表明产物 XRD结果与表 2接近, 即峰 位置和峰形状相同, 表明合成产物具有 CHA结构的特征。 样品的相对结 晶度与实施例 3样品相比为 72% (实施例 3样品结晶度定义为 100%)。 实施例 23
将实施例 10得到的样品用作丙烯吸附剂。样品的吸附等温线是在美国 Micromeritics 公司的 ASAP2020 上进行测定。吸附气体为丙烯(99.99%)、 和丙烷(99.99%)。为了避免分子筛中由于物理吸附的水对吸附测试的影 响, 样品在进行等温线测试前, 在 600°C下通入空气焙烧 4小时, 然后在 ASAP2020 中进行进一步处理, 处理条件为, 在极低真空度 (5x10-3 mmHg) 下, 以 rC/min 的升温速率升至 350°C, 保持 8小时。 用恒温水浴 (精度: 正负 0.05QC)控制气体吸附的温度, 吸附温度 298K。 结果显示样 品对丙烯和丙烷的吸附量分别为 2.0和 l .lmmol/g (压力为 lOlkPa时)。 以此 计算得到的吸附选择性为丙烯 /丙烷 =1.8。
将吸附实验后的样品在 ASAP2020装置上室温抽真空处理 30mm后,进 行再次吸附等温线测定, 样品对丙烯和丙烷的吸附量分别为 2.0和
1.05mmol/g (压力为 lOlkPa时)。 说明样品具有良好的再生性能, 可以在非 常温和的条件下再生。 实施例 24
将实施例 3得到的样品于 600°C下通入空气焙烧 4小时,然后压片、 破碎至 20〜40目。 称取 l .Og样品装入固定床反应器, 进行 MTO反应 评价。 在 55CTC下通氮气活化 1小时, 然后降温至 45CTC进行反应。 甲醇 由氮气携带, 氮气流速为 40ml/min, 甲醇重量空速 2.0h— 反应产物由 在线气相色谱进行分析(Vanan3800, FID检测器, 毛细管柱 PoraPLOT Q-HT) 。 结果示于表 3。 表 3样品的甲醇转化制烯'烃反应结果
寿命 选择性(质量%) *
样品
(mill) CH4 C2H C2 C3H6 C3H8 C4+ C5+ C2H4+C3H0 实施
120 2.3 43.8 1.0 38.7 2.0 10.1 2.1 82.5 例 3
* 100%甲醇转化率时最高 (乙烯+丙烯)选择性

Claims

权 利 要 求
1、 一种具有 CHA结构 SAPO分子筛的合成方法, 其特征在于制备过 程如下:
a) 将硅源、 铝源、 磷源、 具有 CHA结构的 SAPO分子筛晶种、 去离 子水和 SDA混合, 形成具有如下摩尔配比的初始凝胶混合物:
Si02/Al203 =0.01 - 1.5;
Ρ2Ο5/Α12Ο3 = 0.5 ~ 1.5;
H20/A1203 = 21 - 150;
SDA/Al2O3 = 2.0 ~ 5.0;
其中所述 SDA为六亚甲基亚胺或六亚甲基亚胺与其他有机胺 /铵 R的 混合物, R为三乙胺、 吗啉、 二乙胺、 二正丙胺、 二异丙胺或四乙基氢氧 化铵中的一种或任意两者的混合物; 具有 CHA结构的 SAPO分子筛晶种 的质量占初始凝胶混合物总质量的 0.1-5%;
b) 将步骤 a ) 所得初始凝胶混合物装入合成釜, 密闭, 升温到 150〜220°C在自生压力下晶化 0.5〜72h;
c) 待晶化完全后, 固体产物经离心分离, 用去离子水洗涤至中性, 干燥后即得到具有 CHA结构的 SAPO分子筛。
2、 按照权利要求 1所述的方法, 其特征在于, 所述步骤 a)初始凝胶混合 物中 SDA为六亚甲基亚胺与其他有机胺 /铵 R的混合物, 六亚甲基亚 胺与 R的摩尔比大于 2。
3、 按照权利要求 1所述的方法, 其特征在于, 所述步骤 a)中的硅源为硅 溶胶、 活性二氧化硅、 正硅酸酯、 偏高岭土中的一种或任意几种的混 合物; 铝源为铝盐、 活性氧化铝、 烷氧基铝、 偏高岭土中的一种或任 意几种的混合物; 磷源为正磷酸、 磷酸氢铵、 磷酸二氢铵、 有机磷化 物或磷氧化物中的一种或任意几种的混合物。
4、 按照权利要求 1所述的方法,其特征在于,所述步骤 a)初始凝胶混合 物中 H20/A1203的摩尔比为 26-120, 优选地为 31-100。
5、 按照权利要求 1所述的方法,其特征在于,所述步骤 a)初始凝胶混合 物中 SDA与 A1203的摩尔比 SDA/Al203=2.5-4.5。 、 按照权利要求 1所述的方法,其特征在于,所述步骤 a)初始凝胶混合 物中具有 CHA结构的 SAPO分子筛晶种的质量占初始凝胶混合物总 质量的 2-5%。
、 按照权利要求 1所述的方法, 其特征在于, 所述步骤 a)中的配料顺序 为,首先将磷源用去部分离子水稀释,加入硅源和有 CHA结构的 SAPO 分子筛晶种, 连续搅拌一段时间后, 加入 SDA, 在密闭体系中搅拌均 匀, 记为混合物 A; 另外将铝源和去离子水混合并搅匀后加入到混合 物 A中, 搅拌均匀, 得到初始凝胶混合物。
、 按照权利要求 1所述的方法, 其特征在于, 所述步骤 b)中的晶化温度 为 170〜210°C, 晶化时间为 l ~ 48h; 优选地, 晶化温度为 180〜210°C, 晶化时间为 l ~ 24h; 更优选地, 晶化温度为 190〜210°C, 晶化时间为 1 ~ 12h。
、 按照权利要求 1所述的方法, 其特征在于, 所述步骤 b)中的晶化过程 在静态进行。
、 按照权利要求 1所述的方法,其特征在于,所述步骤 b)中的晶化过 程在动态进行。
1、 一种具有 CHA结构的 SAPO分子筛, 其特征在于, 分子筛中含有 有机胺, 根据权利要求 1-10任一项所述的方法合成得到。
、 一种酸催化反应的催化剂, 其特征在于, 根据权利要求 1-10所述 方法合成的具有 CHA结构的 SAPO分子筛经 400〜 700 °C空气中焙烧 得到。
3、 一种含氧化合物转化制烯烃反应的催化剂, 其特征在于, 根据权利 要求 1-10所述方法合成的具有 CHA结构的 SAPO分子筛经 400 〜 70CTC空气中焙烧得到。
、 一种气体吸附剂, 其特征在于, 根据权利要求 1-10所述方法合成 的具有 CHA结构的 SAPO分子筛经 400 ~ 700°C空气中焙烧得到。
PCT/CN2012/082007 2012-09-26 2012-09-26 一种具有cha结构sapo分子筛的合成方法及由其制备的催化剂 WO2014047805A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/082007 WO2014047805A1 (zh) 2012-09-26 2012-09-26 一种具有cha结构sapo分子筛的合成方法及由其制备的催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/082007 WO2014047805A1 (zh) 2012-09-26 2012-09-26 一种具有cha结构sapo分子筛的合成方法及由其制备的催化剂

Publications (1)

Publication Number Publication Date
WO2014047805A1 true WO2014047805A1 (zh) 2014-04-03

Family

ID=50386795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082007 WO2014047805A1 (zh) 2012-09-26 2012-09-26 一种具有cha结构sapo分子筛的合成方法及由其制备的催化剂

Country Status (1)

Country Link
WO (1) WO2014047805A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417811A (zh) * 2007-10-25 2009-04-29 中国石油化工股份有限公司 以双模板剂合成sapo-35分子筛的方法
CN102557072A (zh) * 2010-12-29 2012-07-11 中国科学院大连化学物理研究所 Sapo-34分子筛的溶剂热合成方法和由其制备的催化剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417811A (zh) * 2007-10-25 2009-04-29 中国石油化工股份有限公司 以双模板剂合成sapo-35分子筛的方法
CN102557072A (zh) * 2010-12-29 2012-07-11 中国科学院大连化学物理研究所 Sapo-34分子筛的溶剂热合成方法和由其制备的催化剂

Similar Documents

Publication Publication Date Title
US7622624B2 (en) Crystalline intergrowth material, its synthesis and its use in the conversion of oxygenates to olefins
CN107032363B (zh) 一类新型sapo分子筛及其合成方法
US9579637B2 (en) SAPO-34 molecular sieve having both micropores and mesopores and synthesis methods thereof
Martínez-Franco et al. Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size
US7785554B2 (en) Process for manufacture of silicoaluminophosphate molecular sieves
Álvaro-Muñoz et al. Microwave-assisted synthesis of plate-like SAPO-34 nanocrystals with increased catalyst lifetime in the methanol-to-olefin reaction
Sadeghpour et al. High-temperature and short-time hydrothermal fabrication of nanostructured ZSM-5 catalyst with suitable pore geometry and strong intrinsic acidity used in methanol to light olefins conversion
JP5982064B2 (ja) Sapo−34分子篩及びその合成方法
WO2008022532A1 (fr) Procédé destiné à synthétiser rapidement un tamis moléculaire de silicoaluminophosphate sapo-34
WO2013181833A1 (zh) 具有rho骨架结构的金属磷酸硅铝分子筛及其制备方法
WO2012071889A1 (zh) 一种低硅sapo-34分子筛的合成方法
CN103663491B (zh) 一种具有cha结构sapo分子筛的合成方法及由其制备的催化剂
CN106745057B (zh) 一种无粘结剂的aei/mfi共晶硅铝分子筛及合成方法和应用
US20060127296A1 (en) Synthesis of silicoaluminophosphate molecular sieves
WO2018023365A1 (zh) 纳米sapo-34分子筛的合成方法、sapo-34分子筛催化剂及其应用
JP6976436B2 (ja) 分子篩触媒及びその製造方法及び応用
US10427145B2 (en) High charge density Metalloaluminophosphosilicate molecular sieves MeAPSO-82
CN106430229B (zh) 以介孔材料为间接模板剂制备多级结构分子筛的方法
WO2014089740A1 (zh) 一种以二甘醇胺为模板剂的sapo-34分子筛及其合成方法
WO2003057627A1 (en) Silicoaluminophosphate molecular sieves
US7622417B2 (en) Synthesis and use of AEI structure-type molecular sieves
CN106276964B (zh) 一种晶内含磷的zsm-5分子筛及其制备方法
WO2012071891A1 (zh) 一种小晶粒sapo-34分子筛的合成方法
WO2014089738A1 (zh) 一种以n-甲基二乙醇胺为模板剂的sapo-34分子筛及其合成方法
WO2014047805A1 (zh) 一种具有cha结构sapo分子筛的合成方法及由其制备的催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885615

Country of ref document: EP

Kind code of ref document: A1