WO2014089740A1 - 一种以二甘醇胺为模板剂的sapo-34分子筛及其合成方法 - Google Patents

一种以二甘醇胺为模板剂的sapo-34分子筛及其合成方法 Download PDF

Info

Publication number
WO2014089740A1
WO2014089740A1 PCT/CN2012/086280 CN2012086280W WO2014089740A1 WO 2014089740 A1 WO2014089740 A1 WO 2014089740A1 CN 2012086280 W CN2012086280 W CN 2012086280W WO 2014089740 A1 WO2014089740 A1 WO 2014089740A1
Authority
WO
WIPO (PCT)
Prior art keywords
sapo
molecular sieve
diglycolamine
dga
zeolite
Prior art date
Application number
PCT/CN2012/086280
Other languages
English (en)
French (fr)
Inventor
王德花
田鹏
刘中民
樊栋
张莹
苏雄
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2012396750A priority Critical patent/AU2012396750B2/en
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to KR1020157015304A priority patent/KR101920959B1/ko
Priority to JP2015546792A priority patent/JP6076496B2/ja
Priority to PCT/CN2012/086280 priority patent/WO2014089740A1/zh
Priority to BR112015013359-2A priority patent/BR112015013359B1/pt
Priority to EA201591081A priority patent/EA025394B1/ru
Priority to SG11201504127XA priority patent/SG11201504127XA/en
Priority to DK12890022.2T priority patent/DK2930148T3/da
Priority to US14/647,973 priority patent/US9611150B2/en
Priority to MYPI2015701817A priority patent/MY171805A/en
Priority to EP12890022.2A priority patent/EP2930148B1/en
Publication of WO2014089740A1 publication Critical patent/WO2014089740A1/zh
Priority to ZA2015/04518A priority patent/ZA201504518B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size

Definitions

  • SAPO-34 molecular sieve with diglycolamine as template and its synthesis method
  • the invention belongs to the field of SAPO molecular sieves, and particularly relates to a SAPO-34 molecular sieve and a synthetic method thereof. Background technique
  • UCC developed a new type of silicoaluminophosphate series molecular sieve (US4440871, US4499327) - SAPO-n molecular sieve, which uses organic amine as template, hydrated alumina, phosphoric acid, silica sol as aluminum
  • the source, the phosphorus source and the silicon source are first obtained by hydrothermal crystallization to obtain an organic amine/silicosilicate composite having a microporous structure, followed by calcination to remove a templating agent (organic amine).
  • the silica-phosphorus aluminum molecular sieve SAPO-34 with CHA topology has suitable pore structure, suitable protonic acid properties, large specific surface area, good adsorption performance, good thermal stability and hydrothermal stability. It is such that it exhibits excellent catalytic activity and selectivity in the methanol to olefin (MTO) reaction.
  • MTO methanol to olefin
  • SAPO-34 is a chabazite type (CHA) molecular sieve having an eight-membered ring ellipsoidal cage and a three-dimensional cross-cell structure formed by a double six-membered ring stacked in an ABC manner, and having a pore diameter of 0.38 x 0.38 nm, belonging to a small pore molecular sieve. Its spatial symmetry group is R3m and belongs to the trigonal system (J. Phys. Chem., 1990, 94: 2730). SAPO-34 is composed of four elements of Si, Al, P and O, and its composition can be varied within a certain range, generally n(Si) ⁇ n(P) ⁇ n(Ai;).
  • SAPO-34 molecular sieves are generally hydrothermally synthesized using water as a solvent in a closed autoclave.
  • Optional silicon source is silica sol, active silica and orthosilicate.
  • the aluminum source is activated alumina, pseudoboehmite and alkoxy aluminum.
  • the ideal source of silicon and aluminum is silica sol and pseudo-thin water.
  • Aluminite; Phosphorus source generally uses 85% phosphoric acid.
  • Common templating agents include tetraethylammonium hydroxide (TEAOH), morpholine (MOR), piperidine (Piperidine:), isopropylamine (i-PrNH2), triethylamine (TEA:), diethylamine (DEA). , dipropylamine, etc. and mixtures thereof.
  • TEAOH tetraethylammonium hydroxide
  • MOR morpholine
  • piperidine Piperidine
  • the invention firstly uses diglycolamine as a structure-directing agent to synthesize a pure phase under hydrothermal conditions.
  • SAPO-34 molecular sieve The prepared SAPO-34 molecular sieve exhibits excellent catalytic performance and gas adsorption separation performance in the catalytic reaction. Summary of the invention
  • the X-ray diffraction analysis of the molecular sieve had the diffraction peaks shown in Table 2.
  • Another object of the present invention is to provide a method for synthesizing SAPO-34 molecular sieves.
  • the technical problem to be solved by the invention is that diglycolamine is used as a structure-directing agent, and the pure phase SAPO-34 is synthesized under the condition of hydrothermal or solvothermal conditions by using the phosphorus source, the silicon source and the aluminum source used in the synthesis of the conventional molecular sieve as raw materials.
  • Molecular sieves are used as a structure-directing agent, and the pure phase SAPO-34 is synthesized under the condition of hydrothermal or solvothermal conditions by using the phosphorus source, the silicon source and the aluminum source used in the synthesis of the conventional molecular sieve as raw materials.
  • Si0 2 /Al 2 0 3 0.05 ⁇ 2.5 ;
  • DGA/A1 2 0 3 2.5 30; DGA is diglycolamine;
  • step b) The initial gel mixture obtained in step a) is charged into a high pressure synthesis kettle, sealed, and heated to
  • the silicon source in the step a) is a mixture of silicon sol, active silica, orthosilicate, metakaolin or any combination thereof;
  • the aluminum source is aluminum salt, activated alumina, alkoxy aluminum And one or a mixture of any of the metakaolin;
  • the phosphorus source is one or a mixture of any one of orthophosphoric acid, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, an organic phosphide or a phosphorus oxide.
  • step b) The crystallization process in step b) can be carried out either statically or dynamically.
  • the molar ratio of SiO 2 /Al 2 0 3 in the initial gel mixture in the step a) is preferably from 0.15 to 2.0.
  • the molar ratio of P 2 0 5 /A1 2 0 3 in the initial gel mixture in the step a) is preferably 0.8 to 1.5.
  • the molar ratio of H 2 0/A1 2 0 3 in the initial gel mixture in the step a) is preferably from 10 to 150.
  • the molar ratio of DGA/A1 2 0 3 in the initial gel mixture in the step a) is preferably 5.5-16.
  • the invention further relates to a catalyst for acid-catalyzed reaction, which is obtained by calcining 400-70 CTC air through the SAPO-34 molecular sieve described above or the SAPO-34 molecular sieve synthesized according to the above method.
  • the present invention also relates to a catalyst for the conversion of an oxygenate to an olefin which is obtained by calcining the above-mentioned SAPO-34 molecular sieve or SAPO-34 molecular sieve synthesized according to the above method in 400 to 70 CTC air.
  • the present invention also relates to a (: 13 ⁇ 4/(:0 2 adsorption separation material, which is
  • SAPO-34 molecular sieve or SAPO-34 molecular sieve synthesized according to the above method is obtained by calcination in air at 400 to 700 °C.
  • the prepared SAPO-34 molecular sieve exhibits excellent catalytic performance in the conversion of methanol or dimethyl ether to a lower olefin.
  • Figure 1 is a scanning electron micrograph (SEM) of the product synthesized in Example 1.
  • SEM scanning electron micrograph
  • XRF X-ray fluorescence analyzer
  • the SEM morphology analysis was performed using a KYKY-AMRAY-1000B scanning electron microscope from the Scientific Instrument Factory of the Chinese Academy of Sciences.
  • Carbon nuclear magnetic resonance ( 13 C MAS NMR) analysis was performed using the Infinity plus 400WB solid-state nuclear magnetic spectrum analyzer from Varian, USA, using a BBO MAS probe with an operating magnetic field strength of 9.4T.
  • the CHN elemental analysis was carried out using a Vario EL Cube elemental analyzer made in Germany.
  • Example 1 The invention is described in detail below by way of examples, but the invention is not limited to the examples.
  • Example 1 The invention is described in detail below by way of examples, but the invention is not limited to the examples.
  • the molar ratio of each raw material, the crystallization conditions and the composition of the sample elements are shown in Table 1.
  • the specific batching process is as follows. 14 g of pseudoboehmite (A1 2 0 3 mass percent 72.5%) and 79.2 g of deionized water are uniformly mixed, and then 5.96 g of silica sol (Si ⁇ 2 mass percentage 30.24%) is added. After stirring, 23.06 g of phosphoric acid (H 3 P0 4 mass% 85%) was added dropwise. 31.5 g of diglycolamine (abbreviated as DGA, 99% by mass) was added to the previous mixture, and after stirring, the obtained gel was transferred to a non-leaked reaction vessel.
  • the molar ratio of each component of the synthesis system was 3.0 DGA: 0.30 SiO 2 : 1 Al 2 O 3 : lP 2 O 5 : 50H 2 O.
  • Example 1 The original powder sample of Example 1 was subjected to CHN elemental analysis, and the CHN elemental analysis result was normalized to the inorganic element composition obtained by X measurement to obtain the composition of the molecular sieve raw powder.
  • Table 1 Molecular sieve synthesis ingredients and crystallization conditions table *
  • Example 21 The sample obtained in Example 1 was subjected to air baking at 550 ° C for 4 hours, and then tableted and crushed to 20 to 40 mesh. A 5.0 g sample was weighed and added to a kettle reactor containing 30 ml of ethanol to carry out an ethanol dehydration reaction. The reaction temperature was set at 150 ° C, and the reaction was carried out under stirring. The reaction results showed that the conversion of ethanol was 92%, and the selectivity of diethyl ether in the product was 92%.
  • Example 21 Example 21
  • Example 1 The sample obtained in Example 1 was air-fired at 55 CTC for 4 hours, and then compressed. Broken to 20 ⁇ 40 mesh.
  • the l.Og sample was weighed into a fixed bed reactor for MTO reaction evaluation. The reaction was carried out by activating nitrogen gas at 550 ° C for 1 hour and then cooling to 450 ° C. The methanol was carried by nitrogen, the nitrogen flow rate was 40 ml/mm, and the methanol weight space velocity was 4.0 h.
  • the reaction product was analyzed by on-line gas chromatography (Vanan 3800, FID detector, capillary column PoraPLOT Q-HT). The results are shown in Table 3. Table 3 sample methanol conversion to olefin reaction results
  • Example 10 The sample obtained in Example 10 was calcined at 550 ° C for 4 hours.
  • the adsorption isotherms of C0 2 and CH 4 were measured by a Micrometrics ASAP 2020 apparatus.
  • the sample was degassed and pretreated for 4 hours under vacuum at 35 CTC.
  • the adsorption test was at a constant temperature of 25 ° C and the pressure was 101 kPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种硅磷铝分子筛SAPO-34,其特征在于,无水化学组成为:mDGA·(SixAlyPz)O2,其中,DGA为二甘醇胺,分布于分子筛笼及孔道中;m为每摩尔(SixAlyPz)O2中二甘醇胺模板剂的摩尔数,m=0.03~0.25;x、y、z分别表示Si、Al、P的摩尔分数,其范围分别是x=0.01~0.30,y=0.40~0.60,z=0.25~0.49,且x+y+z=1。本发明合成的硅磷铝分子筛SAPO-34可用作酸催化反应的催化剂,如甲醇制烯烃反应。本发明还涉及该SAPO-34分子筛在CH4、CO2吸附分离方面的应用。

Description

一种以二甘醇胺为模板剂的 SAPO-34分子筛及其合成方法 技术领域
本发明属于 SAPO分子筛领域, 具体涉及一种 SAPO-34分子筛及其 合成方法。 背景技术
美国联合碳公司(UCC)于 1984年研究开发出新型磷酸硅铝系列 分子筛 (US4440871、 US4499327)— SAPO-n分子筛, 其是以有机胺为 模板剂、 以水合氧化铝、 磷酸、 硅溶胶为铝源、 磷源和硅源, 首先通过水 热晶化法得到具有微孔结构的有机胺 /磷酸硅铝复合体, 然后通过焙烧除 去模板剂 (有机胺) 而得到的。 其中, 具有 CHA拓扑结构的硅磷铝分子 筛 SAPO-34, 由于其适宜的孔道结构、适宜的质子酸性质、较大的比表面 积、较好的吸附性能以及较好的热稳定性及水热稳定性等,使其在甲醇制 烯烃 (MTO) 反应中呈现出优异的催化活性和选择性。
SAPO-34是菱沸石型 (CHA)分子筛, 具有由双六元环按照 ABC方 式堆积而成的八元环椭球形笼和三维交叉孔道结构,孔径为 0.38x0.38nm, 属于小孔分子筛。其空间对称群为 R3m,属三方晶系 (J. Phys. Chem., 1990, 94: 2730)。 SAPO-34由 Si、 Al、 P和 O四种元素构成, 其组成可在一定 范围内变化, 一般 n(Si)<n(P)<n(Ai;)。
SAPO-34分子筛一般采用水热合成法, 以水为溶剂,在密闭高压釜内 进行。可选作硅源的有硅溶胶、活性二氧化硅和正硅酸酯, 铝源有活性氧 化铝、拟薄水铝石和烷氧基铝,理想的硅源与铝源是硅溶胶和拟薄水铝石; 磷源一般采用 85%的磷酸。常用的模板剂包括四乙基氢氧化铵(TEAOH)、 吗啉 (MOR)、 哌啶 (Piperidine:)、 异丙胺 (i-PrNH2)、 三乙胺 (TEA:)、 二乙胺 (DEA)、 二丙胺等以及它们的混合物。 结构导向剂的选择对于合 成分子筛的微结构、元素组成和形貌会产生一定影响, 并进而影响其催化 性能。
本发明首次以二甘醇胺为结构导向剂、 在水热条件下合成出了纯相 SAPO-34分子筛。 制备的 SAPO-34分子筛在催化反应中表现出优良的催 化性能和气体吸附分离性能。 发明内容
本发明的目的在于提供一种 SAPO-34分子筛, 该分子筛无水化学组 成为: mDGA. (SixAlyPz)02, 其中: DGA为二甘醇胺, 分布于分子筛笼及 孔道中; m为每摩尔 (SixAlyPz)02中二甘醇胺的摩尔数, m=0.03〜0.25; x、 y、 z分别表示 Si、 Al、 P的摩尔分数, 其范围分别是 x=0.01~0.30, y=0.40~0.60 , z=0.25~0.49, 且 x+y+z=l; 优选范围为 x=0.07~0.26, y=0.42〜0.52, z=0.28~0.45 , 且 x+y+z=l。 该分子筛的 X射线衍射分析具 有表 2所示的衍射峰。 其该分子筛 X射线衍射分析结果中至少含有如下 表所示的衍射峰:
Figure imgf000003_0001
本发明的又一目的在于提供一种 SAPO-34分子筛的合成方法。
本发明的又一目的在于提供一种通过上述方法合成 SAPO-34分子筛 及由其制备的酸催化反应催化剂或含氧化合物转化制烯烃反应催化剂。
本发明的又一目的在于提供一种 CH4/C〇2吸附分离材料。
本发明所要解决的技术问题是以二甘醇胺为结构导向剂,以常规分子 筛合成所采用的磷源、硅源和铝源为原料, 在水热或溶剂热条件下合成纯 相 SAPO-34分子筛。
本发明的特征在于制备过程如下:
a) 将去离子水、 硅源、 铝源、 磷源和 DGA按照一定比例混合, 得到具 有如下摩尔配比的初始凝胶混合物:
Si02/Al203 =0.05〜 2.5 ;
P205/A1203 = 0.5〜 1.5 ; H20/A1203 = 5~ 200;
DGA/A1203 = 2.5 30; DGA为二甘醇胺;
b)将步骤 a) 所得初始凝胶混合物装入高压合成釜, 密闭, 升温到
150-220 °C, 在自生压力下晶化 5〜72小时;
c) 待晶化完成后, 固体产物经分离, 用去离子水洗涤至中性, 干燥后 即得所述的 SAPO-34分子筛。
所述步骤 a) 中的硅源为硅溶胶、 活性二氧化硅、 正硅酸酯、 偏高岭 土中的一种或任意几种的混合物; 铝源为铝盐、 活性氧化铝、 烷氧基铝、 偏高岭土中的一种或任意几种的混合物; 磷源为正磷酸、磷酸氢铵、磷酸 二氢铵、 有机磷化物或磷氧化物中的一种或任意几种的混合物。
步骤 b)中的晶化过程可以在静态进行, 也可以在动态进行。
所述步骤 a) 初始凝胶混合物中 Si02/Al203的摩尔比优选 0.15〜2.0。 所述步骤 a) 初始凝胶混合物中 P205/A1203的摩尔比优选 0.8〜 1.5。 所述步骤 a) 初始凝胶混合物中 H20/A1203的摩尔比优选 10~ 150。 所述步骤 a) 初始凝胶混合物中 DGA/A1203的摩尔比优选 5.5~16。 本发明还涉及一种酸催化反应的催化剂, 它是通过上述的 SAPO-34 分子筛或根据上述方法合成的 SAPO-34分子筛经 400 ~ 70CTC空气中焙 烧得到。
本发明还涉及一种含氧化合物转化制烯烃反应的催化剂, 它是通过 上述的 SAPO-34分子筛或根据上述方法合成的 SAPO-34分子筛经 400 〜 70CTC空气中焙烧得到。
本发明还涉及一种 (:1¾/(:02吸附分离材料, 它是通过上述的
SAPO-34分子筛或根据上述方法合成的 SAPO-34分子筛经 400 ~ 700°C 空气中焙烧得到。
本发明能产生的有益效果包括:
(1)获得一种以二甘醇胺为模板剂的 SAPO-34分子筛。
(2)制备的 SAPO-34分子筛在甲醇或二甲醚转化为低碳烯烃反应中表现出 优良的催化性能。
(3;)制备的 SAPO-34分子筛在 CH4/C02吸附分离中表现良好的选择性。 附图说明
图 1是实施例 1中合成产物的扫描电镜图 (SEM)。 具体实施方式- 元素组成采用 Philips 公司的 Magix 2424 X型射线荧光分析仪(XRF)
X射线粉末衍射物相分析(XRD )采用荷兰帕纳科(PANalytical)公 司的 XTert PRO X射线衍射仪, Cu靶, Κα辐射源 (λ=0.15418 nm), 电 压 40 KV, 电流 40 mA。
SEM形貌分析采用中国科学院科学仪器厂 KYKY-AMRAY-1000B型扫 描电子显微镜。
碳核磁共振 (13C MAS NMR) 分析采用美国 Varian公司的 Infinity plus 400WB固体核磁波谱分析仪, 用 BBO MAS探针, 操作磁场强度为 9.4T。
CHN元素分析采用德国制造的 Vario EL Cube元素分析仪。
下面通过实施例详述本发明, 但本发明并不局限于这些实施例。 实施例 1
各原料摩尔配料比例、 晶化条件和样品元素组成见表 1。 具体配料 过程如下, 将 14g拟薄水铝石(A1203质量百分含量 72.5%)和 79.2g去离 子水混合均匀, 然后加入 5.96g硅溶胶(Si〇2质量百分含量 30.24%), 搅 匀后滴加 23.06g的磷酸 (H3P04质量百分含量 85%)。 将 31.5g二甘醇胺 (简称 DGA, 质量百分含量 99%) 加入到前面混合物中, 搅拌均匀后将 所得凝胶转移到不诱钢反应釜中。合成体系各组分的摩尔配比为 3.0DGA: 0.30SiO2: lAl2O3: lP2O5:50H2O。
将反应釜放入烘箱后, 程序升温到 200 °C动态下晶化 48h。 晶化结束 后, 将固体产物离心, 纖, 在 10CTC空气中烘干后, 得原粉。 原粉样品 做 XRD测试 (表 2), 结果表明合成产物具有 SAPO-34结构的特征。
对实施例 1原粉样品进行 CHN元素分析, 将 CHN元素分析结果与 X 测定得到的无机元素组成归一化, 得到分子筛原粉的组成。 表 1 分子筛合成配料及晶化条件表 *
Figure imgf000006_0001
0.30mol 拟薄水铝 硅溶胶 6.5mol 210°C 15h 0.17DGA- 石 0.1 磷 0.03mol (Sio.l3Alo. sPo.37)02 mol O. l Omol
0.35mol 拟薄水铝 硅溶胶 6.5mol 170°C 60h 0.19DGA- 石 0.1 磷 0.03mol (Si0.13Al0.48P0.39)O2 mol O. l Omol
0.8mol 拟薄水铝 正磷酸 硅溶胶 3.0mol 200°C 24h 0.20DGA- 石 0.1 O. l Omol 0.20mol (Sio.26Alo. 4Po.3o)02 mol
3.00mol 拟薄水铝 正磷酸 硅溶胶 20mol 200°C 24h 0.21DGA- 石 0.1 O. l Omol 0.03mol (Sio.l5Alo.5oPo.35)d2 mol
表 2实施例 1样品的 XRD结果
No. 2Θ d(A) 100x1/1°
1 9.4445 9.36452 66.76
2 12.7935 6.91968 15.26
3 13.9312 6.35701 6.2
4 15.942 5.55943 43.18
5 17.7583 4.99471 21.85
6 18.9695 4.67843 2.26
7 20.5083 4.33075 100
8 20.9495 4.24053 4.27
9 21.9655 4.04662 16.19
10 22.2848 3.98936 8.18
11 24.9225 3.57281 70.93
12 25.7931 3.45415 22.85
13 27.5092 3.24245 6.1
14 28.1221 3.17316 4.82
15 29.428 3.03525 3.39
16 30.4672 2.93405 42.98
17 31.0098 2.88394 25.27
18 32.2329 2.77725 1.71 19 33.4612 2.67805 4.49
20 34.3373 2.61 171 7.7
24 34.8199 2.57661 1.71
21 35.9729 2.49663 6.8
22 39.5319 2.27967 3.7
23 43.2766 2.0907 3.73
24 47.4623 1.91563 4.54
25 49.3238 1.84761 2.58
26 50.6098 1.80364 6.32
27 53.0197 1.7272 4.94
28 55.2438 1.66281 2.49
29 58. 1695 1.58595 0.83
30 59.3794 1.5565 1.83
实施例 2-19
具体配料比例和晶化条件见表 1, 具体配料过程同实施例 1。
合成样品做 XRD分析,数据结果与表 2接近, 即峰位置和形状相同, 依合成条件的变化峰相对峰强度在 ±10%范围内波动, 表明合成产物具有
SAPO-34结构的特征。 产品元素组成分析结果见表 1。
对实施例 1-10的原粉样品进行 13C MAS NMR分析,通过与二甘醇胺 的 13C MAS NMR标准谱图对照, 发现样品中只有二甘醇胺的共振峰。 实施例 20
将实施例 1得到的样品于 550°C下通入空气焙烧 4小时, 然后压片、 破碎至 20〜40目。 称取 5.0g样品加入装有 30ml乙醇的釜式反应器, 进行乙醇脱水反应。 反应温度设定在 150°C, 反应在搅拌状态下进行。 反应结果显示, 乙醇转化率可达 92%, 产物中乙醚选择性为 92%。 实施例 21
将实施例 1得到的样品于 55CTC下通入空气焙烧 4小时, 然后压片 破碎至 20〜40目。 称取 l .Og样品装入固定床反应器, 进行 MTO反应 评价。 在 550 °C下通氮气活化 1小时, 然后降温至 450°C进行反应。 甲醇 由氮气携带, 氮气流速为 40ml/mm, 甲醇重量空速 4.0h— 反应产物由 在线气相色谱进行分析(Vanan3800, FID检测器, 毛细管柱 PoraPLOT Q-HT) 。 结果示于表 3。 表 3样品的甲醇转化制烯烃反应结果
寿命 选择性 (质量%) *
样品
(min) CH4 C2H C2H6 C3H6 C3H8 C4+ c5 + C2H +C3H6 实施
126 1.38 43.14 0.55 37.60 1.03 12.17 4.13 80.74 例 1 实施例 22
将实施例 10得到的样品于 550°C下通入空气焙烧 4小时。 C02、CH4 的吸附等温线由 Micrometrics ASAP 2020装置测得。测量前样品在真空状 态下 35CTC脱气预处理 4小时。 吸附测试恒温在 25°C, 压力是 101kpa。 表 4样品的 C02/CH4吸附分离结果
样品 吸附量 (imnol g) C02/CH4
co2 CH4
实施例 10 3.82 0.20 19.1

Claims

权 利 要 求
1. 一种 SAPO-34 分子筛, 其特征在于, 所述分子筛无水化学组成为- mDGA- (SixAlyPz)02表示, 其中: DGA 为二甘醇胺, m 为每摩尔 (SixAlyPz)02中二甘醇胺的摩尔数, m=0.03〜0.25; x、 y、 z 分别表示 Si、 Al、 P 的摩尔分数, 其范围分别是 x=0.01-0.30, y=0.40~0.60, ζ=0·25〜0.49, 且 x+y+z=l。
2. 根据权利要求 1所述的 SAPO-34分子筛, 其特征在于, X射线衍射图 谱在以下位置具有衍射峰-
Figure imgf000010_0001
3. 一种合成权利要求 1所述的 SAPO-34分子筛的方法, 其特征在于, 合 成步骤如下:
a) 将去离子水、 硅源、 铝源、 磷源和 DGA按照一定比例混合, 得到具有 如下摩尔配比的初始凝胶混合物:
Si02/Al203 =0.05-1.5;
Ρ2Ο5/Α12Ο3 = 0.5~1.5;
Η2Ο/Α12Ο3 = 5~200;
DGA/Al2O3 = 2.5~30, DGA为二甘醇胺;
b)将步骤 a) 所得初始凝胶混合物装入高压合成釜, 密闭, 升温到
150-220 °C, 在自生压力下晶化 5〜72小时;
c) 待晶化完成后, 固体产物经分离, 用去离子水洗涤至中性, 干燥后即 得所述的 SAPO-34分子筛。
4. 按照权利要求 3所述的方法, 其特征在于, 所述步骤 a)初始凝胶混合 物中的硅源为硅溶胶、 活性二氧化硅、 正硅酸酯、 偏高岭土中的一种 或任意几种的混合物; 铝源为铝盐、 活性氧化铝、 烷氧基铝、 偏高岭 土中的一种或任意几种的混合物; 磷源为正磷酸、 磷酸氢铵、 磷酸二 氢铵、 有机磷化物或磷氧化物中的一种或任意几种的混合物。
5. 按照权利要求 3所述的方法, 其特征在于, 所述步骤 b)中的晶化过程 在静态或动态下进行。
6. 按照权利要求 3所述的方法, 其特征在于, 所述步骤 a)初始凝胶混合 物中 DGA/A123 =5.5~16。
7. 一种酸催化反应的催化剂,其特征在于,根据权利要求 1-2任一项所述 的 SAPO-34分子筛或根据权利要求 3-6所述任一方法合成的 SAPO-34 分子筛经 400 - 700 °C空气中焙烧得到。
8. 一种含氧化合物转化制烯烃反应的催化剂, 其特征在于, 根据权利要 求 1-2任一项所述的 SAPO-34分子筛或根据权利要求 3-6所述任一方 法合成的 SAPO-34分子筛经 400〜700°C空气中焙烧得到。
9. 一种 CH4/CO 附分离材料, 其特征在于, 根据权利要求 1-2任一项 所述的 SAPO-34分子筛或根据权利要求 3-6所述任一方法合成的 SAPO-34分子筛经 400 ~ 700 空气中焙烧得到。
PCT/CN2012/086280 2012-12-10 2012-12-10 一种以二甘醇胺为模板剂的sapo-34分子筛及其合成方法 WO2014089740A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EA201591081A EA025394B1 (ru) 2012-12-10 2012-12-10 Молекулярное сито sapo-34 с использованием дигликольамина в качестве матричного агента и способ его получения
KR1020157015304A KR101920959B1 (ko) 2012-12-10 2012-12-10 디글리콜아민을 주형제로 하는 sapo-34 분자체 및 그 합성 방법
JP2015546792A JP6076496B2 (ja) 2012-12-10 2012-12-10 ジグリコールアミンをテンプレート剤としたsapo−34分子篩及びその合成方法
PCT/CN2012/086280 WO2014089740A1 (zh) 2012-12-10 2012-12-10 一种以二甘醇胺为模板剂的sapo-34分子筛及其合成方法
BR112015013359-2A BR112015013359B1 (pt) 2012-12-10 2012-12-10 Peneira molecular sapo-34, metodo para preparar a peneira molecular sapo-34, catalisador para reaqao catalisada por acido, catalisador para oxigenados para reaqao de olefinas, e material utilizado para separaqao por adsorqao de ch4/co2
AU2012396750A AU2012396750B2 (en) 2012-12-10 2012-12-10 SAPO-34 zeolite having diglycolamine as templating agent and synthesis method for the zeolite
SG11201504127XA SG11201504127XA (en) 2012-12-10 2012-12-10 Sapo-34 molecular sieve using diglycolamine as template agent and method for preparing the same
MYPI2015701817A MY171805A (en) 2012-12-10 2012-12-10 Sapo-34 molecular sieve using diglycolamine as template agent and method for preparing the same
US14/647,973 US9611150B2 (en) 2012-12-10 2012-12-10 SAPO-34 zeolite having diglycolamine as templating agent and synthesis method for the zeolite
DK12890022.2T DK2930148T3 (da) 2012-12-10 2012-12-10 Sapo-34-zeolit med diglycolamin som template og fremgangsmåde til syntese af zeolit
EP12890022.2A EP2930148B1 (en) 2012-12-10 2012-12-10 Sapo-34 zeolite having diglycolamine as templating agent and synthesis method for the zeolite
ZA2015/04518A ZA201504518B (en) 2012-12-10 2015-06-23 Sapo-34 molecular sieve using diglycolamine as template agent and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086280 WO2014089740A1 (zh) 2012-12-10 2012-12-10 一种以二甘醇胺为模板剂的sapo-34分子筛及其合成方法

Publications (1)

Publication Number Publication Date
WO2014089740A1 true WO2014089740A1 (zh) 2014-06-19

Family

ID=50933665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086280 WO2014089740A1 (zh) 2012-12-10 2012-12-10 一种以二甘醇胺为模板剂的sapo-34分子筛及其合成方法

Country Status (11)

Country Link
US (1) US9611150B2 (zh)
EP (1) EP2930148B1 (zh)
JP (1) JP6076496B2 (zh)
KR (1) KR101920959B1 (zh)
AU (1) AU2012396750B2 (zh)
BR (1) BR112015013359B1 (zh)
DK (1) DK2930148T3 (zh)
EA (1) EA025394B1 (zh)
SG (1) SG11201504127XA (zh)
WO (1) WO2014089740A1 (zh)
ZA (1) ZA201504518B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532350B2 (en) 2014-08-22 2020-01-14 W.R. Grace & Co.-Conn Method for synthesizing silicoaluminophosphate-34 molecular sieves using monoisopropanolamine
CN117023604A (zh) * 2023-10-09 2023-11-10 中汽研汽车检验中心(天津)有限公司 一种菱沸石结构分子筛、催化剂及其合成方法与应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2380663A4 (en) * 2009-01-22 2017-05-10 Mitsubishi Plastics, Inc. Catalyst for removing nitrogen oxides and method for producing same
CN109205637B (zh) * 2017-07-05 2021-10-08 中国石油化工股份有限公司 Sapo-35分子筛及其制备方法和应用
KR102224614B1 (ko) * 2018-12-31 2021-03-05 포항공과대학교 산학협력단 무기 금속 성분을 포함하는 cha형 sapo 및 그 제조 방법
CN115520877B (zh) * 2021-06-25 2024-05-28 中国石油化工股份有限公司 一种sapo-34分子筛及其制备方法和应用
CN114890437B (zh) * 2022-06-22 2023-08-25 中国石油大学(华东) 一种利用mto废催化剂快速合成的小粒度sapo-34分子筛及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4499327A (en) 1982-10-04 1985-02-12 Union Carbide Corporation Production of light olefins
CN1088483A (zh) * 1992-12-19 1994-06-29 中国科学院大连化学物理研究所 一种以三乙胺为模板剂的合成硅磷铝分子筛及其制备
CN1096496A (zh) * 1993-06-18 1994-12-21 中国科学院大连化学物理研究所 以二乙胺为模板剂合成磷酸硅铝分子筛

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144432B2 (ja) * 1991-11-02 2001-03-12 株式会社コスモ総合研究所 ゼオライトの合成方法
JP3785815B2 (ja) * 1997-06-27 2006-06-14 東レ株式会社 芳香族炭化水素の転化方法
CN1314587C (zh) * 2005-04-14 2007-05-09 南京工业大学 一种sapo-34分子筛的制备方法
CN102336413B (zh) * 2010-11-29 2013-04-17 中国科学院大连化学物理研究所 一种低硅sapo-34分子筛的合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4499327A (en) 1982-10-04 1985-02-12 Union Carbide Corporation Production of light olefins
CN1088483A (zh) * 1992-12-19 1994-06-29 中国科学院大连化学物理研究所 一种以三乙胺为模板剂的合成硅磷铝分子筛及其制备
CN1096496A (zh) * 1993-06-18 1994-12-21 中国科学院大连化学物理研究所 以二乙胺为模板剂合成磷酸硅铝分子筛

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. PHYS. CHEM., vol. 94, 1990, pages 2730
See also references of EP2930148A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532350B2 (en) 2014-08-22 2020-01-14 W.R. Grace & Co.-Conn Method for synthesizing silicoaluminophosphate-34 molecular sieves using monoisopropanolamine
CN117023604A (zh) * 2023-10-09 2023-11-10 中汽研汽车检验中心(天津)有限公司 一种菱沸石结构分子筛、催化剂及其合成方法与应用
CN117023604B (zh) * 2023-10-09 2024-01-02 中汽研汽车检验中心(天津)有限公司 一种菱沸石结构分子筛、催化剂及其合成方法与应用

Also Published As

Publication number Publication date
BR112015013359B1 (pt) 2020-11-24
JP2016505492A (ja) 2016-02-25
EP2930148B1 (en) 2017-07-05
SG11201504127XA (en) 2015-07-30
AU2012396750A1 (en) 2015-06-11
BR112015013359A2 (pt) 2017-07-11
ZA201504518B (en) 2016-11-30
DK2930148T3 (da) 2017-08-14
EP2930148A1 (en) 2015-10-14
EA201591081A1 (ru) 2015-10-30
EA025394B1 (ru) 2016-12-30
EP2930148A4 (en) 2016-04-27
JP6076496B2 (ja) 2017-02-08
AU2012396750B2 (en) 2015-08-27
KR20150082596A (ko) 2015-07-15
US20150315031A1 (en) 2015-11-05
US9611150B2 (en) 2017-04-04
KR101920959B1 (ko) 2018-11-21

Similar Documents

Publication Publication Date Title
WO2014089740A1 (zh) 一种以二甘醇胺为模板剂的sapo-34分子筛及其合成方法
Fan et al. A novel solvothermal approach to synthesize SAPO molecular sieves using organic amines as the solvent and template
KR101763498B1 (ko) Sapo-34 분자체 및 그 합성 방법
Fan et al. Aminothermal synthesis of CHA-type SAPO molecular sieves and their catalytic performance in methanol to olefins (MTO) reaction
KR101652209B1 (ko) Sapo-34 분자체 및 그 합성 방법
WO2016090612A1 (zh) 一种中微孔sapo-34分子筛的合成方法
EP3495320B1 (en) Method for synthesizing nano sapo-34 molecular sieve, and sapo-34 molecular sieve catalyst and application thereof
Liang et al. Rational construction of hierarchical SAPO-34 with enhanced MTO performance without an additional meso/macropore template
Hirota et al. Synthesis of SAPO-18 with low acidic strength and its application in conversion of dimethylether to olefins
Di et al. Green and efficient dry gel conversion synthesis of SAPO-34 catalyst with plate-like morphology
CN105731484B (zh) 一种中微孔sapo‑34分子筛的合成方法
Tao et al. Hierarchical low-silica SAPO-34 with enhanced MTO performance: mesopore template-and fluoride-free synthesis
Yang et al. Cationic surfactant-assisted hydrothermal synthesis: an effective way to tune the crystalline phase and morphology of SAPO molecular sieves
WO2014089738A1 (zh) 一种以n-甲基二乙醇胺为模板剂的sapo-34分子筛及其合成方法
KR102197599B1 (ko) 실리코알루미노포스페이트 분자체, 및 그 제조 방법, 이를 이용한 이산화탄소의 선택적 분리방법
JP5083882B2 (ja) アルミノリン酸トリエチルアミン化合物のへき開性層状結晶及びその製造方法
CN109928402B (zh) Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂
CN105347356B (zh) 一种sapo‑44分子筛及其合成方法
CN103864097B (zh) 一种以二甘醇胺为模板剂的sapo-34分子筛及其合成方法
WO2014089736A1 (zh) 一种以二异丙醇胺为模板剂的sapo-34分子筛及其合成方法
Komura et al. Synthesis, crystal structure and characterization of novel open framework CHA-type aluminophosphate involving a chiral diamine
WO2014089739A1 (zh) 一种sapo-35分子筛及其合成方法
CN110790285A (zh) 一种具有lta骨架结构的磷酸硅铝分子筛及其制备方法和应用
Jasso-Salcedo et al. Synthesis of SAPO-56 using N, N, N’, N’-tetramethyl-1, 6-hexanediamine and co-templates based on primary, secondary, and tertiary amines
JP5278866B2 (ja) Cdo型高シリカゼオライトの前駆体となる層状ケイ酸塩及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14647973

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012890022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012890022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201503359

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20157015304

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015546792

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012396750

Country of ref document: AU

Date of ref document: 20121210

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015013359

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 201591081

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 112015013359

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150609