WO2019113948A1 - Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂 - Google Patents

Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂 Download PDF

Info

Publication number
WO2019113948A1
WO2019113948A1 PCT/CN2017/116515 CN2017116515W WO2019113948A1 WO 2019113948 A1 WO2019113948 A1 WO 2019113948A1 CN 2017116515 W CN2017116515 W CN 2017116515W WO 2019113948 A1 WO2019113948 A1 WO 2019113948A1
Authority
WO
WIPO (PCT)
Prior art keywords
sapo
molecular sieve
preparing
piperazine
sieve according
Prior art date
Application number
PCT/CN2017/116515
Other languages
English (en)
French (fr)
Inventor
吴鹏飞
杨淼
田鹏
刘中民
王林英
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2017/116515 priority Critical patent/WO2019113948A1/zh
Publication of WO2019113948A1 publication Critical patent/WO2019113948A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds

Definitions

  • the invention relates to a preparation method of SAPO-34 molecular sieve, an acid catalyst and a catalyst for converting an oxygenate into an olefin, and belongs to the field of molecular sieves.
  • SAPO-n Silicoaluminophosphate molecular sieves
  • SAPO-n Silicoaluminophosphate molecular sieves
  • the Si atom is isomorphously substituted for a part of the P atom in the neutral aluminum phosphate skeleton structure or the position of the P and Al atoms is simultaneously substituted, so that the skeleton generates a net negative charge, causing proton acidity, thereby imparting acid catalytic performance to the SAPO-34 molecular sieve.
  • SAPO-34 molecular sieve with CHA topology has been successfully applied to the MTO commercialization process due to its excellent catalytic performance in methanol to olefins reaction (MTO).
  • MTO methanol to olefins reaction
  • the synthesis of SAPO-34 molecular sieve mainly uses hydrothermal synthesis method, and various organic amines can be used as template to guide SAPO-34 molecular sieve, such as morpholine, triethylamine, diethylamine, di-n-propylamine, diisopropylamine, Tetraethylammonium hydroxide, pyridine, piperazine (CN 102795640 A) and the like.
  • SAPO-34 molecular sieve synthesized by using different microporous template is in shape, size, and silicon.
  • the distribution of atoms (acid sites) is significantly different, which leads to different catalytic properties of molecular sieves.
  • the intrinsic microporous structure of SAPO-34 limits the mass transfer during the reaction, resulting in a decrease in the utilization rate of the active sites of SAPO-34 catalyst, which is prone to pore blockage and carbon deposition inactivation.
  • attempts have been made to introduce mesoporous or macroporous channels between intrinsic microporous structures, or to prepare small crystallites of nanoscale molecular sieves to reduce mass transfer resistance in the reaction and enhance the diffusion properties of molecules during the reaction.
  • the main methods for synthesizing nano-SAPO-34 include the use of hard templates, soft templates, addition of crystal growth inhibitors, and post-treatment methods in the synthesis process.
  • the preparation method of the SAPO-34 molecular sieve is characterized in that it comprises at least the following steps: hydrothermal synthesis in the presence of a template agent containing a piperazinyl organic compound to obtain the SAPO-34 molecular sieve;
  • the piperazinyl organic compound is at least one selected from the group consisting of a piperazine-based organic compound having a hydroxyl structure and a piperazinyl-based organic compound having an ether bond structure.
  • the templating agent is a piperazinyl organic compound.
  • the piperazine-based organic compound having a hydroxyl structure is selected from the group consisting of 1-[2-(2-hydroxyethoxy)ethyl]piperazine, ⁇ -hydroxyethylpiperazine, ⁇ -hydroxymethylpiperazine At least one of 2-(2-hydroxyethyl)piperazine and 2-(2-hydroxymethyl)piperazine;
  • the piperazinyl organic compound having an ether bond structure is selected from the group consisting of 1-[2-(2benzylethoxy)ethyl]piperazine, 1-[2-(2benzyloxy)methyl]piperidin At least one of the azines.
  • the piperazinyl organic compound is selected from the group consisting of 1-[2-(2-hydroxyethoxy)ethyl]piperazine or ⁇ -hydroxyethylpiperazine.
  • aging is performed prior to hydrothermal synthesis
  • the aging conditions are as follows: the object to be treated is placed in a closed reactor and programmed to a temperature of 50 to 80 ° C, and the rotation is aged for 0.4 to 2 days.
  • the upper temperature limit of aging is selected from 55 ° C, 60 ° C, 65 ° C, 70 ° C, 75 ° C or 80 ° C; the lower limit is selected from 50 ° C, 55 ° C, 60 ° C, 65 ° C, 70 °C or 75 °C.
  • the upper limit of the aging time is 10h, 12h, 18h, 20h, 24h, 30h or 48h; the lower limit is selected from 9.6h, 10h, 12h, 18h, 20h, 24h or 30h.
  • the aging temperature is 60 °C.
  • the programmed temperature increase rate is 0.5 to 1.5 ° C / min.
  • the programmed temperature ramp rate is 1 ° C/min.
  • the temperature rising rate of the programmed temperature is 1 ° C / min, and the aging time is 0.5 to 1 day.
  • the hydrothermal synthesis conditions are: crystallization at 150 to 220 ° C for 0.4 to 10 days.
  • the crystallization time is from 1 to 7 days.
  • the upper temperature limit of crystallization is selected from 160 ° C, 180 ° C, 190 ° C, 200 ° C, 210 ° C or 220 ° C; the lower limit is selected from 150 ° C, 160 ° C, 180 ° C, 190 ° C, 200 ° C or 210 ° C.
  • the upper limit of the crystallization time is selected from 10h, 12h, 16h, 24h, 26h, 40h, 44h, 66h, 92h, 168h or 240h; the lower limit is selected from 9.6h, 10h, 12h. , 16h, 24h, 26h, 40h, 44h, 66h, 92h or 168h.
  • the crystallization is static crystallization.
  • the method for synthesizing the SAPO-34 molecular sieve comprises hydrothermally synthesizing the SAPO-34 molecular sieve by a hydrothermal method under the guidance of a piperazinyl organic compound through a specific aging process;
  • the piperazinyl organic compound is selected from at least one of piperazinyl organic compounds having a hydroxyl group or an ether bond structure; and the SAPO-34 molecular sieve is a nano SAPO-34 molecular sieve.
  • the preparation method of the SAPO-34 molecular sieve comprises at least the following steps:
  • SiO 2 : P 2 O 5 : Al 2 O 3 : templating agent: H 2 O 0.2 to 1.2: 0.5 to 1.5: 0.6 to 1.4: 1.5 to 5.5: 50 to 200;
  • the mixture obtained in the step a) is placed in a closed reactor and programmed to a temperature of 50 to 80 ° C for 4 to 2 days;
  • the mixture obtained in the step b) is crystallized at 150 to 220 ° C for 0.4 to 10 days;
  • step c) After the step c) is completed, the solid product is separated, washed and dried to obtain the SAPO-34 molecular sieve.
  • the silicon source is added in an amount of SiO 2
  • the phosphorus source is added in a molar amount of P 2 O 5
  • the aluminum source is added in a molar amount of Al 2 O 3 .
  • the number of moles of the templating agent is based on the moles of the templating agent itself.
  • the number of moles of the templating agent is based on the moles of the piperazinyl organic compound.
  • the molar ratio of deionized water, aluminum source, phosphorus source, silicon source and templating agent in the mixture is:
  • the molar ratio of the silicon source, the phosphorus source, the aluminum source, the templating agent, and the deionized water is selected from the range of 0.05: 0.14: 0.10:0.20:8.0, 0.06:0.10:0.14:0.40:5.9, 0.02:0.12:0.07:0.30:20.0,0.08:0.05:0.06:0.15:20.0, 0.02:0.12:0.14:0.25:5.0, 0.03:0.08: 0.08:0.55:15.0, 0.06:0.09:0.09:0.25:10.0, 0.03:0.05:0.12:0.35:9.0,0.04:0.12:0.10:0.45:20.0,0.04:0.12:0.14:0.50:12.0, 0.12:0.14: 0.09:0.35:12.5 or 0.06:0.10:0.13:0.45:15.0, wherein the number of moles of the silicon source is based
  • the phosphorus source in step a) is selected from at least one of inorganic phosphorus compounds
  • the aluminum source is selected from at least one of an aluminum salt, activated alumina, alkoxy aluminum, and metakaolin;
  • the silicon source is selected from at least one of a silicone source and an inorganic silicon source.
  • the inorganic phosphorus compound is selected from at least one of orthophosphoric acid, metaphosphoric acid, phosphate, and phosphite;
  • the organic silicon source is selected from at least one of the orthosilicates
  • the inorganic silicon source is selected from at least one of silica sol, activated silica, metakaolin, and silica.
  • the phosphorus source is at least one selected from the group consisting of orthophosphoric acid, ammonium monohydrogen phosphate, metaphosphoric acid, ammonium hydrogen phosphate, and ammonium dihydrogen phosphate.
  • the orthosilicate is selected from at least one of methyl orthosilicate and ethyl orthosilicate.
  • the aluminum source is at least one selected from the group consisting of pseudoboehmite, aluminum isopropoxide, and aluminum hydroxide.
  • the preparation method of the SAPO-34 molecular sieve comprises at least the following steps:
  • SiO 2 : P 2 O 5 : Al 2 O 3 : piperazinyl organic compound: H 2 O 0.2 to 1.2: 0.5 to 1.5: 0.6 to 1.4: 1.5 to 5.5: 50 to 200;
  • step a1) The mixture obtained in the step a1) is placed in a closed reactor and programmed to a temperature of 50 to 80 ° C for 4 to 2 days;
  • step c1) After the crystallization of the step c1) is completed, the solid product is separated, washed, and dried to obtain the nano-SAPO-34 molecular sieve.
  • the synthesis method of the SAPO-34 molecular sieve the synthesis steps are as follows:
  • step 2) The mixed solution of the step 2) is heated at 60 ° C at 1 ° C / min for 0.5 to 1 day;
  • step 4) After the step 4) is completed, the solid product is centrifuged, washed with deionized water to neutrality, and dried in air at 120 ° C to obtain a nano SAPO-34 molecular sieve raw powder.
  • the SAPO-34 molecular sieve has a particle size distribution between 100 nm and 150 nm.
  • the use of a specific organic templating agent in combination with a specific crystallization method to obtain nano-sized SAPO-34 grains avoids the use of additional expensive additives or the use of reagents such as acid and alkali for post-treatment to produce contamination and the like, and is industrially strong. Application prospects.
  • the SAPO-34 molecular sieve prepared by the method described in the present application has a multi-stage pore structure including micropores and mesopores.
  • the SAPO-34 molecular sieve contains mesopores; and the mesopores have a specific surface area of 50 to 200 m 2 /g.
  • the mesopores have a specific surface area of 88 to 102 m 2 /g.
  • the specific surface area ratio of the micropores to the mesopores is 5-7.
  • an acid catalyst is provided, characterized in that the SAPO-34 molecular sieve prepared according to the method is obtained by calcination in air at 400 to 700 °C.
  • a catalyst for the conversion of an oxygenate to an olefin characterized in that the nano SAPO-34 molecular sieve prepared according to the method is obtained by calcination in air at 400 to 700 °C.
  • the piperazinyl group is a group obtained by losing a hydrogen atom at a certain nitrogen atom or a carbon atom in a six-membered cyclic piperazine molecule.
  • rotational aging means that a compound mixed under room temperature conditions is placed in a closed reaction vessel, and aged using a rotary stirring paddle or a direct rotary reactor.
  • the SAPO-34 molecular sieve prepared by the present application has a nanometer-scale grain size and a chemical composition that is easy to be modulated;
  • the SAPO-34 molecular sieve prepared in the present application exhibits excellent catalytic performance in the MTO reaction, has a long catalyst life, and has high selectivity to low carbon olefins.
  • Fig. 1 is a scanning electron micrograph of a sample obtained in Example 1 (the scale is 1.00 ⁇ m in the figure).
  • Fig. 2 is a scanning electron micrograph of the sample obtained in Comparative Example 1 (the scale is 30 ⁇ m in the figure).
  • Fig. 3 is a scanning electron micrograph of the sample obtained in Comparative Example 2 (the scale is 2.0 ⁇ m in the figure).
  • Example 4 is an XRD diffraction spectrum of a sample obtained in Example 1.
  • the starting materials in the examples of the present application are all commercially purchased; among them, the purchase of 1-[2-(2-hydroxyethoxy)ethyl]piperazine, ⁇ -hydroxyl B used in the examples Piperazine, 1-[2-(2hydroxybenzyl)ethyl]piperazine, 1-[2-(2-hydroxybenzyl)methyl]piperazine, ⁇ -hydroxymethylpiperazine, 2-(2 -Hydroxyethyl)piperazine, 2-(2-hydroxymethyl)piperazine in Shanghai Dibo Chemical Technology Co., Ltd.
  • the elemental composition was measured using a Philips Magix-601 ray fluorescence analyzer (XRF).
  • the SEM morphology analysis was performed using a SU8020 scanning electron microscope from the Scientific Instrument Factory of the Chinese Academy of Sciences.
  • the N 2 physical adsorption analysis was measured using a Micromeritics ASAP Model 2020 physical adsorption analyzer from Micron, USA.
  • X methanol is the conversion rate of methanol
  • X ethylene is the selectivity of ethylene
  • the reaction vessel containing the materials was placed in an oven at a temperature of 1 ° C / min to 60 ° C, and aging for 12 h.
  • the autoclave was warmed to 200 ° C for static crystallization for 44 h. After completion of the reaction, the solid product was centrifuged, repeatedly washed with deionized water, and dried in air at 120 ° C to obtain a sample of the SAPO-34 molecular sieve.
  • the morphology of the sample was characterized by scanning electron microscopy.
  • the electron micrograph is shown in Fig. 1.
  • the sample obtained has a cubic crystal grain size distribution between 100 nm and 150 nm.
  • the obtained sample was subjected to XRD analysis, and the results are shown in Table 2 and Figure 4, which showed that the synthesized product had a pure SAPO-34 crystal phase.
  • the proportion of the ingredients and the crystallization process were the same as those in Example 1, but the temperature-programming process was cancelled during the aging process, and the reactor was placed in an oven at 60 ° C for aging.
  • the morphology of the sample was characterized by scanning electron microscopy.
  • the electron micrograph is shown in Fig. 2. It is a large cubic grain with a smooth surface of about 3 ⁇ m.
  • the proportion of the ingredients and the crystallization process were the same as those in Example 1, but the temperature rising rate of the aging process was set to 0.1 ° C / min.
  • the morphology of the sample was characterized by scanning electron microscopy.
  • the electron micrograph is shown in Fig. 3. It is a large cubic crystal grain with a smooth surface of about 1 ⁇ m.
  • the samples obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to air baking at 600 ° C for 4 hours, and then subjected to N 2 physical adsorption analysis. The results are shown in Table 3.
  • the samples obtained in Examples 1 to 2 have a large pore volume and a micropore specific surface area, indicating that the sample has a good crystallinity, and the sample has a rich external specific surface area and mesoporous pore volume.
  • Table 3 sample specific surface area and pore volume
  • Example 1 and 2 and Comparative Examples 1 and 2 were subjected to air baking at 600 ° C for 4 hours, and then tableted and crushed to 40 to 60 mesh.
  • a 0.3 g sample was weighed into a fixed bed reactor and evaluated for MTO reaction. The reaction was carried out by a nitrogen gas activation at 550 ° C for 1 hour and then cooling to 450 ° C. Methanol was carried by nitrogen, the flow rate of nitrogen was 42 mL/min, and the mass velocity of methanol was 4 h -1 .
  • the reaction product was analyzed by on-line gas chromatography (Varian 3800, FID detector, capillary column PoraPLOTQ-HT). The results are shown in Table 4.
  • the small grain samples of Examples 1 to 2 exhibited good catalytic life and excellent low carbon olefin selectivity compared to Comparative Examples 1 to 2 of larger crystal grains.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

提供一种SAPO-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂。所述制备方法至少包括以下步骤:在含有哌嗪基有机化合物的模板剂存在下,水热合成,得到所述SAPO-34分子筛。所制备得到的SAPO-34分子筛具有纳米级别的晶粒尺寸与易于调变的化学组成;在MTO反应中表现出优异的催化性能,催化剂寿命长,低碳烯烃选择性高。

Description

SAPO-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂 技术领域
本申请涉及一种SAPO-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂,属于分子筛领域。
背景技术
磷酸硅铝分子筛(SAPO-n)是一类重要的无机多孔晶体材料,其三维骨架结构由PO2 +、AlO2 -和SiO2四面体构成。Si原子同晶取代中性磷酸铝骨架结构中部分的P原子或同时取代P和Al原子位置,使骨架产生净的负电荷,引起质子酸性,从而赋予SAPO-34分子筛酸催化性能。
其中,具有CHA拓扑结构的SAPO-34分子筛由于其在甲醇制烯烃反应(MTO)中优异的催化性能已被成功应用于MTO商业化过程。目前,SAPO-34分子筛的合成主要使用水热合成的方法,多种有机胺作为模板剂可以导向SAPO-34分子筛,例如吗啉,三乙胺,二乙胺,二正丙胺,二异丙胺,四乙基氢氧化铵,吡啶,哌嗪(CN 102795640 A)等。由于模板剂在晶化合成SAPO-34分子筛过程中起到了溶解原料、结构导向、电荷匹配和空间填充等作用,使用不同的微孔模板剂合成的SAPO-34分子筛在形貌,尺寸,以及硅原子(酸性位点)的分布环境上都有明显的不同,进而导致分子筛不同的催化性能。
SAPO-34本征的微孔结构限制了反应过程中的传质,导致SAPO-34催化剂活性位利用率下降,易发生孔道堵塞与积碳失活。为了解决这个问题,人们尝试在本征微孔结构之间引入介孔或大孔通道,或者制备纳米级的分子筛的小晶粒减小反应中的传质阻力,增强反应过程中分子的扩散性能,提升催化反应的反应寿命与低碳烯烃选择性。目前主要的合成纳米SAPO-34的方法包括合成过程中使用硬模板、软模板、添加晶体生长抑制剂、以及后处理等方法。
发明内容
根据本申请的一个方面,提供了一种SAPO-34分子筛的制备方法,该方法中以哌嗪基有机化合物在合成中作为有机模板剂,成功合成出具有纯净CHA晶相的SAPO-34。
所述SAPO-34分子筛的制备方法,其特征在于,至少包括以下步骤:在含有哌嗪基有机化合物的模板剂存在下,水热合成,得到所述SAPO-34分子筛;
其中,所述哌嗪基有机化合物选自含有羟基结构的哌嗪基有机化合物、含有醚键结构的哌嗪基有机化合物中的至少一种。
可选地,所述模板剂为哌嗪基有机化合物。
可选地,所述含有羟基结构的哌嗪基有机化合物选自1-[2-(2羟基乙氧基)乙基]哌嗪、β-羟乙基哌嗪、β-羟甲基哌嗪、2-(2-羟基乙基)哌嗪、2-(2-羟基甲基)哌嗪中的至少一种;
所述含有醚键结构的哌嗪基有机化合物选自1-[2-(2苄基乙氧基)乙基]哌嗪、1-[2-(2苄基乙氧基)甲基]哌嗪中的至少一种。
可选地,所述哌嗪基有机化合物选自1-[2-(2羟基乙氧基)乙基]哌嗪或β-羟乙基哌嗪。
可选地,水热合成之前进行老化;
所述老化的条件为:将待处理物置于密闭反应器中程序升温至50~80℃,转动老化0.4~2天。
可选地,所述老化过程中,老化的温度上限选自55℃、60℃、65℃、70℃、75℃或80℃;下限选自50℃、55℃、60℃、65℃、70℃或75℃。
可选地,所述老化过程中,老化的时间上限10h、12h、18h、20h、24h、30h或48h;下限选自9.6h、10h、12h、18h、20h、24h或30h。
可选地,所述老化的温度为60℃。
可选地,所述程序升温的升温速率为0.5~1.5℃/min。
可选地,所述程序升温的升温速率为1℃/min。
可选地,所述程序升温的升温速率为1℃/min,老化时间为0.5~1天。
可选地,所述水热合成的条件为:150~220℃下晶化0.4~10天。
可选地,所述晶化的时间为1~7天。
可选地,所述水热合成过程中,晶化的温度上限选自160℃、180℃、 190℃、200℃、210℃或220℃;下限选自150℃、160℃、180℃、190℃、200℃或210℃。
可选地,所述水热合成过程中,晶化的时间上限选自10h、12h、16h、24h、26h、40h、44h、66h、92h、168h或240h;下限选自9.6h、10h、12h、16h、24h、26h、40h、44h、66h、92h或168h。
可选地,所述晶化为静态晶化。
作为一种具体的实施方式,所述SAPO-34分子筛的合成方法:采用水热方法,在哌嗪基有机化合物的导向下,经过特定的老化过程,水热合成所述SAPO-34分子筛;所述哌嗪基有机化合物选自含有羟基或醚键结构的哌嗪基有机化合物中的至少一种;所述SAPO-34分子筛为纳米SAPO-34分子筛。
可选地,所述的SAPO-34分子筛的制备方法,至少包括以下步骤:
a)依次将去离子水、铝源、磷源、硅源和模板剂混合,得到具有如下摩尔配比的混合物:
SiO2:P2O5:Al2O3:模板剂:H2O=0.2~1.2:0.5~1.5:0.6~1.4:1.5~5.5:50~200;
b)将所述步骤a)所得混合物置于密闭反应器中程序升温至50~80℃下转动老化0.4~2天;
c)将所述步骤b)所得混合物置于150~220℃下晶化0.4~10天;
d)待所述步骤c)晶化完成后,固体产物经分离、洗涤、干燥,即得到所述SAPO-34分子筛。
步骤a)所述混合物中,硅源的加入量以SiO2的摩尔数计,磷源的加入量以P2O5的摩尔数计,铝源的加入量以Al2O3的摩尔数计;模板剂的摩尔数以模板剂本身的摩尔数计。
可选地,所述模板剂的摩尔数以哌嗪基有机化合物的摩尔数计。
可选地,所述混合物中去离子水、铝源、磷源、硅源和模板剂的摩尔比满足:
硅源:磷源:铝源:模板剂:去离子水=0.2~1.2:0.5~1.4:0.6~1.4:1.5~5.5:50~200。
可选地,所述硅源、磷源、铝源、模板剂和去离子水的摩尔比(硅源: 磷源:铝源:模板剂:去离子水的范围端点值选自0.05:0.14:0.10:0.20:8.0、0.06:0.10:0.14:0.40:5.9、0.02:0.12:0.07:0.30:20.0、0.08:0.05:0.06:0.15:20.0、0.02:0.12:0.14:0.25:5.0、0.03:0.08:0.08:0.55:15.0、0.06:0.09:0.09:0.25:10.0、0.03:0.05:0.12:0.35:9.0、0.04:0.12:0.10:0.45:20.0、0.04:0.12:0.14:0.50:12.0、0.12:0.14:0.09:0.35:12.5或0.06:0.10:0.13:0.45:15.0。其中,所述硅源的摩尔数以SiO2的摩尔数计,磷源的摩尔数以P2O5的摩尔数计,铝源的摩尔数以Al2O3的摩尔数计,模板剂的摩尔数以模板剂本身的摩尔数计,去离子水以H2O的摩尔数计。
可选地,步骤a)中所述磷源选自无机磷化合物中的至少一种;
所述铝源选自铝盐、活性氧化铝、烷氧基铝、偏高岭土中的至少一种;
所述硅源选自有机硅源、无机硅源中的至少一种。
可选地,所述无机磷化合物选自正磷酸、偏磷酸、磷酸盐、亚磷酸盐中的至少一种;
所述有机硅源选自正硅酸酯中的至少一种;
所述无机硅源选自硅溶胶、活性二氧化硅、偏高岭土、白炭黑中的至少一种。
可选地,所述磷源选自正磷酸、磷酸一氢铵、偏磷酸、磷酸氢铵、磷酸二氢铵中的至少一种。
可选地,所述正硅酸酯选自正硅酸甲酯、正硅酸乙酯中的至少一种。
可选地,所述铝源选自拟薄水铝石、异丙醇铝、氢氧化铝中的至少一种。
作为一种具体的实施方式,所述的SAPO-34分子筛的制备方法,至少包括以下步骤:
a1)依次将去离子水、铝源、磷源、硅源和有机化合物混合,得到具有如下摩尔配比的混合物:
SiO2:P2O5:Al2O3:哌嗪基有机化合物:H2O=0.2~1.2:0.5~1.5:0.6~1.4:1.5~5.5:50~200;
b1)将所述步骤a1)所得混合物置于密闭反应器中程序升温至50~80℃下转动老化0.4~2天;
c1)将所述步骤b1)所得混合物置于150~220℃下晶化0.4~10天;
d1)待所述步骤c1)晶化完成后,固体产物经分离、洗涤、干燥,即得到所述纳米SAPO-34分子筛。
作为一个具体的实施例方式,所述SAPO-34分子筛的合成方法,合成步骤如下:
1)在去离子水中依次加入铝源,磷源,硅源和哌嗪基有机化合物置于室温搅拌1~24小时,混合溶液中各组分的比例范围如下:(0.2~1.2)SiO2:(0.5~1.5)P2O5:(0.6~1.4)Al2O3:(1.5~5.5)哌嗪基有机化合物:(50~200)H2O;
2)将所述步骤2)的混合溶液以1℃/min升温至60℃下老化0.5~1天;
3)将所述步骤3)的混合溶液在150~220℃下晶化0.4~10天;
4)待所述步骤4)晶化完成后,将固体产物经离心分离,用去离子水洗至中性,在120℃空气中干燥,得到纳米SAPO-34分子筛原粉。
可选地,所述SAPO-34分子筛的粒径分布在100nm~150nm之间。
本申请中使用特定的有机模板剂结合特定的晶化方法获得纳米级SAPO-34晶粒避免了使用额外昂贵的添加剂或者使用酸碱等试剂后处理产生污染等缺陷,在工业上具有较强的应用前景。
本申请中所述的方法制备得到的SAPO-34分子筛具有多级孔结构,包含微孔和介孔。
可选地,所述SAPO-34分子筛中含有介孔;所述介孔的比表面积为50~200m2/g。
可选地,所述介孔的比表面积为88~102m2/g。
可选地,所述微孔与介孔的比表面积比为5~7。
本申请中的另一方面,提供了一种酸催化剂,其特征在于,根据所述方法制备得到的SAPO-34分子筛经400~700℃空气中焙烧得到。
本申请中的又一方面,提供了一种含氧化合物转化制烯烃反应的催化剂,其特征在于,根据所述方法制备得到的纳米SAPO-34分子筛经400~700℃空气中焙烧得到。
本申请中,所述哌嗪基为六元环状哌嗪分子中某一氮原子或碳原子上失去氢原子所得到的基团。
本申请中,“转动老化”,是指将室温条件下混合的化合物置于密闭反应釜中,使用旋转搅拌桨或直接旋转反应釜进行老化。
本申请能产生的有益效果包括:
(1)本申请中提出一类制备SAPO-34分子筛的新型有机模板剂;
(2)本申请制备出的SAPO-34分子筛具有纳米级别的晶粒尺寸与易于调变的化学组成;
(3)本申请中制备出的SAPO-34分子筛在MTO反应中表现出优异的催化性能,催化剂寿命长,低碳烯烃选择性高。
附图说明
图1为实施例1所得样品扫描电镜照片(图中标尺为1.00μm)。
图2为对比例1所得样品扫描电镜照片(图中标尺为30μm)。
图3为对比例2所得样品扫描电镜照片(图中标尺为2.0μm)。
图4为实施例1所得样品XRD衍射谱图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买;其中,实施例中所采用的购买1-[2-(2羟基乙氧基)乙基]哌嗪、β-羟乙基哌嗪、1-[2-(2羟基苄基)乙基]哌嗪、1-[2-(2羟基苄基)甲基]哌嗪、β-羟甲基哌嗪、2-(2-羟基乙基)哌嗪、2-(2-羟基甲基)哌嗪于上海笛柏化学品技术有限公司。
本申请的实施例中分析方法如下:
元素组成采用Philips公司的Magix-601型射线荧光分析仪(XRF)测定。
X射线粉末衍射物相分析(XRD)采用荷兰帕纳科(PANalytical)公司的X’Pert PRO X射线衍射仪,Cu靶,Kα辐射源(λ=0.15418nm),电压40KV,电流40mA。
SEM形貌分析采用中国科学院科学仪器厂SU8020型扫描电子显微镜。
N2物理吸附分析采用美国麦克公司的Micromeritics ASAP 2020型物理吸附分析仪测定。
本申请的实施例中转化率、选择性计算如下:
Figure PCTCN2017116515-appb-000001
乙烯选择性的计算公式:X乙烯=(2*乙烯摩尔数)/(进料中甲醇摩尔数-出料中甲醇摩尔数)。
其中,X甲醇为甲醇的转化率;X乙烯为乙烯的选择性。
实施例1
各原料摩尔配料比例、晶化条件和样品元素组成见表1。具体配料过程如下:
将14.0g拟薄水铝石(Al2O3质量百分含量72.5%),32.3g磷酸(H3PO4质量百分含量85%),10.4g正硅酸乙酯,34.6g1-[2-(2羟基乙氧基)乙基]哌嗪和135.2g去离子水混合,搅拌陈化24小时,将凝胶转移到不锈钢反应釜中。合成体系各组分的摩尔配比为0.5SiO2:1.4P2O5:1.0Al2O3:2.01-[2-(2羟基乙氧基)乙基]哌嗪:80H2O。
将装有物料的反应釜置于烘箱中程序升温1℃/min至60℃,转动老化12h。
将反应釜程序升温到200℃静态晶化44h。反应结束后,将固体产物离心,用去离子水反复洗涤,在120℃空气中烘干得到所述SAPO-34分子筛样品。
采用扫描电镜对所得样品的形貌进行表征,电镜照片如图1所示,所得样品为立方状晶体粒径分布在100nm~150nm之间。对所得样品进行XRD分析,结果示于表2和图4,结果表明合成产物具有纯正SAPO-34晶相。
采用XRF对所得样品进行元素组成分析,结果见表1。
表1分子筛合成配料、晶化条件及元素组成表
Figure PCTCN2017116515-appb-000002
表2实施例1样品的XRD结果
Figure PCTCN2017116515-appb-000003
对比例1
配料比例及晶化过程同实施例1,但老化过程中取消程序升温过程即将反应釜直接置于60℃烘箱中进行老化。
采用扫描电镜对所得样品的形貌进行表征,电镜照片如图2所示,为粒径3μm左右表面光滑的立方体大晶粒。
对比例2
配料比例及晶化过程同实施例1,但老化过程选程序升温速率设定为0.1℃/min。
采用扫描电镜对所得样品的形貌进行表征,电镜照片如图3所示,为粒径1μm左右表面光滑的较大立方体晶粒。
实施例2~12
具体配料比例和晶化条件见表1,具体配料过程同实施例1。
对实施例2~12所得样品进行XRD分析,数据结果与表2接近,即峰 位置和形状相同,依合成条件的变化峰相对峰强度在±10%范围内波动,表明合成产物具有SAPO-34结构的特征。
对实施例2~12所得样品进行XRF元素组成分析,结果见表1。
采用扫描电镜对实施例2~12所得样品的形貌进行分析,所得电镜照片均与图1相似。
实施例13
对实施例1~2与对比例1~2所得样品于600℃下通入空气焙烧4小时,然后进行N2物理吸附分析,结果见表3。实施例1~2所得样品具有较大的微孔孔容与微孔比表面积,表明样品具有很好的结晶度,样品具有丰富的外比表面积与介孔孔容。
表3样品的比表面积及孔容
Figure PCTCN2017116515-appb-000004
实施例14
将实施例1~2与对比例1~2所得样品于600℃下通入空气焙烧4小时,然后压片、破碎至40~60目。称取0.3g样品装入固定床反应器,进行MTO反应评价。在550℃下通氮气活化1小时,然后降温至450℃进行反应。甲醇由氮气携带,氮气流速为42mL/min,甲醇质量空速4h-1。反应产物由在线气相色谱进行分析(Varian3800,FID检测器,毛细管柱PoraPLOTQ-HT)。结果示于表4。相比于较大晶粒的对比例1~2,实施例1~2的小晶粒样品展示出良好的催化寿命以及优异的低碳烯烃选择性。
表4样品的甲醇转化制烯烃反应结果
Figure PCTCN2017116515-appb-000005
a.甲醇转化率为100%的反应时间
b .100%甲醇转化率时,最高(乙烯+丙烯)选择性
本申请虽然以较佳实施例公开如上,但并不用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (15)

  1. 一种SAPO-34分子筛的制备方法,其特征在于,至少包括以下步骤:在含有哌嗪基有机化合物的模板剂存在下,水热合成,得到所述SAPO-34分子筛;
    其中,所述哌嗪基有机化合物选自含有羟基结构的哌嗪基有机化合物、含有醚键结构的哌嗪基有机化合物中的至少一种。
  2. 根据权利要求1所述的SAPO-34分子筛的制备方法,其特征在于,所述含有羟基结构的哌嗪基有机化合物选自1-[2-(2羟基乙氧基)乙基]哌嗪、β-羟乙基哌嗪、β-羟甲基哌嗪、2-(2-羟基乙基)哌嗪、2-(2-羟基甲基)哌嗪中的至少一种;
    所述含有醚键结构的哌嗪基有机化合物选自1-[2-(2苄基乙氧基)乙基]哌嗪、1-[2-(2苄基乙氧基)甲基]哌嗪中的至少一种。
  3. 根据权利要求1所述的SAPO-34分子筛的制备方法,其特征在于,水热合成之前进行老化;
    所述老化的条件为:将待处理物置于密闭反应器中程序升温至50~80℃,转动老化0.4~2天。
  4. 根据权利要求3所述的SAPO-34分子筛的制备方法,其特征在于,所述程序升温的升温速率为0.5~1.5℃/min。
  5. 根据权利要求3所述的SAPO-34分子筛的制备方法,其特征在于,所述程序升温的升温速率为1℃/min。
  6. 根据权利要求1所述的SAPO-34分子筛的制备方法,其特征在于,所述水热合成的条件为:150~220℃下晶化0.4~10天。
  7. 根据权利要求6所述的SAPO-34分子筛的制备方法,其特征在于,所述晶化的时间为1~7天。
  8. 根据权利要求1所述的SAPO-34分子筛的制备方法,其特征在于, 至少包括以下步骤:
    a)依次将去离子水、铝源、磷源、硅源和模板剂混合,得到具有如下摩尔配比的混合物:
    SiO2:P2O5:Al2O3:模板剂:H2O=0.2~1.2:0.5~1.5:0.6~1.4:1.5~5.5:50~200;
    b)将所述步骤a)所得混合物置于密闭反应器中程序升温至50~80℃下转动老化0.4~2天;
    c)将所述步骤b)所得混合物置于150~220℃下晶化0.4~10天;
    d)待所述步骤c)晶化完成后,固体产物经分离、洗涤、干燥,即得到所述SAPO-34分子筛。
  9. 根据权利要求8所述的SAPO-34分子筛的制备方法,其特征在于,步骤a)中所述磷源选自无机磷化合物中的至少一种;
    所述铝源选自铝盐、活性氧化铝、烷氧基铝、偏高岭土中的至少一种;
    所述硅源选自有机硅源、无机硅源中的至少一种。
  10. 根据权利要求9所述的SAPO-34分子筛的制备方法,其特征在于,所述无机磷化合物选自正磷酸、偏磷酸、磷酸盐、亚磷酸盐中的至少一种;
    所述有机硅源选自正硅酸酯中的至少一种;
    所述无机硅源选自硅溶胶、活性二氧化硅、偏高岭土、白炭黑中的至少一种。
  11. 根据权利要求1所述的SAPO-34分子筛的制备方法,其特征在于,所述SAPO-34分子筛的粒径分布在100nm~150nm之间。
  12. 根据权利要求1所述的SAPO-34分子筛的制备方法,其特征在于,所述SAPO-34分子筛中含有介孔;
    所述介孔的比表面积为50~200m2/g。
  13. 根据权利要求12所述的SAPO-34分子筛的制备方法,所述介孔的比表面积为88~102m2/g。
  14. 一种酸催化剂,其特征在于,根据权利要求1至13任一项所述 方法制备得到的SAPO-34分子筛经400~700℃空气中焙烧得到。
  15. 一种含氧化合物转化制烯烃反应的催化剂,其特征在于,根据权利要求1至13任一项所述方法制备得到的SAPO-34分子筛经400~700℃空气中焙烧得到。
PCT/CN2017/116515 2017-12-15 2017-12-15 Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂 WO2019113948A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/116515 WO2019113948A1 (zh) 2017-12-15 2017-12-15 Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/116515 WO2019113948A1 (zh) 2017-12-15 2017-12-15 Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂

Publications (1)

Publication Number Publication Date
WO2019113948A1 true WO2019113948A1 (zh) 2019-06-20

Family

ID=66819861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116515 WO2019113948A1 (zh) 2017-12-15 2017-12-15 Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂

Country Status (1)

Country Link
WO (1) WO2019113948A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115385359A (zh) * 2022-09-30 2022-11-25 山东工业陶瓷研究设计院有限公司 一种sapo-34分子筛的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048044A1 (en) * 2001-11-30 2003-06-12 Exxonmobil Chemical Patents Inc. Method of synthesizing molecular sieves
CN101121527A (zh) * 2006-08-08 2008-02-13 中国科学院大连化学物理研究所 富含Si(4Al)配位结构的SAPO分子筛的制备方法
CN102795640A (zh) * 2012-09-13 2012-11-28 南开大学 一种以哌嗪为模板剂合成sapo-34分子筛的方法
CN104445270A (zh) * 2014-11-28 2015-03-25 天津神能科技有限公司 一种合成高质子酸含量sapo-34分子筛的方法
CN107032363A (zh) * 2016-02-04 2017-08-11 中国科学院大连化学物理研究所 一类新型sapo分子筛及其合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048044A1 (en) * 2001-11-30 2003-06-12 Exxonmobil Chemical Patents Inc. Method of synthesizing molecular sieves
CN101121527A (zh) * 2006-08-08 2008-02-13 中国科学院大连化学物理研究所 富含Si(4Al)配位结构的SAPO分子筛的制备方法
CN102795640A (zh) * 2012-09-13 2012-11-28 南开大学 一种以哌嗪为模板剂合成sapo-34分子筛的方法
CN104445270A (zh) * 2014-11-28 2015-03-25 天津神能科技有限公司 一种合成高质子酸含量sapo-34分子筛的方法
CN107032363A (zh) * 2016-02-04 2017-08-11 中国科学院大连化学物理研究所 一类新型sapo分子筛及其合成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115385359A (zh) * 2022-09-30 2022-11-25 山东工业陶瓷研究设计院有限公司 一种sapo-34分子筛的制备方法
CN115385359B (zh) * 2022-09-30 2024-05-31 山东工业陶瓷研究设计院有限公司 一种sapo-34分子筛的制备方法

Similar Documents

Publication Publication Date Title
Najafi et al. Hydrothermal synthesis of nanosized SAPO-34 molecular sieves by different combinations of multi templates
WO2018023365A1 (zh) 纳米sapo-34分子筛的合成方法、sapo-34分子筛催化剂及其应用
WO2016090612A1 (zh) 一种中微孔sapo-34分子筛的合成方法
WO2017133301A1 (zh) 一类新型sapo分子筛及其合成方法
JP5982064B2 (ja) Sapo−34分子篩及びその合成方法
WO2016061727A1 (zh) 一种片状纳米sapo-34分子筛的合成方法
JP6006879B2 (ja) Sapo−34分子篩及びその合成方法
WO2008022532A1 (fr) Procédé destiné à synthétiser rapidement un tamis moléculaire de silicoaluminophosphate sapo-34
WO2016029591A1 (zh) 一种制备高硅铝比y型分子筛的方法
CN107434252B (zh) 低硅纳米sapo-34分子筛的制备方法
CN112794338B (zh) Zsm-5分子筛及其制备方法和应用
CN109250728A (zh) Cu-SAPO分子筛合成方法及合成的Cu-SAPO分子筛和应用
JP6076496B2 (ja) ジグリコールアミンをテンプレート剤としたsapo−34分子篩及びその合成方法
Di et al. Green and efficient dry gel conversion synthesis of SAPO-34 catalyst with plate-like morphology
Zhang et al. Control of crystallization rate and morphology of zeolite silicalite-1 in solvent-free synthesis
CN109205637B (zh) Sapo-35分子筛及其制备方法和应用
CN105731484B (zh) 一种中微孔sapo‑34分子筛的合成方法
CN109467100B (zh) Sapo-34分子筛的合成方法及应用
Ji et al. Synthesis of low silicon submicron-sized SAPO-34 molecular sieve by micron seed activation method to improve the performance of MTO
WO2019113948A1 (zh) Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂
WO2018152829A1 (zh) Cu-SAPO分子筛、合成方法及其催化应用
CN109928402B (zh) Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂
Li et al. Efficient synthesis of high silica SSZ-13 zeolite via a steam-assisted crystallization process
WO2014089738A1 (zh) 一种以n-甲基二乙醇胺为模板剂的sapo-34分子筛及其合成方法
Albuquerque et al. Synthesis of SAPO-34 from the lamellar ALPO-kanemite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934902

Country of ref document: EP

Kind code of ref document: A1