WO2014089736A1 - 一种以二异丙醇胺为模板剂的sapo-34分子筛及其合成方法 - Google Patents

一种以二异丙醇胺为模板剂的sapo-34分子筛及其合成方法 Download PDF

Info

Publication number
WO2014089736A1
WO2014089736A1 PCT/CN2012/086274 CN2012086274W WO2014089736A1 WO 2014089736 A1 WO2014089736 A1 WO 2014089736A1 CN 2012086274 W CN2012086274 W CN 2012086274W WO 2014089736 A1 WO2014089736 A1 WO 2014089736A1
Authority
WO
WIPO (PCT)
Prior art keywords
sapo
molecular sieve
diisopropanolamine
dipa
zeolite
Prior art date
Application number
PCT/CN2012/086274
Other languages
English (en)
French (fr)
Inventor
王德花
田鹏
刘中民
樊栋
张莹
袁扬扬
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2012/086274 priority Critical patent/WO2014089736A1/zh
Publication of WO2014089736A1 publication Critical patent/WO2014089736A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds

Definitions

  • the invention belongs to the field of SAPO molecular sieves, and particularly relates to a SAPO-34 molecular sieve and a synthetic method thereof. Background technique
  • Low carbon 'olefins are the basic organic raw materials for the chemical industry and are in increasing demand.
  • the production methods of low-carbon olefins can be divided into two categories: one is the oil route, and the other is the non-oil route.
  • MTO Methanol to Olefme
  • MTO is a process for producing low-carbon olefins such as ethylene and propylene from methanol or natural gas. It is the most promising non-oil route process. Methanol is abundant in source and low in price, providing a solid raw material basis for MTO processes.
  • the core technology of the MTO process is a catalyst, and the catalyst with high activity, high selectivity and good regeneration performance is the key.
  • SAPO-34 is a chabazite type (CHA) molecular sieve having an eight-membered ring ellipsoidal cage and a three-dimensional cross-cell structure formed by a double six-membered ring stacked in an ABC manner, and having a pore diameter of 0.38 x 0.38 nm, belonging to a small pore molecular sieve. Its spatial symmetry group is R3m and belongs to the trigonal system (J. Phys. Chem., 1990, 94: 2730). SAPO-34 is composed of four elements of Si, Al, P and O, and its composition can be varied within a certain range, generally n(Si) ⁇ n(P) ⁇ n(Ai;).
  • SAPO-34 molecular sieves are generally hydrothermally synthesized using water as a solvent in a closed autoclave.
  • the synthetic components include an aluminum source, a silicon source, a phosphorus source, a structure directing agent, and deionized water.
  • the silicon source is composed of silica sol, active silica and orthosilicate.
  • the aluminum source is activated alumina, pseudoboehmite and alkoxy aluminum.
  • the ideal source of silicon and aluminum is silica sol and pseudoboehmite; Phosphorus sources generally use 85% phosphoric acid.
  • the choice of structure-directing agent will have some influence on the microstructure, element composition and morphology of the synthetic molecular sieve, and then affect its catalytic performance.
  • the invention firstly synthesizes pure phase SAPO-34 molecular sieve under hydrothermal conditions by using diisopropanolamine as a structure directing agent.
  • the prepared SAPO-34 molecular sieve exhibits excellent catalytic performance and gas adsorption separation performance in the catalytic reaction.
  • the technical problem to be solved by the invention is that diisopropanolamine is used as a structure-directing agent, and the pure phase SAPO- is synthesized under the conditions of hydrothermal and solvothermal conditions by using the phosphorus source, the silicon source and the aluminum source used in the synthesis of the conventional molecular sieve as raw materials. 34 molecular sieves.
  • the invention is characterized in that the preparation process is as follows - a) mixing deionized water, a silicon source, an aluminum source, a phosphorus source and DIPA in a certain ratio to obtain an initial gel mixture having the following molar ratio:
  • Si0 2 /Al 2 0 3 0.05 - 1.5;
  • DIPA/Al 2 O3 5 ⁇ 30; DIPA is diisopropanolamine;
  • step b) The initial gel mixture obtained in step a) is charged into a high pressure synthesis kettle, sealed, and heated to
  • the silicon source in the step a) is a mixture of silicon sol, active silica, orthosilicate, metakaolin or any combination thereof;
  • the aluminum source is aluminum salt, activated alumina, alkoxy aluminum And one or a mixture of any of the metakaolin;
  • the phosphorus source is one or a mixture of any one of orthophosphoric acid, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, an organic phosphide or a phosphorus oxide.
  • the initial gel mixture Si0 2 / Al 2 0 3 molar ratio is preferably 0.15 to 1.0.
  • the molar ratio of P 2 0 5 /A1 2 0 3 in the initial gel mixture in the step a) is preferably 0.8 to 1.5.
  • the molar ratio of H 2 0/A1 2 0 3 in the initial gel mixture in the step a) is preferably from 10 to 60.
  • the molar ratio of DIPA/A1 2 0 3 in the initial gel mixture in the step a) is preferably 5.5 to 18.
  • the crystallization process in step b) can be carried out either statically or dynamically.
  • the invention also relates to a catalyst for acid-catalyzed reaction which is obtained by calcining an SAPO-34 molecular sieve as described above or a SAPO-34 molecular sieve synthesized according to the above method in air at 400 to 700 °C.
  • the invention further relates to a catalyst for the conversion of an oxygen-containing compound to an olefin, which is obtained by calcining the above-mentioned SAPO-34 molecular sieve or the SAPO-34 molecular sieve synthesized according to the above method in air at 400 to 700 °C.
  • the present invention also relates to a CH 4 /C ⁇ 2 adsorptive separation material which is obtained by calcining 400*700 of air through the SAPO-34 molecular sieve described above or the SAPO-34 molecular sieve synthesized according to the above method.
  • the prepared SAPO-34 molecular sieve exhibits excellent catalytic performance in the conversion of methanol or dimethyl ether to a lower olefin.
  • Figure 1 is a scanning electron micrograph (SEM) of the product synthesized in Example 1.
  • SEM scanning electron micrograph
  • XRF X-ray fluorescence analyzer
  • the SEM morphology analysis was performed using a KYKY-AM AY-1000B scanning electron microscope from the Scientific Instrument Factory of the Chinese Academy of Sciences.
  • Carbon nuclear magnetic resonance ( 13 C MAS NM ) analysis was performed using Vanan's Infinity plus 400WB solid-state nuclear magnetic spectroscopy analyzer with a BBO MAS probe with an operating magnetic field strength of 9.4T.
  • the CHN elemental analysis was carried out using a Vario EL Cube elemental analyzer made in Germany.
  • Example 1 The invention is described in detail below by way of examples, but the invention is not limited to the examples.
  • Example 1 The invention is described in detail below by way of examples, but the invention is not limited to the examples.
  • the molar ratio of each raw material, the crystallization conditions and the composition of the sample elements are shown in Table 1.
  • the specific batching process is as follows, mixing 42.5 g of diisopropanolamine and 7.1 g of deionized water, and then adding 5.6 g of pseudoboehmite (A1 2 0 3 mass percentage 72.5%), stirring evenly, then 9.12 g phosphoric acid (H 3 P0 4 mass percent 85%) added dropwise, stirred evenly, and finally added 1.59g silicon soluble Glue (S 3 ⁇ 4 mass percent 30.34%), stirred to form a gel, and the gel was transferred to a stainless steel reactor.
  • the molar ratio of each component of the synthesis system was 8.0 DIPA: 0.20 SIO 2 : 1A1 2 O 3 : 1P 2 O 5 : 15H 2 0.
  • Example 20 The sample obtained in Example 1 was calcined at 550 ° C for 4 hours, and then tableted and crushed to 20 to 40 mesh. A 5.0 g sample was weighed and added to a kettle reactor containing 30 ml of ethanol to carry out an ethanol dehydration reaction. The reaction temperature was set at 150 ° C, and the reaction was carried out under stirring. The reaction results showed that the conversion of ethanol was 90%, and the selectivity of the ether in the product was 90%.
  • Example 21 The reaction results showed that the conversion of ethanol was 90%, and the selectivity of the ether in the product was 90%.
  • Example 1 The sample obtained in Example 1 was subjected to air baking at 55 CTC for 4 hours, and then tableted and crushed to 20 to 40 mesh.
  • the l.Og sample was weighed into a fixed bed reactor for MTO reaction evaluation. The reaction was carried out by a nitrogen gas activation at 55 CTC for 1 hour, followed by cooling to 45 CTC. Methanol was carried by nitrogen, nitrogen flow rate was 40 ml/mm, methanol weight space velocity was 4.0 h - the reaction product was analyzed by on-line gas chromatography (Vanan 3800, FID detector, capillary column PoraPLOT Q-HT). The results are shown in Table 3. Table 3 sample methanol conversion to olefin' hydrocarbon reaction results
  • Example 1 The sample obtained in Example 1 was at 550. C was blown in air for 4 hours. The adsorption isotherms of C0 2 and CH 4 were measured by a Micrometrics ASAP 2020 apparatus. The sample was degassed and pretreated for 4 hours under vacuum at 35 CTC. The adsorption test was at a constant temperature of 25 ° C and the pressure was 101 kPa. The CO 2 /CH 4 adsorption separation results of the samples in Table 4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种SAPO-34分子筛,其特征在于,该分子筛无水化学组成可表示为:mDIPA·(SixAlyPz)O2,其中:DIPA为二异丙醇胺,分布于分子筛笼及孔道中;m为每摩尔(SixAlyPz)O2中二异丙醇胺模板剂的摩尔数,m=0.03〜0.25;x、y、z分别表示Si、Al、P的摩尔分数,其范围分别是χ=0.01~0.30,y=0.40~0.60,z=0.25〜0.49,且x+y+z=1。本发明合成的硅磷铝分子筛SAPO-34可用作酸催化反应的催化剂,如甲醇制烯烃反应。本发明还涉及该SAPO-34分子筛在CH4、CO2吸附分离方面的应用。

Description

一种以二异丙醇胺为模板剂的 SAPO-34分子筛及其合成方法 技术领域
本发明属于 SAPO分子筛领域, 具体涉及一种 SAPO-34分子筛及其 合成方法。 背景技术
低碳'烯烃, 特别是乙烯和丙烯, 是化学工业的基本有机原料, 其需求 量越来越大。低碳烯烃的生产方法可以分为两类: 一类是石油路线, 一类 是非石油路线。对于石油路线而言, 短时间有价格上涨、供应不稳定的问 题, 长时间有石油资源储量有限的问题, 因此仅靠传统的石油路线来增产 低碳烯烃是不够的。 由甲醇制低碳烯烃 (Methanol to Olefme,简称 MTO ) 是以煤或天然气为原料由甲醇制乙烯、丙烯等低碳烯烃的工艺过程, 是最 有希望的非石油路线工艺。 甲醇来源丰富、 价格低廉, 可以为 MTO工艺 提供坚实的原料基础。 MTO工艺的核心技术是催化剂, 具有高活性、 高 选择性和良好的再生性能催化剂是关键所在。
自从 1982年, 美国联碳公司申请的专利 US 4310440, 成功的合成出 一系列的磷酸铝分子筛及其衍生物以来,磷酸铝分子筛及其杂原子取代衍 生物一直是材料界和催化领域的研究热点之一。 其中, 具有 CHA拓扑结 构的硅磷铝分子筛 SAPO-34, 由于其适宜的孔道结构和酸性质,在甲醇制 烯烃 (MTO) 反应中呈现出优异的催化性能 (Applied Catalysis, 1988, 40: 316 ) o
SAPO-34是菱沸石型 (CHA)分子筛, 具有由双六元环按照 ABC方 式堆积而成的八元环椭球形笼和三维交叉孔道结构,孔径为 0.38x0.38nm, 属于小孔分子筛。其空间对称群为 R3m,属三方晶系 (J. Phys. Chem., 1990, 94: 2730)。 SAPO-34由 Si、 Al、 P和 O四种元素构成, 其组成可在一定 范围内变化, 一般 n(Si)<n(P)<n(Ai;)。
SAPO-34分子筛一般采用水热合成法, 以水为溶剂,在密闭高压釜内 进行。 合成组分包括铝源、 硅源、 磷源、 结构导向剂和去离子水。 可选作 硅源的有硅溶胶、活性二氧化硅和正硅酸酯, 铝源有活性氧化铝、拟薄水 铝石和烷氧基铝, 理想的硅源与铝源是硅溶胶和拟薄水铝石; 磷源一般采 用 85%的磷酸。结构导向剂的选择对于合成分子筛的微结构、元素组成和 形貌会产生一定影响, 并进而影响其催化性能。 美国专利 US 4310440 和 US 4440871中报道了多种 SAPO分子筛的制备, 其公布的合成 SAPO-34 的模板剂四乙基氢氧化铵、异丙胺、 以及四乙基氢氧化铵及二正丙胺的混 合物。中国专利 ZL93112230公幵了以三乙胺为模板剂合成 SAPO-34的方 法, 该模板剂价格低廉, 可以降低 SAPO-34的合成成本。 此后, 中国专 利 ZL93112015和 ZL94110059又分别公幵了以二乙胺为模板剂或以三乙 胺和二乙胺双模板剂合成 SAPO-34的方法, 进一步降低了合成成本。
本发明首次以二异丙醇胺为结构导向剂、在水热条件下合成出了纯相 SAPO-34分子筛。 制备的 SAPO-34分子筛在催化反应中表现出优良的催 化性能和气体吸附分离性能。
发明内容
本发明的目的在于提供一种 SAPO-34分子筛,该分子筛无水化学组 成为: mDIPA. (SixAlyPz)02, 其中: DIPA为二异丙醇胺, 分布于分子筛笼 及孔道中; m为每摩尔 (SixAlyPz)02中二异丙醇胺模板剂的摩尔数, m=0.03~0.25 ; x、 y、 z分别表示 Si、 Al、 P的摩尔分数, 其范围分别是 χ=0·01〜0·30, y=0.40~0.60, z=0.25-0.49, 且 x+y+z=l ; 优选范围为 x=0.07 0.20, y=0.42~0.52, z=0.35-0.45 , 且 x+y+z=l。 该分子筛 X射线 衍射分析结果中至少含有如下表所示的衍射峰-
Figure imgf000003_0001
本发明的又一目的在于提供一种 SAPO-34的合成方法。
本发明的又一目的在于提供一种通过上述方法合成 SAPO-34分子筛 及由其制备的酸催化反应催化剂或含氧化合物转化制烯烃反应催化剂。 本发明的又一目的在于提供一种 CH4/CO 附分离材料。
本发明所要解决的技术问题是以二异丙醇胺为结构导向剂,以常规分 子筛合成所采用的磷源、硅源和铝源为原料, 在水热及溶剂热条件下合成 纯相 SAPO-34分子筛。
本发明的特征在于制备过程如下- a) 将去离子水、硅源、 铝源、 磷源和 DIPA按照一定比例混合, 得到具有 如下摩尔配比的初始凝胶混合物:
Si02/Al203 =0.05 - 1.5;
Figure imgf000004_0001
Η2Ο/Α12Ο3 = 5 ~ 100;
DIPA/Al2O3 = 5 ~ 30; DIPA为二异丙醇胺;
b)将步骤 a) 所得初始凝胶混合物装入高压合成釜, 密闭, 升温到
150-220 °C, 在自生压力下晶化 5〜72小时;
c) 待晶化完全后, 将固体产物经分离, 用去离子水洗涤至中性, 干燥后 即得所述 SAPO-34分子筛
所述步骤 a) 中的硅源为硅溶胶、 活性二氧化硅、 正硅酸酯、 偏高岭 土中的一种或任意几种的混合物; 铝源为铝盐、 活性氧化铝、 烷氧基铝、 偏高岭土中的一种或任意几种的混合物; 磷源为正磷酸、磷酸氢铵、磷酸 二氢铵、 有机磷化物或磷氧化物中的一种或任意几种的混合物。
所述步骤 a)初始凝胶混合物中 Si02/Al203 的摩尔比优选 0.15 ~ 1.0。 所述步骤 a) 初始凝胶混合物中 P205/A1203的摩尔比优选 0.8〜 1.5。 所述步骤 a) 初始凝胶混合物中 H20/A1203的摩尔比优选 10~ 60。 所述步骤 a) 初始凝胶混合物中 DIPA/A1203的摩尔比优选 5.5〜18。 步骤 b)中的晶化过程可以在静态进行, 也可以在动态进行。
发明还涉及一种酸催化反应的催化剂, 它是通过上述的 SAPO-34分 子筛或根据上述方法合成的 SAPO-34分子筛经 400 ~ 700°C空气中焙烧得 到。
本发明还涉及一种含氧化合物转化制烯烃反应的催化剂,它是通过上 述的 SAPO-34分子筛或根据上述方法合成的 SAPO-34分子筛经 400 〜 700 °C空气中焙烧得到。 本发明还涉及一种 CH4/C〇2吸附分离材料,它是通过上述的 SAPO-34 分子筛或根据上述方法合成的 SAPO-34分子筛经 400〜 700 空气中焙烧 得到。
发明能产生的有益效果包括-
(1 )获得一种以二异丙醇胺为模板剂的 SAPO-34分子筛。
(2)制备的 SAPO-34分子筛甲醇或二甲醚转化为低碳烯烃反应中表现出优 良的催化性能。
(3)制备的 SAPO-34分子筛在 CH4/C02吸附分离中表现良好的选择性。 附图说明
图 1是实施例 1中合成产物的扫描电镜图 (SEM)。 具体实施方式- 元素组成采用 Philips 公司的 Magix 2424 X型射线荧光分析仪(XRF )
X射线粉末衍射物相分析(XRD )采用荷兰帕纳科(PANalytical )公 司的 XTert PRO X射线衍射仪, Cu靶, Κα辐射源 (λ=0.15418 nm), 电 压 40 KV, 电流 40 mA。
SEM形貌分析采用中国科学院科学仪器厂 KYKY-AM AY-1000B型 扫描电子显微镜。
碳核磁共振(13C MAS NM )分析采用美国 Vanan公司的 Infinity plus 400WB固体核磁波谱分析仪, 用 BBO MAS探针, 操作磁场强度为 9.4T。
CHN元素分析采用德国制造的 Vario EL Cube元素分析仪。
下面通过实施例详述本发明, 但本发明并不局限于这些实施例。 实施例 1
各原料摩尔配料比例、 晶化条件和样品元素组成见表 1。 具体配料过 程如下, 将 42.5g二异丙醇胺和 7.1 g去离子水混合搅匀, 然后加入 5.6g 拟薄水铝石 (A1203质量百分含量 72.5% ) 搅拌均匀, 然后将 9.12g磷酸 (H3P04质量百分含量 85% ) 滴加进入, 搅拌均匀, 最后加入 1 .59g硅溶 胶(S ¾质量百分含量 30.34%), 搅拌均匀制成凝胶, 将凝胶转移到不锈 钢 反应釜 中 。 合成体系各组分 的摩尔配 比 为 8.0DIPA: 0.20SIO2: 1A12O3: 1P2O5: 15H20。
将反应釜放入烘箱后, 程序升温到 200QC动态下晶化 48h。 晶化结束 后, 将固体产物离心, 洗涤, 在 10(TC空气中烘干后, 得原粉。 原粉样品 做 XRD分析 (表 2), 结果表明合成产物具有 SAPO-34结构的特征。 采 用 XRF和 CHN元素分析仪表征原粉样品的无机和有机组成,结果见表 1。 表 1 分子筛合成配料及晶化条件表 * 实 DIPA摩 铝源及所 磷源及 硅源及所 H20 晶化 晶 产品元素组成分 施 尔用量 含 Al2Os 所含 含 02摩 温度 化 析结果
例 摩尔数 p2o5摩 尔数 时
尔数 间
1 0.8mol 拟薄水铝 正磷酸 硅溶胶 1.5mol 200°C 48h 0.25DIPA- 石 0. 10 mol O. l Omol 0.02mol (Si0.07Al0.;5oPo.43)02
2 0.50mol 异丙醇铝 正磷酸 硅溶胶 0.8mol 180°C 36h 0.1 1DIPA- 0.1 mol O. l Omol 0.005mol (Si0.olAl0.JoPo.49)02
3 l .Omol 异丙醇铝 正磷酸 硅溶胶 2.2mol 200°C 24h 0.25DIPA- 0.1 mol O. l Omol 0.15mol (Si0.3oAlo.4jPo.2j)02
4 0.58mol γ氧化铝 正磷酸 硅溶胶 8.3mol 200°C 24h 0.15DIPA- 0.1 mol O. l Omol O. l Omol (Si0.19Al0.46P0.35)O2
5 0.5mol 硫 酸 正磷酸 活性二氧 1.6mol 190°C 48h 0.22DIPA- 0.1 mol 0.05mol 化硅 (Sio.09Alo.49Po.42)02
0.03mol
6 0.5mol 氯化铝 0.1 正磷酸 正硅酸乙 0.5mol 200°C 24h 0.10DIPA- mol 0.15mol 酯 (Sio.l7Alo.4gPo.39)02
0.08mol
7 1.5mol 拟薄水铝 正磷酸 硅溶胶 5.1mol 200°C 24h 0.16DIPA- 石 0. 1 mol 0.09mol 0.04mol (Si0.ljAl0.4sPo.37)02
8 2.5mol 拟薄水铝 正磷酸 硅溶胶 lOmol 200°C 24h 0.14DIPA- 石 0. 1 mol 0.15mol 0.055mol (Sio.l6Al0.47P0.37)02
9 1.6mol 拟薄水铝 磷酸氢 硅溶胶 4.6mol 220°C 12h 0.13DIPA- 石 0. 1 mol 胺 0.06mol (Si0.16Al0.48P0.38)O2
O. l Omol
10 1.5mol 拟薄水铝 磷酸氢 活性二氧 3.2mol 200°C 24h 0.1 1DIPA- 石 0. 1 mol 二胺 化硅 (Sio.l6Alo.47Po.37)02
O. l Omol 0.06mol
11 2.0mol 硫酸 磷酸氢 硅溶胶 5.8mol 200°C 18h 0.1 8DIPA- 0.1 mol 二胺 0.07mol (Sio.l7Al0.46P0.37)02
0.15mol ΐ8-ς £ξ99Υ£ 乙 £1
LZ £IZ?Z'£ Zl
W \ ΐΐ
68Ί5 60Ρ9ζ'£ 0ΐ
Ϊ9ΌΪ 88198 S 6
iV ZLL6 L£9£ZZ 8
Y6 uzozz L
001 L8L\ P 9
W Z 6 \S6 8?08Χΐ ξ
βΖζ ζ'ζ
PZ'U ζζίβτι ε
9Z61 H0069 66ZSZ\ ζ
9V9L Z89V6 ΐ
0IIx00T (γ)ρ ΘΖ
蚩^ απχ ¾ι¾Η# τ τ挲
Figure imgf000007_0001
17.Z980/Z10ZN3/X3d 9 680/ 0Z OAV 14 29.51 3.02701 3.23
15 30.5545 2.92587 37.39
16 30.8489 2.89861 16.53
17 31.092 2.8765 24.45
18 32.3275 2.76933 1.51
19 33.55 2.67117 4.68
20 34.4404 2.60412 7.77
21 36.0614 2.4907 6.25
22 39.6499 2.27316 3.01
23 42.857 2.11019 5.02
24 43.3991 2.08508 3.28
25 45.0685 2.01165 0.85
26 47.6042 1.90867 4.27
27 48.8645 1.86235 6.3
28 49.4231 1.8426 3.56
29 51.7681 1.76597 1.26
30 53.1998 1.72177 4.63
31 55.4233 1.65785 2.3
32 58.3899 1.58049 0.79
33 59.5015 1.55231 2.5 实施例 2-19
具体配料比例和晶化条件见表 1, 具体配料过程同实施例 1。
合成样品做 XRD分析,数据结果与表 2接近, 即峰位置和形状相同, 依合成条件的变化峰相对峰强度在 ±10%范围内波动, 表明合成产物具有
SAPO-34结构的特征。 产品元素组成分析结果见表 1。
对实施例 1-10原粉样品进行 13C MAS NMR分析,通过与二异丙醇胺 的 13C MAS NMR标准谱图对照, 发现样品中只有二异丙醇胺的共振峰。 实施例 20 将实施例 1得到的样品于 550°C下通入空气焙烧 4小时,然后压片、 破碎至 20〜40目。 称取 5.0g样品加入装有 30ml乙醇的釜式反应器, 进行乙醇脱水反应。 反应温度设定在 150°C, 反应在搅拌状态下进行。 反应结果显示, 乙醇转化率可达 90%, 产物中乙醚选择性为 90%。 实施例 21
将实施例 1得到的样品于 55CTC下通入空气焙烧 4小时, 然后压片、 破碎至 20〜40目。 称取 l .Og样品装入固定床反应器, 进行 MTO反应 评价。 在 55CTC下通氮气活化 1小时, 然后降温至 45CTC进行反应。 甲醇 由氮气携带, 氮气流速为 40ml/mm, 甲醇重量空速 4.0h— 反应产物由 在线气相色谱进行分析(Vanan3800, FID检测器, 毛细管柱 PoraPLOT Q-HT) 。 结果示于表 3。 表 3样品的甲醇转化制烯'烃反应结果
寿命 选择性 (质量%) *
样品
(min) CH4 C2H C2H6 C3H6 C3H8 C4+ c5 + C2H +C3H6 实施
130 1.40 42.74 0.57 39.36 1.23 10.57 4.23 82.00 例 1
* 100%甲醇转化率时最高 (乙烯十丙烯)选择性 实施例 22
将实施例 1得到的样品于 550。C下通入空气焙烧 4小时。 C02、 CH4 的吸附等温线由 Micrometrics ASAP 2020装置测得。测量前样品在真空状 态下 35CTC脱气预处理 4小时。 吸附测试恒温在 25°C, 压力是 101kpa。 表 4样品的 C02/CH4吸附分离结果
样品 吸附量 (mmol/g) C02/CH4
C02 CH4
实施例 1 3.81 0.22 17.3

Claims

权 利 要 求
1. 一种 SAPO-34分子筛, 其特征在于, 所述分子筛具有如下的无水化学 组成: mDIPA. (SixAlyPz)02, 其中, DIPA为二异丙醇胺, m为每摩尔 (SixAlyPz)02中二异丙醇胺的摩尔数, m=0.03~0.25 ;
x、 y、 z分别表示 Si、 Al、 P的摩尔分数, 其范围分别是 x=0.01~0.30, y=0.40〜0.60, z=0.25~0.49, 且 x+y+z=l。
2. 根据权利要求 1所述的 SAPO-34分子筛, 其特征在于, X射线衍射 图谱在以下位置具有衍射峰-
Figure imgf000010_0001
3. 一种合成权利要求 1所述 SAPO-34分子筛的方法, 其特征在于, 合成 步骤如下:
a) 将去离子水、 硅源、 铝源、 磷源和 DIPA按照一定比例混合, 得到具 有如下摩尔配比的初始凝胶混合物:
Si02/Al203 =0.05 - 1 .5;
Ρ2Ο5/Α12Ο3 = 0.5 ~ 1 .5;
Η2Ο/Α12Ο3 = 5 ~ 100 ;
DIPA/Al2O3 = 5 ~ 30; DIPA为二异丙醇胺;
b) 将步骤 a) 所得初始凝胶混合物装入高压合成釜, 密闭, 升温到
150-220 °C, 在自生压力下晶化 5〜72小时;
c) 待晶化完全后, 将固体产物经分离, 用去离子水洗涤至中性, 干燥后 即得所述 SAPO-34分子筛。
4. 按照权利要求 3所述的方法, 其特征在于, 所述步骤 a) 初始凝胶混 合物中的硅源为硅溶胶、 活性二氧化硅、 正硅酸酯、 偏高岭土中的一 种或任意几种的混合物; 铝源为铝盐、 活性氧化铝、 烷氧基铝、 偏高 岭土中的一种或任意几种的混合物; 磷源为正磷酸、 磷酸氢铵、 磷酸 二氢铵、 有机磷化物或磷氧化物中的一种或任意几种的混合物。
5. 按照权利要求 3所述的方法, 其特征在于, 所述步骤 b) 中的晶化过 程在静态或动态下进行。
6. 按照权利要求 3所述的方法, 其特征在于, 所述步骤 a) 初始凝胶混 合物中 DIPA/A1203 = 6.C 18 。
7. 一种酸催化反应的催化剂, 其特征在于, 根据权利要求 1-2任一项所 述的 SAPO-34分子筛或根据权利要求 3-6所述任一方法合成的 SAPO-34分子筛经 400 ~ 700 °C空气中焙烧得到。
8. 一种含氧化合物转化制烯烃反应的催化剂, 其特征在于, 根据权利要 求 1-2任一项所述的 SAPO-34分子筛或根据权利要求 3-6所述任一方 法合成的 SAPO-34分子筛经 400〜700°C空气中焙烧得到。
9. 一种 CH4/CO 附分离材料, 其特征在于, 根据权利要求 1-2任一项 所述的 SAPO-34分子筛或根据权利要求 3-6所述任一方法合成的 SAPO-34分子筛经 400 ~ 700 °C空气中焙烧得到。
PCT/CN2012/086274 2012-12-10 2012-12-10 一种以二异丙醇胺为模板剂的sapo-34分子筛及其合成方法 WO2014089736A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086274 WO2014089736A1 (zh) 2012-12-10 2012-12-10 一种以二异丙醇胺为模板剂的sapo-34分子筛及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086274 WO2014089736A1 (zh) 2012-12-10 2012-12-10 一种以二异丙醇胺为模板剂的sapo-34分子筛及其合成方法

Publications (1)

Publication Number Publication Date
WO2014089736A1 true WO2014089736A1 (zh) 2014-06-19

Family

ID=50933661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086274 WO2014089736A1 (zh) 2012-12-10 2012-12-10 一种以二异丙醇胺为模板剂的sapo-34分子筛及其合成方法

Country Status (1)

Country Link
WO (1) WO2014089736A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532350B2 (en) 2014-08-22 2020-01-14 W.R. Grace & Co.-Conn Method for synthesizing silicoaluminophosphate-34 molecular sieves using monoisopropanolamine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088483A (zh) * 1992-12-19 1994-06-29 中国科学院大连化学物理研究所 一种以三乙胺为模板剂的合成硅磷铝分子筛及其制备
CN102424399A (zh) * 2011-09-05 2012-04-25 中国科学院过程工程研究所 一种制备硅铝磷酸盐分子筛的方法
CN102557072A (zh) * 2010-12-29 2012-07-11 中国科学院大连化学物理研究所 Sapo-34分子筛的溶剂热合成方法和由其制备的催化剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088483A (zh) * 1992-12-19 1994-06-29 中国科学院大连化学物理研究所 一种以三乙胺为模板剂的合成硅磷铝分子筛及其制备
CN102557072A (zh) * 2010-12-29 2012-07-11 中国科学院大连化学物理研究所 Sapo-34分子筛的溶剂热合成方法和由其制备的催化剂
CN102424399A (zh) * 2011-09-05 2012-04-25 中国科学院过程工程研究所 一种制备硅铝磷酸盐分子筛的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532350B2 (en) 2014-08-22 2020-01-14 W.R. Grace & Co.-Conn Method for synthesizing silicoaluminophosphate-34 molecular sieves using monoisopropanolamine

Similar Documents

Publication Publication Date Title
Fan et al. A novel solvothermal approach to synthesize SAPO molecular sieves using organic amines as the solvent and template
AU2016417175B2 (en) Method for synthesizing nano SAPO-34 molecular sieve, and SAPO-34 molecular sieve catalyst and application thereof
WO2008019586A1 (fr) Procédé de synthèse sur site d&#39;un catalyseur à microsphère utilisé pour convertir un composé oxygène en oléfine
Sadeghpour et al. High-temperature and short-time hydrothermal fabrication of nanostructured ZSM-5 catalyst with suitable pore geometry and strong intrinsic acidity used in methanol to light olefins conversion
KR101652209B1 (ko) Sapo-34 분자체 및 그 합성 방법
WO2014089740A1 (zh) 一种以二甘醇胺为模板剂的sapo-34分子筛及其合成方法
WO2008022532A1 (fr) Procédé destiné à synthétiser rapidement un tamis moléculaire de silicoaluminophosphate sapo-34
WO2016090612A1 (zh) 一种中微孔sapo-34分子筛的合成方法
Liu et al. Melting-assisted solvent-free synthesis of hierarchical SAPO-34 with enhanced methanol to olefins (MTO) performance
RU2753413C1 (ru) Катализатор на основе молекулярного сита, способ его получения и применение
Liang et al. Rational construction of hierarchical SAPO-34 with enhanced MTO performance without an additional meso/macropore template
Di et al. Green and efficient dry gel conversion synthesis of SAPO-34 catalyst with plate-like morphology
Tao et al. Hierarchical low-silica SAPO-34 with enhanced MTO performance: Mesopore template-and fluoride-free synthesis
CN109205637B (zh) Sapo-35分子筛及其制备方法和应用
WO2014089738A1 (zh) 一种以n-甲基二乙醇胺为模板剂的sapo-34分子筛及其合成方法
WO2014089736A1 (zh) 一种以二异丙醇胺为模板剂的sapo-34分子筛及其合成方法
CN110790285B (zh) 一种具有lta骨架结构的磷酸硅铝分子筛及其制备方法和应用
KR102197599B1 (ko) 실리코알루미노포스페이트 분자체, 및 그 제조 방법, 이를 이용한 이산화탄소의 선택적 분리방법
CN109928402B (zh) Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂
WO2014047800A1 (zh) 一种sapo-34分子筛的合成方法及由其制备的催化剂
WO2019113948A1 (zh) Sapo-34分子筛的制备方法、酸催化剂及含氧化合物转化制烯烃反应的催化剂
CN107673370B (zh) 纳米sapo-34分子筛的合成方法、sapo-34分子筛催化剂及其应用
WO2014089739A1 (zh) 一种sapo-35分子筛及其合成方法
Rajesh et al. Mesoporous aluminophosphate and silicoaluminophosphate molecular sieves: Room temperature synthesis, characterization and catalytic performance
Li et al. Materials Today Sustainability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890030

Country of ref document: EP

Kind code of ref document: A1