WO2012012296A1 - Combined modality treatment systems, methods and apparatus for body contouring applications - Google Patents

Combined modality treatment systems, methods and apparatus for body contouring applications Download PDF

Info

Publication number
WO2012012296A1
WO2012012296A1 PCT/US2011/044270 US2011044270W WO2012012296A1 WO 2012012296 A1 WO2012012296 A1 WO 2012012296A1 US 2011044270 W US2011044270 W US 2011044270W WO 2012012296 A1 WO2012012296 A1 WO 2012012296A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
lipid
target region
subject
subcutaneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2011/044270
Other languages
English (en)
French (fr)
Inventor
Mitchell E. Levinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZEL TIQ AESTHETICS Inc
Original Assignee
ZEL TIQ AESTHETICS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZEL TIQ AESTHETICS Inc filed Critical ZEL TIQ AESTHETICS Inc
Priority to CA2806038A priority Critical patent/CA2806038A1/en
Priority to JP2013520764A priority patent/JP2013532513A/ja
Priority to AU2011279923A priority patent/AU2011279923B2/en
Priority to EP11810204.5A priority patent/EP2595557A4/en
Publication of WO2012012296A1 publication Critical patent/WO2012012296A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00458Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
    • A61B2018/00464Subcutaneous fat, e.g. liposuction, lipolysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure

Definitions

  • the present application relates generally to combined modality treatment apparatuses, systems and methods for body contouring applications including systems and methods for delivering radio frequency energy and cooling to affect subcutaneous lipid-rich cells.
  • Excess body fat, or adipose tissue may be present in various locations of the body, including, for example, the thigh, buttocks, abdomen, knees, back, face, arms, and other areas. Excess adipose tissue can detract from personal appearance and athletic performance. Moreover, excess adipose tissue is thought to magnify the unattractive appearance of cellulite, which forms when subcutaneous fat lobules protrude or penetrate into the dermis and create dimples where the skin is attached to underlying structural fibrous strands. Cellulite and excessive amounts of adipose
  • a variety of methods have been used to treat individuals having excess body fat and, in many instances, non-invasive removal of excess subcutaneous adipose tissue can eliminate unnecessary recovery time and discomfort associated with invasive procedures such as liposuction.
  • Conventional non-invasive treatments for removing excess body fat typically include topical agents, weight-loss drugs, regular exercise, dieting, or a combination of these treatments.
  • One drawback of these treatments is that they may not be effective or even possible under certain circumstances. For example, when a person is physically injured or ill, regular exercise may not be an option.
  • weight-loss drugs or topical agents are not an option when they cause an allergic or negative reaction.
  • fat loss in selective areas of a person's body often cannot be achieved using general or systemic weight- loss methods.
  • Newer non-invasive methods include applying radiant energy to subcutaneous lipid-rich cells via, e.g., radio frequency and/or light energy, such as described in U.S. Patent Publication No. 2006/0036300 and U.S. Patent No. 5,143,063, or via, e.g., high intensity focused ultrasound (HIFU) radiation such as described in U.S. Patent Nos. 7,258,674 and 7,347,855. Additional methods and devices for non-invasively reducing subcutaneous adipose tissue by cooling are disclosed in U.S. Patent No.
  • Figure 1 is an isometric view schematically illustrating a combined modality treatment system for treating subcutaneous lipid-rich regions of a patient in accordance with an embodiment of the disclosure.
  • Figure 2 is a schematic cross-sectional view of the skin and subcutaneous tissue of a subject.
  • Figure 3 is a schematic cross-sectional view of the skin and subcutaneous tissue of a subject illustrating the application of RF current thereto.
  • Figure 4 is a partial cross-sectional view illustrating a combined modality treatment device suitable to be used in the system of Figure 1 in accordance with embodiments of the disclosure.
  • Figure 5 is a flow diagram illustrating a method for reducing irregularities in a surface of a subject's skin resulting from an uneven distribution of adipose tissue in the subcutaneous layer in accordance with an embodiment of the disclosure.
  • Figure 6 is a schematic block diagram illustrating computing system software modules and subcomponents of a computing device suitable to be used in the system of Figure 1 in accordance with an embodiment of the disclosure.
  • a method can include selectively heating tissue by one or more methods, such as, e.g., by delivering capacitiveiy or conductively coupled radiofrequency (RF) energy to a target region of the subject at a frequency, duration and power.
  • RF radiofrequency
  • the method can include removing heat such that lipid-rich lobules in the subcutaneous layer at the target region are reduced in number and/or size to an extent while non- lipid-rich cells and lipid-rich regions adjacent to the fibrous septae are not reduced in number or size to the extent, thereby reducing irregularities in the surface of skin of the subject.
  • inventions of the disclosure are directed to a system for noninvasive, transdermal removal of heat from subcutaneous lipid-rich cells of a subject.
  • the system can include a treatment unit in thermal communication with a fluid chamber, wherein the fluid chamber can house and provide a coolant.
  • the system can also include a radiofrequency (RF) energy generating unit for generating RF current, and a treatment device in fluid communication with the treatment unit and in electrical communication with the RF energy generating unit.
  • RF radiofrequency
  • the system can further include a controller in communication with the treatment unit, the RF energy generating unit and
  • the controller has instructions for causing the treatment device to capacitively or conductively couple RF energy to the subject to selectively heat connective tissue in a target region beneath an epidermis of the subject to a maximum temperature less than a collagen denaturation temperature.
  • the treatment device can be further configured to reduce a temperature of the target region beneath the epidermis of the subject to selectively reduce the temperature of subcutaneous lipid-rich cells in the target region such that the subcutaneous lipid-rich cells are substantially affected while non-lipid rich cells in the epidermis and subcutaneous lipid-rich cells adjacent to the connective tissue are not substantially affected (e.g., damaged, injured, disrupted or destroyed).
  • the combined modality treatment system can include treatment unit in thermal communication with a fluid chamber, wherein the fluid chamber can house and provide a coolant.
  • the combined modality treatment system can also include a RF energy source for generating RF current.
  • the system can include a controller and a treatment device.
  • the treatment device can include a heat exchange plate coupled to the RF energy source and a thermoelectric cooling element in communication with the treatment unit.
  • the controller includes instructions that cause the treatment device to capacitively or conductively couple radiofrequency (RF) energy to the skin of the subject to selectively heat fibrous septae in the target region to a final temperature less than a fibrous septae denaturation temperature.
  • the controller can also include instructions that cause the treatment device to remove heat from the subcutaneous lipid-rich cells of the subject during a treatment process such that subcutaneous lipid-rich cells are substantially affected while non-lipid-rich cells and subcutaneous lipid-rich cells adjacent to the fibrous septae are not substantially affected.
  • RF radiofrequency
  • Figure 1 and the following discussion provide a brief, general description of an example of a combined modality treatment system 100 in which aspects of the disclosure can be implemented. Those skilled in the relevant art will appreciate that other examples of the disclosure can be practiced with other treatment systems and
  • treatment system refers to any of the above system categories of medical treatment as well as any treatment regimes or medical device usage.
  • the combined modality treatment system 100 is suitable for treating a subject's subcutaneous adipose tissue, including such as by cooling.
  • subcutaneous tissue means tissue lying beneath the dermis and includes subcutaneous fat, or adipose tissue, which primarily is composed of lipid-rich cells, or adipocytes.
  • subcutaneous lipid-rich cells can selectively be affected.
  • the epidermis and dermis of the patient 101 have lower amounts of lipids compared to the underlying lipid-rich cells forming the subcutaneous tissues.
  • the treatment system 100 can apply cooling temperatures to the skin of the patient in a range of from about -20°C to about 20°C. In other embodiments, the cooling temperatures can be from about -20°C to about 10°C, from about -15°C to about 5°C, or from about -10°C to about 0°C.
  • the selective effect of cooling on lipid-rich cells is believed to result in, for example, membrane disruption, shrinkage, disabling, destroying, removing, killing, or another method of lipid-rich cell alteration.
  • Such alteration is believed to be an intermediate and/or final result of one or more mechanisms acting alone or in combination. It is thought that such mechanism or mechanisms trigger an apoptotic cascade, which is believed to be the dominant form of lipid-rich cell death by non-invasive cooling.
  • Apoptosis also referred to as "programmed cell death” is a genetically- induced death mechanism by which cells self-destruct without incurring damage to surrounding tissues.
  • An ordered series of biochemical events induce cells to morphologically change. These changes include cellular blebbing, loss of cell membrane asymmetry and attachment, cell shrinkage, chromatin condensation, and
  • apoptosis in contrast to cellular necrosis (a traumatic form of cell death causing local inflammation), is that apoptotic cells express and display phagocytic markers on the surface of the cell membrane, thus marking the cells for phagocytosis by, for example, macrophages.
  • phagocytes can engulf and remove the dying cells (e.g., the lipid-rich cells) without eliciting an immune response.
  • Temperature exposures that elicit these apoptotic events in lipid-rich cells may contribute to long-lasting and/or permanent reduction and reshaping of subcutaneous adipose tissue.
  • one mechanism of apoptotic lipid-rich cell death by cooling is believed to involve localized crystallization of lipids within the adipocytes at temperatures that do not induce crystallization in non-lipid-rich cells.
  • the crystallized lipids may selectively injure these cells, inducing apoptosis (and may also induce necrotic death if the crystallized lipids damage or rupture the bilayer lipid membrane of the adipocyte).
  • Another mechanism of injury involves the lipid phase transition of those lipids within the cell's bilayer lipid membrane, which results in membrane disruption, thereby inducing apoptosis.
  • lipolysis i.e., fat metabolism
  • cold stress has been shown to enhance rates of lipolysis from that observed under normal conditions which serves to further increase the volumetric reduction of
  • Cellulite typically is a hormonally mediated condition characterized by the uneven distribution of adipose tissue in the subcutaneous layer that gives rise to an irregular, dimpled skin surface common in women.
  • Cellulite-prone tissue can be characterized by the uneven thickness and distribution of some fibrous septae strands.
  • Pierard, G.E., Nizet, J.L, Pierard-Franchimont, C "Cellulite: From Standing Fat Herniation to Hypodermal Stretch Marks," Am. J. Dermatol. 22:1 , 34-37 (2000).
  • Cellulite has proved to be a difficult and vexing problem to treat, although the demand for an effective treatment has been and remains quite high.
  • adipose tissue is subdivided into fat cell chambers or lobules (also called “papillae adiposae") 201 by connective collagenous tissue called fibrous septae 202.
  • the fibrous septae 202 which for females tend to generally be oriented perpendicular to the skin surface and anchor the dermal layers 203 to the underlying fascia and muscle (not shown), are organized within the subcutaneous layer to form a connective web around the adipose cells or fat lobules 202.
  • Subcutaneous adipose cells and their lobules 202 are not uniformly distributed throughout the subcutaneous tissue layer (e.g., between the dermis and the muscle layers), but exhibit regional differences in size and shape. These regional differences can, in part, be due to gender, age, genetics, hormones and physical conditioning among other physiological factors.
  • the number, size, distribution and orientation of fibrous septae 202 also vary by body location, gender and age. For example, as described above, histological studies have shown that fibrous septae architecture in females differs from that in males.
  • fibrous septae 202 tend to form an intersecting network that divide the papillae adiposae into small, polygonal units.
  • fibrous septae 202 in some females may tend to be oriented perpendicularly to the cutaneous surface, creating fat cell chambers that are columnar in shape and sequestered by the connective strands and the overlaying dermis layer 203 (see, e.g., Figure 2).
  • the intersecting fibrous septae 202 are more uniform in size and elasticity as is characteristic of males, the forces within and between the fibrous septae and their
  • This tethering or anchoring is in turn manifested at the skin surface as a low spot 204 relative to adjacent dermal tissue 203 not directly above such septae, which tends to herniate as the papillae adiposae bulge into the dermal tissue 203.
  • the non-homogeneous nature of the skin surface's relative high and low points results in a dimpled or irregular appearance characteristic of cellulite.
  • cooling the subcutaneous tissues to a temperature lower than 37°C selectively can affect lipid-rich cells. Cooling the lipid-rich cells of the subcutaneous layer tends uniformly to affect the adipose cells distributed throughout the subcutaneous tissue at a given depth below the dermis, for instance, when such lipid-rich cells are cooled non-invasively. As with the epidermal and dermal layers of the patient 101 , however, the fibrous septae 202 generally are not affected by such treatment temperatures.
  • the combined modality treatment system 100 can further be configured to selectively remove heat from (i.e., cool) the bulging and/or herniating fat lobules near the dermal layer and distal from the tethering fibrous septae 202, while limiting the disruption of adipose tissue near the septae, which lie near the low spots.
  • heat from i.e., cool
  • Such selective disruption of the fat lobules 201 that constitute the high spots will have the general effect of flattening the overall contour of the skin.
  • the combined modality treatment system 100 is configured to not only cool subcutaneous tissue as described herein but also to selectively heat tissue such as the fibrous septae 202 and certain adipose tissue according to the methods described herein.
  • tissue such as the fibrous septae 202 and certain adipose tissue according to the methods described herein.
  • One method of selectively heating such tissue is by the delivery of radiofrequency (RF) energy, including for example
  • WO00/LEGAL21328542.1 -10- capacitively coupled RF energy, such as a low-level monopolar RF energy as well as conductively coupled RF energy, to the subcutaneous tissue selectively to heat regions of tissue bound by the connective web of fibrous septae.
  • Adipose cells are composed almost entirely of lipids, which generally have low thermal and electrical conductivities relative to other tissue.
  • fibrous septae have similar properties to the dermis and, for example, have been shown to conduct electrical energy more efficiently.
  • the connective strands can provide a path of least resistance for capacitively or inductively coupled RF current traveling via, e.g., the surface of the skin through the epidermis and dermis, and around subcutaneous adipose tissue .
  • RF current (which is high frequency current in the frequency range of about 0.3 MHz to about 100 MHz or higher, or in some embodiments in the range of about 0.3 MHz to about 40 MHz, while in other embodiments in the range of about 0.3 MHz to about 6 MHz), produces a thermal effect on living tissue depending on the electrical properties of the tissue.
  • RF energy may be used in addition to or in place of RF energy, including, e.g., optical (e.g., laser light), acoustic (e.g., ultrasound), infrared, microwave, etc.
  • optical e.g., laser light
  • acoustic e.g., ultrasound
  • infrared microwave
  • FIG. 3 A schematic depiction of the application of energy such as RF current 210 to a region of dimpled tissue near a fibrous septum 202 is shown in Figure 3.
  • RF current 210 is applied via an electrode as described herein, the current 210 concentrates in the dermal and connective tissue such as the fibrous septum 202 as described above.
  • Heating generated by application of this RF current depicted by arrows 210, heats the fibrous septum 202 and selected of the adipose cells in the fat lobules 201 adjacent the fibrous septum 202.
  • the treatment parameters may be adjusted selectively to affect, in connection with cooling the subcutaneous tissue, the temperature profile of and the number of the adipose cells in the lobules 201 that are heated via the application of such RF current.
  • RF power in the range of about 0.02 to about 10 W/cm 2 or higher during cooling can have the desired effect of warming the affected fibrous septae 202 and the fat lobules in a region near the affected fibrous septae 202 while allowing the cooling and subsequent selective reduction of fat lobules 201 more distal from the fibrous septae 202.
  • Heat is generated by the tissue's natural resistance to the flow of current (e.g., movement of electrons and ions) within an electrical field as a reaction to the rapid change of polarity.
  • This electrical field changes polarity at a desired rate (e.g., at approximately 0.3 to approximately 100 MHz), and the charged particles within the electric field change orientation at that same frequency.
  • the tissue's natural resistance to the movement of these charged ions and molecules in the skin and subcutaneous tissue generates heat.
  • Pope, K., Levinson, M., Ross, E.V. "Selective Fibrous Septae Heating: An Additional Mechanism of Action for Capacitively Coupled Monopolar Radiofrequency,” Thermage, Inc. (2005).
  • RF energy is generated and applied to a target region of the patient 101 while simultaneously cooling the subcutaneous tissues to a temperature lower than 37°C in a manner that (a) selectively heats the fibrous septae and the adipose tissue adjacent to the fibrous septae, and (b) selectively affects the lipid-rich cells in regions of thinning or absent fibrous septae.
  • the fibrous septae are heated to a maximum temperature less than a fibrous septae denaturation temperature.
  • Thermal energy is known to denature collagenous tissue, such as fibrous septae, at temperatures of approximately 65°C (e.g., between 60° and 80°C). Therefore, in one embodiment, the capacitively coupled RF energy is delivered to the target region of the patient such that the fibrous septae are heated to a temperature approximately less than 60°C.
  • the treatment system 100 can apply RF current to the skin of the patient while/during cooling treatment in a simultaneous manner, or in a sequential manner, such that the fibrous septae are warmed to a range of from about 0°C to about 60°C.
  • the fibrous septae can be warmed to temperatures from about 10°C to about 30°C, from 5°C to about 20°C, or from about 0°C to about 10°C.
  • capacitively coupled RF energy can be delivered to the target region of the patient 101 such that the lipid-rich cells adjacent to the fibrous septae are not cooled to temperatures below approximately 10°C - 15°C, while allowing the lipid-rich cells remote from the fibrous septae or near thinning fibrous septae strands to cool to a temperature below approximately 10°C.
  • RF energy can be applied to the target region of the patient 101 simultaneously with cooling (i.e., removing heat) such that a controllable
  • WO00/LEGAL21328542.1 -12- temperature difference is maintained between (a) the fibrous septae and tissue adjacent to the fibrous septae, and (b) bulging or herniating adipose tissue spaced apart or otherwise separated from the fibrous septae.
  • the RF energy can be applied to the target region before, periodically during, or after cooling for selectively affecting bulging or herniating adipose tissue in the subcutaneous layer of the patient 101.
  • the combined modality treatment system 100 includes a controller, a computing device, a data acquisition device, a treatment unit, an RF energy generating unit and one or more applicators.
  • the system 100 can employ these components in various embodiments to receive a selection of a treatment profile and apply the selected treatment using an applicator.
  • FIG. 1 is an isometric view schematically illustrating a combined modality treatment system 100 for selectively heating fibrous septae and removing heat from herniated and/or bulging subcutaneous lipid-rich regions of a subject patient 101 in accordance with an embodiment of the disclosure.
  • the system 100 can include a combined modality device 104 including an applicator 105 that engages a target region of the subject 101 , such as the abdominal region 102.
  • combined modality devices 104 and applicators 105 can be provided having various shapes and sizes suitable for different body regions and body parts such that any suitable area for removing heat from a subcutaneous lipid-rich region of the subject 101 can be achieved.
  • An applicator such as applicator 105, is a component of the system 100 that both cools subcutaneous tissue and selectively heats subcutaneous fibrous septae in a region of a subject 101 , such as a human or animal (i.e., "patient").
  • a subject 101 such as a human or animal (i.e., "patient").
  • Various types of applicators may be applied during treatment, such as a vacuum applicator, a belt applicator (either of which may be used in combination with a massage or vibrating capability), and so forth.
  • Each applicator may be designed to treat identified portions of the patient's body, such as chin, cheeks, arms, pectoral areas, thighs, calves, buttocks, abdomen, "love handles", back, and so forth.
  • the vacuum applicator may be applied at the back region, and the belt applicator can be applied around the thigh region, either with or without massage or vibration.
  • the system 100 may also include a patient protection device (not shown) incorporated into or configured for use with the applicator that prevents the applicator from directly contacting a patient's skin and thereby reducing the likelihood of cross-contamination between patients, minimizing cleaning requirements for the applicator.
  • a patient protection device not shown
  • the patient protection device may also include or incorporate various storage, computing, and communications devices, such as a radio frequency identification (RFID) component, allowing for example, use to be monitored and/or metered.
  • RFID radio frequency identification
  • Exemplary patient protection devices are described in commonly assigned U.S. Patent Publication No. 2008/0077201.
  • the system 100 can also include a treatment unit 106 and supply and return fluid lines 108a-b between the combined modality treatment device 104 and the treatment unit 106.
  • a treatment unit 106 is a device that, based on variable power input, can increase or decrease the temperature at a connected combined modality treatment device 104 that in turn may be attached to or incorporated into the applicator 105.
  • the treatment unit 106 can remove heat from a circulating coolant to a heat sink and provide a chilled coolant to the combined modality treatment device 104 via the fluid lines 108a-b.
  • treatment unit 106 can circulate warm coolant to the combined modality treatment device 104 during periods of warming.
  • the circulating coolant examples include water, glycol, synthetic heat transfer fluid, oil, a refrigerant, and/or any other suitable heat conducting fluid.
  • the fluid lines 108a-b can be hoses or other conduits constructed from polyethylene, polyvinyl chloride, polyurethane, and/or other materials that can accommodate the particular circulating coolant.
  • the treatment unit 106 can be a refrigeration unit, a cooling tower, a thermoelectric chiller, or any other device capable of removing heat from a coolant. Alternatively, a municipal water supply (e.g., tap water) can be used in place of the treatment unit 106.
  • a municipal water supply e.g., tap water
  • the system 100 can further include an RF energy generating unit 107 and RF power lines 109a-b between the treatment device 104, an RF current return
  • the RF energy generating unit 107 can include a variable powered RF generator capable of generating and delivering RF energy through the RF power line 109a to one or more RF electrodes, or other electrically conductive material that can be charged with RF current, in the combined modality treatment device 104 for capacitively coupling radiofrequency (RF) energy to the target region of the subject 101.
  • RF radiofrequency
  • a dielectric layer or film may be used on the one or more RF electrodes to increase the impedance of the electrode and produce a more uniform current flow through the electrode to the skin of the patient.
  • a layer or film creates a capacitance effect whose magnitude and other qualities may be controlled by the composition, surface area and thickness of the layer, the choice of methods by which the layer or film is deposited and/or adhered to the RF electrode, and the frequency of the RF signal.
  • system 100 can be configured to conductively couple RF energy to a patient. This may be accomplished by, e.g., the use of an RF electrode without a dielectric layer or film.
  • the choice of whether to use a capacitively coupled RF system or a conductively-coupled RF system may be predicated upon the particular design of the electrode, the location on the patient which the system 100 is used, frequency and power settings, temperatures, treatment duration, and other such parameters and other considerations.
  • the combined modality treatment device 104 includes at least one applicator 105 and is associated with at least one treatment unit 106.
  • the applicator 105 can provide mechanical energy to create a vibratory, massage, and/or pulsatile effect.
  • the applicator 105 can include one or more actuators, such as, motors with eccentric weight, or other vibratory motors such as hydraulic motors, electric motors, pneumatic motors, solenoids, other mechanical motors, piezoelectric shakers, and so on, to provide vibratory energy or other mechanical energy to the treatment site.
  • Further examples include a plurality of actuators for use in connection with a single combined modality treatment device 104 and/or applicator 105 in any desired combination.
  • an eccentric weight actuator can be associated with one
  • the combined modality treatment device 104 can include one or more heat exchanging units.
  • the heat exchanging unit can be a Peltier-type thermoelectric element, and the combined modality treatment device 104 can have multiple individually controlled heat exchanging units (e.g., between 1 and 50, between 10 and 45; between 15 and 21 , approximately 100, etc.) to create a custom spatial cooling profile and/or a time-varying cooling profile.
  • Each custom treatment profile can include one or more segments, and each segment can include a specified duration, a target temperature, and control parameters for features such as vibration, massage, vacuum, and other treatment modes.
  • Treatment devices having multiple individually controlled heat exchanging units are described in commonly assigned U.S. Patent Publication No. 2008/007721 1 , U.S. Provisional Application No. 61/298,175, filed January 25, 2010, and U.S. Provisional Application No. 61/354,615 filed June 14, 2010.
  • the combined modality treatment device 104 can include one or more RF electrodes.
  • the RF electrodes can be a single electrode or a plurality of electrodes positioned in a desired or segmented arrangement and can form a segmented flexible circuit.
  • the treatment device 104 can include an electrically conductive material, such as aluminum, that can be charged with RF current.
  • RF power can be delivered to the RF electrodes via RF power line 109a and, thereafter, coupled to the target region of the subject 101 to achieve selective heating of the underlying fibrous septae collagen network and adjacent adipose tissue.
  • RF electrodes can be monopolar or bipolar.
  • Capacitively coupled monopolar RF current flows from the electrode into the epidermis and dermis, through the subcutaneous tissue via conduction along the less-resistant fibrous septae and into the muscle tissue (at which location it ideally has dissipated to a level that it does not have any appreciable effect thereon).
  • the RF current continues to flow through the
  • the treatment device 104 may operate without a return electrode and line 109b.
  • the return RF current flows out of the body and through the air to the RF energy generating unit 107 to complete the circuit.
  • the frequency in such a configuration can be between about 30 MHz and about 50 MHz.
  • the frequency for such a configuration is between about 35 MHz and about 45 MHz.
  • the frequency for such a configuration is about 40 MHz.
  • the system 100 can further include a power supply 110 and a controller 1 14 operatively coupled to the combined modality treatment device 104 and the applicator 105.
  • the power supply 1 10 can provide a direct current voltage to the thermoelectric treatment device 104 and/or the applicator 105 to remove heat from the subject 101.
  • the controller 114 can monitor process parameters via sensors (not shown) placed proximate to the combined modality treatment device 104 via a control line 116 to, among other things, adjust the heat removal rate and/or RF energy delivery rate based on the process parameters.
  • the controller 1 14 can further monitor process parameters to adjust the applicator 105 based on treatment parameters, such as treatment parameters defined in a custom treatment profile or patient-specific treatment plan.
  • the controller 1 14 can exchange data with the applicator 105 via an electrical line 1 12 or, alternatively, via a wireless or an optical communication link.
  • control line 1 16 and electrical line 1 12 are shown in Figure 1 without any support structure.
  • control line 1 16 and electrical line 112 (and other lines including, but not limited to fluid lines 108a-b and RF power lines 109a-b) may be bundled into or otherwise accompanied by a conduit or the like to protect such lines, enhance ergonomic comfort, minimize unwanted motion (and thus potential inefficient removal of heat from and/or delivery of RF energy to subject 101 ), and to provide an aesthetic appearance to system 100.
  • Examples of such a conduit include a flexible polymeric, fabric, or composite sheath, an adjustable arm, etc.
  • Such a conduit (not shown) may be designed (via adjustable joints, etc.) to "set" the conduit in place for the treatment of subject 101.
  • the controller 1 14 can include any processor, Programmable Logic Controller, Distributed Control System, secure processor, and the like.
  • a secure processor can be implemented as an integrated circuit with access-controlled physical interfaces; tamper resistant containment; means of detecting and responding to physical tampering; secure storage; and shielded execution of computer-executable instructions. Some secure processors also provide cryptographic accelerator circuitry. Secure storage may also be implemented as a secure flash memory, secure serial EEPROM, secure field programmable gate array, or secure application-specific integrated circuit.
  • the controller 1 14 can receive data from an input device 1 18 (shown as a touch screen), transmit data to an output device 120, and/or exchange data with a control panel (not shown).
  • the input device 1 18 can include a keyboard, a mouse, a stylus, a touch screen, a push button, a switch, a potentiometer, a scanner, or any other device suitable for accepting user input.
  • the output device 120 can include a display or touch screen, a printer, video monitor, a medium reader, an audio device, any combination thereof, and any other device or devices suitable for providing user feedback.
  • the output device 120 is a touch screen that functions as both an input device 1 18 and an output device 120.
  • the control panel can include visual indicator devices or controls (e.g., indicator lights, numerical displays, etc.) and/or audio indicator devices or controls.
  • the control panel may be a component separate from the input device 1 18 and/or output device 120, may be integrated with one or more of the devices, may be partially integrated with one or more of the devices, may be in another location, and so on.
  • the control panel, input device 1 18, output device 120, or parts thereof may be contained in, attached to, or integrated with the combined modality treatment device 104 and/or applicator 105.
  • the controller 114, power supply 1 10, control panel, treatment unit 106, input device 1 18, and output device 120 are carried by a rack 124 with wheels 126 for portability.
  • the controller 114 can be contained in, attached to, or integrated with the combined modality treatment device 104 and/or the applicator 105 and/or the patient protection device described above.
  • the various components can be fixedly installed at a treatment
  • the controller 1 14 can cause the applicator 105 to cycle through each segment of a prescribed treatment plan.
  • the applicator 105 applies power to one or more combined modality treatment devices 104, such as thermoelectric coolers (e.g., TEC "zones"), to begin a cooling cycle and, for example, activate features or modes such as vibration, massage, vacuum, etc.
  • the RF energy generating unit 107 is used to generate and transfer RF energy to the RF electrodes in the one or more combined modality treatment devices 104 to begin selectively heating the fibrous septae in the subcutaneous tissue in the target region of the subject 101.
  • the controller 1 14 determines whether a temperature or heat flux is at a sufficient temperature close to the target temperature or heat flux. It will be appreciated that while a region of the body (e.g., adipose tissue) has been cooled or heated to the target temperature, in actuality that region of the body may be close but not equal to the target temperature, e.g., because of the body's natural heating and cooling variations. Thus, although the system may attempt to heat or cool the tissue to the target temperature or to provide by a target heat flux, a sensor may measure a sufficiently close temperature.
  • a region of the body e.g., adipose tissue
  • power can be increased or decreased to change heat flux to maintain the target temperature or "set-point" to selectively affect bulging or herniating adipose lobules at or near the interface between the dermis and subcutaneous tissue, or to affect adipose tissue spaced apart from anchoring fibrous septae in the subcutaneous layer.
  • the controller 114 may apply the temperature and duration indicated in the next treatment profile segment.
  • temperature can be controlled using a variable other than, or in addition to, power.
  • heat flux measurements can indicate other changes or anomalies that can occur during treatment administration.
  • an increase in temperature detected by a heat flux sensor can indicate a freezing event at the skin or underlying tissue (i.e., dermal tissue).
  • An increase in temperature as detected by the heat flux sensors can also indicate movement associated with the applicator, causing the applicator to contact a warmer area of the skin, for example.
  • the combined modality treatment devices 104 may also include additional sensors to detect process treatment feedback.
  • thermal sensors can be included on the combined modality treatment device 104 and/or the RF energy generating unit 107 to measure voltage and current that is delivered to the target region of the subject 101.
  • Thermal sensor output can be used, by the controller 114 for example, to control the delivery of RF power to the RF electrodes, the temperature of the electrodes or the desired temperature of the fibrous septae tissue during a treatment session.
  • Additional sensors may be included for measuring tissue impedance, treatment application force, tissue contact with the applicator and RF energy interaction with the skin of the subject 101 among other process parameters.
  • feedback data associated with RF energy delivery and heat removal from lipid-rich lobules in the subcutaneous layer can be collected in realtime. Real-time collection and processing of such feedback data can be used in concert with treatment administration to ensure that the process parameters used to reduce irregularities in a surface of subject's skin and adipose tissue are administered correctly and efficaciously.
  • a noninvasive applicator is illustrated and discussed herein, minimally invasive applicators may also be employed.
  • the applicator and patient protection device may be integrated.
  • a cryoprobe that may be inserted directly into the subcutaneous adipose tissue to cool or freeze the tissue is an example of such a minimally invasive applicator.
  • the applicator 105 and the combined modality treatment device 104 combine to enhance disruption of cooled adipose tissue while preserving warmed adipose tissue adjacent fibrous septae strands. Further, the examples can provide reduced treatment time, reduced discomfort to the patient, and increased efficacy of treatment.
  • Examples of the system may provide the combined modality treatment device 104 and the applicator 105 which damage, injure, disrupt or otherwise reduce subcutaneous lipid-rich cells contributing to cellulite generally without collateral damage to non-lipid-rich cells or lipid-rich cells adjacent to selectively heated fibrous septae in the treatment region.
  • lipid-rich cells can selectively be affected (e.g.., damaged, injured, or disrupted) by exposing such cells to low temperatures that do not so affect non-lipid-rich cells.
  • RF energy can be administered simultaneously and/or in consecutive fashion to selectively heat (e.g., warm) fibrous septae in the treatment region so as to warm adjacent adipose tissue.
  • lipid-rich cells such as subcutaneous adipose tissue that is bulging and/or herniating into the dermis layer, can be damaged while other cells in the same region are generally not damaged even though the non-lipid-rich cells at the surface may be subject to even lower temperatures.
  • the mechanical energy provided by the applicator may further enhance the effect on lipid-rich cells by mechanically disrupting the affected lipid-rich cells.
  • a cryoprotectant is used with the treatment device to, among other advantages, assist in preventing freezing of non lipid-
  • the applicator 105 is coupled to a combined modality treatment device 104.
  • the treatment device may be configured to be a handheld device such as the device disclosed in commonly-assigned U.S. Patent Application Serial No. 1 1/359,092, filed on February 22, 2006, entitled COOLING DEVICE FOR REMOVING HEAT FROM SUBCUTANEOUS LIPID-RICH CELLS, which is incorporated by reference in its entirety.
  • Applying the combined modality treatment device 104 with pressure or with a vacuum type force to the subject's skin or pressing against the skin can be advantageous to achieve efficient treatment.
  • the subject 101 has a body temperature of about 37°C, and the blood circulation is one mechanism for maintaining a constant body temperature.
  • blood flow through the skin and subcutaneous layer of the region to be treated can be viewed as a heat source that counteracts the cooling of the subdermal fat.
  • cooling the tissue of interest requires not only removing the heat from such tissue but also that of the blood circulating through this tissue.
  • temporarily reducing or eliminating blood flow through the treatment region by means such as, e.g., applying the treatment device with pressure, can improve the efficiency of tissue cooling and avoid excessive heat loss through the dermis and epidermis. Additionally, a vacuum can pull skin away from the body which can assist in cooling targeted underlying tissue.
  • subcutaneous lipid-rich cells By cooling the subcutaneous tissue to a temperature lower than 37°C, subcutaneous lipid-rich cells selectively can be damaged.
  • the epidermis and dermis of the subject 101 have lower amounts of lipids compared to the underlying lipid-rich cells forming the subcutaneous tissues.
  • non-lipid-rich cells usually can withstand colder temperatures better than lipid-rich cells, the subcutaneous lipid- rich cells can be selectively injured while maintaining the non-lipid-rich cells in the dermis and epidermis.
  • An exemplary range for cooling the lipid-rich cells not warmed or otherwise protected from heat generated by RF energy-conducting fibrous septae can be from about -10°C to about 0°C.
  • Figure 4 is a schematic, cross-sectional view illustrating a combined modality treatment device 104 for removing heat from bulging or herniating
  • the treatment device 104 can include a heat exchanging unit, such as a heat exchanging plate 210, and an interface layer 220.
  • the heat exchanging plate 210 is a thermally conductive aluminum plate that can be charged with RF current generated by the RF energy generating unit 107 ( Figure 1 ).
  • the heat exchanging plate 210 can contain a communication component 215 that communicates with the controller 1 14 to provide a first sensor reading 242 as described herein, and a sensor 217 that measures, e.g., temperature of the heat exchanging plate 210, heat flux across a surface of or plane within the heat exchanging plate 210 or RF current.
  • the interface layer 220 can be a plate, a film, a covering, a sleeve or other suitable materials described herein and may serve as the patient protection device described herein.
  • the interface layer 220 is located between the heat exchanging plate 210 and the skin 230 of a subject (not shown), such as the skin of a patient receiving treatment via the combined modality treatment device 104.
  • the interface layer 220 can also contain a similar communication component 225 that communicates with the controller 1 14 to provide a second sensor reading 244 and a sensor 227 that measures, e.g., the temperature of the interface layer 220, heat flux across a surface of or plane within the interface layer 220, RF current or contact pressure with the skin 230 of the patient.
  • a similar communication component 225 that communicates with the controller 1 14 to provide a second sensor reading 244 and a sensor 227 that measures, e.g., the temperature of the interface layer 220, heat flux across a surface of or plane within the interface layer 220, RF current or contact pressure with the skin 230 of the patient.
  • the communication components 215, 225 can receive and transmit information from the controller 114, such as temperature and/or heat flux information as determined by one or both of the sensors 217, 227.
  • the sensors 217, 227 are configured to measure a parameter of the interface without substantially impeding heat transfer between the heat exchanging plate 210 and the subject's skin 230
  • the combined modality treatment device 104 can include a dielectric sleeve 250 for contacting the patient's skin 230 and for achieving a more uniform distribution of RF energy into the patient's underlying subcutaneous tissue.
  • the sleeve 250 can include a first sleeve portion 252 and a second sleeve portion 254 extending from the first sleeve portion.
  • the first sleeve portion 252 can
  • the second sleeve portion 254 can be an isolation layer extending from the first sleeve portion 252.
  • the second sleeve portion 254 can be constructed from latex, rubber, nylon, Kevlar ® , or other substantially impermeable or semi-permeable material.
  • the second sleeve portion 254 can prevent contact between the patient's skin 230 and the heat exchanging plates 210, among other things.
  • the surface of the first sleeve portion 252 can include a dielectric or variable resistance material providing an insulator between the RF conductive heat exchanging plate 210 and interface layer 220 and the patient's skin 230.
  • the material can include material coated or comprised of Teflon ® , silicon nitride, polysilanes, polysilazanes, polyimides, Kapton and other polymers or dielectric materials well known in the art.
  • the capacitive effect of the dielectric layer e.g., the first sleeve portion 252 can be controlled, for example, through sleeve thickness, surface area the dielectric constant of the material and the frequency of the RF energy generated.
  • the first sleeve portion 252 extends beyond the edges of the RF conductive heat exchanging plate 210 and/or other electrodes such that the RF current is required to flow through the dielectric material of the first sleeve portion 252. Further details regarding a suitable sleeve may be found in U.S. Patent Publication No. 2008/0077201.
  • the combined modality treatment device 104 can include a belt that assists in forming a contact between the treatment device 104 (such as via an interface layer 220) and the patient's skin 230.
  • the treatment device 104 can include retention devices (not shown) coupled to a frame.
  • the retention devices may be rotatably connected to the frame by a plurality of coupling elements that can be, for example, pins, ball joints, bearings, or other type of rotatable joints.
  • the retention devices can be rigidly affixed to the end portions of heat exchanging element housings. Further details regarding a suitable belt device may be found in U.S. Patent Publication No. 2008/007721 .
  • the combined modality treatment device 104 can include a vacuum (not shown) that assists in forming a contact between the treatment device 104 (such as via the interface layer 220 or dielectric sleeve 250) and the patient's skin 230.
  • the treatment device 104 can provide mechanical
  • non-invasive cryotherapy applications used for body contouring applications are used to uniformly treat adipose tissue in a subject's target region.
  • body regions that are characterized by non-uniform distribution of adipose tissue due to bulging or herniating lipid-rich lobules at or near the dermis - subcutaneous interface, or other subcutaneous regions lacking sufficient connective tissue cooling therapy alone may not result in selective disruption of the adipose tissue responsible for visible irregularities in the surface of the skin (e.g., cellulite).
  • thermal therapy has been used to disrupt and alter the three dimensional structure of collagen in subcutaneous tissue by applying thermal energy at frequencies sufficient to heat the fibrous septae to temperatures exceeding a collagen denaturation temperature.
  • thermal therapies do not address uneven distribution of adipose tissue or penetration of lipid-rich lobules into the dermis.
  • the systems, devices and methods disclosed herein facilitate selective disruption of lipid-rich lobules in a manner that reduces irregularities in a surface of a subject's skin.
  • the systems, devices and methods disclosed herein use capacitively or conductively coupled RF energy in a manner to protectively and selectively heat fibrous septae and closely associated lipid-rich cells (e.g., closely packed adipose tissue) such that the resistively- generated heat in this tissue is sufficient to prevent cooling of this tissue to a disruption temperature (e.g., below 10°C-15°C).
  • the lipid rich lobules at or near the dermis - subcutaneous interface, or other subcutaneous regions lacking sufficient connective tissue can be selectively disrupted during the treatment process such that treatment results in consistent and effective reduction in skin irregularities and cellulite.
  • the system 100 can be used to perform several combined modality treatment methods. Although specific examples of methods are described herein, one skilled in the art is capable of identifying other methods that the system could perform.
  • Figure 5 is a flow diagram illustrating a method 300 for reducing irregularities in a surface of a subject's skin resulting from an uneven distribution of adipose tissue in the subcutaneous layer in accordance with embodiments of the disclosure. Even though the method 300 is described below with reference to the combined modality treatment system 100 of Figure 1 and the combined modality treatment device 104 of Figure 4, the method 300 may also be applied in other treatment systems with additional or different hardware and/or software components.
  • an early stage of the method 300 can include coupling a heat exchanging surface of a treatment device with the surface of the subject's skin at a target region (block 302).
  • the heat exchanging surface can be a surface of a heat exchanging plate.
  • the heat exchanging surface can be the surface of an interface layer or a dielectric layer. Coupling of the heat exchange surface to the surface of the skin can be facilitated by using restraining means, such as a belt or strap. In other embodiments, a vacuum or suction force can be used to positively couple the patient's skin at the target region to the heat exchange surface.
  • coupling the heat exchanging device to the subject's skin can also include providing a cryoprotectant to the patient's skin as is described in commonly assigned U.S. Patent Publication No. 2007/0255362.
  • the method 300 can also include delivering radiofrequency (RF) energy to the target region at a frequency sufficient selectively to heat fibrous septae in a subcutaneous layer of the target region (block 304).
  • RF energy may be monopolar while in other embodiments it may be bipolar.
  • the RF energy may be capacitively coupled while in other embodiments it may be conductively coupled.
  • the RF energy can be delivered at a frequency of about 0.3 MHz to about 6 MHz.
  • the RF energy can be delivered at a frequency of between about 0.3 MHz to about 100 MHz or higher while in still other embodiments such RF energy can be delivered at a frequency of between about 0.3 MHz to about 40 MHz.
  • selective heating of the fibrous septae can include heating the fibrous septae to a final temperature less
  • a fibrous septae denaturation temperature e.g., about 60°C
  • selective heating of the fibrous septae can include heating the fibrous septae to a temperature that does not denature fibrous septae.
  • the fibrous septae can provide a path for preferentially conducting RF current through the subcutaneous layer. As the natural resistance of fibrous septae to the movement of charged ions and molecules in the subcutaneous tissue causes the fibrous septae to generate heat.
  • selectively heating the fibrous septae includes preventing the fibrous septae and the lipid-rich regions adjacent to the fibrous septae from cooling to a temperature below approximately 10°C - 15°C.
  • the method 300 includes removing heat such that lipid-rich cells in the subcutaneous layer are reduced in number and/or size to an extent while non-lipid-rich cells and lipid-rich regions adjacent to the fibrous septae are not reduced in number or size to the extent.
  • removing heat from the subcutaneous layer in the target region can include cooling the lipid-rich tissue to a temperature below 10°C such that the lipid-rich lobules, and the adipose cells are disrupted.
  • Delivering the RF energy to the target region and removing heat from the subcutaneous layer in the target region may occur simultaneously.
  • the treatment method 300 may include a single stage or multiple stages of delivering RF energy with each such stage occurring simultaneously with a single stage or multiple stages of removing heat from the lipid-rich cells in the target region.
  • delivering the RF energy to the target region and removing heat from the subcutaneous layer in the target region may occur sequentially.
  • the method 300 may consist of a single stage of delivering RF energy that ceases prior to a single stage to remove heat from the lipid-rich cells in the target region. Additionally, such sequential application of the aforementioned stages may occur multiple times so that multiple non-overlapping stages of RF energy delivery and heat removal occur.
  • method 300 may be accomplished is by periodically or intermittently delivering RF energy to the target region of the subject simultaneously
  • method 300 may comprise a single stage of removing heat from the lipid-rich cells in the target region during which stage RF energy is delivered in multiple stages in a regular, periodic fashion or in a less regular, intermittent fashion,
  • method 300 may include a single stage of delivering RF energy to the target region during which stage removing heat from the target region is accomplished in multiple stages in a regular, periodic fashion or in a less regular, intermittent fashion.
  • the duration of delivering the RF energy to the target region may vary depending on the location of the target region, the degree of warming required, the power setting, whether the RF energy is capacitively or conductively coupled, the parameters of the stage of removing heat to reduce the number and/or size of the lipid-rich cells in the subcutaneous layer, and other parameters.
  • Such a duration may be calculated and described in terms of a single application of RF energy or cumulatively as summed over the course of more than one application of RF energy.
  • a single application of RF energy as described herein may range in duration from a second or less to several hours or more; e.g., the same or about the same duration as the duration of the stage of removing heat from the lipid-rich cells in the target region as described for example in U.S. Patent No. 7,367,341 , particularly when the RF energy is applied commensurately with the stage of removing heat.
  • a duration of a period of application of RF energy in such an embodiment may, e.g., be between about 1 minute and about 2 hours, between about 1 minute and about 1 hour, between about 1 minute and about 50 minutes, or between about 1 minute and about 40 minutes, or between about 1 minute and about 30 minutes, or between about 1 minute and about 20 minutes. Still another embodiment results in a single application of RF energy of between about 5 minutes and about 15 minutes.
  • a cumulative duration of multiple stages of RF energy application in such embodiments may, e.g., be between about 1 minute and about 1 hour, or between about 1 minute and about 50 minutes, or between about 1 minute and about 40 minutes, or between about 1 minute and about 30 minutes, or between about 1 minute and about 20 minutes. Still another embodiment results in a cumulative duration of multiple stages of RF energy application of between about 5 minutes and about 15 minutes.
  • FIG. 6 is a schematic block diagram illustrating subcomponents of a computing device 400in accordance with an embodiment of the disclosure.
  • the computing device 400 can include a processor 401 , a memory 402 (e.g., SRAM, DRAM, flash, or other memory devices), input/output devices 403, and/or subsystems and other components 404.
  • the computing device 400 can perform any of a wide variety of computing processing, storage, sensing, imaging, and/or other functions.
  • Components of the computing device 400 may be housed in a single unit or distributed over multiple, interconnected units (e.g., though a communications network).
  • the components of the computing device 400 can accordingly include local and/or remote memory storage devices and any of a wide variety of computer-readable media.
  • the processor 401 can include a plurality of functional modules 406, such as software modules, for execution by the processor 401.
  • the various implementations of source code i.e., in a conventional programming language
  • the modules 406 of the processor can include an input module 408, a database module 410, a process module 412, an output module 414, and, optionally, a display module 416.
  • the input module 408 accepts an operator input 419 via the one or more input devices described above with respect to Figure 1 , and communicates the accepted information or selections to other components for further processing.
  • the database module 410 organizes records, including patient records, treatment data sets, treatment profiles and operating records and other operator activities, and facilitates storing and retrieving of these records to and from a data storage device (e.g., internal memory 402, an external database, etc.). Any type of
  • WO00/LEGAL21328542.1 -29- database organization can be utilized, including a flat file system, hierarchical database, relational database, distributed database, etc.
  • the process module 412 can generate control variables based on sensor readings 418 from sensors (e.g., the temperature measurement components 217 and 227 of Figure 4) and/or other data sources, and the output module 414 can communicate operator input to external computing devices and control variables to the controller 1 14.
  • the display module 416 can be configured to convert and transmit processing parameters, sensor readings 418, output signals 320, input data, treatment profiles and prescribed operational parameters through one or more connected display devices, such as a display screen, printer, speaker system, etc.
  • a suitable display module 416 may include a video driver that enables the controller 1 14 to display the sensor readings 418 or other status of treatment progression on the output device 120 ( Figure 1 ).
  • the processor 401 can be a standard central processing unit or a secure processor.
  • Secure processors can be special-purpose processors (e.g., reduced instruction set processor) that can withstand sophisticated attacks that attempt to extract data or programming logic.
  • the secure processors may not have debugging pins that enable an external debugger to monitor the secure processor's execution or registers.
  • the system may employ a secure field programmable gate array, a smartcard, or other secure devices.
  • the memory 402 can be standard memory, secure memory, or a combination of both memory types. By employing a secure processor and/or secure memory, the system can ensure that data and instructions are both highly secure and sensitive operations such as decryption are shielded from observation.
  • modules may be implemented in software for execution by various types of processors.
  • An identified module of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions which may, for instance, be organized as an object, procedure, or function.
  • the identified blocks of computer instructions need not be physically located together, but may comprise disparate instructions stored in different locations which, when joined logically together, comprise the module and achieve the stated purpose for the module.
  • a module may also be implemented as a hardware circuit comprising custom VLSI circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices, and may exist, at least partially, merely as electronic signals on a system or network.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Surgical Instruments (AREA)
  • Electrotherapy Devices (AREA)
  • Percussion Or Vibration Massage (AREA)
PCT/US2011/044270 2010-07-20 2011-07-15 Combined modality treatment systems, methods and apparatus for body contouring applications Ceased WO2012012296A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2806038A CA2806038A1 (en) 2010-07-20 2011-07-15 Combined modality treatment systems, methods and apparatus for body contouring applications
JP2013520764A JP2013532513A (ja) 2010-07-20 2011-07-15 ボディコントワリング用途用集学的治療システム、方法、及び装置
AU2011279923A AU2011279923B2 (en) 2010-07-20 2011-07-15 Combined modality treatment systems, methods and apparatus for body contouring applications
EP11810204.5A EP2595557A4 (en) 2010-07-20 2011-07-15 COMBINED PROCESSING SYSTEMS, METHODS AND APPARATUS FOR BODY MODELING APPLICATIONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/840,235 US8676338B2 (en) 2010-07-20 2010-07-20 Combined modality treatment systems, methods and apparatus for body contouring applications
US12/840,235 2010-07-20

Publications (1)

Publication Number Publication Date
WO2012012296A1 true WO2012012296A1 (en) 2012-01-26

Family

ID=45494206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/044270 Ceased WO2012012296A1 (en) 2010-07-20 2011-07-15 Combined modality treatment systems, methods and apparatus for body contouring applications

Country Status (7)

Country Link
US (2) US8676338B2 (enExample)
EP (1) EP2595557A4 (enExample)
JP (1) JP2013532513A (enExample)
AU (1) AU2011279923B2 (enExample)
CA (1) CA2806038A1 (enExample)
TW (1) TW201216921A (enExample)
WO (1) WO2012012296A1 (enExample)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US8285390B2 (en) 2007-08-21 2012-10-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US8337539B2 (en) 2006-02-22 2012-12-25 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US8676338B2 (en) 2010-07-20 2014-03-18 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US8702774B2 (en) 2009-04-30 2014-04-22 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9078634B2 (en) 2011-01-27 2015-07-14 Cryosa, Llc Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9314368B2 (en) 2010-01-25 2016-04-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US10383787B2 (en) 2007-05-18 2019-08-20 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
CN110180086A (zh) * 2019-06-19 2019-08-30 左鹏 一种对感染性皮肤病患者的清洁涂药设备
US10524956B2 (en) 2016-01-07 2020-01-07 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue
US10555831B2 (en) 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
US10682297B2 (en) 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US10722395B2 (en) 2011-01-25 2020-07-28 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US10765552B2 (en) 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11154418B2 (en) 2015-10-19 2021-10-26 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics
US11986421B2 (en) 2006-09-26 2024-05-21 Zeltiq Aesthetics, Inc. Cooling devices with flexible sensors
US12070411B2 (en) 2006-04-28 2024-08-27 Zeltiq Aesthetics, Inc. Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
US12369965B2 (en) 2021-12-30 2025-07-29 Cryosa, Inc. Systems and methods for treatment of obstructive sleep apnea

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840608B2 (en) 2002-03-15 2014-09-23 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
ATE494866T1 (de) * 2002-03-15 2011-01-15 Gen Hospital Corp Verfahren zur selektiven spaltung von fettgewebe durch gesteuerte kühlung
CA2499967A1 (en) * 2002-10-15 2004-04-29 Verance Corporation Media monitoring, management and information system
US20060047281A1 (en) 2004-09-01 2006-03-02 Syneron Medical Ltd. Method and system for invasive skin treatment
US9358033B2 (en) 2005-09-07 2016-06-07 Ulthera, Inc. Fluid-jet dissection system and method for reducing the appearance of cellulite
US8518069B2 (en) 2005-09-07 2013-08-27 Cabochon Aesthetics, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US9011473B2 (en) 2005-09-07 2015-04-21 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US9486274B2 (en) 2005-09-07 2016-11-08 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US10548659B2 (en) 2006-01-17 2020-02-04 Ulthera, Inc. High pressure pre-burst for improved fluid delivery
US7885793B2 (en) 2007-05-22 2011-02-08 International Business Machines Corporation Method and system for developing a conceptual model to facilitate generating a business-aligned information technology solution
US9248317B2 (en) 2005-12-02 2016-02-02 Ulthera, Inc. Devices and methods for selectively lysing cells
US8439940B2 (en) 2010-12-22 2013-05-14 Cabochon Aesthetics, Inc. Dissection handpiece with aspiration means for reducing the appearance of cellulite
AU2009205297A1 (en) 2008-01-17 2009-07-23 Syneron Medical Ltd. A hair removal apparatus for personal use and the method of using same
WO2009093230A2 (en) * 2008-01-24 2009-07-30 Syneron Medical Ltd. A device, apparatus, and method of adipose tissue treatment
AU2009290378A1 (en) * 2008-09-11 2010-03-18 Syneron Medical Ltd. A safe skin treatment apparatus for personal use and method for its use
EP2334249B1 (en) * 2008-09-21 2013-03-13 Syneron Medical Ltd. A method and apparatus for personal skin treatment
US20100211055A1 (en) * 2009-02-18 2010-08-19 Shimon Eckhouse Method for body toning and an integrated data management system for the same
US9278230B2 (en) 2009-02-25 2016-03-08 Syneron Medical Ltd Electrical skin rejuvenation
US11096708B2 (en) 2009-08-07 2021-08-24 Ulthera, Inc. Devices and methods for performing subcutaneous surgery
US9358064B2 (en) 2009-08-07 2016-06-07 Ulthera, Inc. Handpiece and methods for performing subcutaneous surgery
CN112401981B (zh) 2010-11-16 2024-03-08 Tva医疗公司 用于形成瘘管的装置和方法
US20140364841A1 (en) * 2011-11-14 2014-12-11 Andrew Kornstein Cryolipolyis device having a curved applicator surface
DE102012013534B3 (de) 2012-07-05 2013-09-19 Tobias Sokolowski Vorrichtung für repetitive Nervenstimulation zum Abbau von Fettgewebe mittels induktiver Magnetfelder
US9486276B2 (en) 2012-10-11 2016-11-08 Tva Medical, Inc. Devices and methods for fistula formation
US9433803B2 (en) * 2012-10-12 2016-09-06 National Health Research Institutes Method and system for destroying adipose tissue non-invasively and accelerating lipid metabolism
HK1219068A1 (zh) 2013-03-14 2017-03-24 Tva Medical, Inc. 瘻管配制装置和用於配制瘻管的方法
EP3104796B1 (en) * 2014-02-12 2019-04-10 The General Hospital Corporation Method and apparatus for affecting pigmentation of tissue
WO2015138998A1 (en) 2014-03-14 2015-09-17 Tva Medical, Inc. Fistula formation devices and methods therefor
WO2016033374A1 (en) * 2014-08-27 2016-03-03 Tva Medical, Inc. Cryolipopysis devices and methods therefor
US10758404B2 (en) 2014-09-15 2020-09-01 Divergent Med Llc Cooling system for localized and non-invasive cooling treatment
US20160089550A1 (en) 2014-09-25 2016-03-31 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for altering the appearance of skin
EP3200736B8 (en) 2014-10-01 2020-06-17 CryOSA, Inc. Apparatus for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues
US10603040B1 (en) 2015-02-09 2020-03-31 Tva Medical, Inc. Methods for treating hypertension and reducing blood pressure with formation of fistula
WO2016168435A1 (en) 2015-04-14 2016-10-20 Crysanthe, Inc. System and method for selective treatment of skin and subcutaneous fat using a single frequency dual mode radio frequency antenna device
US10518104B2 (en) * 2015-04-23 2019-12-31 Cynosure, Llc Systems and methods of unattended treatment
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US10471269B1 (en) 2015-07-01 2019-11-12 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US20180001107A1 (en) 2016-07-01 2018-01-04 Btl Holdings Limited Aesthetic method of biological structure treatment by magnetic field
US10821295B1 (en) 2015-07-01 2020-11-03 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10695576B2 (en) 2015-07-01 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10478633B2 (en) 2015-07-01 2019-11-19 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10709894B2 (en) 2015-07-01 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11266850B2 (en) 2015-07-01 2022-03-08 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
ES2571460B1 (es) * 2015-10-23 2017-01-05 Indiba, S.A. Procedimiento cosmético para la reducción o prevención de la acumulación de tejido adiposo
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
JPWO2017094193A1 (ja) * 2015-12-04 2018-09-20 オリンパス株式会社 熱エネルギ処置装置、及び熱エネルギ処置装置の作動方法
CA3011240A1 (en) 2016-01-15 2017-07-20 Tva Medical, Inc. Systems and methods for adhering vessels
EP3402432B1 (en) 2016-01-15 2023-05-31 TVA Medical, Inc. Devices for forming a fistula
US10874422B2 (en) 2016-01-15 2020-12-29 Tva Medical, Inc. Systems and methods for increasing blood flow
AU2017207507B2 (en) 2016-01-15 2021-11-11 Tva Medical, Inc. Devices and methods for advancing a wire
FR3049468A1 (fr) * 2016-04-04 2017-10-06 Aquamoon Machine poste de travail pour operatrice en esthetique destinee au raffermissement des tissus
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US10709895B2 (en) 2016-05-10 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
CN109310516A (zh) 2016-05-10 2019-02-05 斯尔替克美学股份有限公司 用于处理痤疮和皮肤状况的皮肤冷冻系统
US10583287B2 (en) 2016-05-23 2020-03-10 Btl Medical Technologies S.R.O. Systems and methods for tissue treatment
US10556122B1 (en) 2016-07-01 2020-02-11 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11141219B1 (en) 2016-08-16 2021-10-12 BTL Healthcare Technologies, a.s. Self-operating belt
US11285028B2 (en) 2016-09-25 2022-03-29 Tva Medical, Inc. Vascular stent devices and methods
PL3534852T3 (pl) 2016-11-02 2022-05-09 Miraki Innovation Think Tank Llc Urządzenia do wytwarzania zawiesin
US11324673B2 (en) 2016-11-18 2022-05-10 Miraki Innovation Think Tank Llc Cosmetic appearance of skin
KR101822916B1 (ko) * 2016-11-25 2018-01-31 주식회사 서린메디케어 프락셔널 플라즈마를 이용한 피부 치료장치
WO2018175111A1 (en) 2017-03-21 2018-09-27 Zeltiq Aesthetics, Inc. Use of saccharides for cryoprotection and related technology
AU2018250270A1 (en) 2017-04-05 2019-10-31 Miraki Innovation Think Tank Llc Point of delivery cold slurry generation
MX2019011996A (es) 2017-04-05 2020-01-20 Miraki Innovation Think Tank Llc Contención de suspensión fría.
US10500342B2 (en) 2017-08-21 2019-12-10 Miraki Innovation Think Tank Llc Cold slurry syringe
US11400308B2 (en) 2017-11-21 2022-08-02 Cutera, Inc. Dermatological picosecond laser treatment systems and methods using optical parametric oscillator
US10729496B2 (en) 2017-11-21 2020-08-04 Cutera, Inc. Dermatological picosecond laser treatment systems and methods using optical parametric oscillator
US11391597B2 (en) 2018-06-18 2022-07-19 Chargeway Inc. Displaying charging options for an electric vehicle
CN109173069B (zh) * 2018-09-26 2020-12-22 武汉华兴澳医疗器械有限公司 一种用于缓解患者痛苦的妇科微波治疗仪
US10610280B1 (en) 2019-02-02 2020-04-07 Ayad K. M. Agha Surgical method and apparatus for destruction and removal of intraperitoneal, visceral, and subcutaneous fat
EP4295899A3 (en) * 2019-02-28 2024-03-13 Bios S.r.l. Apparatus for fat and cellulite reduction using rf energy in combination with magnetic muscle thermostimulation (ems)
US12156689B2 (en) 2019-04-11 2024-12-03 Btl Medical Solutions A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
PL4066887T3 (pl) 2019-04-11 2024-03-04 Btl Medical Solutions A.S. Urządzenia do zabiegu estetycznego struktur biologicznych za pomocą energii o częstotliwości radiowej i energii magnetycznej
US11049694B2 (en) * 2019-09-27 2021-06-29 Applied Materials, Inc. Modular microwave source with embedded ground surface
US11253720B2 (en) 2020-02-29 2022-02-22 Cutera, Inc. Dermatological systems and methods with handpiece for coaxial pulse delivery and temperature sensing
US10864380B1 (en) 2020-02-29 2020-12-15 Cutera, Inc. Systems and methods for controlling therapeutic laser pulse duration
EP4146335B1 (en) 2020-05-04 2024-11-13 BTL Healthcare Technologies a.s. Device for unattended treatment of a patient
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
JP7724842B2 (ja) 2020-07-10 2025-08-18 シー チェンジ サージカル エルエルシー 注入可能スラッシュ給送供給
CA3188869A1 (en) * 2020-08-14 2022-02-17 Mark William Baker Multi-applicator system and method for body contouring
EP4082460A1 (en) 2021-04-28 2022-11-02 High Technology Products, S.L.U. Methods and systems for determining freezing of skin during cooling
WO2023062563A1 (en) 2021-10-13 2023-04-20 Btl Medical Solutions A.S. Devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
JP2023091687A (ja) * 2021-12-20 2023-06-30 株式会社松栄通信 トレーニング方法
WO2025240891A1 (en) 2024-05-17 2025-11-20 Zeltiq Aesthetics, Inc. Applicator system and method for flank contouring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377854B1 (en) * 1995-05-05 2002-04-23 Thermage, Inc. Method for controlled contraction of collagen in fibrous septae in subcutaneous fat layers
US20090118722A1 (en) * 2006-10-31 2009-05-07 Ebbers Edward A Method and apparatus for cooling subcutaneous lipid-rich cells or tissue
US20090149929A1 (en) * 2007-08-21 2009-06-11 Levinson Mitchell E Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue

Family Cites Families (638)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US681806A (en) 1901-05-25 1901-09-03 Armand Mignault Lung-protector.
US889810A (en) 1908-01-04 1908-06-02 Henry Robinson Medicating and massaging appliance.
DE532976C (de) 1930-07-29 1931-09-11 Lorenz Akt Ges C Sendeeinrichtung fuer Springschreiber, bei der die Sendeschienen in der Bewegungsrichtung der Sendetasten verschoben werden
GB387960A (en) 1932-09-17 1933-02-16 William Hipon Horsfield Electro-therapeutic massaging appliance
FR854937A (fr) 1939-05-19 1940-04-27 Appareil de massage par aspiration
US2516491A (en) 1945-10-08 1950-07-25 Henry A Swastek Massage and shampoo device
US2521780A (en) 1947-06-12 1950-09-12 Bertha A Dodd Cushion or receptacle
US2726658A (en) 1953-04-27 1955-12-13 Donald E Chessey Therapeutic cooling devices for domestic and hospital use
NL177982B (nl) 1953-04-29 Siemens Ag Infusietoestel.
US2766619A (en) 1953-06-26 1956-10-16 Tribus Myron Ice detecting apparatus
CH333982A (de) 1954-06-11 1958-11-15 Usag Ultraschall Ag Ultraschall-Bestrahlungsvorrichtung
US3093135A (en) 1962-01-29 1963-06-11 Max L Hirschhorn Cooled surgical instrument
US3133539A (en) 1962-08-06 1964-05-19 Eidus William Thermoelectric medical instrument
US3132688A (en) 1963-04-08 1964-05-12 Welville B Nowak Electronic cold and/or hot compress device
US3282267A (en) 1964-05-05 1966-11-01 Eidus William Thermoelectric hypothermia instrument
US3502080A (en) 1965-06-28 1970-03-24 Max L Hirschhorn Thermoelectrically cooled surgical instrument
US3591645A (en) 1968-05-20 1971-07-06 Gulf Research Development Co Process for preparing a halogenated aromatic
US3703897A (en) 1969-10-09 1972-11-28 Kendall & Co Hydrophobic non-adherent wound dressing
US3587577A (en) 1970-05-09 1971-06-28 Oleg Alexandrovich Smirnov Device for applying selective and general hypothermy to and reheating of human body through the common integuments thereof
US3710784A (en) 1972-04-03 1973-01-16 C Taylor Massaging device
US4002221A (en) 1972-09-19 1977-01-11 Gilbert Buchalter Method of transmitting ultrasonic impulses to surface using transducer coupling agent
US3827436A (en) 1972-11-10 1974-08-06 Frigitronics Of Conn Inc Multipurpose cryosurgical probe
US3786814A (en) 1972-12-15 1974-01-22 T Armao Method of preventing cryoadhesion of cryosurgical instruments and cryosurgical instruments
US3942519A (en) 1972-12-26 1976-03-09 Ultrasonic Systems, Inc. Method of ultrasonic cryogenic cataract removal
DE2343910C3 (de) 1973-08-31 1979-02-15 Draegerwerk Ag, 2400 Luebeck Kryomedizinische Einrichtung
US4269068A (en) 1974-02-21 1981-05-26 Rockwell International Corporation Ultrasonic couplant compositions and method for employing same
SU532976A1 (ru) 1974-05-05 1978-11-05 Киевский Государственный Институт Усовершенстовования Врачей Министерства Здравоохранения Ссср Устройство дл локального охлаждени ткани
US3993053A (en) 1974-08-05 1976-11-23 Murray Grossan Pulsating massage system
US3986385A (en) 1974-08-05 1976-10-19 Rosemount Engineering Company Limited Apparatus for determining the freezing point of a liquid
JPS5417360B2 (enExample) 1974-08-15 1979-06-29
US4026299A (en) 1975-09-26 1977-05-31 Vari-Temp Manufacturing Co. Cooling and heating apparatus
US4202336A (en) 1976-05-14 1980-05-13 Erbe Elektromedizin Kg Cauterizing probes for cryosurgery
US4140130A (en) 1977-05-31 1979-02-20 Storm Iii Frederick K Electrode structure for radio frequency localized heating of tumor bearing tissue
US4149529A (en) 1977-09-16 1979-04-17 Jobst Institute, Inc. Portable thermo-hydraulic physiotherapy device
US4178429A (en) 1978-11-17 1979-12-11 Scheffer Karl D Catalyst for curing resins
DE2851602A1 (de) 1978-11-29 1980-06-12 Messerschmitt Boelkow Blohm Geraet zur behandlung entzuendlicher erkrankungen
US4381009A (en) 1980-01-28 1983-04-26 Bon F Del Hand-held device for the local heat-treatment of the skin
US4428368A (en) 1980-09-29 1984-01-31 Masakatsu Torii Massage device
US4396011A (en) 1981-01-09 1983-08-02 Clairol Incorporated Heating pad
US4459854A (en) 1981-07-24 1984-07-17 National Research Development Corporation Ultrasonic transducer coupling member
US4528979A (en) 1982-03-18 1985-07-16 Kievsky Nauchno-Issledovatelsky Institut Otolaringologii Imeni Professora A.S. Kolomiiobenka Cryo-ultrasonic surgical instrument
JPS58187454A (ja) 1982-04-27 1983-11-01 Nippon Kayaku Co Ltd カラー液晶用色素
US4555313A (en) 1982-10-21 1985-11-26 The United States Of America As Represented By The United States Department Of Energy Method of forming a continuous polymeric skin on a cellular foam material
US4548212A (en) 1982-10-29 1985-10-22 Leung Frank K Apparatus for thermographic examinations
US4483341A (en) 1982-12-09 1984-11-20 Atlantic Richfield Company Therapeutic hypothermia instrument
US4531524A (en) 1982-12-27 1985-07-30 Rdm International, Inc. Circuit apparatus and method for electrothermal treatment of cancer eye
US4644955A (en) 1982-12-27 1987-02-24 Rdm International, Inc. Circuit apparatus and method for electrothermal treatment of cancer eye
US4961422A (en) 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
DE3308553C2 (de) 1983-03-10 1986-04-10 Udo Prof. Dr.med. 4130 Moers Smidt Mittel zur Reduktion des menschlichen Körpergewichts
US4614191A (en) 1983-09-02 1986-09-30 Perler Robert F Skin-cooling probe
AU558943B2 (en) 1983-10-26 1987-02-12 Nihondenjihachiryokikenkyusho Co. Ltd. Magnetic field generating therapeutic appliance
US5158070A (en) 1983-12-14 1992-10-27 Edap International, S.A. Method for the localized destruction of soft structures using negative pressure elastic waves
JPS60502042A (ja) 1984-01-18 1985-11-28 ベイリ−,デ−ビッド・フランクリン 多層廃棄式医用温度ブランケツト
US4603076A (en) 1985-03-04 1986-07-29 Norwood Industries, Inc. Hydrophilic foam
US4869250A (en) 1985-03-07 1989-09-26 Thermacor Technology, Inc. Localized cooling apparatus
US4664110A (en) 1985-03-18 1987-05-12 University Of Southern California Controlled rate freezing for cryorefractive surgery
US4585002A (en) 1985-04-22 1986-04-29 Igor Kissin Method and apparatus for treatment of pain by frequently alternating temperature stimulation
US4700701A (en) 1985-10-23 1987-10-20 Montaldi David H Sterilization method and apparatus
JPH0765230B2 (ja) 1986-09-19 1995-07-12 三菱マテリアル株式会社 金属表面における多孔質層の形成方法
JPS6382936A (ja) 1986-09-24 1988-04-13 東洋製罐株式会社 紙製有底無継目成形容器及びその製法
AU7039687A (en) 1986-05-16 1987-12-01 Termac S.A. Therapeutic device including a mass of a thermally active material
SU1563684A1 (ru) 1986-05-26 1990-05-15 Томский государственный медицинский институт Криоультразвуковой скальпель
GB8620227D0 (en) 1986-08-20 1986-10-01 Smith & Nephew Ass Wound dressing
US4880564A (en) 1986-09-29 1989-11-14 Ciba-Geigy Corporation Antifoams for aqueous systems and their use
US4741338A (en) 1986-10-06 1988-05-03 Toshiaki Miyamae Thermoelectric physical remedy apparatus
US5018521A (en) 1986-10-24 1991-05-28 Campbell William P Method of and apparatus for increased transfer of heat into or out of the body
US4764463A (en) 1986-10-30 1988-08-16 The University Of Tennessee Research Corporation Platelet cyropreservation
US4906463A (en) 1986-12-22 1990-03-06 Cygnus Research Corporation Transdermal drug-delivery composition
CN86200604U (en) 1987-01-10 1987-10-14 Zhichang Yang Apparatus for freezing freckle and treating some skin diseases with freezing
US4962761A (en) 1987-02-24 1990-10-16 Golden Theodore A Thermal bandage
US4846176A (en) 1987-02-24 1989-07-11 Golden Theodore A Thermal bandage
US4935345A (en) 1987-04-07 1990-06-19 Arizona Board Of Regents Implantable microelectronic biochemical sensor incorporating thin film thermopile
US4802475A (en) 1987-06-22 1989-02-07 Weshahy Ahmed H A G Methods and apparatus of applying intra-lesional cryotherapy
US5084671A (en) 1987-09-02 1992-01-28 Tokyo Electron Limited Electric probing-test machine having a cooling system
US5143063A (en) 1988-02-09 1992-09-01 Fellner Donald G Method of removing adipose tissue from the body
JPH01223961A (ja) 1988-03-02 1989-09-07 Kineshio:Kk 筋肉皮下組織の改善方法並びに皮下組織活性具
US5065752A (en) 1988-03-29 1991-11-19 Ferris Mfg. Co. Hydrophilic foam compositions
DK161260C (da) 1988-05-06 1991-12-30 Paul Verner Nielsen Flowmaaler
US4930317A (en) 1988-05-20 1990-06-05 Temperature Research Corporation Apparatus for localized heat and cold therapy
DE3821219C1 (enExample) 1988-06-23 1989-08-24 Phywe Systeme Gmbh, 3400 Goettingen, De
US5108390A (en) 1988-11-14 1992-04-28 Frigitronics, Inc. Flexible cryoprobe
US4905697A (en) 1989-02-14 1990-03-06 Cook Pacemaker Corporation Temperature-controlled cardiac pacemaker responsive to body motion
US5024650A (en) 1989-02-15 1991-06-18 Matsushita Electric Works, Ltd. Stress dissolving refreshment system
DE8905769U1 (de) 1989-05-09 1989-07-13 Schulte, Franz-Josef, Dipl.-Ing., 59939 Olsberg Gerät zur Erzeugung von Kälte und Wärme
US5516505A (en) 1989-07-18 1996-05-14 Mcdow; Ronald A. Method for using cryogenic agents for treating skin lesions
US5200170A (en) 1989-07-18 1993-04-06 Mcdow Ronald A Medical process--use of dichlorodifluoromethane (CCl2 F2) and chlorodifluoromethane (CHClF2) as cryogens for treating skin lesions
JP2625548B2 (ja) 1989-07-19 1997-07-02 沖電気工業株式会社 画像生成方法及び画像生成装置
US5575812A (en) 1990-02-26 1996-11-19 Vesture Corporation Cooling pad method
US5339541A (en) 1990-02-26 1994-08-23 Vesture Corporation Footwear with therapeutic pad
US5817149A (en) 1990-02-26 1998-10-06 Vesture Corporation Heat application method
JPH03259975A (ja) 1990-03-09 1991-11-20 Matsushita Refrig Co Ltd 撥水性コーティング用組成物及び撥水性コーティング用組成物を塗布した熱交換器
FR2659851A1 (fr) 1990-03-20 1991-09-27 Karagozian Serge Appareil de massage.
JP3065657B2 (ja) 1990-06-08 2000-07-17 株式会社リコー 乾式電子写真用トナー
US5362966A (en) 1990-06-27 1994-11-08 Rosenthal Robert D Measurement of finger temperature in near-infrared quantitative measurement instrument
US5148804A (en) 1990-06-28 1992-09-22 Hill Dennis M Device, system, and methods for applying cryotherapy
JPH0493597A (ja) 1990-08-08 1992-03-26 Matsushita Refrig Co Ltd 撥水性コーティング用組成物及び撥水性コーティング用組成物を塗布した熱交換器
US5336616A (en) 1990-09-12 1994-08-09 Lifecell Corporation Method for processing and preserving collagen-based tissues for transplantation
GB2248183A (en) 1990-09-25 1992-04-01 Lin Ju Nin Facial sauna apparatus
US5221726A (en) 1990-10-09 1993-06-22 Mcneil-Ppc, Inc. Hydrophilic materials useful in preparing fluid-absorbent products
US5342617A (en) 1990-12-03 1994-08-30 Medical Polymers, Inc. Water-based human tissue lubricant
US5139496A (en) 1990-12-20 1992-08-18 Hed Aharon Z Ultrasonic freeze ablation catheters and probes
JP3217386B2 (ja) 1991-04-24 2001-10-09 オリンパス光学工業株式会社 診断システム
US5358467A (en) 1991-05-05 1994-10-25 Anatole Milstein Method for vacuum mechanothermal stimulation of the body surface
US5207674A (en) 1991-05-13 1993-05-04 Hamilton Archie C Electronic cryogenic surgical probe apparatus and method
US20010031459A1 (en) 1991-07-08 2001-10-18 The American National Red Cross Method of preparing tissues for vitrification
DE4125463A1 (de) 1991-08-01 1993-02-04 Deutsches Inst Lebensmitteltec Verfahren und vorrichtung zur kontinuierlichen, gesteuerten strukturierung, insbesondere kristallisation von stoffsystemen in fliessfaehigem zustand, insbesondere fetthaltigen massen, wie schokolademasse
US5352711A (en) 1991-08-12 1994-10-04 The Proctor & Gamble Company Method for hydrophilizing absorbent foam materials
US5169384A (en) 1991-08-16 1992-12-08 Bosniak Stephen L Apparatus for facilitating post-traumatic, post-surgical, and/or post-inflammatory healing of tissue
US5514105A (en) 1992-01-03 1996-05-07 The Procter & Gamble Company Resilient plastic web exhibiting reduced skin contact area and enhanced fluid transfer properties
US5531742A (en) 1992-01-15 1996-07-02 Barken; Israel Apparatus and method for computer controlled cryosurgery
GB9201940D0 (en) 1992-01-28 1992-03-18 S I Ind Limited Cooling or heating arrangement
WO1993019705A1 (en) 1992-03-31 1993-10-14 Massachusetts Institute Of Technology Apparatus and method for acoustic heat generation and hyperthermia
US5954680A (en) 1992-06-19 1999-09-21 Augustine Medical, Inc. Near hyperthermic heater wound covering
DE4224595A1 (de) 1992-07-23 1994-01-27 Steindorf Susanne Ruth Vorrichtung zur Behandlung erkrankten Gewebes in Körperöffnungen und/oder an Körperöffnungen angrenzender, erkrankter Organe
JPH08501957A (ja) 1992-08-17 1996-03-05 メール、トマス、エル モジュール型部品及びアタッチメント付き手持ち型多目的携帯用スチーマ
US5327886A (en) 1992-08-18 1994-07-12 Chiu Cheng Pang Electronic massage device with cold/hot compress function
DE59309311D1 (de) 1992-10-02 1999-02-25 Beiersdorf Ag Hydrophile polyurethangelschäume, insbesondere zur behandlung von tiefen wunden, wundverbände auf basis hydrophiler polyurethangelschäume und verfahren zur herstellung
GB9222335D0 (en) 1992-10-23 1992-12-09 Unilever Plc Acyl lactylates as skin elasticity enhancing agents
US5314423A (en) 1992-11-03 1994-05-24 Seney John S Cold electrode pain alleviating tissue treatment assembly
DE4238291A1 (de) 1992-11-13 1994-05-19 Diehl Gmbh & Co Vorrichtung zur kleinflächigen Vereisung von Oberflächen
US5333460A (en) 1992-12-21 1994-08-02 Carrier Corporation Compact and serviceable packaging of a self-contained cryocooler system
US5277030A (en) 1993-01-22 1994-01-11 Welch Allyn, Inc. Preconditioning stand for cooling probe
US5386837A (en) 1993-02-01 1995-02-07 Mmtc, Inc. Method for enhancing delivery of chemotherapy employing high-frequency force fields
US6620188B1 (en) 1998-08-24 2003-09-16 Radiant Medical, Inc. Methods and apparatus for regional and whole body temperature modification
US5902256A (en) 1993-02-12 1999-05-11 Jb Research, Inc. Massage unit with replaceable hot and cold packs
US5433717A (en) 1993-03-23 1995-07-18 The Regents Of The University Of California Magnetic resonance imaging assisted cryosurgery
JPH06282977A (ja) 1993-03-30 1994-10-07 Ricoh Co Ltd 情報記録再生装置
US5456703A (en) 1993-04-28 1995-10-10 Therabite Corporation Apparatus for application of heat/cold to target regions of the human anatomy
WO1994026216A1 (en) 1993-05-12 1994-11-24 Yablon Jeffrey S Portable therapeutic device
CN1102851C (zh) 1993-06-04 2003-03-12 生物时间公司 类血浆溶液
US5411541A (en) 1993-08-05 1995-05-02 Oansh Designs Ltd. Portable fluid therapy device
US5372608A (en) 1993-08-12 1994-12-13 Johnson; Bertrand L. Circulating chilled-fluid therapeutic device
US5334131A (en) 1993-08-20 1994-08-02 Omandam Ismael C Strap-on massager with vibratory unbalanced weight
US5891617A (en) 1993-09-15 1999-04-06 Organogenesis Inc. Cryopreservation of harvested skin and cultured skin or cornea equivalents by slow freezing
US5871526A (en) 1993-10-13 1999-02-16 Gibbs; Roselle Portable temperature control system
GB2283678B (en) 1993-11-09 1998-06-03 Spembly Medical Ltd Cryosurgical catheter probe
US5885211A (en) 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
JPH07194666A (ja) 1993-12-30 1995-08-01 Daisee Kogyo Kk マッサージ器及びマッサージ方法
US5472416A (en) 1994-01-10 1995-12-05 Very Inventive Physicians, Inc. Tumescent lipoplastic method and apparatus
RU2036667C1 (ru) 1994-01-24 1995-06-09 Олег Алексеевич Машков Способ лечения диссеминированного псориаза
US5497596A (en) 1994-01-27 1996-03-12 E. I. Du Pont De Nemours And Company Method for reducing penetration of liquid through nonwoven film-fibril sheets pierced by fastening elements
GB2286660A (en) 1994-02-01 1995-08-23 David Thorner Peltier effect cooling apparatus for treating diseased or injured tissue
US5647868A (en) 1994-02-02 1997-07-15 Chinn; Douglas Owen Cryosurgical integrated control and monitoring system and method
US5725483A (en) 1994-02-22 1998-03-10 Podolsky; Grigory Massaging device
US5363347A (en) 1994-02-24 1994-11-08 Hap Nguyen Vending tanning timer
US5833685A (en) 1994-03-15 1998-11-10 Tortal; Proserfina R. Cryosurgical technique and devices
US5507790A (en) 1994-03-21 1996-04-16 Weiss; William V. Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism
US5505726A (en) 1994-03-21 1996-04-09 Dusa Pharmaceuticals, Inc. Article of manufacture for the photodynamic therapy of dermal lesion
JPH07268274A (ja) 1994-04-01 1995-10-17 Kansai Paint Co Ltd 親水化処理用組成物および親水化処理方法
JP3263275B2 (ja) 1994-04-05 2002-03-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 生体組織のレーザー処理のための装置並びに火焔状斑点母斑のレーザー処理装置
US6230501B1 (en) 1994-04-14 2001-05-15 Promxd Technology, Inc. Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control
US5792080A (en) 1994-05-18 1998-08-11 Matsushita Electric Works, Ltd. Massaging apparatus having self-adjusting constant strength and non-adjust strength modes
US5672172A (en) 1994-06-23 1997-09-30 Vros Corporation Surgical instrument with ultrasound pulse generator
US5505730A (en) 1994-06-24 1996-04-09 Stuart D. Edwards Thin layer ablation apparatus
IL110176A (en) 1994-06-30 1999-12-31 Israel State Multiprobe surgical cryogenic apparatus
US5529067A (en) 1994-08-19 1996-06-25 Novoste Corporation Methods for procedures related to the electrophysiology of the heart
US5967976A (en) 1994-08-19 1999-10-19 Novoste Corporation Apparatus and methods for procedures related to the electrophysiology of the heart
US5514170A (en) 1994-08-25 1996-05-07 Mauch; Rose M. Cold pack device
US5486207A (en) 1994-09-20 1996-01-23 Mahawili; Imad Thermal pad for portable body heating/cooling system and method of use
US5895418A (en) 1994-09-30 1999-04-20 Saringer Research Inc. Device for producing cold therapy
US5628769A (en) 1994-09-30 1997-05-13 Saringer Research, Inc. Method and devices for producing somatosensory stimulation using temperature
EP0790767B1 (en) 1994-11-09 2001-10-10 Celadon Science, LLC Wound repair dressings and methods for their preservation
DE4445627A1 (de) 1994-12-21 1996-06-27 Holland Letz Horst Vorrichtung für die Thermo-Therapie
US6426445B1 (en) 1995-01-10 2002-07-30 The Procter & Gamble Company Absorbent members comprising an agglomerate of hydrogel-forming absorbent polymer and particulate hydrophilic foam
US5735844A (en) 1995-02-01 1998-04-07 The General Hospital Corporation Hair removal using optical pulses
US5647051A (en) 1995-02-22 1997-07-08 Seabrook Medical Systems, Inc. Cold therapy system with intermittent fluid pumping for temperature control
US5635162A (en) 1995-02-23 1997-06-03 Ultradent Products, Inc. Hemostatic composition for treating gingival area
US5980561A (en) 1995-03-01 1999-11-09 Kolen; Paul T. Applying thermal therapy to living tissue
IES66404B2 (en) 1995-03-01 1995-12-27 Shannon Cool Limited Cold therapy apparatus
US5580714A (en) 1995-03-08 1996-12-03 Celox Laboratories, Inc. Cryopreservation solution
ES2204957T3 (es) 1995-04-28 2004-05-01 Endocare, Inc. Sistema integrado de control ymonitorizacion para criocirugia.
US6425912B1 (en) 1995-05-05 2002-07-30 Thermage, Inc. Method and apparatus for modifying skin surface and soft tissue structure
US5660836A (en) 1995-05-05 1997-08-26 Knowlton; Edward W. Method and apparatus for controlled contraction of collagen tissue
US6430446B1 (en) 1995-05-05 2002-08-06 Thermage, Inc. Apparatus for tissue remodeling
US5755753A (en) 1995-05-05 1998-05-26 Thermage, Inc. Method for controlled contraction of collagen tissue
US5634890A (en) 1995-05-09 1997-06-03 Aquasage, Inc. Water massage therapy device and method for using the same
US5901707A (en) 1995-05-19 1999-05-11 Hpl Biomedical, Inc. Silicone mask for cryosurgery and method
US5741248A (en) 1995-06-07 1998-04-21 Temple University-Of The Commonwealth System Of Higher Education Fluorochemical liquid augmented cryosurgery
US5769879A (en) 1995-06-07 1998-06-23 Medical Contouring Corporation Microwave applicator and method of operation
DE69624668T2 (de) 1995-07-25 2003-08-28 Massachusetts Institute Of Technology, Cambridge Verbesserter transdermaler transport unter verwendung von ultraschall
US5746736A (en) 1995-08-09 1998-05-05 Lumedics, Ltd. Cryogenic laser lithotripsy with enhanced light absorption
US5964749A (en) 1995-09-15 1999-10-12 Esc Medical Systems Ltd. Method and apparatus for skin rejuvenation and wrinkle smoothing
US5654546A (en) 1995-11-07 1997-08-05 Molecular Imaging Corporation Variable temperature scanning probe microscope based on a peltier device
US5733280A (en) 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
US5755755A (en) 1995-12-13 1998-05-26 Panyard; Albert A. Therapeutic structure and method
US5634940A (en) 1995-12-13 1997-06-03 Panyard; Albert A. Therapeutic structure and methods
JPH09164163A (ja) 1995-12-15 1997-06-24 Matsushita Electric Ind Co Ltd 局部冷却・加熱器
WO1997022262A2 (en) 1995-12-19 1997-06-26 Jie Hao Soft ice
AU1349697A (en) 1995-12-29 1997-07-28 Life Resuscitation Technologies, Inc. Total body cooling system
US6350276B1 (en) 1996-01-05 2002-02-26 Thermage, Inc. Tissue remodeling apparatus containing cooling fluid
US7115123B2 (en) 1996-01-05 2006-10-03 Thermage, Inc. Handpiece with electrode and non-volatile memory
US7006874B2 (en) 1996-01-05 2006-02-28 Thermage, Inc. Treatment apparatus with electromagnetic energy delivery device and non-volatile memory
US7229436B2 (en) 1996-01-05 2007-06-12 Thermage, Inc. Method and kit for treatment of tissue
US7267675B2 (en) 1996-01-05 2007-09-11 Thermage, Inc. RF device with thermo-electric cooler
US7473251B2 (en) 1996-01-05 2009-01-06 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US7189230B2 (en) 1996-01-05 2007-03-13 Thermage, Inc. Method for treating skin and underlying tissue
US7022121B2 (en) 1999-03-09 2006-04-04 Thermage, Inc. Handpiece for treatment of tissue
US7141049B2 (en) 1999-03-09 2006-11-28 Thermage, Inc. Handpiece for treatment of tissue
JP2000503154A (ja) 1996-01-11 2000-03-14 エムアールジェイ インコーポレイテッド デジタル所有権のアクセスと分配を制御するためのシステム
US5651773A (en) 1996-01-19 1997-07-29 Perry; Larry C. Skin protector for ultrasonic-assisted liposuction and accessories
US5650450A (en) 1996-01-25 1997-07-22 Foamex L.P. Hydrophilic urethane foam
FR2744358B1 (fr) 1996-02-01 1998-05-07 Biogenie Beaute Concept Tete de massage combinant massage sous aspiration et electrotherapie
FR2745935B1 (fr) 1996-03-11 1998-05-22 Ygk Holding S A Equipement de bronzage a gestion automatisee
US5654279A (en) 1996-03-29 1997-08-05 The Regents Of The University Of California Tissue destruction in cryosurgery by use of thermal hysteresis
US6180867B1 (en) 1996-04-17 2001-01-30 General Electric Company Thermal sensor array and methods of fabrication and use
SE510531C2 (sv) 1996-05-02 1999-05-31 Sca Hygiene Prod Ab Hålgjort höljesskikt för att absorberande alster, samt sätt att framställa höljesskiktet
DE69719761T2 (de) 1996-06-18 2003-12-18 Alza Corp., Palo Alto Vorrichtung zur verbesserung der transdermalen verabreichung von medikamenten oder der abnahme von körperflüssigkeiten
AU3813897A (en) 1996-07-25 1998-02-20 Light Medicine, Inc. Photodynamic therapy apparatus and methods
US5976123A (en) 1996-07-30 1999-11-02 Laser Aesthetics, Inc. Heart stabilization
US5966763A (en) 1996-08-02 1999-10-19 Hill-Rom, Inc. Surface pad system for a surgical table
US6102885A (en) 1996-08-08 2000-08-15 Bass; Lawrence S. Device for suction-assisted lipectomy and method of using same
US5840080A (en) 1996-08-15 1998-11-24 Der Ovanesian; Mary Hot or cold applicator with inner element
US5665053A (en) 1996-09-27 1997-09-09 Jacobs; Robert A. Apparatus for performing endermology with ultrasound
US5941825A (en) 1996-10-21 1999-08-24 Philipp Lang Measurement of body fat using ultrasound methods and devices
BE1010730A7 (nl) 1996-11-04 1998-12-01 Pira Luc Louis Marie Francis Cryoprobe op basis van peltier module.
US5800490A (en) 1996-11-07 1998-09-01 Patz; Herbert Samuel Lightweight portable cooling or heating device with multiple applications
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US7204832B2 (en) 1996-12-02 2007-04-17 Pálomar Medical Technologies, Inc. Cooling system for a photo cosmetic device
US20060149343A1 (en) 1996-12-02 2006-07-06 Palomar Medical Technologies, Inc. Cooling system for a photocosmetic device
US5964092A (en) 1996-12-13 1999-10-12 Nippon Sigmax, Co., Ltd. Electronic cooling apparatus
EP0952850A2 (en) 1996-12-31 1999-11-03 Altea Technologies, Inc. Microporation of tissue for delivery of bioactive agents
US6102875A (en) 1997-01-16 2000-08-15 Jones; Rick E. Apparatus for combined application of massage, accupressure and biomagnetic therapy
US5830208A (en) 1997-01-31 1998-11-03 Laserlite, Llc Peltier cooled apparatus and methods for dermatological treatment
JPH10216169A (ja) 1997-02-05 1998-08-18 Kanae Kagawa:Kk 冷感冷却シート
JPH10223961A (ja) 1997-02-10 1998-08-21 Furukawa Electric Co Ltd:The 光増幅装置
US5925026A (en) 1997-03-10 1999-07-20 Kimberly-Clark Worldwide, Inc. Apertured absorbent pads for use in absorbent articles
US6032675A (en) 1997-03-17 2000-03-07 Rubinsky; Boris Freezing method for controlled removal of fatty tissue by liposuction
AU6865298A (en) 1997-03-17 1998-10-12 Boris Rubinsky The use of cryoprotective agent compounds during cryosurgery
GB2323659A (en) 1997-03-25 1998-09-30 Paul Weatherstone Hand directable chilled air blower
NL1007696C1 (nl) 1997-05-01 1998-11-03 Inst Voor Agrotech Onderzoek Omhulde stof met gecontroleerde afgifte.
DE69825447T2 (de) 1997-05-15 2005-09-15 Palomar Medical Technologies, Inc., Burlington Gerät zur dermatologischen behandlung
US5817050A (en) 1997-05-29 1998-10-06 Klein; Jeffrey A. Liposuction cannula
CA2293388A1 (en) 1997-06-17 1998-12-23 Michael L. Barretti Method and apparatus for temperature control of biologic tissue with simultaneous irradiation
US6104959A (en) 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
WO1999008597A1 (en) 1997-08-19 1999-02-25 Mendlein John D Multi-site ultrasound methods and devices, particularly for measurement of fluid regulation
FR2767476B1 (fr) 1997-08-25 1999-10-15 Juliette Dubois Dispositif physiotherapeutique pour le traitement de la peau par aspiration sous vide et ultrasons
US6023932A (en) 1997-08-25 2000-02-15 Johnston; Robert Topical cooling device
US6113558A (en) 1997-09-29 2000-09-05 Angiosonics Inc. Pulsed mode lysis method
US6623430B1 (en) 1997-10-14 2003-09-23 Guided Therapy Systems, Inc. Method and apparatus for safety delivering medicants to a region of tissue using imaging, therapy and temperature monitoring ultrasonic system
US6071239A (en) 1997-10-27 2000-06-06 Cribbs; Robert W. Method and apparatus for lipolytic therapy using ultrasound energy
GB9724186D0 (en) 1997-11-14 1998-01-14 British Tech Group Low temperature coatings
US6113559A (en) 1997-12-29 2000-09-05 Klopotek; Peter J. Method and apparatus for therapeutic treatment of skin with ultrasound
US6104952A (en) 1998-01-07 2000-08-15 Tu; Lily Chen Devices for treating canker sores, tissues and methods thereof
DE19800416C2 (de) 1998-01-08 2002-09-19 Storz Karl Gmbh & Co Kg Vorrichtung zur Behandlung von Körpergewebe, insbesondere von oberflächennahem Weichgewebe, mittels Ultraschall
US6251129B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
IL126783A0 (en) 1998-03-05 1999-08-17 M T R E Advanced Technology Lt System and method for heat control of a living body
US6047215A (en) 1998-03-06 2000-04-04 Sonique Surgical Systems, Inc. Method and apparatus for electromagnetically assisted liposuction
CA2323479A1 (en) 1998-03-12 1999-09-16 Palomar Medical Technologies, Inc. System for electromagnetic radiation of the skin
US6551349B2 (en) 1998-03-24 2003-04-22 Innercool Therapies, Inc. Selective organ cooling apparatus
WO1999049937A1 (en) 1998-03-27 1999-10-07 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
FR2776920B3 (fr) 1998-04-03 2000-04-28 Elie Piana Dispositif de massage a depression
US6569189B1 (en) 1998-04-06 2003-05-27 Augustine Medical, Inc. Tissue treatment apparatus including a bandpass filter transparent to selected wavelengths of IR electromagnetic spectrum
US6264649B1 (en) 1998-04-09 2001-07-24 Ian Andrew Whitcroft Laser treatment cooling head
US5997530A (en) 1998-04-13 1999-12-07 The Regents Of The University Of California Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations
US6354297B1 (en) 1998-04-16 2002-03-12 The Uniformed Services University Of The Health Sciences Method and device for destroying fat cells by induction of programmed cell death
DE69939866D1 (de) 1998-04-23 2008-12-18 Univ Texas Heizdecke und methode zur kontrolle der patiententemperatur
US6113626A (en) 1998-04-23 2000-09-05 The Board Of Regents Of The University Of Texas System Heat transfer blanket for controlling a patient's temperature
US6375673B1 (en) 1998-04-23 2002-04-23 The Board Of Regents Of The University Of Texas System Heat transfer blanket for and method of controlling a patient's temperature
US6151735A (en) 1998-05-05 2000-11-28 Imak Corporation Zone inflatable orthopedic pillow
US20050143797A1 (en) 2003-07-18 2005-06-30 Thermotek, Inc. Compression sequenced thermal therapy system
US6015390A (en) 1998-06-12 2000-01-18 D. Krag Llc System and method for stabilizing and removing tissue
US6039694A (en) 1998-06-25 2000-03-21 Sonotech, Inc. Coupling sheath for ultrasound transducers
US6312453B1 (en) 1998-07-16 2001-11-06 Olympic Medical Corp. Device for cooling infant's brain
US6673098B1 (en) 1998-08-24 2004-01-06 Radiant Medical, Inc. Disposable cassette for intravascular heat exchange catheter
US6620189B1 (en) 2000-02-28 2003-09-16 Radiant Medical, Inc. Method and system for control of a patient's body temperature by way of a transluminally insertable heat exchange catheter
US6093230A (en) 1998-10-12 2000-07-25 Allegiance Corporation Filter assembly comprising two filter elements separated by a hydrophobic foam
US6059820A (en) 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
TW514521B (en) 1998-10-16 2002-12-21 Coolsystems Inc Compliant heat exchange splint and control unit
US6150148A (en) 1998-10-21 2000-11-21 Genetronics, Inc. Electroporation apparatus for control of temperature during the process
IL126723A0 (en) 1998-10-22 1999-08-17 Medoc Ltd Vaginal probe and method
US6120519A (en) 1998-12-02 2000-09-19 Weber; Paul J. Advanced fulcrum liposuction device
US7785359B2 (en) 1998-12-18 2010-08-31 Traumatec, Inc. Therapeutic cooling devices
CA2356993C (en) 1999-01-04 2009-06-23 Medivance, Inc. Improved cooling/heating pad and system
US6183773B1 (en) 1999-01-04 2001-02-06 The General Hospital Corporation Targeting of sebaceous follicles as a treatment of sebaceous gland disorders
US6306119B1 (en) 1999-01-20 2001-10-23 Pearl Technology Holdings, Llc Skin resurfacing and treatment using biocompatible materials
US6635053B1 (en) 1999-01-25 2003-10-21 Cryocath Technologies Inc. Cooling system
US6592577B2 (en) 1999-01-25 2003-07-15 Cryocath Technologies Inc. Cooling system
ATE216875T1 (de) 1999-01-27 2002-05-15 Idea Ag Nichtinvasive impfung durch die haut
US6200308B1 (en) 1999-01-29 2001-03-13 Candela Corporation Dynamic cooling of tissue for radiation treatment
AU3286299A (en) 1999-01-29 2000-08-18 Gerard Hassler Lowering skin temperature
FR2789893B1 (fr) 1999-02-24 2001-05-11 Serge Karagozian Appareil de massage combinant dermotonie et magnetotherapie
EP1158919B1 (en) 1999-03-09 2005-06-29 Thermage, Inc. Apparatus for treatment of tissue
US6678558B1 (en) 1999-03-25 2004-01-13 Genetronics, Inc. Method and apparatus for reducing electroporation-mediated muscle reaction and pain response
EP1175749B1 (en) 1999-04-22 2005-07-06 Veridicom, Inc. High security biometric authentication using a public key/private key encryption pairs
US20040009936A1 (en) 1999-05-03 2004-01-15 Tang De-Chu C. Vaccine and drug delivery by topical application of vectors and vector extracts
WO2000067685A1 (en) 1999-05-12 2000-11-16 Burns Terrence R Thermoregulation systems
US20020198518A1 (en) 1999-05-26 2002-12-26 Mikus Paul W. Entry position grid for computer guided cryosurgery
US6694170B1 (en) 1999-05-26 2004-02-17 Endocare, Inc. Computer guided surgery for prostatic nerve sparing
US6139544A (en) 1999-05-26 2000-10-31 Endocare, Inc. Computer guided cryosurgery
US6643535B2 (en) 1999-05-26 2003-11-04 Endocare, Inc. System for providing computer guided ablation of tissue
US6357907B1 (en) 1999-06-15 2002-03-19 V & P Scientific, Inc. Magnetic levitation stirring devices and machines for mixing in vessels
WO2003053266A2 (en) * 1999-06-30 2003-07-03 Thermage, Inc. Liquid cooled rf handpiece
KR200173222Y1 (ko) 1999-07-19 2000-03-15 이강민 초음파피부마사지기
AU6756300A (en) 1999-08-02 2001-02-19 Lance B. Becker Method for inducing hypothermia
JP2001046416A (ja) 1999-08-10 2001-02-20 Try Company:Kk 身体冷却装置
US6548728B1 (en) 1999-08-11 2003-04-15 Medical Products, Inc. Wound dressing garment
US6290713B1 (en) 1999-08-24 2001-09-18 Thomas A. Russell Flexible illuminators for phototherapy
US7113821B1 (en) 1999-08-25 2006-09-26 Johnson & Johnson Consumer Companies, Inc. Tissue electroperforation for enhanced drug delivery
IL131834A0 (en) 1999-09-09 2001-03-19 M T R E Advanced Technology Lt Method and system for improving cardiac output of a patient
US6471693B1 (en) 1999-09-10 2002-10-29 Cryocath Technologies Inc. Catheter and system for monitoring tissue contact
US6226996B1 (en) 1999-10-06 2001-05-08 Paul J. Weber Device for controlled cooling of a surface
GB9923804D0 (en) 1999-10-08 1999-12-08 Hewlett Packard Co Electronic commerce system
WO2001032114A1 (en) 1999-11-02 2001-05-10 Wizcare Ltd. Skin-gripper
US7112712B1 (en) 1999-11-10 2006-09-26 Protex Healthcare (Uk) Limited Dressing
US6743222B2 (en) 1999-12-10 2004-06-01 Candela Corporation Method of treating disorders associated with sebaceous follicles
US6402775B1 (en) 1999-12-14 2002-06-11 Augustine Medical, Inc. High-efficiency cooling pads, mattresses, and sleeves
JP2004159666A (ja) 1999-12-21 2004-06-10 Ya Man Ltd レーザ脱毛器
JP4723707B2 (ja) 1999-12-22 2011-07-13 パナソニック電工株式会社 痩身器具
US6699237B2 (en) 1999-12-30 2004-03-02 Pearl Technology Holdings, Llc Tissue-lifting device
JP2001190586A (ja) 2000-01-11 2001-07-17 Ohiro Seisakusho:Kk 美顔器
US6840955B2 (en) 2000-01-27 2005-01-11 Robert J. Ein Therapeutic apparatus
FR2805989B1 (fr) 2000-03-10 2003-02-07 Prod Ella Bache Laboratoire Su Procede de traitement des inesthetismes de la silhouette du corps humain et dispositif pour la mise en oeuvre du procede
AU2001252914A1 (en) 2000-03-14 2001-09-24 Alnis Bioscience, Inc. Cryoprotective system
KR100367639B1 (ko) 2000-03-20 2003-01-14 안문휘 경혈부의 저온 자극장치
US6311497B1 (en) 2000-03-22 2001-11-06 Young-Chun Chung Device for cold and warm formentations
US20020188478A1 (en) 2000-03-24 2002-12-12 Joe Breeland Health-care systems and methods
US6354099B1 (en) 2000-04-11 2002-03-12 Augustine Medical, Inc. Cooling devices with high-efficiency cooling features
AU2001257136B2 (en) 2000-04-20 2005-12-01 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for cooling body core
US20020151830A1 (en) 2000-04-28 2002-10-17 Rocky Kahn Hydrotherapy system with water pervious body support
US6494844B1 (en) 2000-06-21 2002-12-17 Sanarus Medical, Inc. Device for biopsy and treatment of breast tumors
AU2001276895A1 (en) 2000-07-13 2002-01-30 Medtronic, Inc. Non-invasive carotid cooler brain hypothermia medical device
US6905492B2 (en) 2000-07-31 2005-06-14 Galil Medical Ltd. Planning and facilitation systems and methods for cryosurgery
US6697670B2 (en) 2001-08-17 2004-02-24 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
US6892099B2 (en) 2001-02-08 2005-05-10 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
US8251986B2 (en) 2000-08-17 2012-08-28 Angiodynamics, Inc. Method of destroying tissue cells by eletroporation
WO2002014774A2 (en) 2000-08-17 2002-02-21 Ocean Power Corporation Heat exchange element with hydrophilic evaporator surface
US6795728B2 (en) 2001-08-17 2004-09-21 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation
US6458888B1 (en) 2000-09-15 2002-10-01 Isp Investments Inc. Rheology modifier for use in aqueous compositions
US6527765B2 (en) 2000-10-06 2003-03-04 Charles D. Kelman Cryogenic surgical system and method of use in removal of tissue
US6579281B2 (en) 2000-10-11 2003-06-17 Popcab, Llc Instrument stabilizer for through-a-port surgery
US6540694B1 (en) 2000-10-16 2003-04-01 Sanarus Medical, Inc. Device for biopsy tumors
JP3655820B2 (ja) 2000-10-23 2005-06-02 繁雄 小林 頭部冷却加温装置
EP1201266A1 (fr) 2000-10-26 2002-05-02 Compex SA Procédé de programmation de données de stimulation électrique pour un appareil de stimulation électrique, et installation pour sa mise en oeuvre
DE10056242A1 (de) 2000-11-14 2002-05-23 Alstom Switzerland Ltd Kondensationswärmeübertrager
US6821274B2 (en) 2001-03-07 2004-11-23 Gendel Ltd. Ultrasound therapy for selective cell ablation
US7549987B2 (en) 2000-12-09 2009-06-23 Tsunami Medtech, Llc Thermotherapy device
US6645162B2 (en) 2000-12-27 2003-11-11 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
US6626854B2 (en) 2000-12-27 2003-09-30 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
AU2002227447B2 (en) 2000-12-28 2007-05-10 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic EMR treatment of the skin
US7347855B2 (en) 2001-10-29 2008-03-25 Ultrashape Ltd. Non-invasive ultrasonic body contouring
US20040106867A1 (en) 2001-01-03 2004-06-03 Yoram Eshel Non-invasive ultrasonic body contouring
US6607498B2 (en) 2001-01-03 2003-08-19 Uitra Shape, Inc. Method and apparatus for non-invasive body contouring by lysing adipose tissue
US6551348B1 (en) 2001-01-26 2003-04-22 Deroyal Industries, Inc. Temperature controlled fluid therapy system
JP2002224051A (ja) 2001-01-30 2002-08-13 Yamaguchi Prefecture 無拘束型生命監視装置
US20050145372A1 (en) 2004-01-02 2005-07-07 Noel Thomas P. Method and thermally active multi-phase heat transfer apparatus and method for abstracting heat using liquid bi-phase heat exchanging composition
US6904956B2 (en) 2002-10-18 2005-06-14 Thomas P. Noel Method and thermally active convection apparatus and method for abstracting heat with circulation intermediate three dimensional-parity heat transfer elements in bi-phase heat exchanging composition
JP4027049B2 (ja) 2001-02-28 2007-12-26 株式会社ニデック レーザ治療装置
US6948903B2 (en) 2001-03-15 2005-09-27 Maxon Lift Corporation Unitary liftgate
JP4938177B2 (ja) 2001-03-22 2012-05-23 小林製薬株式会社 保冷・保温用パッド
JP2002290397A (ja) 2001-03-23 2002-10-04 Iryo Joho Syst Kaihatsu Center セキュア通信方法
US7083580B2 (en) 2001-04-06 2006-08-01 Mattioli Engineering Ltd. Method and apparatus for skin absorption enhancement and transdermal drug delivery
US20020156509A1 (en) 2001-04-23 2002-10-24 Stephen Cheung Thermal control suit
WO2002087700A1 (en) 2001-04-26 2002-11-07 The Procter & Gamble Company Method, kit and device for the treatment of cosmetic skin conditions
US6438954B1 (en) 2001-04-27 2002-08-27 3M Innovative Properties Company Multi-directional thermal actuator
FR2823973B1 (fr) 2001-04-27 2003-12-26 Alain Meunier Appareil de massage pour l'execution d'un massage du type "evalue-presse-tire"
US6430956B1 (en) 2001-05-15 2002-08-13 Cimex Biotech Lc Hand-held, heat sink cryoprobe, system for heat extraction thereof, and method therefore
GB0111986D0 (en) 2001-05-16 2001-07-04 Optomed As Cryosurgical apparatus and methods
CN2514795Y (zh) 2001-05-18 2002-10-09 郑晓丹 多触头冷冻美容笔
US7192426B2 (en) 2001-05-31 2007-03-20 Endocare, Inc. Cryogenic system
US20020188286A1 (en) 2001-06-06 2002-12-12 Quijano Rodolfo C. Methods for treating vulnerable plaque
US6551341B2 (en) 2001-06-14 2003-04-22 Advanced Cardiovascular Systems, Inc. Devices configured from strain hardened Ni Ti tubing
FR2826107A1 (fr) 2001-06-19 2002-12-20 M D I C Article refrigerant notamment pour une application en cryotherapie ou pour la conservation d'aliments
TW476644B (en) 2001-06-28 2002-02-21 Wen-Hu Liau Portable first-aid cold hot compress pack
JP3393128B1 (ja) 2001-07-18 2003-04-07 正雄 酒井 女性装着型コンドーム
CN2514811Y (zh) 2001-07-31 2002-10-09 尹旭光 电热暖脚器
US20040260209A1 (en) 2003-06-23 2004-12-23 Engli (2001) Ltd. System and method for face and body treatment
US20040260210A1 (en) 2003-06-23 2004-12-23 Engii (2001) Ltd. System and method for face and body treatment
US20030032900A1 (en) 2001-08-08 2003-02-13 Engii (2001) Ltd. System and method for facial treatment
US6438964B1 (en) 2001-09-10 2002-08-27 Percy Giblin Thermoelectric heat pump appliance with carbon foam heat sink
US6572450B2 (en) 2001-09-21 2003-06-03 Iphotonics, Inc. Roll format polishing process for optical devices
US20030062040A1 (en) 2001-09-28 2003-04-03 Lurie Keith G. Face mask ventilation/perfusion systems and method
US20030114885A1 (en) 2001-10-02 2003-06-19 Nova Richard C. System and device for implementing an integrated medical device component package
BR0212952A (pt) 2001-10-05 2004-10-13 Basf Ag Processos para a reticulação e pós-reticulação superficial de polìmeros iniciais, composição de matéria, polìmero, e, usos de polìmeros e de uma composição de matéria
US6699267B2 (en) 2001-10-11 2004-03-02 Medivance Incorporated Patient temperature control system with fluid temperature response
US6660027B2 (en) 2001-10-11 2003-12-09 Medivance Incorporated Patient temperature control system with fluid preconditioning
US7112340B2 (en) 2001-10-19 2006-09-26 Baxter International Inc. Compositions of and method for preparing stable particles in a frozen aqueous matrix
US20030125649A1 (en) 2001-10-31 2003-07-03 Mcintosh Laura Janet Method and system apparatus using temperature and pressure for treating medical disorders
CA2462448C (en) 2001-11-20 2010-04-27 Senvid, Inc. Access and control system for network-enabled devices
US6889090B2 (en) 2001-11-20 2005-05-03 Syneron Medical Ltd. System and method for skin treatment using electrical current
US6648904B2 (en) 2001-11-29 2003-11-18 Palomar Medical Technologies, Inc. Method and apparatus for controlling the temperature of a surface
US6849075B2 (en) 2001-12-04 2005-02-01 Estech, Inc. Cardiac ablation devices and methods
US6755852B2 (en) 2001-12-08 2004-06-29 Charles A. Lachenbruch Cooling body wrap with phase change material
US20030109910A1 (en) 2001-12-08 2003-06-12 Lachenbruch Charles A. Heating or cooling pad or glove with phase change material
US6699266B2 (en) 2001-12-08 2004-03-02 Charles A. Lachenbruch Support surface with phase change material or heat tubes
US7762965B2 (en) 2001-12-10 2010-07-27 Candela Corporation Method and apparatus for vacuum-assisted light-based treatments of the skin
EP1627662B1 (en) 2004-06-10 2011-03-02 Candela Corporation Apparatus for vacuum-assisted light-based treatments of the skin
JP2003190201A (ja) 2001-12-26 2003-07-08 Lion Corp 身体冷却用具、及び、身体加温用具
WO2003070105A1 (en) 2002-02-20 2003-08-28 Liposonix, Inc. Ultrasonic treatment and imaging of adipose tissue
US6523354B1 (en) 2002-03-08 2003-02-25 Deborah Ann Tolbert Cooling blanket
US8840608B2 (en) 2002-03-15 2014-09-23 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
ATE494866T1 (de) 2002-03-15 2011-01-15 Gen Hospital Corp Verfahren zur selektiven spaltung von fettgewebe durch gesteuerte kühlung
US6662054B2 (en) 2002-03-26 2003-12-09 Syneron Medical Ltd. Method and system for treating skin
US20030236487A1 (en) 2002-04-29 2003-12-25 Knowlton Edward W. Method for treatment of tissue with feedback
US20040176667A1 (en) 2002-04-30 2004-09-09 Mihai Dan M. Method and system for medical device connectivity
US20030220594A1 (en) 2002-05-24 2003-11-27 United States Manufacturing Company, Inc. Torso orthosis apparatus and method
US6746474B2 (en) 2002-05-31 2004-06-08 Vahid Saadat Apparatus and methods for cooling a region within the body
US20060106836A1 (en) 2002-06-07 2006-05-18 Madoka Masugi Data processing system, data processing device, data processing method, and computer program
JP3786055B2 (ja) 2002-06-07 2006-06-14 ソニー株式会社 データ処理システム、データ処理装置、および方法、並びにコンピュータ・プログラム
JP2006500972A (ja) 2002-06-19 2006-01-12 パロマー・メディカル・テクノロジーズ・インコーポレイテッド ある深さの組織を輻射熱によって治療する方法および装置
EP1539013A4 (en) 2002-06-19 2005-09-21 Palomar Medical Tech Inc METHOD AND DEVICE FOR TREATING SKIN AND SUB-TISSUE DISEASES
JP2004073812A (ja) 2002-06-20 2004-03-11 Ya Man Ltd マッサージ装置
KR100923717B1 (ko) 2002-06-25 2009-10-27 울트라세이프 인코포레이티드 신체 미용에 유용한 디바이스 및 방법
US6820961B2 (en) 2002-06-28 2004-11-23 Lexmark International, Inc. Stationary ink mist chimney for ink jet printer
US6969399B2 (en) 2002-07-11 2005-11-29 Life Recovery Systems Hd, Llc Apparatus for altering the body temperature of a patient
KR20040009450A (ko) 2002-07-23 2004-01-31 키시모토 산교 가부시키가이샤 끈 수납수단을 구비한 조임끈이 부착된 플라스틱 시트 자루
US7250047B2 (en) 2002-08-16 2007-07-31 Lumenis Ltd. System and method for treating tissue
US6860896B2 (en) 2002-09-03 2005-03-01 Jeffrey T. Samson Therapeutic method and apparatus
US6789545B2 (en) 2002-10-04 2004-09-14 Sanarus Medical, Inc. Method and system for cryoablating fibroadenomas
WO2004033040A1 (en) 2002-10-07 2004-04-22 Palomar Medical Technologies, Inc. Apparatus for performing photobiostimulation
US8226698B2 (en) 2002-10-08 2012-07-24 Vitalwear, Inc. Therapeutic cranial wrap for a contrast therapy system
US6994151B2 (en) 2002-10-22 2006-02-07 Cooligy, Inc. Vapor escape microchannel heat exchanger
JP4790268B2 (ja) 2002-10-23 2011-10-12 パロマー・メディカル・テクノロジーズ・インコーポレイテッド 冷却剤及び局所物質と共に使用する光処理装置
US20040082886A1 (en) 2002-10-24 2004-04-29 Timpson Sandra Tee Therapeutic device for relieving pain and stress
GB2396109B (en) 2002-12-12 2006-04-19 Johnson & Johnson Medical Ltd Absorbent multilayer hydrogel wound dressings
CN1511503A (zh) 2002-12-30 2004-07-14 中国科学院理化技术研究所 对皮肤交替实施冷热刺激的减肥装置
US7976519B2 (en) 2002-12-31 2011-07-12 Kci Licensing, Inc. Externally-applied patient interface system and method
US7410484B2 (en) 2003-01-15 2008-08-12 Cryodynamics, Llc Cryotherapy probe
US7273479B2 (en) 2003-01-15 2007-09-25 Cryodynamics, Llc Methods and systems for cryogenic cooling
US7083612B2 (en) 2003-01-15 2006-08-01 Cryodynamics, Llc Cryotherapy system
US20050143781A1 (en) 2003-01-31 2005-06-30 Rafael Carbunaru Methods and systems for patient adjustment of parameters for an implanted stimulator
US20060234899A1 (en) 2003-03-05 2006-10-19 H.H. Brown Shoe Technologies Inc. D/B/A Dicon Technologies Hydrophilic polyurethane foam articles comprising an antimicrobial compound
WO2004080279A2 (en) 2003-03-06 2004-09-23 Spectragenics, Inc. In the patent cooperation treaty application for patent
US7037326B2 (en) 2003-03-14 2006-05-02 Hee-Young Lee Skin cooling device using thermoelectric element
DE10314138A1 (de) 2003-03-25 2004-10-07 Krüger & Gothe GmbH Wärme/Kältevorrichtung
US20040206365A1 (en) * 2003-03-31 2004-10-21 Knowlton Edward Wells Method for treatment of tissue
US9149322B2 (en) 2003-03-31 2015-10-06 Edward Wells Knowlton Method for treatment of tissue
GB0307963D0 (en) 2003-04-05 2003-05-14 Eastman Kodak Co A foamed material and a method of making thereof
US7220778B2 (en) 2003-04-15 2007-05-22 The General Hospital Corporation Methods and devices for epithelial protection during photodynamic therapy
US7659301B2 (en) 2003-04-15 2010-02-09 The General Hospital Corporation Methods and devices for epithelial protection during photodynamic therapy
US20040210287A1 (en) 2003-04-21 2004-10-21 Greene Judy L. Portable cooling or heating device for applying cryotherapy
US20040249427A1 (en) 2003-06-06 2004-12-09 Yunes Nabilsi Medical cooler device
US7147610B2 (en) 2003-06-19 2006-12-12 Tarek Maalouf Multiple combination heat/massage devices
JP4504099B2 (ja) 2003-06-25 2010-07-14 株式会社リコー デジタル証明書管理システム、デジタル証明書管理装置、デジタル証明書管理方法、更新手順決定方法およびプログラム
US7479104B2 (en) 2003-07-08 2009-01-20 Maquet Cardiovascular, Llc Organ manipulator apparatus
US8100956B2 (en) 2006-05-09 2012-01-24 Thermotek, Inc. Method of and system for thermally augmented wound care oxygenation
US20050043723A1 (en) 2003-08-19 2005-02-24 Schering-Plough Healthcare Products, Inc. Cryosurgery device
JP2005065984A (ja) 2003-08-25 2005-03-17 Nikon Corp マッサージ機
US20050049526A1 (en) 2003-09-03 2005-03-03 Baer Mark P. Massage devices and methods thereof
US20050049661A1 (en) 2003-09-03 2005-03-03 Koffroth Shirley B. Ice belt to reduce body temperature
CA2441489A1 (en) 2003-09-12 2005-03-12 Jocelyn Tortal Inducing and contouring ice formation
US7077858B2 (en) 2003-09-22 2006-07-18 Coolhead Technologies, Inc. Flexible heat exchangers for medical cooling and warming applications
KR101056676B1 (ko) 2003-09-30 2011-08-22 소니 주식회사 콘텐츠 취득 방법
JP2005110755A (ja) 2003-10-03 2005-04-28 Shinko Denshi Kk 筋肉疲労解消用加熱・冷却装置
US7282036B2 (en) 2003-10-24 2007-10-16 Masatoshi Masuda Cosmetic device having vibrator
EP1527760A1 (fr) 2003-10-29 2005-05-04 Normand, Jacques Coussin thermique et son utilisation
US7613523B2 (en) 2003-12-11 2009-11-03 Apsara Medical Corporation Aesthetic thermal sculpting of skin
US7532201B2 (en) 2003-12-30 2009-05-12 Liposonix, Inc. Position tracking device
CN1901837B (zh) 2003-12-30 2010-05-12 利普索尼克斯股份有限公司 组成式超声波换能器
WO2005065371A2 (en) 2003-12-30 2005-07-21 Liposonix, Inc. Systems and methods for the destruction of adipose tissue
BRPI0417907A (pt) 2003-12-30 2007-04-10 Liposonix Inc cabeçote para ultra-som, aplicador de energia, meio para manobrar o mesmo, e, método para distribuir energia de ultra-som a uma superfìcie do corpo
US7857773B2 (en) 2003-12-30 2010-12-28 Medicis Technologies Corporation Apparatus and methods for the destruction of adipose tissue
US20070141265A1 (en) 2004-02-02 2007-06-21 Timothy Thomson Process for controlling the density, conformation and composition of the hydrophilic layer of a polyurethane composite
JP2005237908A (ja) 2004-02-12 2005-09-08 Tamotsu Nishizaki 熱交換器を用いた冷凍手術器
JP4109640B2 (ja) 2004-02-25 2008-07-02 株式会社エム・アイ・ラボ 自動励振マッサージ器
US7052167B2 (en) 2004-02-25 2006-05-30 Vanderschuit Carl R Therapeutic devices and methods for applying therapy
US20060035380A1 (en) 2004-03-12 2006-02-16 L'oreal Fake-proof marking of a composition
JP2005312950A (ja) 2004-03-31 2005-11-10 Terumo Corp エネルギー照射用医療器具および医療用エネルギー照射装置
WO2005096981A2 (en) 2004-04-01 2005-10-20 The General Hospital Corporation Method and apparatus for dermatological treatment
AU2005231443B2 (en) 2004-04-01 2012-02-23 The General Hospital Corporation Method and apparatus for dermatological treatment and tissue reshaping
US8571648B2 (en) 2004-05-07 2013-10-29 Aesthera Apparatus and method to apply substances to tissue
US7842029B2 (en) 2004-05-07 2010-11-30 Aesthera Apparatus and method having a cooling material and reduced pressure to treat biological external tissue
US20070179482A1 (en) 2004-05-07 2007-08-02 Anderson Robert S Apparatuses and methods to treat biological external tissue
US20050251117A1 (en) 2004-05-07 2005-11-10 Anderson Robert S Apparatus and method for treating biological external tissue
JP2005323716A (ja) 2004-05-13 2005-11-24 Takeshi Shimizu 冷点刺激装置
US20050277859A1 (en) 2004-05-27 2005-12-15 Carlsmith Bruce S Joint protection device
US7959657B1 (en) 2004-07-07 2011-06-14 Harsy Douglas R Portable thermal therapeutic apparatus and method
JP4579603B2 (ja) 2004-07-14 2010-11-10 株式会社リブドゥコーポレーション 皮膚洗浄用不織布
US20060036300A1 (en) 2004-08-16 2006-02-16 Syneron Medical Ltd. Method for lypolisis
US7171508B2 (en) 2004-08-23 2007-01-30 Micron Technology, Inc. Dual port memory with asymmetric inputs and outputs, device, system and method
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US8690779B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive aesthetic treatment for tightening tissue
EP2279697A3 (en) 2004-10-06 2014-02-19 Guided Therapy Systems, L.L.C. Method and system for non-invasive cosmetic enhancement of blood vessel disorders
KR20200021102A (ko) 2004-10-06 2020-02-27 가이디드 테라피 시스템스, 엘.엘.씨. 초음파 치료 시스템
US20120046547A1 (en) 2004-10-06 2012-02-23 Guided Therapy Systems, Llc System and method for cosmetic treatment
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
US20060094988A1 (en) 2004-10-28 2006-05-04 Tosaya Carol A Ultrasonic apparatus and method for treating obesity or fat-deposits or for delivering cosmetic or other bodily therapy
JP4324673B2 (ja) 2004-11-05 2009-09-02 国立大学法人東北大学 ペルチェモジュールによる凍結治療装置
US20060122509A1 (en) 2004-11-24 2006-06-08 Liposonix, Inc. System and methods for destroying adipose tissue
US7828831B1 (en) 2004-12-06 2010-11-09 Deroyal Industries, Inc. Hot and cold fluid therapy system
US7780656B2 (en) 2004-12-10 2010-08-24 Reliant Technologies, Inc. Patterned thermal treatment using patterned cryogen spray and irradiation by light
GB2422109B (en) 2005-01-13 2007-02-21 Richard Mills Apparatus for providing a heating and cooling effect
US20090112134A1 (en) 2005-01-24 2009-04-30 Kineticure Limited Devices and method for applying vibrations to joints
US7871427B2 (en) 2005-02-08 2011-01-18 Carewave, Inc. Apparatus and method for using a portable thermal device to reduce accommodation of nerve receptors
US20060206040A1 (en) 2005-03-09 2006-09-14 Greenberg Ronald A aparatus and method of body contouring and skin conditioning using a mobile suction device
CN101170983B (zh) 2005-03-09 2011-04-27 罗兰德·亚伦·格林伯格 体形修复和皮肤调理的装置和方法
WO2006106836A1 (ja) 2005-03-31 2006-10-12 Nikon Corporation 露光方法、露光装置、及びデバイス製造方法
US7975702B2 (en) 2005-04-05 2011-07-12 El.En. S.P.A. System and method for laser lipolysis
JP2008539034A (ja) 2005-04-27 2008-11-13 レイディアント メディカル インコーポレイテッド 改良型の体内から熱交換を行う装置およびその方法
US7217265B2 (en) * 2005-05-18 2007-05-15 Cooltouch Incorporated Treatment of cellulite with mid-infrared radiation
US7850683B2 (en) 2005-05-20 2010-12-14 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US7713266B2 (en) 2005-05-20 2010-05-11 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US20090326621A1 (en) 2005-05-24 2009-12-31 Rizk El-Galley Surgical delivery devices and methods
CN2843367Y (zh) 2005-07-01 2006-12-06 李铁军 用于治疗皮肤赘生物的冷冻装置
CA2616072A1 (en) 2005-07-20 2007-01-25 Verimatrix, Inc. Network user authentication system and method
US7955262B2 (en) 2005-07-26 2011-06-07 Syneron Medical Ltd. Method and apparatus for treatment of skin using RF and ultrasound energies
US20070032561A1 (en) 2005-08-05 2007-02-08 I-Sioun Lin Modified hydrophilic polyurethane memory foam, application and manufacturing method thereof
US20070055173A1 (en) 2005-08-23 2007-03-08 Sanarus Medical, Inc. Rotational core biopsy device with liquid cryogen adhesion probe
CN2850584Y (zh) 2005-09-05 2006-12-27 李钟俊 一种新型冷冻嫩肤美容仪
CN2850585Y (zh) 2005-09-05 2006-12-27 李钟俊 一种有磁场的新型冷冻嫩肤美容仪
GB2431108A (en) 2005-09-07 2007-04-18 Mohammed Firoz Hussein Applicator for dispensing cryogenic fluid
US7967763B2 (en) 2005-09-07 2011-06-28 Cabochon Aesthetics, Inc. Method for treating subcutaneous tissues
US8518069B2 (en) 2005-09-07 2013-08-27 Cabochon Aesthetics, Inc. Dissection handpiece and method for reducing the appearance of cellulite
WO2007038567A1 (en) 2005-09-28 2007-04-05 Candela Corporation Treating cellulite
US20070078502A1 (en) 2005-10-05 2007-04-05 Thermage, Inc. Method and apparatus for estimating a local impedance factor
US7572268B2 (en) 2005-10-13 2009-08-11 Bacoustics, Llc Apparatus and methods for the selective removal of tissue using combinations of ultrasonic energy and cryogenic energy
US7729773B2 (en) 2005-10-19 2010-06-01 Advanced Neuromodualation Systems, Inc. Neural stimulation and optical monitoring systems and methods
WO2007056493A1 (en) 2005-11-08 2007-05-18 Schumann Daniel H Device and method for the treatment of pain with electrical energy
US20080014627A1 (en) 2005-12-02 2008-01-17 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US9248317B2 (en) 2005-12-02 2016-02-02 Ulthera, Inc. Devices and methods for selectively lysing cells
US20070135876A1 (en) 2005-12-08 2007-06-14 Weber Paul J Acne and skin defect treatment via non-radiofrequency electrical current controlled power delivery device and methods
US7799018B2 (en) 2006-01-06 2010-09-21 Olga Goulko Cryogenic applicator for rejuvenating human skin and related method
WO2007088547A2 (en) 2006-02-02 2007-08-09 Tylerton International Inc. Metabolic sink
CN100362067C (zh) 2006-02-08 2008-01-16 舒宏纪 一种高疏水性、高导热性和高粘附性界面涂料
US7824437B1 (en) 2006-02-13 2010-11-02 Gina Saunders Multi-functional abdominal cramp reducing device and associated method
US8133191B2 (en) 2006-02-16 2012-03-13 Syneron Medical Ltd. Method and apparatus for treatment of adipose tissue
US7854754B2 (en) 2006-02-22 2010-12-21 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
JP4903471B2 (ja) 2006-03-30 2012-03-28 東急建設株式会社 建物用壁材及び無線伝送システム
US20070249519A1 (en) 2006-04-20 2007-10-25 Kalypsys, Inc. Methods for the upregulation of glut4 via modulation of ppar delta in adipose tissue and for the treatment of disease
US20070255187A1 (en) 2006-04-26 2007-11-01 Branch Alan P Vibrating therapy device
KR101039758B1 (ko) 2006-04-28 2011-06-09 젤티크 애스세틱스, 인코포레이티드. 피하 지질 과다 세포의 개선된 냉각을 위한 치료 장치와함께 사용하기 위한 동결 방지제
US7615036B2 (en) 2006-05-11 2009-11-10 Kalypto Medical, Inc. Device and method for wound therapy
US20070282318A1 (en) * 2006-05-16 2007-12-06 Spooner Gregory J Subcutaneous thermolipolysis using radiofrequency energy
US20070270925A1 (en) 2006-05-17 2007-11-22 Juniper Medical, Inc. Method and apparatus for non-invasively removing heat from subcutaneous lipid-rich cells including a coolant having a phase transition temperature
KR100746323B1 (ko) 2006-06-12 2007-08-06 주식회사 바이오스마트 냉동 치료 및 관리를 위한 롤러형 피부관리기
KR100746322B1 (ko) 2006-06-12 2007-08-06 주식회사 바이오스마트 냉동 치료 및 관리를 위한 로드형 피부관리기
US8246611B2 (en) 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
US8460352B2 (en) 2006-07-05 2013-06-11 Kaz Usa, Inc. Site-specific pad with notch
US20080046047A1 (en) 2006-08-21 2008-02-21 Daniel Jacobs Hot and cold therapy device
EP2059215B1 (en) 2006-08-28 2015-12-02 Gerard Hassler Improved preparation for reducing and/or preventing body fat and respective uses, in particular together with a dressing material
US20090171253A1 (en) 2006-09-06 2009-07-02 Cutera, Inc. System and method for dermatological treatment using ultrasound
US20080140061A1 (en) 2006-09-08 2008-06-12 Arbel Medical Ltd. Method And Device For Combined Treatment
US20080097207A1 (en) 2006-09-12 2008-04-24 Siemens Medical Solutions Usa, Inc. Ultrasound therapy monitoring with diagnostic ultrasound
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US20080077201A1 (en) 2006-09-26 2008-03-27 Juniper Medical, Inc. Cooling devices with flexible sensors
CN200970265Y (zh) 2006-11-09 2007-11-07 韩秀玲 冷冻治疗装置
US20080140371A1 (en) 2006-11-15 2008-06-12 General Electric Company System and method for treating a patient
US20100028969A1 (en) 2006-12-18 2010-02-04 Koninklijke Philips Electronics N.V. Cell lysis or electroporation device comprising at least one pyroelectric material
US20080161892A1 (en) 2006-12-28 2008-07-03 John Anthony Mercuro Facial Cold -Pack Holder
WO2008101034A2 (en) 2007-02-13 2008-08-21 Thermotek, Inc. System and method for cooled airflow for dermatological applications
EP2104462A4 (en) 2007-02-16 2009-11-04 Paul K Perl NONINVASIVE ULTRASOUND-BASED BODY CONTOURING WITH SKIN CONTACT COOLING
CN101259329A (zh) 2007-03-08 2008-09-10 德切勒·克里斯托夫·迪亚特曼 一种绒毛玩具温热装置
JP2010524591A (ja) 2007-04-19 2010-07-22 ザ ファウンドリー, インコーポレイテッド 汗の産生を低減するための方法および装置
EP2142128B1 (en) 2007-04-19 2014-08-06 Miramar Labs, Inc. Systems for creating an effect using microwave energy to specified tissue
US20080287839A1 (en) 2007-05-18 2008-11-20 Juniper Medical, Inc. Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator
EP2158516A1 (en) 2007-06-08 2010-03-03 Cynosure, Inc. Thermal surgical monitoring
US20080312651A1 (en) 2007-06-15 2008-12-18 Karl Pope Apparatus and methods for selective heating of tissue
US20090012434A1 (en) 2007-07-03 2009-01-08 Anderson Robert S Apparatus, method, and system to treat a volume of skin
KR20090000258U (ko) 2007-07-06 2009-01-09 주식회사 바이오스마트 냉동 치료 및 관리를 위한 롤러형 피부관리기
US20090018624A1 (en) * 2007-07-13 2009-01-15 Juniper Medical, Inc. Limiting use of disposable system patient protection devices
JP2010533054A (ja) 2007-07-13 2010-10-21 ゼルティック エステティックス インコーポレイテッド 脂質リッチ領域を処置するシステム
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US20090018627A1 (en) * 2007-07-13 2009-01-15 Juniper Medical, Inc. Secure systems for removing heat from lipid-rich regions
US20090018626A1 (en) * 2007-07-13 2009-01-15 Juniper Medical, Inc. User interfaces for a system that removes heat from lipid-rich regions
US20090018625A1 (en) * 2007-07-13 2009-01-15 Juniper Medical, Inc. Managing system temperature to remove heat from lipid-rich regions
WO2009055581A2 (en) 2007-10-24 2009-04-30 Skintreet, Llc Method and portable device for treating skin disorders
US20090149930A1 (en) 2007-12-07 2009-06-11 Thermage, Inc. Apparatus and methods for cooling a treatment apparatus configured to non-invasively deliver electromagnetic energy to a patient's tissue
EP2762199B1 (en) 2007-12-12 2018-03-14 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
KR102052152B1 (ko) 2007-12-12 2020-01-08 미라마 랩스 인코포레이티드 마이크로파 에너지를 방사하는 어플리케이터와 사용하기 위한 일회용 의료 장치
CA2713939C (en) 2008-02-01 2017-12-05 Alma Lasers Ltd. Apparatus and method for selective ultrasonic damage of adipocytes
JP2009189757A (ja) 2008-02-15 2009-08-27 Akira Hirai 熱冷まし機
EP2271276A4 (en) 2008-04-17 2013-01-23 Miramar Labs Inc SYSTEMS, APPARATUS, METHODS AND PROCEDURES FOR NON-INVASIVE TREATMENT OF TISSUE USING MICROWAVE ENERGY
WO2009135054A1 (en) 2008-04-30 2009-11-05 Eric William Brader Apparatus and method for preventing brain damage during cardiac arrest, cpr, or severe shock
US8961441B2 (en) 2008-05-07 2015-02-24 Sanuwave, Inc. Medical treatment system including an ancillary medical treatment apparatus with an associated data storage medium
US20180104094A9 (en) 2008-05-16 2018-04-19 Seth A. Biser Thermal eye compress systems and methods of use
US20090299234A1 (en) 2008-05-28 2009-12-03 Nuga Medical Co., Ltd Fat remover
KR102087909B1 (ko) 2008-06-06 2020-03-12 얼테라, 인크 코스메틱 치료 시스템
US20090306749A1 (en) 2008-06-07 2009-12-10 Damalie Mulindwa Therapeutic hot and cold water belt
US20090312693A1 (en) 2008-06-13 2009-12-17 Vytronus, Inc. System and method for delivering energy to tissue
CN104720960B (zh) 2008-08-07 2018-03-23 通用医疗公司 用于皮肤病学色素减退的方法和装置
WO2010017556A1 (en) 2008-08-08 2010-02-11 Palomar Medical Technologies, Inc Method and apparatus for fractional deformation and treatment of cutaneous and subcutaneous tissue
US8672931B2 (en) 2008-08-18 2014-03-18 3JT Enterprises, LLC Cryosurgical device with metered dose
US9149386B2 (en) 2008-08-19 2015-10-06 Niveus Medical, Inc. Devices and systems for stimulation of tissues
EP2330995B1 (en) 2008-09-03 2015-08-05 Endocare, Inc. A cryogenic system and method of use
US8409184B2 (en) 2009-09-09 2013-04-02 Cpsi Holdings Llc Cryo-medical injection device and method of use
EP2346428B1 (en) 2008-09-25 2019-11-06 Zeltiq Aesthetics, Inc. Treatment planning systems and methods for body contouring applications
US20100087806A1 (en) 2008-10-07 2010-04-08 Vandolay, Inc. Automated Cryogenic Skin Treatment
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US20120259322A1 (en) 2008-12-22 2012-10-11 Michael Fourkas Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments
WO2010075547A2 (en) 2008-12-24 2010-07-01 Guided Therapy Systems, Llc Methods and systems for fat reduction and/or cellulite treatment
US20100168726A1 (en) 2008-12-31 2010-07-01 Marc Arthur Brookman Cryogenic Dispensing System and Method for Treatment of Dermatological Conditions
US8372130B2 (en) 2009-01-23 2013-02-12 Forever Young International, Inc. Temperature controlled facial mask with area-specific treatments
JP5650137B2 (ja) 2009-02-20 2015-01-07 ニヴェウス メディカル, インコーポレーテッド エネルギー誘導域を用いた電動筋肉刺激システム及び方法
WO2010096840A2 (en) 2009-02-23 2010-08-26 Miramar Labs, Inc. Tissue interface system and method
DE102009014976B3 (de) 2009-03-30 2010-06-02 Jutta Munz Applikatoreinrichtung zur kosmetischen und/oder medizinischen Anwendung
SG10201401922TA (en) 2009-04-30 2014-06-27 Zeltiq Aesthetics Inc Device, system and method of removing heat from subcutaneous lipid-rich cells
FR2946845B1 (fr) 2009-06-18 2011-08-19 Oreal Dispositif de traitement des matieres keratiniques humaines
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US8523791B2 (en) 2009-08-11 2013-09-03 Laboratoire Naturel Paris, Llc Multi-modal drug delivery system
US20110077514A1 (en) 2009-09-29 2011-03-31 Medicis Technologies Corporation Variable treatment site body contouring using an ultrasound therapy device
US20110112520A1 (en) 2009-11-11 2011-05-12 Invasix Corporation Method and device for fat treatment
US20110300079A1 (en) 2010-01-21 2011-12-08 Zeltiq Aesthetics, Inc. Compositions for use with a system for improved cooling of subcutaneous lipid-rich tissue
CA2787374A1 (en) 2010-01-25 2011-07-28 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associated devices, systems and methods
PE20130244A1 (es) 2010-01-25 2013-03-10 Enanta Pharm Inc Inhibidores del virus de la hepatitis c
DE102010007177B4 (de) 2010-02-08 2017-06-22 Siemens Healthcare Gmbh Anzeigeverfahren für ein vor einer Aufweitungseinrichtung liegendes Bild des Inneren eines Gefäßes und hiermit korrespondierende Anzeigeeinrichtung
US20110196438A1 (en) 2010-02-10 2011-08-11 Lukas Mnozil Therapy device and method for treating underlying tissue using electrical and acoustic energies
US20110202048A1 (en) 2010-02-12 2011-08-18 Solta Medical, Inc. Methods for pain reduction with functional thermal stimulation and tissue treatment systems
US9980765B2 (en) 2010-02-15 2018-05-29 The General Hospital Corporation Methods and devices for selective disruption of visceral fat by controlled cooling
US20110257642A1 (en) 2010-04-16 2011-10-20 Griggs Iii Charles Sherman Method for producing a permanent or nearly permanent skin image, design or tattoo by freezing the skin
US20120158100A1 (en) 2010-06-21 2012-06-21 Kevin Schomacker Driving Microneedle Arrays into Skin and Delivering RF Energy
US8676338B2 (en) 2010-07-20 2014-03-18 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
FR2967893B1 (fr) 2010-11-25 2013-10-18 Zadeh David Khorassani Appareil de massage comportant un systeme d'aspiration
AU2011253768B2 (en) 2010-12-01 2016-08-11 Gold Rythmn Pty Ltd Product or process for modifying skin
US20130019374A1 (en) 2011-01-04 2013-01-24 Schwartz Alan N Gel-based seals and fixation devices and associated systems and methods
WO2012103242A1 (en) 2011-01-25 2012-08-02 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US20120209363A1 (en) 2011-02-10 2012-08-16 R2T2 Solutions Llc Hot and cold therapy device
US9021614B2 (en) 2011-02-18 2015-05-05 Medical Techology, Inc. Leg protector for sports activities
US9038640B2 (en) 2011-03-31 2015-05-26 Viora Ltd. System and method for fractional treatment of skin
US20120310232A1 (en) 2011-06-06 2012-12-06 Danny Erez System and method for treating a tissue using multiple energy types
BR112014000666A2 (pt) 2011-07-20 2019-06-04 Scr Inc almofada de aquecimento e/ou resfriamento e sistema de fornecimento de resfiamento a uma ou mais partes do corpo de um indivíduo e respectivo método para fornecer terapia de quente e frio
US9532832B2 (en) 2011-09-05 2017-01-03 Venus Concept Ltd. Esthetic device for beautifying skin and methods thereof
US20130073017A1 (en) 2011-09-15 2013-03-21 Fong Yu Liu Thermal vacuum therapy and apparatus thereof
KR20130043299A (ko) 2011-10-20 2013-04-30 김기태 초음파 진동자와 온냉웨이퍼를 결합하여 피부를 자극하는 피부 미용기기
CN104394813B (zh) 2011-11-16 2018-11-09 通用医疗公司 用于低温处理皮肤组织的方法和装置
US9855166B2 (en) 2011-11-16 2018-01-02 The General Hospital Corporation Method and apparatus for cryogenic treatment of skin tissue
US9137200B2 (en) 2012-01-17 2015-09-15 Telefonaktiebolaget L M Ericsson (Publ) Ice based NAT traversal
US8397518B1 (en) 2012-02-20 2013-03-19 Dhama Innovations PVT. Ltd. Apparel with integral heating and cooling device
US20130331914A1 (en) 2012-06-11 2013-12-12 Martin Lee Thermal therapy system and method of use
CA2877439A1 (en) 2012-06-22 2013-12-27 Physiolab Technologies Limited Thermal and/or pressure regulation control system
KR20140038165A (ko) 2012-09-20 2014-03-28 (주)휴톤 다기능 미용기
US9710607B2 (en) 2013-01-15 2017-07-18 Itrace Biomedical Inc. Portable electronic therapy device and the method thereof
KR20140092121A (ko) 2013-01-15 2014-07-23 삼성전자주식회사 초음파 치료 장치를 냉각하는 방법 및 이를 이용한 초음파 치료 장치
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
WO2014191263A1 (en) 2013-05-30 2014-12-04 Koninklijke Philips N.V. Non-invasive device for rejuvenation of skin tissue using treatment pressure below ambient pressure
US8764693B1 (en) 2013-11-20 2014-07-01 Richard A. Graham Systems and methods for decompression and elliptical traction of the cervical and thoracic spine
AU2015204588A1 (en) 2014-01-10 2016-07-21 Marcio Marc Abreu Devices to monitor and provide treatment at an Abreu brain tunnel
WO2015117005A1 (en) 2014-01-31 2015-08-06 The General Hospital Corporation Cooling device to disrupt function sebaceous glands
US10201380B2 (en) 2014-01-31 2019-02-12 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
EP3104796B1 (en) 2014-02-12 2019-04-10 The General Hospital Corporation Method and apparatus for affecting pigmentation of tissue
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US20160089550A1 (en) 2014-09-25 2016-03-31 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for altering the appearance of skin
WO2017053324A1 (en) 2015-09-21 2017-03-30 Zeltiq Aesthetics, Inc. Transcutaneous treatment systems and cooling devices
US11154418B2 (en) 2015-10-19 2021-10-26 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
CA3009414A1 (en) 2016-01-07 2017-07-13 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377854B1 (en) * 1995-05-05 2002-04-23 Thermage, Inc. Method for controlled contraction of collagen in fibrous septae in subcutaneous fat layers
US20090118722A1 (en) * 2006-10-31 2009-05-07 Ebbers Edward A Method and apparatus for cooling subcutaneous lipid-rich cells or tissue
US20090149929A1 (en) * 2007-08-21 2009-06-11 Levinson Mitchell E Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2595557A4 *

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8337539B2 (en) 2006-02-22 2012-12-25 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US12070411B2 (en) 2006-04-28 2024-08-27 Zeltiq Aesthetics, Inc. Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
US9375345B2 (en) 2006-09-26 2016-06-28 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US11986421B2 (en) 2006-09-26 2024-05-21 Zeltiq Aesthetics, Inc. Cooling devices with flexible sensors
US11179269B2 (en) 2006-09-26 2021-11-23 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US11219549B2 (en) 2006-09-26 2022-01-11 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US11395760B2 (en) 2006-09-26 2022-07-26 Zeltiq Aesthetics, Inc. Tissue treatment methods
US10292859B2 (en) 2006-09-26 2019-05-21 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US10383787B2 (en) 2007-05-18 2019-08-20 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US11291606B2 (en) 2007-05-18 2022-04-05 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US9655770B2 (en) 2007-07-13 2017-05-23 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US9408745B2 (en) 2007-08-21 2016-08-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US8285390B2 (en) 2007-08-21 2012-10-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US10675178B2 (en) 2007-08-21 2020-06-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US11583438B1 (en) 2007-08-21 2023-02-21 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US9737434B2 (en) 2008-12-17 2017-08-22 Zeltiq Aestehtics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US8702774B2 (en) 2009-04-30 2014-04-22 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9861520B2 (en) 2009-04-30 2018-01-09 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US11452634B2 (en) 2009-04-30 2022-09-27 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US11224536B2 (en) 2009-04-30 2022-01-18 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9844461B2 (en) 2010-01-25 2017-12-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants
US9314368B2 (en) 2010-01-25 2016-04-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
US10092346B2 (en) 2010-07-20 2018-10-09 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US8676338B2 (en) 2010-07-20 2014-03-18 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US10722395B2 (en) 2011-01-25 2020-07-28 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US9439805B2 (en) 2011-01-27 2016-09-13 Cryosa, Llc Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues
US9078634B2 (en) 2011-01-27 2015-07-14 Cryosa, Llc Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US10575890B2 (en) 2014-01-31 2020-03-03 Zeltiq Aesthetics, Inc. Treatment systems and methods for affecting glands and other targeted structures
US10806500B2 (en) 2014-01-31 2020-10-20 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
US10912599B2 (en) 2014-01-31 2021-02-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US11819257B2 (en) 2014-01-31 2023-11-21 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US10201380B2 (en) 2014-01-31 2019-02-12 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US11154418B2 (en) 2015-10-19 2021-10-26 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
US10524956B2 (en) 2016-01-07 2020-01-07 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue
US10765552B2 (en) 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US10682297B2 (en) 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US10555831B2 (en) 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics
US12102557B2 (en) 2018-07-31 2024-10-01 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics
CN110180086A (zh) * 2019-06-19 2019-08-30 左鹏 一种对感染性皮肤病患者的清洁涂药设备
US12369965B2 (en) 2021-12-30 2025-07-29 Cryosa, Inc. Systems and methods for treatment of obstructive sleep apnea
US12484950B2 (en) 2021-12-30 2025-12-02 Cryosa, Inc. Systems and methods for treatment of obstructive sleep apnea

Also Published As

Publication number Publication date
AU2011279923A1 (en) 2013-03-07
AU2011279923B2 (en) 2016-02-11
US8676338B2 (en) 2014-03-18
US10092346B2 (en) 2018-10-09
US20140316393A1 (en) 2014-10-23
JP2013532513A (ja) 2013-08-19
EP2595557A1 (en) 2013-05-29
CA2806038A1 (en) 2012-07-26
US20120022518A1 (en) 2012-01-26
EP2595557A4 (en) 2014-01-01
TW201216921A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
AU2011279923B2 (en) Combined modality treatment systems, methods and apparatus for body contouring applications
US9545523B2 (en) Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US20240189008A1 (en) Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
US9737434B2 (en) Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
EP3488833B1 (en) Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US20180263677A1 (en) Adhesive liners for cryotherapy
US20090118722A1 (en) Method and apparatus for cooling subcutaneous lipid-rich cells or tissue
US10952891B1 (en) Treatment systems with adjustable gap applicators and methods for cooling tissue
US10675176B1 (en) Treatment systems, devices, and methods for cooling targeted tissue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11810204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2806038

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013520764

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011810204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011810204

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011279923

Country of ref document: AU

Date of ref document: 20110715

Kind code of ref document: A