WO2011126038A1 - ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法 - Google Patents

ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法 Download PDF

Info

Publication number
WO2011126038A1
WO2011126038A1 PCT/JP2011/058678 JP2011058678W WO2011126038A1 WO 2011126038 A1 WO2011126038 A1 WO 2011126038A1 JP 2011058678 W JP2011058678 W JP 2011058678W WO 2011126038 A1 WO2011126038 A1 WO 2011126038A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
resin composition
cellulose
mass
parts
Prior art date
Application number
PCT/JP2011/058678
Other languages
English (en)
French (fr)
Inventor
中井 美穂
圭助 木村
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to EP11765938.3A priority Critical patent/EP2557124B1/en
Priority to JP2012509681A priority patent/JP5885658B2/ja
Priority to CA2795068A priority patent/CA2795068C/en
Priority to US13/637,453 priority patent/US8883885B2/en
Priority to CN201180014366.9A priority patent/CN102803385B/zh
Priority to KR1020127023039A priority patent/KR101812986B1/ko
Publication of WO2011126038A1 publication Critical patent/WO2011126038A1/ja
Priority to HK13105703.2A priority patent/HK1177946A1/xx

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a polyamide resin composition having improved mechanical properties and heat resistance, and a method for producing the resin composition.
  • Resin compositions in which polyamide resin is reinforced with inorganic fillers such as glass fiber, carbon fiber, talc, and clay are widely known.
  • these reinforcing materials have a problem that mechanical properties and heat resistance are not improved unless they are blended in a large amount, and a problem that the mass of the resulting resin composition increases due to high specific gravity.
  • the molded body made of the obtained resin composition has a problem that warpage becomes large.
  • talc, clay, etc. are used as the reinforcing material, when the obtained resin composition is discarded, these reinforcing materials remain as incineration residues and are therefore buried in the soil, semi-permanently in the ground. There was a problem that it remained.
  • cellulose has been used as a reinforcing material for resin materials.
  • Cellulose includes those obtained from trees, those obtained from non-wood resources such as rice, cotton, kenaf and hemp, and bacterial cellulose produced by microorganisms. Cellulose is present in large quantities on the earth. . Cellulose is excellent in mechanical properties. By containing this in the resin, an effect of improving the properties of the resin composition is expected.
  • Patent Document 1 discloses a composite material including cellulose pulp fibers in a thermoplastic plastic, and a polyamide resin is also described as the thermoplastic plastic.
  • a polyamide resin is also described as the thermoplastic plastic.
  • Patent Document 1 describes that when the fiber length is shortened by making it granular, the reinforcing force by adding the cellulose pulp fiber is reduced. Therefore, the average length of the cellulose pulp fiber is 0.1 to 6 mm. Preferred is described.
  • cellulose pulp fibers are mixed in a large amount in a thermoplastic plastic, and in the examples, cellulose pulp fibers are added in a large amount of 30% by mass.
  • cellulose pulp fibers are added in a large amount of 30% by mass.
  • when mixing a cellulose pulp fiber with a polymer material after making a cellulose pulp fiber dry, it melt-mixes. From the above, in the invention described in the cited document 1, the problem of aggregation of cellulose pulp fibers has not been solved, and since the amount of cellulose pulp fibers added is large, a temperature of 230 to 240 ° C. is used during injection molding. Then, the problem of coloring due to decomposition of cellulose also occurred.
  • Patent Document 2 describes a thermoplastic plastic containing 0.01 to 20 parts by weight of cellulose fiber in 100 parts by weight of plastic. It is described that the cellulose fiber is a viscose fiber and preferably has a fiber length of 50 ⁇ m to 5 mm or a fiber diameter of 1 to 500 ⁇ m.
  • the cellulose fiber content is smaller than that of the invention described in Patent Document 1, the fiber length and fiber diameter of the cellulose fiber are large, and a method of containing the cellulose fiber Only the method of melt mixing is shown. Therefore, even in the invention described in Patent Document 2, the above-described problem of aggregation of cellulose fibers has not been solved.
  • the present invention solves the above-mentioned problems, and the polyamide resin composition in which the cellulose fibers are uniformly dispersed without agglomeration in the polyamide resin and the mechanical properties and heat resistance are improved, and the resin composition
  • the object is to provide a manufacturing method.
  • the gist of the present invention is as follows.
  • a polyamide resin composition comprising 0.01 to 50 parts by mass of cellulose fibers having an average fiber diameter of 10 ⁇ m or less with respect to 100 parts by mass of a polyamide resin.
  • the polyamide resin composition according to (1) which is obtained by mixing a monomer constituting the polyamide resin and an aqueous dispersion of cellulose fibers having an average fiber diameter of 10 ⁇ m or less and performing a polymerization reaction. object.
  • the polyamide resin composition according to (1) wherein a linear expansion coefficient in the MD direction (calculating an average value in a region of 20 to 150 ° C.) is 80 ⁇ 10 ⁇ 6 (1 / ° C.) or less.
  • the thermal deformation temperature at a load of 1.8 MPa is 65 ° C. or higher, and the linear expansion coefficient in MD direction (calculating an average value in the region of 20 to 150 ° C.) is 80 ⁇ 10 ⁇ 6 (1 / ° C)
  • the polyamide resin composition according to (1) which is: (9) The polyamide resin composition according to any one of (1) to (5), wherein the polyamide resin is nylon 11 or nylon 12.
  • polyamide resin composition according to any one of (1), (2), and (6) to (8), wherein the polyamide resin is nylon 6 or nylon 66.
  • a method for producing a polyamide resin composition comprising mixing a dispersion and performing a polymerization reaction.
  • the polyamide resin composition of the present invention contains cellulose fibers having an average fiber diameter of 10 ⁇ m or less, and the cellulose fibers are uniformly dispersed without agglomeration in the resin composition. It has improved mechanical properties and heat resistance. For this reason, the polyamide resin composition of the present invention can obtain various molded articles by molding methods such as injection molding, extrusion molding, and foam molding, and can be used for various applications. Moreover, since the cellulose fiber is not contained in the polyamide resin in an aggregated state by the method for producing the polyamide resin composition of the present invention, the polyamide resin composition of the present invention in which the cellulose fibers are uniformly dispersed is obtained. be able to. For this reason, even if content of a cellulose fiber is comparatively small, it becomes possible to improve the mechanical characteristics and heat resistance of a polyamide resin composition.
  • FIG. The electron micrograph of the cross section of the resin composition obtained by the comparative example 10.
  • the polyamide resin used in the present invention refers to a polymer having an amide bond formed from an amino acid, lactam or diamine and a dicarboxylic acid.
  • Examples of monomers that form such a polyamide resin include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, and paraaminomethylbenzoic acid.
  • Examples of the lactam include ⁇ -caprolactam and ⁇ -laurolactam.
  • diamines examples include tetramethylene diamine, hexamethylene diamine, nonane methylene diamine, decane methylene diamine, undecamethylene diamine, dodecane methylene diamine, 2,2,4- / 2,4,4-trimethylhexamethylene diamine, and 5-methyl.
  • Dicarboxylic acids include adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5- Examples include sodium sulfoisophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, and diglycolic acid.
  • the polyamide resin used in the present invention includes polycaproamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebaca. Mido (nylon 610), polyhexamethylene dodecane (nylon 612), polyundecane methylene adipamide (nylon 116), polyundecanamide (nylon 11), polydodecanamide (nylon 12), polytrimethylhexamethylene terephthalamide (Nylon TMHT), polyhexamethylene terephthalamide (nylon 6T), polyhexamethylene isophthalamide (nylon 6I), polyhexamethylene terephthalamide / isophthalamide (nylon 6T / 6I), polybis (4-aminocyclo) Xyl) methane dodecamide (nylon PACM12), polybis (3-methyl-4-aminocyclohexyl) methane dodecamide (nylon PACM
  • the polyamide resin composition of the present invention contains the above-described polyamide resin and cellulose fibers.
  • the cellulose fibers used in the present invention include those derived from wood, rice, cotton, hemp, kenaf and the like, as well as those derived from organisms such as bacterial cellulose, valonia cellulose, and squirt cellulose. Also included are regenerated cellulose, cellulose derivatives and the like.
  • the polyamide resin composition of the present invention is improved in mechanical properties such as strength and linear expansion coefficient and heat resistance by containing cellulose fibers.
  • mechanical properties such as strength and linear expansion coefficient and heat resistance of the resin composition
  • the dispersibility of the cellulose fiber to the polyamide resin and the affinity between the polyamide resin and the cellulose fiber are important.
  • the cellulose fiber have properties such as hydroxyl groups as much as possible, it is important to increase the surface area of the cellulose fiber. For this reason, it is necessary to use as fine a cellulose fiber as possible.
  • the average fiber diameter is preferably 500 nm or less, and more preferably 300 nm or less. More preferably, it is 100 nm or less.
  • Cellulose fibers having an average fiber diameter exceeding 10 ⁇ m cannot increase the surface area of the cellulose fibers, and it becomes difficult to improve the dispersibility and affinity for the polyamide resin and the monomers forming the polyamide resin.
  • the lower limit of the average fiber diameter is not particularly limited, but is preferably 4 nm or more in consideration of the productivity of cellulose fibers.
  • a cellulose fiber having an average fiber diameter of 10 ⁇ m or less (hereinafter sometimes referred to as a cellulose fiber (A))
  • a cellulose fiber that is microfibrillated by tearing the cellulose fiber is preferable.
  • Various pulverizing apparatuses such as a ball mill, a stone mill, a high-pressure homogenizer, and a mixer can be used as means for microfibrillation.
  • the cellulose fiber (A) for example, “Serisch” manufactured by Daicel Finechem Co., Ltd. can be used as a commercially available product.
  • an aggregate of cellulose fibers taken out as scrap yarn can be used in the production process of the fiber product using the cellulose fiber.
  • the production process of the textile product includes spinning, woven fabric, nonwoven fabric production, and other textile product processing. Since these cellulose fiber aggregates are scrap fibers after the cellulose fibers have undergone these steps, the cellulose fibers are refined.
  • bacterial cellulose produced by bacteria can be used, and for example, those produced using Acetobacter acetic acid bacteria as production bacteria can be used.
  • Plant cellulose is composed of cellulose molecular chains converged and formed by bundles of very thin microfibrils, whereas cellulose produced from acetic acid bacteria originally has a width of 20-50 nm. It is in the form of a ribbon, and forms an extremely fine network compared to plant cellulose.
  • cellulose fiber (A) a refined cellulose fiber obtained by oxidizing the cellulose fiber in the presence of an N-oxyl compound, followed by washing with water and a physical defibrating step may be used. Good.
  • N-oxyl compounds for example, 2,2,6,6-tetramethylpiperidine-1-oxyl radical (hereinafter referred to as TEMPO) as shown in Cellulose (1998) 5,153-164 is preferable.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl radical
  • Such a compound is added to the reaction aqueous solution in a catalytic amount range.
  • sodium hypochlorite or sodium chlorite is added as a co-oxidant, and the reaction is allowed to proceed by adding an alkali metal bromide.
  • the reaction temperature may be room temperature.
  • Various methods such as filtration and centrifugation can be employed for washing.
  • miniaturized can be obtained by passing through a physical defibration process using the above various grinders.
  • the measuring method of the average fiber diameter of the cellulose fiber contained in the resin composition is as follows. Using a frozen ultramicrotome, a 100 nm-thick section was collected from the resin composition (or a molded article made of the resin composition), stained with OsO 4 (osmium tetroxide), and then transmission electron microscope (JEOL). Observation is performed using JEM-1230). The length in the direction perpendicular to the longitudinal direction of the cellulose fiber (single fiber) is measured from the electron microscope image. At this time, the maximum length in the vertical direction is taken as the fiber diameter. Similarly, the fiber diameter of 10 cellulose fibers (single fibers) is measured, and the average value of 10 fibers is calculated as the average fiber diameter.
  • a stereomicroscope OLEDUS SZ-
  • OLED SZ- stereomicroscope
  • the fiber diameter is measured from the obtained image in the same manner as described above, and the average fiber diameter is obtained.
  • the length of the cellulose fiber contained in the resin composition in the present invention can be determined when measuring the average fiber diameter as described above, and the cellulose fiber (single fiber) in the electron microscope image can be obtained. The length in the longitudinal direction. Then, similarly to the fiber diameter, the length of 10 cellulose fibers (single fibers) is measured, and the average value of 10 is calculated as the average fiber length.
  • the cellulose fiber in the present invention preferably has an aspect ratio (average fiber length / average fiber diameter) which is a ratio of the above-described average fiber diameter and average fiber length of 10 or more, particularly 50 or more, more preferably 100 or more. Preferably there is.
  • the aspect ratio is 10 or more, the mechanical properties of the polyamide resin composition are easily improved, the strength is higher, and the linear expansion coefficient can be reduced.
  • the polyamide resin composition of the present invention can be uniformly dispersed in the resin even when the cellulose fiber (A) has an aspect ratio of 100 or more by being obtained by the production method of the present invention as described later. Is possible.
  • the content of the cellulose fiber (A) in the polyamide resin composition of the present invention needs to be 0.01 to 50 parts by mass with respect to 100 parts by mass of the polyamide resin.
  • the amount is preferably 30 parts by mass, more preferably 0.1 to 20 parts by mass, and even more preferably 0.1 to 10 parts by mass.
  • the effect of containing the cellulose fiber (A) as described above, that is, mechanical properties and heat resistance are obtained. The effect of improving cannot be produced.
  • the content of the cellulose fiber (A) exceeds 50 parts by mass with respect to 100 parts by mass of the polyamide resin, it is difficult or obtained to contain the cellulose fiber (A) in the resin composition. If the resin composition is heat-treated at a high temperature during molding such as injection molding, discoloration occurs.
  • the polyamide resin composition of the present invention By obtaining the polyamide resin composition of the present invention by the production method of the present invention as described later, even if the content of the cellulose fiber (A) is small, it is uniformly dispersed in the polyamide resin. In the polyamide resin composition, sufficient mechanical properties and heat resistance can be improved. That is, even if the content of the cellulose fiber (A) is in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the polyamide resin, the polyamide resin composition has high strength and a linear expansion coefficient. Low, excellent mechanical properties and heat resistance.
  • the polyamide resin composition of the present invention containing the above polyamide resin and cellulose fiber (A) preferably has a number average molecular weight of 10,000 to 100,000. When the number average molecular weight is less than 10,000, the mechanical properties of the resin composition are lowered, which is not preferable. On the other hand, when the number average molecular weight exceeds 100,000, the moldability of the resin composition is rapidly lowered, which is not preferable.
  • the number average molecular weight is a value determined in terms of PMMA at 40 ° C. using hexafluoroisopropanol as an eluent using a gel permeation chromatography (GPC) apparatus equipped with a differential refractive index detector.
  • Cellulose fibers have a very high affinity with water, and the smaller the average fiber diameter, the better the dispersion state with respect to water. Further, when water is lost, cellulose fibers are strongly aggregated by hydrogen bonding, and once aggregated, it becomes difficult to achieve a dispersion state similar to that before aggregation. In particular, this tendency becomes more prominent as the average fiber diameter of the cellulose fibers decreases. Therefore, the cellulose fiber is preferably combined with the polyamide resin in a state containing water.
  • the production method of the present invention is a method for obtaining a resin composition containing cellulose fibers (A) by causing the presence of water-containing cellulose fibers during polymerization of the polyamide resin and performing a polymerization reaction. .
  • the polyamide resin composition of the present invention is excellent in heat resistance.
  • the polyamide resin composition of the present invention preferably has a heat distortion temperature of 50 ° C. or higher at a load of 1.8 MPa, more preferably 60 ° C. or higher, and more preferably 70 ° C. or higher.
  • the heat distortion temperature at a load of 1.8 MPa is less than 50 ° C., the heat resistance is not sufficient and it is difficult to use for various applications.
  • the heat distortion temperature at a load of 1.8 MPa is preferably 65 ° C. or higher, more preferably 70 ° C. or higher, and further preferably 80 ° C. or higher.
  • the temperature is preferably 50 ° C. or higher, and more preferably 55 ° C. or higher.
  • the polyamide resin composition of the present invention preferably has a heat distortion temperature of 148 ° C. or higher at a load of 0.45 MPa, more preferably 155 ° C. or higher, more preferably 180 ° C. or higher.
  • the heat distortion temperature at a load of 0.45 MPa is less than 148 ° C., the heat resistance is not sufficient and it is difficult to use for various applications.
  • the heat deformation temperature at a load of 0.45 MPa is preferably 180 ° C. or higher, and particularly preferably 190 ° C. or higher.
  • nylon 11 or nylon 12 it is preferably 148 ° C. or higher, and more preferably 150 ° C. or higher.
  • the thermal deformation temperature in the present invention is measured based on ASTM D648 using the same test piece prepared when measuring the bending strength and bending elastic modulus described later. At this time, the load is measured at 1.8 MPa and 0.45 MPa.
  • the polyamide resin composition of the present invention is also excellent in mechanical properties.
  • As an index indicating mechanical properties there are a linear expansion coefficient and strength.
  • the polyamide resin composition of the present invention preferably has a linear expansion coefficient in the MD direction of 120 ⁇ 10 ⁇ 6 (1 / ° C.) or less, and more preferably 100 ⁇ 10 ⁇ 6 (1 / ° C.) or less. More preferably, it is preferably 80 ⁇ 10 ⁇ 6 (1 / ° C.) or less.
  • the linear expansion coefficient in the MD direction exceeds 120 ⁇ 10 ⁇ 6 (1 / ° C.)
  • the dimensional stability tends to be inferior, making it difficult to use in various applications.
  • the linear expansion coefficient in the MD direction is preferably 80 ⁇ 10 ⁇ 6 (1 / ° C.) or less, particularly 70 ⁇ 10 ⁇ 6 (1 / ° C.) when nylon 6 or nylon 66 is used as the polyamide resin. Or less, more preferably 50 ⁇ 10 ⁇ 6 (1 / ° C.) or less.
  • the linear expansion coefficient in the MD direction is preferably 120 ⁇ 10 ⁇ 6 (1 / ° C.) or less, and in particular, 110 ⁇ 10 ⁇ 6 (1 / ° C.) or less. It is preferable that
  • the linear expansion coefficient in the present invention is measured based on JIS K7197, using the same test piece prepared when measuring bending strength and bending elastic modulus, which will be described later, and is 20 to 150 ° C. The average value in the area is calculated. Further, the flow direction of the resin at the time of molding is defined as MD direction, and the direction perpendicular to the flow is defined as TD direction.
  • the polyamide resin composition of the present invention preferably has a bending strength of 65 MPa or more, more preferably 70 MPa or more, and even more preferably 100 MPa or more. Further, the tensile yield strength is preferably 40 MPa or more, more preferably 45 MPa or more, and even more preferably 70 MPa or more. If the bending strength is less than 65 MPa or the tensile yield strength is less than 40 MPa, it does not have sufficient strength and it is difficult to use it for various purposes.
  • the bending strength is preferably 120 MPa or more, more preferably 130 MPa or more, and further 140 MPa or more. Is preferred.
  • the tensile yield strength is preferably 70 MPa or more, more preferably 75 MPa or more, and further preferably 80 MPa or more.
  • the bending strength is preferably 65 MPa or more, and more preferably 70 MPa or more.
  • the tensile yield strength is preferably 40 MPa or more, and particularly preferably 45 MPa or more.
  • the polyamide resin composition of the present invention preferably has a flexural modulus of 1.8 GPa or more, preferably 2.5 GPa or more, and more preferably 3.0 GPa or more.
  • the tensile elastic modulus is preferably 1.4 GPa or more, more preferably 2.0 GPa or more, and further preferably 2.2 GPa or more. If the bending elastic modulus is less than 1.8 GPa or the tensile elastic modulus is less than 1.4 GPa, the flexibility is poor and the rigidity becomes too strong. Therefore, the bending strength and the tensile yield strength are within the above ranges. Even if it exists, it is lacking in versatility and is not preferable in practice.
  • the flexural modulus is preferably 2.5 GPa or more, more preferably 3.0 GPa or more. It is preferable that it is 3.3 GPa or more.
  • the tensile elastic modulus is preferably 2.0 GPa or more, more preferably 2.2 GPa or more, and further preferably 2.4 GPa or more.
  • the flexural modulus is preferably 1.8 GPa or more, and more preferably 2.0 GPa or more.
  • the tensile elastic modulus is preferably 1.4 GPa or more, and more preferably 1.5 GPa or more.
  • the bending strength, tensile yield strength, bending elastic modulus, and tensile elastic modulus in the present invention are measured at 23 ° C. based on ASTM D790 using test pieces obtained under the following injection molding conditions. .
  • injection molding conditions The polyamide resin composition is molded using an injection molding machine (Toshiba Machine Co., Ltd., IS-80G type) using an ASTM standard 1/8 inch three-point bending test piece, length x width x A specimen having a thickness of 127 mm (5 inches) ⁇ 12.7 mm (1/2 inch) ⁇ 3.2 mm (1/8 inch) is obtained.
  • a monomer constituting the polyamide resin and an aqueous dispersion of cellulose fibers having an average fiber diameter of 10 ⁇ m or less are mixed to perform a polymerization reaction.
  • the aqueous dispersion of cellulose fibers in the production method of the present invention is obtained by dispersing cellulose fibers having an average fiber diameter of 10 ⁇ m or less in water, and the content of cellulose fibers in the aqueous dispersion is 0.
  • the content is 0.01 to 50% by mass.
  • Such an aqueous dispersion can be obtained by stirring purified water and cellulose fibers with a mixer or the like.
  • an aqueous dispersion of cellulose fibers and a monomer constituting the polyamide resin are mixed and stirred with a mixer or the like to obtain a uniform dispersion. Thereafter, the dispersion is heated, and the temperature is raised to 150 to 270 ° C., followed by stirring to cause a polymerization reaction. At this time, water in the aqueous dispersion of cellulose fibers can be discharged by gradually discharging water vapor when the dispersion is heated.
  • a catalyst such as phosphoric acid or phosphorous acid may be added as necessary. And after completion
  • a cellulose fiber aqueous dispersion obtained by immersing bacterial cellulose in purified water and replacing the solvent may be used.
  • cellulose fibers having an average fiber diameter of 10 ⁇ m or less are used, and the cellulose fibers are subjected to a polymerization reaction while being in an aqueous dispersion, whereby the polymerization reaction is performed with a good dispersibility. Will be. Furthermore, the cellulose fibers subjected to the polymerization reaction are improved in dispersibility by agitation with the monomer and water during the polymerization reaction and by stirring at the above temperature conditions, and the fibers aggregate. It is possible to obtain a resin composition in which cellulose fibers having a small average fiber diameter are well dispersed.
  • the dispersibility of the cellulose fiber is improved, so that it is contained in the resin composition after the completion of the polymerization reaction, rather than the average fiber diameter of the cellulose fiber added before the polymerization reaction.
  • the cellulose fiber that is present may have a smaller average fiber diameter or fiber length.
  • the step of drying the cellulose fiber is not necessary, and the production can be performed without the step of causing the scattering of fine cellulose fibers, so that the polyamide resin composition can be obtained with good operability. It becomes possible.
  • the handling is excellent and the discharge of chemical substances can be suppressed during the production process.
  • the measuring method of the average fiber diameter of the cellulose fiber before polymerization reaction used for the manufacturing method of this invention is as follows. First, if necessary, freeze-dried cellulose fibers are observed using a field emission scanning electron microscope (S-4000 manufactured by Hitachi, Ltd.). The length in the direction perpendicular to the longitudinal direction of the cellulose fiber (single fiber) is measured from an electron microscope (SEM) image. At this time, the maximum length in the vertical direction is taken as the fiber diameter. Similarly, the fiber diameter of 10 cellulose fibers (single fibers) is measured, and the average value of 10 fibers is calculated as the average fiber diameter.
  • S-4000 field emission scanning electron microscope
  • pigments In the polyamide resin composition of the present invention, pigments, heat stabilizers, antioxidants, weathering agents, plasticizers, lubricants, mold release agents, antistatic agents, impact resistance agents, A flame retardant, a compatibilizing agent and the like may be contained.
  • the polyamide resin composition of the present invention may contain a polymer other than the polyamide resin as long as the characteristics are not significantly impaired.
  • the other polymer include polyolefin, polyester, polycarbonate, polystyrene, polymethyl (meth) acrylate, poly (acrylonitrile-butadiene-styrene) copolymer, liquid crystal polymer, and polyacetal.
  • the polyamide resin composition of the present invention can be formed into various molded products by a molding method such as injection molding, blow molding, extrusion molding or foam molding. That is, a molded body formed by injection molding, or a film or sheet formed by extrusion molding, a molded body processed from these films or sheets, or a hollow body formed by blow molding, and the hollow body A molded body processed from the above, a fiber obtained by melt spinning, and the like.
  • a molding method such as injection molding, blow molding, extrusion molding or foam molding. That is, a molded body formed by injection molding, or a film or sheet formed by extrusion molding, a molded body processed from these films or sheets, or a hollow body formed by blow molding, and the hollow body A molded body processed from the above, a fiber obtained by melt spinning, and the like.
  • molded products include personal computer casing parts and casings, mobile phone casing parts and casings, other OA equipment casing parts, resin parts for electrical appliances such as connectors; bumpers, instrument panels, Resin parts for automobiles such as console boxes, garnishes, door trims, ceilings, floors, panels around engines, agricultural materials such as containers and cultivation containers, and plastic parts for agricultural machinery; Resin parts; Tableware and food containers such as dishes, cups and spoons; Medical resin parts such as syringes and infusion containers; Resin parts for drains, fences, storage boxes, construction switchboards, etc .; Plastic parts for greening materials such as bricks and flower pots; Resin parts for leisure and miscellaneous goods such as cooler boxes, fan fans and toys; ballpoint pens, rulers, chestnuts Stationery resin component such as a flop, fiber knitted woven and woven and knitted fabrics and nonwoven fabrics obtained by the like.
  • resin parts for electrical appliances such as connectors
  • bumpers instrument panels
  • Resin parts for automobiles such as
  • the measuring method of the various characteristic values in an Example is as follows. [Bending modulus, bending strength] Using the obtained polyamide resin composition (pellet), the measurement was performed by the method described above. [Tensile modulus, tensile yield strength] Using the obtained polyamide resin composition (pellet), the measurement was performed by the method described above. [Heat deformation temperature (HDT)] Using the obtained polyamide resin composition (pellet), the measurement was performed by the method described above. [Linear expansion coefficient] Using the obtained polyamide resin composition (pellet), the measurement was performed by the method described above.
  • Average fiber diameter of cellulose fibers The average fiber diameter of the cellulose fibers in the obtained polyamide resin composition and the average fiber diameter of the cellulose fibers before the polymerization reaction subjected to the polymerization reaction were measured and calculated by the above methods.
  • Example 1 As an aqueous dispersion of cellulose fibers, serisch KY100G (manufactured by Daicel Finechem Co., Ltd .: containing 10% by mass of cellulose fibers having an average fiber diameter of 125 nm) was added to this, and purified water was added thereto, followed by stirring with a mixer. An aqueous dispersion having a fiber content of 3% by mass was prepared. 170 parts by mass of this aqueous dispersion of cellulose fiber, 216 parts by mass of ⁇ -caprolactam, 44 parts by mass of aminocaproic acid, and 0.59 parts by mass of phosphorous acid were stirred and mixed with a mixer until a uniform solution was obtained. .
  • this mixed solution was gradually heated, and the temperature was raised to 240 ° C. while discharging water vapor in the middle of heating, and the mixture was stirred at 240 ° C. for 1 hour to perform a polymerization reaction.
  • the resin composition obtained was dispensed and cut into pellets.
  • the obtained pellets were treated with hot water at 95 ° C., scoured and dried.
  • the injection molding conditions for obtaining a test piece used for measuring the bending strength and the like were a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C.
  • Example 2 In the same manner as in Example 1, an aqueous dispersion having a cellulose fiber content of 3% by mass was prepared, and 70 parts by mass of the aqueous dispersion of cellulose fibers and 100 parts by mass of ⁇ -caprolactam became a uniform solution. Further, the mixture was stirred and mixed with a mixer. Subsequently, the mixed solution was heated to 240 ° C. with stirring, while gradually releasing the water vapor to be boosted from 0 kgf / cm 2 to a pressure of 7 kgf / cm 2. Thereafter, the pressure was released to atmospheric pressure, and a polymerization reaction was carried out at 240 ° C. for 1 hour.
  • the resin composition obtained was dispensed and cut into pellets.
  • the obtained pellets were treated with hot water at 95 ° C., scoured and dried.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • Example 3 In the same manner as in Example 1, an aqueous dispersion having a cellulose fiber content of 3% by mass is prepared, and 70 parts by mass of the aqueous dispersion of cellulose fibers and 100 parts by mass of nylon 66 salt form a uniform solution. Stir with a mixer until mixing. Subsequently, the mixed solution was heated at 230 ° C. until the internal pressure reached 15 kgf / cm 2 . After reaching that pressure, heating was continued while gradually releasing water vapor, and the pressure was maintained. When the temperature reached 280 ° C., the pressure was released to normal pressure, and polymerization was further performed for 1 hour. When the polymerization was completed, the resin composition obtained was dispensed and cut into pellets.
  • the obtained pellets were treated with hot water at 95 ° C., scoured and dried.
  • the injection molding conditions for obtaining a test piece used for measuring the bending strength and the like were a cylinder temperature of 290 ° C. and a mold temperature of 80 ° C.
  • Example 4 In the same manner as in Example 1, an aqueous dispersion having a cellulose fiber content of 1.3% by mass was prepared. 210 parts by mass of this aqueous dispersion of cellulose fibers, 140 parts by mass of aminoundecanoic acid, and 0.14 parts by mass of phosphorous acid were stirred and mixed with a mixer until a uniform solution was obtained. Subsequently, this mixed solution was gradually heated, and the temperature was raised to 200 ° C. while discharging water vapor in the middle of heating, and the mixture was stirred at 240 ° C. for 1 hour to perform a polymerization reaction. When the polymerization was completed, the resin composition obtained was dispensed and cut into pellets. The obtained pellets were used for molding of test pieces as they were. The injection molding conditions for obtaining a test piece used for measuring the bending strength and the like were a cylinder temperature of 210 ° C. and a mold temperature of 80 ° C.
  • Example 5 An aqueous dispersion having a cellulose fiber content of 3% by mass was prepared in the same manner as in Example 1, and 70 parts by mass of the aqueous dispersion of cellulose fibers and 100 parts by mass of 12-aminododecanoic acid were mixed into a uniform solution. Stir and mix with a mixer until Subsequently, the mixed solution was gradually heated, and the temperature was raised to 200 ° C. while discharging water vapor during the heating, and the mixture was stirred at 230 ° C. for 1 hour to perform a polymerization reaction. When the polymerization was completed, the resin composition obtained was dispensed and cut into pellets. The obtained pellets were used for molding of test pieces as they were.
  • the injection molding conditions for obtaining a test piece used for measuring the bending strength and the like were a cylinder temperature of 210 ° C. and a mold temperature of 80 ° C.
  • Example 6 As an aqueous dispersion of cellulose fibers, serisch KY100S (manufactured by Daicel Finechem Co., Ltd .: a cellulose fiber having an average fiber diameter of 140 nm containing 25% by mass) was used. 98 parts by mass of this aqueous dispersion of cellulose fiber, 216 parts by mass of ⁇ -caprolactam, 44 parts by mass of aminocaproic acid, 0.59 parts by mass of phosphorous acid, and 157 parts by mass of purified water form a uniform solution. Stir with a mixer until mixing. Subsequently, this mixed solution was gradually heated, and the temperature was raised to 240 ° C.
  • Example 1 The injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • Example 7 As an aqueous dispersion of cellulose fibers, serisch KY100S (manufactured by Daicel Finechem Co., Ltd .: a cellulose fiber having an average fiber diameter of 140 nm containing 25% by mass) was used. 160 parts by mass of this aqueous dispersion of cellulose fibers, 170 parts by mass of ⁇ -caprolactam, 30 parts by mass of aminocaproic acid, 0.35 parts by mass of phosphorous acid, and 150 parts by mass of purified water form a uniform solution. Stir with a mixer until mixing. Subsequently, this mixed solution was gradually heated, and the temperature was raised to 240 ° C.
  • Example 1 The injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • Production Example 1 Production of bacterial cellulose 50 ml of a medium composed of 0.5 mass% glucose, 0.5 mass% polypeptone, 0.5 mass% yeast extract and 0.1 mass% magnesium sulfate heptahydrate was added to 200 ml. The solution was dispensed into a conical flask and steam sterilized at 120 ° C. for 20 minutes in an autoclave. One platinum ear of Gluconacetobacter xylinus (NBRC 16670) grown on a test tube slant agar medium was inoculated, and left to stand at 30 ° C. for 7 days. Seven days later, a white gel film-like bacterial cellulose was formed in the upper layer of the culture solution.
  • NBRC 16670 Gluconacetobacter xylinus
  • Example 8 The bacterial cellulose obtained in Production Example 1 was used as the cellulose fiber. Bacterial cellulose was crushed with a mixer, and then water substitution was performed by repeating immersion and washing with water. 31 parts by mass of an aqueous dispersion of bacterial cellulose after water replacement (containing 4.1% by mass of bacterial cellulose having an average fiber diameter of 60 nm), 216 parts by mass of ⁇ -caprolactam, 44 parts by mass of aminocaproic acid, 0.5 parts by mass of phosphorous acid and 50 parts by mass of purified water were stirred and mixed with a mixer until a uniform solution was obtained. Subsequently, this mixed solution was gradually heated, and the temperature was raised to 240 ° C.
  • Example 1 The injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • Example 9 35 parts by mass of an aqueous dispersion of bacterial cellulose after water substitution obtained in the same manner as in Example 8 (containing 6.5% by mass of bacterial cellulose having an average fiber diameter of 60 nm) and 194 parts by mass of ⁇ -caprolactam Then, 40 parts by mass of aminocaproic acid, 0.5 part by mass of phosphorous acid, and 90 parts by mass of purified water were stirred and mixed with a mixer until a uniform solution was obtained. Subsequently, this mixed solution was gradually heated, and the temperature was raised to 240 ° C. while discharging water vapor in the middle of heating, and the mixture was stirred at 240 ° C. for 1 hour to perform a polymerization reaction.
  • the resin composition obtained was dispensed and cut into pellets.
  • the obtained pellets were treated with hot water at 95 ° C., scoured and dried.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • a 100 nm thick section was collected from the obtained test piece with a frozen ultramicrotome, stained with OsO 4 , and observed with a transmission electron microscope (JEM-1230, manufactured by JEOL Ltd.) to obtain a cross section of the resin composition.
  • photographed this is shown in FIG.
  • Example 10 71 parts by mass of an aqueous dispersion of bacterial cellulose after water substitution obtained in the same manner as in Example 8 (containing 4.1% by mass of bacterial cellulose having an average fiber diameter of 60 nm) and 162 parts by mass of ⁇ -caprolactam Then, 33 parts by mass of aminocaproic acid, 0.38 parts by mass of phosphorous acid, and 20 parts by mass of purified water were stirred and mixed with a mixer until a uniform solution was obtained. Subsequently, this mixed solution was gradually heated, and the temperature was raised to 240 ° C. while discharging water vapor in the middle of heating, and the mixture was stirred at 240 ° C. for 1 hour to perform a polymerization reaction.
  • the resin composition obtained was dispensed and cut into pellets.
  • the obtained pellets were treated with hot water at 95 ° C., scoured and dried.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • Example 11 Purified water was added to the aggregate of cellulose fibers produced as waste yarn in the nonwoven fabric production process, and the mixture was stirred with a mixer to prepare an aqueous dispersion containing 3% by mass of cellulose fibers having an average fiber diameter of 120 nm. 170 parts by mass of this aqueous dispersion of cellulose fiber, 216 parts by mass of ⁇ -caprolactam, 44 parts by mass of aminocaproic acid, and 0.59 parts by mass of phosphorous acid were stirred and mixed with a mixer until a uniform solution was obtained. . Subsequently, this mixed solution was gradually heated, and the temperature was raised to 240 ° C.
  • Example 1 The injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • Example 12 Using an aqueous dispersion containing 3% by mass of cellulose fibers similar to Example 11, 85 parts by mass of the aqueous dispersion of cellulose fibers, 216 parts by mass of ⁇ -caprolactam, 44 parts by mass of aminocaproic acid, phosphorous acid 0.59 parts by mass of acid was stirred and mixed with a mixer until a uniform solution was obtained. Subsequently, this mixed solution was gradually heated, and the temperature was raised to 240 ° C. while discharging water vapor in the middle of heating, and the mixture was stirred at 240 ° C. for 1 hour to perform a polymerization reaction. When the polymerization was completed, the resin composition obtained was dispensed and cut into pellets. The obtained pellets were treated with hot water at 95 ° C., scoured and dried.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • Production Example 2 Production of refined cellulose 2 g of cellulose (qualitative filter paper No. 1), 0.025 g of 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (TEMPO) and 0.25 g of It was dispersed in 100 ml of water in which sodium bromide was dissolved. Thereafter, 13 wt% aqueous sodium hypochlorite solution was added so that the amount of sodium hypochlorite was 4.3 mmol per 1 g of pulp. A sodium hydroxide aqueous solution was added with a pH stat so that the pH was 10.5, and the reaction was stopped when the pH did not change. The contents were washed four times with water by a centrifugal separation method, and defibrated for 30 minutes with a home mixer. The average fiber diameter of the obtained cellulose fiber was 110 nm.
  • Example 13 Using the aqueous dispersion containing 1.6% by mass of the cellulose fiber obtained in Production Example 2, 95 parts by mass of the aqueous dispersion of cellulose fiber, 131 parts by mass of ⁇ -caprolactam, 26 parts by mass of aminocaproic acid, Then, 0.3 part by mass of phosphorous acid was stirred and mixed with a mixer until a uniform solution was obtained. Subsequently, this mixed solution was gradually heated, and the temperature was raised to 240 ° C. while discharging water vapor in the middle of heating, and the mixture was stirred at 240 ° C. for 1 hour to perform a polymerization reaction. When the polymerization was completed, the resin composition obtained was dispensed and cut into pellets. The obtained pellets were treated with hot water at 95 ° C., scoured and dried.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • Example 14 Purified water was added to the aggregate of cellulose fibers produced as waste yarn in the nonwoven fabric production process and stirred with a mixer to prepare an aqueous dispersion containing 6% by mass of cellulose fibers having an average fiber diameter of 3240 nm. Except using this aqueous dispersion of cellulose fibers, a polymerization reaction was carried out in the same manner as in Example 11 to obtain pellets. The injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • Example 15 A polymerization reaction was carried out in the same manner as in Example 3 except that an aqueous dispersion containing 6% by mass of cellulose fibers similar to that in Example 14 was used to obtain pellets.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 3.
  • Example 16 Purified water was added to the aggregate of cellulose fibers produced as waste yarn in the nonwoven fabric manufacturing process, and the mixture was stirred with a mixer to prepare an aqueous dispersion containing 2.6% by mass of cellulose fibers having an average fiber diameter of 3240 nm. .
  • a polymerization reaction was carried out in the same manner as in Example 4 except that this aqueous dispersion of cellulose fiber was used to obtain pellets.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 4.
  • Example 17 A polymerization reaction was carried out in the same manner as in Example 5 except that an aqueous dispersion containing 6% by mass of cellulose fibers similar to that in Example 14 was used to obtain pellets.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 5.
  • Comparative Example 1 A polyamide resin composition was obtained in the same manner as in Example 1 except that the aqueous dispersion of cellulose fiber was not added.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • Comparative Example 2 A polyamide resin composition was obtained in the same manner as in Example 3 except that the aqueous dispersion of cellulose fiber was not added.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 3.
  • Comparative Example 3 A polyamide resin composition was obtained in the same manner as in Example 4 except that the aqueous dispersion of cellulose fiber was not added.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 4.
  • Comparative Example 4 A polyamide resin composition was obtained in the same manner as in Example 5 except that the aqueous dispersion of cellulose fiber was not added.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 5.
  • Comparative Example 5 A polyamide resin composition was obtained in the same manner as in Example 1 except that cotton short fibers (average fiber diameter: 16 ⁇ m) were used as the cellulose fibers.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 1.
  • Comparative Example 6 A polyamide resin composition was obtained in the same manner as in Example 3 except that the same short fibers of cotton as in Comparative Example 5 (average fiber diameter of 16 ⁇ m) were used as the cellulose fibers.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 3.
  • Comparative Example 7 A polyamide resin composition was obtained in the same manner as in Example 4, except that the short fibers of cotton (average fiber diameter 16 ⁇ m) similar to those in Comparative Example 5 were used as the cellulose fibers.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 4.
  • Comparative Example 8 A polyamide resin composition was obtained in the same manner as in Example 5 except that the same short fibers of cotton as in Comparative Example 5 (average fiber diameter of 16 ⁇ m) were used as the cellulose fibers.
  • the injection molding conditions for obtaining a test piece used for measurement of bending strength and the like were the same as in Example 5.
  • Comparative Example 9 The polymerization reaction was carried out in the same manner as in Example 6 except that the amount of the aqueous dispersion of cellulose fiber was changed to 588 parts by mass. As a result, stirring was not possible and polymerization was difficult.
  • Comparative Example 10 As cellulose fibers, serisch KY100G (manufactured by Daicel Finechem Co., Ltd .: containing 10% by mass of cellulose fibers having an average fiber diameter of 125 nm) was freeze-dried and then pulverized to obtain powdered cellulose. A twin screw extruder having a screw diameter of 30 mm and an average groove depth of 2.5 mm is blended with 100 parts by mass of nylon 6 (BRL number average molecular weight 17000 manufactured by Unitika Ltd.) and 2 parts by mass of the obtained powdery cellulose.
  • FIG. 2 is a cross-sectional image of a portion where no aggregate is visually confirmed.
  • Comparative Example 11 A resin composition was obtained and pelletized by melt-kneading in the same manner as in Comparative Example 10 except that nylon 66 (Malanil A125 number average molecular weight 18000 manufactured by Unitika Co., Ltd.) was used instead of nylon 6.
  • the injection molding conditions for obtaining a test piece used for measuring the bending strength and the like were a cylinder temperature of 270 ° C. and a mold temperature of 80 ° C.
  • Comparative Example 12 A resin composition was obtained and pelletized by melt-kneading in the same manner as in Comparative Example 10 except that nylon 11 (Arkema RILSAN BMN number average molecular weight 15000) was used instead of nylon 6.
  • the injection molding conditions for obtaining a test piece used for measuring the bending strength and the like were a cylinder temperature of 210 ° C. and a mold temperature of 80 ° C.
  • Comparative Example 13 A resin composition was obtained and pelletized by melt-kneading in the same manner as in Comparative Example 10 except that nylon 12 (Arkema RILSAN AMN number average molecular weight 15000) was used instead of nylon 6.
  • the injection molding conditions for obtaining a test piece used for measuring the bending strength and the like were a cylinder temperature of 200 ° C. and a mold temperature of 80 ° C.
  • Table 1 shows the measurement results of the characteristic values of the polyamide resin compositions obtained in Examples 1 to 17 and Comparative Examples 1 to 13.
  • the polyamide resin compositions obtained in Examples 1 to 17 are mixed with an aqueous dispersion of cellulose fibers having a fiber diameter of 10 ⁇ m or less and a monomer constituting the polyamide resin to perform a polymerization reaction. Therefore, fine cellulose fibers were uniformly dispersed in the polyamide resin without agglomeration. Such a distributed state is clearer than in FIG. That is, FIG. 1 is an electron micrograph of a cross section of the polyamide resin composition obtained in Example 9, and the cellulose fibers are aggregated as shown in the area surrounded by the ellipse. There is no dispersion.
  • the polyamide resin compositions obtained in Comparative Examples 5 to 8 were obtained by carrying out a polymerization reaction using cellulose fibers having a fiber diameter of more than 10 ⁇ m.
  • the obtained polyamide resin compositions had an average fiber diameter of 10 ⁇ m. Since more cellulose fibers were contained, all of the bending elastic modulus, bending strength, tensile elastic modulus, tensile yield strength, and heat distortion temperature were lower than those of the polyamide resin compositions of Examples 1 to 5.
  • the linear expansion coefficient showed a high value and was inferior in mechanical properties and heat resistance.
  • Comparative Example 9 since the cellulose fiber content was too high, stirring became difficult during the polymerization reaction, and a resin composition could not be obtained.
  • the polyamide resin compositions obtained in Comparative Examples 10 to 13 contained cellulose fibers having a large average fiber diameter, and the resin compositions obtained in Examples 1 to 5 (the same amount of cellulose fibers were used). Compared to those containing), the flexural modulus, flexural strength, tensile modulus, tensile yield strength, and thermal deformation temperature are all low, and the coefficient of linear expansion is high. Both mechanical properties and heat resistance It was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 ポリアミド樹脂100質量部に対して、平均繊維径が10μm以下のセルロース繊維0.01~50質量部を含有することを特徴とするポリアミド樹脂組成物。ポリアミド樹脂を構成するモノマーと、平均繊維径が10μm以下のセルロース繊維の水分散液を混合し、重合反応を行うことを特徴とするポリアミド樹脂組成物の製造法。

Description

ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法
 本発明は、機械的特性、耐熱性が向上したポリアミド樹脂組成物及び該樹脂組成物の製造法に関するものである。
 ポリアミド樹脂をガラス繊維、炭素繊維、タルク、クレイなどの無機充填剤で強化した樹脂組成物は広く知られている。しかしこれらの強化材は、多量に配合しないと機械的特性や耐熱性が改善しないという問題点や、比重が高いために、得られる樹脂組成物の質量が大きくなるという問題点があった。
 また、強化材としてガラス繊維、炭素繊維等を用いた場合は、得られた樹脂組成物からなる成形体は、そりが大きくなるという問題点があった。また、強化材としてタルク、クレイ等を用いた場合は、得られた樹脂組成物を廃棄する際、これら強化材は、焼却残渣として残存するため、土中に埋設処理され、半永久的に地中に残留するという問題点があった。
 近年、樹脂材料の強化材としてセルロースが用いられている。セルロースには、樹木から得られるものや、稲、綿、ケナフ、麻などの非木材資源から得られるものや、微生物が生産するバクテリアセルロースなどがあり、セルロースは地球上に非常に多量に存在する。セルロースは機械的特性に優れており、これを樹脂中に含有させることにより、樹脂組成物の特性を向上させる効果が期待される。
 熱可塑性樹脂中にセルロースを含有させる方法としては、樹脂とセルロースとを溶融混合する方法が一般的である。しかしながら、この方法ではセルロースが凝集した状態のまま樹脂中に混合され、セルロースが均一に分散された樹脂組成物を得ることはできない。このため、樹脂組成物の特性を十分に向上させることができない。
 例えば、特許文献1には、熱可塑性プラスチック内にセルロースパルプ繊維を含む複合材が開示されており、熱可塑性プラスチックとしてポリアミド樹脂も記載されている。この発明においては、セルロースパルプ繊維をポリマー材料と混合しやすくするために、回転ナイフカッター等を用いて粒状とすることも記載されている。しかしながら、特許文献1には、粒状とすることにより繊維長が短くなると、セルロースパルプ繊維を添加することによる強化力は低下すると記載され、したがって、セルロースパルプ繊維の平均長は0.1~6mmが好ましいことが記載されている。
 さらに、引用文献1記載の発明では、セルロースパルプ繊維を熱可塑性プラスチック中に多量に混合しており、実施例においてはセルロースパルプ繊維を30質量%もの多量に添加している。
 そして、引用文献1記載の発明では、セルロースパルプ繊維をポリマー材料と混合する際には、セルロースパルプ繊維を乾燥させた後、溶融混合を行っている。
 以上のことから、引用文献1記載の発明では、セルロースパルプ繊維の凝集の問題は解決されておらず、また、セルロースパルプ繊維の添加量が多量のため、射出成形時において230~240℃の温度となると、セルロースの分解による着色の問題も生じていた。
 また、特許文献2には、プラスチック100重量部にセルロース繊維0.01~20重量部を含有する熱可塑性プラスチックが記載されている。そしてセルロース繊維は、ビスコース繊維であり、50μm~5mmの繊維長さ又は1~500μmの繊維直径を有するものが好ましいことが記載されている。特許文献2記載の発明においては、特許文献1記載の発明よりもセルロース繊維の含有量が少量ではあるが、セルロース繊維の繊維長や繊維直径は大きいものであり、また、セルロース繊維を含有させる方法として、溶融混合する方法が示されているのみである。
 したがって、特許文献2記載の発明においても、上記したようなセルロース繊維の凝集の問題は解決されていなかった。
特表2002-527536号公報 特表平9-505329号公報
 本発明は、上記の問題点を解決するものであり、ポリアミド樹脂中にセルロース繊維が凝集することなく均一に分散され、機械的特性や耐熱性が向上したポリアミド樹脂組成物及び該樹脂組成物の製造法を提供することを目的とするものである。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、本発明に到達した。
 すなわち、本発明の要旨は、下記の通りである。
(1)ポリアミド樹脂100質量部に対して、平均繊維径が10μm以下のセルロース繊維0.01~50質量部を含有することを特徴とするポリアミド樹脂組成物。
(2)ポリアミド樹脂を構成するモノマーと、平均繊維径が10μm以下のセルロース繊維の水分散液とを混合し、重合反応を行うことにより得られたものである、(1)記載のポリアミド樹脂組成物。
(3)荷重1.8MPa時の熱変形温度が50℃以上である、(1)記載のポリアミド樹脂組成物。
(4)MD方向における線膨張係数(20~150℃の領域での平均値を算出するもの)が120×10-6(1/℃)以下である、(1)記載のポリアミド樹脂組成物。
(5)荷重1.8MPa時の熱変形温度が50℃以上であり、MD方向における線膨張係数(20~150℃の領域での平均値を算出するもの)が120×10-6(1/℃)以下である、(1)記載のポリアミド樹脂組成物。
(6)荷重1.8MPa時の熱変形温度が65℃以上である、(1)記載のポリアミド樹脂組成物。
(7)MD方向における線膨張係数(20~150℃の領域での平均値を算出するもの)が80×10-6(1/℃)以下である、(1)記載のポリアミド樹脂組成物。
(8)荷重1.8MPa時の熱変形温度が65℃以上であり、MD方向における線膨張係数(20~150℃の領域での平均値を算出するもの)が80×10-6(1/℃)以下である、(1)記載のポリアミド樹脂組成物。
(9)ポリアミド樹脂がナイロン11又はナイロン12である、(1)~(5)のいずれかに記載のポリアミド樹脂組成物。
(10)ポリアミド樹脂がナイロン6又はナイロン66である、(1)、(2)、(6)~(8)のいずれかに記載のポリアミド樹脂組成物。
(11)上記(1)~(10)のいずれかに記載のポリアミド樹脂組成物を製造するための方法であって、ポリアミド樹脂を構成するモノマーと、平均繊維径が10μm以下のセルロース繊維の水分散液とを混合し、重合反応を行うことを特徴とするポリアミド樹脂組成物の製造法。
 本発明のポリアミド樹脂組成物は、平均繊維径が10μm以下のセルロース繊維を含有し、樹脂組成物中に該セルロース繊維が凝集することなく均一に分散されているため、強度、線膨張係数等の機械的特性や耐熱性が向上したものである。このため、本発明のポリアミド樹脂組成物は、射出成形、押出成形、発泡成形等の成形法により各種の成形体を得ることが可能となり、様々な用途に使用することが可能となる。
 また、本発明のポリアミド樹脂組成物の製造法により、セルロース繊維が凝集状態のままポリアミド樹脂中に含有されることがないため、セルロース繊維が均一に分散された本発明のポリアミド樹脂組成物を得ることができる。このため、セルロース繊維の含有量が比較的少量であっても、ポリアミド樹脂組成物の機械的特性や耐熱性を向上させることが可能となる。
実施例9で得られた樹脂組成物の断面の電子顕微鏡写真。 比較例10で得られた樹脂組成物の断面の電子顕微鏡写真。
 以下、本発明を詳細に説明する。
 本発明で用いるポリアミド樹脂は、アミノ酸、ラクタムあるいはジアミンとジカルボン酸とから形成されるアミド結合を有する重合体をいうものである。
 このようなポリアミド樹脂を形成するモノマーの例として、アミノ酸としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などが挙げられる。
 ラクタムとしては、ε-カプロラクタム、ω-ラウロラクタムなどが挙げられる。
 ジアミンとしては、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナンメチレンジアミン、デカンメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、2,4-ジメチルオクタメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、3,8-ビス(アミノメチル)トリシクロデカン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどが挙げられる。
 ジカルボン酸としてはアジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、ジグリコール酸などが挙げられる。
 より具体的には、本発明で用いるポリアミド樹脂としては、ポリカプロアミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカメチレンアジパミド(ナイロン116)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリトリメチルヘキサメチレンテレフタルアミド(ナイロンTMHT)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリヘキサメチレンテレフタル/イソフタルアミド(ナイロン6T/6I)、ポリビス(4-アミノシクロヘキシル)メタンドデカミド(ナイロンPACM12)、ポリビス(3-メチル-4-アミノシクロヘキシル)メタンドデカミド(ナイロンジメチルPACM12)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)、ポリウンデカメチレンテレフタルアミド(ナイロン11T)、ポリウンデカメチレンヘキサヒドロテレフタルアミド(ナイロン11T(H))が挙げられ、これらの共重合体や混合物であってもよい。中でも特に好ましいポリアミド樹脂は、ナイロン6、ナイロン66、ナイロン11、ナイロン12、およびこれらの共重合体や混合物である。
 本発明のポリアミド樹脂組成物は、上記したようなポリアミド樹脂とセルロース繊維を含有するものである。本発明で用いられるセルロース繊維としては、木材、稲、綿、麻、ケナフなどに由来するものの他にバクテリアセルロース、バロニアセルロース、ホヤセルロースなど生物由来のものも含まれる。また、再生セルロース、セルロース誘導体なども含まれる。
 本発明のポリアミド樹脂組成物は、セルロース繊維を含有することによって、強度、線膨張係数等の機械的特性や耐熱性が向上したものとなる。樹脂組成物の機械的特性や耐熱性を十分に向上させるには、セルロース繊維を凝集させることなく、樹脂中に均一に分散させることが必要である。そのためにはポリアミド樹脂に対するセルロース繊維の分散性や、ポリアミド樹脂とセルロース繊維の親和性が重要である。また、セルロース繊維が有する水酸基などの性質をできるだけ発揮させるためには、セルロース繊維の表面積を増やすことが重要である。このため、できるだけ微細化されたセルロース繊維を使用することが必要となる。
 したがって、本発明においては、セルロース繊維として、平均繊維径が10μm以下のものを用いることが必要であり、中でも平均繊維径は500nm以下であることが好ましく、さらには、300nm以下であることが好ましく、より好ましくは100nm以下である。平均繊維径が10μmを超えるセルロース繊維では、セルロース繊維の表面積を増やすことができず、ポリアミド樹脂や、ポリアミド樹脂を形成するモノマーに対する分散性や親和性を向上させることが困難となる。平均繊維径の下限は特に限定するものではないが、セルロース繊維の生産性を考慮すると4nm以上とすることが好ましい。
 このような平均繊維径が10μm以下のセルロース繊維(以下、セルロース繊維(A)と称することがある)としては、セルロース繊維を引き裂くことによってミクロフィブリル化したものが好ましい。ミクロフィブリル化する手段としては、ボールミル、石臼粉砕機、高圧ホモジナイザー、ミキサーなど各種粉砕装置を使用することができる。セルロース繊維(A)としては、市販されているものとして、例えば、ダイセルファインケム社製の「セリッシュ」を用いることができる。
 また、セルロース繊維(A)として、セルロース繊維を使用した繊維製品の製造工程において、屑糸として出されたセルロース繊維の集合体を使用することもできる。繊維製品の製造工程とは紡績時、織布時、不織布製造時、そのほか繊維製品の加工時などが挙げられる。これらのセルロース繊維の集合体は、セルロース繊維がこれらの工程を経た後に屑糸となったものであるため、セルロース繊維が微細化したものとなっている。
 また、セルロース繊維(A)として、バクテリアが産出するバクテリアセルロースを使用することもでき、例えば、アセトバクター族の酢酸菌を生産菌として産出されたものを使用することができる。植物のセルロースは、セルロースの分子鎖が収束したもので、非常に細いミクロフィブリルが束になって形成されているものであるのに対し、酢酸菌より産出されたセルロースはもともと幅20~50nmのリボン状であり、植物のセルロースと比較すると極めて細い網目状を形成している。
 また、セルロース繊維(A)として、N-オキシル化合物の存在下にセルロース繊維を酸化させた後に、水洗、物理的解繊工程を経ることにより得られる、微細化されたセルロース繊維を使用してもよい。
 N-オキシル化合物としては各種あるが、たとえばCellulose(1998)5,153-164に示されているような2,2,6,6-Tetramethylpiperidine-1-oxyl radical(以下TEMPOと記す)などが好ましい。このような化合物を触媒量の範囲で反応水溶液に添加する。
 この水溶液に共酸化剤として次亜塩素酸ナトリウムや亜塩素酸ナトリウムを加え、臭化アルカリ金属を加えることにより反応を進行させる。水酸化ナトリウム水溶液などのアルカリ性の化合物を添加してpHを10付近に保持し、pHの変化が見られなくなるまで反応を継続する。反応温度は室温で構わない。反応後、系内に残存するN-オキシル化合物を除去することが好ましい。洗浄はろ過、遠心分離など各種方法を採用することができる。
 その後、上記したような各種粉砕装置を用い、物理的な解繊工程を経ることで微細化されたセルロース繊維(A)を得ることができる。
 本発明において、樹脂組成物中に含有されているセルロース繊維の平均繊維径の測定方法は以下のとおりである。凍結ウルトラミクロトームを用いて樹脂組成物(または樹脂組成物からなる成形体)から厚さ100nmの切片を採取し、OsO(四酸化オスミウム)で切片染色を実施後、透過型電子顕微鏡(日本電子社製JEM-1230)を用いて観察を行う。電子顕微鏡画像からセルロース繊維(単繊維)の長手方向に対する垂直方向の長さを測定する。このとき、垂直方向の長さのうち最大のものを繊維径とする。同様にして10本のセルロース繊維(単繊維)の繊維径を測定し、10本の平均値を算出したものを平均繊維径とする。
 なお、セルロース繊維の繊維径が大きいものについては、ミクロトームにて10μmの切片を切り出したものか、樹脂組成物(または樹脂組成物からなる成形体)をそのままの状態で、実体顕微鏡(OLYMPUS SZ-40)を用いて観察を行い、得られた画像から上記と同様にして繊維径を測定し、平均繊維径を求める。
 また、本発明における樹脂組成物中に含有されているセルロース繊維の長さは、上記のようにして平均繊維径を測定する際に求めることができ、電子顕微鏡画像におけるセルロース繊維(単繊維)の長手方向の長さをいう。そして、繊維径と同様に、10本のセルロース繊維(単繊維)の長さを測定し、10本の平均値を算出したものを平均繊維長とする。
 本発明におけるセルロース繊維は、上記した平均繊維径と平均繊維長との比であるアスペクト比(平均繊維長/平均繊維径)が10以上であることが好ましく、中でも50以上、さらには100以上であることが好ましい。アスペクト比が10以上であることにより、ポリアミド樹脂組成物の機械的特性が向上しやすく、より強度が高く、線膨張係数が低いものとすることができる。
 なお、本発明のポリアミド樹脂組成物は、後述するような本発明の製造法により得ることにより、セルロース繊維(A)がアスペクト比100以上のものであっても、樹脂中に均一に分散させることが可能となる。
 そして、本発明のポリアミド樹脂組成物中のセルロース繊維(A)の含有量は、ポリアミド樹脂100質量部に対して、0.01~50質量部であることが必要であり、中でも0.05~30質量部であることが好ましく、さらには0.1~20質量部であることが好ましく、より好ましくは0.1~10質量部である。セルロース繊維(A)の含有量がポリアミド樹脂100質量部に対して0.01質量部未満である場合は、上記したようなセルロース繊維(A)を含有する効果、すなわち機械的特性や耐熱性を向上する効果を奏することができない。一方、セルロース繊維(A)の含有量がポリアミド樹脂100質量部に対して50質量部を超える場合は、セルロース繊維(A)を樹脂組成物中に含有させることが困難となったり、得られた樹脂組成物を射出成形等の成形時に高温で熱処理すると変色が生じることとなる。
 本発明のポリアミド樹脂組成物を、後述するような本発明の製造法で得ることにより、セルロース繊維(A)の含有量が少量であっても、それがポリアミド樹脂中に均一に分散されるので、ポリアミド樹脂組成物には、十分な機械的特性や耐熱性の向上効果が得られる。つまり、セルロース繊維(A)の含有量が、ポリアミド樹脂100質量部に対して0.01~10質量部の範囲のものであっても、ポリアミド樹脂組成物は、強度が高く、線膨張係数が低く、機械的特性に優れるとともに耐熱性にも優れたものとなる。
 以上のようなポリアミド樹脂とセルロース繊維(A)を含有する本発明のポリアミド樹脂組成物は、数平均分子量が1万~10万であることが好ましい。数平均分子量が1万未満である場合には、樹脂組成物の機械的特性が低くなるので好ましくない。一方、数平均分子量が10万を超える場合には、樹脂組成物の成形性が急速に低下するので好ましくない。なお、数平均分子量は、示差屈折率検出器を備えたゲル浸透クロマトグラフィ(GPC)装置を用い、ヘキサフルオロイソプロパノールを溶出液として40℃でPMMA換算にて求める値である。
 セルロース繊維は水との親和性が非常に高く、平均繊維径が小さいほど水に対して良好な分散状態を保つことができる。また、水を失うと水素結合により強固にセルロース繊維同士が凝集し、一旦凝集すると凝集前と同様の分散状態をとることが困難となる。特にセルロース繊維の平均繊維径が小さくなるほどこの傾向が顕著となる。
 したがって、セルロース繊維は水を含んだ状態でポリアミド樹脂と複合化することが好ましい。
 そこで、本発明のポリアミド樹脂組成物の製造法としては、ポリアミド樹脂を重合反応により得る際に、ポリアミド樹脂を構成するモノマーと、セルロース繊維(A)の水分散液とを混合し、重合反応を行う方法を採用することが好ましい。つまり、本発明の製造法は、ポリアミド樹脂の重合時に、水を含んだ状態のセルロース繊維を存在させ、重合反応を行うことにより、セルロース繊維(A)を含有する樹脂組成物を得る方法である。
 このような本発明の製造法により、セルロース繊維(A)が凝集することなく均一に分散したポリアミド樹脂組成物を得ることが可能となり、特に機械的特性と耐熱性が向上した樹脂組成物とすることができる。
 本発明のポリアミド樹脂組成物は耐熱性に優れる。耐熱性を示す指標として、熱変形温度がある。本発明のポリアミド樹脂組成物は、荷重1.8MPa時の熱変形温度が50℃以上であることが好ましく、中でも60℃以上、さらには70℃以上であることが好ましい。荷重1.8MPa時の熱変形温度が50℃未満であると、十分な耐熱性を有しておらず、様々な用途に使用することが困難となる。
 荷重1.8MPa時の熱変形温度は、ポリアミド樹脂としてナイロン6やナイロン66を用いた場合は、65℃以上であることが好ましく、中でも70℃以上で、さらには80℃以上であることが好ましい。また、ナイロン11やナイロン12を用いた場合は、50℃以上であることが好ましく、中でも55℃以上であることが好ましい。
 また、本発明のポリアミド樹脂組成物は、荷重0.45MPa時の熱変形温度が148℃以上であることが好ましく、中でも155℃以上、さらには180℃以上であることが好ましい。荷重0.45MPa時の熱変形温度が148℃未満であると、十分な耐熱性を有しておらず、様々な用途に使用することが困難となる。
 荷重0.45MPa時の熱変形温度は、ポリアミド樹脂としてナイロン6やナイロン66を用いた場合は、180℃以上であることが好ましく、中でも190℃以上であることが好ましい。また、ナイロン11やナイロン12を用いた場合は、148℃以上であることが好ましく、中でも150℃以上であることが好ましい。
 なお、本発明における熱変形温度は、後述する曲げ強度、曲げ弾性率を測定する際に作製する試験片と同様のものを用い、ASTM D648に基づいて測定するものである。このとき、荷重は1.8MPaと0.45MPaで測定する。
 本発明のポリアミド樹脂組成物は機械的特性にも優れる。機械的特性を示す指標として、線膨張係数や強度がある。
 本発明のポリアミド樹脂組成物は、MD方向における線膨張係数が、120×10-6(1/℃)以下であることが好ましく、中でも100×10-6(1/℃)以下であることが好ましく、さらには80×10-6(1/℃)以下であることが好ましい。MD方向における線膨張係数が、120×10-6(1/℃)を超えると、寸法安定性に劣るものとなりやすく、様々な用途に用いることが困難となる。
 MD方向における線膨張係数は、ポリアミド樹脂としてナイロン6やナイロン66を用いた場合は、80×10-6(1/℃)以下であることが好ましく、中でも70×10-6(1/℃)以下であることが好ましく、さらには50×10-6(1/℃)以下であることが好ましい。ポリアミド樹脂としてナイロン11やナイロン12を用いた場合は、MD方向における線膨張係数は120×10-6(1/℃)以下であることが好ましく、中でも110×10-6(1/℃)以下であることが好ましい。
 なお、本発明における線膨張係数は、後述する曲げ強度、曲げ弾性率を測定する際に作製する試験片と同様のものを用い、JIS K7197に基づいて測定するものであり、20~150℃の領域での平均値を算出する。また、成形時の樹脂の流れ方向をMD方向、流れと垂直な方向をTD方向とする。
 本発明のポリアミド樹脂組成物は、曲げ強度が65MPa以上であることが好ましく、中でも70MPa以上、さらには100MPa以上であることが好ましい。また、引張降伏強度が40MPa以上であることが好ましく、中でも45MPa以上、さらには70MPa以上であることが好ましい。
 曲げ強度が65MPa未満であったり、引張降伏強度が40MPa未満であると、十分な強度を有しておらず、様々な用途に使用することが困難となる。
 本発明のポリアミド樹脂組成物において、ポリアミド樹脂としてナイロン6やナイロン66を用いた場合は、曲げ強度は120MPa以上であることが好ましく、中でも130MPa以上であることが好ましく、さらには140MPa以上であることが好ましい。引張降伏強度は、70MPa以上であることが好ましく、中でも75MPa以上であることが好ましく、さらには80MPa以上であることが好ましい。
 ポリアミド樹脂としてナイロン11やナイロン12を用いた場合は、曲げ強度は65MPa以上であることが好ましく、中でも70MPa以上であることが好ましい。引張降伏強度は40MPa以上であることが好ましく、中でも45MPa以上であることが好ましい。
 さらに、本発明のポリアミド樹脂組成物は、曲げ弾性率が1.8GPa以上であることが好ましく、中でも2.5GPa以上であることが好ましく、さらには3.0GPa以上であることが好ましい。そして、引張り弾性率が1.4GPa以上であることが好ましく、中でも2.0GPa以上であることが好ましく、さらには2.2GPa以上であることが好ましい。
 曲げ弾性率が1.8GPa未満であったり、引張り弾性率が1.4GPa未満であると、柔軟性に乏しく、剛性が強くなりすぎるため、曲げ強度や引張降伏強度が上記の範囲内のものであったとしても、汎用性に乏しく、実用上好ましくない。
 本発明のポリアミド樹脂組成物において、ポリアミド樹脂としてナイロン6やナイロン66を用いた場合は、曲げ弾性率は2.5GPa以上であることが好ましく、中でも3.0GPa以上であることが好ましく、さらには3.3GPa以上であることが好ましい。引張り弾性率は、2.0GPa以上であることが好ましく、中でも2.2GPa以上であることが好ましく、さらには2.4GPa以上であることが好ましい。
 ポリアミド樹脂としてナイロン11やナイロン12を用いた場合は、曲げ弾性率は1.8GPa以上であることが好ましく、中でも2.0GPa以上であることが好ましい。引張り弾性率は、1.4GPa以上であることが好ましく、さらには1.5GPa以上であることが好ましい。
 なお、本発明における曲げ強度、引張降伏強度、曲げ弾性率、引張り弾性率は、以下のような射出成形条件によって得た試験片を用い、ASTM D790に基づき、23℃で測定を行うものである。
(射出成形条件)
 ポリアミド樹脂組成物を、射出成形機(東芝機械社製、IS-80G型)を用い、ASTM規格の1/8インチ3点曲げ試験片用金型を用いて成形を行い、長さ×幅×厚さ=127mm(5インチ)×12.7mm(1/2インチ)×3.2mm(1/8インチ)の試験片を得る。
 次に、本発明のポリアミド樹脂組成物の製造法について説明する。
 本発明のポリアミド樹脂組成物の製造法は、ポリアミド樹脂を構成するモノマーと、平均繊維径が10μm以下のセルロース繊維の水分散液とを混合し、重合反応を行うものである。そして、本発明の製造法におけるセルロース繊維の水分散液は、このような平均繊維径が10μm以下のセルロース繊維を水に分散させたものであり、水分散液中のセルロース繊維の含有量は0.01~50質量%とすることが好ましい。このような水分散液は、精製水とセルロース繊維とをミキサー等で攪拌することにより得ることができる。
 そして、セルロース繊維の水分散液と、ポリアミド樹脂を構成するモノマーとを混合し、ミキサー等で攪拌することにより均一な分散液とする。その後、分散液を加熱し、150~270℃まで昇温させて攪拌することにより重合反応させる。このとき、分散液を加熱する際に徐々に水蒸気を排出することにより、セルロース繊維の水分散液中の水分を排出することができる。なお、上記ポリアミド重合時においては、必要に応じてリン酸や亜リン酸などの触媒を添加してもよい。そして、重合反応終了後は、得られた樹脂組成物を払い出した後、切断してペレットとすることが好ましい。
 また、セルロース繊維としてバクテリアセルロースを用いる場合においては、セルロース繊維の水分散液として、バクテリアセルロースを精製水に浸して溶媒置換したものを使用してもよい。バクテリアセルロースの溶媒置換したものを用いる際には、溶媒置換後、所定の濃度に調整した後、ポリアミド樹脂を構成するモノマーと混合し、上記と同様に重合反応を進行させることが好ましい。
 このように、本発明の製造法では、平均繊維径が10μm以下のセルロース繊維を用い、かつセルロース繊維を水分散液のまま重合反応に供することで、分散性が良好な状態で重合反応に供されることとなる。さらに、重合反応に供されたセルロース繊維は、重合反応中のモノマーや水との相互作用により、また上記のような温度条件で攪拌することにより、分散性が向上し、繊維同士が凝集することがなく、平均繊維径が小さいセルロース繊維が良好に分散した樹脂組成物を得ることが可能となる。このように、本発明の製造法によれば、セルロース繊維の分散性が向上するため、重合反応前に添加したセルロース繊維の平均繊維径よりも、重合反応終了後に樹脂組成物中に含有されているセルロース繊維のほうが、平均繊維径や繊維長が小さいものとなることもある。
 また、本発明の製造法では、セルロース繊維を乾燥させる工程が不要となり、微細なセルロース繊維の飛散が生じる工程を経ずに製造が可能であるため、操業性よくポリアミド樹脂組成物を得ることが可能となる。またモノマーとセルロースを均一に分散させる目的として水を有機溶媒に置換する必要がないため、ハンドリングに優れるとともに製造工程中において化学物質の排出を抑制することが可能となる。
 なお、本発明の製造法に用いられる、重合反応前のセルロース繊維の平均繊維径の測定方法は以下のとおりである。まず、必要に応じて凍結乾燥したセルロース繊維を電界放射型走査型電子顕微鏡(日立製作所社製S-4000)を用いて観察する。電子顕微鏡(SEM)画像からセルロース繊維(単繊維)の長手方向に対する垂直方向の長さを測定する。このとき、垂直方向の長さのうち最大のものを繊維径とする。同様にして10本のセルロース繊維(単繊維)の繊維径を測定し、10本の平均値を算出したものを平均繊維径とする。
 本発明のポリアミド樹脂組成物中には、その特性を大きく損なわない限りにおいて、顔料、熱安定剤、酸化防止剤、耐候剤、可塑剤、滑剤、離型剤、帯電防止剤、耐衝撃剤、難燃剤、相溶化剤などが含有されていてもよい。
 また、本発明のポリアミド樹脂組成物中には、その特性を大きく損なわない限りにおいて、ポリアミド樹脂以外の他の重合体が含有されていてもよい。他の重合体としては、例えば、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスチレン、ポリメチル(メタ)アクリレート、ポリ(アクリロニトリル-ブタジエン-スチレン)共重合体、液晶ポリマー、ポリアセタールなどが挙げられる。
 なお、本発明のポリアミド樹脂組成物は、射出成形、ブロー成形、押出成形、発泡成形等の成形方法により、各種成形体とすることができる。すなわち、射出成形してなる成形体、あるいは、押出し成形してなるフィルム、シート、および、これらフィルム、シートから加工してなる成形体、あるいは、ブロー成形してなる中空体、および、この中空体から加工してなる成形体、溶融紡糸して得られる繊維などとすることができる。
 これらの成形体の具体例としては、パソコン筐体部品および筐体、携帯電話筐体部品および筐体、その他OA機器筐体部品、コネクター類等の電化製品用樹脂部品;バンパー、インストルメントパネル、コンソールボックス、ガーニッシュ、ドアトリム、天井、フロア、エンジン周りのパネル等の自動車用樹脂部品をはじめ、コンテナーや栽培容器等の農業資材や農業機械用樹脂部品;浮きや水産加工品容器等の水産業務用樹脂部品;皿、コップ、スプーン等の食器や食品容器;注射器や点滴容器等の医療用樹脂部品;ドレーン材、フェンス、収納箱、工事用配電盤等の住宅・土木・建築材用樹脂部品;花壇用レンガ、植木鉢等の緑化材用樹脂部品;クーラーボックス、団扇、玩具等のレジャー・雑貨用樹脂部品;ボールペン、定規、クリップ等の文房具用樹脂部品;繊維を製編織して得られる織編物や不織布等が挙げられる。
 以下、本発明を実施例によりさらに具体的に説明する。なお、実施例中の各種の特性値の測定法は以下のとおりである。
〔曲げ弾性率、曲げ強度〕
 得られたポリアミド樹脂組成物(ペレット)を用い、前記の方法により測定した。
〔引張弾性率、引張降伏強度〕
 得られたポリアミド樹脂組成物(ペレット)を用い、前記の方法により測定した。
〔熱変形温度(HDT)〕
 得られたポリアミド樹脂組成物(ペレット)を用い、前記の方法により測定した。
〔線膨張係数〕
 得られたポリアミド樹脂組成物(ペレット)を用い、前記の方法により測定した。
〔セルロース繊維の平均繊維径〕
 得られたポリアミド樹脂組成物中のセルロース繊維の平均繊維径や、重合反応に供した重合反応前のセルロース繊維の平均繊維径は、前記の方法により測定し、算出した。
実施例1
 セルロース繊維の水分散液として、セリッシュKY100G(ダイセルファインケム社製:平均繊維径が125nmのセルロース繊維が10質量%含有されたもの)を使用し、これに精製水を加えてミキサーで攪拌し、セルロース繊維の含有量が3質量%の水分散液を調整した。
 このセルロース繊維の水分散液170質量部と、ε-カプロラクタム216質量部と、アミノカプロン酸44質量部と、亜リン酸0.59質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、シリンダ温度260℃、金型温度80℃とした。
実施例2
 実施例1と同様にしてセルロース繊維の含有量が3質量%の水分散液を調整し、このセルロース繊維の水分散液70質量部と、ε-カプロラクタム100質量部とを、均一な溶液となるまでさらにミキサーで攪拌、混合した。続いて、この混合溶液を攪拌しながら240℃に加熱し、徐々に水蒸気を放出しつつ、0kgf/cmから7kgf/cmの圧力まで昇圧した。そののち大気圧まで放圧し、240℃で1時間重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
実施例3
 実施例1と同様にしてセルロース繊維の含有量が3質量%の水分散液を調整し、このセルロース繊維の水分散液70質量部と、ナイロン66塩100質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を230℃で攪拌しながら、内圧が15kgf/cmになるまで加熱した。その圧力に到達後、徐々に水蒸気を放出しつつ、加熱を続けてその圧力を保持した。280℃に達した時点で、常圧まで放圧し、さらに1時間重合を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、シリンダ温度290℃、金型温度80℃とした。
実施例4
 実施例1と同様にしてセルロース繊維の含有量が1.3質量%の水分散液を調整した。このセルロース繊維の水分散液210質量部と、アミノウンデカン酸140質量部と、亜リン酸0.14質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、200℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットをそのまま試験片の成形に供した。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、シリンダ温度210℃、金型温度80℃とした。
実施例5
 実施例1と同様にしてセルロース繊維の含有量が3質量%の水分散液を調整し、このセルロース繊維の水分散液70質量部と、12-アミノドデカン酸100質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、200℃まで温度を上げ、230℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットをそのまま試験片の成形に供した。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、シリンダ温度210℃、金型温度80℃とした。
実施例6
 セルロース繊維の水分散液として、セリッシュKY100S(ダイセルファインケム社製:平均繊維径が140nmのセルロース繊維が25質量%含有されたもの)を使用した。このセルロース繊維の水分散液98質量部と、ε-カプロラクタム216質量部と、アミノカプロン酸44質量部と、亜リン酸0.59質量部と、精製水157質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
実施例7
 セルロース繊維の水分散液として、セリッシュKY100S(ダイセルファインケム社製:平均繊維径が140nmのセルロース繊維が25質量%含有されたもの)を使用した。このセルロース繊維の水分散液160質量部と、ε-カプロラクタム170質量部と、アミノカプロン酸30質量部と、亜リン酸0.35質量部と、精製水150質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
製造例1:バクテリアセルロースの製造
 0.5質量%グルコース、0.5質量%ポリペプトン、0.5質量%酵母エキス、0.1質量%硫酸マグネシウム7水和物からなる組成の培地50mlを、200ml容三角フラスコに分注し、オートクレーブで120℃、20分間蒸気滅菌した。これに試験管斜面寒天培地で生育させたGluconacetobacter xylinus (NBRC 16670)を1白金耳接種し、30℃で7日間静置培養した。7日後、培養液の上層に白色のゲル膜状のバクテリアセルロースが生成した。
実施例8
 セルロース繊維として製造例1で得られたバクテリアセルロースを使用した。バクテリアセルロースをミキサーで破砕後、水で浸漬、洗浄を繰り返すことにより、水置換を行った。水置換後のバクテリアセルロースの水分散液(平均繊維径が60nmのバクテリアセルロースが4.1質量%含有されたもの)31質量部と、ε-カプロラクタム216質量部と、アミノカプロン酸44質量部と、亜リン酸0.5質量部と、精製水50質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
実施例9
 実施例8と同様にして得た水置換後のバクテリアセルロースの水分散液(平均繊維径が60nmのバクテリアセルロースが6.5質量%含有されたもの)35質量部と、ε-カプロラクタム194質量部と、アミノカプロン酸40質量部と、亜リン酸0.5質量部と、精製水90質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
 得られた試験片から凍結ウルトラミクロトームで厚さ100nmの切片を採取し、OsOで切片染色を実施後、透過型電子顕微鏡(日本電子社製JEM-1230)観察を行い、樹脂組成物の断面を撮影した電子顕微鏡写真を図1に示す。
実施例10
 実施例8と同様にして得た水置換後のバクテリアセルロースの水分散液(平均繊維径が60nmのバクテリアセルロースが4.1質量%含有されたもの)71質量部と、ε-カプロラクタム162質量部と、アミノカプロン酸33質量部と、亜リン酸0.38質量部と、精製水20質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
実施例11
 不織布の製造工程において屑糸として出されたセルロース繊維の集合体に、精製水を加えてミキサーで攪拌し、平均繊維径が120nmのセルロース繊維が3質量%含有された水分散液を調整した。
 このセルロース繊維の水分散液170質量部と、ε-カプロラクタム216質量部と、アミノカプロン酸44質量部と、亜リン酸0.59質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
実施例12
 実施例11と同様のセルロース繊維が3質量%含有された水分散液を用い、このセルロース繊維の水分散液85質量部と、ε-カプロラクタム216質量部と、アミノカプロン酸44質量部と、亜リン酸0.59質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
製造例2:微細化セルロースの製造
 セルロース(定性ろ紙No.1)2gを、0.025gの2,2,6,6-テトラメチル-1-ピペリジン-N-オキシル(TEMPO)と0.25gの臭化ナトリウムとを溶解した水100mlに分散させた。その後、13重量%次亜塩素酸ナトリウム水溶液を、1gのパルプに対して次亜塩素酸ナトリウムの量が4.3mmolとなるように加えた。pHスタットでpHが10.5になるように水酸化ナトリウム水溶液を加え、pHが変化しなくなるところで反応を停止した。内容物を遠心分離法により水で4回洗浄し、家庭用ミキサーで30分間解繊を行った。得られたセルロース繊維の平均繊維径は110nmであった。
実施例13
 製造例2で得られたセルロース繊維が1.6質量%含有された水分散液を用い、このセルロース繊維の水分散液95質量部と、ε-カプロラクタム131質量部と、アミノカプロン酸26質量部と、亜リン酸0.3質量部とを、均一な溶液となるまでミキサーで攪拌、混合した。続いて、この混合溶液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
実施例14
 不織布の製造工程において屑糸として出されたセルロース繊維の集合体に、精製水を加えてミキサーで攪拌し、平均繊維径が3240nmのセルロース繊維が6質量%含有された水分散液を調整した。
 このセルロース繊維の水分散液を使用した以外は、実施例11と同様にして重合反応を行い、ペレットを得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
実施例15
 実施例14と同様のセルロース繊維が6質量%含有された水分散液を用いた以外は、実施例3と同様にして重合反応を行い、ペレットを得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例3と同様であった。
実施例16
 不織布の製造工程において屑糸として出されたセルロース繊維の集合体に、精製水を加えてミキサーで攪拌し、平均繊維径が3240nmのセルロース繊維が2.6質量%含有された水分散液を調整した。
 このセルロース繊維の水分散液を使用した以外は、実施例4と同様にして重合反応を行い、ペレットを得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例4と同様であった。
実施例17
 実施例14と同様のセルロース繊維が6質量%含有された水分散液を用いた以外は、実施例5と同様にして重合反応を行い、ペレットを得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例5と同様であった。
比較例1
 セルロース繊維の水分散液を加えなかった以外は実施例1と同様にしてポリアミド樹脂組成物を得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
比較例2
 セルロース繊維の水分散液を加えなかった以外は実施例3と同様にしてポリアミド樹脂組成物を得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例3と同様であった。
比較例3
 セルロース繊維の水分散液を加えなかった以外は実施例4と同様にしてポリアミド樹脂組成物を得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例4と同様であった。
比較例4
 セルロース繊維の水分散液を加えなかった以外は実施例5と同様にしてポリアミド樹脂組成物を得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例5と同様であった。
比較例5
 セルロース繊維としてコットンの短繊維(平均繊維径16μm)を使用した以外は、実施例1と同様にしてポリアミド樹脂組成物を得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
比較例6
 セルロース繊維として、比較例5と同様のコットンの短繊維(平均繊維径16μm)を使用した以外は、実施例3と同様にしてポリアミド樹脂組成物を得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例3と同様であった。
比較例7
 セルロース繊維として、比較例5と同様のコットンの短繊維(平均繊維径16μm)を使用した以外は、実施例4と同様にしてポリアミド樹脂組成物を得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例4と同様であった。
比較例8
 セルロース繊維として、比較例5と同様のコットンの短繊維(平均繊維径16μm)を使用した以外は、実施例5と同様にしてポリアミド樹脂組成物を得た。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例5と同様であった。
比較例9
 セルロース繊維の水分散液の量を588質量部に変更した以外は、実施例6と同様にして重合反応を行ったところ、攪拌できず、重合が困難であった。
比較例10
 セルロース繊維として、セリッシュKY100G(ダイセルファインケム社製:平均繊維径が125nmのセルロース繊維が10質量%含有されたもの)を凍結乾燥後、粉砕処理を施し、粉末状セルロースとしたものを使用した。
 ナイロン6(ユニチカ社製BRL 数平均分子量17000)100質量部に対して、得られた粉末状セルロース2質量部をブレンドし、スクリュー径が30mm、平均溝深さが2.5mmの二軸押出機(池貝社製PCM-30)に供給し、バレル温度240℃、スクリュー回転数120rpm、滞留時間2.7分にて溶融混練した。溶融混練で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットをそのまま成形し、各種物性測定を行った。なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、実施例1と同様であった。
 実施例9と同様にして、比較例10で得られた樹脂組成物の断面を撮影した電子顕微鏡写真を図2に示す。このとき、比較例10で得られた試験片は目視で数mmの凝集物が散見された。目視で凝集物が確認されない部分について断面を撮影したものが図2である。
比較例11
 ナイロン6に代えて、ナイロン66(ユニチカ社製マラニールA125 数平均分子量18000)を用いた以外は、比較例10と同様にして溶融混練を行って樹脂組成物を得、ペレットとした。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、シリンダ温度270℃、金型温度80℃とした。
比較例12
 ナイロン6に代えて、ナイロン11(アルケマ社RILSAN BMN 数平均分子量15000)を用いた以外は、比較例10と同様にして溶融混練を行って樹脂組成物を得、ペレットとした。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、シリンダ温度210℃、金型温度80℃とした。
比較例13
 ナイロン6に代えて、ナイロン12(アルケマ社RILSAN AMN 数平均分子量15000)を用いた以外は、比較例10と同様にして溶融混練を行って樹脂組成物を得、ペレットとした。
 なお、曲げ強度等の測定に使用する試験片を得る際の射出成形条件は、シリンダ温度200℃、金型温度80℃とした。
 実施例1~17、比較例1~13で得られたポリアミド樹脂組成物の特性値を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~17で得られたポリアミド樹脂組成物は、繊維径が10μm以下のセルロース繊維の水分散液とポリアミド樹脂を構成するモノマーを混合し、重合反応を行うことにより得られたものであったため、ポリアミド樹脂中に微細なセルロース繊維が凝集することなく均一に分散されたものであった。このような分散状態は図1よりも明らかである。すなわち、図1は、実施例9で得られたポリアミド樹脂組成物の断面を撮影した電子顕微鏡写真であり、その楕円で囲まれた領域に示されているように、セルロース繊維同士は凝集することなく分散している。
 このため、実施例1~17で得られたポリアミド樹脂組成物は、いずれも曲げ弾性率、引張り弾性率、曲げ強度、引張降伏強度ともに高く、さらに、MD方向の線膨張係数は低く、機械的特性に優れたものであった。さらには、熱変形温度が高く耐熱性にも優れていた。
 一方、比較例1~4で得られたポリアミド樹脂組成物は、セルロース繊維を含有していないものであったため、実施例1~5のポリアミド樹脂組成物と比較して、曲げ弾性率、曲げ強度、引張り弾性率、引張降伏強度、熱変形温度のいずれも低く、線膨張係数は高い値を示しており、機械的特性、耐熱性ともに劣るものであった。比較例5~8で得られたポリアミド樹脂組成物は、繊維径が10μmを超えるセルロース繊維を用いて重合反応を行ったものであり、得られたポリアミド樹脂組成物は、平均繊維径が10μmを超えるセルロース繊維が含有されたものであったため、実施例1~5のポリアミド樹脂組成物と比較して、曲げ弾性率、曲げ強度、引張り弾性率、引張降伏強度、熱変形温度のいずれも低く、線膨張係数は高い値を示しており、機械的特性、耐熱性ともに劣るものであった。比較例9では、セルロース繊維の含有量が多すぎたため、重合反応時に攪拌が困難となり、樹脂組成物を得ることができなかった。比較例10~13で得られたポリアミド樹脂組成物は、本発明の製造法ではない溶融混練法で得られたものであったため、溶融混練する工程において、セルロース繊維の分散性が悪く、セルロース繊維の凝集が生じた。この状態は、目視では凝集物が確認されない部分においても、樹脂組成物中にセルロース繊維の凝集が生じているものであり、たとえば、比較例10で得られた樹脂組成物の断面を撮影した図2の電子顕微鏡写真においては、セルロース繊維の凝集物が、写真中央部から左にかけて白く大きく示されている。このため、比較例10~13で得られたポリアミド樹脂組成物は、平均繊維径が大きいセルロース繊維が含有されたものとなり、実施例1~5で得られた樹脂組成物(セルロース繊維を同量含有するもの)と比較して、曲げ弾性率、曲げ強度、引張り弾性率、引張降伏強度、熱変形温度のいずれも低く、線膨張係数は高い値を示しており、機械的特性、耐熱性ともに劣るものであった。
 

Claims (11)

  1.  ポリアミド樹脂100質量部に対して、平均繊維径が10μm以下のセルロース繊維0.01~50質量部を含有することを特徴とするポリアミド樹脂組成物。
  2.  ポリアミド樹脂を構成するモノマーと、平均繊維径が10μm以下のセルロース繊維の水分散液とを混合し、重合反応を行うことにより得られたものである、請求項1記載のポリアミド樹脂組成物。
  3.  荷重1.8MPa時の熱変形温度が50℃以上である、請求項1記載のポリアミド樹脂組成物。
  4.  MD方向における線膨張係数(20~150℃の領域での平均値を算出するもの)が120×10-6(1/℃)以下である、請求項1記載のポリアミド樹脂組成物。
  5.  荷重1.8MPa時の熱変形温度が50℃以上であり、MD方向における線膨張係数(20~150℃の領域での平均値を算出するもの)が120×10-6(1/℃)以下である、請求項1記載のポリアミド樹脂組成物。
  6.  荷重1.8MPa時の熱変形温度が65℃以上である、請求項1記載のポリアミド樹脂組成物。
  7.  MD方向における線膨張係数(20~150℃の領域での平均値を算出するもの)が80×10-6(1/℃)以下である、請求項1記載のポリアミド樹脂組成物。
  8.  荷重1.8MPa時の熱変形温度が65℃以上であり、MD方向における線膨張係数(20~150℃の領域での平均値を算出するもの)が80×10-6(1/℃)以下である、請求項1記載のポリアミド樹脂組成物。
  9.  ポリアミド樹脂がナイロン11又はナイロン12である、請求項1~5のいずれかに記載のポリアミド樹脂組成物。
  10.  ポリアミド樹脂がナイロン6又はナイロン66である、請求項1、2、6~8のいずれかに記載のポリアミド樹脂組成物。
  11.  請求項1~10のいずれかに記載のポリアミド樹脂組成物を製造するための方法であって、ポリアミド樹脂を構成するモノマーと、平均繊維径が10μm以下のセルロース繊維の水分散液とを混合し、重合反応を行うことを特徴とするポリアミド樹脂組成物の製造法。
     
PCT/JP2011/058678 2010-04-06 2011-04-06 ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法 WO2011126038A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11765938.3A EP2557124B1 (en) 2010-04-06 2011-04-06 Polyamide resin composition and method for producing polyamide resin composition
JP2012509681A JP5885658B2 (ja) 2010-04-06 2011-04-06 ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法
CA2795068A CA2795068C (en) 2010-04-06 2011-04-06 Polyamide resin composition and method for producing polyamide resin composition
US13/637,453 US8883885B2 (en) 2010-04-06 2011-04-06 Polyamide resin composition and method for producing polyamide resin composition
CN201180014366.9A CN102803385B (zh) 2010-04-06 2011-04-06 聚酰胺树脂组合物和聚酰胺树脂组合物的制造法
KR1020127023039A KR101812986B1 (ko) 2010-04-06 2011-04-06 폴리아미드 수지 조성물 및 폴리아미드 수지 조성물의 제조법
HK13105703.2A HK1177946A1 (en) 2010-04-06 2013-05-14 Polyamide resin composition and method for producing polyamide resin composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010088164 2010-04-06
JP2010-088164 2010-04-06
JP2010217104 2010-09-28
JP2010-217104 2010-09-28
JP2011-034598 2011-02-21
JP2011034598 2011-02-21

Publications (1)

Publication Number Publication Date
WO2011126038A1 true WO2011126038A1 (ja) 2011-10-13

Family

ID=44762972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058678 WO2011126038A1 (ja) 2010-04-06 2011-04-06 ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法

Country Status (8)

Country Link
US (1) US8883885B2 (ja)
EP (1) EP2557124B1 (ja)
JP (1) JP5885658B2 (ja)
KR (1) KR101812986B1 (ja)
CN (1) CN102803385B (ja)
CA (1) CA2795068C (ja)
HK (1) HK1177946A1 (ja)
WO (1) WO2011126038A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189574A (ja) * 2012-03-14 2013-09-26 Fuji Xerox Co Ltd 樹脂組成物および樹脂成形体
JP2013249341A (ja) * 2012-05-30 2013-12-12 Sumitomo Seika Chem Co Ltd 繊維複合材料およびその製造方法
WO2014068790A1 (ja) * 2012-11-05 2014-05-08 京都市 ファスニング部品及びファスニング部品の製造方法
JP2014105217A (ja) * 2012-11-22 2014-06-09 Sekisui Chem Co Ltd 複合樹脂組成物及び複合樹脂組成物の製造方法
JP2014136745A (ja) * 2013-01-17 2014-07-28 Unitika Ltd ポリアミド樹脂成形体
JP2015000934A (ja) * 2013-06-14 2015-01-05 花王株式会社 樹脂組成物及びその製造方法
JP2015051631A (ja) * 2013-08-08 2015-03-19 ユニチカ株式会社 射出成形体およびその製造方法
JP2016014117A (ja) * 2014-07-03 2016-01-28 ユニチカ株式会社 シート状成形体
WO2016129693A1 (ja) * 2015-02-12 2016-08-18 国立大学法人京都大学 多糖類のナノファイバー、分散媒及びモノマーを含む分散体、並びにその分散体から得られる樹脂組成物
JP2016153470A (ja) * 2015-02-12 2016-08-25 国立大学法人京都大学 多糖類のナノファイバー、分散媒及びモノマーを含む分散体、並びにその分散体から得られる樹脂組成物
WO2016140240A1 (ja) * 2015-03-03 2016-09-09 ユニチカ株式会社 ポリアミド樹脂組成物
JPWO2014171430A1 (ja) * 2013-04-17 2017-02-23 ユニチカ株式会社 発泡成形体
WO2018012643A1 (ja) * 2016-07-15 2018-01-18 スターライト工業株式会社 樹脂組成物およびその製造方法
WO2019172444A1 (ja) * 2018-03-08 2019-09-12 古河電気工業株式会社 光ファイバテープ心線及び光ファイバケーブル
JP2019183072A (ja) * 2018-04-16 2019-10-24 旭化成株式会社 ポリアミド樹脂組成物
JP2020015813A (ja) * 2018-07-25 2020-01-30 ユニチカ株式会社 ポリアミド樹脂組成物
WO2020022153A1 (ja) * 2018-07-23 2020-01-30 ユニチカ株式会社 難燃性樹脂組成物およびその製造方法
JP2020029488A (ja) * 2018-08-21 2020-02-27 旭化成株式会社 高靭性ポリアミド−セルロース樹脂組成物
JP2020105507A (ja) * 2018-12-26 2020-07-09 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなる成形体
JP2020122165A (ja) * 2020-05-12 2020-08-13 旭化成株式会社 ポリアミド樹脂組成物
JP2020152925A (ja) * 2020-06-26 2020-09-24 旭化成株式会社 セルロース含有樹脂組成物
JP6886219B1 (ja) * 2019-10-30 2021-06-16 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなる成形体
JP2021169623A (ja) * 2020-01-15 2021-10-28 旭化成株式会社 微細セルロース含有樹脂組成物
WO2022075249A1 (ja) * 2020-10-06 2022-04-14 ユニチカ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法
JP2022171674A (ja) * 2017-11-16 2022-11-11 ユニチカ株式会社 摺動部材
US11566118B2 (en) 2016-02-18 2023-01-31 Starlite Co., Ltd. Nanofiber dispersion, method of producing nanofiber dispersion, powdery nanofibers obtainable from the dispersion, resin composition containing the powdery nanofibers ad molding material for 3D printer using the resin composition
US11572447B2 (en) 2019-05-28 2023-02-07 Asahi Kasei Kabushiki Kaisha Resin molded body production method
JP7294715B1 (ja) 2022-04-01 2023-06-20 ユニチカ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6419276B1 (ja) * 2016-12-28 2018-11-07 旭化成株式会社 セルロース含有樹脂組成物
JP7130256B2 (ja) * 2017-10-31 2022-09-05 ユニチカ株式会社 熱溶解積層法3dプリンターの造形材料用樹脂組成物およびそのフィラメント状成形体
IT201800002998A1 (it) * 2018-02-23 2019-08-23 Composite Res S R L Pannello a struttura stratificata
KR20220046155A (ko) * 2020-10-07 2022-04-14 현대자동차주식회사 유리 장섬유 강화 열가소성 수지 조성물 및 이를 포함하는 성형품
KR102485472B1 (ko) * 2021-04-27 2023-01-05 정우석 레토르트 식품 공정용 컨테이너

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251461A (ja) * 1987-04-08 1988-10-18 Toyota Central Res & Dev Lab Inc ナイロン複合材料およびその製造方法
JPH09505329A (ja) 1993-09-24 1997-05-27 カラー プラスチック ヘミー アルベルト シユレベルガー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 繊維含有プラスチック、その製法、繊維含有顆粒、繊維含有ポリマーコンパウンド
JP2002527536A (ja) 1998-10-09 2002-08-27 レヨニヤー,インク. セルロースパルプ繊維を含む複合材およびその作成ならびに使用の方法
JP2003171409A (ja) * 2001-12-05 2003-06-20 Asahi Kasei Corp 有機−無機複合材料の製造方法
JP2006241450A (ja) * 2005-02-07 2006-09-14 Kyoto Univ 繊維強化複合材料及びその製造方法並びに繊維強化複合材料製造用前駆体
WO2007034905A1 (ja) * 2005-09-22 2007-03-29 Fujitsu Limited 植物系樹脂含有組成物及びそれを用いた植物系樹脂含有成形体
WO2008050568A1 (fr) * 2006-10-23 2008-05-02 Sony Corporation Composition de résine, article façonné et procédé de fabrication de celui-ci, et équipement électronique
JP2009091484A (ja) * 2007-10-10 2009-04-30 Hitachi Ltd 樹脂組成物、その製造方法、樹脂成形体及び自動車の車体部品
JP2010077248A (ja) * 2008-09-25 2010-04-08 Teijin Ltd 微細修飾セルロース含有芳香族ポリアミドコンポジット

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4365966A (en) * 1981-09-15 1982-12-28 The United States Of America As Represented By The Secretary Of Agriculture Process for modifying cellulosic fabrics for improved heat transfer printing
FR2716887B1 (fr) * 1994-03-01 1996-04-26 Atochem Elf Sa Polymères renforcés de microfibrilles de cellulose, latex, poudres, films, joncs correspondants, et leurs applications.
EP0683210B1 (en) * 1994-05-20 1999-08-25 Ube Industries, Ltd. Resin composite containing polyamide matrix and polyolefin grains dispersed therein
ATE295444T1 (de) * 2000-07-05 2005-05-15 Univ Bologna Chemische oberflächenmodifizierung von naturfasern
WO2006082964A1 (ja) * 2005-02-07 2006-08-10 Kyoto University 繊維強化複合材料及びその製造方法並びに繊維強化複合材料製造用前駆体
CN101291993A (zh) * 2005-09-22 2008-10-22 富士通株式会社 含植物类树脂的组合物以及使用该组合物的含植物类树脂的成型体
CN101297000B (zh) 2005-10-26 2011-07-27 罗姆股份有限公司 纤维增强复合树脂组合物以及粘合剂和密封剂
BRPI0602097B1 (pt) * 2006-05-25 2017-04-04 Ge Plastic South America Ltda processo de confecção de compósitos de poliamidas com fibras naturais e compósitos de poliamidas com fibras naturais
CN101528853A (zh) * 2006-10-23 2009-09-09 索尼株式会社 树脂组合物、成形制品及其制造方法,以及电子装置
JP2009155772A (ja) * 2007-12-27 2009-07-16 Mitsubishi Chemicals Corp 微細セルロース繊維の製造方法
FR2938847B1 (fr) * 2008-11-21 2013-01-11 Arkema France Compositions de polyamide et de renforts bioressources a proprietes mecaniques ameliorees
US8377564B2 (en) * 2009-08-19 2013-02-19 Johns Manville Cellulosic composite
CN102575099B (zh) * 2009-09-14 2014-05-07 三菱瓦斯化学株式会社 聚酰胺树脂组合物
KR101063227B1 (ko) * 2009-10-12 2011-09-07 현대자동차주식회사 나일론-4 복합재료 조성물
CN102884128A (zh) * 2010-02-18 2013-01-16 Fp创新研究中心 基于纳米晶纤维素(ncc)的热塑性纳米复合材料
JP5765331B2 (ja) * 2010-03-09 2015-08-19 凸版印刷株式会社 微細セルロース繊維分散液およびその製造方法、セルロースフィルムならびに積層体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251461A (ja) * 1987-04-08 1988-10-18 Toyota Central Res & Dev Lab Inc ナイロン複合材料およびその製造方法
JPH09505329A (ja) 1993-09-24 1997-05-27 カラー プラスチック ヘミー アルベルト シユレベルガー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 繊維含有プラスチック、その製法、繊維含有顆粒、繊維含有ポリマーコンパウンド
JP2002527536A (ja) 1998-10-09 2002-08-27 レヨニヤー,インク. セルロースパルプ繊維を含む複合材およびその作成ならびに使用の方法
JP2003171409A (ja) * 2001-12-05 2003-06-20 Asahi Kasei Corp 有機−無機複合材料の製造方法
JP2006241450A (ja) * 2005-02-07 2006-09-14 Kyoto Univ 繊維強化複合材料及びその製造方法並びに繊維強化複合材料製造用前駆体
WO2007034905A1 (ja) * 2005-09-22 2007-03-29 Fujitsu Limited 植物系樹脂含有組成物及びそれを用いた植物系樹脂含有成形体
WO2008050568A1 (fr) * 2006-10-23 2008-05-02 Sony Corporation Composition de résine, article façonné et procédé de fabrication de celui-ci, et équipement électronique
JP2009091484A (ja) * 2007-10-10 2009-04-30 Hitachi Ltd 樹脂組成物、その製造方法、樹脂成形体及び自動車の車体部品
JP2010077248A (ja) * 2008-09-25 2010-04-08 Teijin Ltd 微細修飾セルロース含有芳香族ポリアミドコンポジット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CELLULOSE, vol. 5, 1998, pages 153 - 164

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189574A (ja) * 2012-03-14 2013-09-26 Fuji Xerox Co Ltd 樹脂組成物および樹脂成形体
JP2013249341A (ja) * 2012-05-30 2013-12-12 Sumitomo Seika Chem Co Ltd 繊維複合材料およびその製造方法
JPWO2014068790A1 (ja) * 2012-11-05 2016-09-08 地方独立行政法人京都市産業技術研究所 ファスニング部品及びファスニング部品の製造方法
WO2014068790A1 (ja) * 2012-11-05 2014-05-08 京都市 ファスニング部品及びファスニング部品の製造方法
CN104812263B (zh) * 2012-11-05 2017-11-10 地方独立行政法人京都市产业技术研究所 紧固部件及紧固部件的制造方法
CN104812263A (zh) * 2012-11-05 2015-07-29 地方独立行政法人京都市产业技术研究所 紧固部件及紧固部件的制造方法
US9505915B2 (en) 2012-11-05 2016-11-29 Kyoto Municipal Institute Of Industrial Technology And Culture Fastening component and method for manufacturing the fastening component
JP2014105217A (ja) * 2012-11-22 2014-06-09 Sekisui Chem Co Ltd 複合樹脂組成物及び複合樹脂組成物の製造方法
JP2014136745A (ja) * 2013-01-17 2014-07-28 Unitika Ltd ポリアミド樹脂成形体
JPWO2014171430A1 (ja) * 2013-04-17 2017-02-23 ユニチカ株式会社 発泡成形体
JP2015000934A (ja) * 2013-06-14 2015-01-05 花王株式会社 樹脂組成物及びその製造方法
JP2015051631A (ja) * 2013-08-08 2015-03-19 ユニチカ株式会社 射出成形体およびその製造方法
JP2016014117A (ja) * 2014-07-03 2016-01-28 ユニチカ株式会社 シート状成形体
JP2016153470A (ja) * 2015-02-12 2016-08-25 国立大学法人京都大学 多糖類のナノファイバー、分散媒及びモノマーを含む分散体、並びにその分散体から得られる樹脂組成物
WO2016129693A1 (ja) * 2015-02-12 2016-08-18 国立大学法人京都大学 多糖類のナノファイバー、分散媒及びモノマーを含む分散体、並びにその分散体から得られる樹脂組成物
WO2016140240A1 (ja) * 2015-03-03 2016-09-09 ユニチカ株式会社 ポリアミド樹脂組成物
KR20170125841A (ko) * 2015-03-03 2017-11-15 유니띠까 가부시키가이샤 폴리아미드 수지 조성물
US10221312B2 (en) 2015-03-03 2019-03-05 Unitika Ltd. Polyamide resin composition
KR102448315B1 (ko) 2015-03-03 2022-09-29 유니띠까 가부시키가이샤 폴리아미드 수지 조성물
US11566118B2 (en) 2016-02-18 2023-01-31 Starlite Co., Ltd. Nanofiber dispersion, method of producing nanofiber dispersion, powdery nanofibers obtainable from the dispersion, resin composition containing the powdery nanofibers ad molding material for 3D printer using the resin composition
WO2018012643A1 (ja) * 2016-07-15 2018-01-18 スターライト工業株式会社 樹脂組成物およびその製造方法
JPWO2018012643A1 (ja) * 2016-07-15 2019-04-25 スターライト工業株式会社 樹脂組成物およびその製造方法
JP7120011B2 (ja) 2016-07-15 2022-08-17 スターライト工業株式会社 樹脂組成物およびその製造方法
JP7425509B2 (ja) 2017-11-16 2024-01-31 ユニチカ株式会社 摺動部材
JP2022171674A (ja) * 2017-11-16 2022-11-11 ユニチカ株式会社 摺動部材
WO2019172444A1 (ja) * 2018-03-08 2019-09-12 古河電気工業株式会社 光ファイバテープ心線及び光ファイバケーブル
JPWO2019172444A1 (ja) * 2018-03-08 2021-03-11 古河電気工業株式会社 光ファイバテープ心線及び光ファイバケーブル
JP7152558B2 (ja) 2018-04-16 2022-10-12 旭化成株式会社 ポリアミド樹脂組成物
JP2021120468A (ja) * 2018-04-16 2021-08-19 旭化成株式会社 ポリアミド樹脂組成物
JP2019183072A (ja) * 2018-04-16 2019-10-24 旭化成株式会社 ポリアミド樹脂組成物
JP7344566B2 (ja) 2018-07-23 2023-09-14 ユニチカ株式会社 難燃性樹脂組成物およびその製造方法
JPWO2020022153A1 (ja) * 2018-07-23 2021-08-05 ユニチカ株式会社 難燃性樹脂組成物およびその製造方法
WO2020022153A1 (ja) * 2018-07-23 2020-01-30 ユニチカ株式会社 難燃性樹脂組成物およびその製造方法
CN112437792A (zh) * 2018-07-23 2021-03-02 尤尼吉可株式会社 阻燃性树脂组合物及其制造方法
JP2020015813A (ja) * 2018-07-25 2020-01-30 ユニチカ株式会社 ポリアミド樹脂組成物
JP7164861B2 (ja) 2018-07-25 2022-11-02 ユニチカ株式会社 ポリアミド樹脂組成物
JP2020029488A (ja) * 2018-08-21 2020-02-27 旭化成株式会社 高靭性ポリアミド−セルロース樹脂組成物
JP7398095B2 (ja) 2018-12-26 2023-12-14 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなる成形体
JP2020105507A (ja) * 2018-12-26 2020-07-09 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなる成形体
US11572447B2 (en) 2019-05-28 2023-02-07 Asahi Kasei Kabushiki Kaisha Resin molded body production method
JP6886219B1 (ja) * 2019-10-30 2021-06-16 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなる成形体
JP2021169623A (ja) * 2020-01-15 2021-10-28 旭化成株式会社 微細セルロース含有樹脂組成物
JP7129445B2 (ja) 2020-05-12 2022-09-01 旭化成株式会社 ポリアミド樹脂組成物
JP2020122165A (ja) * 2020-05-12 2020-08-13 旭化成株式会社 ポリアミド樹脂組成物
JP7447235B2 (ja) 2020-06-26 2024-03-11 旭化成株式会社 セルロース含有樹脂組成物
JP2023024787A (ja) * 2020-06-26 2023-02-16 旭化成株式会社 セルロース含有樹脂組成物
JP2020152925A (ja) * 2020-06-26 2020-09-24 旭化成株式会社 セルロース含有樹脂組成物
JP7203791B2 (ja) 2020-06-26 2023-01-13 旭化成株式会社 セルロース含有樹脂組成物
WO2022075249A1 (ja) * 2020-10-06 2022-04-14 ユニチカ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法
JP7294715B1 (ja) 2022-04-01 2023-06-20 ユニチカ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法
WO2023190039A1 (ja) * 2022-04-01 2023-10-05 ユニチカ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法
JP2023152040A (ja) * 2022-04-01 2023-10-16 ユニチカ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法

Also Published As

Publication number Publication date
EP2557124A4 (en) 2014-06-25
HK1177946A1 (en) 2013-08-30
EP2557124B1 (en) 2018-06-06
US8883885B2 (en) 2014-11-11
CN102803385B (zh) 2015-07-22
CA2795068C (en) 2018-08-21
KR20130024885A (ko) 2013-03-08
JP5885658B2 (ja) 2016-03-15
JPWO2011126038A1 (ja) 2013-07-11
KR101812986B1 (ko) 2017-12-28
EP2557124A1 (en) 2013-02-13
US20130030090A1 (en) 2013-01-31
CA2795068A1 (en) 2011-10-13
CN102803385A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5885658B2 (ja) ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法
JP2013079334A (ja) ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法
JP6026064B1 (ja) ポリアミド樹脂組成物
KR101834283B1 (ko) 폴리락트산 및 수용성 폴리머의 배합물
JP2014136745A (ja) ポリアミド樹脂成形体
AU2015369929A1 (en) Polymeric blend containing poly alpha-1,3-glucan
JP6351574B2 (ja) 発泡成形体
JP5469322B2 (ja) 環境配慮型熱可塑性樹脂組成物
JP5279415B2 (ja) 樹脂組成物およびそれを用いた成形体
CN111278624B (zh) 热熔层压法3d打印机的造型材料用树脂组合物及其丝状成型体
JP5926024B2 (ja) ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法
JP2014105234A (ja) ポリ乳酸系樹脂組成物
JP2018103387A (ja) 表面にメッキ層を有した成形体
KR20110056037A (ko) 생분해성 abs 복합재 및 이를 포함하는 충격강도가 우수한 자동차 내장재
CN111286164B (zh) 一种生物降解塑料及其制备方法
JP2023016029A (ja) ポリアミド樹脂組成物及びその製造法
KR101013446B1 (ko) 셀룰로오스 유도체 및 화학섬유를 포함하는 생분해성 수지 조성물
JP6482203B2 (ja) 射出成形体の製造方法
JP2020015813A (ja) ポリアミド樹脂組成物
WO2023190039A1 (ja) ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法
JP2023013994A (ja) 筐体
JP2016014117A (ja) シート状成形体
JP2024113443A (ja) 環境への負荷が小さいポリアミド樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014366.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509681

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127023039

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13637453

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2795068

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011765938

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1201005297

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE