JP2014136745A - ポリアミド樹脂成形体 - Google Patents

ポリアミド樹脂成形体 Download PDF

Info

Publication number
JP2014136745A
JP2014136745A JP2013005833A JP2013005833A JP2014136745A JP 2014136745 A JP2014136745 A JP 2014136745A JP 2013005833 A JP2013005833 A JP 2013005833A JP 2013005833 A JP2013005833 A JP 2013005833A JP 2014136745 A JP2014136745 A JP 2014136745A
Authority
JP
Japan
Prior art keywords
cellulose
polyamide resin
resin composition
cellulose fibers
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013005833A
Other languages
English (en)
Inventor
Yoshio Nakai
美穂 中井
Keisuke Kimura
圭助 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2013005833A priority Critical patent/JP2014136745A/ja
Publication of JP2014136745A publication Critical patent/JP2014136745A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】ポリアミド樹脂中にセルロース繊維が凝集することなく均一に分散され、機械的特性や熱的特性が向上したポリアミド樹脂成形体を提供する。
【解決手段】ポリアミド樹脂100質量部に対して、平均繊維径が10μm以下のセルロース繊維0.01〜50質量部を含有する樹脂組成物であって、水を含んだ状態のセルロース繊維の存在下に、ポリアミド樹脂を構成するモノマーの重合反応を行うことにより得られた樹脂組成物を成形してなることを特徴とするポリアミド樹脂成形体。
【選択図】なし

Description

本発明は、機械的特性、熱的特性が向上したポリアミド樹脂成形体に関するものである。
ポリアミド樹脂にガラス繊維、炭素繊維、タルク、クレイなどの無機充填剤を配合して強化した樹脂組成物を用いて、多くの成形体が成形されている。しかしこれらの強化材は、多量に配合しないと成形体の機械的特性や熱的特性が改善しないという問題点や、比重が高いために、得られる成形体の質量が大きくなるという問題点があった。
また、強化材としてガラス繊維、炭素繊維等を用いた場合、得られた成形体は、そりが大きくなるという問題点があった。また、強化材としてタルク、クレイ等を用いた場合は、得られた成形体を廃棄する際、これら強化材は、焼却残渣として残存するため、土中に埋設処理され、半永久的に地中に残留するという問題点があった。
近年、樹脂材料の強化材としてセルロースが用いられている。セルロースには、樹木から得られるものや、稲、綿、ケナフ、麻などの非木材資源から得られるものや、微生物が生産するバクテリアセルロースなどがあり、セルロースは地球上に非常に多量に存在する。セルロースは機械的特性に優れており、これを樹脂中に含有させることにより、樹脂組成物の特性、すなわち成形体の特性を向上させる効果が期待される。
熱可塑性樹脂中にセルロースを含有させる方法としては、樹脂とセルロースとを溶融混合する方法が一般的である。しかしながら、この方法ではセルロースが凝集した状態のまま樹脂中に混合され、セルロースが均一に分散された樹脂組成物を得ることはできない。このため、樹脂組成物の特性を十分に向上させることができない。
例えば、特許文献1には、熱可塑性プラスチック内にセルロースパルプ繊維を含む複合材が開示されており、熱可塑性プラスチックとしてポリアミド樹脂も記載されている。この発明においては、セルロースパルプ繊維をポリマー材料と混合しやすくするために、回転ナイフカッター等を用いて粒状とすることも記載されている。しかしながら、特許文献1には、粒状とすることにより繊維長が短くなると、セルロースパルプ繊維を添加することによる強化力は低下すると記載され、したがって、セルロースパルプ繊維の平均長は0.1〜6mmが好ましいことが記載されている。
さらに、引用文献1記載の発明では、セルロースパルプ繊維を熱可塑性プラスチック中に多量に混合しており、実施例においてはセルロースパルプ繊維を30質量%もの多量に添加している。
そして、引用文献1記載の発明では、セルロースパルプ繊維をポリマー材料と混合する際には、セルロースパルプ繊維を乾燥させた後、溶融混合を行っている。
以上のことから、引用文献1記載の発明では、セルロースパルプ繊維の凝集の問題は解決されておらず、また、セルロースパルプ繊維の添加量が多量のため、射出成形時において230〜240℃の温度となると、セルロースの分解による着色の問題も生じていた。
また、特許文献2には、プラスチック100重量部にセルロース繊維0.01〜20重量部を含有する熱可塑性プラスチックが記載されている。そしてセルロース繊維は、ビスコース繊維であり、50μm〜5mmの繊維長さ又は1〜500μmの繊維直径を有するものが好ましいことが記載されている。特許文献2記載の発明においては、特許文献1記載の発明よりもセルロース繊維の含有量が少量ではあるが、セルロース繊維の繊維長や繊維直径は大きいものであり、また、セルロース繊維を含有させる方法として、溶融混合する方法が示されているのみである。
したがって、特許文献2記載の発明においても、上記したようなセルロース繊維の凝集の問題は解決されていなかった。
特表2002−527536号公報 特表平9−505329号公報
本発明は、上記の問題点を解決するものであり、ポリアミド樹脂中にセルロース繊維が凝集することなく均一に分散され、機械的特性や熱的特性が向上したポリアミド樹脂組成物を成形してなる成形体を提供することを目的とするものである。
本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、本発明に到達した。
すなわち、本発明の要旨は、下記の通りである。
(1)ポリアミド樹脂100質量部に対して、平均繊維径が10μm以下のセルロース繊維0.01〜50質量部を含有する樹脂組成物であって、水を含んだ状態のセルロース繊維の存在下に、ポリアミド樹脂を構成するモノマーの重合反応を行うことにより得られた樹脂組成物を成形してなることを特徴とするポリアミド樹脂成形体。
(2)成形体が、車両のエンジンカバーもしくはモーターカバーまたは電子電気機器の筺体であることを特徴とする(1)記載のポリアミド樹脂成形体。
本発明のポリアミド樹脂成形体は、平均繊維径が10μm以下のセルロース繊維を含有し、樹脂組成物中に該セルロース繊維が凝集することなく均一に分散された樹脂組成物を成形したものであるため、強度、弾性率等の機械的特性や耐熱性、線膨張係数等の熱的特性が向上したものである。本発明のポリアミド樹脂成形体は、射出成形、押出成形、発泡成形等の成形法により得ることが可能であり、車両のエンジンやモーターのカバー、電子電気機器の筺体などの、機械的特性や熱的特性が要求される用途に使用することが可能である。
実施例3で得られた試験片の断面の電子顕微鏡写真。 比較例3で得られた試験片の断面の電子顕微鏡写真。 本発明の電子電気機器の筐体の一例を示す平面図。
以下、本発明を詳細に説明する。
本発明で用いるポリアミド樹脂は、アミノ酸、ラクタムあるいはジアミンとジカルボン酸とから形成されるアミド結合を有する重合体をいうものである。
このようなポリアミド樹脂を形成するモノマーの例として、アミノ酸としては、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸などが挙げられる。
ラクタムとしては、ε−カプロラクタム、ω−ラウロラクタムなどが挙げられる。
ジアミンとしては、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−/2,4,4−トリメチルヘキサメチレンジアミン、5−メチルノナメチレンジアミン、2,4−ジメチルオクタメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、3,8−ビス(アミノメチル)トリシクロデカン、ビス(4−アミノシクロヘキシル)メタン、ビス(3−メチル−4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどが挙げられる。
ジカルボン酸としてはアジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、ジグリコール酸などが挙げられる。
より具体的には、本発明で用いるポリアミド樹脂としては、ポリカプロアミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカメチレンアジパミド(ナイロン116)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリトリメチルヘキサメチレンテレフタルアミド(ナイロンTMHT)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリヘキサメチレンテレフタル/イソフタルアミド(ナイロン6T/6I)、ポリビス(4−アミノシクロヘキシル)メタンドデカミド(ナイロンPACM12)、ポリビス(3−メチル−4−アミノシクロヘキシル)メタンドデカミド(ナイロンジメチルPACM12)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)、ポリウンデカメチレンテレフタルアミド(ナイロン11T)、ポリウンデカメチレンヘキサヒドロテレフタルアミド(ナイロン11T(H))が挙げられ、これらの共重合体や混合物であってもよい。中でも特に好ましいポリアミド樹脂は、ナイロン6、ナイロン66、ナイロン11、ナイロン12、およびこれらの共重合体や混合物である。
本発明における樹脂組成物は、上記したようなポリアミド樹脂とセルロース繊維を含有するものである。本発明で用いられるセルロース繊維としては、木材、稲、綿、麻、ケナフなどに由来するものの他にバクテリアセルロース、バロニアセルロース、ホヤセルロースなど生物由来のものも含まれる。また、再生セルロース、セルロース誘導体なども含まれる。
本発明における樹脂組成物は、セルロース繊維を含有することによって、強度、弾性率等の機械的特性や耐熱性、線膨張係数等の熱的特性が向上したものとなる。樹脂組成物の機械的特性や熱的特性を十分に向上させるには、セルロース繊維を凝集させることなく、樹脂中に均一に分散させることが必要である。そのためにはポリアミド樹脂に対するセルロース繊維の分散性や、ポリアミド樹脂とセルロース繊維の親和性が重要である。また、セルロース繊維が有する水酸基などの性質をできるだけ発揮させるためには、セルロース繊維の表面積を増やすことが重要である。このため、できるだけ微細化されたセルロース繊維を使用することが必要となる。
したがって、本発明においては、セルロース繊維として、平均繊維径が10μm以下のものを用いることが必要であり、中でも平均繊維径は500nm以下であることが好ましく、さらには、300nm以下であることが好ましく、より好ましくは100nm以下である。平均繊維径が10μmを超えるセルロース繊維では、セルロース繊維の表面積を増やすことができず、ポリアミド樹脂や、ポリアミド樹脂を形成するモノマーに対する分散性や親和性を向上させることが困難となる。平均繊維径の下限は特に限定するものではないが、セルロース繊維の生産性を考慮すると4nm以上とすることが好ましい。
このような平均繊維径が10μm以下のセルロース繊維(以下、セルロース繊維(A)と称することがある)としては、セルロース繊維を引き裂くことによってミクロフィブリル化したものが好ましい。ミクロフィブリル化する手段としては、ボールミル、石臼粉砕機、高圧ホモジナイザー、ミキサーなど各種粉砕装置を使用することができる。セルロース繊維(A)としては、市販されているものとして、例えば、ダイセルファインケム社製の「セリッシュ」を用いることができる。
また、セルロース繊維(A)として、セルロース繊維を使用した繊維製品の製造工程において、屑糸として出されたセルロース繊維の集合体を使用することもできる。繊維製品の製造工程とは紡績時、織布時、不織布製造時、そのほか繊維製品の加工時などが挙げられる。これらのセルロース繊維の集合体は、セルロース繊維がこれらの工程を経た後に屑糸となったものであるため、セルロース繊維が微細化したものとなっている。
また、セルロース繊維(A)として、バクテリアが産出するバクテリアセルロースを使用することもでき、例えば、アセトバクター族の酢酸菌を生産菌として産出されたものを使用することができる。植物のセルロースは、セルロースの分子鎖が収束したもので、非常に細いミクロフィブリルが束になって形成されているものであるのに対し、酢酸菌より産出されたセルロースはもともと幅20〜50nmのリボン状であり、植物のセルロースと比較すると極めて細い網目状を形成している。
また、セルロース繊維(A)として、N−オキシル化合物の存在下にセルロース繊維を酸化させた後に、水洗、物理的解繊工程を経ることにより得られる、微細化されたセルロース繊維を使用してもよい。
N−オキシル化合物としては各種あるが、たとえばCellulose(1998)5,153−164に示されているような2,2,6,6−Tetramethylpiperidine−1−oxyl radical(以下TEMPOと記す)などが好ましい。このような化合物を触媒量の範囲で反応水溶液に添加する。
この水溶液に共酸化剤として次亜塩素酸ナトリウムや亜塩素酸ナトリウムを加え、臭化アルカリ金属を加えることにより反応を進行させる。水酸化ナトリウム水溶液などのアルカリ性の化合物を添加してpHを10付近に保持し、pHの変化が見られなくなるまで反応を継続する。反応温度は室温で構わない。反応後、系内に残存するN−オキシル化合物を除去することが好ましい。洗浄はろ過、遠心分離など各種方法を採用することができる。
その後、上記したような各種粉砕装置を用い、物理的な解繊工程を経ることで微細化されたセルロース繊維(A)を得ることができる。
本発明において、樹脂組成物中に含有されているセルロース繊維の平均繊維径の測定方法は以下のとおりである。凍結ウルトラミクロトームを用いて樹脂組成物(または樹脂組成物からなる成形体)から厚さ100nmの切片を採取し、OsO(四酸化オスミウム)で切片染色を実施後、透過型電子顕微鏡(日本電子社製JEM−1230)を用いて観察を行う。電子顕微鏡画像からセルロース繊維(単繊維)の長手方向に対する垂直方向の長さを測定する。このとき、垂直方向の長さのうち最大のものを繊維径とする。同様にして10本のセルロース繊維(単繊維)の繊維径を測定し、10本の平均値を算出したものを平均繊維径とする。
なお、セルロース繊維の繊維径が大きいものについては、ミクロトームにて10μmの切片を切り出したものか、樹脂組成物(または樹脂組成物からなる成形体)をそのままの状態で、実体顕微鏡(OLYMPUS SZ−40)を用いて観察を行い、得られた画像から上記と同様にして繊維径を測定し、平均繊維径を求める。
また、本発明における樹脂組成物中に含有されているセルロース繊維の長さは、上記のようにして平均繊維径を測定する際に求めることができ、電子顕微鏡画像におけるセルロース繊維(単繊維)の長手方向の長さをいう。そして、繊維径と同様に、10本のセルロース繊維(単繊維)の長さを測定し、10本の平均値を算出したものを平均繊維長とする。
本発明におけるセルロース繊維は、上記した平均繊維径と平均繊維長との比であるアスペクト比(平均繊維長/平均繊維径)が10以上であることが好ましく、中でも50以上、さらには100以上であることが好ましい。アスペクト比が10以上であることにより、ポリアミド樹脂組成物の機械的特性が向上しやすく、より強度が高く、線膨張係数が低いものとすることができる。
なお、本発明における樹脂組成物は、後述するような製造法において得ることにより、セルロース繊維(A)がアスペクト比100以上のものであっても、樹脂中に均一に分散させることが可能となる。
そして、本発明における樹脂組成物中のセルロース繊維(A)の含有量は、ポリアミド樹脂100質量部に対して、0.01〜50質量部であることが必要であり、中でも0.05〜30質量部であることが好ましく、さらには0.1〜20質量部であることが好ましく、より好ましくは0.1〜10質量部である。セルロース繊維(A)の含有量がポリアミド樹脂100質量部に対して0.01質量部未満である場合は、上記したようなセルロース繊維(A)を含有する効果、すなわち機械的特性や熱的特性を向上する効果を奏することができない。一方、セルロース繊維(A)の含有量がポリアミド樹脂100質量部に対して50質量部を超える場合は、セルロース繊維(A)を樹脂組成物中に含有させることが困難となったり、得られた樹脂組成物を射出成形等の成形時に高温で熱処理すると変色が生じることとなる。
本発明における樹脂組成物を、後述するような製造法で得ることにより、セルロース繊維(A)の含有量が少量であっても、それがポリアミド樹脂中に均一に分散されるので、ポリアミド樹脂組成物には、十分な機械的特性や熱的特性の向上効果が得られる。つまり、セルロース繊維(A)の含有量が、ポリアミド樹脂100質量部に対して0.01〜10質量部の範囲のものであっても、ポリアミド樹脂組成物は、強度が高く、弾性率が高く、機械的特性に優れるとともに、耐熱性が高く、線膨張係数が低く、熱的特性にも優れたものとなる。
以上のようなポリアミド樹脂とセルロース繊維(A)を含有する樹脂組成物は、数平均分子量が1万〜10万であることが好ましい。数平均分子量が1万未満である場合には、樹脂組成物の機械的特性が低くなるので好ましくない。一方、数平均分子量が10万を超える場合には、樹脂組成物の成形性が急速に低下するので好ましくない。なお、数平均分子量は、示差屈折率検出器を備えたゲル浸透クロマトグラフィ(GPC)装置を用い、ヘキサフルオロイソプロパノールを溶出液として40℃でPMMA換算にて求める値である。
セルロース繊維は水との親和性が非常に高く、平均繊維径が小さいほど水に対して良好な分散状態を保つことができる。また、水を失うと水素結合により強固にセルロース繊維同士が凝集し、一旦凝集すると凝集前と同様の分散状態をとることが困難となる。特にセルロース繊維の平均繊維径が小さくなるほどこの傾向が顕著となる。
したがって、セルロース繊維は水を含んだ状態でポリアミド樹脂と複合化することが好ましい。
そこで、本発明においては、ポリアミド樹脂の重合時に、水を含んだ状態のセルロース繊維を存在させ、重合反応を行うことにより、セルロース繊維(A)を含有する樹脂組成物を得る方法が採られる。このような製造法により、セルロース繊維(A)が凝集することなく均一に分散した樹脂組成物を得ることが可能となり、特に機械的特性と熱的特性が向上した樹脂組成物とすることができる。この製造法の詳細については、後述する。
本発明における樹脂組成物は熱的特性に優れる。熱的特性を示す指標として、熱変形温度(耐熱性)や線膨張係数がある。
本発明における樹脂組成物は、荷重1.8MPa時の熱変形温度が50℃以上であることが好ましく、中でも60℃以上、さらには70℃以上であることが好ましい。荷重1.8MPa時の熱変形温度が50℃未満であると、十分な耐熱性を有しておらず、様々な用途に使用することが困難となる。
荷重1.8MPa時の熱変形温度は、ポリアミド樹脂としてナイロン6やナイロン66を用いた場合は、65℃以上であることが好ましく、中でも70℃以上で、さらには80℃以上であることが好ましい。また、ナイロン11やナイロン12を用いた場合は、50℃以上であることが好ましく、中でも55℃以上であることが好ましい。
また、本発明における樹脂組成物は、荷重0.45MPa時の熱変形温度が148℃以上であることが好ましく、中でも155℃以上、さらには180℃以上であることが好ましい。荷重0.45MPa時の熱変形温度が148℃未満であると、十分な耐熱性を有しておらず、様々な用途に使用することが困難となる。
荷重0.45MPa時の熱変形温度は、ポリアミド樹脂としてナイロン6やナイロン66を用いた場合は、180℃以上であることが好ましく、中でも190℃以上であることが好ましい。また、ナイロン11やナイロン12を用いた場合は、148℃以上であることが好ましく、中でも150℃以上であることが好ましい。
なお、本発明における熱変形温度は、後述する曲げ強度、曲げ弾性率を測定する際に作製する試験片と同様のものを用い、ASTM D648に基づいて測定するものである。このとき、荷重は1.8MPaと0.45MPaで測定する。
本発明における樹脂組成物は、MD方向における線膨張係数が、120×10−6(1/℃)以下であることが好ましく、中でも100×10−6(1/℃)以下であることが好ましく、さらには80×10−6(1/℃)以下であることが好ましい。MD方向における線膨張係数が、120×10−6(1/℃)を超えると、寸法安定性に劣るものとなりやすく、様々な用途に用いることが困難となる。
MD方向における線膨張係数は、ポリアミド樹脂としてナイロン6やナイロン66を用いた場合は、80×10−6(1/℃)以下であることが好ましく、中でも70×10−6(1/℃)以下であることが好ましく、さらには50×10−6(1/℃)以下であることが好ましい。ポリアミド樹脂としてナイロン11やナイロン12を用いた場合は、MD方向における線膨張係数は120×10−6(1/℃)以下であることが好ましく、中でも110×10−6(1/℃)以下であることが好ましい。
なお、本発明における線膨張係数は、後述する曲げ強度、曲げ弾性率を測定する際に作製する試験片から所定の大きさに切り出したものを用い、JIS K7197に基づいて測定するものであり、20〜150℃の領域での平均値を算出する。また、成形時の樹脂の流れ方向をMD方向、流れと垂直な方向をTD方向とする。
本発明における樹脂組成物は機械的特性にも優れる。機械的特性を示す指標として、強度や弾性率がある。
本発明における樹脂組成物は、曲げ強度が65MPa以上であることが好ましく、中でも70MPa以上、さらには100MPa以上であることが好ましい。また、引張降伏強度が40MPa以上であることが好ましく、中でも45MPa以上、さらには70MPa以上であることが好ましい。
曲げ強度が65MPa未満であったり、引張降伏強度が40MPa未満であると、十分な強度を有しておらず、様々な用途に使用することが困難となる。
本発明における樹脂組成物において、ポリアミド樹脂としてナイロン6やナイロン66を用いた場合は、曲げ強度は120MPa以上であることが好ましく、中でも130MPa以上であることが好ましく、さらには140MPa以上であることが好ましい。引張降伏強度は、70MPa以上であることが好ましく、中でも75MPa以上であることが好ましく、さらには80MPa以上であることが好ましい。
ポリアミド樹脂としてナイロン11やナイロン12を用いた場合は、曲げ強度は65MPa以上であることが好ましく、中でも70MPa以上であることが好ましい。引張降伏強度は40MPa以上であることが好ましく、中でも45MPa以上であることが好ましい。
さらに、本発明における樹脂組成物は、曲げ弾性率が1.8GPa以上であることが好ましく、中でも2.5GPa以上であることが好ましく、さらには3.0GPa以上であることが好ましい。そして、引張り弾性率が1.4GPa以上であることが好ましく、中でも2.0GPa以上であることが好ましく、さらには2.2GPa以上であることが好ましい。
曲げ弾性率が1.8GPa未満であったり、引張り弾性率が1.4GPa未満であると、柔軟性に乏しく、剛性が強くなりすぎるため、曲げ強度や引張降伏強度が上記の範囲内のものであったとしても、汎用性に乏しく、実用上好ましくない。
本発明における樹脂組成物において、ポリアミド樹脂としてナイロン6やナイロン66を用いた場合は、曲げ弾性率は2.5GPa以上であることが好ましく、中でも3.0GPa以上であることが好ましく、さらには3.3GPa以上であることが好ましい。引張り弾性率は、2.0GPa以上であることが好ましく、中でも2.2GPa以上であることが好ましく、さらには2.4GPa以上であることが好ましい。
ポリアミド樹脂としてナイロン11やナイロン12を用いた場合は、曲げ弾性率は1.8GPa以上であることが好ましく、中でも2.0GPa以上であることが好ましい。引張り弾性率は、1.4GPa以上であることが好ましく、さらには1.5GPa以上であることが好ましい。
なお、本発明における曲げ強度、引張降伏強度、曲げ弾性率、引張り弾性率は、以下のような射出成形条件によって得た試験片を用い、ASTM D790に基づき、23℃で測定を行うものである。
(射出成形条件)
ポリアミド樹脂組成物を、射出成形機(東芝機械社製、IS−80G型)を用い、ASTM規格の1/8インチ3点曲げ試験片用金型を用いて成形を行い、長さ×幅×厚さ=127mm(5インチ)×12.7mm(1/2インチ)×3.2mm(1/8インチ)の試験片を得る。
次に、本発明における樹脂組成物の製造法について説明する。
本発明における樹脂組成物の製造法は、平均繊維径が10μm以下であり、水を含んだ状態のセルロース繊維の存在下に、ポリアミド樹脂を構成するモノマーの重合反応を行うものであり、たとえば、ポリアミド樹脂を構成するモノマーと、平均繊維径が10μm以下のセルロース繊維の水分散液とを混合し、重合反応を行うものである。そして、この製造法におけるセルロース繊維の水分散液は、このような平均繊維径が10μm以下のセルロース繊維を水に分散させたものであり、水分散液中のセルロース繊維の含有量は0.01〜50質量%とすることが好ましい。このような水分散液は、精製水とセルロース繊維とをミキサー等で攪拌することにより得ることができる。
そして、セルロース繊維の水分散液と、ポリアミド樹脂を構成するモノマーとを混合し、ミキサー等で攪拌することにより均一な分散液とする。その後、分散液を加熱し、150〜270℃まで昇温させて攪拌することにより重合反応させる。このとき、分散液を加熱する際に徐々に水蒸気を排出することにより、セルロース繊維の水分散液中の水分を排出することができる。なお、上記ポリアミド重合時においては、必要に応じてリン酸や亜リン酸などの触媒を添加してもよい。そして、重合反応終了後は、得られた樹脂組成物を払い出した後、切断してペレットとすることが好ましい。
また、セルロース繊維としてバクテリアセルロースを用いる場合においては、セルロース繊維の水分散液として、バクテリアセルロースを精製水に浸して溶媒置換したものを使用してもよい。バクテリアセルロースの溶媒置換したものを用いる際には、溶媒置換後、所定の濃度に調整した後、ポリアミド樹脂を構成するモノマーと混合し、上記と同様に重合反応を進行させることが好ましい。
このような製造法では、平均繊維径が10μm以下のセルロース繊維を用い、かつセルロース繊維を水分散液のまま重合反応に供することで、分散性が良好な状態で重合反応に供されることとなる。さらに、重合反応に供されたセルロース繊維は、重合反応中のモノマーや水との相互作用により、また上記のような温度条件で攪拌することにより、分散性が向上し、繊維同士が凝集することがなく、平均繊維径が小さいセルロース繊維が良好に分散した樹脂組成物を得ることが可能となる。このように、この製造法によれば、セルロース繊維の分散性が向上するため、重合反応前に添加したセルロース繊維の平均繊維径よりも、重合反応終了後に樹脂組成物中に含有されているセルロース繊維のほうが、平均繊維径や繊維長が小さいものとなることもある。
また、この製造法では、セルロース繊維を乾燥させる工程が不要となり、微細なセルロース繊維の飛散が生じる工程を経ずに製造が可能であるため、操業性よくポリアミド樹脂組成物を得ることが可能となる。またモノマーとセルロースを均一に分散させる目的として水を有機溶媒に置換する必要がないため、ハンドリングに優れるとともに製造工程中において化学物質の排出を抑制することが可能となる。
なお、上記製造法に用いられる、重合反応前のセルロース繊維の平均繊維径の測定方法は以下のとおりである。まず、必要に応じて凍結乾燥したセルロース繊維は電界放射型走査型電子顕微鏡(日立製作所社製S−4000)を用いて観察する。電子顕微鏡(SEM)画像からセルロース繊維(単繊維)の長手方向に対する垂直方向の長さを測定する。このとき、垂直方向の長さのうち最大のものを繊維径とする。同様にして10本のセルロース繊維(単繊維)の繊維径を測定し、10本の平均値を算出したものを平均繊維径とする。
本発明における樹脂組成物中には、その特性を大きく損なわない限りにおいて、顔料、熱安定剤、酸化防止剤、耐候剤、可塑剤、滑剤、離型剤、帯電防止剤、耐衝撃剤、難燃剤、相溶化剤などが含有されていてもよい。
また、本発明における樹脂組成物中には、その特性を大きく損なわない限りにおいて、ポリアミド樹脂以外の他の重合体が含有されていてもよい。他の重合体としては、例えば、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスチレン、ポリメチル(メタ)アクリレート、ポリ(アクリロニトリル−ブタジエン−スチレン)共重合体、液晶ポリマー、ポリアセタールなどが挙げられる。
本発明のポリアミド樹脂成形体は、上記樹脂組成物を用いて成形されたものである。成形方法としては特に限定されるものではなく、射出成形、ブロー成形、押出成形、発泡成形等の成形方法が挙げられる。そして、本発明のポリアミド樹脂成形体としては、上記樹脂組成物を射出成形してなる成形体、あるいは、押出し成形してなるフィルム、シート、および、これらフィルム、シートから加工してなる成形体、あるいは、ブロー成形してなる中空体、および、この中空体から加工してなる成形体、溶融紡糸して得られる繊維などが挙げられる。
本発明のポリアミド樹脂成形体は、機械的特性や熱的特性が向上した上記樹脂組成物から成形されるので、機械的特性や熱的特性が要求される用途に適用することができる。例えば、車両のエンジンやモーターの周囲に設けられるエンジンカバーやモーターカバーに適用することができ、また電気電子機器の筺体にも適用することができる。エンジンやモーターが搭載された車両としては、自動車、二輪車、電動自転車などの道路上を自走するものの他、道路以外の農地、建設現場、工場などにおいて自走するものも挙げられる。また筺体に収納された電気電子機器としては、パソコン、携帯電話、音楽プレーヤー、カーナビゲーション、その他OA機器などが挙げられる。
その他、本発明のポリアミド樹脂成形体が適用される成形体としては、SMTコネクター、ICカードコネクター、光ファイバーコネクター等のコネクター類、マイクロスイッチ、コンデンサー、チップキャリア、コイル封止、トランジスター封止、ICソケット、スイッチ、リレー部品、キャパシターハウジング、サーミスタ、各種コイルボビン、FDDメインシャーシ、テープコーダーヘッドマウント、ステッピングモーター、軸受、シェーバ刃台、液晶プロジェクションTVランプハウジング、電子レンジ部品、電磁調理器コイルベース、ドライヤーノズル、スチームドライヤー部品、スチームアイロン部品、DVDピックアップベース、整流子基台、回路基板、IC、液晶冶具、フードカッター、DATシリンダーベース、コピー機用ギア、プリンタ定着ユニット部品、液晶パネル導光板、通信機器(アンテナ)、半導体封止、パワーモジュール、ヒューズホルダー、チップキャリヤー等の電化製品用樹脂部品;バンパーなどのボディ、インストルメントパネル、コンソールボックス、ガーニッシュ、ドアトリム、天井、フロア、ランプリフレクター、ブラッシホルダー、フュエルポンプモジュール部品、デストリビューター、シートリードバルブ、ワイパーモーターギア、スピードメーターフレーム、ソレノイドイグニッションコイル、オルタネーター、スイッチ、センサー部品、タイロットエンドスタビライザー、ECUケーブル、排ガスコントロールバルブ、コネクター、排気ブレーキの電磁弁、エンジンバルブ、ラジエータファン、スタータ、インジェクタ、エンジン周りのパネル等の自動車用樹脂部品をはじめ、コンテナーや栽培容器等の農業資材や農業機械用樹脂部品;ウォーターポンプインペラー、パイプ(半導体製造装置)、ゲーム機用コネクタ、エアコン用ドレインパン、生ごみ処理機内容器、掃除機モーターファンガイド、電子レンジ用ローラーステイ・リング、キャップスタンモーター軸受、街路灯、水中ポンプ、モーターインシュレータ、モーターブラシホルダー、ガスメーター、ブレーカー部品等の家電・工業用樹脂部品;浮きや水産加工品容器等の水産業務用樹脂部品;皿、コップ、スプーン等の食器や食品容器;注射器や点滴容器等の医療用樹脂部品;ドレーン材、フェンス、収納箱、工事用配電盤、給湯機器ポンプケーシング、インペラー、ジョイント、バルブ、水栓器具等の住宅・土木・建築材用樹脂部品;花壇用レンガ、植木鉢等の緑化材用樹脂部品;クーラーボックス、団扇、玩具等のレジャー・雑貨用樹脂部品;ボールペン、定規、クリップ等の文房具用樹脂部品;フィルムコンデンサ、FPD用離形フィルム、車載モーター絶縁フィルム等のフィルム;電気集塵用バグフィルター、モーター結束糸、製紙用カンバス、被服用心材、乾式不織布、フエルト等の繊維を製編織して得られる織編物や不織布等が挙げられる。
以下、本発明を実施例によりさらに具体的に説明する。なお、実施例中の各種の特性の測定法や評価法は以下のとおりである。
〔曲げ弾性率、曲げ強度〕
得られたポリアミド樹脂組成物(ペレット)を用い、前記の方法により測定した。
〔引張弾性率、引張降伏強度〕
得られたポリアミド樹脂組成物(ペレット)を用い、前記の方法により測定した。
〔熱変形温度(HDT)〕
得られたポリアミド樹脂組成物(ペレット)を用い、前記の方法により測定した。
〔線膨張係数〕
得られたポリアミド樹脂組成物(ペレット)を用い、前記の方法により測定した。
〔セルロース繊維の平均繊維径〕
得られたポリアミド樹脂組成物中のセルロース繊維の平均繊維径や、重合反応に供した重合反応前のセルロース繊維の平均繊維径は、前記の方法により測定し、算出した。
〔成形性〕
得られたポリアミド樹脂組成物(ペレット)を用い、エンジンカバー、筺体を射出成形した際の成形性について、それぞれ下記のように評価した。
○:流動性よく成形ができ、得られた成形体にヒケやバリがない。
△:成形時の流動性は少し低いが、得られた成形体にヒケやバリがない。
×:成形時の流動性が低いか、または得られた成形体にヒケやバリがある。
実施例1
セルロース繊維の水分散液として、セリッシュKY100G(ダイセルファインケム社製:平均繊維径が125nmのセルロース繊維が10質量%含有されたもの)を使用し、これに精製水を加えてミキサーで攪拌し、セルロース繊維の含有量が3質量%の水分散液を調製した。
このセルロース繊維の水分散液70質量部と、ε−カプロラクタム100質量部とを、均一な分散液となるまでさらにミキサーで攪拌、混合した。続いて、この混合分散液を攪拌しながら240℃に加熱し、徐々に水蒸気を放出しつつ、0kgf/cmから7kgf/cmの圧力まで昇圧した。そののち大気圧まで放圧し、240℃で1時間重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
得られた樹脂組成物を、シリンダー温度260℃、金型温度80℃、射出圧力60MPaの条件にて射出成形して、曲げ強度等の測定に使用する試験片を得た。
また、樹脂組成物を、シリンダー温度を260℃に設定した射出成形機(東芝機械社製、型番IS−100E)を用いて、金型温度80℃、射出圧力100MPaで、エンジンカバーを射出成形した。
さらに、樹脂組成物を、射出成形機(ファナック社製 AUTOSHOT 300D−2)に供給して、図3に示すようなノート型パソコンやワープロ等のOA機器の筐体1を作製した。筐体1は、A4サイズで、肉厚1.3mmの薄肉のパネル状とした。その際、シリンダー温度を260℃に設定し、射出圧力を100MPa、金型温度90℃とした。
実施例2
セルロース繊維の水分散液として、セリッシュKY100S(ダイセルファインケム社製:平均繊維径が140nmのセルロース繊維が25質量%含有されたもの)を使用した。このセルロース繊維の水分散液98質量部と、ε−カプロラクタム216質量部と、アミノカプロン酸44質量部と、精製水157質量部とを、均一な分散液となるまでミキサーで攪拌、混合した。続いて、この混合分散液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
得られた樹脂組成物を、実施例1と同様の条件にて射出成形して、試験片、エンジンカバーおよび筺体を得た。
製造例1:バクテリアセルロースの製造
0.5質量%グルコース、0.5質量%ポリペプトン、0.5質量%酵母エキス、0.1質量%硫酸マグネシウム7水和物からなる組成の培地50mlを、200ml容三角フラスコに分注し、オートクレーブで120℃、20分間蒸気滅菌した。これに試験管斜面寒天培地で生育させたGluconacetobacter xylinus (NBRC 16670)を1白金耳接種し、30℃で7日間静置培養した。7日後、培養液の上層に白色のゲル膜状のバクテリアセルロースが生成した。
実施例3
セルロース繊維として製造例1で得られたバクテリアセルロースを使用した。バクテリアセルロースをミキサーで破砕後、水で浸漬、洗浄を繰り返すことにより、水置換を行った。水置換後のバクテリアセルロースの水分散液(平均繊維径が60nmのバクテリアセルロースが6.5質量%含有されたもの)35質量部と、ε−カプロラクタム194質量部と、アミノカプロン酸40質量部と、精製水90質量部とを、均一な分散液となるまでミキサーで攪拌、混合した。続いて、この混合分散液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
得られた樹脂組成物を、実施例1と同様の条件にて射出成形して、試験片、エンジンカバーおよび筺体を得た。
得られた試験片から凍結ウルトラミクロトームで厚さ100nmの切片を採取し、OsOで切片染色を実施後、透過型電子顕微鏡(日本電子社製JEM−1230)観察を行い、試験片の断面を撮影した電子顕微鏡写真を図1に示す。
実施例4
不織布の製造工程において屑糸として出されたセルロース繊維の集合体に、精製水を加えてミキサーで攪拌し、平均繊維径が120nmのセルロース繊維が3質量%含有された水分散液を調製した。
このセルロース繊維の水分散液170質量部と、ε−カプロラクタム216質量部と、アミノカプロン酸44質量部とを、均一な分散液となるまでミキサーで攪拌、混合した。続いて、この混合分散液を徐々に加熱し、加熱の途中において水蒸気を排出しながら、240℃まで温度を上げ、240℃にて1時間攪拌し、重合反応を行った。重合が終了した時点で得られた樹脂組成物を払い出し、これを切断してペレットとした。得られたペレットを95℃の熱水で処理し、精練を行い、乾燥させた。
得られた樹脂組成物を、実施例1と同様の条件にて射出成形して、試験片、エンジンカバーおよび筺体を得た。
比較例1
セルロース繊維の水分散液を加えなかった以外は実施例1と同様にしてポリアミド樹脂組成物を得た。
得られた樹脂組成物を、実施例1と同様の条件にて射出成形して、試験片、エンジンカバーおよび筺体を得た。
比較例2
セルロース繊維としてコットンの短繊維(平均繊維径16μm)を使用した以外は、実施例1と同様にしてポリアミド樹脂組成物を得た。
得られた樹脂組成物を、実施例1と同様の条件にて射出成形して、試験片、エンジンカバーおよび筺体を得た。
比較例3
セルロース繊維として、セリッシュKY100G(ダイセルファインケム社製:平均繊維径が125nmのセルロース繊維が10質量%含有されたもの)を凍結乾燥後、粉砕処理を施し、粉末状セルロースとしたものを使用した。
ナイロン6(ユニチカ社製BRL 数平均分子量17000)100質量部に対して、得られた粉末状セルロース2質量部をブレンドし、スクリュー径が30mm、平均溝深さが2.5mmの二軸押出機(池貝社製PCM−30)に供給し、バレル温度240℃、スクリュー回転数120rpm、滞留時間2.7分にて溶融混練した。溶融混練で得られた樹脂組成物を払い出し、これを切断してペレットとした。
得られたペレットをそのまま実施例1と同様の条件にて射出成形して、試験片、エンジンカバーおよび筺体を得た。
実施例3と同様にして、比較例3で得られた試験片の断面を撮影した電子顕微鏡写真を図2に示す。このとき、比較例10で得られた試験片は目視で数mmの凝集物が散見された。目視で凝集物が確認されない部分について断面を撮影したものが図2である。
実施例1〜4、比較例1〜3で得られた樹脂組成物の特性値を測定した結果を表1に示す。
表1から明らかなように、実施例1〜4で得られた樹脂組成物は、繊維径が10μm以下のセルロース繊維の水分散液とポリアミド樹脂を構成するモノマーを混合し、重合反応を行うことにより得られたものであったため、ポリアミド樹脂中に微細なセルロース繊維が凝集することなく均一に分散されたものであった。このような分散状態は図1よりも明らかである。すなわち、図1は、実施例3で得られたポリアミド樹脂組成物の断面を撮影した電子顕微鏡写真であり、その楕円で囲まれた領域に示されているように、セルロース繊維同士は凝集することなく分散している。
このため、実施例1〜4で得られたエンジンカバーおよび筺体は、同時に得られた成形試験片の性能が優れていた(いずれも曲げ弾性率、引張り弾性率、曲げ強度、引張降伏強度ともに高く、機械的特性に優れており、さらには、熱変形温度が高く耐熱性にも優れ、さらに、MD方向の線膨張係数は低かった)ため、これらの性能を有するものとなり、またヒケやバリが生じることなく、外観に優れたものであった。さらに、成形時の樹脂の流動性がよく、成形性に優れていた。
一方、比較例1で得られた樹脂組成物は、セルロース繊維を含有していないものであったため、実施例1の樹脂組成物と比較して、曲げ弾性率、曲げ強度、引張り弾性率、引張降伏強度、熱変形温度のいずれも低く、線膨張係数は高い値を示しており、機械的特性、熱的特性ともに劣るものであった。比較例2で得られた樹脂組成物は、繊維径が10μmを超えるセルロース繊維を用いて重合反応を行ったものであり、得られたポリアミド樹脂組成物は、平均繊維径が10μmを超えるセルロース繊維が含有されたものであったため、実施例1の樹脂組成物と比較して、曲げ弾性率、曲げ強度、引張り弾性率、引張降伏強度、熱変形温度のいずれも低く、線膨張係数は高い値を示しており、機械的特性、熱的特性ともに劣るものであった。比較例3で得られた樹脂組成物は、溶融混練法で得られたものであったため、溶融混練する工程において、セルロース繊維の分散性が低く、セルロース繊維の凝集が生じた。この状態は、目視では凝集物が確認されない部分においても、樹脂組成物中にセルロース繊維の凝集が生じているものであり、この樹脂組成物の断面を撮影した図2の電子顕微鏡写真においては、セルロース繊維の凝集物が、写真中央部から左にかけて白く大きく示されている。このため、樹脂組成物は、平均繊維径が大きいセルロース繊維が含有されたものとなり、実施例1で得られた樹脂組成物(セルロース繊維を同量含有するもの)と比較して、曲げ弾性率、曲げ強度、引張り弾性率、引張降伏強度、熱変形温度のいずれも低く、線膨張係数は高い値を示しており、機械的特性、熱的特性ともに劣るものであった。
このため、比較例1〜3で得られたいずれのエンジンカバーおよび筺体も各種特性値に劣るものとなり、加えて、ヒケが目立ったり、ヒケ改善の成形条件でもバリが生じるなど、外観に劣るものであった。また、成形時の流動性が低く、成形性に劣るものであった。
1 電子電気機器の筺体

Claims (2)

  1. ポリアミド樹脂100質量部に対して、平均繊維径が10μm以下のセルロース繊維0.01〜50質量部を含有する樹脂組成物であって、水を含んだ状態のセルロース繊維の存在下に、ポリアミド樹脂を構成するモノマーの重合反応を行うことにより得られた樹脂組成物を成形してなることを特徴とするポリアミド樹脂成形体。
  2. 成形体が、車両のエンジンカバーもしくはモーターカバーまたは電子電気機器の筺体であることを特徴とする請求項1記載のポリアミド樹脂成形体。

JP2013005833A 2013-01-17 2013-01-17 ポリアミド樹脂成形体 Pending JP2014136745A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013005833A JP2014136745A (ja) 2013-01-17 2013-01-17 ポリアミド樹脂成形体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013005833A JP2014136745A (ja) 2013-01-17 2013-01-17 ポリアミド樹脂成形体

Publications (1)

Publication Number Publication Date
JP2014136745A true JP2014136745A (ja) 2014-07-28

Family

ID=51414461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013005833A Pending JP2014136745A (ja) 2013-01-17 2013-01-17 ポリアミド樹脂成形体

Country Status (1)

Country Link
JP (1) JP2014136745A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140240A1 (ja) * 2015-03-03 2016-09-09 ユニチカ株式会社 ポリアミド樹脂組成物
JP2018086038A (ja) * 2016-11-28 2018-06-07 日立アプライアンス株式会社 電気掃除機
WO2019098210A1 (ja) * 2017-11-16 2019-05-23 ユニチカ株式会社 摺動部材
JP2020108958A (ja) * 2018-04-23 2020-07-16 旭化成株式会社 セルロース含有ギヤ
JP2020132656A (ja) * 2019-02-12 2020-08-31 株式会社クラレ 繊維強化ポリアミド樹脂組成物及び成形品
JP2020196796A (ja) * 2019-05-31 2020-12-10 太陽ホールディングス株式会社 硬化性組成物、ドライフィルムまたはプリプレグ、硬化物、および電子部品
CN112437792A (zh) * 2018-07-23 2021-03-02 尤尼吉可株式会社 阻燃性树脂组合物及其制造方法
WO2022075249A1 (ja) * 2020-10-06 2022-04-14 ユニチカ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法
JP7294715B1 (ja) 2022-04-01 2023-06-20 ユニチカ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法
JP7477873B2 (ja) 2019-10-21 2024-05-02 ユニチカ株式会社 金属との接合用ポリアミド樹脂組成物およびその製造方法ならびに該ポリアミド樹脂組成物を含む成形体と金属からなる異種複合成形体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067817A (ja) * 2007-09-10 2009-04-02 Dai Ichi Kogyo Seiyaku Co Ltd 繊維強化複合材料およびその製造方法
WO2011126038A1 (ja) * 2010-04-06 2011-10-13 ユニチカ株式会社 ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067817A (ja) * 2007-09-10 2009-04-02 Dai Ichi Kogyo Seiyaku Co Ltd 繊維強化複合材料およびその製造方法
WO2011126038A1 (ja) * 2010-04-06 2011-10-13 ユニチカ株式会社 ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140240A1 (ja) * 2015-03-03 2016-09-09 ユニチカ株式会社 ポリアミド樹脂組成物
JP6026064B1 (ja) * 2015-03-03 2016-11-16 ユニチカ株式会社 ポリアミド樹脂組成物
CN107250273A (zh) * 2015-03-03 2017-10-13 尤尼吉可株式会社 聚酰胺树脂组合物
KR20170125841A (ko) * 2015-03-03 2017-11-15 유니띠까 가부시키가이샤 폴리아미드 수지 조성물
US10221312B2 (en) 2015-03-03 2019-03-05 Unitika Ltd. Polyamide resin composition
KR102448315B1 (ko) 2015-03-03 2022-09-29 유니띠까 가부시키가이샤 폴리아미드 수지 조성물
JP2018086038A (ja) * 2016-11-28 2018-06-07 日立アプライアンス株式会社 電気掃除機
WO2019098210A1 (ja) * 2017-11-16 2019-05-23 ユニチカ株式会社 摺動部材
CN111344353A (zh) * 2017-11-16 2020-06-26 尤尼吉可株式会社 滑动部件
JP7425509B2 (ja) 2017-11-16 2024-01-31 ユニチカ株式会社 摺動部材
JP7144866B2 (ja) 2017-11-16 2022-09-30 ユニチカ株式会社 樹脂組成物および該樹脂組成物を含む摺動部材
JPWO2019098210A1 (ja) * 2017-11-16 2020-11-19 ユニチカ株式会社 摺動部材
US11242913B2 (en) 2018-04-23 2022-02-08 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear
JP7201577B2 (ja) 2018-04-23 2023-01-10 旭化成株式会社 セルロース含有ギヤ
JP2021008635A (ja) * 2018-04-23 2021-01-28 旭化成株式会社 セルロース含有ギヤ
JP2020108958A (ja) * 2018-04-23 2020-07-16 旭化成株式会社 セルロース含有ギヤ
CN114369358A (zh) * 2018-04-23 2022-04-19 旭化成株式会社 含有纤维素的树脂组合物
EP4040018A1 (en) * 2018-04-23 2022-08-10 Asahi Kasei Kabushiki Kaisha A molded article
US11572931B2 (en) 2018-04-23 2023-02-07 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear
CN112437792A (zh) * 2018-07-23 2021-03-02 尤尼吉可株式会社 阻燃性树脂组合物及其制造方法
JP2020132656A (ja) * 2019-02-12 2020-08-31 株式会社クラレ 繊維強化ポリアミド樹脂組成物及び成形品
JP7300843B2 (ja) 2019-02-12 2023-06-30 株式会社クラレ 繊維強化ポリアミド樹脂組成物及び成形品
JP2020196796A (ja) * 2019-05-31 2020-12-10 太陽ホールディングス株式会社 硬化性組成物、ドライフィルムまたはプリプレグ、硬化物、および電子部品
JP7264728B2 (ja) 2019-05-31 2023-04-25 太陽ホールディングス株式会社 硬化性組成物、ドライフィルムまたはプリプレグ、硬化物、および電子部品
JP7477873B2 (ja) 2019-10-21 2024-05-02 ユニチカ株式会社 金属との接合用ポリアミド樹脂組成物およびその製造方法ならびに該ポリアミド樹脂組成物を含む成形体と金属からなる異種複合成形体
WO2022075249A1 (ja) * 2020-10-06 2022-04-14 ユニチカ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法
JP7294715B1 (ja) 2022-04-01 2023-06-20 ユニチカ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法
WO2023190039A1 (ja) * 2022-04-01 2023-10-05 ユニチカ株式会社 ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法

Similar Documents

Publication Publication Date Title
JP6026064B1 (ja) ポリアミド樹脂組成物
JP5885658B2 (ja) ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法
JP2014136745A (ja) ポリアミド樹脂成形体
JP2013079334A (ja) ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法
JP2007254567A (ja) 熱可塑性樹脂組成物およびその製造方法
CN111278624B (zh) 热熔层压法3d打印机的造型材料用树脂组合物及其丝状成型体
JP2018103387A (ja) 表面にメッキ層を有した成形体
JP2004035705A (ja) ポリアミド樹脂組成物、その製造方法及びそれからなる成形品
JP7398095B2 (ja) ポリアミド樹脂組成物およびそれからなる成形体
JP7236189B2 (ja) ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法
JP7164861B2 (ja) ポリアミド樹脂組成物
JP2008156604A (ja) 衝撃吸収部材用熱可塑性樹脂組成物およびその製造方法
JP5926024B2 (ja) ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法
JP2014105234A (ja) ポリ乳酸系樹脂組成物
JP7294715B1 (ja) ポリアミド樹脂組成物およびポリアミド樹脂組成物の製造方法
JP2007302744A (ja) ポリアミド樹脂組成物、及びポリアミド樹脂成形品
JP2023016029A (ja) ポリアミド樹脂組成物及びその製造法
JP2023013994A (ja) 筐体
JP2022162383A (ja) ポリアミド樹脂組成物およびそれからなる成形体
JP2015051631A (ja) 射出成形体およびその製造方法
JP2012072221A (ja) 熱可塑性樹脂組成物およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170425