WO2011090121A1 - 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法 - Google Patents

単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法 Download PDF

Info

Publication number
WO2011090121A1
WO2011090121A1 PCT/JP2011/050995 JP2011050995W WO2011090121A1 WO 2011090121 A1 WO2011090121 A1 WO 2011090121A1 JP 2011050995 W JP2011050995 W JP 2011050995W WO 2011090121 A1 WO2011090121 A1 WO 2011090121A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
monocyclic aromatic
zeolite
aromatic hydrocarbons
mass
Prior art date
Application number
PCT/JP2011/050995
Other languages
English (en)
French (fr)
Inventor
柳川 真一朗
小林 正英
和章 早坂
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to EP11734727.8A priority Critical patent/EP2527036A4/en
Priority to JP2011505307A priority patent/JP5919587B2/ja
Priority to US13/522,867 priority patent/US20130030232A1/en
Priority to BR112012018012A priority patent/BR112012018012A2/pt
Priority to CN201180014489.2A priority patent/CN102811814B/zh
Priority to KR1020127021322A priority patent/KR101790368B1/ko
Publication of WO2011090121A1 publication Critical patent/WO2011090121A1/ja
Priority to US14/801,089 priority patent/US10087376B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1051Kerosene having a boiling range of about 180 - 230 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • the present invention relates to a catalyst for producing monocyclic aromatic hydrocarbons and a method for producing monocyclic aromatic hydrocarbons for producing monocyclic aromatic hydrocarbons from oils rich in polycyclic aromatic hydrocarbons.
  • LCO Light cycle oil
  • a fluid catalytic cracker contains a large amount of polycyclic aromatic hydrocarbons and has been utilized as a light oil or heavy oil.
  • LCO can be used as a high-octane gasoline base material or petrochemical raw material, and high value-added monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms (for example, benzene, toluene, xylene, ethylbenzene, etc.) are obtained. It is being considered.
  • Patent Documents 1 to 3 propose a method for producing monocyclic aromatic hydrocarbons from polycyclic aromatic hydrocarbons contained in a large amount in LCO or the like using a zeolite catalyst.
  • Patent Document 4 discloses that a beta zeolite having a 12-membered ring skeleton structure and a large pore diameter is used as a catalyst, A method for producing monocyclic aromatic hydrocarbons from 9 or more aromatic compounds is disclosed.
  • Patent Document 5 discloses a method for producing monocyclic aromatic hydrocarbons from paraffinic hydrocarbons having 2 to 12 carbon atoms using beta zeolite as a catalyst.
  • Patent Documents 1 to 3 it cannot be said that the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms is sufficiently high.
  • the methods described in Patent Documents 4 and 5 are based on monocyclic aromatic carbonization having 6 to 8 carbon atoms from a feed oil having a 10% by volume distillation temperature of 140 ° C or higher and a 90% by volume distillation temperature of 380 ° C or lower. It is not a method for obtaining both hydrogen and aliphatic hydrocarbons having 3 to 4 carbon atoms.
  • the present invention relates to a catalyst for producing monocyclic aromatic hydrocarbons and monocyclic aromatic hydrocarbons capable of producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms in high yield from a raw material oil containing polycyclic aromatic hydrocarbons. It aims at providing the manufacturing method of.
  • the catalyst for producing monocyclic aromatic hydrocarbons of the present invention comprises a single oil having 6 to 8 carbon atoms from a feedstock having a 10% by volume distillation temperature of 140 ° C or higher and a 90% by volume distillation temperature of 380 ° C or lower.
  • a catalyst for producing a monocyclic aromatic hydrocarbon for producing a cyclic aromatic hydrocarbon comprising:
  • a catalyst for producing monocyclic aromatic hydrocarbons comprising a crystalline aluminosilicate comprising a large-pore zeolite having a 12-membered skeleton structure and a medium-pore zeolite having a 10-membered skeleton structure. is there.
  • the catalyst for producing monocyclic aromatic hydrocarbons of the present invention is a mass ratio of the large pore zeolite and the medium pore zeolite in the crystalline aluminosilicate (large pore zeolite / medium pore zeolite).
  • the catalyst for producing monocyclic aromatic hydrocarbons according to (1) is preferably 2/98 to 50/50.
  • the large pore zeolite is a single zeolite according to (1) or (2), wherein the zeolite is any one of BEA type, FAU type, and MOR type.
  • a catalyst for producing cyclic aromatic hydrocarbons is preferred.
  • the monocyclic aromatic hydrocarbon production catalyst of the present invention is the monocyclic aromatic hydrocarbon according to any one of (1) to (3), wherein the large pore zeolite is a BEA type zeolite. A production catalyst is preferred.
  • the monocyclic aromatic hydrocarbon production catalyst of the present invention is the monocyclic aromatic hydrocarbon according to any one of (1) to (4), wherein the medium pore zeolite is MFI type zeolite. A production catalyst is preferred.
  • the monocyclic aromatic hydrocarbon production catalyst of the present invention is preferably the hydrocarbon production catalyst according to any one of (1) to (5) containing phosphorus.
  • the method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to the present invention comprises a feed oil having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 380 ° C or lower, (1)
  • the method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to the present invention uses a cracked light oil produced by a fluid catalytic cracking apparatus as the raw material oil, and has 6 to 8 carbon atoms according to (7).
  • the production method of the monocyclic aromatic hydrocarbon is preferable.
  • the feed oil is brought into contact with the catalyst for producing monocyclic aromatic hydrocarbons in a fluidized bed reactor (7) or The method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms described in (8) is preferable.
  • the 10 vol% distillation temperature is 140 ° C. or higher and the 90 vol% distillation temperature is A monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms can be produced with high yield from a raw material oil having a temperature of 380 ° C. or lower.
  • the catalyst for producing monocyclic aromatic hydrocarbons of the present embodiment (hereinafter abbreviated as “catalyst”) is a monocyclic aromatic having 6 to 8 carbon atoms from a feedstock containing polycyclic aromatic hydrocarbons and saturated hydrocarbons. This is for producing hydrocarbons (hereinafter abbreviated as “monocyclic aromatic hydrocarbons”) and contains crystalline aluminosilicate.
  • the crystalline aluminosilicate contains a large pore zeolite having a 12-membered ring skeleton structure and a medium pore zeolite having a 10-membered ring skeleton structure.
  • the large pore zeolite having a 12-membered ring skeleton structure include, for example, AFI type, ATO type, BEA type, CON type, FAU type, GME type, LTL type, MOR type, MTW type, and OFF type crystal structures. Zeolite may be mentioned.
  • the BEA type, FAU type, and MOR type are preferable from the viewpoint of industrial use, and the BEA type is more preferable because the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms can be further increased.
  • the medium pore zeolite having a 10-membered skeleton structure include zeolites with crystal structures of AEL type, EUO type, FER type, HEU type, MEL type, MFI type, NES type, TON type, and WEI type. It is done.
  • the MFI type is preferable because the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms can be further increased.
  • the type of the crystal structure of the zeolite mentioned in the present embodiment is a structure code based on the definition of International Zeolite Association.
  • the crystalline aluminosilicate may contain, in addition to the large pore zeolite, a small pore zeolite having a skeleton structure of 10-membered ring or less and an ultra-large pore zeolite having a skeleton structure of 14-membered ring or more.
  • examples of the small pore zeolite include zeolites having crystal structures of ANA type, CHA type, ERI type, GIS type, KFI type, LTA type, NAT type, PAU type, and YUG type.
  • Examples of the ultra-large pore zeolite include zeolites having CLO type and VPI type crystal structures.
  • the content of the crystalline aluminosilicate is preferably 60 to 100% by mass, more preferably 70 to 100% by mass, and more preferably 90 to 100% by mass when the total catalyst is 100% by mass. % Is particularly preferred.
  • the content of the crystalline aluminosilicate is 60% by mass or more, the total yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and aliphatic hydrocarbons having 3 to 4 carbon atoms can be sufficiently increased.
  • the content of the crystalline aluminosilicate is preferably 20 to 60% by mass, more preferably 30 to 60% by mass, and more preferably 35 to 60% by mass when the total catalyst is 100% by mass.
  • the content of the crystalline aluminosilicate is 20% by mass or more, the total yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and aliphatic hydrocarbons having 3 to 4 carbon atoms can be sufficiently increased.
  • the content of the crystalline aluminosilicate exceeds 60% by mass, the content of the binder that can be blended with the catalyst is reduced, which may be unsuitable for fluidized beds.
  • the mass ratio of large pore zeolite to medium pore zeolite is preferably 2/98 to 50/50, and 5/95 to 50/50. It is more preferable that the ratio is 10/90 to 30/70. If the mass ratio is 2/98 or more, the effect of using the large pore zeolite is sufficiently exhibited, the yield of monocyclic aromatic hydrocarbons can be sufficiently increased, and if it is 50/50 or less, the raw material Oil coking can be prevented, and the yield of monocyclic aromatic hydrocarbons can be sufficiently increased.
  • the catalyst can contain gallium and / or zinc as required. When gallium and / or zinc is contained, the production rate of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms tends to increase.
  • gallium is incorporated in the lattice skeleton of crystalline aluminosilicate (crystalline aluminogallosilicate), gallium is supported on crystalline aluminosilicate (gallium-supporting crystalline aluminosilicate) ), which includes both.
  • Zinc-containing forms in the catalyst include those in which zinc is incorporated into the lattice skeleton of crystalline aluminosilicate (crystalline aluminosilicate), and zinc that is supported on crystalline aluminosilicate (zinc-supporting crystalline aluminosilicate) ), which includes both.
  • the crystalline aluminogallosilicate and the crystalline aluminodine silicate have a structure in which the SiO 4 , AlO 4 and GaO 4 / ZnO 4 structures have a tetrahedral coordination in the skeleton.
  • crystalline aluminogallosilicate and crystalline aluminodine silicate are, for example, gel crystallization by hydrothermal synthesis, a method of inserting gallium or zinc into the lattice skeleton of crystalline aluminosilicate, or crystalline gallosilicate or crystalline It is obtained by inserting aluminum into the lattice skeleton of zincosilicate.
  • the gallium-supporting crystalline aluminosilicate is obtained by supporting gallium on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method.
  • the gallium source used in this case is not particularly limited, and examples thereof include gallium salts such as gallium nitrate and gallium chloride, and gallium oxide.
  • the zinc-supporting crystalline aluminosilicate is obtained by supporting zinc on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method. Although it does not specifically limit as a zinc source used in that case, Zinc salts, such as zinc nitrate and zinc chloride, zinc oxide, etc. are mentioned.
  • the lower limit of the content of gallium and / or zinc is preferably 0.01% by mass or more when the total mass of the crystalline aluminosilicate is 100% by mass. , 0.05% by mass or more is more preferable.
  • the upper limit is preferably 5.0% by mass or less, and more preferably 1.5% by mass or less. If the content of gallium and / or zinc is 0.01% by mass or more, the production rate of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms can be increased. If it exceeds 5.0% by mass, the amount of coke produced is increased and the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms is unfavorable.
  • the catalyst can contain phosphorus and / or boron as necessary.
  • phosphorus and / or boron is contained, the total yield of the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms and the aliphatic hydrocarbon having 3 to 4 carbon atoms can be prevented from decreasing over time, and the catalyst Surface coke generation can be suppressed.
  • Examples of the method of incorporating phosphorus into the catalyst include a method in which phosphorus is supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminodine silicate by ion exchange method, impregnation method, etc. Examples thereof include a method in which a part of the crystalline aluminosilicate framework is replaced with phosphorus, a method in which a crystal accelerator containing phosphorus is used during zeolite synthesis, and the like.
  • the phosphate ion-containing aqueous solution used at that time is not particularly limited, but was prepared by dissolving phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and other water-soluble phosphates in water at an arbitrary concentration. Can be preferably used.
  • the method of incorporating boron into the catalyst include a method in which boron is supported on crystalline aluminosilicate, crystalline aluminogallosilicate, or crystalline aluminosilicate by ion exchange method, impregnation method, etc. Examples thereof include a method in which a part of the skeleton of the crystalline aluminosilicate is replaced with boron, and a method in which a crystal accelerator containing boron is used during zeolite synthesis.
  • the lower limit of the phosphorus and / or boron content is preferably 0.1% by mass or more when the total mass of the crystalline aluminosilicate is 100% by mass. More preferably, it is 0.2% by mass or more.
  • the upper limit is preferably 5.0% by mass or less, and more preferably 3.0% by mass or less.
  • the catalyst is made into, for example, a powder form, a granular form, a pellet form or the like according to the reaction format.
  • a powder form for example, in the case of a fluidized bed, it is in the form of powder, and in the case of a fixed bed, it is in the form of particles or pellets.
  • an inert oxide may be blended into the catalyst as a binder and then molded using various molding machines.
  • the content of phosphorus and / or boron contained in the crystalline aluminosilicate in the catalyst is 0.1.
  • the mass is preferably from 5.0% by mass to 5.0% by mass.
  • the amount of phosphorus and / or boron contained in the crystalline aluminosilicate indicates the amount of phosphorus and / or boron that acts on the crystalline aluminosilicate.
  • the binder and the gallium and / or zinc-supported crystalline aluminosilicate, or the crystalline aluminogallosilicate and / or the crystalline aluminodine silicate are mixed, and then phosphorus and / or boron is added. It may be added to produce a catalyst.
  • the content of phosphorus and / or boron contained in the crystalline aluminosilicate in the catalyst (the mass% of phosphorus and / or boron when the total mass of the crystalline aluminosilicate is 100 mass%) is 0.1.
  • the mass is preferably from 5.0% by mass to 5.0% by mass.
  • An inorganic oxide can be used as the binder to be blended with the catalyst, and a substance containing phosphorus and / or boron can also be used as the binder.
  • the content of phosphorus and / or boron with respect to the total weight of the catalyst is 0.
  • the lower limit is more preferably 0.5% by mass or more
  • the upper limit is more preferably 9% by mass or less, and particularly preferably 8% by mass or less.
  • the content of phosphorus and / or boron with respect to the total weight of the catalyst is 0.1% by mass or more, a decrease in the yield of monocyclic aromatic hydrocarbons over time can be prevented, and by 10% by mass or less, The yield of monocyclic aromatic hydrocarbons can be increased.
  • the method for producing monocyclic aromatic hydrocarbons of the present embodiment is a method in which a raw material oil is brought into contact with the catalyst and reacted.
  • the polycyclic aromatic hydrocarbon is ring-opened by various reactions such as decomposition, dehydrogenation, cyclization, hydrogen transfer, etc. by bringing the feedstock oil into contact with the acid point of the catalyst.
  • This is a method of converting to a monocyclic aromatic hydrocarbon of formula 6-8.
  • the acid point is a point that can release protons on the catalyst support or a point that can accept electrons, and means an active point that shows acidity.
  • the feedstock oil used in the present embodiment is an oil having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 380 ° C or lower. If the oil having a 10 vol% distillation temperature of less than 140 ° C. is used, BTX (Benzene, Toluene, Xylene) is produced from a light oil, which does not meet the gist of the present embodiment. In addition, when an oil having a 90% by volume distillation temperature exceeding 380 ° C. is used, the yield of monocyclic aromatic hydrocarbons is low, and the amount of coke deposited on the catalyst increases, resulting in an increase in catalytic activity. It tends to cause a sharp drop.
  • BTX Benzene, Toluene, Xylene
  • the 10 vol% distillation temperature of the feedstock oil is preferably 150 ° C or higher, and the 90 vol% distillation temperature of the feedstock oil is preferably 380 ° C or lower.
  • the 10 vol% distillation temperature and 90 vol% distillation temperature mentioned here mean values measured in accordance with JIS K2254 “Petroleum products-distillation test method”. Examples of the feed oil having a 10% by volume distillation temperature of 140 ° C. or more and a 90% by volume distillation temperature of 380 ° C.
  • LCO liquid crystal cospray
  • coal liquefied oil heavy oil hydrocracking and refinement produced by a fluid catalytic cracker
  • examples thereof include oil, straight-run kerosene, straight-run light oil, coker kerosene, coker light oil, and oil sand hydrocracked refined oil.
  • the feedstock oil contains a large amount of polycyclic aromatic hydrocarbons, the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms decreases, so the content of polycyclic aromatic hydrocarbons in the feedstock oil ( The polycyclic aromatic content) is preferably 50% by volume or less, and more preferably 30% by volume or less.
  • the polycyclic aromatic content referred to here is the content of bicyclic aromatic hydrocarbons measured according to JPI-5S-49 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method” ( 2 ring aromatic content) and the total value of the aromatic hydrocarbon content of 3 or more rings (aromatic content of 3 or more rings).
  • reaction mode examples of the reaction mode for contacting and reacting the raw material oil with the catalyst include a fixed bed, a moving bed, and a fluidized bed.
  • a fluidized bed that can continuously remove the coke component adhering to the catalyst and can stably perform the reaction is preferable.
  • a continuous regenerative fluidized bed in which the catalyst circulates between them and the reaction-regeneration can be repeated continuously is particularly preferable.
  • the raw material oil in contact with the catalyst is preferably in a gas phase. Moreover, you may dilute a raw material with gas as needed. Moreover, when unreacted raw materials are generated, they may be recycled as necessary.
  • reaction temperature The reaction temperature for contacting and reacting the feedstock with the catalyst is not particularly limited, but is preferably 350 to 700 ° C.
  • the lower limit is more preferably 450 ° C. or higher because sufficient reaction activity can be obtained.
  • the upper limit is more preferably 650 ° C. or lower because it is advantageous in terms of energy and can easily regenerate the catalyst.
  • reaction pressure when contacting and reacting the raw material oil with the catalyst is preferably 1.0 MPaG or less.
  • reaction pressure is 1.0 MPaG or less, light gas by-product can be prevented and the pressure resistance of the reaction apparatus can be lowered.
  • the contact time between the feedstock and the catalyst is not particularly limited as long as the desired reaction proceeds substantially.
  • the gas passage time on the catalyst is preferably 1 to 300 seconds, and the lower limit is 5 seconds or more. Is more preferably 60 seconds or less. If the contact time is 1 second or longer, the reaction can be performed reliably, and if the contact time is 300 seconds or shorter, accumulation of carbonaceous matter in the catalyst due to coking or the like can be suppressed. Or the generation amount of the light gas by decomposition
  • polycyclic aromatic carbonization is carried out by bringing various reaction such as decomposition, dehydrogenation, cyclization, hydrogen transfer, etc. by bringing the feedstock oil into contact with the acid point of the catalyst. Hydrogen is opened to obtain a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms.
  • the yield of monocyclic aromatic hydrocarbons is preferably 25% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more. If the yield of monocyclic aromatic hydrocarbons is less than 25% by mass, the concentration of the target product in the product is low and the recovery efficiency is lowered, which is not preferable.
  • the solution (B) was gradually added to the solution (A) while stirring the solution (A) at room temperature.
  • the resulting mixture was vigorously stirred with a mixer for 15 minutes to break up the gel into a milky homogeneous fine state.
  • this mixture was put into a stainless steel autoclave, and a crystallization operation was performed under a self-pressure under conditions of a temperature of 165 ° C., a time of 72 hours, and a stirring speed of 100 rpm.
  • the product was filtered to recover the solid product, and washing and filtration were repeated 5 times using about 5 liters of deionized water.
  • the solid substance obtained by filtration was dried at 120 ° C., and further calcined at 550 ° C. for 3 hours under air flow.
  • the obtained fired product was confirmed to have an MFI structure.
  • the fluorescent X-ray analysis (model name: Rigaku ZSX101e) by, SiO 2 / Al 2 O 3 ratio (molar ratio) was 64.8.
  • the aluminum element contained in the lattice skeleton calculated from this result was 1.32% by mass.
  • a 30% by mass ammonium nitrate aqueous solution was added at a rate of 5 mL per 1 g of the obtained fired product, heated and stirred at 100 ° C. for 2 hours, filtered, and washed with water. This operation was repeated 4 times, followed by drying at 120 ° C. for 3 hours to obtain an ammonium type MFI zeolite. Thereafter, calcination was performed at 780 ° C. for 3 hours to obtain a proton type MFI zeolite.
  • the BEA zeolite was prepared as follows by a conventional hydrothermal synthesis method.
  • a first solution was prepared by dissolving 202 g of tetraethylammonium hydroxide aqueous solution (40% by mass) in 59.1 g of silicic acid (SiO 2 : 89% by mass). This was added to a second solution prepared by dissolving 0.74 g Al-pellets and 2.69 g sodium hydroxide in 17.7 g water.
  • reaction mixture having a composition (in terms of molar ratio of oxide) of 2.4Na 2 O-20.0 (TEA) 2 -Al 2 O 3 -64.0SiO 2 -612H 2 O was obtained. Obtained.
  • the reaction mixture was placed in a 0.3 L autoclave and heated at 150 ° C. for 6 days.
  • the resulting product was separated from the mother liquor and washed with distilled water.
  • X-ray diffraction analysis of the product (model name: Rigaku RINT-2500V), it was confirmed from the XRD pattern that it was a BEA type zeolite.
  • the BEA type zeolite was calcined at 550 ° C. for 3 hours to obtain a proton type BEA zeolite.
  • the FAU type zeolite was prepared by the conventional hydrothermal synthesis method as follows. Na 2 O: 30.0 wt%, Al 2 O 3: 44.1 wt%, H 2 O: and sodium aluminate 3g containing 25.9 wt%, Na 2 O: water containing 77.5 wt% 16.4 g of sodium oxide was dissolved in 131 ml of ion exchange water.
  • Silica This solution is added to 74.5 g of an aqueous colloidal silica sol containing 29.5% by mass, and the two solutions are mixed. The composition (molar ratio of oxide) is 16.9Na 2 O—Al 2 O.
  • a stabilized proton-type FAU zeolite (USY zeolite) was prepared by treatment in the presence of water vapor at a temperature of 650 ° C.
  • MOR type zeolite was prepared by the conventional hydrothermal synthesis method as follows. Ion exchange between 2.7 g of sodium aluminate containing Na 2 O: 30.0 mass%, Al 2 O 3 : 44.1 mass%, H 2 O: 25.9 mass%, and 6.3 g of sodium hydroxide Dissolved in 200 ml of water. Silica: This solution was added to 241 cc of an aqueous colloidal silica sol containing 27.8% by mass to obtain a reaction mixture having a composition (molar ratio of oxide) of 1.9Na 2 O—Al 2 O 3 -13SiO 2 .
  • Example 1 A mixture of 49 g of proton-type MFI zeolite and 1 g of proton-type BEA zeolite was subjected to tableting by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and granular. A solid catalyst 1 was obtained. Using a flow reactor in which 10 ml of the catalyst 1 was packed in the reactor, a feedstock having the properties shown in Table 1 was brought into contact with and reacted with the catalyst under the conditions of reaction temperature: 550 ° C. and reaction pressure: 0 MPaG. At that time, nitrogen was introduced as a diluent so that the contact time between the raw material oil and the catalyst was 6.4 seconds.
  • the reaction is carried out for 30 minutes under these conditions to produce a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms, and the composition of the product is analyzed by an FID gas chromatograph directly connected to the reaction apparatus to obtain 6 to 8 carbon atoms.
  • the yield of monocyclic aromatic hydrocarbon was measured and found to be 42% by mass. The measurement results are shown in Table 2.
  • Example 2 A mixture of 45 g of proton-type MFI zeolite and 5 g of proton-type BEA zeolite was tableted by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and granular. A solid catalyst 2 was obtained.
  • Example 1 the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms was measured using catalyst 2 instead of catalyst 1 and found to be 45% by mass. The measurement results are shown in Table 2.
  • Example 3 A mixture of 35 g of proton type MFI zeolite and 15 g of proton type BEA zeolite was tableted by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and granular. A solid catalyst 3 was obtained.
  • Example 1 the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms was measured using catalyst 3 instead of catalyst 1, and it was 43% by mass. The measurement results are shown in Table 2.
  • Example 4 A mixture of 25 g of proton-type MFI zeolite and 25 g of proton-type BEA zeolite was tableted by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and granular. A solid catalyst 4 was obtained. In Example 1, the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms was measured using catalyst 4 instead of catalyst 1 and found to be 36% by mass. The measurement results are shown in Table 2.
  • Examples 5 to 7 The yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms was measured in the same manner as in Examples 2 to 4 except that the reaction temperature was changed to 500 ° C. in Examples 2 to 4. Was 45% by mass, Example 6 was 43% by mass, and Example 7 was 37% by mass. The measurement results are shown in Table 2.
  • Example 1 50 g of proton-type BEA zeolite was subjected to tableting molding under a pressure of 39.2 MPa (400 kgf), and coarsely pulverized to a size of 20 to 28 mesh to obtain a granular catalyst 5.
  • Example 1 the yield of monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms was measured using catalyst 5 instead of catalyst 1, and found to be 21% by mass. The measurement results are shown in Table 2.
  • Example 8 Gallium of 0.4% by mass (the total mass of the mixture of proton type MFI zeolite and proton type BEA zeolite is 100% by mass) in 30 g of a mixture of 35 g of proton type MFI zeolite and 15 g of proton type BEA zeolite was impregnated with 30 g of an aqueous gallium nitrate solution so as to be supported, and dried at 120 ° C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained the gallium carrying
  • This gallium-supporting crystalline aluminosilicate was subjected to tableting by applying a pressure of 39.2 MPa (400 kgf) and coarsely pulverized to a size of 20 to 28 mesh to obtain a granular catalyst 6.
  • Example 1 the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms was measured by using catalyst 6 instead of catalyst 1 and found to be 44% by mass. Table 3 shows the measurement results.
  • Example 9 Zinc of 0.4% by mass (value in which the total mass of the mixture of proton type MFI zeolite and proton type BEA zeolite is 100% by mass) is added to 30 g of a mixture of 35 g of proton type MFI zeolite and 15 g of proton type BEA zeolite. was impregnated with 30 g of an aqueous zinc nitrate solution and dried at 120 ° C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained zinc carrying crystalline aluminosilicate.
  • the zinc-supporting crystalline aluminosilicate was tableted by applying a pressure of 39.2 MPa (400 kgf) and coarsely pulverized to a size of 20 to 28 mesh to obtain a granular catalyst 7.
  • the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms was measured using catalyst 7 instead of catalyst 1 in Example 1, and the result was 44% by mass. Table 3 shows the measurement results.
  • Example 10 The catalyst 3 was hydrothermally treated in an environment of a treatment temperature of 650 ° C., a treatment time of 6 hours, and a water vapor of 100% by mass to obtain a pseudo-degraded catalyst 3 that was pseudohydrothermally degraded.
  • the raw material oil was reacted in the same manner as in Example 1 except that the pseudo-degrading catalyst 3 was used instead of the catalyst 1, and the composition of the obtained product was analyzed to evaluate the catalytic activity after hydrothermal degradation.
  • the pseudo-deteriorating catalyst 3 was used, the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms was 18% by mass.
  • the evaluation results are shown in Table 4.
  • Example 11 To 30 g of a mixture of 35 g of proton-type MFI zeolite and 15 g of proton-type BEA zeolite, 2.0% by mass (value in which the total mass of the mixture of proton-type MFI zeolite and proton-type BEA zeolite is 100% by mass) was impregnated with 30 g of an aqueous solution of diammonium hydrogenphosphate so as to be supported, and dried at 120 ° C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained phosphorus carrying
  • This phosphorus-supported crystalline aluminosilicate was subjected to tableting by applying a pressure of 39.2 MPa (400 kgf) and coarsely pulverized to a size of 20 to 28 mesh to obtain a granular catalyst 8. Then, the catalyst 8 was hydrothermally treated in an environment of a treatment temperature of 650 ° C., a treatment time of 6 hours, and water vapor of 100% by mass to obtain a pseudo-degraded catalyst 8 that was pseudohydrothermally degraded. Except that the pseudo-degraded catalyst 8 was used instead of the catalyst 1, the raw material oil was reacted in the same manner as in Example 1, and the composition of the obtained product was analyzed to evaluate the catalytic activity after hydrothermal degradation. When the pseudo-deteriorated catalyst 8 was used, the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms was 32% by mass. The evaluation results are shown in Table 4.
  • Example 12 A mixture of 35 g of proton-type MFI zeolite and 15 g of stabilized proton-type FAU zeolite was tableted by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh. A granular catalyst 9 was obtained. Then, the catalyst 9 was subjected to a hydrothermal treatment in an environment of a treatment temperature of 650 ° C., a treatment time of 6 hours, and water vapor of 100% by mass to obtain a pseudo-degraded catalyst 9 that was pseudohydrothermally degraded.
  • the raw material oil was reacted in the same manner as in Example 1 except that the pseudo-deteriorated catalyst 9 was used in place of the catalyst 1, and the composition of the obtained product was analyzed to evaluate the catalytic activity after hydrothermal deterioration.
  • the pseudo-deteriorating catalyst 9 was used, the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms was 15% by mass. The evaluation results are shown in Table 4.
  • Example 13 To 30 g of a mixture of 35 g of proton type MFI zeolite and 15 g of stabilized proton type FAU zeolite, 2.0% by mass (the total mass of the mixture of proton type MFI zeolite and stabilized proton type FAU zeolite was 100% by mass) 30 g of an aqueous solution of diammonium hydrogenphosphate so as to carry phosphorus of (value), and dried at 120 ° C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained phosphorus carrying
  • This phosphorus-supported crystalline aluminosilicate was tableted by applying a pressure of 39.2 MPa (400 kgf) and coarsely pulverized to a size of 20 to 28 mesh to obtain a granular catalyst 10. Then, the catalyst 10 was subjected to a hydrothermal treatment in an environment of a treatment temperature of 650 ° C., a treatment time of 6 hours, and a water vapor of 100% by mass to obtain a pseudo-degraded catalyst 10 that was pseudohydrothermally degraded.
  • the raw material oil was reacted in the same manner as in Example 1 except that the pseudo-degraded catalyst 10 was used instead of the catalyst 1, and the composition of the obtained product was analyzed to evaluate the catalytic activity after hydrothermal degradation.
  • the pseudo-degrading catalyst 10 was used, the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms was 32% by mass. The evaluation results are shown in Table 4.
  • Example 14 A mixture of 35 g of proton-type MFI zeolite and 15 g of stabilized proton-type MOR zeolite was tableted by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh. A granular catalyst 11 was obtained. Then, the catalyst 11 was subjected to hydrothermal treatment in an environment of a treatment temperature of 650 ° C., a treatment time of 6 hours, and a water vapor of 100% by mass to obtain a pseudo-degraded catalyst 11 that was pseudohydrothermally degraded.
  • the raw material oil was reacted in the same manner as in Example 1 except that the pseudo-degraded catalyst 11 was used instead of the catalyst 1, and the composition of the obtained product was analyzed to evaluate the catalytic activity after hydrothermal degradation.
  • the pseudo-deteriorating catalyst 11 was used, the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms was 16% by mass. The evaluation results are shown in Table 4.
  • Example 15 To 30 g of a mixture of 35 g of proton type MFI zeolite and 15 g of stabilized proton type MOR zeolite, 2.0% by mass (the total mass of the mixture of proton type MFI zeolite and stabilized proton type MOR zeolite was 100% by mass). 30 g of phosphoric acid aqueous solution was impregnated so as to carry phosphorus (value) and dried at 120 ° C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained phosphorus carrying
  • This phosphorus-supported crystalline aluminosilicate was tableted by applying a pressure of 39.2 MPa (400 kgf) and coarsely pulverized to a size of 20 to 28 mesh to obtain a granular catalyst 12. Then, the catalyst 12 was subjected to hydrothermal treatment in an environment of a treatment temperature of 650 ° C., a treatment time of 6 hours, and water vapor of 100% by mass to obtain a pseudo-degraded catalyst 12 that was pseudohydrothermally degraded. The raw material oil was reacted in the same manner as in Example 1 except that the pseudo-degraded catalyst 12 was used instead of the catalyst 1, and the composition of the obtained product was analyzed to evaluate the catalytic activity after hydrothermal degradation. When the pseudo-degrading catalyst 12 was used, the monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms was 32% by mass. The evaluation results are shown in Table 4.
  • a C 6-8 carbon A ring aromatic hydrocarbon can be obtained efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

 この単環芳香族炭化水素製造用触媒は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油から炭素数6~8の単環芳香族炭化水素を製造するための単環芳香族炭化水素製造用触媒であって、12員環の骨格構造を有する大細孔ゼオライトと10員環の骨格構造を有する中細孔ゼオライトとを含む結晶性アルミノシリケートを含有する。

Description

単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
 多環芳香族炭化水素を多く含む油から単環芳香族炭化水素を製造するための単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法に関する。
 本願は、2010年1月20日に、日本に出願された特願2010-010262号に基づき優先権を主張し、その内容をここに援用する。
 流動接触分解装置で生成する分解軽油であるライトサイクル油(以下、「LCO」という。)は、多環芳香族炭化水素を多く含み、軽油または重油として利用されていた。しかし、近年、LCOから、高オクタン価ガソリン基材や石油化学原料として利用でき、付加価値の高い炭素数6~8の単環芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等)を得ることが検討されている。
 例えば、特許文献1~3では、ゼオライト触媒を用いて、LCO等に多く含まれる多環芳香族炭化水素から単環芳香族炭化水素を製造する方法が提案されている。
 また、ゼオライト触媒を用いた反応による単環芳香族炭化水素の製造方法として、特許文献4には、12員環の骨格構造を有し、細孔径が大きいベータ型ゼオライトを触媒として用い、炭素数9以上の芳香族化合物から単環芳香族炭化水素を製造する方法が開示されている。
 特許文献5には、ベータ型ゼオライトを触媒として用い、炭素数2~12のパラフィン系炭化水素から単環芳香族炭化水素を製造する方法が開示されている。
特開平3-2128号公報 特開平3-52993号公報 特開平3-26791号公報 特表平4-504577号公報 特開平2-184517号公報
 しかしながら、特許文献1~3に記載の方法では、炭素数6~8の単環芳香族炭化水素の収率が充分に高いとは言えなかった。また、特許文献4,5に記載の方法は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油から炭素数6~8の単環芳香族炭化水素および炭素数3~4の脂肪族炭化水素の両方を得る方法ではない。
 本発明は、多環芳香族炭化水素を含む原料油から高い収率で炭素数6~8の単環芳香族炭化水素を製造できる単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法を提供することを目的とする。
(1)本発明の単環芳香族炭化水素製造用触媒は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油から炭素数6~8の単環芳香族炭化水素を製造するための単環芳香族炭化水素製造用触媒であって、
 12員環の骨格構造を有する大細孔ゼオライトと10員環の骨格構造を有する中細孔ゼオライトとを含む結晶性アルミノシリケートを含有することを特徴とする単環芳香族炭化水素製造用触媒である。
(2)本発明の単環芳香族炭化水素製造用触媒は、前記結晶性アルミノシリケートにおける、前記大細孔ゼオライトと前記中細孔ゼオライトとの質量比率(大細孔ゼオライト/中細孔ゼオライト)が2/98~50/50である(1)に記載の単環芳香族炭化水素製造用触媒であることが好ましい。
(3)本発明の単環芳香族炭化水素製造用触媒は、前記大細孔ゼオライトが、BEA型、FAU型、MOR型のいずれかのゼオライトである(1)または(2)に記載の単環芳香族炭化水素製造用触媒であることが好ましい。
(4)本発明の単環芳香族炭化水素製造用触媒は、前記大細孔ゼオライトが、BEA型ゼオライトである(1)~(3)のいずれか一項に記載の単環芳香族炭化水素製造用触媒であることが好ましい。
(5)本発明の単環芳香族炭化水素製造用触媒は、前記中細孔ゼオライトが、MFI型ゼオライトである(1)~(4)のいずれか一項に記載の単環芳香族炭化水素製造用触媒であることが好ましい。
(6)本発明の単環芳香族炭化水素製造用触媒は、リンを含有する(1)~(5)のいずれか一項に記載の炭化水素製造用触媒であることが好ましい。
(7)本発明の炭素数6~8の単環芳香族炭化水素の製造方法は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油を、(1)~(6)のいずれか一項に記載の単環芳香族炭化水素製造用触媒に接触させることを特徴とする炭素数6~8の単環芳香族炭化水素の製造方法である。
(8)本発明の炭素数6~8の単環芳香族炭化水素の製造方法は、前記原料油として、流動接触分解装置で生成する分解軽油を用いる(7)に記載の炭素数6~8の単環芳香族炭化水素の製造方法であることが好ましい。
(9)本発明の炭素数6~8の単環芳香族炭化水素の製造方法は、流動床反応装置にて前記原料油を前記単環芳香族炭化水素製造用触媒に接触させる(7)または(8)に記載の炭素数6~8の単環芳香族炭化水素の製造方法であることが好ましい。
 本発明の単環芳香族炭化水素製造用触媒および炭素数6~8の単環芳香族炭化水素の製造方法によれば、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油から高い収率で炭素数6~8の単環芳香族炭化水素を製造できる。
(単環芳香族炭化水素製造用触媒)
 本実施形態の単環芳香族炭化水素製造用触媒(以下、「触媒」と略す。)は、多環芳香族炭化水素および飽和炭化水素を含む原料油から炭素数6~8の単環芳香族炭化水素(以下、「単環芳香族炭化水素」と略す。)を製造するためのものであり、結晶性アルミノシリケートを含有する。
(結晶性アルミノシリケート)
 本実施形態では、結晶アルミノシリケートは、12員環の骨格構造を有する大細孔ゼオライトと、10員環の骨格構造を有する中細孔ゼオライトとを含有する。
 12員環の骨格構造を有する大細孔ゼオライトとしては、例えば、AFI型、ATO型、BEA型、CON型、FAU型、GME型、LTL型、MOR型、MTW型、OFF型の結晶構造のゼオライトが挙げられる。これらの中でも、工業的に使用できる点では、BEA型、FAU型、MOR型が好ましく、炭素数6~8の単環芳香族炭化水素の収率をより高くできることから、BEA型がより好ましい。
 10員環の骨格構造を有する中細孔ゼオライトとしては、例えば、AEL型、EUO型、FER型、HEU型、MEL型、MFI型、NES型、TON型、WEI型の結晶構造のゼオライトが挙げられる。これらの中でも、炭素数6~8の単環芳香族炭化水素の収率をより高くできることから、MFI型が好ましい。
 なお、本実施形態で挙げるゼオライトの結晶構造の型は、いずれもInternational Zeolite Associationの定義に基づく構造コードである。
 結晶性アルミノシリケートは、大細孔ゼオライト以外に、10員環以下の骨格構造を有する小細孔ゼオライト、14員環以上の骨格構造を有する超大細孔ゼオライトを含有してもよい。
 ここで、小細孔ゼオライトとしては、例えば、ANA型、CHA型、ERI型、GIS型、KFI型、LTA型、NAT型、PAU型、YUG型の結晶構造のゼオライトが挙げられる。
 超大細孔ゼオライトとしては、例えば、CLO型、VPI型の結晶構造のゼオライトが挙げられる。
 触媒を固定床用触媒として用いる場合、結晶性アルミノシリケートの含有量は、触媒全体を100質量%とした際の60~100質量%が好ましく、70~100質量%がより好ましく、90~100質量%が特に好ましい。結晶性アルミノシリケートの含有量が60質量%以上であれば、炭素数6~8の単環芳香族炭化水素および炭素数3~4の脂肪族炭化水素の合計の収率を充分に高くできる。
 触媒を流動床用触媒として用いる場合、結晶性アルミノシリケートの含有量は、触媒全体を100質量%とした際の20~60質量%が好ましく、30~60質量%がより好ましく、35~60質量%が特に好ましい。結晶性アルミノシリケートの含有量が20質量%以上であれば、炭素数6~8の単環芳香族炭化水素および炭素数3~4の脂肪族炭化水素の合計の収率を充分に高くできる。結晶性アルミノシリケートの含有量が60質量%を超えると、触媒に配合できるバインダーの含有量が少なくなり、流動床用として適さないものになることがある。
 結晶性アルミノシリケートにおける大細孔ゼオライトと中細孔ゼオライトとの質量比率(大細孔ゼオライト/中細孔ゼオライト)は2/98~50/50であることが好ましく、5/95~50/50であることがより好ましく、10/90~30/70であることがさらに好ましい。前記質量比率が2/98以上であれば、大細孔ゼオライトを使用する効果が充分に発揮され、単環芳香族炭化水素の収率を充分に高くでき、50/50以下であれば、原料油のコーキングを防止でき、単環芳香族炭化水素の収率を充分に高くできる。
(他の成分)
 触媒には、必要に応じて、ガリウムおよび/または亜鉛を含有させることができる。ガリウムおよび/または亜鉛を含有させると、炭素数6~8の単環芳香族炭化水素の生成割合が多くなる傾向にある。
 触媒におけるガリウム含有の形態としては、結晶性アルミノシリケートの格子骨格内にガリウムが組み込まれたもの(結晶性アルミノガロシリケート)、結晶性アルミノシリケートにガリウムが担持されたもの(ガリウム担持結晶性アルミノシリケート)、その両方を含んだものが挙げられる。
 触媒における亜鉛含有の形態としては、結晶性アルミノシリケートの格子骨格内に亜鉛が組み込まれたもの(結晶性アルミノジンコシリケート)、結晶性アルミノシリケートに亜鉛が担持されたもの(亜鉛担持結晶性アルミノシリケート)、その両方を含んだものが挙げられる。
 結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートは、SiO、AlOおよびGaO/ZnO構造が骨格中において四面体配位をとる構造を有する。また、結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートは、例えば、水熱合成によるゲル結晶化、結晶性アルミノシリケートの格子骨格中にガリウムまたは亜鉛を挿入する方法、または結晶性ガロシリケートまたは結晶性ジンコシリケートの格子骨格中にアルミニウムを挿入する方法により得られる。
 ガリウム担持結晶性アルミノシリケートは、結晶性アルミノシリケートにガリウムをイオン交換法、含浸法等の公知の方法によって担持したものである。その際に用いるガリウム源としては、特に限定されないが、硝酸ガリウム、塩化ガリウム等のガリウム塩、酸化ガリウム等が挙げられる。
 亜鉛担持結晶性アルミノシリケートは、結晶性アルミノシリケートに亜鉛をイオン交換法、含浸法等の公知の方法によって担持したものである。その際に用いる亜鉛源としては、特に限定されないが、硝酸亜鉛、塩化亜鉛等の亜鉛塩、酸化亜鉛等が挙げられる。
 触媒がガリウムおよび/または亜鉛を含有する場合、ガリウムおよび/または亜鉛の含有量は、結晶性アルミノシリケートの総質量を100質量%とした場合、下限は0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましい。一方、上限は5.0質量%以下であることが好ましく、1.5質量%以下であることがより好ましい。ガリウムおよび/または亜鉛の含有量が0.01質量%以上であれば、炭素数6~8の単環芳香族炭化水素の生成割合をより多くできる。5.0質量%を上回る場合、コーク生成量が多くなり、炭素数6~8の単環芳香族炭化水素の収率が低下するために好ましくない。
 また、触媒には、必要に応じて、リンおよび/またはホウ素を含有させることができる。リンおよび/またはホウ素を含有させると、炭素数6~8の単環芳香族炭化水素および炭素数3~4の脂肪族炭化水素の合計の収率の経時的な低下を防止でき、また、触媒表面のコーク生成を抑制できる。
 触媒にリンを含有させる方法としては、例えば、イオン交換法、含浸法等により、結晶性アルミノシリケートまたは結晶性アルミノガロシリケートまたは結晶性アルミノジンコシリケートにリンを担持する方法、ゼオライト合成時にリン化合物を含有させて結晶性アルミノシリケートの骨格内の一部をリンと置き換える方法、ゼオライト合成時にリンを含有した結晶促進剤を用いる方法、などが挙げられる。その際に用いるリン酸イオン含有水溶液は特に限定されないが、リン酸、リン酸水素二アンモニウム、リン酸二水素アンモニウムおよびその他の水溶性リン酸塩などを任意の濃度で水に溶解させて調製したものを好ましく使用できる。
 触媒にホウ素を含有させる方法としては、例えば、イオン交換法、含浸法等により、結晶性アルミノシリケートまたは結晶性アルミノガロシリケートまたは結晶性アルミノジンコシリケートにホウ素を担持する方法、ゼオライト合成時にホウ素化合物を含有させて結晶性アルミノシリケートの骨格内の一部をホウ素と置き換える方法、ゼオライト合成時にホウ素を含有した結晶促進剤を用いる方法、などが挙げられる。
 触媒がリンおよび/またはホウ素を含有する場合、リンおよび/またはホウ素の含有量は、結晶性アルミノシリケートの総質量を100質量%とした場合、下限は0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。一方、上限は5.0質量%以下であることが好ましく、3.0質量%以下であることがより好ましい。リンおよび/またはホウ素の含有量が0.1質量%以上であれば、経時的な収率低下をより防止できる。5.0質量%を上回る場合、炭素数6~8の単環芳香族炭化水素の収率が低下するために好ましくない。
(形状)
 触媒は、反応形式に応じて、例えば、粉末状、粒状、ペレット状等にされる。例えば、流動床の場合には粉末状にされ、固定床の場合には粒状またはペレット状にされる。
 粒状またはペレット状の触媒を得る場合には、必要に応じて、バインダーとして触媒に不活性な酸化物を配合した後、各種成形機を用いて成形すればよい。
 本実施形態の触媒がバインダー等を含有する場合、バインダー等としてリンおよび/またはホウ素を含むものを用いても構わない。このとき、触媒において結晶性アルミノシリケートに含まれるリンおよび/またはホウ素の含有量(結晶性アルミノシリケートの総質量を100質量%とした際のリンおよび/またはホウ素の質量%)が、0.1質量%~5.0質量%であるとよい。結晶性アルミノシリケートに含まれるリンおよび/またはホウ素の量とは、結晶性アルミノシリケートに作用するリンおよび/またはホウ素の量を示す。
 また、触媒がバインダー等を含有する場合、バインダー等とガリウムおよび/または亜鉛担持結晶性アルミノシリケート、あるいは結晶性アルミノガロシリケートおよび/または結晶性アルミノジンコシリケートとを混合した後にリンおよび/またはホウ素を添加して触媒を製造してもよい。このとき、触媒において結晶性アルミノシリケートに含まれるリンおよび/またはホウ素の含有量(結晶性アルミノシリケートの総質量を100質量%とした際のリンおよび/またはホウ素の質量%)が、0.1質量%~5.0質量%であるとよい。
 触媒に配合するバインダー等としては無機酸化物を用いることができ、更にバインダー等としてリンおよび/またはホウ素を含有する物質を用いることもできる。リンおよび/またはホウ素を含有しているバインダー等を用いる場合における結晶性アルミノシリケートに作用するリンおよび/またはホウ素の量も考慮して、触媒全重量に対するリンおよび/またはホウ素の含有量が0.1~10質量%であることが好ましく、さらには、下限は0.5質量%以上がより好ましく、上限は9質量%以下であることがより好ましく、8質量%以下が特に好ましい。触媒全重量に対するリンおよび/またはホウ素の含有量が0.1質量%以上であることで、経時的な単環芳香族炭化水素の収率低下を防止でき、10質量%以下であることで、単環芳香族炭化水素の収率を高くできる。
(単環芳香族炭化水素の製造方法)
 本実施形態の単環芳香族炭化水素の製造方法は、原料油を上記触媒に接触させて、反応させる方法である。
 本実施形態の反応は、原料油と触媒の酸点とを接触させることにより、分解、脱水素、環化、水素移行等の様々な反応により、多環芳香族炭化水素を開環させて炭素数6~8の単環芳香族炭化水素に転換する方法である。
 ここで、酸点(Acid Point)とは、触媒担体上でプロトンを放出することの出来る点、又は電子を受容することの出来る点であり、酸性を示す活性点をいう。
(原料油)
 本実施形態で使用される原料油は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の油である。10容量%留出温度が140℃未満の油では、軽質のものからBTX(Benzene, Toluene, Xylene)を製造することになり、本実施形態の主旨にそぐわなくなる。また、90容量%留出温度が380℃を超える油を用いた場合には、単環芳香族炭化水素の収率が低い上に、触媒上へのコーク堆積量が増大して、触媒活性の急激な低下を引き起こす傾向にある。
 原料油の10容量%留出温度は150℃以上であることが好ましく、原料油の90容量%留出温度が380℃以下であることが好ましい。
 なお、ここでいう10容量%留出温度、90容量%留出温度とは、JIS K2254「石油製品-蒸留試験方法」に準拠して測定される値を意味する。
 10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油としては、例えば、流動接触分解装置で生成するLCO、石炭液化油、重質油水素化分解精製油、直留灯油、直留軽油、コーカー灯油、コーカー軽油およびオイルサンド水素化分解精製油などが挙げられる。
 また、原料油中に多環芳香族炭化水素が多く含まれると炭素数6~8の単環芳香族炭化水素収率が低下するため、原料油中の多環芳香族炭化水素の含有量(多環芳香族分)は50容量%以下が好ましく、30容量%以下であることがより好ましい。
 なお、ここでいう多環芳香族分とは、JPI-5S-49「石油製品-炭化水素タイプ試験方法-高速液体クロマトグラフ法」に準拠して測定される2環芳香族炭化水素含有量(2環芳香族分)および、3環以上の芳香族炭化水素含有量(3環以上の芳香族分)の合計値を意味する。
(反応形式)
 原料油を触媒と接触、反応させる際の反応形式としては、固定床、移動床、流動床等が挙げられる。本実施形態においては、重質分を原料とするため、触媒に付着したコーク分を連続的に除去可能で、かつ安定的に反応を行うことができる流動床が好ましく、反応器と再生器との間を触媒が循環し、連続的に反応-再生を繰り返すことができる、連続再生式流動床が特に好ましい。触媒と接触する際の原料油は、気相状態であることが好ましい。また、原料は、必要に応じてガスによって希釈してもよい。また、未反応原料が生じた場合は必要に応じてリサイクルしてもよい。
(反応温度)
 原料油を触媒と接触、反応させる際の反応温度は、特に制限されないが、350~700℃が好ましい。下限は、充分な反応活性が得られることから、450℃以上がより好ましい。一方、上限は、エネルギー的に有利である上に、容易に触媒を再生できるため、650℃以下がより好ましい。
(反応圧力)
 原料油を触媒と接触、反応させる際の反応圧力は、1.0MPaG以下とすることが好ましい。反応圧力が1.0MPaG以下であれば、軽質ガスの副生を防止できる上に、反応装置の耐圧性を低くできる。
(接触時間)
 原料油と触媒との接触時間は、実質的に所望する反応が進行すれば特に制限はされないが、例えば、触媒上のガス通過時間で1~300秒が好ましく、さらに下限は5秒以上、上限は60秒以下がより好ましい。接触時間が1秒以上であれば、確実に反応させることができ、接触時間が300秒以下であれば、コーキング等による触媒への炭素質の蓄積を抑制できる。または分解による軽質ガスの発生量を抑制できる。
 本反応の単環芳香族炭化水素の製造方法では、原料油と触媒の酸点とを接触させることにより、分解、脱水素、環化、水素移行等の様々な反応により、多環芳香族炭化水素を開環させて炭素数6~8の単環芳香族炭化水素を得る。
 本実施形態では、単環芳香族炭化水素の収率が25質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。単環芳香族炭化水素の収率が25質量%未満であると生成物中の目的物濃度が低く、回収効率が低下するので好ましくない。
 以下、実施例および比較例に基づいて本実施形態をより具体的に説明するが、本実施形態はこれらの実施例に限定されるものではない。
(プロトン型MFIゼオライトの調製)
 硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28~30質量%、Na:9~10質量%、残部水、日本化学工業(株)製)の1706.1gおよび水の2227.5gからなる溶液(A)と、Al(SO・14~18HO(試薬特級、和光純薬工業(株)製)の64.2g、テトラプロピルアンモニウムブロマイドの369.2g、HSO(97質量%)の152.1g、NaClの326.6gおよび水の2975.7gからなる溶液(B)をそれぞれ調製した。
 ついで、溶液(A)を室温で撹拌しながら、溶液(A)に溶液(B)を徐々に加えた。得られた混合物をミキサーで15分間激しく撹拌し、ゲルを解砕して乳状の均質微細な状態にした。
 ついで、この混合物をステンレス製のオートクレーブに入れ、温度:165℃、時間:72時間、撹拌速度:100rpmの条件で、自己圧力下に結晶化操作を行った。結晶化操作の終了後、生成物を濾過して固体生成物を回収し、約5リットルの脱イオン水を用いて洗浄と濾過を5回繰り返した。濾別して得られた固形物を120℃で乾燥し、さらに空気流通下、550℃で3時間焼成した。
 得られた焼成物は、X線回析分析(機種名:Rigaku RINT-2500V)の結果、MFI構造を有するものであることが確認された。また、蛍光X線分析(機種名:Rigaku ZSX101e)による、SiO/Al比(モル比)は、64.8であった。また、この結果から計算された格子骨格中に含まれるアルミニウム元素は1.32質量%であった。
 得られた焼成物の1g当り5mLの割合で30質量%硝酸アンモニウム水溶液を加え、100℃で2時間加熱、撹拌した後、濾過、水洗した。この操作を4回繰り返した後、120℃で3時間乾燥して、アンモニウム型MFIゼオライトを得た。その後、780℃で3時間焼成を行い、プロトン型MFIゼオライトを得た。
(BEA型ゼオライトの調製)
 BEA型ゼオライトは、従来の水熱合成法によって以下のように調製した。
 59.1gのケイ酸(SiO :89質量%)に四エチルアンモニウムヒドロオキシド水溶液(40質量%)を202gに溶解することにより、第一の溶液を調製した。これを、0.74gのAl-ペレット及び2.69gの水酸化ナトリウムを17.7gの水に溶解して調製した第二の溶液に加えた。
 二つの溶液を混合して、組成(酸化物のモル比換算)が、2.4NaO-20.0(TEA)-Al-64.0SiO-612HOの反応混合物を得た。この反応混合物を0.3Lオートクレーブに入れ、150℃で6日間加熱した。得られた生成物を母液から分離し、蒸留水で洗った。生成物のX線回析分析(機種名:Rigaku RINT-2500V)の結果、XRDパターンよりBEA型ゼオライトであることを確認した。
 その後、硝酸アンモニウム水溶液(30質量%)でイオン交換した後、BEA型ゼオライトを550℃で3時間焼成を行い、プロトン型BEAゼオライトを得た。
(FAU型ゼオライトの調製)
 FAU型ゼオライトは、従来の水熱合成法によって以下のように調製した。
 NaO:30.0質量%、Al:44.1質量%、HO:25.9質量%を含むアルミン酸ナトリウム3gと、NaO:77.5質量%を含む水酸化ナトリウム16.4gとをイオン交換水131mlに溶解した。シリカ:29.5質量%を含む水性コロイダルシリカゾル74.5gにこの溶液を加えて、二つの溶液を混合して、組成(酸化物のモル比換算)が、16.9NaO-Al-28.2SiO-808HOの反応混合物を得た。この混合物が均質になるまで、かきまぜ、この反応混合物を0.3Lオートクレーブに入れ、120℃で3h加熱した。得られた生成物を母液から分離し、蒸留水で洗った。生成物のX線回析分析(機種名:Rigaku RINT-2500V)の結果、XRDパターンよりFAU型ゼオライト(Y型ゼオライト)であることを確認した。
 その後、硝酸アンモニウム水溶液(30質量%)でイオン交換した後、FAU型ゼオライトを550℃で3時間焼成を行い、プロトン型FAUゼオライトを得た。その後、FAU型ゼオライトを安定化させるために、温度650℃で水蒸気の存在下で処理することによって安定化プロトン型FAUゼオライト(USYゼオライト)を調製した。
(MOR型ゼオライトの調製)
 MOR型ゼオライトは、従来の水熱合成法によって以下のように調製した。
 NaO:30.0質量%、Al:44.1質量%、HO:25.9質量%を含むアルミン酸ナトリウム2.7gと、水酸化ナトリウム6.3gとをイオン交換水200mlに溶解した。シリカ:27.8質量%を含む水性コロイダルシリカゾル241ccにこの溶液を加えて、組成(酸化物のモル比換算)が、1.9NaO-Al-13SiOの反応混合物を得た。この混合物が均質になるまで、かきまぜ、この反応混合物を0.3Lオートクレーブに入れ、150℃で8日加熱した。得られた生成物を母液から分離し、蒸留水で洗った。生成物のX線回析分析(機種名:Rigaku RINT-2500V)の結果、XRDパターンよりMOR型ゼオライトであることを確認した。
 その後、硝酸アンモニウム水溶液(30質量%)でイオン交換した後、MOR型ゼオライトを550℃で3時間焼成を行い、プロトン型MORゼオライトを得た。その後、MOR型ゼオライトを安定化させるために、温度650℃で水蒸気の存在下で処理することによって安定化プロトン型MORゼオライトを調製した。
(実施例1)
 プロトン型MFIゼオライト49gと、プロトン型BEAゼオライト1gとを混合した混合物を、39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒1を得た。
 10mlの触媒1を反応器に充填した流通式反応装置を用い、反応温度:550℃、反応圧力:0MPaGの条件で、表1の性状を有する原料油を触媒と接触、反応させた。その際、原料油と触媒との接触時間が6.4秒となるように希釈剤として窒素を導入した。この条件にて30分反応させて、炭素数6~8の単環芳香族炭化水素を製造し、反応装置に直結されたFIDガスクロマトグラフにより生成物の組成分析を行って、炭素数6~8の単環芳香族炭化水素の収率を測定したところ、42質量%となった。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 プロトン型MFIゼオライト45gと、プロトン型BEAゼオライト5gとを混合した混合物を、39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒2を得た。
 そして、実施例1において触媒1の代わりに触媒2を用いて、炭素数6~8の単環芳香族炭化水素の収率を測定したところ、45質量%となった。測定結果を表2に示す。
(実施例3)
 プロトン型MFIゼオライト35gと、プロトン型BEAゼオライト15gとを混合した混合物を、39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒3を得た。
 そして、実施例1において触媒1の代わりに触媒3を用いて、炭素数6~8の単環芳香族炭化水素の収率を測定したところ、43質量%となった。測定結果を表2に示す。
(実施例4)
 プロトン型MFIゼオライト25gと、プロトン型BEAゼオライト25gとを混合した混合物を、39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒4を得た。
 そして、実施例1において触媒1の代わりに触媒4を用いて、炭素数6~8の単環芳香族炭化水素の収率を測定したところ、36質量%となった。測定結果を表2に示す。
(実施例5~7)
 実施例2~4において反応温度を500℃に変更したこと以外は実施例2~4と同様にして、炭素数6~8の単環芳香族炭化水素の収率を測定したところ、実施例5では45質量%、実施例6では43質量%、実施例7では37質量%となった。測定結果を表2に示す。
(比較例1)
 プロトン型BEAゼオライト50gを、39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒5を得た。
 そして、実施例1において触媒1の代わりに触媒5を用いて、炭素数6~8の単環芳香族炭化水素の収率を測定したところ、21質量%となった。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(結果)
 BEA型ゼオライトおよびMFI型ゼオライトの両方を含有する触媒1~4を用いた実施例1~7では、炭素数6~8の単環芳香族炭化水素を高い収率で得ることができた。
 これに対し、BEA型ゼオライトのみの触媒5を用いた比較例1では、炭素数6~8の単環芳香族炭化水素の収率が低かった。
(実施例8)
 プロトン型MFIゼオライト35gと、プロトン型BEAゼオライト15gとを混合した混合物30gに、0.4質量%(プロトン型MFIゼオライトとプロトン型BEAゼオライトの混合物の総質量を100質量%とした値)のガリウムが担持されるように硝酸ガリウム水溶液30gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、ガリウム担持結晶性アルミノシリケートを得た。このガリウム担持結晶性アルミノシリケートに39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒6を得た。
 そして、実施例1において触媒1の代わりに触媒6を用いて、炭素数6~8の単環芳香族炭化水素の収率を測定したところ、44質量%となった。測定結果を表3に示す。
(実施例9)
 プロトン型MFIゼオライト35gと、プロトン型BEAゼオライト15gとを混合した混合物30gに、0.4質量%(プロトン型MFIゼオライトとプロトン型BEAゼオライトの混合物の総質量を100質量%とした値)の亜鉛が担持されるように硝酸亜鉛水溶液30gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、亜鉛担持結晶性アルミノシリケートを得た。この亜鉛担持結晶性アルミノシリケートに39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒7を得た。
 そして、実施例1において触媒1の代わりに触媒7を用いて、炭素数6~8の単環芳香族炭化水素の収率を測定したところ、44質量%となった。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(結果)
 BEA型ゼオライトおよびMFI型ゼオライトを混合したゼオライトにガリウムまたは亜鉛を担持した触媒6、7を用いた実施例8、9においても、炭素数6~8の単環芳香族炭化水素を高い収率で得ることができた。
(実施例10)
 触媒3を、処理温度650℃、処理時間6時間、水蒸気100質量%の環境下で水熱処理することにより、擬似的に水熱劣化させた擬似劣化触媒3を得た。
 触媒1の代わりに擬似劣化触媒3を用いたこと以外は実施例1と同様に、原料油を反応させ、得られた生成物の組成分析を行って水熱劣化後の触媒活性を評価した。擬似劣化触媒3を用いた場合、炭素数6~8の単環芳香族炭化水素は18質量%となった。評価結果を表4に示す。
(実施例11)
 プロトン型MFIゼオライト35gと、プロトン型BEAゼオライト15gとを混合した混合物30gに、2.0質量%(プロトン型MFIゼオライトとプロトン型BEAゼオライトの混合物の総質量を100質量%とした値)のリンが担持されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、リン担持結晶性アルミノシリケートを得た。このリン担持結晶性アルミノシリケートに39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒8を得た。
 そして、触媒8を、処理温度650℃、処理時間6時間、水蒸気100質量%の環境下で水熱処理することにより、擬似的に水熱劣化させた擬似劣化触媒8を得た。
 触媒1の代わりに擬似劣化触媒8を用いたこと以外は実施例1と同様に、原料油を反応させ、得られた生成物の組成分析を行って水熱劣化後の触媒活性を評価した。擬似劣化触媒8を用いた場合、炭素数6~8の単環芳香族炭化水素は32質量%となった。評価結果を表4に示す。
(実施例12)
 プロトン型MFIゼオライト35gと、安定化プロトン型FAUゼオライト15gとを混合した混合物を、39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒9を得た。
 そして、触媒9を、処理温度650℃、処理時間6時間、水蒸気100質量%の環境下で水熱処理することにより、擬似的に水熱劣化させた擬似劣化触媒9を得た。
 触媒1の代わりに擬似劣化触媒9を用いたこと以外は実施例1と同様に、原料油を反応させ、得られた生成物の組成分析を行って水熱劣化後の触媒活性を評価した。擬似劣化触媒9を用いた場合、炭素数6~8の単環芳香族炭化水素は15質量%となった。評価結果を表4に示す。
(実施例13)
 プロトン型MFIゼオライト35gと、安定化プロトン型FAUゼオライト15gとを混合した混合物30gに、2.0質量%(プロトン型MFIゼオライトと安定化プロトン型FAUゼオライトの混合物の総質量を100質量%とした値)のリンが担持されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、リン担持結晶性アルミノシリケートを得た。このリン担持結晶性アルミノシリケートに39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒10を得た。
 そして、触媒10を、処理温度650℃、処理時間6時間、水蒸気100質量%の環境下で水熱処理することにより、擬似的に水熱劣化させた擬似劣化触媒10を得た。
 触媒1の代わり擬似劣化触媒10を用いたこと以外は実施例1と同様に、原料油を反応させ、得られた生成物の組成分析を行って水熱劣化後の触媒活性を評価した。擬似劣化触媒10を用いた場合、炭素数6~8の単環芳香族炭化水素は32質量%となった。評価結果を表4に示す。
(実施例14)
 プロトン型MFIゼオライト35gと、安定化プロトン型MORゼオライト15gとを混合した混合物を、39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒11を得た。
 そして、触媒11を、処理温度650℃、処理時間6時間、水蒸気100質量%の環境下で水熱処理することにより、擬似的に水熱劣化させた擬似劣化触媒11を得た。
 触媒1の代わり擬似劣化触媒11を用いたこと以外は実施例1と同様に、原料油を反応させ、得られた生成物の組成分析を行って水熱劣化後の触媒活性を評価した。擬似劣化触媒11を用いた場合、炭素数6~8の単環芳香族炭化水素は16質量%となった。評価結果を表4に示す。
(実施例15)
 プロトン型MFIゼオライト35gと、安定化プロトン型MORゼオライト15gとを混合した混合物30gに、2.0質量%(プロトン型MFIゼオライトと安定化プロトン型MORゼオライトの混合物の総質量を100質量%とした値)のリンが担持されるようにリン酸水溶液30gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、リン担持結晶性アルミノシリケートを得た。このリン担持結晶性アルミノシリケートに39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒12を得た。
 そして、触媒12を、処理温度650℃、処理時間6時間、水蒸気100質量%の環境下で水熱処理することにより、擬似的に水熱劣化させた擬似劣化触媒12を得た。
 触媒1の代わり擬似劣化触媒12を用いたこと以外は実施例1と同様に、原料油を反応させ、得られた生成物の組成分析を行って水熱劣化後の触媒活性を評価した。擬似劣化触媒12を用いた場合、炭素数6~8の単環芳香族炭化水素は32質量%となった。評価結果を表4に示す。
(結果)
 大細孔ゼオライトとしてFAU型ゼオライトあるいはMOR型ゼオライトを用いた場合も、BEA型ゼオライトを用いた場合と同等の効果が得られた。
 さらに触媒にリンを含有させることにより、擬似劣化後においても炭素数6~8の単環芳香族炭化水素を収率良く得ることができた。
Figure JPOXMLDOC01-appb-T000004
 本発明の単環芳香族炭化水素製造用触媒によれば、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油から、炭素数6~8の単環芳香族炭化水素を効率良く得ることができる。

Claims (9)

  1.  10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油から炭素数6~8の単環芳香族炭化水素を製造するための単環芳香族炭化水素製造用触媒であって、
     12員環の骨格構造を有する大細孔ゼオライトと10員環の骨格構造を有する中細孔ゼオライトとを含む結晶性アルミノシリケートを含有することを特徴とする単環芳香族炭化水素製造用触媒。
  2.  前記結晶性アルミノシリケートにおける、前記大細孔ゼオライトと前記中細孔ゼオライトとの質量比率(大細孔ゼオライト/中細孔ゼオライト)が2/98~50/50である請求項1に記載の単環芳香族炭化水素製造用触媒。
  3.  前記大細孔ゼオライトが、BEA型、FAU型、MOR型のいずれかのゼオライトである請求項1または2に記載の単環芳香族炭化水素製造用触媒。
  4.  前記大細孔ゼオライトが、BEA型ゼオライトである請求項1~3のいずれか一項に記載の単環芳香族炭化水素製造用触媒。
  5.  前記中細孔ゼオライトが、MFI型ゼオライトである請求項1~4のいずれか一項に記載の単環芳香族炭化水素製造用触媒。
  6.  リンを含有する請求項1~5のいずれか一項に記載の単環芳香族炭化水素製造用触媒。
  7.  10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油を、請求項1~6のいずれか一項に記載の単環芳香族炭化水素製造用触媒に接触させることを特徴とする炭素数6~8の単環芳香族炭化水素の製造方法。
  8.  前記原料油として、流動接触分解装置で生成する分解軽油を用いる請求項7に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
  9.  流動床反応装置にて前記原料油を前記単環芳香族炭化水素製造用触媒に接触させる請求項7または8に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
PCT/JP2011/050995 2010-01-20 2011-01-20 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法 WO2011090121A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11734727.8A EP2527036A4 (en) 2010-01-20 2011-01-20 CATALYST FOR USE IN THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS AND METHOD FOR THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS
JP2011505307A JP5919587B2 (ja) 2010-01-20 2011-01-20 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
US13/522,867 US20130030232A1 (en) 2010-01-20 2011-01-20 Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons
BR112012018012A BR112012018012A2 (pt) 2010-01-20 2011-01-20 catalisador para produção de hidrocarbonetos aromáticos monocíclicos e processo de produção de hidrocarbonetos aromáticos monocíclicos
CN201180014489.2A CN102811814B (zh) 2010-01-20 2011-01-20 单环芳香族烃制造用催化剂及单环芳香族烃的制造方法
KR1020127021322A KR101790368B1 (ko) 2010-01-20 2011-01-20 단환 방향족 탄화수소 제조용 촉매 및 단환 방향족 탄화수소의 제조 방법
US14/801,089 US10087376B2 (en) 2010-01-20 2015-07-16 Method for producing monocyclic aromatic hydrocarbons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-010262 2010-01-20
JP2010010262 2010-01-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/522,867 A-371-Of-International US20130030232A1 (en) 2010-01-20 2011-01-20 Catalyst for production of monocyclic aromatic hydrocarbons and method of producing monocyclic aromatic hydrocarbons
US14/801,089 Division US10087376B2 (en) 2010-01-20 2015-07-16 Method for producing monocyclic aromatic hydrocarbons

Publications (1)

Publication Number Publication Date
WO2011090121A1 true WO2011090121A1 (ja) 2011-07-28

Family

ID=44306921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050995 WO2011090121A1 (ja) 2010-01-20 2011-01-20 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法

Country Status (7)

Country Link
US (2) US20130030232A1 (ja)
EP (1) EP2527036A4 (ja)
JP (2) JP5919587B2 (ja)
KR (1) KR101790368B1 (ja)
CN (1) CN102811814B (ja)
BR (1) BR112012018012A2 (ja)
WO (1) WO2011090121A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091099A1 (ja) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
CN103121896A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 多环芳烃转化为单环芳烃的方法
CN103121907A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 多产二甲苯的多环芳烃转化为单环芳烃的方法
CN103121906A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 稠环芳烃制取单环芳烃的方法
CN103121895A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 稠环芳烃制取单环芳烃方法
WO2013150845A1 (ja) * 2012-04-03 2013-10-10 株式会社明電舎 低級炭化水素芳香族化触媒及び低級炭化水素芳香族化触媒の製造方法
US9809507B2 (en) 2009-06-30 2017-11-07 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
US9815750B2 (en) 2009-07-29 2017-11-14 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
JP2018510763A (ja) * 2015-02-04 2018-04-19 エクソンモービル・ケミカル・パテンツ・インク 触媒組成物および重質芳香族転化プロセスでの使用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527036A4 (en) 2010-01-20 2014-03-05 Jx Nippon Oil & Energy Corp CATALYST FOR USE IN THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS AND METHOD FOR THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS
WO2014129585A1 (ja) * 2013-02-21 2014-08-28 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
CN106457231B (zh) * 2014-04-04 2020-03-06 捷客斯能源株式会社 铝硅酸盐催化剂的制造方法、铝硅酸盐催化剂及单环芳香族烃的制造方法
KR101895497B1 (ko) * 2016-10-26 2018-10-04 에쓰대시오일 주식회사 경방향족 탄화수소 제조용 수소화 분해 반응 촉매, 이의 제조방법 및 이를 이용한 경방향족 탄화수소의 제조방법
US11060400B1 (en) 2020-05-20 2021-07-13 Halliburton Energy Services, Inc. Methods to activate downhole tools
US11255189B2 (en) 2020-05-20 2022-02-22 Halliburton Energy Services, Inc. Methods to characterize subterranean fluid composition and adjust operating conditions using MEMS technology
CN114656313B (zh) * 2022-04-11 2024-07-02 南方海洋科学与工程广东省实验室(广州) 一种天然气水合物协同pet类塑料转化制备单环芳烃的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184517A (ja) 1989-01-06 1990-07-19 Mobil Oil Corp ガロシリケートゼオライトベータ及びその製法及び触媒としての使用
JPH032128A (ja) 1989-05-30 1991-01-08 Idemitsu Kosan Co Ltd 単環芳香族含有炭化水素の製造方法
JPH0326791A (ja) 1989-06-23 1991-02-05 Idemitsu Kosan Co Ltd 炭化水素の製造方法
JPH0352993A (ja) 1989-07-21 1991-03-07 Idemitsu Kosan Co Ltd Btxに富む炭化水素の製造方法
JPH04504577A (ja) 1989-12-13 1992-08-13 モービル・オイル・コーポレイション C↓9+芳香族原料の接触転化方法
JPH06220466A (ja) * 1992-11-30 1994-08-09 Exxon Res & Eng Co 軽質オレフィンを製造する為の流動接触クラッキング方法
JP2008508084A (ja) * 2004-07-29 2008-03-21 中國石油化工股▲分▼有限公司 クラッキング触媒およびその製造方法
JP2008518778A (ja) * 2004-11-05 2008-06-05 エクソンモービル・ケミカル・パテンツ・インク 重質芳香族変換触媒組成物、及びその生産プロセス及びそれを用いるプロセス
JP2008138188A (ja) * 2006-11-07 2008-06-19 Japan Energy Corp 接触分解方法
JP2008297452A (ja) * 2007-05-31 2008-12-11 Japan Energy Corp アルキルベンゼン類の製造方法
JP2009073919A (ja) * 2007-09-20 2009-04-09 Nippon Oil Corp 重質石油類の流動接触分解方法
JP2010001463A (ja) * 2008-05-19 2010-01-07 Cosmo Oil Co Ltd 高オクタン価ガソリン基材の製造方法

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2727854A (en) 1953-03-20 1955-12-20 Standard Oil Co Recovery of naphthalene
US2769753A (en) 1953-06-03 1956-11-06 Pure Oil Co Combination process for catalytic hydrodesulfurization and reforming of high sulfur hydrocarbon mixtures
US3258503A (en) 1961-08-18 1966-06-28 Phillips Petroleum Co Production of benzene
US3755141A (en) 1971-02-11 1973-08-28 Texaco Inc Catalytic cracking
US3806443A (en) 1972-05-26 1974-04-23 Mobil Oil Corp Selective hydrocracking before and after reforming
US3847793A (en) * 1972-12-19 1974-11-12 Mobil Oil Conversion of hydrocarbons with a dual cracking component catalyst comprising zsm-5 type material
US3926778A (en) 1972-12-19 1975-12-16 Mobil Oil Corp Method and system for controlling the activity of a crystalline zeolite cracking catalyst
US4053388A (en) 1976-12-06 1977-10-11 Moore-Mccormack Energy, Inc. Process for preparing aromatics from naphtha
US4762813A (en) 1979-10-15 1988-08-09 Union Oil Company Of California Hydrocarbon conversion catalyst
US4309280A (en) * 1980-07-18 1982-01-05 Mobil Oil Corporation Promotion of cracking catalyst octane yield performance
US4585545A (en) 1984-12-07 1986-04-29 Ashland Oil, Inc. Process for the production of aromatic fuel
CN86101990B (zh) 1986-03-27 1988-06-01 中国石油化工总公司石油化工科学研究院 一种粘土类层柱分子筛的制备方法
US5002915A (en) 1989-05-30 1991-03-26 Mobil Oil Corp. Process for catalyst regeneration with flue gas
GB8926555D0 (en) 1989-11-24 1990-01-17 Shell Int Research Process for upgrading a sulphur-containing feedstock
AU652222B2 (en) 1991-03-12 1994-08-18 Mobil Oil Corporation Preparation of cracking catalysts, and cracking process using them
US5183557A (en) 1991-07-24 1993-02-02 Mobil Oil Corporation Hydrocracking process using ultra-large pore size catalysts
BR9400475A (pt) 1994-02-09 1995-09-19 Petroleo Brasileiro Sa Processo de preparação de zeólita modificada e zeólita modificada
US5582711A (en) 1994-08-17 1996-12-10 Exxon Research And Engineering Company Integrated staged catalytic cracking and hydroprocessing process
JPH08277396A (ja) 1995-04-05 1996-10-22 Kao Corp 重質油の燃焼方法
JP3608095B2 (ja) 1996-03-29 2005-01-05 新日本石油株式会社 重油基材の製造方法
JP3685225B2 (ja) 1996-07-26 2005-08-17 山陽石油化学株式会社 芳香族炭化水素の製法
ID22823A (id) 1997-05-12 1999-12-09 Phillips Petroleum Co Komposisi katalis yang disempurnakan untuk perubahan hidrokarbon non-aromatik menjadi aromatik dan olefin ringan
US5905051A (en) * 1997-06-04 1999-05-18 Wu; An-Hsiang Hydrotreating catalyst composition and processes therefor and therewith
US5990032A (en) 1997-09-30 1999-11-23 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
CN1056595C (zh) 1997-10-20 2000-09-20 中国石油化工总公司 多种进料烃类直接转化制烯烃方法
US5981418A (en) 1998-04-08 1999-11-09 Phillips Petroleum Company Zeolite based catalyst containing zinc, boron and phosphorus and method of making such zeolite based catalyst
US6077984A (en) * 1998-09-01 2000-06-20 Phillips Petroleum Company Process for making zeolite containing zinc borate composition, the composition and the use thereof in hydrocarbon conversion
JP2002530475A (ja) 1998-11-12 2002-09-17 モービル・オイル・コーポレイション ディーゼル燃料
US6210563B1 (en) 1998-12-30 2001-04-03 Mobil Oil Corporation Process for producing diesel fuel with increased cetane number
US6241876B1 (en) 1998-12-30 2001-06-05 Mobil Oil Corporation Selective ring opening process for producing diesel fuel with increased cetane number
JP4409677B2 (ja) 1999-09-28 2010-02-03 出光興産株式会社 燃料油組成物
US6900365B2 (en) 1999-11-15 2005-05-31 Chevron Phillips Chemical Company Lp Process for converting heavy hydrocarbon feeds to high octane gasoline, BTX and other valuable aromatics
JP2002146364A (ja) 2000-11-06 2002-05-22 Nippon Mitsubishi Oil Corp 重油基材の製造方法
DE10135490A1 (de) 2001-07-20 2003-01-30 Basf Ag Verfahren zur Hydrierung von aromatischen Verbindungen mit Restgas enthaltendem Wasserstoff
US20040140246A1 (en) 2001-08-31 2004-07-22 Lomas David A. Process for upgrading fcc product with additional reactor
JP2003096474A (ja) 2001-09-27 2003-04-03 Idemitsu Kosan Co Ltd 燃料油組成物
US6709572B2 (en) 2002-03-05 2004-03-23 Exxonmobil Research And Engineering Company Catalytic cracking process
CA2506470C (en) 2002-11-18 2010-10-26 Ict Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas
FI119588B (fi) 2003-11-27 2009-01-15 Neste Oil Oyj Jalometallikatalyytti hiilivetyjen konversiota varten, menetelmä sen valmistamiseksi ja menetelmä dieselpolttoaineen valmistamiseksi
WO2005085391A1 (en) * 2004-03-08 2005-09-15 China Petroleum & Chemical Corporation A process of production of lower olefins and aromaticas
JP4987693B2 (ja) * 2004-03-31 2012-07-25 中国石油化工股▲分▼有限公司 ゼオライト含有炭化水素変換触媒、その製造方法、および該触媒で炭化水素油を変換する方法
ATE435068T1 (de) * 2004-04-14 2009-07-15 Inst Francais Du Petrole Katalysator enthaltend einen 10mr zeolith und einen 12mr zeolith und seine verwendung zur transalkylierung von alkylaromatischen kohlenwasserstoffen
WO2005118747A1 (en) * 2004-05-26 2005-12-15 Shell Internationale Research Maatschappij B.V. Process to produce a gas oil by catalytic cracking of a fisher-tropsch product
JP2006028493A (ja) 2004-06-16 2006-02-02 Idemitsu Kosan Co Ltd 予混合圧縮自己着火式エンジン用燃料油組成物
CN1322924C (zh) * 2004-07-29 2007-06-27 中国石油化工股份有限公司 烃类裂化催化剂及其制备方法
CN100389177C (zh) * 2005-01-31 2008-05-21 中国石油化工股份有限公司 一种重油催化裂化催化剂及其制备方法
EP1794264B1 (en) * 2004-09-08 2020-05-27 Shell International Research Maatschappij B.V. Hydrocracking catalyst composition
JP4630028B2 (ja) 2004-09-15 2011-02-09 石油コンビナート高度統合運営技術研究組合 燃料組成物
JP4482470B2 (ja) 2004-10-12 2010-06-16 コスモ石油株式会社 軽油組成物の製造方法
AR052122A1 (es) * 2004-11-05 2007-03-07 Grace W R & Co Catalizadores para olefinas livianas y glp gas licuado de petroleo en unidades de craqueo catalitico fluidizado
MX2008000259A (es) 2005-07-04 2008-03-11 Neste Oil Oyj Proceso para la fabricacion de hidrocarburos de la clase del diesel.
HUE025942T2 (en) 2005-07-04 2016-05-30 Neste Oil Oyj A method for producing hydrocarbons in the form of diesel fuels
JP2007154151A (ja) * 2005-11-11 2007-06-21 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法
KR101234448B1 (ko) 2005-11-14 2013-02-18 에스케이이노베이션 주식회사 탄화수소 혼합물로부터 방향족 탄화수소 및 액화석유가스를제조하는 공정
CA2539231C (en) 2006-03-10 2013-08-13 Baojian Shen Catalyst composition for treating heavy feedstocks
CN101134913B (zh) * 2006-08-31 2011-05-18 中国石油化工股份有限公司 一种烃类催化转化方法
JP5054487B2 (ja) 2006-11-13 2012-10-24 Jx日鉱日石エネルギー株式会社 軽油組成物
JP2008214369A (ja) 2007-02-28 2008-09-18 Showa Shell Sekiyu Kk ディーゼルエンジン用燃料組成物
JP5178033B2 (ja) 2007-03-28 2013-04-10 Jx日鉱日石エネルギー株式会社 C重油組成物の製造方法
JP5154817B2 (ja) 2007-03-30 2013-02-27 Jx日鉱日石エネルギー株式会社 軽油基材および軽油組成物
CN101279287B (zh) * 2007-04-04 2011-07-13 中国石油化工股份有限公司 用于催化裂解制烯烃的催化剂
ITMI20071610A1 (it) 2007-08-03 2009-02-04 Eni Spa Processo integrato di cracking catalitico fluido per ottenere miscele idrocarburiche con elevate qualita' come carburante
CN101376823B (zh) 2007-08-31 2012-07-18 中国石油化工股份有限公司 一种石脑油催化重整方法
JP5507043B2 (ja) 2007-09-27 2014-05-28 出光興産株式会社 燃料油組成物
BRPI0817309A2 (pt) 2007-09-28 2015-03-17 Japan Oil Gas And Metlas Nat Corp Método para a fabricação de nafta sintética
CN103934018B (zh) * 2007-10-31 2016-08-17 埃克森美孚化学专利公司 重芳烃加工催化剂及其使用方法
JP2009167257A (ja) 2008-01-11 2009-07-30 Japan Energy Corp 軽油組成物
JP5072034B2 (ja) 2008-03-25 2012-11-14 Jx日鉱日石エネルギー株式会社 C重油組成物の製造方法
JP2009235248A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法
JP2009235247A (ja) 2008-03-27 2009-10-15 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法
CN101570698B (zh) 2008-04-29 2013-09-04 中国石油化工股份有限公司 一种石脑油的催化转化方法
JP2010001462A (ja) 2008-05-19 2010-01-07 Cosmo Oil Co Ltd 石油系炭化水素の処理方法
FR2933987B1 (fr) 2008-07-18 2010-08-27 Inst Francais Du Petrole Procede d'hydrogenation du benzene
JP5317605B2 (ja) 2008-09-22 2013-10-16 Jx日鉱日石エネルギー株式会社 軽油組成物
KR101503069B1 (ko) 2008-10-17 2015-03-17 에스케이이노베이션 주식회사 유동층 접촉 분해 공정의 경질 사이클 오일로부터 고부가 방향족 및 올레핀을 제조하는 방법
EP2412786A4 (en) 2009-03-27 2012-10-17 Chiyoda Corp PROCESS FOR PRODUCING AROMATIC HYDROCARBON
MY183299A (en) 2009-03-27 2021-02-18 Jx Nippon Oil & Energy Corp Method for producing aromatic hydrocarbons
EP2450104A4 (en) 2009-06-30 2013-08-21 Jx Nippon Oil & Energy Corp CATALYST FOR PRODUCING MONOCYCLIC AROMATIC HYDROCARBONS, AND PROCESS FOR PRODUCING SAME
WO2011013272A1 (ja) 2009-07-29 2011-02-03 新日本石油株式会社 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
EP2527036A4 (en) 2010-01-20 2014-03-05 Jx Nippon Oil & Energy Corp CATALYST FOR USE IN THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS AND METHOD FOR THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS
US9827558B2 (en) 2010-01-20 2017-11-28 Jx Nippon Oil & Energy Corporation Catalyst for production of hydrocarbons and method of producing hydrocarbons
JP5491912B2 (ja) 2010-03-12 2014-05-14 Jx日鉱日石エネルギー株式会社 灯軽油基材とアルキルベンゼン類の製造方法
MY160824A (en) * 2010-03-26 2017-03-31 Jx Nippon Oil & Energy Corp Method for producing monocyclic aromatic hydrocarbons
JP5485088B2 (ja) 2010-09-14 2014-05-07 Jx日鉱日石エネルギー株式会社 芳香族炭化水素の製造方法
JP5535845B2 (ja) 2010-09-14 2014-07-02 Jx日鉱日石エネルギー株式会社 芳香族炭化水素の製造方法
JP2012139640A (ja) 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
JP5690624B2 (ja) * 2011-03-25 2015-03-25 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
JP5683342B2 (ja) 2011-03-25 2015-03-11 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
WO2012133138A1 (ja) 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
JP5868012B2 (ja) 2011-03-25 2016-02-24 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
US9828309B2 (en) 2011-05-24 2017-11-28 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
JP5744622B2 (ja) 2011-05-24 2015-07-08 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
JP5671412B2 (ja) * 2011-05-26 2015-02-18 Jx日鉱日石エネルギー株式会社 軽油組成物およびその製造方法
WO2012169651A1 (en) 2011-06-10 2012-12-13 Sumitomo Chemical Company, Limited Method for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms and apparatus for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184517A (ja) 1989-01-06 1990-07-19 Mobil Oil Corp ガロシリケートゼオライトベータ及びその製法及び触媒としての使用
JPH032128A (ja) 1989-05-30 1991-01-08 Idemitsu Kosan Co Ltd 単環芳香族含有炭化水素の製造方法
JPH0326791A (ja) 1989-06-23 1991-02-05 Idemitsu Kosan Co Ltd 炭化水素の製造方法
JPH0352993A (ja) 1989-07-21 1991-03-07 Idemitsu Kosan Co Ltd Btxに富む炭化水素の製造方法
JPH04504577A (ja) 1989-12-13 1992-08-13 モービル・オイル・コーポレイション C↓9+芳香族原料の接触転化方法
JPH06220466A (ja) * 1992-11-30 1994-08-09 Exxon Res & Eng Co 軽質オレフィンを製造する為の流動接触クラッキング方法
JP2008508084A (ja) * 2004-07-29 2008-03-21 中國石油化工股▲分▼有限公司 クラッキング触媒およびその製造方法
JP2008518778A (ja) * 2004-11-05 2008-06-05 エクソンモービル・ケミカル・パテンツ・インク 重質芳香族変換触媒組成物、及びその生産プロセス及びそれを用いるプロセス
JP2008138188A (ja) * 2006-11-07 2008-06-19 Japan Energy Corp 接触分解方法
JP2008297452A (ja) * 2007-05-31 2008-12-11 Japan Energy Corp アルキルベンゼン類の製造方法
JP2009073919A (ja) * 2007-09-20 2009-04-09 Nippon Oil Corp 重質石油類の流動接触分解方法
JP2010001463A (ja) * 2008-05-19 2010-01-07 Cosmo Oil Co Ltd 高オクタン価ガソリン基材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2527036A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809507B2 (en) 2009-06-30 2017-11-07 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
US9815750B2 (en) 2009-07-29 2017-11-14 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
WO2012091099A1 (ja) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
US9382484B2 (en) 2010-12-28 2016-07-05 Jx Nippon Oil & Energy Corporation Production method of monocyclic aromatic hydrocarbons
CN103121907B (zh) * 2011-11-18 2015-07-08 中国石油化工股份有限公司 多产二甲苯的多环芳烃转化为单环芳烃的方法
CN103121906B (zh) * 2011-11-18 2015-02-11 中国石油化工股份有限公司 稠环芳烃制取单环芳烃的方法
CN103121895A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 稠环芳烃制取单环芳烃方法
CN103121906A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 稠环芳烃制取单环芳烃的方法
CN103121907A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 多产二甲苯的多环芳烃转化为单环芳烃的方法
CN103121896A (zh) * 2011-11-18 2013-05-29 中国石油化工股份有限公司 多环芳烃转化为单环芳烃的方法
WO2013150845A1 (ja) * 2012-04-03 2013-10-10 株式会社明電舎 低級炭化水素芳香族化触媒及び低級炭化水素芳香族化触媒の製造方法
JP2013212469A (ja) * 2012-04-03 2013-10-17 Meidensha Corp 低級炭化水素芳香族化触媒及び低級炭化水素芳香族化触媒の製造方法
CN104220164A (zh) * 2012-04-03 2014-12-17 株式会社明电舍 低级烃芳构化催化剂和生产低级烃芳构化催化剂的方法
JP2018510763A (ja) * 2015-02-04 2018-04-19 エクソンモービル・ケミカル・パテンツ・インク 触媒組成物および重質芳香族転化プロセスでの使用

Also Published As

Publication number Publication date
US20130030232A1 (en) 2013-01-31
EP2527036A1 (en) 2012-11-28
KR101790368B1 (ko) 2017-10-25
US10087376B2 (en) 2018-10-02
KR20120123423A (ko) 2012-11-08
CN102811814B (zh) 2014-10-15
JPWO2011090121A1 (ja) 2013-05-23
JP2016128167A (ja) 2016-07-14
JP6147376B2 (ja) 2017-06-14
CN102811814A (zh) 2012-12-05
EP2527036A4 (en) 2014-03-05
US20150322352A1 (en) 2015-11-12
JP5919587B2 (ja) 2016-05-18
BR112012018012A2 (pt) 2016-05-03

Similar Documents

Publication Publication Date Title
JP6147376B2 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
JP4740396B2 (ja) 芳香族炭化水素の製造方法
KR101714805B1 (ko) 단환 방향족 탄화수소 제조용 촉매 및 단환 방향족 탄화수소의 제조 방법
CN103282119B (zh) 单环芳香族烃制造用催化剂及单环芳香族烃的制造方法
JP5868012B2 (ja) 単環芳香族炭化水素の製造方法
WO2011013272A1 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
JP5919586B2 (ja) 炭化水素製造用触媒および炭化水素の製造方法
WO2018016397A1 (ja) 低級オレフィン及び炭素数6~8の単環芳香族炭化水素の製造方法、低級オレフィン及び炭素数6~8の単環芳香族炭化水素の製造装置
WO2012091100A1 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
JP5813853B2 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
JP5587761B2 (ja) 単環芳香族炭化水素の製造方法
JP5750434B2 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014489.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011505307

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011734727

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6514/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127021322

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13522867

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012018012

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012018012

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120719