WO2012091099A1 - 単環芳香族炭化水素の製造方法 - Google Patents

単環芳香族炭化水素の製造方法 Download PDF

Info

Publication number
WO2012091099A1
WO2012091099A1 PCT/JP2011/080417 JP2011080417W WO2012091099A1 WO 2012091099 A1 WO2012091099 A1 WO 2012091099A1 JP 2011080417 W JP2011080417 W JP 2011080417W WO 2012091099 A1 WO2012091099 A1 WO 2012091099A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
mass
monocyclic aromatic
crystalline aluminosilicate
aromatic hydrocarbon
Prior art date
Application number
PCT/JP2011/080417
Other languages
English (en)
French (fr)
Inventor
柳川 真一朗
小林 正英
泰之 岩佐
領二 伊田
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to EP11853615.0A priority Critical patent/EP2660227B1/en
Priority to US13/976,701 priority patent/US9382484B2/en
Publication of WO2012091099A1 publication Critical patent/WO2012091099A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/68Aromatisation of hydrocarbon oil fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/703MRE-type, e.g. ZSM-48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7042TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7046MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • B01J35/60
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • the present invention relates to a method for producing monocyclic aromatic hydrocarbons for producing monocyclic aromatic hydrocarbons from oils rich in polycyclic aromatic hydrocarbons.
  • This application claims priority based on Japanese Patent Application No. 2010-294186 for which it applied to Japan on December 28, 2010, and uses the content here.
  • LCO Light cycle oil
  • a fluid catalytic cracker contains a large amount of polycyclic aromatic hydrocarbons and has been utilized as a light oil or heavy oil.
  • LCO can be used as a high-octane gasoline base material or petrochemical raw material, and high value-added monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms (for example, benzene, toluene, xylene, ethylbenzene, etc.) are obtained. It is being considered.
  • Patent Documents 1 to 3 propose a method for producing monocyclic aromatic hydrocarbons from polycyclic aromatic hydrocarbons contained in a large amount in LCO or the like using a zeolite catalyst.
  • a zeolite catalyst for example, zeolitic zeolitic zeolitic zeolitic zeolitic zeolitic zeolitic zeolitic zeolitic zeolitic zeolitic zeolitic zeolitic microporous aluminum silicates, zeolitic microporous aluminum silicates, zeolitic microporous aluminum silicates, zeolitic microporous aluminum silicates, zeolitic microporous aluminum silicates, zeolitic microporous aluminum silicates, zeolitic microporous zeolitic microporous alumilicate zeolitic microporous zeolitic microporous alumilicate zeolitic microporous alumilicates, zeolitic microporous zeoli
  • a method for improving hydrothermal stability a method using a zeolite having a high Si / Al ratio, a method of stabilizing a catalyst by hydrothermal treatment in advance, such as a USY type zeolite, a method of adding phosphorus to the zeolite, A method of adding a rare earth metal, a method of improving a structure directing agent at the time of zeolite synthesis, and the like are known.
  • the addition of phosphorus is known not only to improve hydrothermal stability but also to improve the selectivity by suppressing carbonaceous precipitation in fluid catalytic cracking, and to improve the abrasion resistance of the binder. Is often applied.
  • Patent Document 4 discloses a method for producing an olefin from naphtha using a catalyst containing ZSM-5 to which phosphorus, gallium, germanium, and tin are added.
  • Patent Document 4 by adding phosphorus, the generation of methane and aromatics is suppressed to increase the selectivity of olefin production, and high activity is ensured even with a short contact time, thereby increasing the yield of olefins. It is aimed.
  • Patent Document 5 discloses that a catalyst including phosphorus supported on ZSM-5 containing zirconium and rare earth and a catalyst containing USY zeolite, REY zeolite, kaolin, silica, and alumina are used to produce olefins from heavy hydrocarbons in high yield.
  • a method of manufacturing is disclosed.
  • Patent Document 6 discloses a method for producing ethylene and propylene in high yields by converting hydrocarbons using a catalyst containing ZSM-5 carrying phosphorus and a transition metal.
  • Patent Documents 4 to 6 all of which are mainly aimed at improving the yield of olefins, and are monocyclic aromatic carbonization having 6 to 8 carbon atoms. Hydrogen could not be produced in high yield.
  • Table 2 of Patent Document 6 describes the yields of olefins (ethylene, propylene) and BTX (benzene, toluene, xylene), whereas the yield of olefins is 40% by mass, The yield of BTX was as low as about 6% by mass.
  • An object of the present invention is to provide a method for producing a monocyclic aromatic hydrocarbon capable of producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms in a high yield from a raw material oil containing a polycyclic aromatic hydrocarbon. To do.
  • the gallium and / or zinc content contained in the crystalline aluminosilicate is 0.05 to 2.0 mass% with respect to the crystalline aluminosilicate.
  • the method for producing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms according to [1].
  • the content of gallium and / or zinc with respect to the total weight of the catalyst in the monocyclic aromatic hydrocarbon production catalyst can be reduced as compared with the conventional method. Therefore, the manufacturing cost of the catalyst can be greatly reduced.
  • monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms can be produced from raw material oils containing polycyclic aromatic hydrocarbons with high yield. Further, when the catalyst according to the present invention is used in a fluidized bed, it is easy to add the first catalyst and the second catalyst at arbitrary ratios depending on the properties of the raw material oil and the deterioration of the catalyst activity, thereby maintaining the catalyst activity. Improvement is possible.
  • the catalyst for producing monocyclic aromatic hydrocarbons used in this embodiment is a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms (hereinafter referred to as “monocyclic”) from a feedstock containing polycyclic aromatic hydrocarbons and saturated hydrocarbons.
  • the crystalline aluminosilicate contained in the first catalyst or the second catalyst used in the present embodiment is not particularly limited, but for example, pentasil type zeolite and medium pore zeolite are preferable.
  • the medium pore zeolite is preferably a zeolite having a crystal structure of MFI, MEL, TON, MTT, MRE, FER, AEL, EUO type, and since the yield of monocyclic aromatic hydrocarbons is higher, the MFI type and Zeolite having a crystal structure of the MEL type is particularly preferred. Zeolite of MFI type, MEL type, etc.
  • the content of the crystalline aluminosilicate in the first catalyst or the second catalyst is preferably 10 to 95% by mass, more preferably 20 to 80% by mass, and more preferably 25 to 70% by mass when the total catalyst is 100% by mass. Particularly preferred.
  • the content of the crystalline aluminosilicate is 10% by mass or more and 95% by mass or less, sufficiently high catalytic activity can be obtained.
  • gallium or zinc is incorporated into the lattice skeleton of crystalline aluminosilicate (crystalline aluminogallosilicate and / or crystalline alumino Zinc silicate), crystalline aluminosilicate with gallium supported (gallium-supported crystalline aluminosilicate) and / or crystalline aluminosilicate with zinc supported (zinc-supported crystalline aluminosilicate), both Can be mentioned.
  • the crystalline aluminogallosilicate has a structure in which the SiO 4 , AlO 4, and GaO 4 structures have tetrahedral coordination in the skeleton.
  • the crystalline aluminodine silicate has a structure in which the SiO 4 , AlO 4, and ZnO 4 structures have tetrahedral coordination in the skeleton.
  • crystalline aluminogallosilicate and / or crystalline aluminodine silicate can be obtained by, for example, gel crystallization by hydrothermal synthesis, a method of inserting gallium and / or zinc into the lattice skeleton of crystalline aluminosilicate, or crystalline alumino It is obtained by a method of inserting aluminum into the lattice skeleton of gallosilicate and / or crystalline aluminodine silicate.
  • Gallium-supporting crystalline aluminosilicate and / or zinc-supporting crystalline aluminosilicate is obtained by supporting gallium and / or zinc on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method.
  • the gallium source or zinc source used in that case is not particularly limited, and examples thereof include gallium salts such as gallium nitrate and gallium chloride, gallium oxide and the like, zinc salts such as zinc nitrate and zinc chloride, and zinc oxide.
  • the content of gallium and / or zinc in the first catalyst used in the present embodiment is 0.05 to 2.0% by mass when the total mass of the crystalline aluminosilicate in the first catalyst is 100% by mass. It is preferable. Furthermore, the lower limit is more preferably 0.1% by mass or more, the upper limit is more preferably 1.6% by mass, and particularly preferably 1.0% by mass or less.
  • the content of gallium supported on the crystalline aluminosilicate in the first catalyst is 0.05% by mass or more, a decrease in the yield of monocyclic aromatic hydrocarbons over time can be prevented, and 2.0% by mass By being below, the yield of monocyclic aromatic hydrocarbons can be increased.
  • the content of gallium and / or zinc in the monocyclic aromatic hydrocarbon production catalyst used in this embodiment is 0.02 with respect to the total weight of the mixed catalyst (total mass of the first catalyst and the second catalyst). It is preferable that the content be ⁇ 1.0 mass%. Furthermore, the lower limit is more preferably 0.05% by mass or more, the upper limit is more preferably 0.9% by mass, and particularly preferably 0.8% by mass or less. When the content of gallium and / or zinc with respect to the total weight of the mixed catalyst is 0.02% by mass or more, a decrease in the yield of monocyclic aromatic hydrocarbons over time can be prevented, and the content is 1.0% by mass or less. Thus, the yield of monocyclic aromatic hydrocarbons can be increased.
  • the first catalyst used in the present embodiment may be a catalyst containing gallium and zinc alone or a catalyst containing both of them. In addition to gallium and / or zinc, other metals may be further contained.
  • the second catalyst used in the present embodiment is a catalyst that does not contain gallium and / or zinc.
  • the phosphorus content contained in the crystalline aluminosilicate in the first catalyst or the second catalyst used in the present embodiment when the total mass of the crystalline aluminosilicate in the first catalyst or the second catalyst is 100% by mass, The content is preferably 0.1 to 3.5% by mass. Furthermore, the lower limit is more preferably 0.2% by mass or more, the upper limit is more preferably 3.0% by mass, and particularly preferably 2.5% by mass or less. 2. When the phosphorus content in the crystalline aluminosilicate in the first catalyst or the second catalyst is 0.1% by mass or more, it is possible to prevent the yield of monocyclic aromatic hydrocarbons from decreasing over time. The yield of monocyclic aromatic hydrocarbons can be increased by being 5% by mass or less. In addition, the content of phosphorus contained in the crystalline aluminosilicate in the first catalyst or the second catalyst takes individual values within the specific range.
  • the method for incorporating phosphorus into the first catalyst or the second catalyst used in the present embodiment is not particularly limited, but for example, by an ion exchange method, an impregnation method, or the like, crystalline aluminosilicate, crystalline aluminogallosilicate, or A method in which a phosphorus compound is contained in a crystalline aluminosilicate and the phosphorus is supported on the crystalline aluminosilicate, a method in which a phosphorus compound is contained during zeolite synthesis and a part of the crystalline aluminosilicate framework is replaced with phosphorus, a zeolite synthesis And a method using a crystal accelerator sometimes containing phosphorus.
  • the phosphate ion-containing aqueous solution used at that time is not particularly limited, but was prepared by dissolving phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and other water-soluble phosphates in water at an arbitrary concentration. Can be preferably used.
  • the first catalyst used in the present embodiment calcinates crystalline aluminogallosilicate containing phosphorus, crystalline aluminosilicate, or crystalline aluminosilicate carrying gallium / zinc and phosphorus (calcination temperature 300). To 900 ° C.).
  • the second catalyst used in the present embodiment is obtained by firing (calcining temperature 300 to 900 ° C.) the crystalline aluminosilicate containing phosphorus as described above.
  • the first catalyst or the second catalyst used in the present embodiment is, for example, in the form of powder, granules, pellets, etc. according to the reaction format.
  • a fluidized bed it is in the form of powder, and in the case of a fixed bed, it is in the form of particles or pellets.
  • the average particle size of the catalyst used in the fluidized bed is preferably 30 to 180 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the bulk density of the catalyst used in the fluidized bed is preferably 0.4 to 1.8 g / cc, more preferably 0.5 to 1.0 g / cc.
  • the average particle size represents a particle size of 50% by mass in the particle size distribution obtained by classification with a sieve, and the bulk density is a value measured by the method of JIS standard R9301-2-3.
  • an inert oxide as a binder or the like may be blended with a crystalline aluminosilicate or catalyst, and then molded using various molding machines.
  • the method for forming the monocyclic aromatic hydrocarbon production catalyst used in the present embodiment is not particularly limited, but even if the first catalyst and the second catalyst are individually molded, the first catalyst and the first catalyst are mixed together. A mixture with two catalysts may be formed.
  • the 1st catalyst or the 2nd catalyst used by this embodiment contains inorganic oxides, such as a binder
  • the first catalyst or the second catalyst contains an inorganic oxide such as a binder
  • the first catalyst or the second catalyst is added by adding gallium and / or zinc or phosphorus after mixing the binder and the crystalline aluminosilicate. Even when the catalyst is produced, after mixing the binder and the like with the gallium and / or zinc-supporting crystalline aluminosilicate, or after mixing the binder and the crystalline aluminogallosilicate and / or the crystalline aluminosilicate. May be added to produce the first catalyst or the second catalyst.
  • the mixed catalyst which mixed the 1st catalyst and the 2nd catalyst contain inorganic oxides, such as a binder.
  • the inorganic oxide such as a binder include silica, alumina, zirconia, titania, or a mixture thereof.
  • the binder may be 10 to 80% by mass with respect to the total weight of the mixed catalyst (total mass of the first catalyst and the second catalyst). The content is preferably 25 to 75% by mass.
  • the binder content in the first catalyst or the second catalyst takes individual values within the specific range.
  • the phosphorus content is 0.1 to 10 with respect to the total weight of the mixed catalyst (the total mass of the first catalyst and the second catalyst).
  • the lower limit is more preferably 0.2% by mass or more
  • the upper limit is more preferably 9% by mass or less, and particularly preferably 8% by mass or less.
  • the content of the first catalyst in the monocyclic aromatic hydrocarbon production catalyst used in the present embodiment is 2.0 to 98 mass% with respect to the total weight of the mixed catalyst (total mass of the first catalyst and the second catalyst). It is preferable that Furthermore, the lower limit is more preferably 4% by mass or more, the upper limit is more preferably 95% by mass, further preferably 80% by mass or less, and particularly preferably 65% by mass or less.
  • the content of the first catalyst with respect to the total weight of the mixed catalyst is 2.0% by mass or more, a decrease in the yield of monocyclic aromatic hydrocarbons with time can be prevented, and when the content is 98% by mass or less, The yield of cyclic aromatic hydrocarbons can be increased.
  • the content of the second catalyst is preferably 2 to 98% by mass with respect to the total weight of the mixed catalyst (total mass of the first catalyst and the second catalyst).
  • the upper limit is more preferably 96% by mass
  • the lower limit is more preferably 5% by mass or more, further preferably 20% by mass or more, and particularly preferably 35% by mass or more. If the content of the second catalyst is 2% by mass or more, a decrease in the yield of monocyclic aromatic hydrocarbons over time can be prevented, and if it is 98% by mass or less, the yield of monocyclic aromatic hydrocarbons is increased. it can.
  • the method for producing a monocyclic aromatic hydrocarbon is a method in which a raw material oil is brought into contact with the catalyst for producing a monocyclic aromatic hydrocarbon and reacted. In this reaction, by bringing the feedstock into contact with the acid point of the catalyst, polycyclic aromatic hydrocarbons are opened by various reactions such as decomposition, dehydrogenation, cyclization, hydrogen transfer, etc. It is a method to convert to hydrocarbon.
  • the feedstock oil used in the present embodiment is an oil having a 10 vol% distillation temperature of 140 ° C or higher and a 90 vol% distillation temperature of 380 ° C or lower.
  • An oil having a 10% by volume distillation temperature of less than 140 ° C. produces BTX from a light oil, which is not suitable for the gist of the present embodiment, and is preferably 140 ° C. or higher, more preferably 150 ° C. or higher.
  • a feed oil having a 90% by volume distillation temperature of the feed oil exceeding 380 ° C. is used, the amount of coke deposited on the catalyst tends to increase, causing a rapid decrease in catalyst activity.
  • the 90% by volume distillation temperature of the oil is preferably 380 ° C or lower, and more preferably 360 ° C or lower.
  • the 10 volume% distillation temperature, 90 volume% distillation temperature, and end point mentioned here are values measured in accordance with JIS K2254 “Petroleum products—distillation test method”. Examples of the feed oil having a 10% by volume distillation temperature of 140 ° C. or more and a 90% by volume distillation temperature of 380 ° C.
  • cracked light oil LCO
  • coal liquefied oil heavy oil hydrogen produced by a fluid catalytic cracking device
  • examples include hydrocracked refined oil, straight-run kerosene, straight-run light oil, coker kerosene, coker light oil, and oil sand hydrocracked refined oil, and more preferably include cracked light oil (LCO) produced by a fluid catalytic cracker.
  • LCO cracked light oil
  • the feedstock oil contains a large amount of polycyclic aromatic hydrocarbons, the yield of monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms decreases, so the content of polycyclic aromatic hydrocarbons in the feedstock oil ( The polycyclic aromatic content) is preferably 50% by volume or less, and more preferably 30% by volume or less.
  • the polycyclic aromatic content referred to here is the content of bicyclic aromatic hydrocarbons measured according to JPI-5S-49 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method” ( 2 ring aromatic content) and the total value of the aromatic hydrocarbon content of 3 or more rings (aromatic content of 3 or more rings).
  • reaction format Examples of the reaction mode when the raw material oil is brought into contact with and reacted with the catalyst for producing a monocyclic aromatic hydrocarbon include a fixed bed, a moving bed, and a fluidized bed.
  • a fluidized bed capable of continuously removing the coke component adhering to the catalyst and capable of performing the reaction stably is preferable.
  • the reactor and the regenerator A continuous regenerative fluidized bed is particularly preferred in which the catalyst circulates between them and the reaction-regeneration can be repeated continuously.
  • the raw material oil in contact with the catalyst is preferably in a gas phase. Moreover, you may dilute a raw material with gas as needed. Moreover, when unreacted raw materials are generated, they may be recycled as necessary.
  • reaction temperature when the raw material oil is brought into contact with and reacted with the catalyst for producing monocyclic aromatic hydrocarbons is not particularly limited, but is preferably 350 to 700 ° C.
  • the lower limit is more preferably 450 ° C. or higher because sufficient reaction activity can be obtained.
  • the upper limit is more preferably 650 ° C. or lower because it is advantageous in terms of energy and can easily regenerate the catalyst.
  • reaction pressure when the raw material oil is brought into contact with and reacted with the catalyst for producing a monocyclic aromatic hydrocarbon is preferably 1.5 MPaG or less, and more preferably 1.0 MPaG or less. When the reaction pressure is 1.5 MPaG or less, by-product of light gas can be prevented and the pressure resistance of the reaction apparatus can be lowered.
  • the lower limit of the reaction pressure is not particularly limited, but normal pressure or higher is preferable from the viewpoint of cost and the like.
  • the contact time between the feedstock and the monocyclic aromatic hydrocarbon production catalyst is not particularly limited as long as the desired reaction proceeds.
  • the gas passage time on the catalyst is preferably 1 to 300 seconds, Further, the lower limit is more preferably 5 seconds or more, and the upper limit is more preferably 150 seconds or less. If the contact time is 1 second or longer, the reaction can be performed reliably, and if the contact time is 300 seconds or shorter, accumulation of carbonaceous matter in the catalyst due to coking or the like can be suppressed. Or the generation amount of the light gas by decomposition
  • polycyclic aromatic hydrocarbons are produced by various reactions such as decomposition, dehydrogenation, cyclization, hydrogen transfer, etc. by bringing the feedstock oil into contact with the acid sites of the catalyst.
  • the hydrocarbon is opened to obtain a monocyclic aromatic hydrocarbon.
  • the yield of monocyclic aromatic hydrocarbons is preferably 15% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more. If the yield of monocyclic aromatic hydrocarbons is less than 15% by mass, the concentration of the target product in the product is low and the recovery efficiency is lowered, which is not preferable.
  • the gallium and / or zinc content relative to the total weight of the mixed catalyst can be reduced as compared with the conventional method. Manufacturing costs can be greatly reduced.
  • monocyclic aromatic hydrocarbons can be produced with high yield.
  • the catalyst according to the present embodiment is used in a fluidized bed, it is easy to add the first catalyst and the second catalyst at arbitrary ratios depending on the properties of the raw material oil and the deterioration of the activity of the catalyst. Maintenance improvement is possible.
  • the production method of the present embodiment includes a gallium and / or zinc containing a certain amount.
  • Example 1 [Preparation of First Catalyst-1] From 1706.1 g of sodium oxalate (J sodium silicate No. 3, SiO 2 : 28-30 mass%, Na: 9-10 mass%, balance water, manufactured by Nippon Chemical Industry Co., Ltd.) and 2227.5 g of water Solution (A), Al 2 (SO 4 ) 3 ⁇ 14 to 18H 2 O (special grade, Wako Pure Chemical Industries, Ltd.) 64.2 g, tetrapropylammonium bromide 369.2 g, H 2 SO 4 (97% by weight) of 152.1 g, NaCl (326.6 g), and 2975.7 g of water (B) were prepared.
  • sodium oxalate J sodium silicate No. 3, SiO 2 : 28-30 mass%, Na: 9-10 mass%, balance water, manufactured by Nippon Chemical Industry Co., Ltd.
  • water Solution (A) Al 2 (SO 4 ) 3 ⁇ 14 to 18H 2 O (special grade, Wako Pure Chemical Industries
  • the solution (B) was gradually added to the solution (A) while stirring the solution (A) at room temperature.
  • the resulting mixture was vigorously stirred with a mixer for 15 minutes to break up the gel into a milky homogeneous fine state.
  • this mixture was put into a stainless steel autoclave, and a crystallization operation was performed under a self-pressure under conditions of a temperature of 165 ° C., a time of 72 hours, and a stirring speed of 100 rpm.
  • the product was filtered to recover the solid product, and washing and filtration were repeated 5 times using about 5 liters of deionized water.
  • the solid substance obtained by filtration was dried at 120 ° C., and further calcined at 550 ° C. for 3 hours under air flow.
  • the obtained fired product was confirmed to have an MFI structure.
  • the fluorescent X-ray analysis (model name: Rigaku ZSX101e) by, SiO 2 / Al 2 O 3 ratio (molar ratio) was 64.8.
  • the aluminum element contained in the lattice skeleton calculated from this result was 1.32% by mass.
  • a 30% by mass ammonium nitrate aqueous solution was added at a rate of 5 mL per 1 g of the obtained fired product, heated and stirred at 100 ° C. for 2 hours, filtered, and washed with water. This operation was repeated 4 times, followed by drying at 120 ° C. for 3 hours to obtain an ammonium type crystalline aluminosilicate. Thereafter, baking was performed at 780 ° C. for 3 hours to obtain a proton-type crystalline aluminosilicate.
  • 120 g of the obtained proton-type crystalline aluminosilicate was impregnated with 120 g of an aqueous gallium nitrate solution so that 0.1% by mass (a value obtained when the total mass of the crystalline aluminosilicate was 100% by mass) was supported, Dry at 120 ° C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained the gallium carrying
  • the obtained first catalyst-1 and second catalyst were each formed into a tablet by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and a granular catalyst. After that, mixing is performed so that the content of the first catalyst-1 is 50.0% by mass with respect to the total weight of the mixed catalyst (total mass of the first catalyst and the second catalyst). Obtained.
  • the gallium content (average gallium content) relative to the total weight of the catalyst 1 (total mass of the first catalyst and the second catalyst) was 0.05% by mass.
  • Example 2 Preparation of First Catalyst-2
  • a gallium-supporting crystalline aluminosilicate in which 0.2% by mass of gallium is supported on a proton-type crystalline aluminosilicate, 0.7% by mass (total crystalline aluminosilicate
  • the first catalyst was prepared in the same manner as in Example 1 except that the concentration of the diammonium hydrogen phosphate aqueous solution was adjusted so that phosphorus having a mass of 100% by mass was supported and impregnated with 30 g of the aqueous solution. -2 was obtained.
  • the content of the first catalyst-2 is 25.0% by mass with respect to the total weight of the mixed catalyst (total mass of the first catalyst and the second catalyst).
  • a granular catalyst 2 was obtained in the same manner as in Example 1 except that mixing was performed as described above.
  • the gallium content (average gallium content) relative to the total weight of the catalyst 2 (total mass of the first catalyst and the second catalyst) was 0.05% by mass.
  • Example 3 Preparation of First Catalyst-3
  • a gallium-supporting crystalline aluminosilicate in which 0.8% by mass of gallium is supported on a proton-type crystalline aluminosilicate, 0.7% by mass (total amount of crystalline aluminosilicate) is obtained.
  • the first catalyst was prepared in the same manner as in Example 1 except that the concentration of the diammonium hydrogen phosphate aqueous solution was adjusted so that phosphorus having a mass of 100% by mass was supported and impregnated with 30 g of the aqueous solution. -3 was obtained.
  • the content of the first catalyst-3 is 20.0% by mass with respect to the total weight of the mixed catalyst (total mass of the first catalyst and the second catalyst).
  • a granular catalyst 3 was obtained in the same manner as in Example 1 except that mixing was performed.
  • the gallium content (average gallium content) relative to the total weight of the catalyst 3 (total mass of the first catalyst and the second catalyst) was 0.16% by mass.
  • Example 4 Preparation of First Catalyst-4
  • a gallium-supporting crystalline aluminosilicate in which 1.5% by mass of gallium is supported on a proton-type crystalline aluminosilicate, 0.7% by mass (total crystalline aluminosilicate)
  • the first catalyst was prepared in the same manner as in Example 1 except that the concentration of the diammonium hydrogen phosphate aqueous solution was adjusted so that phosphorus having a mass of 100% by mass was supported and impregnated with 30 g of the aqueous solution. -4 was obtained.
  • [Preparation of catalyst 4] The obtained first catalyst and the second catalyst were mixed so that the content of the first catalyst-4 was 10.0% by mass with respect to the total weight of the mixed catalyst (total mass of the first catalyst and the second catalyst). Except for mixing, granular catalyst 4 was obtained in the same manner as in Example 1. The gallium content (average gallium content) relative to the total weight of the catalyst 4 (total mass of the first catalyst and the second catalyst) was 0.15% by mass.
  • Example 5 [Preparation of catalyst 5] The first catalyst-4 and the second catalyst are mixed so that the content of the first catalyst-4 is 50.0% by mass with respect to the total weight of the mixed catalyst (total mass of the first catalyst and the second catalyst). Except for mixing, granular catalyst 5 was obtained in the same manner as in Example 1. The gallium content (average gallium content) relative to the total weight of the catalyst 5 (total mass of the first catalyst and the second catalyst) was 0.75% by mass.
  • Example 6 [Preparation of First Catalyst-5] 120 g of proton-type crystalline aluminosilicate was impregnated with 120 g of zinc nitrate hexahydrate aqueous solution so that 0.2% by mass of zinc (a value in which the total mass of crystalline aluminosilicate was 100% by mass) was supported, Dry at 120 ° C. Then, it baked at 780 degreeC under air circulation for 3 hours, and obtained zinc carrying crystalline aluminosilicate.
  • the first catalyst-1 was tableted by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and granular catalyst 8 was obtained.
  • the gallium content (average gallium content) relative to the total weight of the catalyst 8 was 0.1% by mass.
  • the first catalyst-3 was tableted by applying a pressure of 39.2 MPa (400 kgf), coarsely pulverized to a size of 20 to 28 mesh, and granular catalyst 10 was obtained.
  • the gallium content (average gallium content) relative to the total weight of the catalyst 10 was 0.8 mass%.
  • the catalytic activities of the obtained catalysts 1 to 12 were evaluated as follows.
  • the measured values of BTX yield and LPG yield of each catalyst were 31 mass% and 5 mass% for catalyst 1, 34 mass% and 4 mass% for catalyst 2, 32 mass% and 4 mass% for catalyst 3, respectively.
  • Catalyst 4 is 31% by mass, 4% by mass
  • Catalyst 5 is 27% by mass, 3% by mass
  • Catalyst 6 is 33% by mass, 6% by mass
  • Catalyst 7 is 29% by mass, 7% by mass
  • Catalyst 8 is 31% by mass.
  • Table 2 The calculated values in Table 2 are calculated from the BTX yield and LPG yield of each of the first catalyst and the second catalyst used in the preparation of the catalysts 1 to 6 in the examples, and the mixing ratio of the first catalyst and the second catalyst. It is the value.
  • the formula is shown below.
  • BTX yield (mass%) BTX yield of the first catalyst (before mixing) (mass%) ⁇ mixing ratio of the first catalyst to the total weight of the mixed catalyst + BTX yield of the second catalyst (before mixing) (mass%) ) ⁇ mixing ratio of the second catalyst with respect to the total weight of the mixed catalyst (1)
  • LPG yield (% by mass) LPG yield of the first catalyst (before mixing) (% by mass) ⁇ mixing ratio of the first catalyst to the total weight of the mixed catalyst + LPG yield of the second catalyst (before mixing) (% by mass) ) ⁇ mixing ratio of the second catalyst with respect to the total weight of the mixed catalyst (2)
  • the increase rate is a 100 fraction of the ratio obtained by dividing the measured values of BTX yield and LPG yield when the catalysts 1 to 6 of the examples are used by the corresponding calculated values.

Abstract

 この単環芳香族炭化水素の製造方法では、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油を、ガリウムおよび/または亜鉛とリンとを含有する結晶性アルミノシリケートを含む第1触媒と、リンを含有する結晶性アルミノシリケートを含む第2触媒との混合物からなる単環芳香族炭化水素製造用触媒に接触させる。

Description

単環芳香族炭化水素の製造方法
 本発明は、多環芳香族炭化水素を多く含む油から単環芳香族炭化水素を製造するための単環芳香族炭化水素の製造方法に関する。
 本願は、2010年12月28日に、日本に出願された特願2010-294186号に基づき優先権を主張し、その内容をここに援用する。
 流動接触分解装置で生成する分解軽油であるライトサイクル油(以下、「LCO」という。)は、多環芳香族炭化水素を多く含み、軽油または重油として利用されていた。しかし、近年、LCOから、高オクタン価ガソリン基材や石油化学原料として利用でき、付加価値の高い炭素数6~8の単環芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等)を得ることが検討されている。
 例えば、特許文献1~3では、ゼオライト触媒を用いて、LCO等に多く含まれる多環芳香族炭化水素から単環芳香族炭化水素を製造する方法が提案されている。
 しかしながら、特許文献1~3に記載の方法では、炭素数6~8の単環芳香族炭化水素の収率が充分に高いとは言えなかった。
 多環芳香族炭化水素を含む重質の原料油から単環芳香族炭化水素を製造する際には、触媒上に炭素質が多く析出し、活性低下が速いため、炭素質を除去する触媒再生を高頻度で行う必要がある。また、効率的に反応-触媒再生を繰り返すプロセスである循環流動床を採用する場合には、触媒再生温度を反応温度より高温にする必要があり、触媒の温度環境はより厳しくなる。
 このような厳しい条件下において、触媒としてゼオライト触媒を用いる場合には、触媒の水熱劣化が進行して経時的に反応活性が低下するため、触媒の水熱安定性の向上が求められる。しかし、特許文献1~3に記載のゼオライト触媒では、水熱安定性を向上させる対策が採られておらず、実用的な利用価値は著しく低いものであった。
 水熱安定性を向上させる方法としては、Si/Al比が高いゼオライトを用いる方法、USY型ゼオライトのように予め触媒を水熱処理して安定化させる方法、ゼオライトにリンを添加する方法、ゼオライトに希土類金属を添加する方法、ゼオライト合成時の構造規定剤を改良する方法などが知られている。
 これらのうち、リンの添加は、水熱安定性向上だけでなく、流動接触分解における炭素質析出抑制による選択性向上、バインダーの耐摩耗性向上などの効果も知られ、接触分解反応用の触媒に対してはしばしば適用されている。
 ゼオライトにリンを添加した接触分解用の触媒については、例えば、特許文献4~6に開示されている。
 すなわち、特許文献4には、リン、ガリウム、ゲルマニウム、スズが添加されたZSM-5を含む触媒を用いて、ナフサからオレフィンを製造する方法が開示されている。特許文献4では、リンを添加することにより、メタンや芳香族の生成を抑制してオレフィン生成の選択率を高め、しかも短い接触時間でも高い活性を確保して、オレフィンの収率を高めることを目的としている。
 特許文献5には、ジルコニウムと希土類を含有するZSM-5にリンを担持した触媒とUSYゼオライト、REYゼオライト、カオリン、シリカおよびアルミナを含む触媒を用い、重質炭化水素からオレフィンを高い収率で製造する方法が開示されている。
 特許文献6には、リンおよび遷移金属を担持したZSM-5を含有する触媒を用いて炭化水素を変換して、エチレン、プロピレンを高い収率で製造する方法が開示されている。
 上記のように、ゼオライトにリンを添加することについては特許文献4~6に開示されているが、いずれもオレフィン収率の向上が主たる目的であり、炭素数6~8の単環芳香族炭化水素を高い収率で製造することはできなかった。例えば、特許文献6の表2には、オレフィン(エチレン、プロピレン)およびBTX(ベンゼン、トルエン、キシレン)の収率が記載されているが、オレフィンの収率が40質量%であるのに対し、BTXの収率は6質量%程度と低いものであった。
 したがって、多環芳香族炭化水素を含む原料油からの炭素数6~8の単環芳香族炭化水素を高い収率で製造し、しかも経時的な単環芳香族炭化水素の収率の低下を防止できる単環芳香族炭化水素製造用触媒は知られていないのが実情であった。
特開平3-2128号公報 特開平3-52993号公報 特開平3-26791号公報 特表2002-525380号公報 特開2007-190520号公報 特表2007-530266号公報
 本発明は、多環芳香族炭化水素を含む原料油から高い収率で炭素数6~8の単環芳香族炭化水素を製造できる単環芳香族炭化水素の製造方法を提供することを目的とする。
[1]10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油を、ガリウムおよび/または亜鉛とリンとを含有する結晶性アルミノシリケートを含む第1触媒と、リンを含有する結晶性アルミノシリケートを含む第2触媒との混合物からなる単環芳香族炭化水素製造用触媒に接触させることを特徴とする炭素数6~8の単環芳香族炭化水素の製造方法。
[2]前記第1触媒において、前記結晶性アルミノシリケートに含まれるガリウムおよび/または亜鉛含有量が、前記結晶性アルミノシリケートに対して0.05~2.0質量%であることを特徴とする[1]に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
[3]前記単環芳香族炭化水素製造用触媒において、ガリウムおよび/または亜鉛含有量が触媒重量に対して0.02~1.0質量%であることを特徴とする[1]または[2]に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
[4]前記結晶性アルミノシリケートが、中細孔ゼオライトであることを特徴とする[1]から[3]のいずれか一項に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
[5]前記結晶性アルミノシリケートが、MFI型ゼオライトであることを特徴とする[1]から[4]のいずれか一項に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
[6]前記原料油が、流動接触分解装置で生成する分解軽油を含むことを特徴とする[1]から[5]のいずれか一項に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
[7]流動床反応装置にて前記原料油を前記単環芳香族炭化水素製造用触媒に接触させることを特徴とする[1]から[6]のいずれか一項に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
 本発明の炭素数6~8の単環芳香族炭化水素の製造方法によれば、単環芳香族炭化水素製造用触媒において、触媒全重量に対するガリウムおよび/または亜鉛含有量を従来よりも減らすことができるので、触媒の製造コストを大幅に削減することができる。また、多環芳香族炭化水素を含む原料油から高い収率で炭素数6~8の単環芳香族炭化水素を製造できる。さらに、流動床で本発明に係る触媒を用いる場合、原料油の性状や触媒の活性劣化に応じて、第1触媒、第2触媒をそれぞれ任意の比率で追加することが容易となり触媒活性の維持向上が可能となる。
 以下に本発明の、多環芳香族炭化水素を多く含む油から単環芳香族炭化水素を製造するための単環芳香族炭化水素の製造方法の一実施形態を示す。
(単環芳香族炭化水素製造用触媒)
 本実施形態で用いられる単環芳香族炭化水素製造用触媒は、多環芳香族炭化水素および飽和炭化水素を含む原料油から炭素数6~8の単環芳香族炭化水素(以下、「単環芳香族炭化水素」と略す。)を製造するためのものであり、ガリウムおよび/または亜鉛とリンとを含有する結晶性アルミノシリケートを含む第1触媒と、リンを含有する結晶性アルミノシリケートを含む第2触媒との混合物であり、以下「混合触媒」と略すこともある。
[結晶性アルミノシリケート]
 本実施形態で用いられる第1触媒または第2触媒に含まれる結晶性アルミノシリケートとしては、特に限定されないが、例えば、ペンタシル型ゼオライト、中細孔ゼオライトが好ましい。中細孔ゼオライトとしては、MFI、MEL、TON、MTT、MRE、FER、AEL、EUOタイプの結晶構造のゼオライトが好ましく、単環芳香族炭化水素の収率がより高くなることから、MFI型および/またはMEL型の結晶構造のゼオライトが特に好ましい。
 MFI型、MEL型等のゼオライトは、The Structure Commission of the International Zeolite Associationにより公表された種類の公知ゼオライト構造型に属する(Atlas of Zeolite Structure Types,W.M.Meiyer and D.H.Olson (1978).Distributed by Polycrystal Book Service,Pittsburgh,PA,USA)。
 第1触媒または第2触媒における結晶性アルミノシリケートの含有量は、触媒全体を100質量%とした際の10~95質量%が好ましく、20~80質量%がより好ましく、25~70質量%が特に好ましい。結晶性アルミノシリケートの含有量が10質量%以上かつ95質量%以下であれば、充分に高い触媒活性が得られる。
[ガリウム、亜鉛]
 本実施形態で用いられる第1触媒におけるガリウムおよび/または亜鉛含有の形態としては、結晶性アルミノシリケートの格子骨格内にガリウムまたは亜鉛が組み込まれたもの(結晶性アルミノガロシリケートおよび/または結晶性アルミノジンコシリケート)、結晶性アルミノシリケートにガリウムが担持されたもの(ガリウム担持結晶性アルミノシリケート)および/または結晶性アルミノシリケートに亜鉛が担持されたもの(亜鉛担持結晶性アルミノシリケート)、その両方を含んだものが挙げられる。
 結晶性アルミノガロシリケートは、SiO、AlOおよびGaO構造が骨格中において四面体配位をとる構造を有する。結晶性アルミノジンコシリケートは、SiO、AlOおよびZnO構造が骨格中において四面体配位をとる構造を有する。また、結晶性アルミノガロシリケートおよび/または結晶性アルミノジンコシリケートは、例えば、水熱合成によるゲル結晶化、結晶性アルミノシリケートの格子骨格中にガリウムおよび/または亜鉛を挿入する方法、または結晶性アルミノガロシリケートおよび/または結晶性アルミノジンコシリケートの格子骨格中にアルミニウムを挿入する方法により得られる。
 ガリウム担持結晶性アルミノシリケートおよび/または亜鉛担持結晶性アルミノシリケートは、結晶性アルミノシリケートにガリウムおよび/または亜鉛をイオン交換法、含浸法等の公知の方法によって担持したものである。その際に用いるガリウム源または亜鉛源としては、特に限定されないが、硝酸ガリウム、塩化ガリウム等のガリウム塩、酸化ガリウム等、または硝酸亜鉛、塩化亜鉛等の亜鉛塩、酸化亜鉛等が挙げられる。
 本実施形態で用いられる第1触媒におけるガリウムおよび/または亜鉛の含有量は、第1触媒における結晶性アルミノシリケートの総質量を100質量%とした場合、0.05~2.0質量%であることが好ましい。さらには、下限は0.1質量%以上がより好ましく、上限は1.6質量%であることがより好ましく、1.0質量%以下が特に好ましい。第1触媒における結晶性アルミノシリケートに担持されたガリウムの含有量が0.05質量%以上であることで、経時的な単環芳香族炭化水素の収率低下を防止でき、2.0質量%以下であることで、単環芳香族炭化水素の収率を高くできる。
 また、本実施形態で用いられる単環芳香族炭化水素製造用触媒におけるガリウムおよび/または亜鉛の含有量は、混合触媒全重量(第1触媒と第2触媒の総質量)に対して0.02~1.0質量%であることが好ましい。さらには、下限は0.05質量%以上がより好ましく、上限は0.9質量%であることがより好ましく、0.8質量%以下が特に好ましい。混合触媒全重量に対するガリウムおよび/または亜鉛の含有量が0.02質量%以上であることで、経時的な単環芳香族炭化水素の収率低下を防止でき、1.0質量%以下であることで、単環芳香族炭化水素の収率を高くできる。
 本実施形態で用いられる第1触媒は、ガリウム、亜鉛をおのおの単独で含有する触媒であっても、両方含有する触媒であっても構わない。また、ガリウムおよび/または亜鉛に加え、さらにその他の金属を含有しても構わない。
 一方、本実施形態で用いられる第2触媒は、ガリウムおよび/または亜鉛を含有しない触媒である。
[リン]
 本実施形態で用いられる第1触媒または第2触媒における結晶性アルミノシリケートに含まれるリンの含有量は、第1触媒または第2触媒における結晶性アルミノシリケートの総質量を100質量%とした場合、0.1~3.5質量%であることが好ましい。さらには、下限は0.2質量%以上がより好ましく、上限は3.0質量%であることがより好ましく、2.5質量%以下が特に好ましい。第1触媒または第2触媒における結晶性アルミノシリケートに含まれるリンの含有量が0.1質量%以上であることで、経時的な単環芳香族炭化水素の収率低下を防止でき、3.5質量%以下であることで、単環芳香族炭化水素の収率を高くできる。なお、第1触媒または第2触媒における結晶性アルミノシリケートに含まれるリンの含有量は、上記特定の範囲内でそれぞれ個々の値をとる。
 本実施形態で用いられる第1触媒または第2触媒にリンを含有させる方法としては特に限定されないが、例えば、イオン交換法、含浸法等により、結晶性アルミノシリケート、結晶性アルミノガロシリケート、または、結晶性アルミノジンコシリケートにリン化合物を含有させて結晶性アルミノシリケートにリンを担持する方法、ゼオライト合成時にリン化合物を含有させて結晶性アルミノシリケートの骨格内の一部をリンと置き換える方法、ゼオライト合成時にリンを含有した結晶促進剤を用いる方法、などが挙げられる。その際に用いるリン酸イオン含有水溶液は特に限定されないが、リン酸、リン酸水素二アンモニウム、リン酸二水素アンモニウムおよびその他の水溶性リン酸塩などを任意の濃度で水に溶解させて調製したものを好ましく使用できる。
 本実施形態で用いられる第1触媒は、上記のようにリンを含む結晶性アルミノガロシリケート、結晶性アルミノジンコシリケート、または、ガリウム/亜鉛およびリンを担持した結晶性アルミノシリケートを焼成(焼成温度300~900℃)することにより得られる。
 本実施形態で用いられる第2触媒は、上記のようにリンを含む結晶性アルミノシリケートを焼成(焼成温度300~900℃)することにより得られる。
[形状]
 本実施形態で用いられる第1触媒または第2触媒は、反応形式に応じて、例えば、粉末状、粒状、ペレット状等にされる。例えば、流動床の場合には粉末状にされ、固定床の場合には粒状またはペレット状にされる。流動床で用いる触媒の平均粒子径は30~180μmが好ましく、50~100μmがより好ましい。また、流動床で用いる触媒のかさ密度は0.4~1.8g/ccが好ましく、0.5~1.0g/ccがより好ましい。
 なお、平均粒子径はふるいによる分級によって得た粒径分布において50質量%となる粒径を表し、かさ密度はJIS規格R9301-2-3の方法により測定した値である。
 粒状またはペレット状の触媒を得る場合には、必要に応じて、結晶性アルミノシリケートまたは触媒にバインダー等として不活性な酸化物を配合した後、各種成型機を用いて成型すればよい。
 本実施形態で用いられる単環芳香族炭化水素製造用触媒の成形方法は特に限定されないが、第1触媒と第2触媒を各々、個別に成形したものを混合しても、第1触媒と第2触媒との混合物を成形しても構わない。
 本実施形態で用いられる第1触媒または第2触媒がバインダー等の無機酸化物を含有する場合、バインダー等としてリンを含むものを用いても構わない。
 また、第1触媒または第2触媒がバインダー等の無機酸化物を含有する場合、バインダー等と結晶性アルミノシリケートを混合した後に、ガリウムおよび/または亜鉛、リンを添加して第1触媒または第2触媒を製造しても、バインダー等とガリウムおよび/または亜鉛担持結晶性アルミノシリケートとを混合した後、または、バインダー等と結晶性アルミノガロシリケートおよび/または結晶性アルミノジンコシリケートとを混合した後にリンを添加して第1触媒または第2触媒を製造してもよい。さらに、第1触媒と第2触媒とを混合した混合触媒にバインダー等の無機酸化物を含有させてもよい。
 バインダー等の無機酸化物としては、シリカ、アルミナ、ジルコニア、チタニア、あるいは、これらの混合物等が挙げられる。第1触媒または第2触媒がバインダー等の無機酸化物を含有する場合、混合触媒全重量(第1触媒と第2触媒の総質量)に対して、バインダーは10~80質量%であることが好ましく、25~75質量%であることがより好ましい。第1触媒または第2触媒におけるバインダー含有量は、上記特定の範囲内でそれぞれ個々の値をとる。
 第1触媒または第2触媒がリンを含むバインダー等の無機酸化物を含有する場合、リン含有量は混合触媒全重量(第1触媒と第2触媒の総質量)に対して0.1~10質量%であることが好ましく、さらには、下限は0.2質量%以上がより好ましく、上限は9質量%以下であることがより好ましく、8質量%以下が特に好ましい。触媒全重量に対するリンの含有量が0.1質量%以上であることで、経時的な単環芳香族炭化水素の収率低下を防止でき、10質量%以下であることで、単環芳香族炭化水素の収率を高くできる。
 本実施形態で用いられる単環芳香族炭化水素製造用触媒における第1触媒の含有量は、混合触媒全重量(第1触媒と第2触媒の総質量)に対して2.0~98質量%であることが好ましい。さらには、下限は4質量%以上がより好ましく、上限は95質量%であることがより好ましく、80質量%以下がさらに好ましく、65質量%以下が特に好ましい。混合触媒全重量に対する第1触媒の含有量が2.0質量%以上であることで、経時的な単環芳香族炭化水素の収率低下を防止でき、98質量%以下であることで、単環芳香族炭化水素の収率を高くできる。
 一方、第2触媒の含有量は、混合触媒全重量(第1触媒と第2触媒の総質量)に対して2~98質量%であることが好ましい。さらには、上限は96質量%であることがより好ましく、下限は5質量%以上がより好ましく、20質量%以上が更に好ましく、35質量%以上が特に好ましい。第2の触媒の含有量が2質量%以上であれば経時的な単環芳香族炭化水素の収率低下を防止でき、98質量%以下であれば単環芳香族炭化水素の収率を高くできる。
(単環芳香族炭化水素の製造方法)
 本実施形態の単環芳香族炭化水素の製造方法は、原料油を上記単環芳香族炭化水素製造用触媒に接触させて、反応させる方法である。
 本反応は、原料油と触媒の酸点とを接触させることにより、分解、脱水素、環化、水素移行等の様々な反応により、多環芳香族炭化水素を開環させて単環芳香族炭化水素に転換する方法である。
[原料油]
 本実施形態で使用される原料油は、10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の油である。10容量%留出温度が140℃未満の油では、軽質のものからBTXを製造することになり、本実施形態の主旨にそぐわなくなるため、140℃以上が好ましく、150℃以上がより好ましい。また、原料油の90容量%留出温度が380℃を超える原料油を用いた場合も、触媒上へのコーク堆積量が増大して、触媒活性の急激な低下を引き起こす傾向にあるため、原料油の90容量%留出温度は380℃以下が好ましく、360℃以下がより好ましい。
 なお、ここでいう10容量%留出温度、90容量%留出温度、終点は、JIS K2254「石油製品-蒸留試験方法」に準拠して測定される値である。
 10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下の原料油としては、例えば、流動接触分解装置で生成する分解軽油(LCO)、石炭液化油、重質油水素化分解精製油、直留灯油、直留軽油、コーカー灯油、コーカー軽油およびオイルサンド水素化分解精製油などが挙げられ、流動接触分解装置で生成する分解軽油(LCO)を含むことがより好ましい。
 また、原料油中に多環芳香族炭化水素が多く含まれると炭素数6~8の単環芳香族炭化水素収率が低下するため、原料油中の多環芳香族炭化水素の含有量(多環芳香族分)は50容量%以下が好ましく、30容量%以下であることがより好ましい。
 なお、ここでいう多環芳香族分とは、JPI-5S-49「石油製品-炭化水素タイプ試験方法-高速液体クロマトグラフ法」に準拠して測定される2環芳香族炭化水素含有量(2環芳香族分)および、3環以上の芳香族炭化水素含有量(3環以上の芳香族分)の合計値を意味する。
[反応形式]
 原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応形式としては、固定床、移動床、流動床等が挙げられる。本実施形態においては、重質分を原料とするため、触媒に付着したコーク分を連続的に除去可能で、かつ、安定的に反応を行うことができる流動床が好ましく、反応器と再生器との間を触媒が循環し、連続的に反応-再生を繰り返すことができる、連続再生式流動床が特に好ましい。触媒と接触する際の原料油は、気相状態であることが好ましい。また、原料は、必要に応じてガスによって希釈してもよい。また、未反応原料が生じた場合は必要に応じてリサイクルしてもよい。
[反応温度]
 原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応温度は、特に制限されないが、350~700℃が好ましい。下限は、充分な反応活性が得られることから、450℃以上がより好ましい。一方、上限は、エネルギー的に有利である上に、容易に触媒を再生できるため、650℃以下がより好ましい。
[反応圧力]
 原料油を単環芳香族炭化水素製造用触媒と接触、反応させる際の反応圧力は、1.5MPaG以下とすることが好ましく、1.0MPaG以下とすることがより好ましい。反応圧力が1.5MPaG以下であれば、軽質ガスの副生を防止できる上に、反応装置の耐圧性を低くできる。反応圧力の下限値は特に限定されないが、コストなどの観点から常圧以上が好ましい。
[接触時間]
 原料油と単環芳香族炭化水素製造用触媒との接触時間は、実質的に所望する反応が進行すれば特に制限はされないが、例えば、触媒上のガス通過時間で1~300秒が好ましく、さらに下限は5秒以上、上限は150秒以下がより好ましい。接触時間が1秒以上であれば、確実に反応させることができ、接触時間が300秒以下であれば、コーキング等による触媒への炭素質の蓄積を抑制できる。または分解による軽質ガスの発生量を抑制できる。
 本実施形態の単環芳香族炭化水素の製造方法では、原料油と触媒の酸点とを接触させることにより、分解、脱水素、環化、水素移行等の様々な反応により、多環芳香族炭化水素を開環させて単環芳香族炭化水素を得る。
 本実施形態では、単環芳香族炭化水素の収率が15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。単環芳香族炭化水素の収率が15質量%未満であると生成物中の目的物濃度が低く、回収効率が低下するので好ましくない。
 以上説明した本実施形態の製造方法では、上述した単環芳香族炭化水素製造用触媒を用いるため、混合触媒全重量に対するガリウムおよび/または亜鉛含有量を従来よりも減らすことができるので、触媒の製造コストを大幅に削減することができる。また、高い収率で単環芳香族炭化水素を製造できる。さらに、流動床で本実施形態に係る触媒を用いる場合、原料油の性状や触媒の活性劣化に応じて、第1触媒、第2触媒をそれぞれ任意の比率で追加することが容易となり触媒活性の維持向上が可能となる。
 ところで、結晶性アルミノシリケートにガリウムおよび/または亜鉛を担持させると、触媒における酸点が減少し、酸触媒としての能力が低下するため、触媒の分解能が抑制される。一方、結晶性アルミノシリケートにガリウムを担持させることにより、LPG(液化石油ガス)や軽質ナフサ等を脱水素・環化させて、BTX(ベンゼン、トルエン、キシレン)を増産することができる。
 そこで、ガリウムおよび/または亜鉛は触媒中に一定量存在すれば効果が得られるため、酸点の減少を抑えるためには、本実施形態の製造方法では、ガリウムおよび/または亜鉛をある程度含有する第1触媒と、ガリウムおよび/または亜鉛を含有しない第2触媒とを共存させることによって、BTXの収率を向上することができる。
 以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
[第1触媒-1の調製]
 硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28~30質量%、Na:9~10質量%、残部水、日本化学工業(株)製)の1706.1gおよび水の2227.5gからなる溶液(A)と、Al(SO・14~18HO(試薬特級、和光純薬工業(株)製)の64.2g、テトラプロピルアンモニウムブロマイドの369.2g、HSO(97質量%)の152.1g、NaClの326.6gおよび水の2975.7gからなる溶液(B)をそれぞれ調製した。
 次いで、溶液(A)を室温で撹拌しながら、溶液(A)に溶液(B)を徐々に加えた。
 得られた混合物をミキサーで15分間激しく撹拌し、ゲルを解砕して乳状の均質微細な状態にした。
 ついで、この混合物をステンレス製のオートクレーブに入れ、温度:165℃、時間:72時間、撹拌速度:100rpmの条件で、自己圧力下に結晶化操作を行った。結晶化操作の終了後、生成物を濾過して固体生成物を回収し、約5リットルの脱イオン水を用いて洗浄と濾過を5回繰り返した。濾別して得られた固形物を120℃で乾燥し、さらに空気流通下、550℃で3時間焼成した。
 得られた焼成物は、X線回析分析(機種名:Rigaku RINT-2500V)の結果、MFI構造を有するものであることが確認された。また、蛍光X線分析(機種名:Rigaku ZSX101e)による、SiO/Al比(モル比)は、64.8であった。また、この結果から計算された格子骨格中に含まれるアルミニウム元素は1.32質量%であった。
 得られた焼成物の1g当り5mLの割合で30質量%硝酸アンモニウム水溶液を加え、100℃で2時間加熱、撹拌した後、濾過、水洗した。この操作を4回繰り返した後、120℃で3時間乾燥して、アンモニウム型結晶性アルミノシリケートを得た。その後、780℃で3時間焼成を行い、プロトン型結晶性アルミノシリケートを得た。
 次いで、得られたプロトン型結晶性アルミノシリケート120gに、0.1質量%(結晶性アルミノシリケート総質量を100質量%とした値)のガリウムが担持されるように硝酸ガリウム水溶液120gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、ガリウム担持結晶性アルミノシリケートを得た。
 次いで、得られたガリウム担持結晶性アルミノシリケート30gに、0.7質量%のリン(結晶性アルミノシリケート総質量を100質量%とした値)が担持されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、結晶性アルミノシリケートとガリウムとリンとを含有する第1触媒-1を得た。
[第2触媒の調製]
 上記プロトン型結晶性アルミノシリケート30gに、0.7質量%のリン(触媒全重量を100質量%とした値)が担持されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、結晶性アルミノシリケートとリンとを含有する第2触媒を得た。
[触媒1の調製]
 得られた第1触媒-1と第2触媒を、各々、39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒にした後、第1触媒-1の含有量が混合触媒全重量(第1触媒と第2触媒の総質量)に対して50.0質量%となるように混合し、粒状体の触媒1を得た。
 触媒1の全重量(第1触媒と第2触媒の総質量)に対するガリウムの含有量(平均ガリウム含有量)は、0.05質量%であった。
(実施例2)
[第1触媒-2の調製]
 プロトン型結晶性アルミノシリケートに、0.2質量%のガリウムが担持されたガリウム担持結晶性アルミノシリケートを得た後、そのガリウム担持結晶性アルミノシリケートに、0.7質量%(結晶性アルミノシリケート総質量を100質量%とした値)のリンが担持されるようにリン酸水素二アンモニウム水溶液の濃度を調製し、該水溶液30gを含浸させたこと以外は実施例1と同様にして、第1触媒-2を得た。
[触媒2の調製]
 得られた第1触媒-2と上記第2触媒を、第1触媒-2の含有量が混合触媒全重量(第1触媒と第2触媒の総質量)に対して25.0質量%となるように混合したこと以外は、実施例1と同様にして粒状体の触媒2を得た。
 触媒2の全重量(第1触媒と第2触媒の総質量)に対するガリウムの含有量(平均ガリウム含有量)は、0.05質量%であった。
(実施例3)
[第1触媒-3の調製]
 プロトン型結晶性アルミノシリケートに、0.8質量%のガリウムが担持されたガリウム担持結晶性アルミノシリケートを得た後、そのガリウム担持結晶性アルミノシリケートに、0.7質量%(結晶性アルミノシリケート総質量を100質量%とした値)のリンが担持されるようにリン酸水素二アンモニウム水溶液の濃度を調製し、該水溶液30gを含浸させたこと以外は実施例1と同様にして、第1触媒-3を得た。
[触媒3の調製]
 得られた第1触媒-3と上記第2触媒を、第1触媒-3の含有量が混合触媒全重量(第1触媒と第2触媒の総質量)に対して20.0質量%となるように混合したこと以外は、実施例1と同様にして粒状体の触媒3を得た。
 触媒3の全重量(第1触媒と第2触媒の総質量)に対するガリウムの含有量(平均ガリウム含有量)は、0.16質量%であった。
(実施例4)
[第1触媒-4の調製]
 プロトン型結晶性アルミノシリケートに、1.5質量%のガリウムが担持されたガリウム担持結晶性アルミノシリケートを得た後、そのガリウム担持結晶性アルミノシリケートに、0.7質量%(結晶性アルミノシリケート総質量を100質量%とした値)のリンが担持されるようにリン酸水素二アンモニウム水溶液の濃度を調製し、該水溶液30gを含浸させたこと以外は実施例1と同様にして、第1触媒-4を得た。
[触媒4の調製]
 得られた第1触媒と上記第2触媒を、第1触媒-4の含有量が混合触媒全重量(第1触媒と第2触媒の総質量)に対して10.0質量%となるように混合したこと以外は、実施例1と同様にして粒状体の触媒4を得た。
 触媒4の全重量(第1触媒と第2触媒の総質量)に対するガリウムの含有量(平均ガリウム含有量)は、0.15質量%であった。
(実施例5)
[触媒5の調製]
 上記第1触媒-4と上記第2触媒を、第1触媒-4の含有量が混合触媒全重量(第1触媒と第2触媒の総質量)に対して50.0質量%となるように混合したこと以外は、実施例1と同様にして粒状体の触媒5を得た。
 触媒5の全重量(第1触媒と第2触媒の総質量)に対するガリウムの含有量(平均ガリウム含有量)は、0.75質量%であった。
(実施例6)
[第1触媒-5の調製]
 プロトン型結晶性アルミノシリケート120gに、0.2質量%(結晶性アルミノシリケート総質量を100質量%とした値)の亜鉛が担持されるように硝酸亜鉛・6水和物水溶液120gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、亜鉛担持結晶性アルミノシリケートを得た。
 次いで、得られた亜鉛担持結晶性アルミノシリケート30gに、0.7質量%のリン(結晶性アルミノシリケート総質量を100質量%とした値)が担持されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、結晶性アルミノシリケートと亜鉛とリンとを含有する第1触媒-5を得た。
[触媒6の調製]
 得られた第1触媒-5と上記第2触媒を、第1触媒-5の含有量が混合触媒全重量(第1触媒と第2触媒の総質量)に対して25質量%となるように混合したこと以外は、実施例1と同様にして粒状体の触媒6を得た。
 触媒6の全重量(第1触媒と第2触媒の総質量)に対する亜鉛の含有量(平均亜鉛含有量)は、0.05質量%であった。
(参考例1)
[触媒7の調製]
 上記第2触媒に39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒7を得た。
触媒7の全重量に対するガリウムの含有量(平均ガリウム含有量)は、0.0質量%であった。
(参考例2)
[触媒8の調製]
 上記第1触媒-1に39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒8を得た。
触媒8の全重量に対するガリウムの含有量(平均ガリウム含有量)は、0.1質量%であった。
(参考例3)
[触媒9の調製]
 上記第1触媒-2に39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒9を得た。
触媒9の全重量に対するガリウムの含有量(平均ガリウム含有量)は、0.2質量%であった。
(参考例4)
[触媒10の調製]
 上記第1触媒-3に39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒10を得た。
 触媒10の全重量に対するガリウムの含有量(平均ガリウム含有量)は、0.8質量%であった。
(参考例5)
[触媒11の調製]
 上記第1触媒-4に39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒11を得た。
 触媒11の全重量に対するガリウムの含有量(平均ガリウム含有量)は、1.5質量%であった。
(参考例6)
[触媒12の調製]
 上記第1触媒-5に39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20~28メッシュのサイズに揃えて、粒状体の触媒12を得た。
 触媒12の全重量に対する亜鉛の含有量(平均亜鉛含有量)は、0.2質量%であった。
 得られた触媒1~12の触媒活性を、以下のように評価した。
[生成物の収率の測定]
 触媒1~12(10ml)を反応器に充填した流通式反応装置を用い、反応温度:550℃、反応圧力:0MPaGの条件で、表1の性状を有する原料油を触媒と接触、反応させた。その際、原料油と触媒との接触時間が7秒となるように希釈剤として窒素を導入した。
 この条件にて30分反応させて、炭素数6~8の単環芳香族炭化水素を製造し、反応装置に直結されたFIDガスクロマトグラフにより生成物の組成分析を行って、生成物の収率を測定した。測定結果を表2、3に示す。
 各触媒のBTX収率,LPG収率の測定値は、それぞれ、触媒1では31質量%,5質量%、触媒2では34質量%、4質量%、触媒3では32質量%、4質量%、触媒4では31質量%、4質量%、触媒5では27質量%、3質量%、触媒6では33質量%、6質量%、触媒7では29質量%、7質量%、触媒8では31質量%,5質量%、触媒9では33質量%、4質量%、触媒10では28質量%、2質量%、触媒11では23質量%、2質量%、触媒12では33質量%、5質量%である。
 表2の計算値は、実施例の触媒1~6の調製に使用した第1触媒と第2触媒のそれぞれのBTX収率・LPG収率と、第1触媒と第2触媒の混合比より算出した値である。以下に式を示す。
 BTX収率(質量%)=第1触媒のBTX収率(混合前)(質量%)×混合触媒全重量に対する第1触媒の混合比率+第2触媒のBTX収率(混合前)(質量%)×混合触媒全重量に対する第2触媒の混合比率・・・式(1)
 LPG収率(質量%)=第1触媒のLPG収率(混合前)(質量%)×混合触媒全重量に対する第1触媒の混合比率+第2触媒のLPG収率(混合前)(質量%)×混合触媒全重量に対する第2触媒の混合比率・・・式(2)
 増加率は、実施例の触媒1~6を用いた場合のBTX収率・LPG収率の測定値を対応する計算値で各々除して得られた割合の100分率である。以下に式を示す。
 BTX収率の増加率(質量%)=BTX収率(測定値)/BTX収率(計算値)×100・・・式(3)
 LPG収率の増加率(質量%)=LPG収率(測定値)/LPG収率(計算値)×100・・・式(4)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[結果]
 触媒1~6を用いた実施例1~6のBTX収率は、参考例1~6のBTX収率から予測されるBTX収率よりも高収率(実施例1では103質量%、実施例2では113質量%、実施例3では111質量%、実施例4では109質量%、実施例5では104質量%、実施例6では109質量%)となる一方、LPG収率は予測される値より低収率(実施例1では83質量%、実施例2では64質量%、実施例3では67質量%、実施例4では62質量%、実施例5では67質量%、実施例6では94質量%)となっている。
 この結果は、同じBTX収率を得ることを前提にした場合、本実施形態の方法を用いれば、使用する触媒中のガリウムまたは亜鉛含有量を従来よりも削減できることを示唆している。
 以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。 

Claims (7)

  1.  10容量%留出温度が140℃以上かつ90容量%留出温度が380℃以下である原料油を、ガリウムおよび/または亜鉛とリンとを含有する結晶性アルミノシリケートを含む第1触媒と、リンを含有する結晶性アルミノシリケートを含む第2触媒との混合物からなる単環芳香族炭化水素製造用触媒に接触させることを特徴とする炭素数6~8の単環芳香族炭化水素の製造方法。
  2.  前記第1触媒において、前記結晶性アルミノシリケートに含まれるガリウムおよび/または亜鉛含有量が、前記結晶性アルミノシリケートに対して0.05~2.0質量%であることを特徴とする請求項1に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
  3.  前記単環芳香族炭化水素製造用触媒において、ガリウムおよび/または亜鉛含有量が触媒重量に対して0.02~1.0質量%であることを特徴とする請求項1または2に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
  4.  前記結晶性アルミノシリケートが、中細孔ゼオライトであることを特徴とする請求項1から3のいずれか一項に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
  5.  前記結晶性アルミノシリケートが、MFI型ゼオライトであることを特徴とする請求項1から4のいずれか一項に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
  6.  前記原料油が、流動接触分解装置で生成する分解軽油を含むことを特徴とする請求項1から5のいずれか一項に記載の炭素数6~8の単環芳香族炭化水素の製造方法。
  7. 流動床反応装置にて前記原料油を前記単環芳香族炭化水素製造用触媒に接触させることを特徴とする請求項1から6のいずれか一項に記載の炭素数6~8の単環芳香族炭化水素の製造方法。 
PCT/JP2011/080417 2010-12-28 2011-12-28 単環芳香族炭化水素の製造方法 WO2012091099A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11853615.0A EP2660227B1 (en) 2010-12-28 2011-12-28 Method for producing monocyclic aromatic hydrocarbon
US13/976,701 US9382484B2 (en) 2010-12-28 2011-12-28 Production method of monocyclic aromatic hydrocarbons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-294186 2010-12-28
JP2010294186A JP5587761B2 (ja) 2010-12-28 2010-12-28 単環芳香族炭化水素の製造方法

Publications (1)

Publication Number Publication Date
WO2012091099A1 true WO2012091099A1 (ja) 2012-07-05

Family

ID=46383187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080417 WO2012091099A1 (ja) 2010-12-28 2011-12-28 単環芳香族炭化水素の製造方法

Country Status (4)

Country Link
US (1) US9382484B2 (ja)
EP (1) EP2660227B1 (ja)
JP (1) JP5587761B2 (ja)
WO (1) WO2012091099A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032128A (ja) 1989-05-30 1991-01-08 Idemitsu Kosan Co Ltd 単環芳香族含有炭化水素の製造方法
JPH0326791A (ja) 1989-06-23 1991-02-05 Idemitsu Kosan Co Ltd 炭化水素の製造方法
JPH0352993A (ja) 1989-07-21 1991-03-07 Idemitsu Kosan Co Ltd Btxに富む炭化水素の製造方法
JP2002525380A (ja) 1998-09-28 2002-08-13 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド ペンタジルゼオライトをベースとした触媒を用いるオレフィン製造方法
JP2007190520A (ja) 2006-01-20 2007-08-02 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai 重質油の接触分解触媒及びオレフィンと燃料油の製造方法
JP2007530266A (ja) 2004-03-31 2007-11-01 中国石油化工股▲分▼有限公司 ゼオライト含有炭化水素変換触媒、その製造方法、および該触媒で炭化水素油を変換する方法
WO2010109897A1 (ja) * 2009-03-27 2010-09-30 新日本石油株式会社 芳香族炭化水素の製造方法
WO2011001572A1 (ja) * 2009-06-30 2011-01-06 新日本石油株式会社 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
WO2011090121A1 (ja) * 2010-01-20 2011-07-28 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394300A (en) 1980-04-07 1983-07-19 Mobil Oil Corporation Zeolite catalyst modified with group IVB metal
JPS6019726A (ja) 1983-07-14 1985-01-31 Idemitsu Kosan Co Ltd 芳香族炭化水素の製造法
US4585545A (en) 1984-12-07 1986-04-29 Ashland Oil, Inc. Process for the production of aromatic fuel
US5770047A (en) 1994-05-23 1998-06-23 Intevep, S.A. Process for producing reformulated gasoline by reducing sulfur, nitrogen and olefin
KR20010012397A (ko) 1997-05-12 2001-02-15 존 엠. 피쉬 주니어 비-방향족 탄화수소를 방향족류와 경 올레핀으로전환하는데 유용한 개선된 촉매 조성물
US5898089A (en) * 1997-07-09 1999-04-27 Phillips Petroleum Company Hydrocarbon aromatization process using a zeolite
US5883034A (en) 1997-07-09 1999-03-16 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
US6617275B1 (en) 1999-12-17 2003-09-09 Uop Llc Process for preparing a catalyst for aromatic production
BRPI0712908A2 (pt) 2006-05-23 2012-10-02 Japan Energy Corp método para produzir frações de hidrocarboneto
US8049051B2 (en) 2006-08-07 2011-11-01 Nippon Oil Corporation Process for production of aromatic hydrocarbons

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032128A (ja) 1989-05-30 1991-01-08 Idemitsu Kosan Co Ltd 単環芳香族含有炭化水素の製造方法
JPH0326791A (ja) 1989-06-23 1991-02-05 Idemitsu Kosan Co Ltd 炭化水素の製造方法
JPH0352993A (ja) 1989-07-21 1991-03-07 Idemitsu Kosan Co Ltd Btxに富む炭化水素の製造方法
JP2002525380A (ja) 1998-09-28 2002-08-13 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド ペンタジルゼオライトをベースとした触媒を用いるオレフィン製造方法
JP2007530266A (ja) 2004-03-31 2007-11-01 中国石油化工股▲分▼有限公司 ゼオライト含有炭化水素変換触媒、その製造方法、および該触媒で炭化水素油を変換する方法
JP2007190520A (ja) 2006-01-20 2007-08-02 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai 重質油の接触分解触媒及びオレフィンと燃料油の製造方法
WO2010109897A1 (ja) * 2009-03-27 2010-09-30 新日本石油株式会社 芳香族炭化水素の製造方法
WO2011001572A1 (ja) * 2009-06-30 2011-01-06 新日本石油株式会社 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
WO2011090121A1 (ja) * 2010-01-20 2011-07-28 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660227A4
W. M. MEIYER; D. H. OLSON: "Atlas of Zeolite Structure Types", 1978, POLYCRYSTAL BOOK SERVICE

Also Published As

Publication number Publication date
EP2660227B1 (en) 2015-12-23
JP2012140371A (ja) 2012-07-26
JP5587761B2 (ja) 2014-09-10
US20130281756A1 (en) 2013-10-24
EP2660227A1 (en) 2013-11-06
US9382484B2 (en) 2016-07-05
EP2660227A4 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP4820919B2 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
JP4740396B2 (ja) 芳香族炭化水素の製造方法
JP6147376B2 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
WO2012091092A1 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
US9815750B2 (en) Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
JP5868012B2 (ja) 単環芳香族炭化水素の製造方法
WO2012091100A1 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
JP5587761B2 (ja) 単環芳香族炭化水素の製造方法
JP5813853B2 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
JP5750434B2 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13976701

Country of ref document: US

Ref document number: 2011853615

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE