US3755141A - Catalytic cracking - Google Patents

Catalytic cracking Download PDF

Info

Publication number
US3755141A
US3755141A US00114721A US3755141DA US3755141A US 3755141 A US3755141 A US 3755141A US 00114721 A US00114721 A US 00114721A US 3755141D A US3755141D A US 3755141DA US 3755141 A US3755141 A US 3755141A
Authority
US
United States
Prior art keywords
catalytic cracking
gas oil
hydrogen
naphtha
cracking unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00114721A
Inventor
D Youngblood
J Colvert
G Nelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Inc
Original Assignee
Texaco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Inc filed Critical Texaco Inc
Application granted granted Critical
Publication of US3755141A publication Critical patent/US3755141A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen

Definitions

  • ABSTRACT charge stock boiling above about 400 F is subjected to catalytic cracking in a catalytic cracking unit at limited per pass conversion not exceeding 80 volume percent of the charge stock, 430 F gas oil product of the catalyticcracking operation is subjected to hydrogen treatment to lower its polycyclic aromatic content, as
  • This invention relates to an improved process for the production of motor fuel gasoline from catalytic cracking feed-stocks.
  • the process is particularly applicable to the production of maximum yields of motor gasolines from catalytic cracking unit feedstocks without hydrocracking.
  • the process is applicable to existing catalytic cracking units.
  • the process of this invention is capable of producing a quantity of debutanized gasoline stock substantially equal to that of the feedstock charged to a catalytic cracking unit.
  • catalytic cracking feestocks e.g., virgin gas oil boiling above about 430 F, may be made to yield 95 to 110 volume percent debutanized gasoline (basis fresh feed charge).
  • the process of this invention consists essentially of (1) catalytic cracking of feedstock boiling above about 430 F, (2) subjecting at least a portion of the 430 F+ gas oil product of the catalytic cracking unit to hydrogen treatment for significant reduction of its polycyclic aromatic content, and (3) recycling normally liquid effluent of the hydrogen treatment, also referred to herein as a hydrotreater, to the catalytic cracking unit together with the fresh feedstock.
  • Debutanized naphtha from the catalytic cracking unit is a primary product of the process.
  • all or a substantial portion of the C -C olefins from the catllyticcracking unit are subjected to alkylation and the resulting alkylate blended with the naphtha fraction from the catalytic cracking unit to give yields of high octane gasoline in the vicinity of 100 volume percent, basis the fresh feed charged to the catalytic cracking unit.
  • This process permits substantially complete conversion of catalytic cracking unit feedstocks to gas and motor gasoline products.
  • hydrotreating or hydrogen treatment refers to treatment with hydrogen under conditions which result in little or no cracking of the hydrocarbons supplied to the hydrogen treating unit and little or no production of lower boiling range products.
  • Hydrocracking refers to cracking the hydrocarbons in the presence of hydrogen to produce lower boiling range products.
  • the FIGURE is a schematic flow diagram illustrating the process of this invention withreference to various petroleum refinery process units.
  • fresh catalytic cracking unit feedstock e.g. virgin gas oil havin a boiling range, above about 400 F, e.g. 450 to 850 F
  • fresh catalytic cracking unit feedstock e.g. virgin gas oil havin a boiling range, above about 400 F, e.g. 450 to 850 F
  • the catalytic cracking unit 7 may comrrise either a fluidized catalyst or moving bed type catalytic cracking unit, both of which are well known.
  • Fluidized catalyst units may be of either bed type or riser type.
  • Effluent from the catalytic cracking unit 7 is passed via line 8 to a fractionation system 9 where it is separated into a plurality of fractions.
  • the catalytic cracking unit product is separated into a fraction boiling below about 430 F at atmospheric pressure, e.g. hydrogen to 430 F, which is discharged through line 11; a light gas oil fraction, e.g. one having a 50 percent point of about 530 F, which is discharged through line 12; an intermediate gas oil fraction, eg one having a 50 percent point of about 650 F which is discharged through line 13; and a heavy gas oil fraction, e.g. one having a 50 percent point of about 680 F, which is discharged through line 14.
  • the naphtha and lighter fraction from line 11 is passed to a recovery section 16 where it is separated into various fractions, for example, a fuel gas fraction discharged through lien 17; a C -C fraction discharged through line 18; and a debutanized naphtha fraction discharged through line 19.
  • the debutanized naphtha fraction from line 19 is the principal product of the process and is useful as base blending stock for motor gasoline.
  • the C -C fraction discharged through line 18 contains C and C olefins and isobutane.
  • This stream is passed to an alkylation unit 20 wherein the olefins are alkylated with isobutane to high octane gasoline blending components or alkylate which is discharged from unit 20 to line 21 for blending into gasoline product.
  • Those C -C olefins in excess of isobutane available in the C -C fraction may be discharged through line 22 to a suitable use, for example, as feed for petrochemical operations.
  • isobutane may be supplied from a suitable source through line 23 to alkylation unit 20 for conversion to alkylate blending components for motor fuel gasoline.
  • the various gas oil fractions discharged from the fractionator through lines l2, l3 and 14 may be passed through line 13 to hydrogen treater unit 26'.
  • Light gas oil may be supplied to line 13 by way of a line 27 as controlled by valve 28.
  • heavy gas oil withdrawn from fractionator 9 through line 14 may be supplied via lines 29 and 31 as controlled by valve 32 to line 13 as feed to hydrogen treater unit 26.
  • Part or all of the light gas oil may be taken from line 12 as product, or part or all may be passed through line 33 as controlled by valve 34 to line 35 for recycle to catalytic cracking unit without hydrogen treatment.
  • part or all of the heavy gas oil may be withdrawn as product through line 14 or passed through line 36 as controlled by valve 37 to line 35 for the recycle directly to catalytic cracking unit 7.
  • Fresh feedstock may be supplied from line through line 41, if desired, as controlled by valve 42, to line 13 as feed to the hydrogen treater unit 26.
  • the effluent from the hydrogen treater unit is discharged through line 43 to a separation unit 44 in which gaseous components are separated from normally liquid components.
  • a gaseous fraction consisting primarily of hydrogen is discharged from separator 44 through line 46 and returned to hydrogen treater 26 through line 47.
  • Make-up hydrogen from a suitable source is supplied to line 47 from line 48.
  • Normally liquid product of hydrotreater 26, including naphtha fractions, is discharged from separator 44 to line 35, mixed with fresh feedstock from line 5, and supplied to the catalytic cracking unit 7 through line 6.
  • the cracking catalyst comprises a molecular sieve or crystalline alumino-silicate base carrying catalytic metal additives, for example, rare earth metals, particularly cerium and lanthanum, their oxides or sulfides.
  • catalytic metal additives for example, rare earth metals, particularly cerium and lanthanum, their oxides or sulfides.
  • Preferred catalysts are molecular sieve cracking catalysts of the well known commercial varieties, e.g. Davison XZ-25, Aerocat Triple S-4, Nalcat KSF, Houdry HZ-l, etc.
  • These catalysts are made up of a silica-alumina-zeolite base in particle sizes suitable for fluidization or formed into beads or pellets, usually of a size range of N32 to it; inch, suitably l/l6 to 56 inch, and containing rare earth metal oxides. Fluid catalysts usually have particle sizes of 50 to 325 mesh U. S. Standard Sieve Series.
  • compositions of preferred catalysts are the following: Davison XZ-25, a product of Davison Chemical Company, is a mixed silica-alumina-zeolite cracking catalyst containing about 30-35 weight percent alumina, 18 weight percent zeolite X, and about 2 weight percent cerium and 1 weight percent lanthanum.
  • Aerocat Triple S-4 a product of American Cyanamid Company, is a silica-alumina-zeolite cracking catalyst containing about 32 weight percent alumina, 3 weight percent zeolite Y, 0.5 weight percent cerium and 0.1 weight percent lanthanum.
  • Nalcat KSF a product of Nalco Chemical Co.
  • a silica-alumina-zeolite cracking catalyst containing about 31-35 weight percent alumina, l 1 percent zeolite X, about 1 percent cerium and 0.3 percent lanthanum.
  • the catalytic cracking unit is operated at a temperature in the range of 800 to 1,l00 F, preferably 850 to l,000 F, with a space velocity, basis the total feed to the catalytic cracking unit, of 0.2 to 300 pound of hydrocarbon feedstock per hour per pound of catalyst at a reactor pressure within the range of 0 to 200 psig, preferably of the order of 25 psig.
  • the variable reaction conditions i.e., temperature and sapce velocity, are controlled to produce a per pass conversion of 30 to 80 volume percent.
  • the relatively wide space velocity range indicated is subject to considerable variation and depends upon the particular reactor design under consideration, e.g., whether a riser type or bed type catalytic cracking unit is employed.
  • the important consideration is the controlled per pass conversion which preferably is in the range of 30 to 65 volume percent to obtain maximum gasoline yield. Optimum conditions of space velocity and per pass conversion may be established for any given commercial unit by known test methods and economic evaluation.
  • the catalytic cracking unit should be operated near 100 percent ultimate conversion of the feedstock to lighter products.
  • all of the heavy gas oil and a substantial portion or all of the intermediate gas oil and of the light gas oil should be hydrogen treated and recycled to the catalytic cracking unit.
  • Determination of the feed stream supplied to the hydrogen treater is based on two factors. The first is that the composite recycle stream returned to the catalytic cracking unit 7 through line 35 and admixed with fresh feed from line 5 is processed so that its cracking characteristics are similar to those of the fresh feedstock supplied through line 5. Hydrogen treatment of all of the gas oils, i.e., all of the 430 F gas oil from the catalytic cracking unit results in the highest yield of motor gasoline. The second factor is the market demand for catalytic cracking unit gas oils. it is recognized that it may not always be desirable to recycle all of the various' gas oil fractions to extinction, depending upon available market for gas oils, usually for the heavy gas oil fraction and for the light gas oil fraction.
  • the heavy gas oil has the greatest polycyclic aromatic content, in some cases it may be desirable to hydrogen treat only the heavier fractions to reduce the hydrotreating requirements of the system. In other instances it may be desirable to recycle some of the heavy gas oil from line 29 directly to the catalytic cracking unit via lines 35 and 36 to maintain the proper reactorregenerator heat balance in the catalytic cracking unit.
  • the hydrotreater design is based on providing the catalytic cracker recycle charge stock with a feed having a polycyclic aromatics content approaching that of the fresh feed (normally below 20 weight percent polycyclic aromatics).
  • Total liquid product from the hydrotreater, including the gasoline produced is supplied to the catalytic cracking unit as part of the feedstock therefor.
  • Hydrogen used in the process of the present invention may be obtained from any suitable source.
  • the term hydrogen as used in the present specification and claims includes dilute hydrogen.
  • the hydrogen need not be pure but preferably a gas containing at least about percent hydrogen is used.
  • Suitable sources of hydrogen are catalytic reformer by-product gas and hydrogen produced by steam reforming of hydrocarbons or by partial oxidation of carbonaceous material followed by shift conversion and removal of carbon dioxide. Since the efficiency of hydrogen treatment depends to some extent on the partial pressure of the hydrogen, it is generally advantageous to employ hydrogen rich gas of relatively high hydrogen content for the hydrogen treatment.
  • Preferred catalysts for the hydrogen treatment are alumina base hydrogenation catalysts in the form of pellets or extrudates of a size range of H32 to 3% inch, suitably l/l6 to 55 inch. Oxides of boron, cobalt, molybdenum, nickel and tungsten, and their resulting sulfides formed prior to or during the use of the catalyst,
  • Suitable catalysts are effective hydrogen treatment catalysts when deployed on suitable base supports, e.g. on high purity eta aluminas.
  • Suitable catalysts are well known, for example, commercial catalysts Aero l-lDS-3, Harshaw Ni- -4303, Harshaw Ni-4305 and Harshaw Ni-4309.
  • Aero HDS3 produced by American Cyanamid Company, is a nickel oxide-molybdenum oxide on alumina hydrogenation catalyst containing about 10 weight percent molybdenum and about 2 weight percent nickel, reported as the metals.
  • Harshaw Ni-4303 produced by Harshaw Chemical Company, is a nickel tungsten catalyst on an alumina base comprising about 6 weight percent nickel and about 20 weight percent tungsten reported as the metals.
  • Harshaw Ni-4305 and Ni-4309 are nickeltung'sten catalysts on boria-alumina base, Harshaw Ni- -4305 contains about 5 weight percent nickel and 10 weight percent tungsten, reported as metals, and about 10 weight percent boria (B Harshaw Ni-4309 contains about 5 weight percent nickel, about ,10 weight percent tungsten, reported as metals, and about weight percent boria.
  • the hydrotreating zone is maintained at between about 500 and 800 F. and 400 and 3,000 psig. Preferred conditions are 650725 F. and 5002,000'psig.
  • the weight hourly space velocity of the hydrocarbon feed may range betwen about 0.2 and preferably 0.5 to 10 and the hydrogen rate between about 1,000 and 15,000 SCFB preferably 3,000 to 10,000 SCFB.
  • the reaction conditions particularly temperature, pressure and space velocity are selected within the above ranges to effect reduction in the polycyclic aromatic content while minimizing the reduction in total aromatic content.
  • the data in the following table are illustrative.
  • AROMATIC REDUCTION Charge Light Cycle Gas Oil Catalyst: Nickel-Tungsten on Alumina Operating Conditions The same effect can be obtained by other combinations of temperature, pressure and space velocity as indicated above.
  • PCA Polycyclic aromatics
  • Catalyst used in the fluidized bed catalytic cracking pilot unit for these tests was simulated equilibrium Davison XZ-25 catalyst. Aging of the catalyst was simulated for the runs by heat treating fresh Davison XZ-25 at 1,480 F. for 17 hours and blending the heat treated catalyst with an equal weight of Davison High Alumina cracking catalyst which had been heat treated 17 hours at l,700 F.
  • Davison High Alumina cracking catalyst a product of Davison Chemical Company, is a silica-alumina catalyst'comprisingabout 25 weight percent alumina and about 75 weight percent silica. Properties of the cracking catalyst are indicated in the following table.
  • Davison High Alumina catalyst is a silica-alumina cracking catalyst containing 25 weight percent alumina and 75 weight percent silica.
  • FCCU fluid catalytic cracking unit
  • HTU hydrogen treater unit
  • Numbers shown in parenteses are individual butanes as a percentage of total butanes.
  • a process for the conversion of a gas oil feed stock boiling above about430 F. and containing polycyclic aromatic compounds to gasoline in a yield of at least 80 volume per cent which comprises subjecting said gas oil feed stock to catalytic cracking under conditions to effect a conversion of between 30 and 80 volume per cent, separating the effluentfrom the catalytic cracking zone into a cracked napthaand lighter fraction having an end point of about 430 F.
  • a cracked 430 F+ gas oil fraction having a higher polycyclic aromatic compound content than said gas oil feed stock, recovering from said cracked naphtha and lighter fraction as product of the process a catalytically cracked gasoline having a boiling range of about 1 l5430 F subjecting at least a portion of said cracked 430F.+ gas oil fraction to hydrogen treatment under conditions to reduce the polycyclic content thereof to a concentration not appreciably greater than that of said gas oil feed stock, said portion having an initial boiling point of about 430 F., separating the effluent from the hydrogenation zone. into a norr iially gaseous portion and a normally liquid portion and introducing-substantially all of said normally liquid portion with fresh gas oil feed stock into said catalytic cracking zone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A process for the production of high octane motor gasoline stocks by catalytic cracking in which a distillate charge stock boiling above about 400* F is subjected to catalytic cracking in a catalytic cracking unit at limited per pass conversion not exceeding 80 volume percent of the charge stock, 430* F + gas oil product of the catalytic cracking operation is subjected to hydrogen treatment to lower its polycyclic aromatic content, as indicated by ultraviolet absorption to a concentration approximating that of the fresh charge stock to the catalytic cracking unit, and liquid effluent of the hydrogen treatment step is passed to the catalytic cracking unit as part of the feed thereto, producing exceptionally high yields of high octane naphtha suitable as motor gasoline blending stock.

Description

United States Patent 1191 Youngblood et al.
[ CATALYTIC CRACKING [75] lnventors: Douglas J. Youngblood, Groves;
James H. Colvert, Chatterton;
Gerald V. Nelson, Nederland, all of.
Tex.
[73] Assignee: Texaco, Inc., New York, NY.
[22] Filed: Feb. 11, 1971 211 App]. No.: 114,721
Related U.S. Application Data [63] Continuation-impart of Ser. No. 687,283, Dec. 1,
1967, abandoned.
11] 3,755,141 14 Aug. 28, 1973 3,287,252 11/1966 Young ..208/59 Primary Examine'rl-lerbert Levine Attorney-Thomas H. Whaley, Carl G. Ries and Robert Knox, Jr.
[57] ABSTRACT charge stock boiling above about 400 F is subjected to catalytic cracking in a catalytic cracking unit at limited per pass conversion not exceeding 80 volume percent of the charge stock, 430 F gas oil product of the catalyticcracking operation is subjected to hydrogen treatment to lower its polycyclic aromatic content, as
[52] U.S. Cl 208/56, 208/67, 208/120 511 1111. C1 Cl0g 37/06 mdwated y ultraviolet absorption 10 Concentralwn 58 Field of Search 208/67, 120, 56 approximating that of the fresh charge Stock to the alytic cracking unit, and liquid effluent of the hydrogen 5 References Cited treatment step is passed to the catalytic cracking unit UNITED STATES PATENTS as part of the feed thereto, producing exceptionally 1 398 846 W946 M d 208/67 high yields of high octane naphtha suitable as motor un ay 3,140,251 7/1964 Plank et al 208/120 gasolme blending Stock 3,413,212 11/1968 Weisz 208/56 8 Claims, 1 Drawing Figure /7 -J- Fue/ G45 2Z fin-e35 Ca -C'4 O/efi'ns Z3 [L 14 f /6 faa Z l5 0260/57 [2 ed M 6010/? Na/Mfha /2 f7'acfima/0r 9 6 0/7 47 Mafia-up 27 9 fn/zmeaa'are L f 46 Ga: 017 I a I a 32 45 33 D' epard/Zw 46 26 /4: 44 I (a/o/y/ic 34 4/ fiQd/flg/l 7/: Crack/ k9 29 39 7;d/l
(/ml' 7 j6 Unf/ 6 69/37 43 52; fired dl 1 A I CATALYTIC CRACKING This application is a continuation-in-part of our copending U. S. Pat. application, Ser. No. 687,283, filed December 1, 1967 now abandoned.
CATALYTIC CRACKING (D 70,282-Cl) This invention relates to an improved process for the production of motor fuel gasoline from catalytic cracking feed-stocks. The process is particularly applicable to the production of maximum yields of motor gasolines from catalytic cracking unit feedstocks without hydrocracking. The process is applicable to existing catalytic cracking units.
When combined with conversion of C;,C hydrocarbons to gasoline blending components, e.g. by alkylation, the process of this invention is capable of producing a quantity of debutanized gasoline stock substantially equal to that of the feedstock charged to a catalytic cracking unit. For example, by combination of catalytic cracking, hydrogen treatment, and alkylation, catalytic cracking feestocks, e.g., virgin gas oil boiling above about 430 F, may be made to yield 95 to 110 volume percent debutanized gasoline (basis fresh feed charge).
The process of this invention consists essentially of (1) catalytic cracking of feedstock boiling above about 430 F, (2) subjecting at least a portion of the 430 F+ gas oil product of the catalytic cracking unit to hydrogen treatment for significant reduction of its polycyclic aromatic content, and (3) recycling normally liquid effluent of the hydrogen treatment, also referred to herein as a hydrotreater, to the catalytic cracking unit together with the fresh feedstock. Debutanized naphtha from the catalytic cracking unit is a primary product of the process. In a preferred embodiment, all or a substantial portion of the C -C olefins from the catllyticcracking unit are subjected to alkylation and the resulting alkylate blended with the naphtha fraction from the catalytic cracking unit to give yields of high octane gasoline in the vicinity of 100 volume percent, basis the fresh feed charged to the catalytic cracking unit. This process permits substantially complete conversion of catalytic cracking unit feedstocks to gas and motor gasoline products.
it has been proposed heretofore to subject catalytic cracking feedstocks to hydrogen treatment as a means for improving the yields and quality of motor gasolines. It has also been known for some time that hydrocracking operations, as distinguished from hydrogen treatment, will produce nearly 100 percent yields of gasoline from virgin gas oil feestocks. Many existing refinery facilities, however, do not have sufficient hydrogen for hydrocracking processes and, in addition, have already existing large facilities for catalytic cracking. Such catalytic cracking units are not suitable for hydrocracking operations.
The term hydrotreating or hydrogen treatment, as used herein, refers to treatment with hydrogen under conditions which result in little or no cracking of the hydrocarbons supplied to the hydrogen treating unit and little or no production of lower boiling range products. Hydrocracking, on the other hand, refers to cracking the hydrocarbons in the presence of hydrogen to produce lower boiling range products.
It is an object of this invention to provide an improved process for converting catalytic cracking unit charge-stocks to gasoline motor fuel components. Still another object of this invention is to provide an improved process for the production of motor fuel gasolines of high octane value from the catalytic cracking feestocks boiling in the range of about 430 F and higher. Y
The FIGURE is a schematic flow diagram illustrating the process of this invention withreference to various petroleum refinery process units.
With reference to the flow diagram of the FIGURE, fresh catalytic cracking unit feedstock, e.g. virgin gas oil havin a boiling range, above about 400 F, e.g. 450 to 850 F, froma suitable source is supplied to the process through line 5, blended with hydrogen treated mixed hydrocarbons as described hereinafter, and passed through line 6 to a catalytic cracking unit 7. The catalytic cracking unit 7 may comrrise either a fluidized catalyst or moving bed type catalytic cracking unit, both of which are well known. Fluidized catalyst units may be of either bed type or riser type.
Effluent from the catalytic cracking unit 7 is passed via line 8 to a fractionation system 9 where it is separated into a plurality of fractions. As illustrated in the specific embodiment illustrated in the FIGURE, the catalytic cracking unit product is separated into a fraction boiling below about 430 F at atmospheric pressure, e.g. hydrogen to 430 F, which is discharged through line 11; a light gas oil fraction, e.g. one having a 50 percent point of about 530 F, which is discharged through line 12; an intermediate gas oil fraction, eg one having a 50 percent point of about 650 F which is discharged through line 13; and a heavy gas oil fraction, e.g. one having a 50 percent point of about 680 F, which is discharged through line 14.
The naphtha and lighter fraction from line 11 is passed to a recovery section 16 where it is separated into various fractions, for example, a fuel gas fraction discharged through lien 17; a C -C fraction discharged through line 18; and a debutanized naphtha fraction discharged through line 19. The debutanized naphtha fraction from line 19 is the principal product of the process and is useful as base blending stock for motor gasoline.
The C -C fraction discharged through line 18 contains C and C olefins and isobutane. This stream is passed to an alkylation unit 20 wherein the olefins are alkylated with isobutane to high octane gasoline blending components or alkylate which is discharged from unit 20 to line 21 for blending into gasoline product. Those C -C olefins in excess of isobutane available in the C -C fraction may be discharged through line 22 to a suitable use, for example, as feed for petrochemical operations. Alternatively, isobutane may be supplied from a suitable source through line 23 to alkylation unit 20 for conversion to alkylate blending components for motor fuel gasoline.
The various gas oil fractions discharged from the fractionator through lines l2, l3 and 14 may be passed through line 13 to hydrogen treater unit 26'. Light gas oil may be supplied to line 13 by way of a line 27 as controlled by valve 28. Similarly, heavy gas oil withdrawn from fractionator 9 through line 14 may be supplied via lines 29 and 31 as controlled by valve 32 to line 13 as feed to hydrogen treater unit 26. Part or all of the light gas oil may be taken from line 12 as product, or part or all may be passed through line 33 as controlled by valve 34 to line 35 for recycle to catalytic cracking unit without hydrogen treatment. Similarly, part or all of the heavy gas oil may be withdrawn as product through line 14 or passed through line 36 as controlled by valve 37 to line 35 for the recycle directly to catalytic cracking unit 7. Provision is also made for return of part of the intermediate gas oil fraction, if desired, to the catalytic cracking unit via lines 38 and 35 as controlled by valve 39. Fresh feedstock may be supplied from line through line 41, if desired, as controlled by valve 42, to line 13 as feed to the hydrogen treater unit 26.
The effluent from the hydrogen treater unit is discharged through line 43 to a separation unit 44 in which gaseous components are separated from normally liquid components. A gaseous fraction consisting primarily of hydrogen is discharged from separator 44 through line 46 and returned to hydrogen treater 26 through line 47. Make-up hydrogen from a suitable source is supplied to line 47 from line 48. Normally liquid product of hydrotreater 26, including naphtha fractions, is discharged from separator 44 to line 35, mixed with fresh feedstock from line 5, and supplied to the catalytic cracking unit 7 through line 6.
Preferably, and for highest gasoline yields, the cracking catalyst comprises a molecular sieve or crystalline alumino-silicate base carrying catalytic metal additives, for example, rare earth metals, particularly cerium and lanthanum, their oxides or sulfides. Preferred catalysts are molecular sieve cracking catalysts of the well known commercial varieties, e.g. Davison XZ-25, Aerocat Triple S-4, Nalcat KSF, Houdry HZ-l, etc. These catalysts are made up of a silica-alumina-zeolite base in particle sizes suitable for fluidization or formed into beads or pellets, usually of a size range of N32 to it; inch, suitably l/l6 to 56 inch, and containing rare earth metal oxides. Fluid catalysts usually have particle sizes of 50 to 325 mesh U. S. Standard Sieve Series.
Typical compositions of preferred catalysts are the following: Davison XZ-25, a product of Davison Chemical Company, is a mixed silica-alumina-zeolite cracking catalyst containing about 30-35 weight percent alumina, 18 weight percent zeolite X, and about 2 weight percent cerium and 1 weight percent lanthanum. Aerocat Triple S-4, a product of American Cyanamid Company, is a silica-alumina-zeolite cracking catalyst containing about 32 weight percent alumina, 3 weight percent zeolite Y, 0.5 weight percent cerium and 0.1 weight percent lanthanum. Nalcat KSF, a product of Nalco Chemical Co., is a silica-alumina-zeolite cracking catalyst containing about 31-35 weight percent alumina, l 1 percent zeolite X, about 1 percent cerium and 0.3 percent lanthanum.
The catalytic cracking unit is operated at a temperature in the range of 800 to 1,l00 F, preferably 850 to l,000 F, with a space velocity, basis the total feed to the catalytic cracking unit, of 0.2 to 300 pound of hydrocarbon feedstock per hour per pound of catalyst at a reactor pressure within the range of 0 to 200 psig, preferably of the order of 25 psig. The variable reaction conditions, i.e., temperature and sapce velocity, are controlled to produce a per pass conversion of 30 to 80 volume percent. The relatively wide space velocity range indicated is subject to considerable variation and depends upon the particular reactor design under consideration, e.g., whether a riser type or bed type catalytic cracking unit is employed. The important consideration is the controlled per pass conversion which preferably is in the range of 30 to 65 volume percent to obtain maximum gasoline yield. Optimum conditions of space velocity and per pass conversion may be established for any given commercial unit by known test methods and economic evaluation.
To realize the full benefits of this invention, the catalytic cracking unit should be operated near 100 percent ultimate conversion of the feedstock to lighter products. Thus it is generally desirable to convert all of the 430 F+ product from the catalytic cracking unit to naphtha and lighter products. Preferably all of the heavy gas oil and a substantial portion or all of the intermediate gas oil and of the light gas oil should be hydrogen treated and recycled to the catalytic cracking unit.
Determination of the feed stream supplied to the hydrogen treater is based on two factors. The first is that the composite recycle stream returned to the catalytic cracking unit 7 through line 35 and admixed with fresh feed from line 5 is processed so that its cracking characteristics are similar to those of the fresh feedstock supplied through line 5. Hydrogen treatment of all of the gas oils, i.e., all of the 430 F gas oil from the catalytic cracking unit results in the highest yield of motor gasoline. The second factor is the market demand for catalytic cracking unit gas oils. it is recognized that it may not always be desirable to recycle all of the various' gas oil fractions to extinction, depending upon available market for gas oils, usually for the heavy gas oil fraction and for the light gas oil fraction.
Since the heavy gas oil has the greatest polycyclic aromatic content, in some cases it may be desirable to hydrogen treat only the heavier fractions to reduce the hydrotreating requirements of the system. In other instances it may be desirable to recycle some of the heavy gas oil from line 29 directly to the catalytic cracking unit via lines 35 and 36 to maintain the proper reactorregenerator heat balance in the catalytic cracking unit.
The hydrotreater design is based on providing the catalytic cracker recycle charge stock with a feed having a polycyclic aromatics content approaching that of the fresh feed (normally below 20 weight percent polycyclic aromatics). Total liquid product from the hydrotreater, including the gasoline produced is supplied to the catalytic cracking unit as part of the feedstock therefor.
Hydrogen used in the process of the present invention may be obtained from any suitable source. The term hydrogen as used in the present specification and claims includes dilute hydrogen. The hydrogen need not be pure but preferably a gas containing at least about percent hydrogen is used. Suitable sources of hydrogen are catalytic reformer by-product gas and hydrogen produced by steam reforming of hydrocarbons or by partial oxidation of carbonaceous material followed by shift conversion and removal of carbon dioxide. Since the efficiency of hydrogen treatment depends to some extent on the partial pressure of the hydrogen, it is generally advantageous to employ hydrogen rich gas of relatively high hydrogen content for the hydrogen treatment.
Preferred catalysts for the hydrogen treatment are alumina base hydrogenation catalysts in the form of pellets or extrudates of a size range of H32 to 3% inch, suitably l/l6 to 55 inch. Oxides of boron, cobalt, molybdenum, nickel and tungsten, and their resulting sulfides formed prior to or during the use of the catalyst,
are effective hydrogen treatment catalysts when deployed on suitable base supports, e.g. on high purity eta aluminas. Suitable catalysts are well known, for example, commercial catalysts Aero l-lDS-3, Harshaw Ni- -4303, Harshaw Ni-4305 and Harshaw Ni-4309. Aero HDS3, produced by American Cyanamid Company, is a nickel oxide-molybdenum oxide on alumina hydrogenation catalyst containing about 10 weight percent molybdenum and about 2 weight percent nickel, reported as the metals. Harshaw Ni-4303, produced by Harshaw Chemical Company, is a nickel tungsten catalyst on an alumina base comprising about 6 weight percent nickel and about 20 weight percent tungsten reported as the metals. Harshaw Ni-4305 and Ni-4309 are nickeltung'sten catalysts on boria-alumina base, Harshaw Ni- -4305 contains about 5 weight percent nickel and 10 weight percent tungsten, reported as metals, and about 10 weight percent boria (B Harshaw Ni-4309 contains about 5 weight percent nickel, about ,10 weight percent tungsten, reported as metals, and about weight percent boria.
The hydrotreating zone is maintained at between about 500 and 800 F. and 400 and 3,000 psig. Preferred conditions are 650725 F. and 5002,000'psig. The weight hourly space velocity of the hydrocarbon feed may range betwen about 0.2 and preferably 0.5 to 10 and the hydrogen rate between about 1,000 and 15,000 SCFB preferably 3,000 to 10,000 SCFB. The reaction conditions particularly temperature, pressure and space velocity are selected within the above ranges to effect reduction in the polycyclic aromatic content while minimizing the reduction in total aromatic content. The data in the following table are illustrative.
AROMATIC REDUCTION Charge: Light Cycle Gas Oil Catalyst: Nickel-Tungsten on Alumina Operating Conditions The same effect can be obtained by other combinations of temperature, pressure and space velocity as indicated above.
Conventional procedures are used in the alkylation step.
SPEClFlC EXAMPLES The following specific examples demonstrate the ability of the process of this invention to produce abnormally high octane gasoline by the combination of catalytic cracking hydrotreating and alkylation.
A number of trial runs were made using virgin gas oil charge stock having the following characteristics:
Fresh Charge Stock Gravity, AP1 30.9 UV Absorbance at 285 mu 4,9 Polycyclic Aromatics, wt. 15.2 Aromatics, Wt. 32.5 X-Ray Sulfur, Wt. 0.53 Conradson Carbon Residue, Wt. 0.05 Refractive Index at C 1.4824
ASTM Distillation, "F.
IBP 45 3 10 528 30 579 S0 625 747 5? 760+ Polycyclic aromatics (PCA) calculated by formula: PCA, Wt. UV
Absorbance at 285 mul0.323
Catalyst used in the fluidized bed catalytic cracking pilot unit for these tests was simulated equilibrium Davison XZ-25 catalyst. Aging of the catalyst was simulated for the runs by heat treating fresh Davison XZ-25 at 1,480 F. for 17 hours and blending the heat treated catalyst with an equal weight of Davison High Alumina cracking catalyst which had been heat treated 17 hours at l,700 F. Davison High Alumina cracking catalyst, a product of Davison Chemical Company, is a silica-alumina catalyst'comprisingabout 25 weight percent alumina and about 75 weight percent silica. Properties of the cracking catalyst are indicated in the following table.
FCCU Test Cracking Catalyst Products of Davison Chemical Co. Davison High Alumina catalyst is a silica-alumina cracking catalyst containing 25 weight percent alumina and 75 weight percent silica.
EFFECT OF PER PASS CONVERSION LEVEL The effect of per pass conversion in the fluid catalytic cracking unit (FCCU) on the volume of 430 F+ gas oils from the unit charged to the hydrogen treater unit (HTU) for percent conversion of catalytic cracking unit feedstock to motor fuel (430 F endpoint) and lighter products and on the polycyclic aromatics content of the total 430 F+ fractions are indicated in the following table.
Per pass conversion, Vol. 40 60 70 Total charge to HTU, basis fresh feed to FCCU, Vol. 66.7 42.8 Polycyclic aromatic content of 430F+ fractions from FCCU,
Effect of Polycyclic Aromatics The effect of the polycyclic aromatics content of charge stock to the fluid catalytic cracking unit on the yield of debutanized naphtha produced by the unit at a conversion level of 60 volume percent per pass with the above blend of catalysts is shown in the following table. Polycyclic aromatics,
wt. 7.0 15.0 29.3 44.3 Debutanized naphtha yield, vol. 39.5 38.4 31.5 27.6
EXAMPLES 1 AND 2 In the following runs, virgin gas oil having the above characteristics was charged to a fluid catalytic cracking unit under conditions indicated below to give conversion levels of about 55 volume percent (Example 1) and about 65 volume percent (Example 2).
Example No. l 2 Conversion Level 54.3 66.6 Reactor Temperature, Ave., F 919 918 Pressure Atm.+ Atm.+ Space Velocity 1bs./hr./lb.
catalyst 6.72 3.88 Catalyst/Oil, Wt. ratio 1.45 2.54 Feed Preheat Temp., F, Ave. 809 830 Regenerator Regenerator Outlet Temp. "F 1060 1064 Stripper, Ave. Temp. "F 928 938 Carbon on Catalyst To Regenerator, Wt. 1.02 1.19 To Reactor, Wt. 0.10 0.09 Yields, basis total feed Coke, Wt. 1.2 2.3 Dry Gas, Wt. 5.1 6.0 lsobutane, Vol. 4.6 (45.5) 8.3 (50) Nonnal Butane, Vol. 0.9 (9) 2.1 (13) Butylenes, Vol. 4.6 45.5) 6.2 (37) Total Cfs, Vol. 10.1 16.6 C Hydrocarbons, Vol. 6.4 12.2 Depentanized Naphtha, Vol. 39.8 41.5 Product Quality Tests Light Gasoline (115250F) Gravity, API 66.4 67.1 ASTM Octane RON, Clear, +3cc TEL 88.0,97.9 85.8,96.8 MON, Clear, +3cc TEL 76.5,86.8 76.8,87.1 Heavy Gasoline (250430F) Gravity, APl 41.6 41.5 ASTM Octane RON, Clear, +3cc TEL 86.1,92.0 87.5,939 MON, Clear, +3cc TEL 74.6,82.2 77.8,84.4 Gas Oil (430F+) Gravity, AP1 28.1 25.1 UV Absorption at 285 mu 11.8 14.4 Polycyclic Aromatics,
lncludes H and C -C hydrocarbons Numbers shown in parentheses are individual C hydrocarbon as a percentage of total C s.
Calculated form UV absorbance at 285 mu EXAMPLES 3 AND 4 Two 430F+ gas oils from catalytic cracking test runs comparable to those of Examples 1 and 2 were subjected to hydrogen treatment. The hydrogen treatment catalyst was Aero HDS-3 in the form of )6 inch pellets. The hydrotreater catalyst was sulfided to about 5 weight percent sulfur prior to use by charging gas oil containing sufficient added carbon disulfide to give a total sulfur content of about 2 weight percent over the catalyst at 400 F for 3 hours and at 600 F for an additional 3 hours to a hydrogen sulfide level in the reactor off-gas of at least 500 grains per 100 cubic feet. Operating conditions for and results of the hydrogenation treatment are shown in the following table in which the charge stock for Example 3 was a 430 F gas oil obtained from catalytic cracking of virgin gas oil having the characteristics indicated above at 51.5 volume percent conversion and the charge stock for Example 4 was a 430 F gas oil obtained from catalytic cracking of the virgin gas oil at 63.0 volume percent conversion.
Hydrogen Treatment Unit Example 3 4 Reactor Temperature, F. 706 680 Pressure, psig 1000 1000 S ace Velocit Wo/Hr/Wc 1.96 1.25
ydrogen/Hy rocarbon Ratio 7.63 6.91 Total Reactor Feed Gas, SCF/Bbl 4120 3914 Vol. H, in Reactor Feed Gas 97.7 98.4 Hydrogen Consumption, SCF/Bbl 750 1464 Charge to HTU Gravity, "APl 28.8 25.2 UV Absorbance at 285 mu 11.13 15.25 Polycyclic Aromatics, Wt. 34.5 47.2 Aromatics, Wt. 41.2 51.8 X-Ray Sulfur, Wt. 0.51 0.60 Conradson Carbon Residue, Wt. k 0.17 0.11
Refractive Index at 25C 1.5002 1.5304 ASTM Distillation, F
HTU Product Gravity, AP1 33.0 30.8 UV Absonce at 285 mu 3.32 4.64 Polycyclic Aromatics, Wt. 10.3 14.4 Aromatics, Wt. 32.9
X-Ray Sulfur, Wt. 0.029 0.039 Conradson Carbon Residue, Wt. 0.02 0.03 Refractive index at 25C 1.4768 1.4894 ASTM Distillation, F
IBP 382 180 10 467 465 30 504 500 50 539 528 90 636 642 EP 720 721 Calculated from UV absorbance at 285 mu EXAMPLES 5 AND 6 Hydrogen treated product from Examples 3 and 4 were blended with virgin gas oil of the characteristics listed above to produce a blend of 51.5 volume percent virgin gas oil and 48.5 volume percent of HTU product from Example 3 as charge stock to the fluid catalytic cracking pilot unit (Example 5), and to produce a blend of 63.0 volume percent virgin gas oil and 37.0 volume percent of the HTU product of Example 4 as charge stock for the fluid catalytic cracking pilot unit (Example 6) to simulate commercial conditions and illustrate the benefits of the method of this invention.
Catalytic Cracking Unit Example 5 6 Charge to FCCU Gravity, AP1 31.8 30.7 UV Absorbance at 285 mu 4.68 4.72 Polycyclic Aromatics, Wt. 14.5 14.6 Aromatics, Wt. 32.7 28.3 X-Ray Sulfur, Wt. l: 0.32 0.39 Conradson Carbon Residue,
Wt. 0.06 0.10 Refractive Index at 25C 1.4798 1.4834 ASTM Distillation, F
[HP 410 422 10 490 494 30 534 540 50 578 584 90 724 732 EP 760+ 760+ Products from FCCU Yields, basis total feed Coke, wt. 1.3 2.1 Dry Gas, Wt. if 4.1 5.5 Propylenes, Vol. I? 3.9 4.8 lsobutane, Vol. 6.6 (47) 7.5 (50) Normal Butane, Vol. 1.5 (11) 2.1 (14) Butylenes, Vol. 17 5.9 (42) 5.3 (36) C 's, Vol. 14.0 14.9 C 's, Vol. I: 8.2 11.7 Depentanized Naphtha, Vol. I: 37.8 41.5 Tests Light Gasoline ("250F) 66.9 66.4 Gravity, AP1
ASTM Octane RON, Clear, +3 cc TEL 86.2,96.7 81.6,95.3 MON,C1ear, +3 cc TEL 76.5,87.2 75.0,87.6 Heavy Gasoline (250-430F) Gravity, API 40.9 38.0 ASTM Octane RON, Clear, +3 cc TEL 86.4,92.3 89095.8 MON, Clear, +3 cc TEL 76384.0 78.7,84.2 Gas Oil (430F+) Gravity, AP1 27.8 24.2 UV Absorbance at 285 mu 13.4 15.0 Polycyclic Aromatics, Wt. 41.5 46.4
Calculated from UV Absorbance at 285 mu Calculated Includes 11,, C C C,, C,=, C,
Numbers shown in parenteses are individual butanes as a percentage of total butanes.
Overall Yield Data Yields, basis fresh feedstock charged to the fluid catalytic cracking unit with all of the charge stock ultimately converted to debutanized naphtha and lighter are shown in the following table.
Yields Basis Fresh Feed to FCCU (100% Ultimate Conversion) Coke, Wt. 2.3 3.2 Dry Gas, Wt. 7.3 8.5 H, Consumption, SCF/Bbl Fresh Feedstock 706 860 Propylenes, Vol. 7.0 7.4 lsobutane, Vol. 11.8 11.6 Normal Butane, Vol. 2.7 3.2 Butylenes, Vol. 10.5 8.2 Debutanized Naphtha, Vol. 82.3 81.9 Research Octane, +3 cc TEL 95.9 96.5 Motor Octane, +3 cc TEL 87.9 88.4 Road Octane index, +3 cc TEL 95.7 96.3 With Alkylation Debutanized Naphtha & Alkylate (No excess isobutane), Vol. 98.3 97.7 Research Octane, +3 cc TEL 97.4 97.9 Motor Octane, +3 cc TEL 90.6 91.0 Road Octane Index, +3 cc TEL 97.8 98.2 Debutanized Naphtha Alkylate (Excess isobutane), V01. 1 11.1 107.5 Research Octane, +3 cc TEL 98.4 98.6 Motor Octane, +3 cc TEL 92.2 92.2 Road Octane lndex,'+3 cc TEL 99.0 99.1 Excess isobutane required, Vol. 9.2 7.0
The foregoing examples illustrate the high yields of high octane motor fuels which may be produced by the method of this invention.
Obviously, many modifications and variations of the invention, as hereinbefore set forth, may be made without departing from the spirit and scope thereof, and therefore only such limitations should be imposed as are indicated in the appended claims.
We claim:
l. A process for the conversion of a gas oil feed stock boiling above about430 F. and containing polycyclic aromatic compounds to gasoline in a yield of at least 80 volume per cent which comprises subjecting said gas oil feed stock to catalytic cracking under conditions to effect a conversion of between 30 and 80 volume per cent, separating the effluentfrom the catalytic cracking zone into a cracked napthaand lighter fraction having an end point of about 430 F. and a cracked 430 F+ gas oil fraction having a higher polycyclic aromatic compound content than said gas oil feed stock, recovering from said cracked naphtha and lighter fraction as product of the process a catalytically cracked gasoline having a boiling range of about 1 l5430 F subjecting at least a portion of said cracked 430F.+ gas oil fraction to hydrogen treatment under conditions to reduce the polycyclic content thereof to a concentration not appreciably greater than that of said gas oil feed stock, said portion having an initial boiling point of about 430 F., separating the effluent from the hydrogenation zone. into a norr iially gaseous portion and a normally liquid portion and introducing-substantially all of said normally liquid portion with fresh gas oil feed stock into said catalytic cracking zone.
2. The process of claim 1 in which the catalytic cracking conversion is between 40 and volume per cent.
3. The process of claim 1 in which a debutanized naphtha is recovered from,.said naphtha and lighter fraction, the C -C olefins of said naphthaand lighter fraction are subjected to alkylation with isobutane and the resulting alkylate combined with said debutanized naphtha to form a high anti-knock motor fuel.
4. The process of claim 1 in which the catalytic cracking is carried out in the presence of a catalyst comprising a hydrogen-exchanged zeolite, a silicaalumina base and a rare earth metal.
5. The process of claim 1 in which the hydrogenation of monocyclic aromatic compounds is minimized.
6. The process of claim 3 in which the yield of gasoline is at least volume per cent basis gas oil feed stock.
7. The process of claim 1 in which the hydrogenation- F+ gas oil fraction.

Claims (7)

  1. 2. The process of claim 1 in which the catalytic cracking conversion is between 40 and 80 volume per cent.
  2. 3. The process of claim 1 in which a debutanized naphtha is recovered from said naphtha and lighter fraction, the C3-C4 olefins of said naphtha and lighter fraction are subjected to alkylation with isobutane and the resulting alkylate combined with said debutanized naphtha to form a high anti-knock motor fuel.
  3. 4. The process of claim 1 in which the catalytic cracking is carried out in the presence of a catalyst comprising a hydrogen-exchanged zeolite, a silica-alumina base and a rare earth metal.
  4. 5. The process of claim 1 in which the hydrogenation of monocyclic aromatic compounds is minimized.
  5. 6. The process of claim 3 in which the yield of gasoline is at least 90 volume per cent basis gas oil feed stock.
  6. 7. The process of claim 1 in which the hydrogenation product has a polycyclic aromatic content of less than 20 weight per cent.
  7. 8. The process of claim 1 in which the total aromatic content of the hydrogenation product is at least 75 percent of the total aromatic content of the cracked 430* F+ gaS oil fraction.
US00114721A 1971-02-11 1971-02-11 Catalytic cracking Expired - Lifetime US3755141A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11472171A 1971-02-11 1971-02-11

Publications (1)

Publication Number Publication Date
US3755141A true US3755141A (en) 1973-08-28

Family

ID=22357034

Family Applications (1)

Application Number Title Priority Date Filing Date
US00114721A Expired - Lifetime US3755141A (en) 1971-02-11 1971-02-11 Catalytic cracking

Country Status (1)

Country Link
US (1) US3755141A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500415A (en) * 1982-02-10 1985-02-19 Metallgesellschaft Aktiengesellschaft Process of converting non-distillable residues of mixed-base or paraffin-base crude hydrocarbon oils
US4585545A (en) * 1984-12-07 1986-04-29 Ashland Oil, Inc. Process for the production of aromatic fuel
EP0436253A1 (en) * 1990-01-02 1991-07-10 Shell Internationale Researchmaatschappij B.V. Process for preparing one or more light hydrocarbon oil distillates
US5049258A (en) * 1988-11-25 1991-09-17 Rwe-Entsorgung Aktiengesellschaft Reprocessing of contaminated oils
US5152883A (en) * 1989-06-09 1992-10-06 Fina Research S.A. Process for the production of improved octane numbers gasolines
US5851381A (en) * 1990-12-07 1998-12-22 Idemitsu Kosan Co., Ltd. Method of refining crude oil
WO1999057230A1 (en) * 1998-05-05 1999-11-11 Exxon Research And Engineering Company Two stage fluid catalytic cracking process for selectively producing c2 to c4 olefins
US6123830A (en) * 1998-12-30 2000-09-26 Exxon Research And Engineering Co. Integrated staged catalytic cracking and staged hydroprocessing process
EP1050572A2 (en) * 1999-05-05 2000-11-08 Bar-Co Processes Joint Venture Residual oil fluid catalytic cracking process
WO2008148682A1 (en) * 2007-06-08 2008-12-11 Albemarle Netherlands, B.V. Catalytic cracking process for high diesel yield with low aromatic content and/or high propylene yield
WO2008148686A1 (en) * 2007-06-08 2008-12-11 Albemarle Netherlands, B.V. Catalytic cracking and hydroprocessing process for high diesel yield with low aromatic content and/or high propylene yield
US20110207979A1 (en) * 2008-10-07 2011-08-25 Sk Innovation Co., Ltd. Method for producing high value aromatics and olefin from light cycle oil produced by a fluidized catalytic cracking process
JP2012201631A (en) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp Method for producing monocyclic aromatic hydrocarbon
EP2690159A1 (en) * 2011-03-25 2014-01-29 JX Nippon Oil & Energy Corporation Method for producing single-ring aromatic hydrocarbons
EP2690082A1 (en) * 2011-03-25 2014-01-29 JX Nippon Oil & Energy Corporation Method for producing single-ring aromatic hydrocarbons
EP2690160A1 (en) * 2011-03-25 2014-01-29 JX Nippon Oil & Energy Corporation Method for producing single-ring aromatic hydrocarbons
US9862897B2 (en) 2013-02-21 2018-01-09 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon
US10087376B2 (en) 2010-01-20 2018-10-02 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2398846A (en) * 1944-07-06 1946-04-23 Standard Oil Dev Co Making gasoline
US3140251A (en) * 1961-12-21 1964-07-07 Socony Mobil Oil Co Inc Process for cracking hydrocarbons with a crystalline zeolite
US3287252A (en) * 1962-05-10 1966-11-22 Union Oil Co Hyrocracking process utilizing two different types of catalyst
US3413212A (en) * 1965-12-08 1968-11-26 Mobil Oil Corp Cracking of hydrocarbons with a crystalline aluminosilicate in the presence of a hydrogen donor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2398846A (en) * 1944-07-06 1946-04-23 Standard Oil Dev Co Making gasoline
US3140251A (en) * 1961-12-21 1964-07-07 Socony Mobil Oil Co Inc Process for cracking hydrocarbons with a crystalline zeolite
US3287252A (en) * 1962-05-10 1966-11-22 Union Oil Co Hyrocracking process utilizing two different types of catalyst
US3413212A (en) * 1965-12-08 1968-11-26 Mobil Oil Corp Cracking of hydrocarbons with a crystalline aluminosilicate in the presence of a hydrogen donor

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500415A (en) * 1982-02-10 1985-02-19 Metallgesellschaft Aktiengesellschaft Process of converting non-distillable residues of mixed-base or paraffin-base crude hydrocarbon oils
US4585545A (en) * 1984-12-07 1986-04-29 Ashland Oil, Inc. Process for the production of aromatic fuel
US5049258A (en) * 1988-11-25 1991-09-17 Rwe-Entsorgung Aktiengesellschaft Reprocessing of contaminated oils
US5152883A (en) * 1989-06-09 1992-10-06 Fina Research S.A. Process for the production of improved octane numbers gasolines
EP0436253A1 (en) * 1990-01-02 1991-07-10 Shell Internationale Researchmaatschappij B.V. Process for preparing one or more light hydrocarbon oil distillates
US5851381A (en) * 1990-12-07 1998-12-22 Idemitsu Kosan Co., Ltd. Method of refining crude oil
WO1999057230A1 (en) * 1998-05-05 1999-11-11 Exxon Research And Engineering Company Two stage fluid catalytic cracking process for selectively producing c2 to c4 olefins
AU743504B2 (en) * 1998-05-05 2002-01-24 Exxon Research And Engineering Company Two stage fluid catalytic cracking process for selectively producing c2 to c4 olefins
US6123830A (en) * 1998-12-30 2000-09-26 Exxon Research And Engineering Co. Integrated staged catalytic cracking and staged hydroprocessing process
EP1050572A2 (en) * 1999-05-05 2000-11-08 Bar-Co Processes Joint Venture Residual oil fluid catalytic cracking process
EP1050572A3 (en) * 1999-05-05 2001-06-06 Bar-Co Processes Joint Venture Residual oil fluid catalytic cracking process
WO2008148682A1 (en) * 2007-06-08 2008-12-11 Albemarle Netherlands, B.V. Catalytic cracking process for high diesel yield with low aromatic content and/or high propylene yield
WO2008148686A1 (en) * 2007-06-08 2008-12-11 Albemarle Netherlands, B.V. Catalytic cracking and hydroprocessing process for high diesel yield with low aromatic content and/or high propylene yield
US20090045099A1 (en) * 2007-06-08 2009-02-19 Albemarle Netherlands B.V. Catalytic Cracking And Hydroprocessing Process For High Diesel Yield With Low Aromatic Content And/Or High Propylene Yield
US8912377B2 (en) * 2008-10-07 2014-12-16 Sk Innovation Co., Ltd. Method for producing high value aromatics and olefin from light cycle oil produced by a fluidized catalytic cracking process
US20110207979A1 (en) * 2008-10-07 2011-08-25 Sk Innovation Co., Ltd. Method for producing high value aromatics and olefin from light cycle oil produced by a fluidized catalytic cracking process
US10087376B2 (en) 2010-01-20 2018-10-02 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
EP2690159A4 (en) * 2011-03-25 2014-09-03 Jx Nippon Oil & Energy Corp Method for producing single-ring aromatic hydrocarbons
EP2690082A1 (en) * 2011-03-25 2014-01-29 JX Nippon Oil & Energy Corporation Method for producing single-ring aromatic hydrocarbons
EP2690161A1 (en) * 2011-03-25 2014-01-29 JX Nippon Oil & Energy Corporation Method for producing single-ring aromatic hydrocarbons
EP2690160A4 (en) * 2011-03-25 2014-09-03 Jx Nippon Oil & Energy Corp Method for producing single-ring aromatic hydrocarbons
EP2690161A4 (en) * 2011-03-25 2014-09-03 Jx Nippon Oil & Energy Corp Method for producing single-ring aromatic hydrocarbons
EP2690082A4 (en) * 2011-03-25 2014-09-03 Jx Nippon Oil & Energy Corp Method for producing single-ring aromatic hydrocarbons
JP2012201631A (en) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp Method for producing monocyclic aromatic hydrocarbon
EP2690160A1 (en) * 2011-03-25 2014-01-29 JX Nippon Oil & Energy Corporation Method for producing single-ring aromatic hydrocarbons
US9233892B2 (en) 2011-03-25 2016-01-12 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
US9382174B2 (en) 2011-03-25 2016-07-05 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
US9382173B2 (en) 2011-03-25 2016-07-05 Jx Nippon Oil & Energy Corporation Method of producing single-ring aromatic hydrocarbons
US9573864B2 (en) 2011-03-25 2017-02-21 Jx Nippon Oil & Energy Corporation Method of producing monocyclic aromatic hydrocarbons
KR101896733B1 (en) 2011-03-25 2018-10-04 제이엑스티지 에네루기 가부시키가이샤 Method for producing single-ring aromatic hydrocarbons
EP2690159A1 (en) * 2011-03-25 2014-01-29 JX Nippon Oil & Energy Corporation Method for producing single-ring aromatic hydrocarbons
US9862897B2 (en) 2013-02-21 2018-01-09 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon

Similar Documents

Publication Publication Date Title
US3755141A (en) Catalytic cracking
US3297563A (en) Treatment of heavy oils in two stages of hydrotreating
US4125566A (en) Process for upgrading effluents from syntheses of the Fischer-Tropsch type
US5266188A (en) Selective hydrotreating
US3891539A (en) Hydrocracking process for converting heavy hydrocarbon into low sulfur gasoline
JP3270545B2 (en) Hydrocarbon reforming method
US3072560A (en) Conversion of residual oil to gasoline
US3245900A (en) Hydrocarbon conversion process
US3775290A (en) Integrated hydrotreating and catalytic cracking system for refining sour crude
US4959140A (en) Two-catalyst hydrocracking process
US2944005A (en) Catalytic conversion of hydrocarbon distillates
US3620960A (en) Catalytic dewaxing
US3047490A (en) Hydrocracking process
US3317419A (en) Multiple-stage cascade hydrorefining of contaminated charge stocks
US2944006A (en) Hydrocracking of a hydrocarbon distillate employing a sulfide of nickel or cobalt, disposed on an active siliceous cracking catalyst support
US3580837A (en) Hydrorefining of coke-forming hydrocarbon distillates
US3719586A (en) Naphtha conversion process including hydrocracking and hydroreforming
EP1442099B1 (en) Olefins production process
US5318692A (en) FCC for producing low emission fuels from high hydrogen and low nitrogen and aromatic feeds
US3617486A (en) Hydrocrackfining of hydrocarbon fractions over mixed metal catalysts
US3843508A (en) Split flow hydrodesulfurization and catalytic cracking of residue-containing petroleum fraction
US3799864A (en) Fluid catalytic cracking process
US2574451A (en) Catalytic desulfurization of petroleum hydrocarbons
US3172839A (en) Jnoz noixvnoildvaj
US3222274A (en) Process for producing high energy jet fuels