WO2011086941A1 - 有機エレクトロルミネッセンス素子 - Google Patents
有機エレクトロルミネッセンス素子 Download PDFInfo
- Publication number
- WO2011086941A1 WO2011086941A1 PCT/JP2011/000174 JP2011000174W WO2011086941A1 WO 2011086941 A1 WO2011086941 A1 WO 2011086941A1 JP 2011000174 W JP2011000174 W JP 2011000174W WO 2011086941 A1 WO2011086941 A1 WO 2011086941A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- barrier
- layer
- triplet
- emitting layer
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 232
- 230000004888 barrier function Effects 0.000 claims abstract description 140
- 239000002019 doping agent Substances 0.000 claims abstract description 81
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 claims abstract description 10
- 238000005401 electroluminescence Methods 0.000 claims description 73
- 125000004432 carbon atom Chemical group C* 0.000 claims description 43
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 10
- 230000001747 exhibiting effect Effects 0.000 claims description 7
- 230000036961 partial effect Effects 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 280
- 230000015572 biosynthetic process Effects 0.000 description 69
- 238000003786 synthesis reaction Methods 0.000 description 69
- 239000000243 solution Substances 0.000 description 53
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 48
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 45
- 238000006243 chemical reaction Methods 0.000 description 40
- 150000001875 compounds Chemical class 0.000 description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 34
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 30
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 29
- 239000012044 organic layer Substances 0.000 description 29
- 230000006870 function Effects 0.000 description 24
- 230000005525 hole transport Effects 0.000 description 24
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 24
- 235000019341 magnesium sulphate Nutrition 0.000 description 24
- 238000003756 stirring Methods 0.000 description 22
- 238000001914 filtration Methods 0.000 description 20
- 238000002347 injection Methods 0.000 description 20
- 239000007924 injection Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- 239000012300 argon atmosphere Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 18
- 125000003118 aryl group Chemical group 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 16
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- 238000010898 silica gel chromatography Methods 0.000 description 16
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 15
- -1 anthracene compound Chemical class 0.000 description 15
- 150000001454 anthracenes Chemical class 0.000 description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 15
- 239000007787 solid Substances 0.000 description 13
- 125000001424 substituent group Chemical group 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000001816 cooling Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 230000006798 recombination Effects 0.000 description 12
- 238000005215 recombination Methods 0.000 description 12
- 230000001052 transient effect Effects 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000010992 reflux Methods 0.000 description 10
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 9
- JZOIZKBKSZMVRV-UHFFFAOYSA-N benzo(a)triphenylene Chemical group C1=CC=CC2=C3C4=CC=CC=C4C=CC3=C(C=CC=C3)C3=C21 JZOIZKBKSZMVRV-UHFFFAOYSA-N 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- OOJVFRCGOPTRRN-UHFFFAOYSA-N 2-(6-fluoranthen-3-ylnaphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(C=C(C=C2)C=3C=4C=CC=C5C6=CC=CC=C6C(C=45)=CC=3)C2=C1 OOJVFRCGOPTRRN-UHFFFAOYSA-N 0.000 description 8
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 8
- 150000001721 carbon Chemical group 0.000 description 8
- 125000004122 cyclic group Chemical group 0.000 description 8
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical compound C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 8
- 150000003220 pyrenes Chemical class 0.000 description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 125000000623 heterocyclic group Chemical group 0.000 description 7
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 7
- 238000001819 mass spectrum Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 150000004982 aromatic amines Chemical class 0.000 description 6
- QIXXMBYCFDAKNW-UHFFFAOYSA-N benzo[c]phenanthren-5-ylboronic acid Chemical compound C1=CC=C2C(B(O)O)=CC3=CC=C(C=CC=C4)C4=C3C2=C1 QIXXMBYCFDAKNW-UHFFFAOYSA-N 0.000 description 6
- 125000000753 cycloalkyl group Chemical group 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000005283 ground state Effects 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 6
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 6
- 125000006413 ring segment Chemical group 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- OLEZQMVRAQBUNV-UHFFFAOYSA-N (3-fluoranthen-3-ylphenyl)boronic acid Chemical compound OB(O)C1=CC=CC(C=2C=3C=CC=C4C5=CC=CC=C5C(C=34)=CC=2)=C1 OLEZQMVRAQBUNV-UHFFFAOYSA-N 0.000 description 5
- PPYIZNYOMNYZCG-UHFFFAOYSA-N 1-(4-bromophenyl)-2-phenylbenzimidazole Chemical compound C1=CC(Br)=CC=C1N1C2=CC=CC=C2N=C1C1=CC=CC=C1 PPYIZNYOMNYZCG-UHFFFAOYSA-N 0.000 description 5
- 0 C*(C1CC1)c1ccc(C=C2)c3c1ccc(C=C)c3C2=C(C)** Chemical compound C*(C1CC1)c1ccc(C=C2)c3c1ccc(C=C)c3C2=C(C)** 0.000 description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 150000001342 alkaline earth metals Chemical class 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 5
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Natural products C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 5
- 125000001769 aryl amino group Chemical group 0.000 description 5
- 150000004696 coordination complex Chemical class 0.000 description 5
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 4
- XFQUMMGPGWTPOT-UHFFFAOYSA-N 1-(3-bromophenyl)-2-phenylbenzimidazole Chemical compound BrC1=CC=CC(N2C3=CC=CC=C3N=C2C=2C=CC=CC=2)=C1 XFQUMMGPGWTPOT-UHFFFAOYSA-N 0.000 description 4
- NVDQCFAMTMTVTJ-UHFFFAOYSA-N 10-benzo[g]chryseneboronic acid Chemical compound C1=CC=C2C(B(O)O)=CC3=C(C=CC=C4)C4=C(C=CC=C4)C4=C3C2=C1 NVDQCFAMTMTVTJ-UHFFFAOYSA-N 0.000 description 4
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 4
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 125000003710 aryl alkyl group Chemical group 0.000 description 4
- 125000004104 aryloxy group Chemical group 0.000 description 4
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 4
- 230000009849 deactivation Effects 0.000 description 4
- 238000000295 emission spectrum Methods 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 150000002219 fluoranthenes Chemical class 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 125000001072 heteroaryl group Chemical group 0.000 description 4
- 238000004770 highest occupied molecular orbital Methods 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 238000003077 quantum chemistry computational method Methods 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- CUXMPSYDVIYQAB-UHFFFAOYSA-N 1-bromo-4-[2-(2-methoxyethenyl)phenyl]naphthalene Chemical compound COC=CC1=CC=CC=C1C1=CC=C(Br)C2=CC=CC=C12 CUXMPSYDVIYQAB-UHFFFAOYSA-N 0.000 description 3
- ADHOMKHHOMRGBF-UHFFFAOYSA-N 10-bromobenzo[g]chrysene Chemical compound C1=CC=C2C(Br)=CC3=C(C=CC=C4)C4=C(C=CC=C4)C4=C3C2=C1 ADHOMKHHOMRGBF-UHFFFAOYSA-N 0.000 description 3
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 3
- BFOOAFXDOZSUBN-UHFFFAOYSA-N 2-(4-bromonaphthalen-1-yl)benzaldehyde Chemical compound C12=CC=CC=C2C(Br)=CC=C1C1=CC=CC=C1C=O BFOOAFXDOZSUBN-UHFFFAOYSA-N 0.000 description 3
- GNXASBZBHQVMIE-UHFFFAOYSA-N 2-phenanthren-9-ylbenzaldehyde Chemical compound O=CC1=CC=CC=C1C1=CC2=CC=CC=C2C2=CC=CC=C12 GNXASBZBHQVMIE-UHFFFAOYSA-N 0.000 description 3
- MNJMBVHRXXIFSX-UHFFFAOYSA-N 3-(3-bromophenyl)fluoranthene Chemical compound BrC1=CC=CC(C=2C=3C=CC=C4C5=CC=CC=C5C(C=34)=CC=2)=C1 MNJMBVHRXXIFSX-UHFFFAOYSA-N 0.000 description 3
- IFTUKVAJYOQKRS-UHFFFAOYSA-N 4-bromo-n-methyl-2-nitroaniline Chemical compound CNC1=CC=C(Br)C=C1[N+]([O-])=O IFTUKVAJYOQKRS-UHFFFAOYSA-N 0.000 description 3
- AGXBDFLBYGQPOB-UHFFFAOYSA-N 5-bromo-1-methyl-2-phenylbenzimidazole Chemical compound N=1C2=CC(Br)=CC=C2N(C)C=1C1=CC=CC=C1 AGXBDFLBYGQPOB-UHFFFAOYSA-N 0.000 description 3
- WWCQJSKCEVYQID-UHFFFAOYSA-N 5-bromobenzo[c]phenanthrene Chemical compound C1=CC=C2C(Br)=CC3=CC=C(C=CC=C4)C4=C3C2=C1 WWCQJSKCEVYQID-UHFFFAOYSA-N 0.000 description 3
- VMUVSYPSGFFWMH-UHFFFAOYSA-N 6-fluoranthen-3-ylnaphthalen-2-ol Chemical compound C12=CC=CC=C2C2=CC=CC3=C2C1=CC=C3C1=CC2=CC=C(O)C=C2C=C1 VMUVSYPSGFFWMH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KHNYNFUTFKJLDD-UHFFFAOYSA-N Benzo[j]fluoranthene Chemical class C1=CC(C=2C3=CC=CC=C3C=CC=22)=C3C2=CC=CC3=C1 KHNYNFUTFKJLDD-UHFFFAOYSA-N 0.000 description 3
- 238000003775 Density Functional Theory Methods 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- GBROPGWFBFCKAG-UHFFFAOYSA-N benzochrysene Natural products C1=CC2=C3C=CC=CC3=CC=C2C2=C1C1=CC=CC=C1C=C2 GBROPGWFBFCKAG-UHFFFAOYSA-N 0.000 description 3
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- ILSGDBURWYKYHE-UHFFFAOYSA-N chrysene-1,2-diamine Chemical class C1=CC=CC2=CC=C3C4=CC=C(N)C(N)=C4C=CC3=C21 ILSGDBURWYKYHE-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000010893 electron trap Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- LDPCTBXVSGTSNJ-UHFFFAOYSA-N fluoranthen-3-ylboronic acid Chemical compound C12=CC=CC=C2C2=CC=CC3=C2C1=CC=C3B(O)O LDPCTBXVSGTSNJ-UHFFFAOYSA-N 0.000 description 3
- 125000003983 fluorenyl group Chemical class C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002391 heterocyclic compounds Chemical class 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- IHRPMVUXZJCODS-UHFFFAOYSA-N n-(2-amino-4-bromophenyl)-n-methylbenzamide Chemical compound C=1C=C(Br)C=C(N)C=1N(C)C(=O)C1=CC=CC=C1 IHRPMVUXZJCODS-UHFFFAOYSA-N 0.000 description 3
- MZKMLILHEXPYAS-UHFFFAOYSA-N n-(3-bromophenyl)-2-nitroaniline Chemical compound [O-][N+](=O)C1=CC=CC=C1NC1=CC=CC(Br)=C1 MZKMLILHEXPYAS-UHFFFAOYSA-N 0.000 description 3
- JTZWOVTYKFJSBI-UHFFFAOYSA-N n-(4-bromo-2-nitrophenyl)-n-methylbenzamide Chemical compound C=1C=C(Br)C=C([N+]([O-])=O)C=1N(C)C(=O)C1=CC=CC=C1 JTZWOVTYKFJSBI-UHFFFAOYSA-N 0.000 description 3
- GMFUKKONFZISMI-UHFFFAOYSA-N n-(4-bromophenyl)-2-nitroaniline Chemical compound [O-][N+](=O)C1=CC=CC=C1NC1=CC=C(Br)C=C1 GMFUKKONFZISMI-UHFFFAOYSA-N 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 150000005041 phenanthrolines Chemical class 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 238000001296 phosphorescence spectrum Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- JSTHREDTMPIBEX-UHFFFAOYSA-N pyrene-2,7-diamine Chemical class C1=C(N)C=C2C=CC3=CC(N)=CC4=CC=C1C2=C43 JSTHREDTMPIBEX-UHFFFAOYSA-N 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- NHDIQVFFNDKAQU-UHFFFAOYSA-N tripropan-2-yl borate Chemical compound CC(C)OB(OC(C)C)OC(C)C NHDIQVFFNDKAQU-UHFFFAOYSA-N 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- DGUWACLYDSWXRZ-UHFFFAOYSA-N (2-formylphenyl)boronic acid Chemical compound OB(O)C1=CC=CC=C1C=O DGUWACLYDSWXRZ-UHFFFAOYSA-N 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- ORPVVAKYSXQCJI-UHFFFAOYSA-N 1-bromo-2-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1Br ORPVVAKYSXQCJI-UHFFFAOYSA-N 0.000 description 2
- AKQIBJOTAFMVCY-UHFFFAOYSA-N 2-(3-bromophenyl)imidazo[1,2-a]pyridine Chemical compound BrC1=CC=CC(C=2N=C3C=CC=CN3C=2)=C1 AKQIBJOTAFMVCY-UHFFFAOYSA-N 0.000 description 2
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 2
- VKYNIJKLEGOWGB-UHFFFAOYSA-N 9-[2-(2-methoxyethenyl)phenyl]phenanthrene Chemical compound COC=CC1=CC=CC=C1C1=CC2=CC=CC=C2C2=CC=CC=C12 VKYNIJKLEGOWGB-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 125000005103 alkyl silyl group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000005104 aryl silyl group Chemical group 0.000 description 2
- 125000003609 aryl vinyl group Chemical group 0.000 description 2
- 150000001555 benzenes Chemical class 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- MYTMXVHNEWBFAL-UHFFFAOYSA-L dipotassium;carbonate;hydrate Chemical compound O.[K+].[K+].[O-]C([O-])=O MYTMXVHNEWBFAL-UHFFFAOYSA-L 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 125000006575 electron-withdrawing group Chemical group 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000001566 impedance spectroscopy Methods 0.000 description 2
- 150000002503 iridium Chemical class 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- YMVOXVILVVZSJY-UHFFFAOYSA-N n-[2-(3-bromoanilino)phenyl]benzamide Chemical compound BrC1=CC=CC(NC=2C(=CC=CC=2)NC(=O)C=2C=CC=CC=2)=C1 YMVOXVILVVZSJY-UHFFFAOYSA-N 0.000 description 2
- AUEKXHIWLMWLBB-UHFFFAOYSA-N n-[2-(4-bromoanilino)phenyl]benzamide Chemical compound C1=CC(Br)=CC=C1NC1=CC=CC=C1NC(=O)C1=CC=CC=C1 AUEKXHIWLMWLBB-UHFFFAOYSA-N 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- 150000003057 platinum Chemical class 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 150000005839 radical cations Chemical class 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 125000005504 styryl group Chemical group 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 2
- 125000005580 triphenylene group Chemical group 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 1
- DXBHBZVCASKNBY-UHFFFAOYSA-N 1,2-Benz(a)anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=C1 DXBHBZVCASKNBY-UHFFFAOYSA-N 0.000 description 1
- IBGUDZMIAZLJNY-UHFFFAOYSA-N 1,4-dibromonaphthalene Chemical compound C1=CC=C2C(Br)=CC=C(Br)C2=C1 IBGUDZMIAZLJNY-UHFFFAOYSA-N 0.000 description 1
- CTPUUDQIXKUAMO-UHFFFAOYSA-N 1-bromo-3-iodobenzene Chemical compound BrC1=CC=CC(I)=C1 CTPUUDQIXKUAMO-UHFFFAOYSA-N 0.000 description 1
- MZBXSQBQPJWECM-UHFFFAOYSA-N 2-bromo-1-(3-bromophenyl)ethanone Chemical compound BrCC(=O)C1=CC=CC(Br)=C1 MZBXSQBQPJWECM-UHFFFAOYSA-N 0.000 description 1
- FKJSFKCZZIXQIP-UHFFFAOYSA-N 2-bromo-1-(4-bromophenyl)ethanone Chemical compound BrCC(=O)C1=CC=C(Br)C=C1 FKJSFKCZZIXQIP-UHFFFAOYSA-N 0.000 description 1
- DHYHYLGCQVVLOQ-UHFFFAOYSA-N 3-bromoaniline Chemical compound NC1=CC=CC(Br)=C1 DHYHYLGCQVVLOQ-UHFFFAOYSA-N 0.000 description 1
- 125000006275 3-bromophenyl group Chemical group [H]C1=C([H])C(Br)=C([H])C(*)=C1[H] 0.000 description 1
- WDFQBORIUYODSI-UHFFFAOYSA-N 4-bromoaniline Chemical compound NC1=CC=C(Br)C=C1 WDFQBORIUYODSI-UHFFFAOYSA-N 0.000 description 1
- YLDFTMJPQJXGSS-UHFFFAOYSA-N 6-bromo-2-naphthol Chemical compound C1=C(Br)C=CC2=CC(O)=CC=C21 YLDFTMJPQJXGSS-UHFFFAOYSA-N 0.000 description 1
- RSQXKVWKJVUZDG-UHFFFAOYSA-N 9-bromophenanthrene Chemical compound C1=CC=C2C(Br)=CC3=CC=CC=C3C2=C1 RSQXKVWKJVUZDG-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- XMZCQGQLKSLYIB-UHFFFAOYSA-N Bc1cccc(-c2c[n](cccc3)c3n2)c1 Chemical compound Bc1cccc(-c2c[n](cccc3)c3n2)c1 XMZCQGQLKSLYIB-UHFFFAOYSA-N 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BXMJAMRBYAMBNM-UHFFFAOYSA-N BrC1=CC2=C(N(C(=N2)C2=CC=CC=C2)C)C=C1.BrC1=CC2=C(N(C(=N2)C2=CC=CC=C2)C)C=C1 Chemical compound BrC1=CC2=C(N(C(=N2)C2=CC=CC=C2)C)C=C1.BrC1=CC2=C(N(C(=N2)C2=CC=CC=C2)C)C=C1 BXMJAMRBYAMBNM-UHFFFAOYSA-N 0.000 description 1
- JXZXMXUGMMMIFJ-UHFFFAOYSA-N BrC1=CC=C(C=C1)N1C(=NC2=C1C=CC=C2)C2=CC=CC=C2.BrC2=CC=C(C=C2)N2C(=NC1=C2C=CC=C1)C1=CC=CC=C1 Chemical compound BrC1=CC=C(C=C1)N1C(=NC2=C1C=CC=C2)C2=CC=CC=C2.BrC2=CC=C(C=C2)N2C(=NC1=C2C=CC=C1)C1=CC=CC=C1 JXZXMXUGMMMIFJ-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- PGGZKGVMHCJPCO-UHFFFAOYSA-N C1=CC=CC2=C1C1=C3C=CC=CC3=C(C=C1C1=CC=CC=C21)B(O)O.C2=CC=CC1=C2C2=C3C=CC=CC3=C(C=C2C2=CC=CC=C12)B(O)O Chemical compound C1=CC=CC2=C1C1=C3C=CC=CC3=C(C=C1C1=CC=CC=C21)B(O)O.C2=CC=CC1=C2C2=C3C=CC=CC3=C(C=C2C2=CC=CC=C12)B(O)O PGGZKGVMHCJPCO-UHFFFAOYSA-N 0.000 description 1
- UXKBCWNZQKRKMB-UHFFFAOYSA-N COC=CC1=C(C=CC=C1)C=1C2=CC=CC=C2C=2C=CC=CC2C1.C1=CC=CC2=C1C1=C3C=CC=CC3=CC=C1C1=CC=CC=C21 Chemical compound COC=CC1=C(C=CC=C1)C=1C2=CC=CC=C2C=2C=CC=CC2C1.C1=CC=CC2=C1C1=C3C=CC=CC3=CC=C1C1=CC=CC=C21 UXKBCWNZQKRKMB-UHFFFAOYSA-N 0.000 description 1
- CQBXRUWIKVWSRW-UHFFFAOYSA-N COC[P](C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound COC[P](C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 CQBXRUWIKVWSRW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 229910002668 Pd-Cu Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- NDMVXIYCFFFPLE-UHFFFAOYSA-N anthracene-9,10-diamine Chemical class C1=CC=C2C(N)=C(C=CC=C3)C3=C(N)C2=C1 NDMVXIYCFFFPLE-UHFFFAOYSA-N 0.000 description 1
- 125000005427 anthranyl group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- QESWXWCXJBVTDH-UHFFFAOYSA-N c(cc1)ccc1-c1nc(cccc2)c2[n]1-c1cc(-c(cc2)cc(cc3)c2cc3-c2ccc-3c4c2cccc4-c2c-3cccc2)ccc1 Chemical compound c(cc1)ccc1-c1nc(cccc2)c2[n]1-c1cc(-c(cc2)cc(cc3)c2cc3-c2ccc-3c4c2cccc4-c2c-3cccc2)ccc1 QESWXWCXJBVTDH-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- NXQGGXCHGDYOHB-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloropalladium;iron(2+) Chemical compound [Fe+2].Cl[Pd]Cl.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 NXQGGXCHGDYOHB-UHFFFAOYSA-L 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- OAYLNYINCPYISS-UHFFFAOYSA-N ethyl acetate;hexane Chemical compound CCCCCC.CCOC(C)=O OAYLNYINCPYISS-UHFFFAOYSA-N 0.000 description 1
- 125000005567 fluorenylene group Chemical group 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 230000005524 hole trap Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- SJFNDMHZXCUXSA-UHFFFAOYSA-M methoxymethyl(triphenyl)phosphanium;chloride Chemical compound [Cl-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(COC)C1=CC=CC=C1 SJFNDMHZXCUXSA-UHFFFAOYSA-M 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- KFBOUJZFFJDYTA-UHFFFAOYSA-N n-methyl-2-nitroaniline Chemical compound CNC1=CC=CC=C1[N+]([O-])=O KFBOUJZFFJDYTA-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical group C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003518 tetracenes Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000002366 time-of-flight method Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/20—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/622—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/623—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/40—Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/655—Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
Definitions
- the present invention relates to an organic electroluminescence (EL) element, particularly a highly efficient organic EL element.
- EL organic electroluminescence
- Non-Patent Document 1 a non-doped element using an anthracene compound as a host material is analyzed, and as a mechanism, singlet excitons are generated by collisional fusion of two triplet excitons, resulting in fluorescence emission. Has increased.
- Non-Patent Document 1 only discloses that an increase in fluorescence emission was confirmed by collisional fusion of triplet excitons in a non-doped element composed of only a host material. Was as low as 3-6%.
- Non-Patent Document 2 reports that the blue quantum element has an internal quantum efficiency of 28.5%, which exceeds the conventional theoretical limit of 25%. However, no technical means for exceeding 25% has been disclosed, and further higher efficiency has been demanded from the viewpoint of practical use of a full-color organic EL television.
- Patent Document 1 Another example using triplet excitons in a fluorescent element is disclosed in Patent Document 1.
- the lowest excited triplet state (T1) is lower than the lowest excited singlet state (S1), but the higher excited triplet state (T2) may be higher than S1.
- the external quantum efficiency is about 6% (when the light extraction efficiency is 25%, the internal quantum efficiency is 24%), which does not exceed the limit value of 25% that has been conventionally known.
- the mechanism here is due to intersystem crossing from the excited triplet state to the excited singlet state in one molecule, and singlet due to collision of two triplet excitons disclosed in Non-Patent Document 1. Term generation has not occurred.
- phenanthroline derivatives such as BCP (Bathocuproin) and BPhen are used for the hole blocking layer in the fluorescent element, thereby increasing the density of holes at the interface between the hole blocking layer and the light emitting layer, and efficiently. Techniques for causing recombination are disclosed.
- phenanthroline derivatives such as BCP (basocuproin) and BPhen are vulnerable to holes, have poor oxidation durability, and have insufficient performance from the viewpoint of extending the lifetime of the device.
- the laminated structure of the organic EL element is made more multilayered.
- the multilayer structure increases the process of manufacturing the organic EL element and increases the driving voltage.
- Patent Document 4 discloses an organic EL element using an aromatic compound such as an anthracene derivative as a material for an electron transport layer in contact with a light emitting layer in a fluorescent element.
- an aromatic compound such as an anthracene derivative
- Patent Document 4 discloses an organic EL element using an aromatic compound such as an anthracene derivative as a material for an electron transport layer in contact with a light emitting layer in a fluorescent element.
- the triplet energy of the electron transport layer normally designed in so-called phosphorescent devices
- the triplet energy of the electron transport layer is smaller than the triplet energy of the light emitting layer, so triplet excitons generated in the light emitting layer are diffused to the electron transport layer. Since then, it has been through a thermal deactivation process, and it has been difficult to exceed 25%, which is the theoretical limit value of conventional fluorescence.
- the phosphorescent type uses light emitted directly from triplet excitons. Since singlet exciton energy is also converted into triplet exciton by spin conversion inside the light emitting molecule, it is expected that an internal light emission efficiency of nearly 100% can be obtained in principle. Therefore, since a phosphorescent light emitting device using an Ir complex was announced by Forrest et al. In 2000, a phosphorescent light emitting device has attracted attention as a technique for improving the efficiency of organic EL devices. However, although red phosphorescent devices have reached the practical application range, green and blue phosphorescent devices have a shorter lifetime than fluorescent-type devices, and in particular, blue phosphorescence has insufficient color purity and luminous efficiency. The current situation is that it has not been put into practical use.
- the triplet energy of the host material and the dopant material has a specific relationship, and the cathode side of the light emitting layer
- a material having a large triplet energy is used as a layer adjacent to the interface, triplet excitons are confined in the light emitting layer, and the TTF phenomenon is efficiently caused to realize high efficiency and long life of the fluorescent element. It came to.
- the present application efficiently raises the TTF phenomenon by confining triplet excitons in the light emitting layer without increasing the number of layers in the stacked structure, and has led to the realization of a highly efficient and long-life organic EL element. .
- the following organic EL elements are provided.
- An anode, a light emitting layer, an electron transport zone, and a cathode are provided in this order,
- the light emitting layer includes a host material and a dopant material exhibiting fluorescence emission having a main peak wavelength of 550 nm or less,
- the electron transport zone includes a barrier layer adjacent to the light emitting layer;
- the said barrier layer is an organic electroluminescent element containing the barrier material which has an electron carrying structure site
- E T b > E T h (1) (E T h and E T b are triplet energies of the host material and the barrier material, respectively.) 2.
- E T d > E T h (2) (E T d represents the triplet energy of the dopant material.)
- the organic electroluminescence device according to 1 or 2 wherein the affinity Af h of the host material and the affinity Af b of the barrier material satisfy the following formula (3). Af h ⁇ Af b > 0 eV (3) 4).
- the organic electroluminescent device according to any one of 1 to 3, the ionization potential Ip d ionization potential Ip h and the dopant material of the host material satisfies the following formula (4). Ip d ⁇ Ip h ⁇ 0.2 eV (4) 5. 5. The organic electroluminescence device according to any one of 1 to 4, wherein the barrier material has an electron mobility of 10 ⁇ 6 cm 2 / Vs or more. 6). 6. The organic electroluminescence device according to any one of 1 to 5, wherein the barrier layer contains a donor exhibiting reducibility with respect to the barrier material. 7). 7.
- the organic electroluminescence device according to any one of 1 to 6, wherein the emission intensity derived from singlet excitons generated by collision of triplet excitons in the light emitting layer is 30% or more with respect to the total emission intensity. 8).
- the electron transport structure site includes one or more of the following partial structures. (In the formula, X 1 and X 2 are each a carbon atom or a nitrogen atom.) 9.
- the electron transport structure site includes one or more rings selected from the following rings.
- X 11 to X 15 and X 21 to X 26 are each a carbon atom or a nitrogen atom, provided that at least one of X 11 to X 15 and at least one of X 21 to X 26 are nitrogen atoms. is there.) 10. 8. The organic electroluminescence device according to any one of 1 to 7, wherein the electron transport structure site includes one or more rings selected from the following rings. 11. 8. The organic electroluminescence device according to any one of 1 to 7, wherein the electron transport structure site includes one or more rings selected from the following rings. 12 12. The organic electroluminescence device according to any one of 1 to 11, wherein the triplet barrier structure site is selected from the following rings.
- Ar 1 to Ar 9 represent a condensed ring structure having 4 to 16 ring carbon atoms.
- 13. 13 The organic electroluminescence device according to any one of 1 to 12, wherein at least two light emitting layers are provided between the anode and the cathode, and a charge generation layer is provided between the two light emitting layers.
- An anode, a plurality of light emitting layers, an electron transport zone, and a cathode are provided in this order, A charge barrier layer between any two light emitting layers of the plurality of light emitting layers;
- the light emitting layer in contact with the electron transport band includes a host material and a dopant material exhibiting fluorescence emission having a main peak wavelength of 550 nm or less,
- the electron transport zone includes a barrier layer adjacent to the light emitting layer;
- the said barrier layer is an organic electroluminescent element containing the barrier material which has an electron carrying structure site
- E T b > E T h (1) (E T h and E T b are triplet energies of the host material and the barrier material, respectively.) 15. 15. The organic electroluminescence device according to 14, wherein the host material and the dopant material satisfy the following formula (2). E T d > E T h (2) (E T d represents the triplet energy of the dopant material.)
- the TTF phenomenon is efficiently caused inside the light emitting layer, and as a result, a highly efficient element exceeding the internal quantum efficiency of 25%, which is said to be the limit value of the conventional fluorescent element, can be realized.
- FIG. 6 is an energy band diagram when Af d ⁇ Af h ⁇ ⁇ 0.2 eV. It is an energy band figure in the case of Ip d ⁇ Ip h ⁇ 0.2 eV.
- FIG. 6 is an energy band diagram when Af d ⁇ Af h > ⁇ 0.2 eV and Ip d ⁇ Ip h ⁇ 0.2 eV. It is a figure which shows the measuring method of a transient EL waveform.
- the present invention utilizes the TTF phenomenon.
- the TTF phenomenon will be described below. Holes and electrons injected from the anode and cathode recombine in the light emitting layer to generate excitons.
- the spin state has a ratio of 25% singlet excitons and 75% triplet excitons as conventionally known.
- a conventionally known fluorescent element light is emitted when 25% of singlet excitons relax to the ground state, but the remaining 75% of triplet excitons are thermally deactivated without emitting light. The process returns to the ground state. Therefore, the theoretical limit value of the internal quantum efficiency of the conventional fluorescent element was said to be 25%.
- TTF ratio TTF-derived light emission ratio
- FIG. 1 is a schematic configuration diagram of an organic EL element showing an example of the first embodiment of the present invention.
- FIG. 2A schematically shows the lowest excited singlet energy level and the lowest excited triplet energy level of each layer.
- the triplet energy means a difference between the energy in the lowest excited triplet state and the energy in the ground state
- the singlet energy (sometimes referred to as an energy gap) is the energy in the lowest excited singlet state and the ground state. This is the difference in energy.
- the organic EL element shown in FIG. 1 is laminated in order of the hole transport zone 50, the light emitting layer 20, the electron transport zone 30, and the cathode 40 in order from the anode 10.
- a hole transport zone 50 is preferably provided between the anode 10 and the light emitting layer 20.
- the electron transport zone has a configuration including only a barrier layer.
- the embodiment with only the barrier layer does not prevent the insertion of the electron injection layer having a higher injection property.
- the general compound conventionally used as an electron injection layer can be used. Heterocyclic compounds are preferred.
- the term “barrier layer” refers to a layer having a barrier function against triplet energy. Therefore, the hole barrier layer and the charge barrier layer have different functions.
- the light-emitting layer is formed of a host material and a dopant material exhibiting fluorescence emission having a main peak wavelength of 550 nm or less (hereinafter also referred to as a fluorescent light-emitting dopant material having a main peak wavelength of 550 nm or less).
- the peak wavelength of the emission spectrum that maximizes the emission intensity in the emission spectrum).
- the main peak wavelength of 550 nm corresponds to about green light emission, and in this wavelength region, it is desired to improve the light emission efficiency of the fluorescent light emitting element using the TTF phenomenon. Further, in a fluorescent light emitting device that emits blue light of 480 nm or less, higher luminous efficiency can be expected.
- FIG. 2A holes injected from the anode are injected into the light emitting layer through the hole transport band, and electrons injected from the cathode are injected into the light emitting layer through the electron transport band. Thereafter, holes and electrons are recombined in the light emitting layer, and singlet excitons and triplet excitons are generated.
- recombination occurs on the host material molecule and on the dopant material molecule. In this embodiment, as shown in FIG.
- the singlet energy E S d of the dopant material is smaller than the singlet energy E S h of the host material, the singlet excitons generated by the TTF phenomenon transfer energy from the host material to the dopant material, and the dopant material Contributes to fluorescent emission.
- a transition from an excited triplet state to a ground state is forbidden. In such a transition, the triplet exciton does not undergo optical energy deactivation and is thermally Was inactive.
- singlet excitons are efficiently generated by collision with each other before the triplet excitons undergo thermal deactivation. Efficiency will be improved.
- the electron transport zone has a barrier layer in a portion adjacent to the light emitting layer.
- the barrier layer prevents the triplet excitons generated in the light emitting layer from diffusing into the electron transport band, and increases the density of the triplet excitons by confining the triplet excitons in the light emitting layer. And has a function of efficiently causing the TTF phenomenon.
- the triplet energy E T b of the compound constituting the barrier layer is preferably larger than E T h and more preferably larger than E T d .
- the barrier layer prevents triplet excitons generated in the light-emitting layer from diffusing into the electron transport band, so that the triplet excitons of the host material efficiently become singlet excitons in the light-emitting layer.
- the term exciton moves onto the dopant material and is optically deactivated.
- the barrier layer of the present invention has a nitrogen-containing compound such as a benzimidazole compound as a partial structure in order to improve electron injection from a cathode or the like.
- the affinity of the host material and the dopant material is denoted as Af h and Af d , respectively, and the ionization potential is denoted as Ip h and Ip d .
- FIG. 3A An energy band diagram when Af d ⁇ Af h ⁇ ⁇ 0.2 eV is as shown in FIG. 3A.
- the dotted line shown in the light emitting layer indicates the energy level of the dopant material.
- FIG. 3A if the Af d -Af h ⁇ 0eV, the difference between the Ip d and Ip h compared to the difference in the affinity of the host material and a dopant material becomes larger. This is due to the difference in energy gap between the host material and the dopant material.
- the triplet exciton generated directly on the dopant material molecule is the host material by the Dexter type energy transfer when the triplet exciton directly generated on the dopant material is in the relationship of E T h ⁇ E T d as in the present invention.
- the TTF phenomenon occurs efficiently. Since the triplet energy of the hole transport material is generally large, the confinement effect of the triplet exciton is high, and the TTF phenomenon occurs efficiently in the light emitting layer.
- triplet excitons existing in a region close to the barrier layer also have triplet energy E T b of the barrier layer set larger than the triplet energy E T h of the host material in the present invention. It is possible to prevent the term excitons from diffusing into the electron transport band, and to efficiently cause the TTF phenomenon in the light emitting layer.
- the radical cation state of the host material is maintained for a long time.
- the radical cation of the host material causes quenching of the triplet exciton, and therefore, it is carried from the triplet exciton and the anode on the host material at the interface between the light emitting layer and the barrier layer where the density of triplet excitons is high. The situation where the excited state quenches easily with the holes on the host material that has occurred is born.
- Ip d ⁇ Ip h ⁇ 0.2 eV the relationship between the electron-hole recombination region and the hole transport ability of the host material. Therefore, it is preferable that Ip d ⁇ Ip h ⁇ 0.2 eV.
- the LUMO level of the dopant material does not fall within the spread of the LUMO level of the host material, so that electrons conducted in the light emitting layer are not easily trapped by the dopant material. That is, this dopant material hardly exhibits an electron trapping property. For the same reason, it is difficult to show a hole trapping property.
- the dopant material tends to have no significant trapping property for both electrons and holes.
- electron-hole recombination mainly occurs on the host material molecule over a wide area in the light emitting layer, as indicated by the hatched portion in the light emitting layer in FIG. 3C, and 25% singlet excitons and 75%.
- Triplet excitons are mainly generated on host material molecules.
- the energy of singlet excitons generated on the host material is transferred to the dopant material by Forster energy transfer and contributes to the fluorescence emission of the dopant material molecules.
- the energy of triplet excitons is determined by the relationship between the triplet energies of the host material and the dopant material.
- a combination of the host material and the dopant material represented by (1) includes a combination in which the host material is an anthracene derivative or a pyrene derivative and the dopant material is an aromatic amine derivative.
- the host material is preferably an anthracene derivative
- the dopant material is preferably a diaminochrysene derivative, a diaminopyrene derivative, a styrylamine derivative, an amino-substituted condensed fluorene derivative, or a diaminoanthracene derivative.
- anthracene derivative and a diaminopyrene derivative an anthracene derivative and a diaminochrysene derivative, or an anthracene derivative and a styrylamine derivative.
- Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a heterocyclic group having 5 to 50 ring atoms
- R 101 to R 108 each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, substituted or unsubstituted Substituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted carbon number 7 -50 aralkyl group, substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, substituted or unsubstituted arylthi
- each R a represents a hydrogen atom or a substituent.
- Ar a represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
- L 1 represents a direct bond, a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted divalent aromatic hydrocarbon group having 5 to 30 ring atoms.
- Show. a represents an integer of 1 to 10
- p represents an integer of 1 to 6
- q represents an integer of 0 to 10.
- diaminopyrene derivative those represented by the following formula are preferred.
- each R f is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, or a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms.
- Ar 5 to Ar 8 each represent a substituted or unsubstituted aryl group having 5 to 20 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 20 ring atoms.
- each R e is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, or a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms.
- Ar 1 to Ar 4 each represents a substituted or unsubstituted aryl group having 5 to 20 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 20 ring atoms.
- styrylamine compound and the styryldiamine compound those represented by the following formulas (6) and (7) are preferable.
- Ar 11 is a u-valent group, and is a u-valent group corresponding to a phenyl group, a naphthyl group, a biphenyl group, a terphenyl group, a stilbene group, a styrylaryl group, a distyrylaryl group
- Ar 12 and Ar 13 are each an aromatic hydrocarbon group having 6 to 20 ring carbon atoms, and Ar 11 , Ar 12 and Ar 13 may be substituted.
- u is an integer of 1 to 4, and is preferably an integer of 1 to 2. Any one of Ar 11 to Ar 13 is a group containing a styryl group.
- At least one of Ar 12 or Ar 13 is substituted with a styryl group.
- the aromatic hydrocarbon group having 6 to 20 ring carbon atoms include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, and a terphenyl group.
- Ar 14 to Ar 16 are v-valent substituted or unsubstituted aromatic groups having 6 to 40 ring carbon atoms.
- v is an integer of 1 to 4, and is preferably an integer of 1 to 2.
- a typical example is a combination in which the host material is an anthracene derivative or a pyrene derivative, and the dopant material is a compound containing an electron withdrawing group.
- the host material is preferably an anthracene derivative
- the dopant material is preferably a boron-containing compound in which an electron withdrawing group is substituted.
- Preferred examples of the anthracene derivative or pyrene derivative are as described above.
- a and A ′ independently represent an azine ring corresponding to a 6-membered aromatic ring structure containing at least one nitrogen;
- X a and X b each independently represent a selected substituent, and two of them may be bonded to form a ring fused to A or A ′;
- m and n independently represent 0 to 4,
- Y represents hydrogen or a substituent,
- Z a and Z b independently represent a selected substituent, 1, 2, 3, 4, 1 ′, 2 ′, 3 ′ and 4 ′ independently represent either a carbon atom or a nitrogen atom.
- the host material is an anthracene derivative or a pyrene derivative
- the dopant material does not contain an amino group.
- the host material is preferably an anthracene derivative
- the dopant material is preferably a fluorene derivative not containing an amino group, a condensed fluorene derivative, a fluoranthene derivative, a benzofluoranthene derivative, or a pyrene derivative.
- the most preferred combination is an anthracene derivative and a benzofluoranthene derivative.
- Preferred examples of the anthracene derivative or pyrene derivative are as described above.
- fluoranthene derivative those represented by the following formula are preferred.
- R 101 to R 106 and R 108 to R 111 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted silyl group.
- Ar 101 to Ar 103 are each a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
- the host material of (1) to (3) is a cyclic structure or a compound in which single atoms are bonded to each other (including a bond between the cyclic structure and a single atom), and the bond is a single bond Is preferred.
- An unfavorable example is a host material having a carbon-carbon double bond other than a cyclic structure. This is because the energy of triplet excitons generated on the host material is not used for the TTF phenomenon and is consumed for the structural change of double bonds.
- the barrier layer in the present invention is preferably formed of a barrier material having a triplet energy larger than that of the host material, and also serves as an electron transport function to the light emitting layer that has been performed by the electron transport layer. That is, by using a barrier material having both a triplet barrier function and an electron transport function, the TTF phenomenon is efficiently caused without increasing the number of layers of the organic EL element laminated structure, and the organic EL element has a high efficiency and a long lifetime. To achieve. This does not preclude the stacking of an electron injection layer having excellent electron injection properties from the cathode.
- the affinity Af b of the barrier material and the affinity Af h of the host material preferably satisfy the following formula.
- Af h ⁇ Af b > 0 eV A preferable reason is that by eliminating the LUMO level energy barrier between the barrier layer and the host material, the electron injection property from the barrier layer to the light emitting layer is increased. As a result, triplet excitons are generated to promote the TTF phenomenon.
- the barrier layer in the present invention is composed of a compound containing a triplet barrier structure portion and an electron transport structure portion.
- the structural moiety is an individual cyclic structure (monocyclic or condensed polycyclic excluding substituents) contained in the compound.
- the triplet barrier structure site refers to a structure site having the lowest (smallest) triplet energy among the structure sites contained in the compound. That is, it is a structural site that mainly determines the triplet energy of the compound. There may be a plurality of triplet barrier structure sites.
- the triplet energy of the triplet barrier structure site refers to the triplet energy of an independent cyclic structure in which hydrogen is substituted at the bonding position between the structure sites except for the substituent.
- the triplet barrier structure site must be a fused polycyclic aromatic hydrocarbon compound. The reason will be described below.
- the transition state of a condensed ring made of hydrocarbon is based on a ⁇ - ⁇ * transition involving a ⁇ electron cloud of a cyclic structure.
- the spread of the ⁇ electron cloud is small, and the influence on the excited state of the light emitting layer is small.
- the transition state in the case of having an unshared electron pair in the structural site is that a strong interaction occurs with the triplet exciton generated in the light emitting layer due to the participation of the unshared electron pair, and the triplet of the host material. Promotes deactivation of term excitons. As a result, the TTF phenomenon cannot occur efficiently. Therefore, the triplet barrier structure portion of the barrier material must be a condensed ring mainly composed of hydrocarbons that form an excited triplet state based on the ⁇ - ⁇ * transition.
- the triplet energy of the barrier material is larger than the triplet energy of the host material of the light emitting layer.
- the triplet barrier function of the barrier material is largely determined by the triplet barrier structure site.
- the triplet energy transitions to the structural part having the lowest triplet energy among the structural parts of the barrier material.
- part is a condensed polycyclic aromatic hydrocarbon compound
- a barrier material exhibits a triplet barrier function effectively.
- the structural site where the triplet energy is the lowest (small) among the structural sites contained in the compound is not composed of carbon and hydrogen, the compound does not have a triplet barrier structural site. Become.
- the triplet barrier structure site is preferably any one selected from the group consisting of compounds represented by the following formulas (1) to (6).
- a structure part having 4 or more rings is preferred.
- molecular stacking in the thin film is improved due to its high planarity, and electron mobility is increased.
- electron injection into the light emitting layer can be promoted, the recombination efficiency in the light emitting layer can be increased, and the TTF phenomenon can be efficiently caused.
- Ar 1 to Ar 9 represent a condensed ring structure having 4 to 16 ring carbon atoms.
- Examples of the compound represented by the formula (1) include the following skeletons.
- Examples of the compound represented by the formula (2) include the following skeletons.
- Examples of the compound represented by the formula (3) include the following skeletons.
- Examples of the compound represented by the formula (4) include the following skeletons in addition to the compound represented by the formula (1).
- Examples of the compound represented by the formula (5) include the following skeletons.
- Examples of the compound represented by formula (6) include the following skeletons.
- the electron transporting structural part refers to a structural part where an atom having one or more unshared electron pairs is present. For example, nitrogen, oxygen, sulfur, phosphorus, etc. are mentioned as an atom which has an unshared electron pair.
- the electron injection / transport function of the barrier material is determined by the electron transport structure site. First, the unshared electron pair of the electron transport structure site mediates the transfer of electrons from the adjacent layer. The electrons injected into the barrier material are more likely to donate electrons through the electron transport structure site, that is, move to a structure site having a low LUMO level, thereby contributing to electron injection into the light emitting layer. . Therefore, the barrier material according to the present invention includes the electron transport structure portion, and thus can perform an electron injection / transport function without increasing the stacked structure of the electron transport zone.
- the electron transport structure site includes one or more of the following partial structures.
- X 1 and X 2 are each a carbon atom or a nitrogen atom.
- the electron transport structure site is a monocyclic ring or a condensed polycyclic ring including one or more rings selected from the following rings.
- X 11 to X 15 and X 21 to X 26 are each a carbon atom or a nitrogen atom, provided that at least one of X 11 to X 15 and at least one of X 21 to X 26 are nitrogen atoms. is there.
- the electron transport structure site includes one or more rings selected from the following rings.
- a plurality of electron transport structure sites may be bonded by a single bond.
- the cyclic structure is benzochrysene, two benzenes, and benzimidazole.
- the triplet energy of benzochrysene is 2.4 eV
- the triplet energy of benzene is 3.7 eV
- the triplet energy of benzimidazole is 3.3 eV. Therefore, the triplet barrier structure site of ETB1 is benzochrysene.
- the electron transport structure site is benzimidazole with nitrogen, which is an atom having one or more unshared electron pairs.
- the cyclic structure is three benzenes and two phenanthrolines.
- the triplet energy of benzene is 3.7 eV
- the triplet energy of phenanthroline is 2.8 eV. Therefore, ET1 does not have a triplet barrier structure site because ET1 has the lowest triplet energy in phenanthroline which is not a condensed polycyclic aromatic hydrocarbon compound.
- the electron transport structure site becomes phenanthroline with nitrogen, which is an atom having one or more unshared electron pairs.
- Suitable barrier materials include polycyclic aromatic compounds represented by the following formula.
- Ar is a substituted or unsubstituted condensed polycyclic aromatic hydrocarbon group
- L is a single bond, a substituted or unsubstituted one or more hydrocarbon rings having 6 to 30 ring carbon atoms, or It is a heterocyclic ring having 5 to 30 nuclear atoms.
- HAr is a heterocycle containing an atom having a substituted or unsubstituted unshared electron pair.
- L is a condensed polycyclic aromatic hydrocarbon group
- Ar or L becomes a substituted or unsubstituted triplet barrier structure site
- HAr becomes a substituted or unsubstituted electron transport structure site.
- L is also an electron transport structure site.
- a and b are integers of 1 to 4, and one of them is 1. Preferably, both a and b are 1.
- L is preferably a phenylene group, a biphenylene group, a fluorenylene group, or a naphthylene group, and more preferably a phenylene group.
- each group examples include, for example, a halogen atom, a hydroxyl group, a substituted or unsubstituted amino group, a nitro group, a cyano group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group An alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aralkyl group, Examples thereof include a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkoxycarbonyl group, and a carboxyl group.
- aromatic hydrocarbon group examples include benzene, naphthalene, phenanthrene, fluorene, chrysene, fluoranthene and triphenylene.
- substituents are alkyl groups, phenyl groups, naphthyl groups, and the like.
- barrier material is illustrated below.
- the mobility of the barrier material is preferably 10 ⁇ 6 cm 2 / Vs or higher. More preferably, it is 10 ⁇ 5 cm 2 / Vs or more.
- the mobility is measured with a film thickness of 200 nm and a bias DC voltage of 5V.
- a method for measuring the electron mobility of an organic material several methods such as the Time of Flight method are known.
- the electron mobility is determined by impedance spectroscopy.
- a barrier material having a thickness of preferably about 100 nm to 200 nm is sandwiched between the anode and the cathode, and a minute AC voltage of 100 mV or less is applied while applying a bias DC voltage.
- the AC current value (absolute value and phase) flowing at this time is measured. This measurement is performed while changing the frequency of the AC voltage, and the complex impedance (Z) is calculated from the current value and the voltage value.
- a barrier layer contains the donor which shows a reducing property with respect to a barrier material other than a barrier material.
- the carrier concentration can be increased.
- a reducing donor alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal oxide. Examples include one or more substances selected from the group consisting of rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes.
- the light emitting layer can contain two or more fluorescent light emitting dopant materials having a main peak wavelength of 550 nm or less.
- a low work function metal-containing layer may be provided between the electron transport zone and the cathode.
- the low work function metal-containing layer is a layer containing a low work function metal or a low work function metal compound. Even if it is formed of only a low work function metal or a low work metal compound, it is formed by adding a low work function metal, a low work function metal compound, or a low work function metal complex as a donor to the material used for the electron transport layer. May be.
- a low work function metal means a metal having a work function of 3.8 eV or less. Examples of the metal having a low work function of 3.8 eV or less include alkali metals and alkaline earth metals. Examples of the alkali metal include Li, Na, K, and Cs.
- alkaline earth metal examples include Mg, Ca, Sr, and Ba. Other examples include Yb, Eu and Ce.
- the oxide, halide, carbonate, borate of a low work metal function is preferable.
- Halides include fluoride, chloride and bromide, with fluoride being preferred.
- LiF is preferably used.
- the low work function metal complex is a low work function metal complex, and an alkali metal, alkaline earth metal, or rare earth metal organometallic complex is preferable.
- TTF ratio When the triplet energy of the host material, dopant material and barrier material satisfies the predetermined relationship, the ratio of TTF-derived emission intensity to the total emission can be increased to 30% or more, which can be achieved with a conventionally known fluorescent element. High efficiency that was not possible can be achieved.
- the emission intensity ratio derived from TTF can be measured by a transient EL method.
- the transient EL method is a method for measuring the attenuation behavior (transient characteristic) of EL light emission after the DC voltage applied to the element is removed.
- the EL emission intensity is classified into a light emission component from a singlet exciton generated by the first recombination and a light emission component from a singlet exciton generated via the TTF phenomenon.
- the lifetime of singlet excitons is on the order of nanoseconds and is so short that it decays quickly after removal of the DC voltage.
- the TTF phenomenon gradually attenuates due to light emission from the singlet excitons generated via the long-lived triplet excitons.
- the light emission from the singlet excitons and the light emission from the triplet excitons have a large time difference, and thus the emission intensity derived from TTF can be obtained. Specifically, it can be determined by the following method.
- the transient EL waveform is measured as follows (see FIG. 4).
- a pulse voltage waveform output from the voltage pulse generator (PG) is applied to the EL element.
- the applied voltage waveform is taken into an oscilloscope (OSC).
- OSC oscilloscope
- PMT photomultiplier tube
- the voltage waveform and pulse emission are synchronized and taken into a personal computer (PC).
- the TTF-derived emission intensity ratio is determined as follows by analysis of the transient EL waveform.
- the rate equation of the decay behavior of the triplet exciton is taken to model the decay behavior of the emission intensity based on the TTF phenomenon.
- the time decay of the triplet exciton density nT inside the light emitting layer can be expressed by the following rate equation using the decay rate ⁇ due to the lifetime of the triplet exciton and the decay rate ⁇ due to the collision of the triplet exciton. .
- the graph on the left of FIG. 5 is a measurement example when a predetermined DC voltage is applied to the EL element and then the voltage is removed, and shows a change over time in the emission intensity of the EL element.
- the DC voltage was removed at about 3 ⁇ 10 ⁇ 8 seconds.
- the graph represents the luminance when the voltage is removed as 1. After that, a slow decay component appears after a rapid decay up to about 2 ⁇ 10 ⁇ 7 seconds.
- the graph on the right side of FIG. 5 is a graph in which the reciprocal of the square root of the light intensity up to 10 ⁇ 5 seconds after voltage removal is plotted with the origin of voltage removal as the origin, and it can be seen that it can be approximated to a straight line well.
- the element of the present invention can have a tandem element configuration having at least two light emitting layers (units including a light emitting layer).
- a charge generation layer also referred to as CGL
- An electron transport zone can be provided for each unit.
- At least one light emitting layer is a fluorescent light emitting layer, and a unit including the light emitting layer satisfies the above requirements.
- An example of a specific configuration is shown below. Further, the following light emitting layer may be a laminate of a plurality of light emitting layers.
- FIG. 6 shows an example of the organic EL element according to this embodiment.
- the organic EL element 1 includes an anode 10, light emitting layers 22 and 24, and a cathode 40 in this order, and a charge generation layer 60 is provided between the light emitting layers 22 and 24.
- the barrier layer 32 is adjacent to one of the light emitting layers 22 and 24. Either of the light emitting layers 22 and 24 adjacent to the barrier layer 32 is a fluorescent light emitting layer that satisfies the requirements of the present invention.
- the other light emitting layer may be fluorescent or phosphorescent.
- an electron transport band and / or a hole transport band may be interposed between the two light emitting layers 22 and 24.
- the light emitting layer may be 3 or more, and the charge generation layer may be 2 or more.
- an anode, a plurality of light emitting layers, an electron transport zone, and a cathode are provided in this order, and a charge barrier layer is provided between any two light emitting layers of the plurality of light emitting layers, and the electron transport zone is provided.
- the light emitting layer in contact with it is a fluorescent light emitting layer and satisfies the above requirements.
- a suitable organic EL element As a configuration of a suitable organic EL element according to the present embodiment, as described in Japanese Patent No. 4134280, US Published Patent Publication US2007 / 0273270A1, International Publication WO2008 / 023623A1, an anode, a first light emitting layer, a charge
- a configuration having an electron transport band having a barrier layer for preventing diffusion of triplet excitons between the second light emitting layer and the cathode can be given. It is done.
- the charge barrier layer is provided with an energy barrier of HOMO level and LUMO level between the adjacent light emitting layers, thereby adjusting the carrier injection into the light emitting layer, and carriers of electrons and holes injected into the light emitting layer.
- This layer has the purpose of adjusting the balance.
- Anode / first light emitting layer / charge barrier layer / second light emitting layer / electron transport zone / cathode Anode / first light emitting layer / charge barrier layer / second light emitting layer / third light emitting layer / electron transport zone / cathode As in the other embodiments, it is preferable to provide a hole transport zone between the first light emitting layer and the first light emitting layer.
- FIG. 7 shows an example of the organic EL element according to this embodiment.
- the upper diagram of FIG. 7 shows the device configuration and the HOMO and LUMO energy levels of each layer.
- the figure below shows the relationship between the energy gap between the third light emitting layer and the barrier layer.
- the organic EL element 2 includes an anode, a first light emitting layer, a second light emitting layer, a third light emitting layer, an electron transport band, and a cathode 4 in this order, and is provided between the first light emitting layer and the second light emitting layer.
- the electron transport zone consists of a barrier layer.
- the third light emitting layer is a fluorescent light emitting layer that satisfies the requirements of the present invention.
- the first light emitting layer and the second light emitting layer may be fluorescent or phosphorescent.
- the element of the present embodiment is suitable as a white light-emitting element, and can be white by adjusting the emission color of the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer.
- the light emitting layer may be only the first light emitting layer and the second light emitting layer, and the light emission color of the two light emitting layers may be adjusted to be white.
- the second light emitting layer is a fluorescent light emitting layer that satisfies the requirements of the present invention.
- the host material of the first light emitting layer is a hole transporting material
- a fluorescent light emitting dopant material having a main peak wavelength larger than 550 nm is added, and the host material of the second light emitting layer (and the third light emitting layer) is transported by electrons.
- the hole transport material is compared with the triplet energy of the hole transport material and the host material.
- the triplet energy is preferably large.
- the selection of a hole transport material is not considered to be a special element design item at present in order to achieve the effects of the present invention. It is done.
- blue pixels, green pixels, and red pixels are provided side by side on the substrate.
- a blue pixel and / or a green pixel have the configuration of the first embodiment.
- FIG. 8 shows an example of the organic EL element according to this embodiment.
- a blue pixel B, a green pixel G, and a red pixel R are formed in parallel on a common substrate 100.
- the blue pixel B includes an anode 10, a hole transport zone 50, a blue light emitting layer 20B, an electron transport zone composed of a barrier layer 32, a cathode 40, and a protective layer 70 in this order from the substrate 100.
- the green pixel G includes an anode 10, a hole transport zone 50, a green light emitting layer 20G, an electron transport zone composed of a barrier layer 32, a cathode 40, and a protective layer 70 in this order from the substrate 100.
- the red pixel R includes an anode 10, a hole transport zone 50, a red light emitting layer 20R, an electron transport zone comprising a barrier layer 32, a cathode 40, and a protective layer 70 in this order from the substrate 100.
- An insulating film 200 is formed between the anodes of the adjacent pixels to maintain the insulation between the pixels.
- the barrier layer is provided in common for the blue pixel B, the red pixel R, and the green pixel G.
- the effect of the barrier layer is remarkable compared to the light emission efficiency obtained in the conventional blue fluorescent element, but the same effect of confining the triplet energy in the light emitting layer is obtained also in the green fluorescent element and the red fluorescent element. Therefore, improvement in luminous efficiency can be expected.
- the phosphorescent light-emitting layer it is possible to obtain an effect of confining triplet excitons in the light-emitting layer, which prevents diffusion of triplet energy and contributes to the improvement of the luminous efficiency of the phosphorescent dopant material.
- the hole transport zone includes a hole injection layer and / or a hole transport layer.
- the hole transport zones may be common or different.
- each hole transport zone has a configuration suitable for the emission color.
- the organic layer composed of the light emitting layers 20B, G, R and the barrier layer is not limited to the configuration shown in the figure and can be changed as appropriate.
- the green light emitting layer is preferably composed of the following host material and dopant material.
- the host material is preferably a condensed aromatic ring derivative.
- condensed aromatic ring derivatives anthracene derivatives, pyrene derivatives, and the like are more preferable in terms of light emission efficiency and light emission lifetime.
- examples of the host material include heterocyclic compounds.
- examples of the heterocyclic compound include carbazole derivatives, dibenzofuran derivatives, ladder-type furan compounds, and pyrimidine derivatives.
- the dopant material is not particularly limited as long as it has the function, but an aromatic amine derivative is preferable in terms of luminous efficiency and the like.
- an aromatic amine derivative a condensed aromatic ring derivative having an optionally substituted arylamino group is preferable. Examples of such a compound include pyrene, anthracene, and chrysene having an arylamino group.
- a styrylamine compound is also preferable as the dopant material.
- the styrylamine compound include styrylamine, styryldiamine, styryltriamine, and styryltetraamine.
- styrylamine is a compound in which at least one arylvinyl group is substituted on an optionally substituted arylamine, and the arylvinyl group may be substituted, and the substituent is an aryl group.
- a silyl group, an alkyl group, a cycloalkyl group, and an arylamino group, and these substituents may further have a substituent.
- boron complexes and fluoranthene compounds are also preferable as dopant materials.
- a metal complex is also preferable as the dopant material. Examples of metal complexes include iridium complexes and platinum complexes.
- the red light emitting layer is preferably composed of the following host material and dopant material.
- the host material is preferably a condensed aromatic ring derivative.
- a condensed aromatic ring derivative a naphthacene derivative, a pentacene derivative, or the like is more preferable in terms of light emission efficiency and light emission lifetime.
- examples of the host material include condensed polycyclic aromatic compounds.
- examples of the condensed polycyclic aromatic compound include naphthalene compounds, phenanthrene compounds, and fluoranthene compounds.
- an aromatic amine derivative is preferable.
- the aromatic amine derivative a condensed aromatic ring derivative having an optionally substituted arylamino group is preferable.
- An example of such a compound is periflanten having an arylamino group.
- metal complex is preferable as the dopant material.
- metal complexes include iridium complexes and platinum complexes.
- the element of Embodiment 4 is produced as follows, for example.
- a transparent conductive layer such as an APC (Ag—Pd—Cu) layer (reflection layer), a zinc oxide film (IZO), or a tin oxide film, which is a silver alloy layer, is formed on the substrate in this order.
- the conductive material layer is patterned by etching using a resist pattern as a mask by using a normal lithography technique to form an anode.
- an insulating film made of a photosensitive resin such as polyimide is applied and formed on the anode by spin coating. Thereafter, the blue light emitting region, the green light emitting region, and the red light emitting region are patterned by exposing, developing and curing to expose the anode.
- red pixels, green pixels, and blue pixels which correspond to the blue light emitting region, the green light emitting region, and the red light emitting region, respectively, and correspond to the anode.
- UV ozone washing is performed for 30 minutes.
- a positive hole injection layer and a positive hole transport layer a positive hole injection layer is laminated
- Each light emitting layer is formed so as to correspond to each position of the anode for the red pixel, the green pixel, and the blue pixel.
- the blue light emitting layer, the green light emitting layer, and the red light emitting layer are finely patterned using a shadow mask.
- a barrier layer is laminated over the entire surface. Subsequently, when the electron injection layer is formed, the electron injection layer is laminated over the entire surface. Then, Mg and Ag are vapor-deposited to form a cathode made of a semi-permeable MgAg alloy.
- Table 1 shows the physical property values of the above materials.
- the measuring method of physical properties is as follows.
- (1) Triplet energy (E T ) The measurement was performed using a commercially available apparatus F-4500 (manufactured by Hitachi).
- Conversion formula of E T is as follows.
- the triplet energy E T may be determined by quantum chemical calculation as follows. Quantum chemical calculations can be performed using Gaussian 03, a quantum chemical calculation program manufactured by Gaussian. Gaussian03 was awarded the Nobel Prize in Chemistry in 1998. A. It is a program developed by Pople et al., And it is possible to predict physical properties such as molecular energy, structure, and standard vibration for various molecular systems by various quantum chemical calculation methods. For the calculation, density functional theory (DFT) is used. For the structure optimized using B3LYP as the functional and 6-31G * as the basis function, the calculated value of triplet energy can be obtained by time-dependent density functional theory (TD-DFT). In some organic compounds, the phosphorescence spectrum may not be observed. Such in organic compounds, to the use of triplet energy E T obtained by using a quantum chemical calculation, as indicated above in estimation.
- DFT density functional theory
- TD-DFT time-dependent density functional theory
- the ionization potential was measured using an atmospheric photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-3). Specifically, the measurement was performed by irradiating the material with light and measuring the amount of electrons generated by charge separation at that time.
- Affinity It was calculated from the measured values of ionization potential and energy gap.
- the energy gap was measured from the absorption edge of the absorption spectrum in benzene. Specifically, the absorption spectrum was measured using a commercially available visible / ultraviolet spectrophotometer, and calculated from the wavelength at which the spectrum started to rise.
- Synthesis example 1 (A) Synthesis of benzo [g] chrysene-10-boronic acid Benzo [g] chrysene-10-boronic acid was synthesized according to the following synthesis scheme.
- Synthesis example 7 (G) Synthesis of 2- (3-bromophenyl) -imidazo [1,2-a] pyridine As shown in the following synthesis scheme, 3-bromophenacyl bromide was used instead of 4-bromophenacyl bromide. Others were reacted in the same manner as in Synthesis Example 6 to synthesize 2- (3-bromophenyl) -imidazo [1,2-a] pyridine.
- reaction solution was stirred for 5 hours while warming to room temperature.
- the reaction solution was acidified with 2M hydrochloric acid, and the reaction solution was extracted with ethyl acetate. The aqueous layer was removed and the organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was washed with a hexane-ethyl acetate mixed solution to obtain 7.9 g (yield 95%) of the desired 3- (fluoranthen-3-yl) phenylboronic acid.
- the reaction solution was extracted with toluene. After removing the aqueous layer, the organic layer was washed with water and then dried over magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 3.4 g of a pale yellow solid.
- Example 1 The following materials were sequentially deposited on a substrate on which a 130 nm-thick ITO (indium tin oxide) film was formed to obtain an element.
- the parentheses indicate the film thickness (unit: nm).
- Anode ITO (130) Hole injection layer: HT1 (50) Hole transport layer: HT2 (45) Light emitting layer: BH1 and BD1 (BD1 is 5% doped) (25) Barrier layer: ETB1 (25) Low work function metal-containing layer: LiF (1) Cathode: Al (80)
- Examples 2-8, Comparative Examples 1-2 A device was obtained in the same manner as in Example 1 except that the host material of the light emitting layer and the material of the barrier layer were changed as shown in Table 2.
- Evaluation Example The following evaluations were performed on the devices obtained in Examples 1 to 8 and Comparative Examples 1 and 2. The results are shown in Table 2.
- an organic EL element produced in Examples and Comparative Examples was supplied with a current with a current density of 10 mA / cm 2 and the emission spectrum was measured with a spectral radiance meter (CS1000: manufactured by Minolta). It measured and computed with the following numerical formula.
- N P Number of photons
- N E Number of electrons
- ⁇ Emission intensity (W / sr ⁇ m 2 ⁇ nm)
- J Current density (mA / cm 2 )
- the transient EL waveform was obtained by obtaining the current density when the current efficiency (L / J) is maximum in the current density-current efficiency curve and applying a voltage pulse waveform corresponding thereto. It should be noted that the improvement of internal quantum efficiency due to the TTF phenomenon is considered to be a theoretical limit of 62.5%, and in this case the emission ratio derived from TTF is 60%.
- Example 1, 2, 4 and Comparative Example 1 differ only in the barrier material of the barrier layer.
- the barrier material of Comparative Example 1 does not include a triplet barrier structure site. Therefore, triplet excitons generated in the host material are easily diffused into the barrier layer, and the TTF phenomenon does not occur efficiently.
- Examples 1, 2, and 4 and Comparative Example 2 differ only in the barrier material of the barrier layer.
- the barrier material of Comparative Example 2 does not include an electron transport structure site. Accordingly, it is difficult to inject electrons from the barrier layer to the light emitting layer, and recombination is reduced in the light emitting layer. As a result, the luminous efficiency is inferior.
- Example 3 uses a fluoranthene compound as a barrier material. Similarly, the luminous efficiency is high as compared with Comparative Example 2 in which a fluoranthene compound is used as the barrier material. This is because the barrier material of Comparative Example 2 does not have an electron transport structure site.
- Examples 5 to 8 are the same except that the host material of Examples 1 to 4 is changed from BH1 to BH2.
- Examples 9-21 Each element was obtained in the same manner as in Example 1 except that the host material and dopant material of the light emitting layer and the material of the barrier layer were changed as shown in Table 3.
- the organic EL element of the present invention can be used for a display panel or a lighting panel for a large-sized television where low power consumption is desired.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
1.陽極と、発光層と、電子輸送帯域と、陰極をこの順に備え、
前記発光層は、ホスト材料と、主ピーク波長が550nm以下の蛍光発光を示すドーパント材料とを含み、
前記電子輸送帯域は、前記発光層に隣接する障壁層を含み、
前記障壁層は、電子輸送構造部位と、縮合多環芳香族炭化水素化合物からなるトリプレット障壁構造部位を有するとともに下記式(1)を満たす障壁材料を含む、有機エレクトロルミネッセンス素子。
ET b>ET h・・・(1)
(ET h及びET bは、それぞれ前記ホスト材料及び前記障壁材料の三重項エネルギーを示す。)
2.前記ホスト材料と前記ドーパント材料が下記式(2)を満たす1に記載の有機エレクトロルミネッセンス素子。
ET d>ET h・・・(2)
(ET dは、前記ドーパント材料の三重項エネルギーを示す。)
3.前記ホスト材料のアフィニティAfhと前記障壁材料のアフィニティAfbが下記式(3)を満たす1又は2に記載の有機エレクトロルミネッセンス素子。
Afh-Afb>0eV・・・(3)
4.前記ホスト材料のイオン化ポテンシャルIphと前記ドーパント材料のイオン化ポテンシャルIpdが下記式(4)を満たす1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
Ipd-Iph<0.2eV・・・(4)
5.前記障壁材料の電子移動度が、10-6cm2/Vs以上である1~4のいずれかに記載の有機エレクトロルミネッセンス素子。
6.前記障壁層が、前記障壁材料に対して還元性を示すドナーを含む1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
7.前記発光層において三重項励起子同士が衝突して生成する一重項励起子由来の発光強度が、全発光強度に対して30%以上である1~6のいずれかに記載の有機エレクトロルミネッセンス素子。
8.前記電子輸送構造部位が、下記部分構造を1以上含む1~7のいずれかに記載の有機エレクトロルミネッセンス素子。
9.前記電子輸送構造部位が、下記環から選択される1以上の環を含む1~7のいずれかに記載の有機エレクトロルミネッセンス素子。
10.前記電子輸送構造部位が、下記環から選択される1以上の環を含む1~7のいずれかに記載の有機エレクトロルミネッセンス素子。
13.前記陽極と前記陰極の間に少なくとも2つの発光層を有し、2つの発光層の間に電荷発生層を備える1~12のいずれかに記載の有機エレクトロルミネッセンス素子。
14.陽極と、複数の発光層と、電子輸送帯域と、陰極をこの順に備え、
前記複数の発光層のいずれか二つの発光層の間に電荷障壁層を有し、
前記電子輸送帯域に接する発光層は、ホスト材料と、主ピーク波長が550nm以下の蛍光発光を示すドーパント材料とを含み、
前記電子輸送帯域は、該発光層に隣接する障壁層を含み、
前記障壁層は、電子輸送構造部位と、縮合多環芳香族炭化水素化合物からなるトリプレット障壁構造部位を有するとともに下記式(1)を満たす障壁材料を含む、有機エレクトロルミネッセンス素子。
ET b>ET h・・・(1)
(ET h及びET bは、それぞれ前記ホスト材料及び前記障壁材料の三重項エネルギーを示す。)
15.前記ホスト材料と前記ドーパント材料が下記式(2)を満たす14に記載の有機エレクトロルミネッセンス素子。
ET d>ET h・・・(2)
(ET dは、前記ドーパント材料の三重項エネルギーを示す。)
本発明はTTF現象を利用したものである。まず、以下にTTF現象を説明する。陽極、陰極から注入された正孔、電子は発光層内で再結合し励起子を生成する。そのスピン状態は、従来から知られているように、一重項励起子が25%、三重項励起子が75%の比率である。従来知られている蛍光素子においては、25%の一重項励起子が基底状態に緩和するときに光を発するが、残りの75%の三重項励起子については光を発することなく熱的失活過程を経て基底状態に戻る。従って、従来の蛍光素子の内部量子効率の理論限界値は25%といわれていた。
R101~R108は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数7~50のアラルキル基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数2~50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ基、ハロゲン原子、シアノ基、ニトロ基及びヒドロキシル基から選ばれる基である。
L1は直接結合、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基又は置換もしくは無置換の環形成原子数5~30の2価の芳香族炭化水素基を示す。
aは1~10の整数、pは1~6の整数、qは0~10の整数を示す。
uは1~8の整数を示す。
Ar5~Ar8は、それぞれ置換もしくは無置換の環形成炭素数5~20のアリール基、又は置換もしくは無置換の環形成原子数5~20のヘテロアリール基を示す。
tは1~10の整数を示す。
Ar1~Ar4は、それぞれ置換もしくは無置換の環形成炭素数5~20のアリール基、又は置換もしくは無置換の環形成原子数5~20のヘテロアリール基を示す。
ここで、環形成炭素数が6~20の芳香族炭化水素基としては、フェニル基、ナフチル基、アントラニル基、フェナンスリル基、ターフェニル基等が挙げられる。
Xa及びXbは、それぞれ独立して、選択された置換基を示し、そのうちの2つは結合してAあるいはA’に縮合する環を形成してもよく、
m及びnは、独立して、0から4を示し、
Yは、水素もしくは置換基を示し、
Za及びZbは、独立して、選択された置換基を示し、
1,2,3,4、1’、2’、3’及び4’は、独立して、炭素原子か窒素原子のいずれを示す。
Ar101~Ar103はそれぞれ置換もしくは無置換のアリール基又は置換もしくは無置換のヘテロアリール基である。
また、(1)~(3)のホスト材料は、環式構造又は単一原子同士が結合してなる化合物(環式構造と単一原子の結合も含む)であって、前記結合が単結合である化合物が好ましい。好ましくない例としては、環式構造以外で炭素-炭素二重結合が存在するホスト材料があげられる。その理由は、ホスト材料上で生成した三重項励起子のエネルギーが、TTF現象に使われず2重結合の構造変化に消費されてしまうからである。
Afh-Afb>0eV
好ましい理由としては、障壁層とホスト材料の間のLUMOレベルのエネルギー障壁をなくすことで、障壁層から発光層への電子注入性が増すためである。結果として、三重項励起子が生成されTTF現象を促進する。
障壁材料のトリプレット障壁機能は、トリプレット障壁構造部位によって主として決定される。一般に、発光層で生成された三重項励起子が、隣接する障壁材料へそのエネルギーを遷移させる場合、障壁材料の各構造部位のうち、最も低い三重項エネルギーを有する構造部位に三重項エネルギーが遷移する。このことから、各構造部位のうち最も低い三重項エネルギーを有するトリプレット障壁構造部位が縮合多環芳香族炭化水素化合物である場合、障壁材料はトリプレット障壁機能を効果的に発揮する。以上の理由より、化合物に含まれる構造部位の中で三重項エネルギーが最も低くなる(小さい)構造部位が炭素と水素から構成されていない場合は、当該化合物はトリプレット障壁構造部位を有しないこととなる。
電子移動度=(障壁材料の膜厚)2/(応答時間・バイアスDC電圧)
還元性ドナーとして、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体からなる群から選択される1種又は2種以上の物質が例示される。
ホスト材料、ドーパント材料及び障壁材料の三重項エネルギーが所定の関係を満たすことにより、全発光に対するTTF由来の発光強度比を30%以上とすることができ、従来知られていた蛍光素子では達成できなかった高効率化を可能とすることができる。
本発明の素子は、発光層(発光層を含むユニット)を少なくとも2つ有するタンデム素子構成とすることができる。2つの発光層の間には電荷発生層(CGLとも呼ぶ)が介在する。ユニット毎に電子輸送帯域を設けることができる。少なくとも1つの発光層が蛍光発光層でありその発光層を含むユニットが上記の要件を満たす。具体的な構成の例を以下に示す。また、下記発光層は、複数の発光層の積層体であってもよい。
陽極/蛍光発光層/電荷発生層/蛍光発光層/障壁層/陰極
陽極/蛍光発光層/障壁層/電荷発生層/蛍光発光層/陰極
陽極/蛍光発光層/障壁層/電荷発生層/蛍光発光層/障壁層/陰極
陽極/りん光発光層/電荷発生層/蛍光発光層/障壁層/陰極
陽極/蛍光発光層/障壁層/電荷発生層/りん光発光層/陰極
本実施形態では、陽極と、複数の発光層と、電子輸送帯域と、陰極をこの順に備え、複数の発光層のいずれか二つの発光層の間に電荷障壁層を有し、電子輸送帯域に接する発光層が蛍光発光層であり、上記の要件を満たす。
陽極/第1発光層/電荷障壁層/第2発光層/電子輸送帯域/陰極
陽極/第1発光層/電荷障壁層/第2発光層/第3発光層/電子輸送帯域/陰極
尚、陽極と第1発光層の間には、他の実施形態と同様に正孔輸送帯域を設けることが好ましい。
この有機EL素子2は、陽極と、第1発光層、第2発光層、第3発光層と、電子輸送帯域と、陰極4をこの順に備え、第1発光層と第2発光層の間には、電荷障壁層がある。電子輸送帯域は障壁層からなる。第3発光層が本発明の要件を満たす蛍光発光層である。第1発光層、第2発光層は蛍光型でも燐光型でもよい。
本実施形態では、青色画素、緑色画素、赤色画素を、基板上に並べて設ける。これら3色の画素のうち、青色画素及び/又は緑色画素が第1の実施形態の構成を有する。
この図に示す上面発光型有機EL素子3は、共通基板100上に、青色画素B、緑色画素G及び赤色画素Rが並列に形成されている。
緑色画素Gは、陽極10、正孔輸送帯域50、緑色発光層20G、障壁層32からなる電子輸送帯域、陰極40、保護層70を基板100からこの順に備えている。
赤色画素Rは、陽極10、正孔輸送帯域50、赤色発光層20R、障壁層32からなる電子輸送帯域、陰極40、保護層70を基板100からこの順に備えている。
それぞれの隣接する画素の陽極間に絶縁膜200が形成され、画素間の絶縁を保持している。
有機EL素子3では、障壁層が青色画素B、赤色画素R、緑色画素Gに共通に設けられている。
一方、燐光発光層においては、三重項励起子を発光層内に閉じ込める効果を得ることが可能であり、三重項エネルギーの拡散を防ぎ、燐光発光性ドーパント材料の発光効率の向上に寄与する。
発光層20B,G,Rと障壁層から構成される有機層は、図に示す構成に限定されず適宜変更できる。
基板上に、銀合金層であるAPC(Ag-Pd-Cu)層(反射層)、酸化亜鉛膜(IZO)や酸化錫膜等の透明導電層をこの順に成膜する。続いて通常のリソグラフィ技術を用いて、レジストパターンをマスクに用いたエッチングにより、この導電材料層をパターニングし、陽極を形成する。次に、陽極の上にスピンコート法により、ポリイミド等の感光性樹脂からなる絶縁膜を塗布形成する。その後、露光、現像、硬化することで、陽極を露出させることにより青発光領域、緑発光領域、赤発光領域をパターンニングする。
(1)三重項エネルギー(ET)
市販の装置F-4500(日立社製)を用いて測定した。ETの換算式は以下の通りである。
換算式 ET(eV)=1239.85/λedge
「λedge」とは、縦軸に燐光強度、横軸に波長をとって、燐光スペクトルを表したときに、燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸の交点の波長値を意味する。単位:nm。
量子化学計算は,米Gaussian社製の量子化学計算プログラムGaussian03を用いて行うことができる。Gaussian03は1998年にノーベル化学賞を受賞したJ.A.Popleらによって開発されたプログラムであり、多種多様な分子系に対して、様々な量子化学計算法により、分子のエネルギー,構造,基準振動等の物性を予測することが可能である。計算には密度汎関数理論(DFT)を用いる。汎関数としてB3LYP,基底関数として6-31G*を用いて最適化した構造に対して、時間依存密度汎関数理論(TD-DFT)により、3重項エネルギーの計算値を求めることができる。
特定の有機化合物においては燐光スペクトルが観測されない場合がある。そのような有機化合物においては、上記に示したような量子化学計算を用いて求めた3重項エネルギーETを推定に使うことにする。
ベンゼン 3.67eV
フェナントレン 2.70eV
ナフタレン 2.63eV
ベンゾ[g]クリセン 2.43eV
フルオランテン 2.30eV
ピレン 2.11eV
アントラセン 1.85eV
ベンゾイミダゾール 3.31eV
1,10-フェナントロリン 2.75eV
大気下光電子分光装置(理研計器(株)社製:AC-3)を用いて測定した。具体的には、材料に光を照射し、その際に電荷分離によって生じる電子量を測定することにより測定した。
イオン化ポテンシャルとエネルギーギャップの測定値から算出した。エネルギーギャップはベンゼン中の吸収スペクトルの吸収端から測定した。具体的には、市販の可視・紫外分光光度計を用いて、吸収スペクトルを測定し、そのスペクトルが立ち上がり始める波長から算出した。
(A)ベンゾ[g]クリセン-10-ボロン酸の合成
下記合成スキームに従って、ベンゾ[g]クリセン-10-ボロン酸を合成した。
アルゴン雰囲気下、9-ブロモフェナントレン25.7g、2-ホルミルフェニルボロン酸16.5g、及びテトラキス(トリフェニルホスフィン)パラジウム(0)2.31gをフラスコに仕込み、ジメチルエーテル(DME)340mL、2M炭酸ナトリウム水溶液170mLを加え、8時間加熱還流攪拌した。室温まで冷却後、水層を除去した。有機層を水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。残渣をシリカゲルカラムクロマトグラフィで精製し、目的の9-(2-ホルミルフェニル)フェナントレン25.0g(収率89%)を得た。
アルゴン雰囲気下、9-(2-ホルミルフェニル)フェナントレン25.0g、メトキシメチルトリフェニルホスフォニウムクロリド33.4g、及びテトラヒドロフラン(THF)300mLを仕込み、室温にて攪拌中に、t-ブトキシカリウム11.9gを加えた。室温にて2時間攪拌した後、水200mLを加えた。反応溶液をジエチルエーテルで抽出し、水層を除去した。有機層を水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。残渣をシリカゲルカラムクロマトグラフィで精製し、目的の9-[2-(2-メトキシビニル)フェニル]フェナントレン24.0g(収率87%)を得た。
9-[2-(2-メトキシビニル)フェニル]フェナントレン24.0g、及びジクロロメタン100mLを仕込み、室温下攪拌中にメタンスルホン酸をパスツールピペットで6滴加えた。室温で8時間攪拌を続けた。反応終了後10%炭酸カリウム水溶液100mLを加えた。水層を除去し、有機層を水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。残渣をシリカゲルカラムクロマトグラフィで精製し、目的のベンゾ[g]クリセン5.21g(収率25%)を得た。
ベンゾ[g]クリセン5.21g、及びN,N-ジメチルホルムアミド50mLをフラスコに仕込み、N-ブロモスクシンイミド4.00gのN,N-ジメチルホルムアミド10mL溶液を加えた。80℃で8時間加熱攪拌した。室温まで冷却後、反応溶液を水200mL中に注いだ。析出した固体を濾取し、水、メタノールで洗浄した。得られた個体をシリカゲルカラムクロマトグラフィで精製し、10-ブロモベンゾ[g]クリセン5.87g(収率88%)を得た。
アルゴン雰囲気下、10-ブロモベンゾ[g]クリセン5.87gをフラスコに仕込み、脱水エーテル100mLを加えた。反応溶液を-40℃まで冷却し、1.6M n-ブチルリチウムのヘキサン溶液11mLを加え、0℃まで昇温し、1時間攪拌した。反応溶液を-60℃まで冷却し、ホウ酸トリイソプロピル7.72gの脱水エーテル10mL溶液を滴下した。反応溶液を室温まで昇温しながら5時間攪拌を続けた。10%塩酸水溶液50mLを加え、1時間攪拌した。水層を除去し、有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。得られた固体をヘキサンで洗浄し、目的のベンゾ[g]クリセン-10-ボロン酸3.18g(収率60%)を得た。
2-ブロモニトロベンゼン10g(49.5mmol)、酢酸ナトリウム13g(163mmol)、及び4-ブロモアニリン10g(59mmol)をアルゴン雰囲気下180℃で8時間加熱攪拌した。反応溶液を室温まで冷却し、酢酸エチルで薄め、ろ過した。ろ液を濃縮後、残査をメタノールで洗浄することで、(4-ブロモフェニル)-(2-ニトロフェニル)アミン3.8gをオレンジ色結晶として得た(収率22%)。
(4-ブロモフェニル)-(2-ニトロフェニル)アミン3.8g(13mmol)をテトラヒドロフラン30mLに溶解させ、アルゴン雰囲気下、室温で攪拌しているところに、ハイドロサルファイトナトリウム11g(64mmol)/水30mLの溶液を滴下した。5時間攪拌した後、酢酸エチル20mLを加えて、炭酸水素ナトリウム2.2g(26mmol)/水20mLの溶液を加えた。さらにベンゾイルクロリド2.5g(18mmol)/酢酸エチル10mLの溶液を滴下し、室温で1時間攪拌した。酢酸エチルで抽出し、10%炭酸カリウム水溶液、水、飽和食塩水で順次洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去し、N-[2-(4-ブロモフェニルアミノ)フェニル]ベンズアミド2.1g(収率45%)を得た。
N-[2-(4-ブロモフェニルアミノ)フェニル]ベンズアミド2.1g(5.7mmol)をキシレン30mL中に懸濁させ、p-トルエンスルホン酸1水和物0.6g(2.9mmol)を加え、3時間加熱還流させながら共沸脱水を行った。放冷後、反応溶液に酢酸エチル、塩化メチレン、水を加え、不溶物をろ別した。母液から有機層を抽出し、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。残査をシリカゲルカラムクロマトグラフィにて精製し、1-(4-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾール1.0gをわずかにピンク色の白色結晶として得た(収率52%)
<ETB1の合成>
アルゴン雰囲気下、ベンゾ[g]クリセン-10-ボロン酸3.0g、1-(4-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾール3.5g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.231g、ジメトキシエタン40mL、及び2M炭酸ナトリウム水溶液20mLをフラスコに仕込み、8時間加熱還流攪拌した。室温まで冷却後、反応溶液をトルエンで抽出した。水層を除去した後、有機層を水で洗浄した後、硫酸マグネシウムで乾燥させた。ろ過後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィで精製し、淡黄色固体3.8gを得た。得られた化合物は、マススペクトル分析の結果、下記化合物(ETB1)であり、分子量546.21に対し、m/e=546であった。
2-ブロモニトロベンゼン10g(49.5mmol)、酢酸ナトリウム13g(163mmol)、3-ブロモアニリン10g(59mmol)をアルゴン雰囲気下180℃で8時間加熱攪拌した。反応溶液を室温まで冷却し、酢酸エチルで薄め、ろ過した。ろ液を濃縮後、残査をメタノールで洗浄することで、(3-ブロモフェニル)-(2-ニトロフェニル)アミンを得た。
(3-ブロモフェニル)-(2-ニトロフェニル)アミン3.8g(13mmol)をテトラヒドロフラン30mLに溶解させ、アルゴン雰囲気下、室温で攪拌しているところに、ハイドロサルファイトナトリウム11g(64mmol)/水30mLの溶液を滴下した。5時間攪拌した後、酢酸エチル20mLを加えて、炭酸水素ナトリウム2.2g(26mmol)/水20mLの溶液を加えた。さらにベンゾイルクロリド2.5g(18mmol)/酢酸エチル10mLの溶液を滴下し、室温で1時間攪拌した。酢酸エチルで抽出し、10%炭酸カリウム水溶液、水、飽和食塩水で順次洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去し、N-[2-(3-ブロモフェニルアミノ)フェニル]ベンズアミドを得た。
N-[2-(3-ブロモフェニルアミノ)フェニル]ベンズアミド2.1g(5.7mmol)をキシレン30mL中に懸濁させ、p-トルエンスルホン酸1水和物0.6g(2.9mmol)を加え、3時間加熱還流させながら共沸脱水を行った。放冷後、反応溶液に酢酸エチル、塩化メチレン、水を加え、不溶物をろ別した。母液から有機層を抽出し、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。残査をシリカゲルカラムクロマトグラフィにて精製し、1-(3-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾールを得た。
<ETB3の合成>
アルゴン雰囲気下、フルオランテン-3-ボロン酸2.7g、合成例4で合成した1-(3-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾール3.5g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.231g、ジメトキシエタン40mL、2M炭酸ナトリウム水溶液20mLをフラスコに仕込み、8時間加熱還流攪拌した。室温まで冷却後、反応溶液をトルエンで抽出した。水層を除去した後、有機層を水で洗浄した後、硫酸マグネシウムで乾燥させた。ろ過後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィで精製した。この精製物は、マススペクトル分析の結果、下記化合物(ETB3)であり、分子量470.18に対し、m/e=470であった。
アルゴン雰囲気下、1,4-ジブロモナフタレン230g、2-ホルミルフェニルボロン酸121g、及びテトラキス(トリフェニルホスフィン)パラジウム(0)18.5gをフラスコに仕込み、ジメトキシエタン(DME)2.4L、2M炭酸ナトリウム水溶液1.2Lを加え、8時間加熱還流攪拌した。室温まで冷却後、水層を除去し、有機層を水、飽和食塩水で洗浄して、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。残渣をシリカゲルカラムクロマトグラフィで精製し、目的の1-ブロモ-4-(2-ホルミルフェニル)ナフタレン170g(収率67%)を得た。
アルゴン雰囲気下、1-ブロモ-4-(2-ホルミルフェニル)ナフタレン170g、メトキシメチルトリフェニルホスフォニウムクロリド207g、及びテトラヒドロフラン(THF)2.0Lを仕込み、室温にて攪拌中に、t-ブトキシカリウム73.6gを加えた。室温にて2時間攪拌した後、水1.5Lを加えた。反応溶液をジエチルエーテルで抽出し、水層を除去した。有機層を水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。残渣をシリカゲルカラムクロマトグラフィで精製し、目的の1-ブロモ-4-[2-(2-メトキシビニル)フェニル]ナフタレン180g(収率99%)を得た。
1-ブロモ-4-[2-(2-メトキシビニル)フェニル]ナフタレン180g、及びジクロロメタン1.0Lを仕込み、室温下攪拌中にメタンスルホン酸を25mL加えた。室温で8時間攪拌を続けた。反応終了後10%炭酸カリウム水溶液1Lを加えた。水層を除去し、有機層を水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。残渣をシリカゲルカラムクロマトグラフィで精製し、目的の5-ブロモベンゾ[c]フェナントレン24.4g(収率15%)を得た。
アルゴン雰囲気下、5-ブロモベンゾ[c]フェナントレン10.1gをフラスコに仕込み、脱水エーテル400mLを加えた。反応溶液を-40℃まで冷却し、1.6M n-ブチルリチウムのヘキサン溶液22mLを加え、0℃まで昇温し、1時間攪拌した。反応溶液を-60℃まで冷却し、ホウ酸トリイソプロピル14.4gの脱水エーテル10mL溶液を滴下した。反応溶液を室温まで昇温しながら5時間攪拌を続けた。10%塩酸水溶液100mLを加え、1時間攪拌した。水層を除去し、有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥させた。硫酸マグネシウムを濾別後、有機層を濃縮した。得られた固体をヘキサンで洗浄し、目的のベンゾ[c]フェナントレン-5-ボロン酸5.37g(収率60%)を得た。
(G)2-(3-ブロモフェニル)-イミダゾ[1,2-a]ピリジンの合成
下記合成スキームに示されるように、4-ブロモフェナシルブロミドの代わりに3-ブロモフェナシルブロミドを用いた他は合成例6と同様に反応を行って、2-(3-ブロモフェニル)-イミダゾ[1,2-a]ピリジンを合成した。
アルゴン雰囲気下、フルオランテン-3-ボロン酸9.1g、3-ヨードブロモベンゼン10.5g、テトラキス(トリフェニルホスフィン)パラジウム(0)2.1g、トルエン186mL、2M炭酸ナトリウム水溶液74mLをフラスコに仕込み、100℃にて8時間攪拌を行った。室温まで冷却後、反応溶液をトルエンで抽出した。水層を除去し有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。ろ過後、溶媒を減圧留去し残渣をシリカゲルクロマトグラフィで精製し、目的の3-(3-ブロモフェニル)フルオランテン9.2g(収率70%)を得た。
アルゴン雰囲気下、3-(3-ブロモフェニル)フルオランテン9.2g、テトラヒドロフラン129mLをフラスコに仕込み、反応溶液を-70℃に冷却し、1.65M n-ブチルリチウムのヘキサン溶液を17.2mL滴下し、-70℃にて2時間攪拌を行った。反応溶液にホウ酸トリイソプロピル17.7mLを滴下し、-70℃にて1時間攪拌した後、反応溶液を室温まで昇温しながら5時間攪拌した。反応液に2M塩酸を加えて酸性にした後、反応溶液を酢酸エチルで抽出した。水層を除去し有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。ろ過後、溶媒を減圧留去し残渣をヘキサン-酢酸エチル混合溶液で洗浄し、目的の3-(フルオランテン-3-イル)フェニルボロン酸7.9g(収率95%)を得た。
(J)6-(フルオランテン-3-イル)ナフタレン-2-イルボロン酸ピナコールエステルの合成
下記合成スキームに従って、6-(フルオランテン-3-イル)ナフタレン-2-イルボロン酸ピナコールエステルを合成した。
アルゴン雰囲気下、フルオランテン-3-ボロン酸2.7g、6-ブロモ-2-ナフトール2.0g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.31g、1,2-ジメトキシエタン27mL、2M炭酸ナトリウム水溶液13.5mLをフラスコに仕込み、4時間加熱還流攪拌を行った。室温まで冷却後、反応溶液に2M塩酸を加えて酸性にした後、ジクロロメタンで抽出した。水層を除去し有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。ろ過後、溶媒を減圧留去し、残渣をジクロロメタン中で分散洗浄し、目的の6-(フルオランテン-3-イル)-2-ナフトール2.75g(収率89%)を得た。
アルゴン雰囲気下、6-(フルオランテン-3-イル)-2-ナフトール2.75g、ピリジン2mL、ジクロロメタン80mLをフラスコに仕込んだ。反応液に氷冷下、トリフルオロメタンスルホン酸無水物2mLを滴下し、20分間攪拌した後、室温に昇温しながら3時間攪拌を行った。反応液にトリフルオロメタンスルホン酸0.5mL滴下し、30分間攪拌を行った。反応液に慎重に水を滴下して反応をクエンチした後、0.5M塩酸200mLを加え、ジクロロメタンで抽出を行った。水層を除去し有機層を無水硫酸ナトリウムで乾燥させた。ろ過後、溶媒を減圧留去し、残渣をトルエンにて再結晶を行い、目的の6-(フルオランテン-3-イル)-2-トリフルオロメタンスルホキシナフタレン3.11g(収率82%)を得た。
アルゴン雰囲気下、6-(フルオランテン-3-イル)-2-トリフルオロメタンスルホキシナフタレン3.11g、ビスピナコラートジボロン1.83g、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.27g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(0.18g)、酢酸カリウム(1.93g)、ジメチルホルムアミド65mLをフラスコに仕込み、80℃にて8時間攪拌を行った。室温まで冷却後、反応液に水を加えた後、混合物をトルエンで抽出した。得られたトルエン溶液をシリカゲルショートカラムに通し、溶出液の溶媒を減圧留去した。残渣をトルエンより再結晶し、目的の6-(フルオランテン-3-イル)ナフタレン-2-イルボロン酸ピナコールエステル1.53g(収率52%)を得た。
<EBT6の合成>
アルゴン雰囲気下、ベンゾ[c]フェナントレン-5-ボロン酸3.0g、1-(4-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾール3.5g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.231g、ジメトキシエタン40mL、及び2M炭酸ナトリウム水溶液20mLをフラスコに仕込み、8時間加熱還流攪拌した。室温まで冷却後、反応溶液をトルエンで抽出した。水層を除去した後、有機層を水で洗浄した後、硫酸マグネシウムで乾燥させた。ろ過後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィで精製し、淡黄色固体3.8gを得た。得られた化合物は、マススペクトル分析の結果、下記化合物(ETB6)であり、分子量496.19に対し、m/e=496であった。
<ETB9の合成>
アルゴン雰囲気下、合成例9で合成した6-(フルオランテン-3-イル)ナフタレン-2-イルボロン酸ピナコールエステル2.7g、合成例4で合成した1-(3-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾール3.5g、テトラキス(トリフェニルホスフィン)パラジウム(0)0.231g、ジメトキシエタン40mL、2M炭酸ナトリウム水溶液20mLをフラスコに仕込み、8時間加熱還流攪拌した。室温まで冷却後、反応溶液をトルエンで抽出した。水層を除去した後、有機層を水で洗浄した後、硫酸マグネシウムで乾燥させた。ろ過後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィで精製し、淡黄色固体3.4gを得た。マススペクトル分析の結果、得られた物は下記化合物(ETB9)であり、分子量596.23に対し、m/e=596であった。
<ETB12の合成>
合成例12において、6-(フルオランテン-3-イル)ナフタレン-2-イルボロン酸ピナコールエステルの代わりに合成例8で合成した3-(フルオランテン-3-イル)フェニルボロン酸を用いた他は、同様の方法で合成した。マススペクトル分析の結果、得られた物は下記化合物(ETB12)であり、分子量546.21に対し、m/e=546であった。
N-メチル-2-ニトロアニリン5.0g(33mmol)、及びN-ブロモスクシンイミド5.9g(33mmol)に酢酸60mLを加え、7時間加熱還流を行った。反応終了後、反応溶液を水500mLに注ぎ、析出した固体をろ別した。ろ別した固体を酢酸エチルに溶解させ、硫酸マグネシウムで乾燥させた。ろ過後、溶媒を減圧留去し、室温で減圧乾燥後、4-ブロモ-N-メチル-2-ニトロアニリンの橙色固体7.1g(収率93%)を得た。
4-ブロモ-N-メチル-2-ニトロアニリン6.8g(29mmol)をピリジン20mLに溶解させ、さらにベンゾイルクロライド5.0g(35mmol)を加え、アルゴン雰囲気下、90℃で7時間加熱攪拌した。反応終了後、酢酸エチル200mLを加え、有機層を10%塩酸水溶液、10%炭酸カリウム水溶液、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥させた。ろ過後、溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィで精製し、4’-ブロモ-N-メチル-2’-ニトロベンズアニリドの緑白色固体9.5g(収率96%)を得た。
4’-ブロモ-N-メチル-2’-ニトロベンズアニリド9.5g(28mmol)をテトラヒドロフラン100mLに溶解させ、アルゴン雰囲気下、室温で攪拌させながらハイドロサルファイトナトリウム25g(142mmol)/水90mLの溶液を加えた。さらにメタノール10mLを加えて3時間攪拌させた。次に酢酸エチル100mLを加え、炭酸水素ナトリウム12g(142mmol)/水125mLの溶液を加えた。1時間室温で攪拌後、酢酸エチルで抽出した。水層を除去し、有機層を10%炭酸カリウム水溶液、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。ろ過後、溶媒を減圧留去させ、4’-ブロモ-N-メチル-2’-アミノベンズアニリドの白色固体7.8g(収率90%)を得た。
4’-ブロモ-N-メチル-2’-アミノベンズアニリド7.8g(26mmol)をキシレン50mL中に懸濁させ、p-トルエンスルホン酸1水和物1.5g(7.7mmol)を加え、7時間加熱還流させた。反応終了後ろ過した。得られた固体を塩化メチレンに溶解させ、10%炭酸カリウム水溶液、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。ろ液からも同様の洗浄方法で有機物を回収し、合わせてシリカゲルカラムクロマトグラフィで精製し、5-ブロモ-1-メチル-2-フェニル-1H-ベンズイミダゾールの白色結晶6.5g(収率89%)を得た。
<ETB13の合成>
合成例12において、6-(フルオランテン-3-イル)ナフタレン-2-イルボロン酸ピナコールエステルの代わりに合成例8で合成した3-(フルオランテン-3-イル)フェニルボロン酸を用い、1-(3-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾールの代わりに合成例14で合成した5-ブロモ-1-メチル-2-フェニル-1H-ベンズイミダゾールを用いた他は、同様の方法で合成した。マススペクトル分析の結果、得られた物は下記化合物(ETB13)であり、分子量484.19に対し、m/e=484であった。
<ETB14の合成>
ベンゾ[c]フェナントレン-5-ボロン酸の代わりにベンゾ[g]クリセン-10-ボロン酸を用い、1-(4-ブロモフェニル)-2-フェニル-1H-ベンズイミダゾールの代わりに6-ブロモ-2,2’-ビピリジルを用いた他は合成例11と同様に反応を行った。
得られた化合物は、マススペクトル分析の結果、下記化合物(ETB14)であり、分子量432.16に対し、m/e=432であった。
膜厚130nmのITO(インジウム酸化錫)が成膜された基板上に、以下の材料を順次蒸着し、素子を得た。括弧内は膜厚(単位:nm)を示す。
陽極:ITO(130)
正孔注入層:HT1(50)
正孔輸送層:HT2(45)
発光層:BH1とBD1(BD1は5%ドープ)(25)
障壁層:ETB1(25)
低仕事関数金属含有層:LiF(1)
陰極:Al(80)
発光層のホスト材料と、障壁層の材料を表2に示すように変えた他は、実施例1と同様にして素子を得た。
実施例1~8、比較例1~2で得た素子について以下の評価を行った。結果を表2に示す。
電流値が10mA/cm2となるように素子に電圧を印加し、そのときの電圧値を測定した。またそのときのEL発光スペクトルを分光放射輝度計(CS-1000:コミカミノルタ社製)を用いて計測した。得られた分光放射輝度スペクトルから、色度、電流効率(L/J)(cd/A)、外部量子効率(EQE)(%)、主ピーク波長(nm)を算出した。
NE: 電子数
π: 円周率 = 3.1416
λ: 波長 (nm)
φ: 発光強度 (W/sr・m2・nm)
h: プランク定数 = 6.63×10-34(J・s)
c: 光速度 = 3×108(m/s)
J: 電流密度 (mA/cm2)
e: 電荷 = 1.6×10-19(C)
パルスジェネレータ(アジレント社製8114A)から出力した電圧パルス波形(パルス幅:500マイクロ秒、周波数:20Hz)を印加し、EL発光を光電子増倍管(浜松ホトニクス社製R928)に入力し、パルス電圧波形とEL発光とを同期させてオシロスコープ(テクトロニクス社製2440)に取り込んで過渡EL波形を得た。これを解析してTTF由来の発光比率(TTF比率)を決定した。
尚、TTF現象による内部量子効率の向上は62.5%が理論的限界と考えられ、この場合のTTF由来の発光比率は60%になる。
発光層のホスト材料及びドーパント材料と、障壁層の材料をそれぞれ表3に示すように変えた他は、実施例1と同様にして各素子を得た。
実施例9~21で得た素子について、初期性能(電圧、色度、電流効率、外部量子効率、主ピーク波長)及びTTF由来の発光比率の評価を行った。結果を表3に示す。
実施例12~16の結果から、ETBの置換基を変化させた場合も高いTTF比率を示しことがわかる。
さらに、実施例17~21の結果から、ドーパント材料をBD1に変えてBD2を用いた場合も同様に高いTTF比率が得られることがわかる。
この明細書に記載の文献の内容を全てここに援用する。
Claims (15)
- 陽極と、発光層と、電子輸送帯域と、陰極をこの順に備え、
前記発光層は、ホスト材料と、主ピーク波長が550nm以下の蛍光発光を示すドーパント材料とを含み、
前記電子輸送帯域は、前記発光層に隣接する障壁層を含み、
前記障壁層は、電子輸送構造部位と、縮合多環芳香族炭化水素化合物からなるトリプレット障壁構造部位を有するとともに下記式(1)を満たす障壁材料を含む、有機エレクトロルミネッセンス素子。
ET b>ET h・・・(1)
(ET h及びET bは、それぞれ前記ホスト材料及び前記障壁材料の三重項エネルギーを示す。) - 前記ホスト材料と前記ドーパント材料が下記式(2)を満たす請求項1に記載の有機エレクトロルミネッセンス素子。
ET d>ET h・・・(2)
(ET dは、前記ドーパント材料の三重項エネルギーを示す。) - 前記ホスト材料のアフィニティAfhと前記障壁材料のアフィニティAfbが下記式(3)を満たす請求項1又は2に記載の有機エレクトロルミネッセンス素子。
Afh-Afb>0eV・・・(3) - 前記ホスト材料のイオン化ポテンシャルIphと前記ドーパント材料のイオン化ポテンシャルIpdが下記式(4)を満たす請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
Ipd-Iph<0.2eV・・・(4) - 前記障壁材料の電子移動度が、10-6cm2/Vs以上である請求項1~4のいずれかに記載の有機エレクトロルミネッセンス素子。
- 前記障壁層が、前記障壁材料に対して還元性を示すドナーを含む請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
- 前記発光層において三重項励起子同士が衝突して生成する一重項励起子由来の発光強度が、全発光強度に対して30%以上である請求項1~6のいずれかに記載の有機エレクトロルミネッセンス素子。
- 前記陽極と前記陰極の間に少なくとも2つの発光層を有し、2つの発光層の間に電荷発生層を備える請求項1~12のいずれかに記載の有機エレクトロルミネッセンス素子。
- 陽極と、複数の発光層と、電子輸送帯域と、陰極をこの順に備え、
前記複数の発光層のいずれか二つの発光層の間に電荷障壁層を有し、
前記電子輸送帯域に接する発光層は、ホスト材料と、主ピーク波長が550nm以下の蛍光発光を示すドーパント材料とを含み、
前記電子輸送帯域は、該発光層に隣接する障壁層を含み、
前記障壁層は、電子輸送構造部位と、縮合多環芳香族炭化水素化合物からなるトリプレット障壁構造部位を有するとともに下記式(1)を満たす障壁材料を含む、有機エレクトロルミネッセンス素子。
ET b>ET h・・・(1)
(ET h及びET bは、それぞれ前記ホスト材料及び前記障壁材料の三重項エネルギーを示す。) - 前記ホスト材料と前記ドーパント材料が下記式(2)を満たす請求項14に記載の有機エレクトロルミネッセンス素子。
ET d>ET h・・・(2)
(ET dは、前記ドーパント材料の三重項エネルギーを示す。)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011549949A JP5238889B2 (ja) | 2010-01-15 | 2011-01-14 | 有機エレクトロルミネッセンス素子 |
US13/388,389 US8803420B2 (en) | 2010-01-15 | 2011-01-14 | Organic electroluminescence device |
EP11732813.8A EP2525425B1 (en) | 2010-01-15 | 2011-01-14 | Organic electroluminescent element |
US14/987,861 USRE47654E1 (en) | 2010-01-15 | 2011-01-14 | Organic electroluminescence device |
CN2011800028779A CN102473857A (zh) | 2010-01-15 | 2011-01-14 | 有机电致发光元件 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010007483 | 2010-01-15 | ||
JP2010-007483 | 2010-01-15 | ||
JP2010013369 | 2010-01-25 | ||
JP2010-013369 | 2010-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011086941A1 true WO2011086941A1 (ja) | 2011-07-21 |
Family
ID=44304216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/000174 WO2011086941A1 (ja) | 2010-01-15 | 2011-01-14 | 有機エレクトロルミネッセンス素子 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8803420B2 (ja) |
EP (1) | EP2525425B1 (ja) |
JP (1) | JP5238889B2 (ja) |
KR (1) | KR20120100709A (ja) |
CN (1) | CN102473857A (ja) |
TW (1) | TW201144406A (ja) |
WO (1) | WO2011086941A1 (ja) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012070234A1 (en) * | 2010-11-22 | 2012-05-31 | Idemitsu Kosan Co.,Ltd. | Organic electroluminescence device |
JP2013051160A (ja) * | 2011-08-31 | 2013-03-14 | Canon Inc | 表示装置 |
JP2013051161A (ja) * | 2011-08-31 | 2013-03-14 | Canon Inc | 表示装置 |
CN103360322A (zh) * | 2012-03-30 | 2013-10-23 | 海洋王照明科技股份有限公司 | 苯并咪唑取代芘的有机半导体材料及其制备方法和应用 |
CN103380508A (zh) * | 2011-11-22 | 2013-10-30 | 出光兴产株式会社 | 芳香族杂环衍生物、有机电致发光元件用材料以及有机电致发光元件 |
US8883323B2 (en) | 2010-11-22 | 2014-11-11 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
WO2014185434A1 (en) * | 2013-05-16 | 2014-11-20 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, electronic device, and lighting device |
WO2015182547A1 (ja) * | 2014-05-28 | 2015-12-03 | 東レ株式会社 | フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子 |
JP2015218112A (ja) * | 2014-05-14 | 2015-12-07 | ▲いく▼▲雷▼光電科技股▲分▼有限公司 | 有機発光デバイスに用いられる化合物およびその化合物を有する有機発光デバイス |
CN105399683A (zh) * | 2015-12-01 | 2016-03-16 | 江苏理工学院 | 苯并咪唑衍生物及其制备方法 |
US9324950B2 (en) | 2010-11-22 | 2016-04-26 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
JP2016110978A (ja) * | 2014-05-13 | 2016-06-20 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、表示装置、電子機器、および照明装置 |
JP2016526029A (ja) * | 2013-05-16 | 2016-09-01 | チェイル インダストリーズ インコーポレイテッド | 有機化合物、有機光電子素子および表示装置 |
KR20160113219A (ko) | 2014-03-07 | 2016-09-28 | 코니카 미놀타 가부시키가이샤 | 유기 일렉트로루미네센스 소자, 표시 장치, 조명 장치 및 발광성 조성물 |
WO2016193243A1 (en) | 2015-06-03 | 2016-12-08 | Udc Ireland Limited | Highly efficient oled devices with very short decay times |
JP2017503347A (ja) * | 2013-12-27 | 2017-01-26 | ドゥーサン コーポレイション | 有機電界発光素子 |
US9564598B2 (en) | 2014-05-02 | 2017-02-07 | Samsung Display Co., Ltd. | Organic light-emitting device |
WO2017109727A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Hetero-condensed phenylquinazolines and their use in electronic devices |
US9748510B2 (en) | 2014-05-02 | 2017-08-29 | Samsung Display Co., Ltd. | Organic light-emitting device |
JP2017168814A (ja) * | 2015-12-01 | 2017-09-21 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、電子機器及び照明装置 |
US10008674B2 (en) | 2014-10-15 | 2018-06-26 | Samsung Display Co., Ltd. | Organic light emitting diode and organic light emitting display device including the same |
US10020459B2 (en) | 2014-05-02 | 2018-07-10 | Samsung Display Co., Ltd. | Organic light-emitting device |
JP2018172319A (ja) * | 2017-03-31 | 2018-11-08 | 出光興産株式会社 | 新規な化合物、有機エレクトロルミネッセンス素子、電子機器 |
JP2018188444A (ja) * | 2010-04-09 | 2018-11-29 | 株式会社半導体エネルギー研究所 | 芳香族アミン誘導体、発光素子、発光装置、電子機器および照明装置 |
JP2018207030A (ja) * | 2017-06-08 | 2018-12-27 | 株式会社Joled | 有機電界発光素子、有機電界発光装置および電子機器 |
JP2018206984A (ja) * | 2017-06-06 | 2018-12-27 | 株式会社Joled | 有機電界発光素子、有機電界発光装置および電子機器 |
US10347851B2 (en) | 2013-12-20 | 2019-07-09 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
US10431766B2 (en) | 2014-05-02 | 2019-10-01 | Samsung Display Co., Ltd. | Organic light-emitting device |
US10784456B2 (en) | 2017-06-06 | 2020-09-22 | Joled Inc. | Organic electroluminescent unit |
JP2021114477A (ja) * | 2011-10-11 | 2021-08-05 | 株式会社半導体エネルギー研究所 | 発光装置 |
JP2022506998A (ja) * | 2018-07-23 | 2022-01-18 | 三星ディスプレイ株式會社 | 有機発光素子 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5616582B2 (ja) | 2006-06-22 | 2014-10-29 | 出光興産株式会社 | 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子 |
US8476823B2 (en) | 2009-05-22 | 2013-07-02 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
JP5238889B2 (ja) | 2010-01-15 | 2013-07-17 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
KR101450959B1 (ko) | 2010-01-15 | 2014-10-15 | 이데미쓰 고산 가부시키가이샤 | 질소 함유 복소환 유도체 및 그것을 포함하여 이루어지는 유기 전계 발광 소자 |
US20120126205A1 (en) * | 2010-11-22 | 2012-05-24 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
CN102532034B (zh) * | 2010-12-17 | 2015-03-11 | 清华大学 | 一种含有苯并咪唑基团的苯并菲类化合物及其应用 |
CN102532000A (zh) * | 2010-12-17 | 2012-07-04 | 清华大学 | 一种含有吡啶基团的苯并菲类化合物及其应用 |
US9640773B2 (en) | 2011-09-16 | 2017-05-02 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescence element using same |
KR101792456B1 (ko) | 2011-11-25 | 2017-11-01 | 이데미쓰 고산 가부시키가이샤 | 방향족 아민 유도체, 유기 일렉트로 루미네선스 소자용 재료 및 유기 일렉트로 루미네선스 소자 |
US20140284580A1 (en) * | 2013-03-22 | 2014-09-25 | E-Ray Optoelectronics Techonology Co., Ltd. | Electron transporting compounds and organic electroluminescent devices using the same |
CN104926732B (zh) * | 2014-03-21 | 2017-06-13 | 昱镭光电科技股份有限公司 | 用于有机发光元件的化合物及具有该化合物的有机发光元件 |
KR102124045B1 (ko) | 2014-05-02 | 2020-06-18 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102304718B1 (ko) | 2014-07-10 | 2021-09-27 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
JP6813946B2 (ja) | 2014-10-31 | 2021-01-13 | 株式会社半導体エネルギー研究所 | 発光素子、表示装置、電子機器及び照明装置 |
CN105633295A (zh) * | 2014-11-06 | 2016-06-01 | 上海和辉光电有限公司 | 有机发光二极管荧光器件结构及其制作方法 |
KR102456659B1 (ko) | 2014-12-26 | 2022-10-18 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 유기 화합물, 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치 |
CN104966786B (zh) * | 2015-07-03 | 2017-12-22 | 固安鼎材科技有限公司 | 一种有机电致发光器件 |
KR102500272B1 (ko) | 2015-09-16 | 2023-02-16 | 삼성디스플레이 주식회사 | 화합물 및 이를 포함하는 유기 발광 소자 |
CN111341927B (zh) * | 2015-09-30 | 2023-06-09 | 株式会社半导体能源研究所 | 发光元件、显示装置、电子设备及照明装置 |
KR102384293B1 (ko) | 2015-12-22 | 2022-04-08 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR20170075114A (ko) | 2015-12-22 | 2017-07-03 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR20170075122A (ko) | 2015-12-22 | 2017-07-03 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102579752B1 (ko) | 2015-12-22 | 2023-09-19 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
TWI625326B (zh) * | 2016-09-09 | 2018-06-01 | 昱鐳光電科技股份有限公司 | 有機電激發光元件 |
CN106753340A (zh) * | 2016-12-20 | 2017-05-31 | 中节能万润股份有限公司 | 一种苯并咪唑类有机电致发光材料及其制备方法和应用 |
KR102497284B1 (ko) * | 2017-12-18 | 2023-02-08 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
CN112204002A (zh) | 2018-05-31 | 2021-01-08 | 株式会社半导体能源研究所 | 有机化合物、发光元件、发光装置、电子设备及照明装置 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6479297A (en) | 1987-09-22 | 1989-03-24 | Mitsubishi Heavy Ind Ltd | Apparatus for production of high-concentration coal-water slurry |
JP2001357972A (ja) * | 2000-06-13 | 2001-12-26 | Hitachi Ltd | 有機電界発光素子 |
JP2002100478A (ja) | 2000-09-20 | 2002-04-05 | Mitsubishi Chemicals Corp | 有機電界発光素子及びその製造方法 |
JP2002525808A (ja) | 1998-09-14 | 2002-08-13 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | 高効率の電界発光デバイスのための構造 |
JP2004214180A (ja) | 2002-12-16 | 2004-07-29 | Canon Inc | 有機発光素子 |
WO2004080975A1 (ja) | 2003-03-13 | 2004-09-23 | Idemitsu Kosan Co., Ltd. | 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
JP2005353288A (ja) * | 2004-06-08 | 2005-12-22 | Canon Inc | 有機発光素子 |
WO2006008068A1 (de) * | 2004-07-15 | 2006-01-26 | Merck Patent Gmbh | Verwendug von polymeren für up-conversion und vorrichtungen zur up-conversion |
US7018723B2 (en) | 2003-07-25 | 2006-03-28 | The University Of Southern California | Materials and structures for enhancing the performance of organic light emitting devices |
US20070027327A1 (en) | 2005-07-29 | 2007-02-01 | Wyeth | Process for the synthesis of progesterone receptor modulators |
CN1921172A (zh) * | 2005-08-25 | 2007-02-28 | 国际商业机器公司 | 光电器件的稳定性提高 |
WO2008023623A1 (fr) | 2006-08-22 | 2008-02-28 | Idemitsu Kosan Co., Ltd. | Dispositif électroluminescent organique |
US7358661B2 (en) | 2003-04-24 | 2008-04-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and display |
JP4134280B2 (ja) | 2006-05-25 | 2008-08-20 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子及びフルカラー発光装置 |
WO2010134350A1 (ja) * | 2009-05-22 | 2010-11-25 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
Family Cites Families (152)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1079297A (ja) | 1996-07-09 | 1998-03-24 | Sony Corp | 電界発光素子 |
US6830828B2 (en) | 1998-09-14 | 2004-12-14 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
US7001536B2 (en) | 1999-03-23 | 2006-02-21 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
ATE358169T1 (de) | 1999-09-30 | 2007-04-15 | Idemitsu Kosan Co | Elektrolumineszierende, organische vorrichtung |
US6821643B1 (en) | 2000-01-21 | 2004-11-23 | Xerox Corporation | Electroluminescent (EL) devices |
US6225467B1 (en) | 2000-01-21 | 2001-05-01 | Xerox Corporation | Electroluminescent (EL) devices |
US6639357B1 (en) * | 2000-02-28 | 2003-10-28 | The Trustees Of Princeton University | High efficiency transparent organic light emitting devices |
US6660411B2 (en) | 2000-09-20 | 2003-12-09 | Mitsubishi Chemical Corporation | Organic electroluminescent device |
TWI314947B (en) | 2002-04-24 | 2009-09-21 | Eastman Kodak Compan | Organic light emitting diode devices with improved operational stability |
US20040018380A1 (en) | 2002-07-26 | 2004-01-29 | Xerox Corporation | Display device with anthracene and triazine derivatives |
TWI272874B (en) * | 2002-08-09 | 2007-02-01 | Semiconductor Energy Lab | Organic electroluminescent device |
DE10356099A1 (de) | 2003-11-27 | 2005-07-07 | Covion Organic Semiconductors Gmbh | Organisches Elektrolumineszenzelement |
EP1724323A4 (en) | 2004-03-08 | 2008-11-05 | Idemitsu Kosan Co | MATERIAL FOR ORGANIC ELECTROLUMINESCENCE DEVICE AND ORGANIC ELECTROLUMINESCENCE DEVICE USING SUCH MATERIAL |
WO2005105950A1 (en) | 2004-04-29 | 2005-11-10 | Ciba Specialty Chemicals Holding Inc. | Electroluminescent device |
US20070009760A1 (en) | 2004-08-23 | 2007-01-11 | Tetsuya Inoue | Coordination metal compound, material for organic electroluminescence device, material for luminescent coating formation and organic electroluminescence device |
JP4653469B2 (ja) | 2004-12-01 | 2011-03-16 | 出光興産株式会社 | 有機電界発光素子 |
JP4790260B2 (ja) | 2004-12-22 | 2011-10-12 | 出光興産株式会社 | アントラセン誘導体を用いた有機エレクトロルミネッセンス素子 |
US8487527B2 (en) | 2005-05-04 | 2013-07-16 | Lg Display Co., Ltd. | Organic light emitting devices |
US7777407B2 (en) | 2005-05-04 | 2010-08-17 | Lg Display Co., Ltd. | Organic light emitting devices comprising a doped triazine electron transport layer |
CN101248058B (zh) | 2005-08-26 | 2012-05-09 | 东曹株式会社 | 1,3,5-三嗪衍生物及其制备方法和含有该物质作为组分的有机电致发光器件 |
US8647753B2 (en) | 2005-10-12 | 2014-02-11 | Lg Display Co., Ltd. | Organic electroluminescence device |
JP2007180277A (ja) | 2005-12-28 | 2007-07-12 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 |
EP2746271B1 (en) | 2007-04-12 | 2016-08-17 | Tosoh Corporation | Phenyl-substituted 1, 3, 5-triazine compounds as intermediates for electroluminescent molecules |
US20080286610A1 (en) * | 2007-05-17 | 2008-11-20 | Deaton Joseph C | Hybrid oled with fluorescent and phosphorescent layers |
US8154195B2 (en) | 2007-07-07 | 2012-04-10 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and material for organic electroluminescence device |
JP2010241687A (ja) | 2007-07-07 | 2010-10-28 | Idemitsu Kosan Co Ltd | クリセン誘導体、及び、有機el素子 |
WO2009008205A1 (ja) | 2007-07-07 | 2009-01-15 | Idemitsu Kosan Co., Ltd. | 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子用材料 |
US8211552B2 (en) | 2007-07-07 | 2012-07-03 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US8779655B2 (en) | 2007-07-07 | 2014-07-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and material for organic electroluminescence device |
WO2009008201A1 (ja) | 2007-07-07 | 2009-01-15 | Idemitsu Kosan Co., Ltd. | ナフタレン誘導体、有機el素子用材料及びそれを用いた有機el素子 |
US20090045731A1 (en) | 2007-07-07 | 2009-02-19 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and material for organic electroluminescence device |
TWI511964B (zh) | 2007-08-08 | 2015-12-11 | Universal Display Corp | 苯并稠合噻吩/聯伸三苯混合材料 |
KR101353635B1 (ko) | 2007-11-15 | 2014-01-20 | 이데미쓰 고산 가부시키가이샤 | 벤조크리센 유도체 및 이것을 사용한 유기 전계 발광 소자 |
KR101419101B1 (ko) | 2007-11-16 | 2014-07-11 | 이데미쓰 고산 가부시키가이샤 | 벤조크리센 유도체 및 이것을 사용한 유기 전계 발광 소자 |
EP2213639B1 (en) | 2007-11-19 | 2016-04-13 | Idemitsu Kosan Co., Ltd. | Monobenzochrysene derivatives and their use in materials for organic electroluminescent devices |
US20090174313A1 (en) | 2007-11-22 | 2009-07-09 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and organic-electroluminescence-material-containing solution |
JP5335691B2 (ja) | 2007-12-20 | 2013-11-06 | 出光興産株式会社 | ベンズアントラセン化合物及びそれを用いた有機エレクトロルミネッセンス素子 |
US20090191427A1 (en) | 2008-01-30 | 2009-07-30 | Liang-Sheng Liao | Phosphorescent oled having double hole-blocking layers |
TWI429647B (zh) | 2008-02-14 | 2014-03-11 | Hodogaya Chemical Co Ltd | A compound having a pyridoindole ring structure to which a substituted pyridyl group is attached, and an organic electroluminescent element |
JPWO2010016511A1 (ja) | 2008-08-08 | 2012-01-26 | 出光興産株式会社 | 有機薄膜トランジスタ用化合物及びそれを用いた有機薄膜トランジスタ |
JPWO2010018842A1 (ja) | 2008-08-12 | 2012-01-26 | 出光興産株式会社 | ベンゾフルオランテン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
KR100958641B1 (ko) | 2008-08-18 | 2010-05-20 | 삼성모바일디스플레이주식회사 | 광효율 개선층을 구비한 유기 발광 소자 |
KR101551207B1 (ko) | 2008-09-04 | 2015-09-08 | 롬엔드하스전자재료코리아유한회사 | 신규한 유기 발광 화합물 및 이를 발광재료로서 채용하고 있는 유기 발광 소자 |
JP2010138121A (ja) | 2008-12-12 | 2010-06-24 | Canon Inc | トリアジン化合物及びこれを用いた有機発光素子 |
JPWO2010074087A1 (ja) | 2008-12-26 | 2012-06-21 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子 |
WO2010074181A1 (ja) | 2008-12-26 | 2010-07-01 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子及び化合物 |
KR20110117073A (ko) | 2009-01-05 | 2011-10-26 | 이데미쓰 고산 가부시키가이샤 | 유기 전기발광 소자용 재료 및 그것을 사용한 유기 전기발광 소자 |
DE102009012346B4 (de) | 2009-03-09 | 2024-02-15 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung und Verfahren zu deren Herstellung |
DE102009014513A1 (de) | 2009-03-23 | 2010-09-30 | Merck Patent Gmbh | Organische Elektrolumineszenzvorrichtung |
US20100244677A1 (en) * | 2009-03-31 | 2010-09-30 | Begley William J | Oled device containing a silyl-fluoranthene derivative |
US8039129B2 (en) | 2009-04-06 | 2011-10-18 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and material for organic electroluminescence device |
US8039127B2 (en) | 2009-04-06 | 2011-10-18 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and material for organic electroluminescence device |
US20100295027A1 (en) | 2009-05-22 | 2010-11-25 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US8476823B2 (en) | 2009-05-22 | 2013-07-02 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
US9153790B2 (en) | 2009-05-22 | 2015-10-06 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
US20100295445A1 (en) | 2009-05-22 | 2010-11-25 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
KR101311934B1 (ko) | 2009-06-08 | 2013-09-26 | 제일모직주식회사 | 유기광전소자용 조성물 및 이를 이용한 유기광전소자 |
US8461574B2 (en) | 2009-06-12 | 2013-06-11 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US20100314644A1 (en) | 2009-06-12 | 2010-12-16 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
TWI488941B (zh) | 2009-09-02 | 2015-06-21 | 葛來西雅帝史派有限公司 | 新穎有機電場發光化合物及使用該化合物之有機電場發光裝置 |
KR101931922B1 (ko) | 2009-09-16 | 2018-12-21 | 메르크 파텐트 게엠베하 | 전자 소자 제조를 위한 제형 |
JP2013012505A (ja) | 2009-09-17 | 2013-01-17 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス素子 |
KR101724304B1 (ko) | 2009-10-16 | 2017-04-10 | 에스에프씨 주식회사 | 축합방향족 화합물 및 이를 포함하는 유기전계발광소자 |
DE102009051172A1 (de) | 2009-10-29 | 2011-05-05 | Merck Patent Gmbh | Materialien für elektronische Vorrichtungen |
JP2011105643A (ja) | 2009-11-17 | 2011-06-02 | Idemitsu Kosan Co Ltd | 重合性単量体、及びそれを用いて得られる高分子化合物、有機デバイス用材料、有機エレクトロルミネッセンス素子用材料、並びに有機デバイス、有機エレクトロルミネッセンス素子 |
JP5238889B2 (ja) | 2010-01-15 | 2013-07-17 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
KR101450959B1 (ko) | 2010-01-15 | 2014-10-15 | 이데미쓰 고산 가부시키가이샤 | 질소 함유 복소환 유도체 및 그것을 포함하여 이루어지는 유기 전계 발광 소자 |
US9324950B2 (en) * | 2010-11-22 | 2016-04-26 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US8883323B2 (en) * | 2010-11-22 | 2014-11-11 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US20120126205A1 (en) * | 2010-11-22 | 2012-05-24 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US9252368B2 (en) | 2011-11-11 | 2016-02-02 | Tosoh Corporation | Cyclic azine compound having nitrogen-containing condensed aromatic group, method for producing same, and organic electroluminescent device comprising same as constituent component |
KR101604168B1 (ko) | 2012-02-27 | 2016-03-16 | 주식회사 엘지화학 | 유기 발광 소자 |
JP5905584B2 (ja) | 2012-02-27 | 2016-04-20 | エルジー・ケム・リミテッド | 有機発光素子 |
KR101297162B1 (ko) | 2012-10-15 | 2013-08-21 | 제일모직주식회사 | 유기광전소자용 조성물 및 이를 이용한 유기광전소자 |
KR20120135501A (ko) | 2012-10-29 | 2012-12-14 | 에스에프씨 주식회사 | 축합환 화합물 및 이를 포함한 유기 발광 소자 |
KR102121582B1 (ko) | 2012-12-12 | 2020-06-10 | 에스에프씨 주식회사 | 피렌계 화합물 및 이를 이용한 유기전계발광소자 |
KR101548040B1 (ko) | 2012-12-26 | 2015-08-28 | 주식회사 두산 | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 |
KR102048555B1 (ko) | 2013-04-17 | 2019-11-26 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
KR20140135525A (ko) | 2013-05-16 | 2014-11-26 | 제일모직주식회사 | 유기 광전자 소자용 발광 재료, 유기 광전자 소자 및 표시 장치 |
KR101618683B1 (ko) | 2013-05-16 | 2016-05-09 | 제일모직 주식회사 | 유기 화합물, 유기 광전자 소자 및 표시 장치 |
KR20140135532A (ko) | 2013-05-16 | 2014-11-26 | 제일모직주식회사 | 유기 화합물, 유기 광전자 소자 및 표시 장치 |
KR102048035B1 (ko) | 2013-06-03 | 2019-11-25 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치 |
KR102117611B1 (ko) | 2013-06-12 | 2020-06-02 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR101433822B1 (ko) | 2013-06-17 | 2014-08-27 | 삼성디스플레이 주식회사 | 유기 발광 장치 |
KR102188028B1 (ko) | 2013-06-18 | 2020-12-08 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102054162B1 (ko) | 2013-06-26 | 2020-01-22 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치 |
KR101593465B1 (ko) | 2013-06-28 | 2016-02-12 | (주)피엔에이치테크 | 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자 |
JP6421474B2 (ja) | 2013-06-28 | 2018-11-14 | 東ソー株式会社 | 環状アジン化合物、その製造方法、及びそれを用いた有機電界発光素子 |
KR102078365B1 (ko) | 2013-07-01 | 2020-04-03 | 삼성디스플레이 주식회사 | 유기 발광 장치 |
KR102108454B1 (ko) | 2013-07-08 | 2020-05-26 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치 |
KR102054159B1 (ko) | 2013-07-09 | 2019-12-10 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치 |
KR102137429B1 (ko) | 2013-07-11 | 2020-07-24 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치 |
CN104292261A (zh) | 2013-07-19 | 2015-01-21 | 海洋王照明科技股份有限公司 | 一种膦硫基电子传输材料及其制备方法和应用 |
WO2015008866A1 (ja) | 2013-07-19 | 2015-01-22 | 東ソー株式会社 | トリアジン化合物及びそれを含有する有機電界発光素子 |
US10074806B2 (en) | 2013-08-20 | 2018-09-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9831437B2 (en) | 2013-08-20 | 2017-11-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR101702512B1 (ko) | 2013-09-04 | 2017-02-03 | 제일모직 주식회사 | 유기 화합물, 유기 광전자 소자 및 표시 장치 |
KR101649683B1 (ko) | 2013-09-06 | 2016-08-19 | 제일모직 주식회사 | 유기광전자소자용 조성물, 유기 광전자 소자 및 표시 장치 |
KR102180085B1 (ko) | 2013-09-12 | 2020-11-17 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자장치 |
KR101600453B1 (ko) | 2013-09-13 | 2016-03-08 | 주식회사 엠비케이 | 신규한 유기발광화합물 및 이를 포함하는 유기전기발광소자 |
KR101812581B1 (ko) | 2013-10-11 | 2017-12-27 | 제일모직 주식회사 | 유기광전자소자용 유기합화물, 유기 광전자 소자 및 표시 장치 |
KR101779110B1 (ko) | 2013-10-11 | 2017-09-18 | 제일모직 주식회사 | 유기 광전자 소자 및 표시 장치 |
KR102167044B1 (ko) | 2013-10-31 | 2020-10-19 | 삼성디스플레이 주식회사 | 크라이센계 화합물 및 이를 포함한 유기 발광 소자 |
KR102177211B1 (ko) | 2013-12-05 | 2020-11-11 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
CN104716268B (zh) | 2013-12-17 | 2017-09-29 | 北京维信诺科技有限公司 | 一种有机电致发光器件及其制备方法 |
WO2015099481A1 (ko) | 2013-12-27 | 2015-07-02 | 주식회사 두산 | 유기 전계 발광 소자 |
CN104795503B (zh) | 2014-01-16 | 2018-07-20 | 三星显示有限公司 | 有机发光装置 |
WO2015111848A1 (ko) | 2014-01-24 | 2015-07-30 | 삼성에스디아이 주식회사 | 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치 |
WO2015115744A1 (ko) | 2014-01-29 | 2015-08-06 | 삼성에스디아이 주식회사 | 전자수송보조층용 조성물, 전자수송보조층을 포함하는 유기 광전자 소자 및 표시 장치 |
KR101670056B1 (ko) | 2014-02-20 | 2016-10-28 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
WO2015126081A1 (ko) | 2014-02-21 | 2015-08-27 | 삼성에스디아이 주식회사 | 유기 광전자 소자 및 표시 장치 |
KR101806164B1 (ko) | 2014-03-24 | 2017-12-07 | 주식회사 스킨앤스킨 | 신규한 유기발광화합물 및 이를 포함하는 유기 발광 소자 |
JP2015199683A (ja) | 2014-04-08 | 2015-11-12 | 東ソー株式会社 | トリアジン化合物の製造方法 |
JP2015205235A (ja) | 2014-04-18 | 2015-11-19 | 東ソー株式会社 | 活性炭を用いるトリアジン化合物からのパラジウムの除去方法 |
KR102244071B1 (ko) | 2014-05-02 | 2021-04-26 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102124045B1 (ko) | 2014-05-02 | 2020-06-18 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR20150126755A (ko) | 2014-05-02 | 2015-11-13 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR20150126526A (ko) | 2014-05-02 | 2015-11-12 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
US9997716B2 (en) | 2014-05-27 | 2018-06-12 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR102208247B1 (ko) | 2014-05-29 | 2021-01-27 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치 |
KR20150141047A (ko) | 2014-06-09 | 2015-12-17 | 주식회사 두산 | 유기 전계 발광 소자 |
KR102327086B1 (ko) | 2014-06-11 | 2021-11-17 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102273047B1 (ko) | 2014-06-30 | 2021-07-06 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102351957B1 (ko) | 2014-07-10 | 2022-01-17 | 삼성디스플레이 주식회사 | 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치 |
KR102304718B1 (ko) | 2014-07-10 | 2021-09-27 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR20160007967A (ko) | 2014-07-10 | 2016-01-21 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
WO2016009823A1 (ja) | 2014-07-16 | 2016-01-21 | 東レ株式会社 | モノアミン誘導体、それを用いた発光素子材料および発光素子 |
KR101835502B1 (ko) | 2014-07-21 | 2018-03-07 | 삼성에스디아이 주식회사 | 유기광전자소자용 조성물, 유기광전자소자 및 표시 장치 |
KR102328675B1 (ko) | 2014-07-24 | 2021-11-19 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR101825542B1 (ko) | 2014-08-26 | 2018-02-05 | 삼성에스디아이 주식회사 | 유기 광전자 소자 및 표시장치 |
US10741772B2 (en) | 2014-08-29 | 2020-08-11 | Samsung Electronics Co., Ltd. | Organic light-emitting device |
KR102460658B1 (ko) | 2014-08-29 | 2022-10-31 | 삼성전자주식회사 | 유기 발광 소자 |
US10749113B2 (en) | 2014-09-29 | 2020-08-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
JP2016081972A (ja) | 2014-10-10 | 2016-05-16 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子、電子機器、および組成物 |
KR101825541B1 (ko) | 2014-10-15 | 2018-02-05 | 삼성에스디아이 주식회사 | 유기 광전자 소자 및 표시 장치 |
KR102417121B1 (ko) | 2014-10-17 | 2022-07-06 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102360228B1 (ko) | 2014-10-22 | 2022-02-09 | 솔루스첨단소재 주식회사 | 유기 전계 발광 소자 |
CN106716665B9 (zh) | 2014-10-27 | 2018-12-07 | 株式会社Lg化学 | 有机电致发光器件 |
KR101848347B1 (ko) | 2014-10-28 | 2018-05-24 | 삼성에스디아이 주식회사 | 유기 광전자 소자 및 표시 장치 |
KR101857146B1 (ko) | 2014-10-28 | 2018-05-11 | 삼성에스디아이 주식회사 | 유기 광전자 소자 및 표시 장치 |
KR101818580B1 (ko) | 2014-10-30 | 2018-01-15 | 삼성에스디아이 주식회사 | 유기 광전자 소자 및 표시 장치 |
KR101869843B1 (ko) | 2014-10-31 | 2018-07-19 | 삼성에스디아이 주식회사 | 유기 광전자 소자 및 표시 장치 |
KR101818581B1 (ko) | 2014-10-31 | 2018-01-15 | 삼성에스디아이 주식회사 | 유기 광전자 소자 및 표시 장치 |
KR101892234B1 (ko) | 2014-10-31 | 2018-08-27 | 삼성에스디아이 주식회사 | 유기 광전자 소자 및 표시 장치 |
CN104326971B (zh) | 2014-11-04 | 2016-09-14 | 江西冠能光电材料有限公司 | 一种耐热性有机电负性半导体 |
KR102285389B1 (ko) | 2014-11-05 | 2021-08-04 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102384649B1 (ko) | 2014-11-10 | 2022-04-11 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
CN105646459A (zh) | 2014-11-13 | 2016-06-08 | 上海和辉光电有限公司 | 一种化合物及其制备方法和应用 |
KR102366567B1 (ko) | 2014-11-19 | 2022-02-25 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
US10381569B2 (en) | 2014-11-25 | 2019-08-13 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN107004778B (zh) | 2014-12-04 | 2019-12-20 | 广州华睿光电材料有限公司 | 有机混合物、包含其的组合物、有机电子器件及应用 |
EP3032605B1 (en) | 2014-12-08 | 2019-08-21 | LG Display Co., Ltd. | Organic light emitting display device |
-
2011
- 2011-01-14 JP JP2011549949A patent/JP5238889B2/ja not_active Expired - Fee Related
- 2011-01-14 WO PCT/JP2011/000174 patent/WO2011086941A1/ja active Application Filing
- 2011-01-14 EP EP11732813.8A patent/EP2525425B1/en active Active
- 2011-01-14 US US13/388,389 patent/US8803420B2/en not_active Ceased
- 2011-01-14 TW TW100101590A patent/TW201144406A/zh unknown
- 2011-01-14 KR KR1020117031234A patent/KR20120100709A/ko not_active Application Discontinuation
- 2011-01-14 CN CN2011800028779A patent/CN102473857A/zh active Pending
- 2011-01-14 US US14/987,861 patent/USRE47654E1/en active Active
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6479297A (en) | 1987-09-22 | 1989-03-24 | Mitsubishi Heavy Ind Ltd | Apparatus for production of high-concentration coal-water slurry |
JP2002525808A (ja) | 1998-09-14 | 2002-08-13 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | 高効率の電界発光デバイスのための構造 |
JP2001357972A (ja) * | 2000-06-13 | 2001-12-26 | Hitachi Ltd | 有機電界発光素子 |
JP2002100478A (ja) | 2000-09-20 | 2002-04-05 | Mitsubishi Chemicals Corp | 有機電界発光素子及びその製造方法 |
JP2004214180A (ja) | 2002-12-16 | 2004-07-29 | Canon Inc | 有機発光素子 |
WO2004080975A1 (ja) | 2003-03-13 | 2004-09-23 | Idemitsu Kosan Co., Ltd. | 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 |
US7358661B2 (en) | 2003-04-24 | 2008-04-15 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device and display |
US7018723B2 (en) | 2003-07-25 | 2006-03-28 | The University Of Southern California | Materials and structures for enhancing the performance of organic light emitting devices |
JP2005353288A (ja) * | 2004-06-08 | 2005-12-22 | Canon Inc | 有機発光素子 |
DE502005005705D1 (de) * | 2004-07-15 | 2008-11-27 | Merck Patent Gmbh | Verwendung von polymeren für up-conversion und vorrichtungen zur up-conversion |
DE102004034140A1 (de) * | 2004-07-15 | 2006-02-23 | Covion Organic Semiconductors Gmbh | Verwendung von Polymeren für Up-conversion und Vorrichtungen zur Up-conversion |
JP2008506798A (ja) * | 2004-07-15 | 2008-03-06 | メルク パテント ゲーエムベーハー | アップコンバージョンのためのポリマーの使用、およびアップコンバージョンのためのデバイス |
ATE411622T1 (de) * | 2004-07-15 | 2008-10-15 | Merck Patent Gmbh | Verwendung von polymeren für up-conversion und vorrichtungen zur up-conversion |
EP1766702A1 (de) * | 2004-07-15 | 2007-03-28 | MERCK PATENT GmbH | Verwendung von polymeren für up-conversion und vorrichtungen zur up-conversion |
US20080103279A1 (en) * | 2004-07-15 | 2008-05-01 | Merck Patent Gmbh | Use of Polymers for Up-Conversion, and Devices for Up-Conversion |
KR20070042147A (ko) * | 2004-07-15 | 2007-04-20 | 메르크 파텐트 게엠베하 | 업-컨버전용 중합체의 용도, 및 업-컨버전용 장치 |
CN1984939A (zh) * | 2004-07-15 | 2007-06-20 | 默克专利有限公司 | 聚合物在上转换中的用途,和用于上转换的器件 |
WO2006008068A1 (de) * | 2004-07-15 | 2006-01-26 | Merck Patent Gmbh | Verwendug von polymeren für up-conversion und vorrichtungen zur up-conversion |
US20070027327A1 (en) | 2005-07-29 | 2007-02-01 | Wyeth | Process for the synthesis of progesterone receptor modulators |
KR20070024369A (ko) * | 2005-08-25 | 2007-03-02 | 인터내셔널 비지네스 머신즈 코포레이션 | El 소자 |
US20070087220A1 (en) * | 2005-08-25 | 2007-04-19 | International Business Machines Corporation | Stability enhancement of opto-electronic devices |
JP2007059903A (ja) * | 2005-08-25 | 2007-03-08 | Internatl Business Mach Corp <Ibm> | エレクトロルミネセンス・デバイス(光電子デバイスの安定性向上) |
CN1921172A (zh) * | 2005-08-25 | 2007-02-28 | 国际商业机器公司 | 光电器件的稳定性提高 |
JP4134280B2 (ja) | 2006-05-25 | 2008-08-20 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子及びフルカラー発光装置 |
WO2008023623A1 (fr) | 2006-08-22 | 2008-02-28 | Idemitsu Kosan Co., Ltd. | Dispositif électroluminescent organique |
WO2010134350A1 (ja) * | 2009-05-22 | 2010-11-25 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
Non-Patent Citations (9)
Title |
---|
GANZORIG, C. ET AL.: "A possible mechanism for enhanced electrofluorescence emission through triplet-triplet annihilation in organic electroluminescent devices", APPLIED PHYSICS LETTERS, vol. 81, no. 17, 21 October 2002 (2002-10-21), pages 3137 - 3139, XP012032244 * |
J.A. POPLE, NOBEL PRIZE IN CHEMISTRY, 1998 |
JOURNAL OF APPLIED PHYSICS, vol. 102, 2007, pages 114504 |
KONDAKOV, D. ET AL.: "Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes", JOUNAL OF APPLIED PHYSICS, 2009, pages 124510, XP012127460 * |
KONDAKOV, D.: "Characterization of triplet- triplet annihilation in organic light-emitting diodes based on anthracene derivatives", JOURNAL OF APPLIED PHYSICS, 2007, pages 114504, XP012105139 * |
NICKEL, B. ET AL.: "DELAYED FLUORESCENCE FROM THE LOWEST 1B+3u STATE OF ANTHRACENE, DUE TO HETERO-TRIPLET-TRIPLET ANNIHILATION OF 3ANTHRACENE* AND 3XANTHONE*", CHEMICAL PHYSICS, vol. 66, no. 3, 15 April 1982 (1982-04-15), pages 365 - 376, XP008149484 * |
S.M. BACHILO ET AL., J. PHYS. CHEM. A, vol. 104, 2000, pages 7711 |
SHIZUO TOKITO: "Yuki EL Device no Ko Koritsuka", THE CHEMICAL TIMES, 1 April 2010 (2010-04-01), pages 5, XP008149511 * |
SID2008 DIGEST, 2008, pages 709 |
Cited By (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019052151A (ja) * | 2010-04-09 | 2019-04-04 | 株式会社半導体エネルギー研究所 | 化合物 |
JP2018188444A (ja) * | 2010-04-09 | 2018-11-29 | 株式会社半導体エネルギー研究所 | 芳香族アミン誘導体、発光素子、発光装置、電子機器および照明装置 |
US10570113B2 (en) | 2010-04-09 | 2020-02-25 | Semiconductor Energy Laboratory Co., Ltd. | Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device |
US11046667B2 (en) | 2010-04-09 | 2021-06-29 | Semiconductor Energy Laboratory Co., Ltd. | Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device |
WO2012070234A1 (en) * | 2010-11-22 | 2012-05-31 | Idemitsu Kosan Co.,Ltd. | Organic electroluminescence device |
WO2012070233A1 (en) * | 2010-11-22 | 2012-05-31 | Idemitsu Kosan Co.,Ltd. | Organic electroluminescence device |
US8883323B2 (en) | 2010-11-22 | 2014-11-11 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US9324950B2 (en) | 2010-11-22 | 2016-04-26 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
JP2013051161A (ja) * | 2011-08-31 | 2013-03-14 | Canon Inc | 表示装置 |
JP2013051160A (ja) * | 2011-08-31 | 2013-03-14 | Canon Inc | 表示装置 |
JP2021114477A (ja) * | 2011-10-11 | 2021-08-05 | 株式会社半導体エネルギー研究所 | 発光装置 |
US10199580B2 (en) | 2011-11-22 | 2019-02-05 | Idemitsu Kosan Co., Ltd. | Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element |
US10418563B2 (en) | 2011-11-22 | 2019-09-17 | Idemitsu Kosan Co., Ltd. | Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element |
US12089492B2 (en) | 2011-11-22 | 2024-09-10 | Idemitsu Kosan Co., Ltd. | Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element |
CN103380508A (zh) * | 2011-11-22 | 2013-10-30 | 出光兴产株式会社 | 芳香族杂环衍生物、有机电致发光元件用材料以及有机电致发光元件 |
JPWO2013077352A1 (ja) * | 2011-11-22 | 2015-04-27 | 出光興産株式会社 | 芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子 |
US9893296B2 (en) | 2011-11-22 | 2018-02-13 | Idemitsu Kosan Co., Ltd. | Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element |
CN107342368A (zh) * | 2011-11-22 | 2017-11-10 | 出光兴产株式会社 | 芳香族杂环衍生物、有机电致发光元件用材料以及有机电致发光元件 |
CN107342368B (zh) * | 2011-11-22 | 2019-05-28 | 出光兴产株式会社 | 芳香族杂环衍生物、有机电致发光元件用材料以及有机电致发光元件 |
JP2017152706A (ja) * | 2011-11-22 | 2017-08-31 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子 |
US11374176B2 (en) | 2011-11-22 | 2022-06-28 | Idemitsu Kosan Co., Ltd. | Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element |
CN103360322A (zh) * | 2012-03-30 | 2013-10-23 | 海洋王照明科技股份有限公司 | 苯并咪唑取代芘的有机半导体材料及其制备方法和应用 |
WO2014185434A1 (en) * | 2013-05-16 | 2014-11-20 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, electronic device, and lighting device |
JP7510526B2 (ja) | 2013-05-16 | 2024-07-03 | 株式会社半導体エネルギー研究所 | 発光素子 |
JP2021121041A (ja) * | 2013-05-16 | 2021-08-19 | 株式会社半導体エネルギー研究所 | 発光素子 |
US11462701B2 (en) | 2013-05-16 | 2022-10-04 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, electronic device, and lighting device |
JP2015109407A (ja) * | 2013-05-16 | 2015-06-11 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、電子機器、および照明装置 |
US10128455B2 (en) | 2013-05-16 | 2018-11-13 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, electronic device, and lighting device |
US9444063B2 (en) | 2013-05-16 | 2016-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, light-emitting device, electronic device, and lighting device |
JP7232868B2 (ja) | 2013-05-16 | 2023-03-03 | 株式会社半導体エネルギー研究所 | 発光素子 |
JP2016526029A (ja) * | 2013-05-16 | 2016-09-01 | チェイル インダストリーズ インコーポレイテッド | 有機化合物、有機光電子素子および表示装置 |
US11075346B2 (en) | 2013-12-20 | 2021-07-27 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
US11765967B2 (en) | 2013-12-20 | 2023-09-19 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
EP3916822A1 (en) | 2013-12-20 | 2021-12-01 | UDC Ireland Limited | Highly efficient oled devices with very short decay times |
US10347851B2 (en) | 2013-12-20 | 2019-07-09 | Udc Ireland Limited | Highly efficient OLED devices with very short decay times |
US10573822B2 (en) | 2013-12-27 | 2020-02-25 | Doosan Corporation | Organic electroluminescent device |
JP2019145818A (ja) * | 2013-12-27 | 2019-08-29 | ドゥーサン コーポレイション | 有機電界発光素子 |
US11588109B2 (en) | 2013-12-27 | 2023-02-21 | Solus Advanced Materials Co., Ltd. | Organic electroluminescent device |
JP2017503347A (ja) * | 2013-12-27 | 2017-01-26 | ドゥーサン コーポレイション | 有機電界発光素子 |
KR20160113219A (ko) | 2014-03-07 | 2016-09-28 | 코니카 미놀타 가부시키가이샤 | 유기 일렉트로루미네센스 소자, 표시 장치, 조명 장치 및 발광성 조성물 |
US9564598B2 (en) | 2014-05-02 | 2017-02-07 | Samsung Display Co., Ltd. | Organic light-emitting device |
US10020459B2 (en) | 2014-05-02 | 2018-07-10 | Samsung Display Co., Ltd. | Organic light-emitting device |
US11882714B2 (en) | 2014-05-02 | 2024-01-23 | Samsung Display Co., Ltd. | Organic light-emitting device |
US11316124B2 (en) | 2014-05-02 | 2022-04-26 | Samsung Display Co., Ltd. | Organic light-emitting device |
US9748510B2 (en) | 2014-05-02 | 2017-08-29 | Samsung Display Co., Ltd. | Organic light-emitting device |
US10431766B2 (en) | 2014-05-02 | 2019-10-01 | Samsung Display Co., Ltd. | Organic light-emitting device |
US10573839B2 (en) | 2014-05-02 | 2020-02-25 | Samsung Display Co., Ltd. | Organic light-emitting device |
US10056562B2 (en) | 2014-05-02 | 2018-08-21 | Samsung Display Co., Ltd. | Organic light-emitting device |
US11158832B2 (en) | 2014-05-13 | 2021-10-26 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device with exciplex light-emitting layers |
US10686153B2 (en) | 2014-05-13 | 2020-06-16 | Semiconductor Energy Laboratory Co., Ltd. | Exciplex light-emitting device |
US11864403B2 (en) | 2014-05-13 | 2024-01-02 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device comprising first to third light-emitting layers |
JP2016110978A (ja) * | 2014-05-13 | 2016-06-20 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、表示装置、電子機器、および照明装置 |
JP2019024140A (ja) * | 2014-05-13 | 2019-02-14 | 株式会社半導体エネルギー研究所 | 発光装置 |
JP2015218112A (ja) * | 2014-05-14 | 2015-12-07 | ▲いく▼▲雷▼光電科技股▲分▼有限公司 | 有機発光デバイスに用いられる化合物およびその化合物を有する有機発光デバイス |
WO2015182547A1 (ja) * | 2014-05-28 | 2015-12-03 | 東レ株式会社 | フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子 |
JPWO2015182547A1 (ja) * | 2014-05-28 | 2017-04-20 | 東レ株式会社 | フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子 |
US10008674B2 (en) | 2014-10-15 | 2018-06-26 | Samsung Display Co., Ltd. | Organic light emitting diode and organic light emitting display device including the same |
EP4060757A1 (en) | 2015-06-03 | 2022-09-21 | UDC Ireland Limited | Highly efficient oled devices with very short decay times |
WO2016193243A1 (en) | 2015-06-03 | 2016-12-08 | Udc Ireland Limited | Highly efficient oled devices with very short decay times |
JP7269305B2 (ja) | 2015-12-01 | 2023-05-08 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、電子機器および照明装置 |
CN105399683A (zh) * | 2015-12-01 | 2016-03-16 | 江苏理工学院 | 苯并咪唑衍生物及其制备方法 |
US12063803B2 (en) | 2015-12-01 | 2024-08-13 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element including light-emitting layer having host material |
US11050032B2 (en) | 2015-12-01 | 2021-06-29 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
JP2022009708A (ja) * | 2015-12-01 | 2022-01-14 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、電子機器および照明装置 |
JP7503684B2 (ja) | 2015-12-01 | 2024-06-20 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、電子機器および照明装置 |
US9985233B2 (en) | 2015-12-01 | 2018-05-29 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element having a delayed fluorescence component due to triplet-triplet annihilation |
JP2017168814A (ja) * | 2015-12-01 | 2017-09-21 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、電子機器及び照明装置 |
US10573837B2 (en) | 2015-12-01 | 2020-02-25 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element |
WO2017109722A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them |
WO2017109727A1 (en) | 2015-12-21 | 2017-06-29 | Idemitsu Kosan Co., Ltd. | Hetero-condensed phenylquinazolines and their use in electronic devices |
JP2018172319A (ja) * | 2017-03-31 | 2018-11-08 | 出光興産株式会社 | 新規な化合物、有機エレクトロルミネッセンス素子、電子機器 |
JP2018206984A (ja) * | 2017-06-06 | 2018-12-27 | 株式会社Joled | 有機電界発光素子、有機電界発光装置および電子機器 |
US10784456B2 (en) | 2017-06-06 | 2020-09-22 | Joled Inc. | Organic electroluminescent unit |
JP2018207030A (ja) * | 2017-06-08 | 2018-12-27 | 株式会社Joled | 有機電界発光素子、有機電界発光装置および電子機器 |
JP7296447B2 (ja) | 2018-07-23 | 2023-06-22 | 三星ディスプレイ株式會社 | 有機発光素子 |
JP2022506998A (ja) * | 2018-07-23 | 2022-01-18 | 三星ディスプレイ株式會社 | 有機発光素子 |
Also Published As
Publication number | Publication date |
---|---|
USRE47654E1 (en) | 2019-10-22 |
EP2525425B1 (en) | 2014-10-15 |
EP2525425A1 (en) | 2012-11-21 |
JPWO2011086941A1 (ja) | 2013-05-20 |
KR20120100709A (ko) | 2012-09-12 |
TW201144406A (en) | 2011-12-16 |
US20120153268A1 (en) | 2012-06-21 |
JP5238889B2 (ja) | 2013-07-17 |
EP2525425A4 (en) | 2013-10-02 |
US8803420B2 (en) | 2014-08-12 |
CN102473857A (zh) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5238889B2 (ja) | 有機エレクトロルミネッセンス素子 | |
KR102100309B1 (ko) | 발광층용 재료 및 이것을 사용한 유기 전계 발광 소자 | |
EP2524913B1 (en) | Nitrogenated heterocyclic ring derivative and organic electroluminescent element comprising same | |
CN103258963B (zh) | 发光元件、发光装置、以及电子设备 | |
JP6113993B2 (ja) | 有機エレクトロルミネッセンス素子 | |
EP2616417A1 (en) | New condensed polycyclic compound and organic light-emitting element using the same | |
KR20120096876A (ko) | 방향족 아민 유도체 및 그것을 이용한 유기 전계 발광 소자 | |
JP5699581B2 (ja) | 縮合ピロール多環化合物、発光層用材料およびこれを用いた有機電界発光素子 | |
KR20230121081A (ko) | 유기 일렉트로루미네센스 소자 및 전자 기기 | |
KR20130103794A (ko) | 축합 다환 화합물 및 이를 사용한 유기 발광 디바이스 | |
WO2022154029A1 (ja) | 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器 | |
EP4141011A1 (en) | Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic equipment | |
JP5794155B2 (ja) | 新規な2,7−ビスアントリルナフタレン化合物およびこれを用いた有機電界発光素子 | |
JP2011037743A (ja) | ピレン誘導体及びこれを用いた有機発光素子 | |
WO2024190824A1 (ja) | 有機エレクトロルミネッセンス素子及び電子機器 | |
KR20230126721A (ko) | 유기 일렉트로루미네센스 소자, 발광 장치, 유기 일렉트로루미네센스표시 장치 및 전자 기기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180002877.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011549949 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117031234 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011732813 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13388389 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |