WO2022154029A1 - 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器 - Google Patents

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器 Download PDF

Info

Publication number
WO2022154029A1
WO2022154029A1 PCT/JP2022/000808 JP2022000808W WO2022154029A1 WO 2022154029 A1 WO2022154029 A1 WO 2022154029A1 JP 2022000808 W JP2022000808 W JP 2022000808W WO 2022154029 A1 WO2022154029 A1 WO 2022154029A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
unsubstituted
anode
general formula
Prior art date
Application number
PCT/JP2022/000808
Other languages
English (en)
French (fr)
Inventor
雅人 中村
江美子 神戸
和樹 西村
佑典 高橋
匡 羽毛田
聡美 田崎
哲也 増田
啓太郎 山田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020237027504A priority Critical patent/KR20230131254A/ko
Priority to CN202280009701.4A priority patent/CN116761868A/zh
Publication of WO2022154029A1 publication Critical patent/WO2022154029A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an organic electroluminescent device, an organic electroluminescent display device, and an electronic device.
  • Organic electroluminescent devices (hereinafter, may be referred to as "organic EL devices”) are applied to full-color displays such as mobile phones and televisions.
  • organic EL devices When a voltage is applied to the organic EL element, holes are injected into the light emitting layer from the anode, and electrons are injected into the light emitting layer from the cathode. Then, in the light emitting layer, the injected holes and electrons are recombined to form excitons.
  • excitons are generated at a rate of 25%
  • triplet excitons are generated at a rate of 75%.
  • Patent Document 1 Patent Document 2
  • Patent Document 3 studies are made to improve the performance of the organic EL element.
  • the performance of the organic EL element includes, for example, brightness, emission wavelength, chromaticity, luminous efficiency, drive voltage, and life.
  • One of the problems with organic EL devices is low light extraction efficiency.
  • attenuation due to reflection caused by a difference in the refractive index of adjacent layers is a major factor in reducing the light extraction efficiency of the organic EL element.
  • a configuration of an organic EL device including a layer made of a low refractive index material has been proposed.
  • An object of the present invention is to provide an organic electroluminescent element and an organic electroluminescent display device having improved luminous efficiency, an electronic device equipped with the organic electroluminescent element, and an electronic device equipped with the organic electroluminescent display device. be.
  • a cathode, an anode, a light emitting region arranged between the cathode and the anode, a first anode-side organic layer, a second anode-side organic layer, and a third.
  • the light emitting region includes at least one light emitting layer, and includes the first anode side organic layer, the second anode side organic layer, and the third anode side organic layer. Is arranged between the anode and the light emitting region in the order of the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer from the anode side.
  • the third anode-side organic layer does not contain the compound contained in the second anode-side organic layer, and is the sum of the thickness of the second anode-side organic layer and the thickness of the third anode-side organic layer. Is 30 nm or more and 150 nm or less, and the ratio of the film thickness of the second anode-side organic layer to the film thickness of the third anode-side organic layer satisfies the relationship of the following formula (Equation A1).
  • An electroluminescence element is provided. 0.50 ⁇ TL 3 / TL 2 ⁇ 4.0 ... (Number A1) (TL 2 is the film thickness of the second anode-side organic layer, TL 3 is the film thickness of the third anode-side organic layer, and the unit of film thickness is nm.)
  • a cathode, an anode, a light emitting region arranged between the cathode and the anode, a first anode-side organic layer, a second anode-side organic layer, and a third.
  • the light emitting region includes at least one light emitting layer, and includes the first anode side organic layer, the second anode side organic layer, and the third anode side organic layer. Is arranged between the anode and the light emitting region in the order of the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer from the anode side.
  • the third anode-side organic layer does not contain the compound contained in the second anode-side organic layer, and the third anode-side organic layer is a compound represented by the following general formula (C1) or the following general formula.
  • the compound represented by (C2) is contained, and the total thickness of the second anode-side organic layer and the third anode-side organic layer is 30 nm or more and 150 nm or less, and the first An organic electroluminescence element is provided in which the ratio of the thickness of the second anode-side organic layer to the thickness of the third anode-side organic layer satisfies the relationship of the following mathematical formula (Equation A2). 0.30 ⁇ TL 3 / TL 2 ⁇ 4.0 ... (Number A2) (TL 2 is the film thickness of the second anode-side organic layer, TL 3 is the film thickness of the third anode-side organic layer, and the unit of film thickness is nm.)
  • LA1, LA2 and LA3 are independent of each other. Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • Ar 111 , Ar 112 and Ar 113 are independent of each other. Substituent or unsubstituted ring-forming aryl groups having 6 to 50 carbon atoms, Substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms, or ⁇ Si ( RC1 ) ( RC2 ) ( RC3 ).
  • RC1 , RC2, and RC3 are independently substituted or unsubstituted aryl groups having 6 to 50 carbon atoms.
  • the plurality of RC1s are the same as or different from each other.
  • the plurality of RC2s are the same as or different from each other.
  • the plurality of RC3s are the same as or different from each other.
  • LB1 , LB2 , LB3 and LB4 are independent of each other.
  • Ar 121 , Ar 122 , Ar 123 , Ar 124 and Ar 125 are independent of each other.
  • RC6 and RC7 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, and substituted or unsubstituted ring-forming cyclos having 3 to 50 carbon atoms, respectively.
  • the present invention includes a cathode, an anode, a light emitting region arranged between the anode and the anode, and a hole transport band arranged between the anode and the light emitting region.
  • the light emitting region includes at least one light emitting layer
  • the hole transport zone has at least a second anode-side organic layer and a third anode-side organic layer, and the second anode
  • the side organic layer and the third anode-side organic layer are arranged between the anode and the light-emitting region in the order of the second anode-side organic layer and the third anode-side organic layer from the anode side.
  • the second anode-side organic layer contains at least one compound selected from the group consisting of the compound represented by the general formula (C1) and the compound represented by the following general formula (C3).
  • the third anode-side organic layer contains the compound represented by the general formula (C1), except that the second anode-side organic layer is a compound contained in the third anode-side organic layer.
  • the refractive index NM 2 of the constituent material contained in the second anode-side organic layer and the refractive index NM 3 of the constituent material contained in the third anode-side organic layer containing at least one different compound.
  • NM 2 and NM 3 satisfies the relationship of the following formula (number N1), and the light emitting layer arranged on the most anode side in the light emitting region from the interface on the anode side of the third anode side organic layer.
  • an organic electroluminescence element having a distance to the interface on the anode side of 20 nm or more.
  • NM 2 -NM 3 ⁇ 0.05 ... (Number N1)
  • LC1 , LC2 , LC3 and LC4 are independent of each other. Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • n2 is 1, 2, 3 or 4
  • LC5 is A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • the plurality of LC5s are the same as or different from each other.
  • the plural LC5s Combine with each other to form substituted or unsubstituted monocycles, Bond to each other to form substituted or unsubstituted fused rings, or do not bond to each other
  • the LC5 which does not form the substituted or unsubstituted monocyclic ring and does not form the substituted or unsubstituted condensed ring is A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • Ar 131 , Ar 132 , Ar 133 and Ar 134 are independent of each other.
  • Substituent or unsubstituted ring-forming aryl groups having 6 to 50 carbon atoms Substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms, or ⁇ Si ( RC1 ) ( RC2 ) ( RC3 ).
  • RC1 , RC2, and RC3 are independently substituted or unsubstituted aryl groups having 6 to 50 carbon atoms.
  • the plurality of RC1s are the same as or different from each other.
  • the plurality of RC2s are the same as or different from each other.
  • the plurality of RC3s are the same as or different from each other.
  • the first amino group represented by the following general formula (C3-1) and the second amino group represented by the following general formula (C3-2) are the same group.
  • the present invention includes a cathode, an anode, a light emitting region arranged between the anode and the anode, and a hole transport band arranged between the anode and the light emitting region.
  • the light emitting region includes at least one light emitting layer
  • the hole transport zone includes at least a first anode side organic layer, a second anode side organic layer, and a third anode side organic layer.
  • the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are located between the anode and the light emitting region from the anode side to the first.
  • the anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are arranged in this order, and the first anode-side organic layer includes a first organic material and a second organic material.
  • the content of the second organic material in the first anode-side organic layer is less than 50% by mass, and the first organic material and the second organic material are different from each other.
  • the second anode-side organic layer contains at least one compound selected from the group consisting of the compound represented by the general formula (C1) and the compound represented by the general formula (C3), and contains the compound represented by the general formula (C3).
  • the first amino group represented by C3-1) and the second amino group represented by the general formula (C3-2) may be the same group or different groups, and the third anode side may be used.
  • the organic layer contains a compound represented by the general formula (C1), except that the second anode-side organic layer contains at least a compound different from the compound contained in the third anode-side organic layer.
  • an organic electroluminescence display device having an anode and a cathode arranged to face each other, a blue organic EL element as a blue pixel, a green organic EL element as a green pixel, and an organic EL element.
  • the blue pixel has a red organic EL element as a red pixel
  • the blue pixel includes the organic electroluminescence element according to one aspect of the present invention as the blue organic EL element
  • the green organic EL element includes the anode and the cathode.
  • the red organic EL element has a red light emitting region arranged between the anode and the cathode
  • the blue organic EL element has the first anode.
  • the side organic layer, the second anode side organic layer and the third anode side organic layer are provided, the first anode side organic layer, the second anode side organic layer and the third anode side organic layer are provided.
  • the layer is formed between the light emitting region, the green light emitting region, and the red light emitting region of the blue organic EL element and the anode, the blue organic EL element, the green organic EL element, and the red organic EL element.
  • the blue organic EL element does not have the first anode-side organic layer but has the second anode-side organic layer and the third anode-side organic layer
  • the first The second anode-side organic layer and the third anode-side organic layer are formed between the light emitting region, the green light emitting region, and the red light emitting region of the blue organic EL element, and the blue organic layer.
  • an organic electroluminescence display device that is commonly provided across the EL element, the green organic EL element, and the red organic EL element.
  • an electronic device equipped with an organic electroluminescence device according to one aspect of the present invention is provided.
  • an electronic device equipped with an organic electroluminescence display device is provided.
  • an organic electroluminescence element and an organic electroluminescence display device having improved light emission efficiency, an electronic device equipped with the organic electroluminescence element, and an electronic device equipped with the organic electroluminescence display device are provided. can do.
  • hydrogen atom includes isotopes having different numbers of neutrons, that is, hydrogen (protium), deuterium (deuterium), and tritium (tritium).
  • a hydrogen atom that is, a light hydrogen atom, a heavy hydrogen atom, or a hydrogen atom It is assumed that the triple hydrogen atom is bonded.
  • the ring-forming carbon number constitutes the ring itself of a compound having a structure in which atoms are cyclically bonded (for example, a monocyclic compound, a fused ring compound, a crosslinked compound, a carbocyclic compound, and a heterocyclic compound). Represents the number of carbon atoms among the atoms to be used. When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the ring-forming carbon number.
  • the "ring-forming carbon number" described below shall be the same unless otherwise specified.
  • the benzene ring has 6 ring-forming carbon atoms
  • the naphthalene ring has 10 ring-forming carbon atoms
  • the pyridine ring has 5 ring-forming carbon atoms
  • the furan ring has 4 ring-forming carbon atoms.
  • the 9,9-diphenylfluorenyl group has 13 ring-forming carbon atoms
  • the 9,9'-spirobifluorenyl group has 25 ring-forming carbon atoms.
  • the carbon number of the alkyl group is not included in the ring-forming carbon number of the benzene ring.
  • the ring-forming carbon number of the benzene ring substituted with the alkyl group is 6. Further, when the naphthalene ring is substituted with an alkyl group as a substituent, for example, the carbon number of the alkyl group is not included in the ring-forming carbon number of the naphthalene ring. Therefore, the ring-forming carbon number of the naphthalene ring substituted with the alkyl group is 10.
  • the number of ring-forming atoms is a compound (for example, a monocyclic compound, a fused ring compound, a crosslinked compound, a carbocycle) having a structure in which atoms are cyclically bonded (for example, a monocycle, a fused ring, and a ring assembly).
  • a compound for example, a monocyclic compound, a fused ring compound, a crosslinked compound, a carbocycle
  • Atoms that do not form a ring for example, a hydrogen atom that terminates the bond of atoms that form a ring
  • atoms included in the substituent when the ring is substituted by a substituent are not included in the number of ring-forming atoms.
  • the "number of ring-forming atoms" described below shall be the same unless otherwise specified.
  • the pyridine ring has 6 ring-forming atoms
  • the quinazoline ring has 10 ring-forming atoms
  • the furan ring has 5 ring-forming atoms.
  • the number of hydrogen atoms bonded to the pyridine ring or the number of atoms constituting the substituent is not included in the number of pyridine ring-forming atoms. Therefore, the number of ring-forming atoms of the pyridine ring to which the hydrogen atom or the substituent is bonded is 6.
  • a hydrogen atom bonded to a carbon atom of a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms of the quinazoline ring. Therefore, the number of ring-forming atoms of the quinazoline ring to which a hydrogen atom or a substituent is bonded is 10.
  • the "carbon number XX to YY” in the expression "ZZ group having a substituted or unsubstituted carbon number XX to YY” represents the carbon number when the ZZ group is unsubstituted and is substituted. Does not include the carbon number of the substituent in the case.
  • "YY" is larger than “XX”, “XX” means an integer of 1 or more, and “YY” means an integer of 2 or more.
  • the number of atoms XX to YY in the expression "the ZZ group having the number of atoms XX to YY substituted or unsubstituted” represents the number of atoms when the ZZ group is unsubstituted and is substituted. Does not include the number of atoms of the substituent in the case.
  • "YY” is larger than “XX”
  • "XX” means an integer of 1 or more
  • YY" means an integer of 2 or more.
  • the unsubstituted ZZ group represents the case where the "substituted or unsubstituted ZZ group" is the "unsubstituted ZZ group", and the substituted ZZ group is the "substituted or unsubstituted ZZ group". Represents the case where is a "substitution ZZ group”.
  • the term "unsubstituted” in the case of "substituted or unsubstituted ZZ group” means that the hydrogen atom in the ZZ group is not replaced with the substituent.
  • the hydrogen atom in the "unsubstituted ZZ group” is a light hydrogen atom, a deuterium atom, or a triple hydrogen atom.
  • substitution in the case of “substituent or unsubstituted ZZ group” means that one or more hydrogen atoms in the ZZ group are replaced with the substituent.
  • substitution in the case of “BB group substituted with AA group” means that one or more hydrogen atoms in the BB group are replaced with AA group.
  • the ring-forming carbon number of the "unsubstituted aryl group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise stated herein. ..
  • the number of ring-forming atoms of the "unsubstituted heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5 to 18, unless otherwise stated herein. be.
  • the carbon number of the "unsubstituted alkyl group” described herein is 1 to 50, preferably 1 to 20, and more preferably 1 to 6, unless otherwise stated herein.
  • the carbon number of the "unsubstituted alkenyl group” described herein is 2 to 50, preferably 2 to 20, and more preferably 2 to 6, unless otherwise stated herein.
  • the carbon number of the "unsubstituted alkynyl group” described herein is 2 to 50, preferably 2 to 20, and more preferably 2 to 6, unless otherwise stated herein.
  • the ring-forming carbon number of the "unsubstituted cycloalkyl group” described herein is 3 to 50, preferably 3 to 20, more preferably 3 to 6, unless otherwise stated herein. be.
  • the ring-forming carbon number of the "unsubstituted arylene group” described herein is 6 to 50, preferably 6 to 30, and more preferably 6 to 18. ..
  • the number of ring-forming atoms of the "unsubstituted divalent heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5. ⁇ 18.
  • the carbon number of the "unsubstituted alkylene group” described herein is 1 to 50, preferably 1 to 20, and more preferably 1 to 6, unless otherwise stated herein.
  • Specific examples (specific example group G1) of the "substituted or unsubstituted aryl group” described in the present specification include the following unsubstituted aryl group (specific example group G1A) and a substituted aryl group (specific example group G1B). ) Etc. can be mentioned.
  • the unsubstituted aryl group refers to the case where the "substituted or unsubstituted aryl group" is the "unsubstituted aryl group”
  • the substituted aryl group is the "substituted or unsubstituted aryl group”.
  • aryl group includes both "unsubstituted aryl group” and “substituted aryl group”.
  • the "substituted aryl group” means a group in which one or more hydrogen atoms of the "unsubstituted aryl group” are replaced with a substituent.
  • Examples of the “substituted aryl group” include a group in which one or more hydrogen atoms of the "unsubstituted aryl group” of the following specific example group G1A are replaced with a substituent, and a substituted aryl group of the following specific example group G1B. And the like.
  • aryl group (specific example group G1A): Phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, Anthril group, Benzoanthril group, Phenantril group, Benzophenanthril group, Fenarenyl group, Pyrenyl group, Chrysenyl group, Benzocrisenyl group
  • aryl group (specific example group G1B): o-tolyl group, m-tolyl group, p-tolyl group, Parakisilyl group, Meta-kisilyl group, Ortho-kisilyl group, Para-isopropylphenyl group, Meta-isopropylphenyl group, Ortho-isopropylphenyl group, Para-t-butylphenyl group, Meta-t-butylphenyl group, Ortho-t-butylphenyl group, 3,4,5-trimethylphenyl group, 9,9-Dimethylfluorenyl group, 9,9-diphenylfluorenyl group, 9,9-bis (4-methylphenyl) fluorenyl group, 9,9-bis (4-isopropylphenyl) fluorenyl group, 9,9-bis (4-t-butylphenyl) fluorenyl group, Cyanophenyl group, Triphenylsilylphenyl group, Tripheny
  • heterocyclic group is a cyclic group containing at least one heteroatom in the ring-forming atom.
  • the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, a phosphorus atom, and a boron atom.
  • the "heterocyclic group” described herein is a monocyclic group or a condensed ring group.
  • the “heterocyclic group” described herein is an aromatic heterocyclic group or a non-aromatic heterocyclic group.
  • Specific examples (specific example group G2) of the "substituted or unsubstituted heterocyclic group" described in the present specification include the following unsubstituted heterocyclic group (specific example group G2A) and a substituted heterocyclic group (specific example group G2). Specific example group G2B) and the like can be mentioned.
  • the unsubstituted heterocyclic group refers to the case where the "substituted or unsubstituted heterocyclic group" is the "unsubstituted heterocyclic group”
  • the substituted heterocyclic group is "substituted or unsubstituted”.
  • heterocyclic group is a “substituted heterocyclic group”.
  • heterocyclic group is simply referred to as “unsubstituted heterocyclic group” and “substituted heterocyclic group”. Including both.
  • substituted heterocyclic group means a group in which one or more hydrogen atoms of the "unsubstituted heterocyclic group” are replaced with a substituent.
  • substituted heterocyclic group examples include a group in which the hydrogen atom of the "unsubstituted heterocyclic group” of the following specific example group G2A is replaced, an example of the substituted heterocyclic group of the following specific example group G2B, and the like. Can be mentioned.
  • the examples of the "unsubstituted heterocyclic group” and the “substituted heterocyclic group” listed here are merely examples, and the "substituted heterocyclic group” described in the present specification specifically refers to the "substituted heterocyclic group”.
  • the specific example group G2A includes, for example, an unsubstituted heterocyclic group containing the following nitrogen atom (specific example group G2A1), an unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2), and an unsubstituted heterocyclic group containing a sulfur atom. (Specific example group G2A3) and a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33). (Specific example group G2A4) is included.
  • the specific example group G2B is, for example, a substituted heterocyclic group containing the following nitrogen atom (specific example group G2B1), a substituted heterocyclic group containing an oxygen atom (specific example group G2B2), and a substituted heterocycle containing a sulfur atom.
  • One or more hydrogen atoms of the group (specific example group G2B3) and the monovalent heterocyclic group derived from the ring structure represented by the following general formulas (TEMP-16) to (TEMP-33) are the substituents. Includes replaced groups (specific example group G2B4).
  • -Unsubstituted heterocyclic group containing a nitrogen atom (specific example group G2A1): Pyrrolyl group, Imidazolyl group, Pyrazolyl group, Triazolyl group, Tetrazoleyl group, Oxazolyl group, Isooxazolyl group, Oxaziazolyl group, Thiazolyl group, Isothiazolyl group, Thiasia Zoryl group, Pyridyl group, Pyridadinyl group, Pyrimidinyl group, Pyrazinel group, Triazinyl group, Indrill group, Isoin drill group, Indridinyl group, Kinolidinyl group, Quinoline group, Isoquinolyl group, Synnolyl group, Phtaladinyl group, Kinazolinyl group, Kinoxalinyl group, Benzoimidazolyl group, Indazolyl group, Phenantrolinyl group, Phenantridinyl group, Acridiny
  • -Unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2): Frill group, Oxazolyl group, Isooxazolyl group, Oxaziazolyl group, Xanthenyl group, Benzofuranyl group, Isobenzofuranyl group, Dibenzofuranyl group, Naftbenzofuranyl group, Benzodiazepine group, Benzoisoxazolyl group, Phenoxadinyl group, Morphorino group, Ginaftfuranyl group, Azadibenzofuranyl group, Diazadibenzofuranyl group, Azanaftbenzofuranyl group and diazanaphthobenzofuranyl group.
  • Benzothiophenyl group (benzothienyl group), Isobenzothiophenyl group (isobenzothienyl group), Dibenzothiophenyl group (dibenzothienyl group), Naftbenzothiophenyl group (naphthobenzothienyl group), Benzothiazolyl group, Benzoisothiazolyl group, Phenothiadinyl group, Dinaftthiophenyl group (dinaftthienyl group), Azadibenzothiophenyl group (azadibenzothienyl group), Diazadibenzothiophenyl group (diazadibenzothienyl group), Azanaftbenzothiophenyl group
  • X A and YA are independently oxygen atom, sulfur atom, NH, or CH 2 . However, at least one of X A and YA is an oxygen atom, a sulfur atom, or NH.
  • the general formulas (TEMP-16) to (TEMP - 33) when at least one of X A and YA is NH or CH 2 , the general formulas (TEMP-16) to (TEMP-33) are used.
  • the monovalent heterocyclic group derived from the ring structure represented includes a monovalent group obtained by removing one hydrogen atom from these NH or CH 2 .
  • -Substituted heterocyclic group containing a nitrogen atom (specific example group G2B1): (9-Phenyl) carbazolyl group, (9-biphenylyl) carbazolyl group, (9-Phenyl) Phenylcarbazolyl group, (9-naphthyl) carbazolyl group, Diphenylcarbazole-9-yl group, Phenylcarbazole-9-yl group, Methylbenzoimidazolyl group, Ethylbenzoimidazolyl group, Phenyltriazinyl group, Biphenylyl triazinyl group, Diphenyltriazinyl group, Phenylquinazolinyl group and biphenylylquinazolinyl group.
  • the "one or more hydrogen atoms of a monovalent heterocyclic group” means that at least one of hydrogen atoms, XA and YA bonded to the ring - forming carbon atom of the monovalent heterocyclic group is NH. It means a hydrogen atom bonded to a nitrogen atom in the case of, and one or more hydrogen atoms selected from a hydrogen atom of a methylene group in the case where one of X A and YA is CH 2 .
  • Specific examples (specific example group G3) of the "substituted or unsubstituted alkyl group" described in the present specification include the following unsubstituted alkyl group (specific example group G3A) and a substituted alkyl group (specific example group G3B). ).
  • the unsubstituted alkyl group refers to the case where the "substituted or unsubstituted alkyl group" is the "unsubstituted alkyl group”
  • the substituted alkyl group means the "substituted or unsubstituted alkyl group".
  • alkyl group includes both "unsubstituted alkyl group” and "substituted alkyl group”.
  • the "substituted alkyl group” means a group in which one or more hydrogen atoms in the "unsubstituted alkyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkyl group” include a group in which one or more hydrogen atoms in the following "unsubstituted alkyl group” (specific example group G3A) are replaced with a substituent, and a substituted alkyl group (specific example). Examples of group G3B) can be mentioned.
  • the alkyl group in the "unsubstituted alkyl group” means a chain alkyl group. Therefore, the "unsubstituted alkyl group” includes a linear "unsubstituted alkyl group” and a branched "unsubstituted alkyl group”.
  • the examples of the "unsubstituted alkyl group” and the “substituted alkyl group” listed here are only examples, and the "substituted alkyl group” described in the present specification includes the specific example group G3B.
  • Unsubstituted alkyl group (specific example group G3A): Methyl group, Ethyl group, n-propyl group, Isopropyl group, n-Butyl group, Isobutyl group, s-Butyl group and t-Butyl group.
  • Substituent alkyl group (specific example group G3B): Propylfluoropropyl group (including isomers), Pentafluoroethyl group, 2,2,2-trifluoroethyl group, and trifluoromethyl group.
  • Specific examples (specific example group G4) of the "substituted or unsubstituted alkenyl group" described in the present specification include the following unsubstituted alkenyl group (specific example group G4A) and a substituted alkenyl group (specific example group). G4B) and the like can be mentioned.
  • the unsubstituted alkenyl group refers to the case where the "substituted or unsubstituted alkenyl group" is an "unsubstituted alkenyl group", and the "substituted alkenyl group” is a "substituted or unsubstituted alkenyl group”. Refers to the case where "is a substituted alkenyl group”.
  • alkenyl group includes both "unsubstituted alkenyl group” and "substituted alkenyl group”.
  • the "substituted alkenyl group” means a group in which one or more hydrogen atoms in the "unsubstituted alkenyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkenyl group” include a group in which the following "unsubstituted alkenyl group” (specific example group G4A) has a substituent, an example of a substituted alkenyl group (specific example group G4B), and the like. Be done.
  • the examples of the "unsubstituted alkenyl group” and the “substituted alkenyl group” listed here are only examples, and the "substituted alkenyl group” described in the present specification includes the specific example group G4B.
  • Unsubstituted alkenyl group (specific example group G4A): Vinyl group, Allyl group, 1-butenyl group, 2-butenyl group and 3-butenyl group.
  • Substituent alkenyl group (specific example group G4B): 1,3-Butandienyl group, 1-Methyl vinyl group, 1-methylallyl group, 1,1-dimethylallyl group, 2-Methylallyl group and 1,2-dimethylallyl group.
  • alkynyl groups and “substituted alkynyl groups”.
  • the "substituted alkynyl group” means a group in which one or more hydrogen atoms in the "unsubstituted alkynyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkynyl group” include a group in which one or more hydrogen atoms are replaced with a substituent in the following "unsubstituted alkynyl group” (specific example group G5A).
  • Specific examples (specific example group G6) of the "substituted or unsubstituted cycloalkyl group” described in the present specification include the following unsubstituted cycloalkyl group (specific example group G6A) and a substituted cycloalkyl group (specific example group G6A). Specific example group G6B) and the like can be mentioned.
  • the unsubstituted cycloalkyl group refers to the case where the "substituted or unsubstituted cycloalkyl group" is the “unsubstituted cycloalkyl group", and the substituted cycloalkyl group is the "substituted or unsubstituted cycloalkyl group". Refers to the case where the "cycloalkyl group” is a "substituted cycloalkyl group”.
  • the term “cycloalkyl group” is simply referred to as "unsubstituted cycloalkyl group” and "substituted cycloalkyl group”. Including both.
  • the "substituted cycloalkyl group” means a group in which one or more hydrogen atoms in the "unsubstituted cycloalkyl group” are replaced with a substituent.
  • Specific examples of the "substituted cycloalkyl group” include a group in which one or more hydrogen atoms are replaced with a substituent in the following "unsubstituted cycloalkyl group” (specific example group G6A), and a substituted cycloalkyl group. Examples of (Specific example group G6B) can be mentioned.
  • cycloalkyl group (Specific example group G6A): Cyclopropyl group, Cyclobutyl group, Cyclopentyl group, Cyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group and 2-norbornyl group.
  • Substituent cycloalkyl group (Specific example group G6B): 4-Methylcyclohexyl group.
  • G7 of the groups represented by ⁇ Si (R 901 ) (R 902 ) (R 903 ) described in the present specification include. -Si (G1) (G1) (G1), -Si (G1) (G2) (G2), -Si (G1) (G1) (G2), -Si (G2) (G2) (G2), -Si (G3) (G3) (G3), and -Si (G6) (G6) (G6) (G6) Can be mentioned.
  • G1 is the "substituted or unsubstituted aryl group" described in the specific example group G1.
  • G2 is the "substituted or unsubstituted heterocyclic group” described in the specific example group G2.
  • G3 is the “substituted or unsubstituted alkyl group” described in the specific example group G3.
  • G6 is the "substituted or unsubstituted cycloalkyl group” described in the specific example group G6.
  • -A plurality of G1s in Si (G1) (G1) (G1) are the same as or different from each other.
  • -A plurality of G2s in Si (G1) (G2) (G2) are the same as or different from each other.
  • -A plurality of G1s in Si (G1) (G1) (G2) are the same as or different from each other.
  • -A plurality of G2s in Si (G2) (G2) (G2) are the same as or different from each other.
  • -A plurality of G3s in Si (G3) (G3) (G3) are the same as or different from each other.
  • -A plurality of G6s in Si (G6) (G6) (G6) are the same as or different from each other.
  • G1 is the "substituted or unsubstituted aryl group” described in the specific example group G1.
  • G2 is the "substituted or unsubstituted heterocyclic group” described in the specific example group G2.
  • G3 is the "substituted or unsubstituted alkyl group” described in the specific example group G3.
  • G6 is the "substituted or unsubstituted cycloalkyl group” described in the specific example group G6.
  • G1 is the "substituted or unsubstituted aryl group” described in the specific example group G1.
  • G2 is the "substituted or unsubstituted heterocyclic group” described in the specific example group G2.
  • G3 is the "substituted or unsubstituted alkyl group” described in the specific example group G3.
  • G6 is the "substituted or unsubstituted cycloalkyl group” described in the specific example group G6.
  • G1 is the "substituted or unsubstituted aryl group” described in the specific example group G1.
  • G2 is the "substituted or unsubstituted heterocyclic group” described in the specific example group G2.
  • G3 is the "substituted or unsubstituted alkyl group” described in the specific example group G3.
  • G6 is the "substituted or unsubstituted cycloalkyl group” described in the specific example group G6.
  • -A plurality of G1s in N (G1) (G1) are the same as or different from each other.
  • a plurality of G2s in -N (G2) (G2) are the same as or different from each other.
  • -A plurality of G3s in N (G3) (G3) are the same as or different from each other.
  • a plurality of G6s in -N (G6) (G6) are the same as or different from each other.
  • Halogen atom Specific examples of the "halogen atom” described in the present specification (specific example group G11) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • the "unsubstituted fluoroalkyl group” has 1 to 50 carbon atoms, preferably 1 to 30 carbon atoms, and more preferably 1 to 18 carbon atoms, unless otherwise specified herein.
  • a “substituted fluoroalkyl group” means a group in which one or more hydrogen atoms of a “fluoroalkyl group” have been replaced with a substituent.
  • the “substituted fluoroalkyl group” described in the present specification includes a group in which one or more hydrogen atoms bonded to a carbon atom of the alkyl chain in the "substituted fluoroalkyl group” are further replaced with a substituent.
  • substituents in the "substituted fluoroalkyl group” are further replaced by the substituents.
  • Specific examples of the "unsubstituted fluoroalkyl group” include an example of a group in which one or more hydrogen atoms in the "alkyl group” (specific example group G3) are replaced with a fluorine atom.
  • the carbon number of the "unsubstituted haloalkyl group” is 1 to 50, preferably 1 to 30, and more preferably 1 to 18, unless otherwise specified herein.
  • the "substituted haloalkyl group” means a group in which one or more hydrogen atoms of the "haloalkyl group” are replaced with a substituent.
  • the "substituted haloalkyl group” described in the present specification includes a group in which one or more hydrogen atoms bonded to a carbon atom of the alkyl chain in the "substituted haloalkyl group" are further replaced with a substituent, and a "substitution".
  • haloalkyl group groups in which one or more hydrogen atoms of the substituents in the "haloalkyl group” are further replaced by the substituents.
  • substituents in the "haloalkyl group” include an example of a group in which one or more hydrogen atoms in the "alkyl group” (specific example group G3) are replaced with halogen atoms.
  • the haloalkyl group may be referred to as an alkyl halide group.
  • a specific example of the "substituted or unsubstituted alkoxy group” described in the present specification is a group represented by —O (G3), where G3 is the “substituted or unsubstituted” group described in the specific example group G3. It is an unsubstituted alkyl group.
  • the "unsubstituted alkoxy group” has 1 to 50 carbon atoms, preferably 1 to 30 carbon atoms, and more preferably 1 to 18 carbon atoms, unless otherwise specified herein.
  • a specific example of the "substituted or unsubstituted alkylthio group” described in the present specification is a group represented by ⁇ S (G3), where G3 is the “substituted or substituted” described in the specific example group G3. It is an unsubstituted alkyl group.
  • the "unsubstituted alkylthio group” has 1 to 50 carbon atoms, preferably 1 to 30 carbon atoms, and more preferably 1 to 18 carbon atoms, unless otherwise specified herein.
  • a specific example of the "substituted or unsubstituted aryloxy group” described in the present specification is a group represented by —O (G1), where G1 is the “substitution” described in the specific example group G1. Alternatively, it is an unsubstituted aryl group.
  • the ring-forming carbon number of the "unsubstituted aryloxy group” is 6 to 50, preferably 6 to 30, and more preferably 6 to 18, unless otherwise stated herein.
  • -"Substituted or unsubstituted arylthio group A specific example of the "substituted or unsubstituted arylthio group” described in the present specification is a group represented by -S (G1), where G1 is the "substituted or substituted arylthio group” described in the specific example group G1. It is an unsubstituted aryl group. " The ring-forming carbon number of the "unsubstituted arylthio group” is 6 to 50, preferably 6 to 30, and more preferably 6 to 18, unless otherwise stated herein.
  • -"Substituted or unsubstituted trialkylsilyl group Specific examples of the "trialkylsilyl group” described in the present specification are groups represented by ⁇ Si (G3) (G3) (G3), where G3 is described in the specific example group G3. It is a "substituted or unsubstituted alkyl group”. -A plurality of G3s in Si (G3) (G3) (G3) are the same as or different from each other.
  • the carbon number of each alkyl group of the "trialkylsilyl group” is 1 to 50, preferably 1 to 20, and more preferably 1 to 6, unless otherwise specified herein.
  • -"Substituted or unsubstituted aralkyl group Specific examples of the "substituted or unsubstituted aralkyl group” described in the present specification are groups represented by-(G3)-(G1), where G3 is described in the specific example group G3. It is a "substituted or unsubstituted alkyl group", and G1 is a "substituted or unsubstituted aryl group” described in the specific example group G1. Therefore, the "aralkyl group” is a group in which the hydrogen atom of the "alkyl group” is replaced with the "aryl group” as the substituent, and is one aspect of the "substituted alkyl group”.
  • the "unsubstituted aralkyl group” is an "unsubstituted alkyl group” substituted with an "unsubstituted aryl group", and the carbon number of the "unsubstituted aralkyl group” is unless otherwise specified herein. , 7 to 50, preferably 7 to 30, and more preferably 7 to 18.
  • Specific examples of the "substituted or unsubstituted aralkyl group” include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, a 2-phenylisopropyl group, a phenyl-t-butyl group and an ⁇ .
  • -Naphthylmethyl group 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group , 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group and the like.
  • substituted or unsubstituted aryl groups described herein are preferably phenyl groups, p-biphenyl groups, m-biphenyl groups, o-biphenyl groups, p-terphenyl-unless otherwise described herein.
  • the substituted or unsubstituted heterocyclic group described herein is preferably a pyridyl group, a pyrimidinyl group, a triazine group, a quinolyl group, an isoquinolyl group, a quinazolinyl group, a benzoimidazolyl group, or a phenyl group, unless otherwise described herein.
  • Nantrolinyl group carbazolyl group (1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, or 9-carbazolyl group), benzocarbazolyl group, azacarbazolyl group, diazacarbazolyl group , Dibenzofuranyl group, naphthobenzofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, dibenzothiophenyl group, naphthobenzothiophenyl group, azadibenzothiophenyl group, diazadibenzothiophenyl group, ( 9-Phenyl) Carbazolyl Group ((9-Phenyl) Carbazole-1-yl Group, (9-Phenyl) Carbazole-2-yl Group, (9-Phenyl) Carbazole-3-yl Group, or (9-Phenyl) Carbazole Group,
  • carbazolyl group is specifically one of the following groups unless otherwise described in the present specification.
  • the (9-phenyl) carbazolyl group is specifically any of the following groups unless otherwise described in the present specification.
  • dibenzofuranyl group and the dibenzothiophenyl group are specifically any of the following groups unless otherwise described in the present specification.
  • substituted or unsubstituted alkyl groups described herein are preferably methyl groups, ethyl groups, propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, and t-, unless otherwise stated herein. Butyl group and the like.
  • the "substituted or unsubstituted arylene group” described herein is derived by removing one hydrogen atom on the aryl ring from the above "substituted or unsubstituted aryl group” 2 It is the basis of the value.
  • the "substituted or unsubstituted arylene group” (specific example group G12), by removing one hydrogen atom on the aryl ring from the "substituted or unsubstituted aryl group” described in the specific example group G1. Examples include the induced divalent group.
  • the "substituted or unsubstituted divalent heterocyclic group" described in the present specification shall exclude one hydrogen atom on the heterocycle from the above "substituted or unsubstituted heterocyclic group". It is a divalent group derived by.
  • specific example group G13 of the "substituted or unsubstituted divalent heterocyclic group"
  • Examples thereof include a divalent group derived by removing an atom.
  • the "substituted or unsubstituted alkylene group” described herein is derived by removing one hydrogen atom on the alkyl chain from the above "substituted or unsubstituted alkyl group” 2 It is the basis of the value.
  • the "substituted or unsubstituted alkylene group” (specific example group G14), by removing one hydrogen atom on the alkyl chain from the "substituted or unsubstituted alkyl group” described in the specific example group G3. Examples include the induced divalent group.
  • the substituted or unsubstituted arylene group described in the present specification is preferably any group of the following general formulas (TEMP-42) to (TEMP-68) unless otherwise described in the present specification.
  • Q1 to Q10 are independently hydrogen atoms or substituents, respectively.
  • * represents a binding position.
  • Q1 to Q10 are independently hydrogen atoms or substituents, respectively.
  • the formulas Q 9 and Q 10 may be bonded to each other via a single bond to form a ring.
  • * represents a binding position.
  • the substituted or unsubstituted divalent heterocyclic group described in the present specification is preferably a group according to any of the following general formulas (TEMP-69) to (TEMP-102), unless otherwise described in the present specification. Is.
  • Q1 to Q9 are independently hydrogen atoms or substituents, respectively.
  • Q1 to Q8 are independently hydrogen atoms or substituents, respectively.
  • the set of two adjacent sets is one set. Is a pair of R 921 and R 922 , a pair of R 922 and R 923 , a pair of R 923 and R 924 , a pair of R 924 and R 930 , a pair of R 930 and R 925 , and a pair of R 925 .
  • the above-mentioned "one or more sets” means that two or more sets of two or more adjacent sets may form a ring at the same time.
  • R 921 and R 922 are coupled to each other to form ring Q A
  • R 925 and R 926 are coupled to each other to form ring Q B
  • the above general formula (TEMP-103) is used.
  • the anthracene compound represented is represented by the following general formula (TEMP-104).
  • anthracene compound represented by the general formula (TEMP-103) is described below. It is represented by the general formula (TEMP-105). In the following general formula (TEMP-105), ring Q A and ring Q C share R 922 .
  • the formed “monocycle” or “condensed ring” may be a saturated ring or an unsaturated ring as the structure of only the formed ring. Even when “one set of two adjacent sets” forms a “monocycle” or “condensed ring”, the “monocycle” or “condensed ring” is a saturated ring or a saturated ring.
  • An unsaturated ring can be formed.
  • the ring QA and the ring QB formed in the general formula (TEMP - 104) are “monocycles” or “condensed rings”, respectively.
  • the ring Q A and the ring Q C formed in the general formula (TEMP-105) are “condensed rings”.
  • the ring Q A and the ring Q C of the general formula (TEMP-105) form a condensed ring by condensing the ring Q A and the ring Q C. If the ring Q A of the general formula (TMEP-104) is a benzene ring, the ring Q A is a monocyclic ring. If the ring Q A of the general formula (TMEP-104) is a naphthalene ring, the ring Q A is a fused ring.
  • the "unsaturated ring” means an aromatic hydrocarbon ring or an aromatic heterocycle.
  • saturated ring is meant an aliphatic hydrocarbon ring or a non-aromatic heterocycle.
  • aromatic hydrocarbon ring include a structure in which the group given as a specific example in the specific example group G1 is terminated by a hydrogen atom.
  • aromatic heterocycle include a structure in which the aromatic heterocyclic group given as a specific example in the specific example group G2 is terminated by a hydrogen atom.
  • Specific examples of the aliphatic hydrocarbon ring include a structure in which the group given as a specific example in the specific example group G6 is terminated by a hydrogen atom.
  • Forming a ring means forming a ring with only a plurality of atoms in the mother skeleton, or with a plurality of atoms in the mother skeleton and one or more arbitrary elements.
  • the ring QA formed by bonding R 921 and R 922 to each other represented by the general formula (TEMP-104) has a carbon atom of an anthracene skeleton to which R 921 is bonded and an anthracene to which R 922 is bonded. It means a ring formed by a carbon atom of a skeleton and one or more arbitrary elements.
  • ring QA is formed by R 921 and R 922 , a carbon atom of an anthracene skeleton to which R 921 is bonded, a carbon atom of an anthracene skeleton to which R 922 is bonded, and four carbon atoms.
  • the ring formed by R 921 and R 922 is a benzene ring.
  • arbitrary element is preferably at least one element selected from the group consisting of carbon element, nitrogen element, oxygen element, and sulfur element, unless otherwise described in the present specification.
  • the bond that does not form a ring may be terminated with a hydrogen atom or the like, or may be substituted with an "arbitrary substituent” described later.
  • the ring formed is a heterocycle.
  • the number of "one or more arbitrary elements" constituting the monocyclic ring or condensed ring is preferably 2 or more and 15 or less, and more preferably 3 or more and 12 or less. , More preferably 3 or more and 5 or less.
  • the "monocycle” and the “condensed ring” are preferably “monocycles”.
  • the "saturated ring” and the “unsaturated ring” are preferably “unsaturated rings”.
  • the "monocycle” is preferably a benzene ring.
  • the "unsaturated ring” is preferably a benzene ring.
  • one or more pairs of two or more adjacent pairs are bonded to each other to form a plurality of atoms in the mother skeleton and one or more 15 elements. It forms a substituted or unsubstituted "unsaturated ring” consisting of at least one element selected from the group consisting of the following carbon element, nitrogen element, oxygen element, and sulfur element.
  • the substituent is, for example, an "arbitrary substituent” described later.
  • Specific examples of the substituent when the above-mentioned “monocycle” or “condensed ring” has a substituent are the substituents described in the above-mentioned “Substituents described in the present specification” section.
  • the substituent is, for example, an "arbitrary substituent” described later.
  • substituents when the above-mentioned "monocycle” or “condensed ring” has a substituent are the substituents described in the above-mentioned “Substituents described in the present specification” section.
  • the above is the case where "one or more pairs of two or more adjacent pairs are combined with each other to form a substituted or unsubstituted monocycle" and "one or more pairs of two or more adjacent pairs".
  • An unsubstituted alkyl group having 1 to 50 carbon atoms For example, An unsubstituted alkyl group having 1 to 50 carbon atoms, An unsubstituted alkenyl group having 2 to 50 carbon atoms, An unsubstituted alkynyl group having 2 to 50 carbon atoms, Unsubstituted ring-forming cycloalkyl group with 3 to 50 carbon atoms, -Si (R 901 ) (R 902 ) (R 903 ), -O- (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, It is a group selected from the group consisting of an aryl group having an unsubstituted ring-forming carbon number of 6 to 50 and a heterocyclic group having an unsubstituted ring-forming atom number of 5 to 50.
  • R 901 to R 907 are independent of each other. Hydrogen atom, Substituent or unsubstituted alkyl groups having 1 to 50 carbon atoms, Substituted or unsubstituted ring-forming cycloalkyl group having 3 to 50 carbon atoms, A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms. If there are two or more R 901s , the two or more R 901s are the same or different from each other. If there are two or more R 902s , the two or more R 902s are the same or different from each other.
  • the two or more R 903s are the same or different from each other. If there are two or more R 904s , the two or more R 904s are the same or different from each other. If there are two or more R 905s , the two or more R 905s are the same or different from each other. If there are two or more R- 906s , the two or more R- 906s are the same or different from each other. When two or more R 907s are present, the two or more R 907s are the same as or different from each other.
  • the substituent in the case of "substituted or unsubstituted” is Alkyl groups with 1 to 50 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 50 ring-forming carbon atoms and a heterocyclic group having 5 to 50 ring-forming atoms.
  • the substituent in the case of "substituted or unsubstituted” is Alkyl groups with 1 to 18 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 18 ring-forming carbon atoms and a heterocyclic group having 5 to 18 ring-forming atoms.
  • any adjacent substituents may form a "saturated ring" or an "unsaturated ring", preferably a substituted or unsubstituted saturated 5 It forms a membered ring, a substituted or unsubstituted saturated 6-membered ring, a substituted or unsubstituted unsaturated 5-membered ring, or a substituted or unsubstituted unsaturated 6-membered ring, more preferably a benzene ring. do.
  • any substituent may further have a substituent.
  • the substituent further possessed by the arbitrary substituent is the same as that of the above-mentioned arbitrary substituent.
  • the numerical range represented by using “AA to BB” has the numerical value AA described before “AA to BB” as the lower limit value and the numerical value BB described after “AA to BB”. Means the range including as the upper limit value.
  • the organic electroluminescence element (organic EL element) of the present embodiment includes a cathode, an anode, a light emitting region arranged between the cathode and the anode, a first anode-side organic layer, and a second anode-side organic layer. And a third anode-side organic layer, the light-emitting region includes at least one light-emitting layer, a first anode-side organic layer, a second anode-side organic layer, and a third anode-side organic layer.
  • the organic EL element of the present embodiment may be an organic EL element of various aspects including yet another element in addition to these elements.
  • examples of the aspects of the organic EL device of the present embodiment include the following first aspect, second aspect, third aspect, fourth aspect and fifth aspect.
  • the organic EL device of this embodiment is not limited to these modes.
  • the organic EL element includes a cathode, an anode, a light emitting region arranged between the cathode and the anode, a first anode-side organic layer, and a second anode-side. It has an organic layer and a third anode-side organic layer, and the light-emitting region includes at least one light-emitting layer, the first anode-side organic layer, the second anode-side organic layer, and the first light-emitting layer.
  • the third anode-side organic layer is, from the anode side, between the anode and the light emitting region, the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer.
  • the third anode-side organic layer does not contain the compound contained in the second anode-side organic layer, and has the thickness of the second anode-side organic layer and the third anode-side organic layer.
  • the total thickness of the layers is 30 nm or more and 150 nm or less, and the ratio of the thickness of the second anode-side organic layer to the thickness of the third anode-side organic layer is calculated by the following formula (Equation A1). Satisfy the relationship.
  • TL 2 is the film thickness of the second anode-side organic layer
  • TL 3 is the film thickness of the third anode-side organic layer
  • the unit of film thickness is nm.
  • the organic EL element includes a cathode, an anode, a light emitting region arranged between the cathode and the anode, a first anode-side organic layer, and a second anode-side. It has an organic layer and a third anode-side organic layer, and the light-emitting region includes at least one light-emitting layer, the first anode-side organic layer, the second anode-side organic layer, and the first light-emitting layer.
  • the third anode-side organic layer is, from the anode side, between the anode and the light emitting region, the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer.
  • the third anode-side organic layer does not contain the compound contained in the second anode-side organic layer, and the third anode-side organic layer is represented by the following general formula (C1).
  • the total thickness of the second anode-side organic layer and the third anode-side organic layer is 30 nm or more and 150 nm.
  • the ratio of the film thickness of the second anode-side organic layer to the film thickness of the third anode-side organic layer satisfies the relationship of the following mathematical formula (Equation A2). 0.30 ⁇ TL 3 / TL 2 ⁇ 4.0 ... (Number A2) (TL 2 is the film thickness of the second anode-side organic layer, TL 3 is the film thickness of the third anode-side organic layer, and the unit of film thickness is nm.)
  • LA1, LA2 and LA3 are independent of each other. Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • Ar 111 , Ar 112 and Ar 113 are independent of each other. Substituent or unsubstituted ring-forming aryl groups having 6 to 50 carbon atoms, Substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms, or ⁇ Si ( RC1 ) ( RC2 ) ( RC3 ).
  • RC1 , RC2, and RC3 are independently substituted or unsubstituted aryl groups having 6 to 50 carbon atoms.
  • the plurality of RC1s are the same as or different from each other.
  • the plurality of RC2s are the same as or different from each other.
  • the plurality of RC3s are the same as or different from each other.
  • LB1 , LB2 , LB3 and LB4 are independent of each other.
  • Ar 121 , Ar 122 , Ar 123 , Ar 124 and Ar 125 are independent of each other.
  • RC6 and RC7 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, and substituted or unsubstituted ring-forming cyclos having 3 to 50 carbon atoms, respectively.
  • the organic EL element includes a cathode, an anode, a light emitting region arranged between the cathode and the anode, a first anode-side organic layer, and a second anode-side. It has an organic layer and a third anode-side organic layer, and the light-emitting region includes at least one light-emitting layer, the first anode-side organic layer, the second anode-side organic layer, and the first light-emitting layer.
  • the third anode-side organic layer is, from the anode side, between the anode and the light emitting region, the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer.
  • the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer each contain one or more different compounds
  • the organic layer does not contain the compound contained in the second anode-side organic layer
  • the third anode-side organic layer contains a third hole transport zone material
  • the third hole transport The hole mobility ⁇ h (cHT3) of the band material is larger than 1.0 ⁇ 10-5 cm 2 / Vs, and the energy level HOMO (cHT3) of the highest occupied orbital of the third hole transport band material. Is -5.6 eV or less.
  • the organic EL element includes a cathode, an anode, a light emitting region arranged between the anode and the anode, a first anode-side organic layer, and a second anode-side. It has an organic layer and a third anode-side organic layer, and the light-emitting region includes at least one light-emitting layer, the first anode-side organic layer, the second anode-side organic layer, and the first light-emitting layer.
  • the third anode-side organic layer is, from the anode side, between the anode and the light emitting region, the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer.
  • the third anode-side organic layer does not contain the compound contained in the second anode-side organic layer, and has the thickness of the second anode-side organic layer and the third anode-side organic layer.
  • the total thickness of the layers is 100 nm or more.
  • the organic EL element includes a cathode, an anode, a light emitting region arranged between the cathode and the anode, a first anode-side organic layer, and a second anode-side. It has an organic layer and a third anode-side organic layer, and the light-emitting region includes at least one light-emitting layer, the first anode-side organic layer, the second anode-side organic layer, and the first light-emitting layer.
  • the third anode-side organic layer is, from the anode side, between the anode and the light emitting region, the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer.
  • the third anode-side organic layer does not contain the compound contained in the second anode-side organic layer, and has the thickness of the second anode-side organic layer and the third anode-side organic layer.
  • the total thickness of the layers is 30 nm or more, and the ratio of the thickness of the second anode-side organic layer to the thickness of the third anode-side organic layer satisfies the relationship of the following formula (Equation A4).
  • the third anode-side organic layer contains a third hole transport zone material, and the single term energy of the third hole transport zone material is larger than 3.12 eV. 0.30 ⁇ TL 3 / TL 2 ⁇ 5.0 ... (Number A4) (TL 2 is the film thickness of the second anode-side organic layer, TL 3 is the film thickness of the third anode-side organic layer, and the unit of film thickness is nm.)
  • the elements that the organic EL element of each aspect of the present embodiment can have will be described below.
  • the first aspect, the second aspect, the third aspect, the fourth aspect, and the fifth aspect described above are examples of aspects including one or more elements selected from the elements described below. Is.
  • the element performance of the organic EL element can be improved.
  • the luminous efficiency of the organic EL element is improved.
  • the life of the organic EL device is extended.
  • an organic layer for example, a hole transport layer
  • an organic layer made of a high refractive index material is arranged on the anode side
  • an organic layer made of a low refractive index material is arranged on the light emitting layer side.
  • the light extraction by the bottom emission type organic electroluminescence element can prevent not only the light emission loss in the organic thin film layer but also the light emission loss in the substrate mode at the same time, and the efficiency can be further improved.
  • the film thickness of the organic layer made of a low refractive index material is 20 nm or more, the light extraction efficiency can be effectively increased.
  • the hole supply characteristics can be easily adjusted by combining two different materials.
  • a region composed of a plurality of organic layers arranged between an anode and a light emitting region may be referred to as a hole transport zone.
  • the ratio TL 3 / TL 2 of the thickness TL 2 of the second anode-side organic layer and the thickness TL 3 of the third anode-side organic layer has a predetermined relationship. Fulfill.
  • the ratio of the thickness of the second anode-side organic layer to the thickness of the third anode-side organic layer is determined by the following mathematical formula (Equation A1), Equation (Equation A2). Satisfy the relationship of mathematical formula (number A3) or mathematical formula (number A4).
  • TL 2 is the film thickness of the second anode-side organic layer
  • TL 3 is the film thickness of the third anode-side organic layer
  • the unit of film thickness is nm.
  • the ratio TL 3 / TL 2 is 1 or more. In one aspect of the organic EL device of the present embodiment, the ratio TL 3 / TL 2 is 2.5 or less.
  • the total film thickness of the second anode-side organic layer and the third anode-side organic layer is 30 nm or more, 70 nm or more, or It is 100 nm or more.
  • the thickness of the organic layer in the hole transport zone arranged on the anode side of the light emitting region is large (for example, the thickness of the second anode-side organic layer and the third anode-side organic).
  • the total thickness of the layers is 30 nm or more), and the thickness ratio of the second anode-side organic layer and the third anode-side organic layer are within a predetermined range (for example, the above-mentioned formula (Equation A1), formula.
  • the excitation energy of the light emitting layer can be prevented from moving to the hole transport zone by being (in the range of the equation (A2), the equation (Equation A3) or the equation (Equation A4)).
  • the luminous efficiency of the organic EL element is improved by preventing the transfer of the excitation energy of the light emitting layer.
  • the total film thickness of the second anode-side organic layer and the third anode-side organic layer is 150 nm or less.
  • the total of the film thickness of the first anode-side organic layer, the film thickness of the second anode-side organic layer, and the film thickness of the third anode-side organic layer is 150 nm or less. Is.
  • the film thickness of the third anode-side organic layer is 15 nm or more, or 20 nm or more. It is considered that when the film thickness of the third anode-side organic layer is 15 nm or more, the third anode-side organic layer can easily prevent the transfer of the excitation energy of the light emitting layer.
  • the film thickness of the third anode-side organic layer is 80 nm or less, 75 nm or less, or 60 nm or less.
  • the film thickness of the third anode-side organic layer is preferably 15 nm or more and 75 nm or less, and more preferably 20 nm or more and 60 nm or less.
  • the refractive index NM 2 of the constituent material contained in the second anode-side organic layer and the refractive index NM 3 of the constituent material contained in the third anode-side organic layer satisfies the relationship of the following formula (number N1).
  • the refractive index NM 2 of the constituent material contained in the second anode-side organic layer corresponds to the refractive index of the kind of compound
  • the second When the organic layer on the anode side contains a plurality of types of compounds, it corresponds to the refractive index of the mixture containing the plurality of types of compounds.
  • the refractive index NM 3 of the constituent material contained in the third anode-side organic layer is also defined in the same manner as the refractive index NM 2 of the constituent material contained in the second anode-side organic layer.
  • the refractive index can be measured by the measuring method described in Examples described later.
  • the value of the refractive index at 2.7 eV in the substrate parallel direction (Ordinary direction) of the value measured by the multi-incident angle spectroscopic ellipsometry measurement is defined as the refractive index of the material to be measured.
  • the index of refraction at 2.7 eV corresponds to the index of refraction at 460 nm.
  • NM 2 -NM 3 ⁇ 0.05 ... (Number N1) By satisfying the relationship of the above mathematical formula (number N1), the light extraction efficiency of the organic EL element is improved.
  • the refractive index NM 2 of the constituent material contained in the second anode-side organic layer and the refractive index NM 3 of the constituent material contained in the third anode-side organic layer satisfies the relationship of the following formula (number N2) or (number N3). NM 2 -NM 3 ⁇ 0.10 ...
  • the refractive index in the substrate parallel direction (Ordinary direction) at 2.7 eV (460 nm) is expressed as n ORD
  • the refractive index in the substrate vertical direction (Extra-Ordinary direction) at 2.7 eV (460 nm) is referred to as n ORD
  • the difference between the refractive index n ORD and the refractive index n EXT of the constituent material contained in the second anode-side organic layer at 460 nm is 0.1 or more. Is preferable.
  • the refractive index of the compound contained in the second anode-side organic layer is 1.94 or more.
  • the refractive index of the compound contained in the third anode-side organic layer is 1.89 or less.
  • the distance from the interface on the anode side of the third anode-side organic layer to the interface on the anode side of the light-emitting layer arranged on the most anode side in the light-emitting region is 20 nm or more. Is. When the distance from the interface on the anode side of the third anode-side organic layer to the interface on the anode side of the light-emitting layer arranged on the most anode side in the light-emitting region is 20 nm or more, the light extraction efficiency can be easily improved. Become.
  • the distance from the anode-side interface of the third anode-side organic layer to the anode-side interface of the light-emitting layer arranged on the most anode side in the light-emitting region is, for example, that the third anode-side organic layer is on the anode side.
  • it When it is in direct contact with the second anode-side organic layer and directly in contact with the light-emitting layer arranged on the most anode side in the light-emitting region on the cathode side, it corresponds to the thickness of the third anode-side organic layer.
  • the distance from the anode-side interface of the third anode-side organic layer to the anode-side interface of the light-emitting layer arranged on the most anode side in the light-emitting region is, for example, the third anode-side organic layer.
  • the anode side is in direct contact with the second anode-side organic layer
  • the cathode side is in direct contact with the fourth anode-side organic layer described later
  • the fourth anode-side organic layer is on the anode side to the most anode side in the light emitting region.
  • it When it is in direct contact with the arranged light emitting layer, it corresponds to the total thickness of the third anode-side organic layer and the fourth anode-side organic layer.
  • the distance from the interface on the anode side of the third anode-side organic layer to the interface on the anode side of the light-emitting layer arranged on the most anode side in the light-emitting region is 30 nm or more. Is.
  • the third anode-side organic layer contains the compound represented by the general formula (C1) or the compound represented by the general formula (C2).
  • the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer each contain one or more different compounds.
  • the first anode-side organic layer and the second anode-side organic layer are both the compound represented by the general formula (C1) or the general formula (C2).
  • the compound represented by may be contained, but the compound contained in the first anode-side organic layer and the second anode-side organic layer has a molecular structure different from that of the compound contained in the third anode-side organic layer. different.
  • the compound contained in the second anode-side organic layer is different from the compound contained in the third anode-side organic layer.
  • Examples of an embodiment satisfying this condition include a case where the second anode-side organic layer contains a kind of compound AA and the third anode-side organic layer contains a kind of compound BB. Further, for example, when the second anode-side organic layer contains two kinds of compound AA and compound AB and the third anode-side organic layer contains one kind of compound BB, the compound AA and the compound AB are either contained. However, since it is different from compound BB, the condition is satisfied. Compound AA, compound AB, and compound BB are different compounds from each other.
  • the second anode-side organic layer contains two kinds of compound AA and compound AB and the third anode-side organic layer contains one kind of compound AB
  • the second anode with respect to compound AB Since the side organic layer and the third anode side organic layer contain the same compound, the above conditions are not satisfied.
  • the third anode-side organic layer contains a third hole transport band material.
  • the compound contained in the third anode-side organic layer may be referred to as a third hole transport zone material.
  • the hole mobility ⁇ h (cHT3) of the third hole transport band material is larger than 1.0 ⁇ 10-5 cm 2 / Vs.
  • the energy level HOMO (cHT3) of the highest occupied molecular orbital of the third hole transport band material is ⁇ 5.6 eV or less.
  • the hole mobility ⁇ h (cHT3) of the third hole transport zone material is larger than 1.0 ⁇ 10-5 cm 2 / Vs, and the third hole transport zone material has a third hole mobility.
  • the energy level HOMO (cHT3) of the highest occupied orbital of the hole transport zone material is ⁇ 5.6 eV or less.
  • the singlet energy of the third hole transport band material is greater than 3.12 eV. In one aspect of the organic EL device of the present embodiment, the singlet energy of the third hole transport band material is 3.15 eV or more. In one aspect of the organic EL device of the present embodiment, the singlet energy of the third hole transport band material is 3.40 eV or less, or 3.30 eV or less.
  • the third hole transport band material is a compound represented by the general formula (C1) or a compound represented by the general formula (C2).
  • the compound represented by the general formula (C1) is preferably a compound represented by the following general formula (C11).
  • the third hole transport band material is a compound represented by the following general formula (C11).
  • Ar 111 , Ar 112 , Ar 113 and LA3 are synonymous with Ar 111 , Ar 112 , Ar 113 and LA3 in the general formula (C1), respectively, and n1 and n2.
  • Multiple RC11s are the same as or different from each other, One or more of a set consisting of two or more adjacent RC11s Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other
  • Multiple RC12s are the same as or different from each other, One or more of a set consisting of two or more adjacent RC12s Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other RC11 and RC12 , which do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or
  • At least one of Ar 111 , Ar 112 and Ar 113 is the following general formula (21a), general formula (21b), general. It is preferable that the group is selected from the group consisting of the groups represented by the formula (21c), the general formula (21d) and the general formula (21e).
  • X 21 is NR 21 , CR 22 R 23 , an oxygen atom or a sulfur atom.
  • the plurality of X 21s are the same as or different from each other.
  • R 211 to R 218 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other R 211 to R 218 , which do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring, are independent of each other.
  • the * in the general formula (21a), the general formula (21b), the general formula (21c), the general formula (21d), and the general formula (21e) are independently at the bonding positions with the LA1 , LA2 , and LA3 , respectively. be. )
  • Ar 111 , Ar 112 which are not groups selected from the group consisting of the groups represented by the general formula (21a), the general formula (21b), the general formula (21c), the general formula (21d) and the general formula (21e).
  • Ar 113 are preferably aryl groups having 6 to 30 substituted or unsubstituted ring-forming carbon atoms, respectively, and more preferably substituted or unsubstituted phenyl groups or substituted or unsubstituted biphenyl groups. preferable.
  • two of Ar 111 , Ar 112 and Ar 113 are the general formula (21a), the general formula (21b), the general formula (21c) and the general formula (21d).
  • a group selected from the group consisting of the groups represented by the general formula (21e), and among Ar 111 , Ar 112 and Ar 113 , the other one is a substituted or unsubstituted ring-forming carbon number 6 to 6. It is also preferably an aryl group of 30.
  • one of Ar 111 , Ar 112 and Ar 113 is the general formula (21a), the general formula (21b), the general formula (21c) and the general formula (21d).
  • a group selected from the group consisting of the groups represented by the general formula (21e), and among Ar 111 , Ar 112 and Ar 113 , the other two are substituted or unsubstituted ring-forming carbon atoms 6 to 6. It is also preferably an aryl group of 30.
  • the second anode-side organic layer contains a second hole transport band material.
  • the compound contained in the second anode-side organic layer may be referred to as a second hole transport zone material.
  • the second hole transport band material and the third hole transport band material are compounds different from each other.
  • the hole mobility ⁇ h (cHT2) of the second hole transport band material is larger than 1.0 ⁇ 10 -4 cm 2 / Vs.
  • the hole mobility ⁇ h (cHT2) of the second hole transport band material is higher than the hole mobility ⁇ h (cHT3) of the third hole transport band material. big.
  • the energy level HOMO (cHT2) of the highest occupied molecular orbital of the second hole transporting zone material and the energy of the highest occupied molecular orbital of the third hole transporting zone material satisfy the relationship.
  • the hole mobility ⁇ h (cHT2) of the second hole transport zone material is larger than 1.0 ⁇ 10 -4 cm 2 / Vs and is the third positive.
  • the hole mobility ⁇ h (cHT3) of the hole transport zone material is greater than 1.0 ⁇ 10-5 cm 2 / Vs, and the energy level HOMO of the highest occupied orbit of the second hole transport zone material. (CHT2) and the energy level HOMO (cHT3) of the highest occupied orbit of the third hole transport zone material satisfy the relationship of the above formula (Equation B1).
  • the second hole transport band material is a compound represented by the general formula (C1) or the general formula (C2).
  • the second anode-side organic layer and the third anode-side organic layer may both contain the compound represented by the general formula (C1).
  • the compound contained in the second anode-side organic layer and the compound contained in the third anode-side organic layer have different molecular structures.
  • the second anode-side organic layer and the third anode-side organic layer may both contain the compound represented by the general formula (C2).
  • the compound contained in the second anode-side organic layer and the compound contained in the third anode-side organic layer have different molecular structures.
  • the third anode-side organic layer is a compound represented by the following general formula (cHT3-1), a compound represented by the general formula (cHT3-2), and a general formula. It contains at least one compound selected from the group consisting of the compound represented by (cHT3-3) and the compound represented by the general formula (cHT3-4).
  • Ar 311 is a group represented by any of the following general formulas (1-a), general formula (1-b), general formula (1-c) and general formula (1-d).
  • Ar 312 and Ar 313 are independent of each other. Substituent or unsubstituted ring-forming aryl groups having 6 to 50 carbon atoms, A substituted or unsubstituted heterocyclic group having 5 to 50 atom-forming atoms, or ⁇ Si ( RC1 ) ( RC2 ) ( RC3 ).
  • RC1 , RC2, and RC3 are independently substituted or unsubstituted aryl groups having 6 to 50 carbon atoms.
  • a plurality of RC1s are present, the plurality of RC1s are the same as or different from each other.
  • the plurality of RC2s are the same as or different from each other.
  • the plurality of RC3s are the same as or different from each other.
  • L D1 , L D2 and L D3 are independent of each other.
  • One or more of the two or more adjacent pairs of RD20 to RD24 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other
  • One or more of the two or more adjacent pairs of R D31 to R D38 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other
  • One or more of the two or more adjacent pairs of R D40 to R D44 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other
  • X 3 is
  • R D45 and R D46 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other R D25 , R D20 to R D24 , R D31 to R D38 , R D40 to R D44 , R D45 and R that do not form the substituted or unsubstituted monocycle and do not form the substituted or unsubstituted fused ring.
  • D46 are independent of each other Hydrogen atom, Cyano group, Substituent or unsubstituted alkyl groups having 1 to 50 carbon atoms, Substituent or unsubstituted alkyl halide groups having 1 to 50 carbon atoms, Substituted or unsubstituted ring-forming cycloalkyl group having 3 to 50 carbon atoms, -A group represented by Si (R 901 ) (R 902 ) (R 903 ), A group represented by -O- (R 904 ), A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms.
  • R 901 to R 904 in the compounds represented by the general formula (cHT3-1), the general formula (cHT3-2), the general formula (cHT3-3) and the general formula (cHT3-4) are independent of each other.
  • the plurality of R 903s are the same as or different from each other.
  • the plurality of R 904s are the same as or different from each other.
  • R 51 to R 55 are independent of each other.
  • R 61 to R 68 is a single bond that binds to * b. * None of the pairs of two or more adjacent R 61 to R 68 that are not single bonds that bind to b are bound to each other. * R 61 to R 68 , which are not single bonds bonded to b, are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, or substituted or unsubstituted ring-forming carbon atoms 6 to 12 respectively. It is an aryl group of ** represents the bonding position with LD1 . )
  • R 71 to R 80 is a single bond that binds to * d. * None of the pairs of two or more adjacent R 71 to R 80 that are not single bonds bound to d are bound to each other. * R 71 to R 80 , which are not single bonds bound to d, are independent of each other. Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms. ** represents the bonding position with LD1 . )
  • R 141 to R 145 is a single bond that binds to * h1
  • the other one of R 141 to R 145 is a single bond that binds to * h2. None of the adjacent pairs of R 141 to R 145 that are not single bonds that bind to * h1 and are not single bonds that bind to * h2 are bound to each other.
  • One or more of the two or more adjacent pairs of R 151 to R 155 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other
  • One or more of the two or more adjacent pairs of R161 to R165 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other R 141 to R 145 , which are not single bonds bound to * h1 and are not single bonds bound to * h2, and the substituted or unsubstituted fused rings that do not form the substituted or unsubstituted monocyclic ring.
  • R 151 to R 155 and R 161 to R 165 which do not form, are independent of each other.
  • Hydrogen atom A substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms. ** represents the bonding position with LD1 . )
  • the compound represented by the general formula (cHT3-1) may be a compound represented by the general formula (cHT3-11).
  • Ar 312 , Ar 313 , L D1 , L D2 , L D3 and R D 25 are the Ar 312 , Ar 313 , L D1 in the general formula (cHT3-1), respectively. Synonymous with L D2 , L D3 and R D25 One of R D26 to R D29 is a single bond that binds to LD1 , and * k represents the bond position.
  • R D21 to R D24 and R D26 to R D29 which are not single bonds bound to L D1 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other R D21 to R D24 and R D26 to R D29 , which do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring, are independent of each other.
  • the organic EL device of the present embodiment is a single bond in which R D26 , R D28 or R D29 of the general formula ( cHT3-11 ) is bound to LD1.
  • Ar 312 , Ar 313 , L D1 , L D2 , L D3 and R D21 to R D29 are , Ar 312 , Ar 313 , L D1 , L D2 , L D3 and R D21 to R D29 in the general formula (cHT3-11), respectively.
  • the compound represented by the general formula (cHT3-3) may be a compound represented by the general formula (cHT3-31).
  • Ar 312 , Ar 313 , L D1 , L D2 , L D3 and X 3 are Ar 312 , Ar 313 , L D1 in the general formula (cHT3-3), respectively.
  • Synonymous with LD2 , LD3 and X3 One of R D47 to R D50 is a single bond that binds to LD1 , and * m represents the bond position.
  • R D41 to R D44 and R D47 to R D50 which are not single bonds to be bonded to LD1 and which are two or more adjacent to each other Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other
  • the R D41 to R D50 which do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring, are independent of each other.
  • LD1 is a single-bonded or substituted or unsubstituted phenylene group.
  • the organic EL device of the present embodiment in the compounds represented by the general formulas (cHT3-1) to (cHT3-4), (cHT3-11) to (cHT3-14) and (cHT3-31). ,
  • the substituent in the case of "substituted or unsubstituted” is not the group represented by -N ( RC6) (RC7 ) .
  • RC6 and RC7 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, substituted or unsubstituted ring-forming cycloalkyl groups having 3 to 50 carbon atoms, respectively.
  • the substituent in the case of "substituted or unsubstituted" is not a group represented by -N (RC6) ( RC7 ), the general formulas (cHT3-1) to ( cHT3-4 ), (cHT3-)
  • the compounds represented by 11) to (cHT3-14) and (cHT3-31) are monoamine compounds.
  • the compound contained in the third anode-side organic layer is a diamine compound having two substituted or unsubstituted amino groups in the molecule.
  • the compound contained in the third anode-side organic layer is a triamine compound having three substituted or unsubstituted amino groups in the molecule.
  • the compound contained in the third anode-side organic layer is a tetraamine compound having four substituted or unsubstituted amino groups in the molecule.
  • the third hole transport band material is the general formulas (cHT3-1) to (cHT3-4), (cHT3-11) to (cHT3-14) and ( It is at least one compound selected from the group consisting of the compounds represented by cHT3-31).
  • the third hole transport zone material is a monoamine compound, a diamine compound, a triamine compound, or a tetraamine compound.
  • the second anode-side organic layer is a compound represented by the following general formula (cHT2-1), a compound represented by the general formula (cHT2-2), and a general formula. It contains at least one compound selected from the group consisting of the compounds represented by (cHT2-3).
  • Ar 112 , Ar 113 , Ar 121 , Ar 122 , Ar 123 and Ar 124 are independent of each other.
  • Substituent or unsubstituted ring-forming aryl groups having 6 to 50 carbon atoms A substituted or unsubstituted heterocyclic group having 5 to 50 atom-forming atoms, or ⁇ Si ( RC1 ) ( RC2 ) ( RC3 ).
  • RC1 , RC2, and RC3 are independently substituted or unsubstituted aryl groups having 6 to 50 carbon atoms.
  • the plurality of RC1s are the same as or different from each other.
  • the plurality of RC2s are the same as or different from each other.
  • the plurality of RC3s are the same as or different from each other.
  • LA1 , LA2 , LA3 , LB1 , LB2 , LB3 and LB4 are independent of each other. Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • nb is 1, 2, 3 or 4
  • LB5 is A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • nb is 2, 3 or 4, the plurality of LB5s are the same as or different from each other.
  • the plurality of LB5s are Combine with each other to form substituted or unsubstituted monocycles, Bond to each other to form substituted or unsubstituted fused rings, or do not bond to each other
  • the LB5 which does not form the substituted or unsubstituted monocycle and does not form the substituted or unsubstituted condensed ring is A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • RA35 and RA36 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other RA25 and RA35 and RA36 , which do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted fused ring, are independent of each other.
  • One or more of the two or more adjacent pairs of RA20 to RA24 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other
  • One or more of the two or more adjacent pairs of RA30 to RA34 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other RA20 to RA24 and RA30 to RA34 , which do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring, are independent of each other.
  • R 901 to R 904 in the compounds represented by the general formula (cHT2-1), the general formula (cHT2-2) and the general formula (cHT2-3) are independent of each other.
  • the plurality of R 901s are the same as or different from each other.
  • the plurality of R 902s are the same as or different from each other.
  • the plurality of R 903s are the same as or different from each other.
  • the plurality of R 904s are the same as or different from each other.
  • the second amino group represented by is the same group or a different group.
  • substitution in the case of "substitution or unsubstituted" is not the group represented by -N ( RC6) (RC7 ) .
  • RC6 and RC7 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, substituted or unsubstituted ring-forming cycloalkyl groups having 3 to 50 carbon atoms, respectively.
  • substituent in the case of "substituted or unsubstituted" is not a group represented by -N (RC6) ( RC7 ), it is represented by the above general formulas ( cHT2-1 ) and (cHT2-2).
  • the compound is a monoamine compound.
  • the second anode-side organic layer is a compound represented by the general formula (cHT2-1), a compound represented by the general formula (cHT2-2), and a general formula.
  • the third anode-side organic layer contains at least one compound selected from the group consisting of the compounds represented by (cHT2-3), and the third anode-side organic layer is a compound represented by the general formula (cHT3-1).
  • the compound contained in the second anode-side organic layer is a monoamine compound.
  • a monoamine compound is a compound having only one substituted or unsubstituted amino group in the molecule.
  • the compound represented by the general formula (cHT2-1) and the compound represented by the general formula (cHT2-2) are monoamine compounds.
  • the compound contained in the second anode-side organic layer is a diamine compound having two substituted or unsubstituted amino groups in the molecule.
  • the compound represented by the general formula (cHT2-3) is a diamine compound.
  • the compound contained in the second anode-side organic layer is a triamine compound having three substituted or unsubstituted amino groups in the molecule.
  • the compound contained in the second anode-side organic layer is a tetraamine compound having four substituted or unsubstituted amino groups in the molecule.
  • the compound represented by the general formula (cHT2-3) When the compound represented by the general formula (cHT2-3) is a triamine compound, the compound represented by the general formula (cHT2-3) serves as a substituent in the case of "substituted or unsubstituted". It has one group represented by N ( RC6) (RC7 ) .
  • the compound represented by the general formula (cHT2-3) When the compound represented by the general formula (cHT2-3) is a tetraamine compound, the compound represented by the general formula (cHT2-3) serves as a substituent in the case of "substituted or unsubstituted". It has two groups represented by N ( RC6) (RC7 ) .
  • the compound contained in the second anode-side organic layer is represented by the group represented by the following general formula (2-a) and the general formula (2-b).
  • the compound contained in the second anode-side organic layer is represented by the compound represented by the general formula (cHT2-1) and the general formula (cHT2-2).
  • At least one of Ar 112 , Ar 113 , Ar 121 , Ar 122 , Ar 123 and Ar 124 in (cHT2-3) is a group represented by the following general formula (2-a), the general formula (2-b).
  • R 251 to R 255 are independent of each other.
  • R261 to R268 is a single bond that binds to * b. * None of the pairs of two or more adjacent R261 to R268 that are not single bonds that bind to b are bound to each other. * R 261 to R 268 , which are not single bonds that bind to b, are independent of each other. Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms. ** represents the coupling position. )
  • R 271 to R 282 is a single bond that binds to * c. * None of the pairs of two or more adjacent R 271 to R 282 that are not single bonds that bind to c do not bind to each other. * R 271 to R 282 , which are not single bonds that bind to c, are independent of each other. Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms. ** represents the coupling position. )
  • R 291 to R 300 is a single bond that binds to * d. * None of the adjacent pairs of R 291 to R 300 , which are not single bonds bound to d, are bound to each other. * R 291 to R 300 , which are not single bonds bound to d, are independent of each other. Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms. ** represents the coupling position. )
  • Z 3 is an oxygen atom, a sulfur atom, NR 319 or C (R 320 ) (R 321 ).
  • R 311 to R 321 is a single bond that binds to * e, or two or more adjacent pairs of R 311 to R 318 are bonded to each other to form the following substitutions or non-replacements.
  • Any carbon atom of the benzene ring of the above is bonded to * e with a single bond, * A pair consisting of two or more adjacent R 311 to R 318 that is not a single bond that binds to e Bond to each other to form substituted or unsubstituted benzene rings, or not to each other R 311 to R 318 , which are not single bonds bonded to * e and do not form the substituted or unsubstituted benzene ring, are independently.
  • Hydrogen atom Substituent or unsubstituted alkyl groups having 1 to 6 carbon atoms, A substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 10 atoms.
  • R 319 which is not a single bond that binds to e, Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms.
  • R 320 and R 321 that is not a single bond that binds to e Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other R 320 and R 321 which are not single bonds bonded to * e and do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring, respectively, independently.
  • Hydrogen atom A substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms. ** represents the coupling position. )
  • R 341 to R 345 is a single bond that binds to * h1
  • the other one of R 341 to R 345 is a single bond that binds to * h2. None of the adjacent pairs of R 341 to R 345 , which are not single bonds that bind to * h1 and are not single bonds that bind to * h2, do not bind to each other.
  • One or more of the two or more adjacent pairs of R 351 to R 355 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other
  • One or more of the two or more adjacent pairs of R 361 to R 365 Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other R 341 to R 345 , which are not single bonds bound to * h1 and are not single bonds bound to * h2, and the substituted or unsubstituted fused rings that do not form the substituted or unsubstituted monocyclic ring.
  • R 351 to R 355 and R 361 to R 365 which do not form, are independent of each other.
  • Hydrogen atom A substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms. ** represents the coupling position. )
  • the group represented by the general formula (2-a), the group represented by the general formula (2-b), and the group represented by the general formula (2-c) are represented.
  • the group, the group represented by the general formula (2-d), the group represented by the general formula (2-e) and the group represented by the general formula (2-f) are independently of the monoamine compound. It binds directly to the nitrogen atom of the amino group, via a phenylene group, or via a biphenylene group.
  • the compound contained in the second anode-side organic layer is a compound represented by the general formula (cHT2-1), and at least of Ar 112 and Ar 113 .
  • cHT2-1 a compound represented by the general formula (cHT2-1)
  • Ar 112 and Ar 113 Any of the group represented by the general formula (2-a), the group represented by the general formula (2-b), the group represented by the general formula (2-c), and the general formula (2-d). ), A group represented by the general formula (2-e), and a group represented by the general formula (2-f).
  • the compound contained in the second anode-side organic layer is a compound represented by the general formula (cHT2-2), and at least of Ar 112 and Ar 113 .
  • cHT2-2 a compound represented by the general formula (cHT2-2)
  • Ar 112 and Ar 113 Any of the group represented by the general formula (2-a), the group represented by the general formula (2-b), the group represented by the general formula (2-c), and the general formula (2-d). ), A group represented by the general formula (2-e), and a group represented by the general formula (2-f).
  • the compound contained in the second anode-side organic layer is a compound represented by the general formula (cHT2-3), and Ar 121 , Ar 122 , Ar.
  • At least one of 123 and Ar 124 is a group represented by the general formula (2-a), a group represented by the general formula (2-b), a group represented by the general formula (2-c), and the like.
  • R 312 or R 317 is a single bond that binds to * e.
  • the group represented by the general formula (2-e) is a group represented by the following general formula (2-e7).
  • R 311 to R 316 , R 318 and R 319 are synonymous with R 311 to R 316 , R 318 and R 319 in the general formula (2-e), respectively. , ** represent the bond position.
  • R 315 , R 316 or R 318 is a single bond that binds to * e.
  • the group represented by the general formula (2-e) is the following general formula (2-e4), general formula (2-e5) or general formula (2-e6). ) Is the group represented by.
  • R 311 to R 319 are R 311 to R 319 in the general formula (2-e), respectively. It is synonymous with **, and ** represents the connection position.
  • the group represented by the general formula (2-e) is the following general formula (2-e1), general formula (2-e2) or general formula (2-e3). ) Is the group represented by.
  • Z 3 is an oxygen atom, a sulfur atom, NR 319 or C (R 320 ) (R 321 ).
  • R 311 to R 325 is a single bond that binds to * e. * R 311 to R 318 and R 322 to R 325 , which are not single bonds bound to e, are independent of each other.
  • Hydrogen atom Substituent or unsubstituted alkyl groups having 1 to 6 carbon atoms, A substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 10 atoms.
  • R 319 which is not a single bond that binds to e, Hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms.
  • R 320 and R 321 that is not a single bond that binds to e Combine with each other to form a substituted or unsubstituted monocycle, Bond to each other to form substituted or unsubstituted fused rings, or not to each other R 320 and R 321 which are not single bonds bonded to * e and do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring, respectively, independently.
  • Hydrogen atom A substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted ring-forming aryl group having 6 to 12 carbon atoms. ** represents the coupling position. )
  • the general formulas (2-a), (2-b), (2-c), (2-d), (2-e), (2-f) , (2-e1), (2-e2), (2-e3), (2-e4), (2-e5), (2-e6) and (2-e7) ** are independent of each other.
  • it is the bond position with LA2, LA3 , LB1 , LB2 , LB3 or LB4 , or the bond position with the nitrogen atom of the amino group.
  • the compound contained in the second anode-side organic layer is a compound that does not contain a thiophene ring in the molecule.
  • the second hole transport band material is a compound represented by the general formula (cHT2-1), a compound represented by the general formula (cHT2-2), and a general compound. At least one compound selected from the group consisting of the compounds represented by the formula (cHT2-3).
  • the second hole transport band material is a monoamine compound, a diamine compound, a triamine compound or a tetraamine compound.
  • the first anode-side organic layer contains the first hole transport zone material.
  • the first hole transport band material and the third hole transport band material are compounds different from each other.
  • the first hole transport band material and the second hole transport band material may be different compounds or the same compounds.
  • the first anode-side organic layer is the first hole transport zone material and the second hole. It is preferable to contain a compound having a molecular structure different from that of the transport zone material and the third hole transport zone material (for example, a doped compound).
  • the first anode-side organic layer contains a first organic material and a second organic material that are different from each other.
  • the content of the second organic material in the first anode-side organic layer is preferably less than 50% by mass, and the first anode-side organic layer contains the first organic material and the second organic material.
  • the first organic material contained in the first anode-side organic layer is preferably the first hole transport zone material, and the second organic material is preferably a dope compound.
  • the content of the doped compound in the first anode-side organic layer is 0.5% by mass or more and 5% by mass. It is preferably 1.0% by mass or more and 3.0% by mass or less.
  • the content of the first hole transport zone material in the first anode-side organic layer is preferably 40% by mass or more, more preferably 45% by mass or more, and more preferably 50% by mass or more. Is even more preferable.
  • the content of the first hole transport zone material in the first anode-side organic layer is preferably 99.5% by mass or less.
  • the total content of the first hole transport zone material and the doped compound in the first anode-side organic layer is 100% by mass or less.
  • the doped compound is at least one of a first ring structure represented by the following general formula (P11) and a second ring structure represented by the following general formula (P12). It is a compound containing.
  • the first ring structure represented by the general formula (P11) is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 carbon atoms in the molecule of the doped compound and a substituted or unsubstituted aromatic hydrocarbon ring. Ring-forming Condenses with at least one of the ring structures of a heterocycle having 5 to 50 atoms.
  • R 11 to R 14 and R 1101 to R 1110 are independent of each other.
  • Z 1 to Z 5 are independent of each other. Nitrogen atom, A carbon atom that binds to R 15 or a carbon atom that binds to another atom in the molecule of the doped compound. At least one of Z 1 to Z 5 is a carbon atom that binds to another atom in the molecule of the doped compound.
  • R15 is Hydrogen atom, Halogen atom, Cyano group, Substituent or unsubstituted alkyl groups having 1 to 50 carbon atoms, Substituent or unsubstituted alkyl halide groups having 1 to 50 carbon atoms, Substituted or unsubstituted ring-forming cycloalkyl group having 3 to 50 carbon atoms, Substituent or unsubstituted ring-forming aryl groups having 6 to 50 carbon atoms, Substituted or unsubstituted ring-forming heterocyclic groups having 5 to 50 atoms, -A group represented by Si (R 901 ) (R 902 ) (R 903 ), A group represented by -O- (R 904 ), A group represented by -S- (R 905 ), A group represented by -N (R 906 ) (R 907 ), Substituent or unsubstituted alkenyl groups having 2 to 50 carbon
  • R901 to R907 are independently Hydrogen atom, Substituent or unsubstituted alkyl groups having 1 to 50 carbon atoms, Substituted or unsubstituted ring-forming cycloalkyl group having 3 to 50 carbon atoms, A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms.
  • the plurality of R 901s are the same as or different from each other.
  • the plurality of R 902s are the same as or different from each other.
  • the plurality of R 903s are the same as or different from each other.
  • the plurality of R 904s are the same as or different from each other.
  • the plurality of R 905s are the same as or different from each other.
  • the plurality of R 905s are the same as or different from each other.
  • the plurality of R- 906s are the same as or different from each other.
  • the plurality of R 907s are the same as or different from each other.
  • the ester group in the present specification is at least one group selected from the group consisting of an alkyl ester group and an aryl ester group.
  • RE is, for example, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms (preferably 1 to 10 carbon atoms).
  • R Ar is, for example, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • the siloxanyl group in the present specification is a silicon compound group via an ether bond, for example, a trimethylsiloxanyl group.
  • the carbamoyl group herein is represented by -CONH 2 .
  • the substituted carbamoyl group in the present specification is represented by, for example, -CONH-Ar C or -CONH- RC .
  • Ar C is, for example, an aryl group having 6 to 50 substituted or unsubstituted ring-forming carbon atoms (preferably 6 to 10 ring-forming carbon atoms) and 5 to 50 ring-forming atoms (preferably 5 to 14 ring-forming atoms). ) Is at least one group selected from the group consisting of heterocyclic groups.
  • Ar C may be a group in which an aryl group having a substituted or unsubstituted ring-forming carbon number of 6 to 50 and a substituted or unsubstituted ring-forming atomic number 5 to 50 heterocyclic group are bonded.
  • RC is, for example, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms (preferably 1 to 6 carbon atoms).
  • the groups described as "substituted or unsubstituted" are preferably "unsubstituted" groups.
  • Specific examples of the doped compound include the following compounds. However, the present invention is not limited to specific examples of these doped compounds.
  • the third anode-side organic layer and the light emitting region are in direct contact with each other.
  • the second anode-side organic layer and the third anode-side organic layer are in direct contact with each other.
  • the anode and the first anode-side organic layer are in direct contact with each other.
  • the organic EL element further has a fourth anode-side organic layer, and the fourth anode-side organic layer has a third anode-side organic layer and a light emitting region. It is placed in between.
  • the fourth anode-side organic layer and the light emitting region are in direct contact with each other.
  • the fourth anode-side organic layer and the third anode-side organic layer are in direct contact with each other.
  • the first anode-side organic layer, the second anode-side organic layer, the third anode-side organic layer, and the fourth anode-side organic layer are formed from the anode side. They are arranged in order.
  • the fourth anode-side organic layer is a barrier layer.
  • the barrier layer transports holes and electrons are arranged in each organic layer in the hole transport zone arranged on the anode side of the barrier layer. Prevent it from reaching.
  • a barrier layer that is in direct contact with the light emitting layer may be provided so that the excitation energy does not leak from the light emitting layer to the peripheral layer thereof.
  • the barrier layer arranged on the anode side of the light emitting layer prevents excitons generated in the light emitting layer from moving to each organic layer in the hole transport zone. It is preferable that the light emitting layer and the barrier layer are in direct contact with each other.
  • the film thickness of the fourth anode-side organic layer is thinner than the film thickness of the third anode-side organic layer. In one aspect of the organic EL device of the present embodiment, the film thickness of the fourth anode-side organic layer is 20 nm or less. In one aspect of the organic EL device of the present embodiment, the film thickness of the fourth anode-side organic layer is 5 nm or more.
  • the organic EL device of the present embodiment has a longer life because it includes a fourth anode-side organic layer (preferably an electron barrier layer) having a film thickness smaller than that of the third anode-side organic layer. ..
  • the film thickness of the first anode-side organic layer, the film thickness of the second anode-side organic layer, the film thickness of the third anode-side organic layer, and the fourth anode-side is 150 nm or less.
  • the fourth anode-side organic layer contains a fourth hole transport band material.
  • the compound contained in the fourth anode-side organic layer may be referred to as a fourth hole transport zone material.
  • the fourth hole transport band material and the third hole transport band material are compounds different from each other.
  • the fourth hole transport band material, the third hole transport band material, and the second hole transport band material are compounds different from each other.
  • the fourth anode-side organic layer contains the compound represented by the general formula (C1) or the compound represented by the general formula (C2).
  • the third anode-side organic layer and the fourth anode-side organic layer may both contain the compound represented by the general formula (C1).
  • the compound contained in the third anode-side organic layer and the compound contained in the fourth anode-side organic layer have different molecular structures.
  • the fourth hole transport band material is a monoamine compound, a diamine compound, a triamine compound, or a tetraamine compound.
  • the fourth hole transport band material is a compound represented by the general formula (cHT3-1), a compound represented by the general formula (cHT3-2), and a general compound. It is at least one compound selected from the group consisting of a compound represented by the formula (cHT3-3) and a compound represented by the general formula (cHT3-4).
  • the first anode-side organic layer, the second anode-side organic layer, the third anode-side organic layer, and the fourth anode-side organic layer are respectively. Contains one or more different compounds.
  • the first anode-side organic layer, the second anode-side organic layer, the third anode-side organic layer, and the fourth anode-side organic layer are substituted or unsubstituted. It contains a monoamine compound having only one amino group in the molecule. In one aspect of the organic EL element of the present embodiment, the first anode-side organic layer, the second anode-side organic layer, the third anode-side organic layer, and the fourth anode-side organic layer do not contain a diamine compound. ..
  • a diamine compound is a compound having two substituted or unsubstituted amino groups in the molecule.
  • the compound represented by the general formula (C1) is preferably a monoamine compound.
  • At least one of the first anode-side organic layer, the second anode-side organic layer, the third anode-side organic layer, and the fourth anode-side organic layer Can also contain diamine compounds.
  • the compound represented by the general formula (C2) is preferably a diamine compound.
  • R 901 , R 902 , R 903 and R 904 in the compound contained in the hole transport band are independently. Hydrogen atom, Substituent or unsubstituted alkyl groups having 1 to 50 carbon atoms, Substituted or unsubstituted ring-forming cycloalkyl group having 3 to 50 carbon atoms, A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms. When a plurality of R 901s are present, the plurality of R 901s are the same as or different from each other.
  • the plurality of R 902s are the same as or different from each other.
  • the plurality of R 903s are the same as or different from each other.
  • the plurality of R 904s are the same as or different from each other.
  • hole transport band materials when the first hole transport band material, the second hole transport band material, the third hole transport band material, and the fourth hole transport band material are referred to as hole transport band materials. There is.
  • the hole transport zone material may be a compound containing a substituted or unsubstituted 3-carbazolyl group in the molecule. Further, in the organic EL device according to the present embodiment, the hole transport zone material may be a compound that does not contain a substituted or unsubstituted 3-carbazolyl group in the molecule.
  • the hole transport zone material according to the present embodiment can be produced by a known method, or can be produced by following the method and using a known alternative reaction and raw material suitable for the target product.
  • Specific examples of the hole transport band material according to the present embodiment include the following compounds. However, the present invention is not limited to these specific examples.
  • the compound contained in the second anode-side organic layer is preferably at least one compound selected from the compound group listed below.
  • the compound contained in the third anode-side organic layer is preferably at least one compound selected from the compound group listed below.
  • the light emitting region includes at least one light emitting layer.
  • the light emitting region preferably contains a fluorescent substance and an organic compound.
  • the fluorescent substance contained in the light emitting region is preferably a fluorescent compound described later.
  • the organic compound contained in the light emitting region is also preferably a host material described later.
  • the light emitting region includes one light emitting layer. In one aspect of the organic EL device of the present embodiment, the light emitting region comprises only one light emitting layer.
  • the light emitting region includes a first light emitting layer and a second light emitting layer as two light emitting layers. In one aspect of the organic EL device of the present embodiment, the light emitting region comprises only two light emitting layers.
  • the light emitting layer preferably contains a light emitting compound.
  • the luminescent compound is not particularly limited, but may contain, for example, at least one luminescent compound selected from the group consisting of the first luminescent compound and the second luminescent compound described later.
  • the light emitting layer preferably contains a light emitting compound in an amount of 0.5% by mass or more based on the total mass of the light emitting layer.
  • the light emitting layer preferably contains a luminescent compound in an amount of 10% by mass or less, more preferably 7% by mass or less, based on the total mass of the light emitting layer, and more preferably 7% by mass or less, based on the total mass of the light emitting layer. It is more preferably contained in an amount of 5% by mass or less.
  • At least one light emitting layer in the light emitting region contains a light emitting compound exhibiting light emission having a maximum peak wavelength of 500 nm or less.
  • the maximum peak wavelength of light emission exhibited by the luminescent compound is 480 nm or less.
  • the maximum peak wavelength of light emission exhibited by the luminescent compound is 430 nm or more and 480 nm or less.
  • At least one light emitting layer in the light emitting region contains a luminescent compound exhibiting fluorescence emission having a maximum peak wavelength of 500 nm or less.
  • the maximum peak wavelength of fluorescence emission exhibited by the luminescent compound is 480 nm or less.
  • the maximum peak wavelength of fluorescence emission exhibited by the luminescent compound is 430 nm or more and 480 nm or less.
  • the light emitting region has at least a first light emitting layer containing a first host material and a second light emitting layer containing a second host material.
  • the first host material and the second host material are different from each other.
  • the "host material” is, for example, a material contained in "50% by mass or more of the layer".
  • the first light emitting layer contains the first host material in an amount of 50% by mass or more of the total mass of the first light emitting layer.
  • the second light emitting layer contains the second host material in an amount of 50% by mass or more of the total mass of the second light emitting layer.
  • the "host material” may be contained in an amount of 60% by mass or more of the layer, 70% by mass or more of the layer, 80% by mass or more of the layer, 90% by mass or more of the layer, or 95% by mass or more of the layer. good.
  • T 1 (H1) of the first host material and the triplet energy T 1 (H2) of the second host material satisfy the relationship of the following mathematical formula (Equation 1).
  • the triplet energy T 1 (H1) of the first host material and the triplet energy T 1 (H2) of the second host material are related by the following mathematical formula (Equation 5). It is preferable to satisfy. T 1 (H1) -T 1 (H2)> 0.03 eV ... (Equation 5)
  • the organic EL element according to the present embodiment has a first light emitting layer and a second light emitting layer satisfying the relationship of the above mathematical formula (Equation 1), the luminous efficiency of the element can be improved.
  • Tripret-Tripret-Anhilation (sometimes referred to as TTA) is known as a technique for improving the luminous efficiency of an organic electroluminescence device.
  • TTA is a mechanism in which triplet excitons and triplet excitons collide with each other to generate singlet excitons.
  • the TTA mechanism may be referred to as a TTF mechanism as described in International Publication No. 2010/134350.
  • the TTF phenomenon will be described.
  • the holes injected from the anode and the electrons injected from the cathode recombine in the light emitting layer to generate excitons.
  • the spin state has a ratio of 25% for singlet excitons and 75% for triplet excitons, as is conventionally known.
  • 25% of singlet excitons emit light when relaxed to the ground state, but the remaining 75% of triplet excitons do not emit light and are thermally deactivated. It returns to the ground state through the process. Therefore, the theoretical limit value of the internal quantum efficiency of the conventional fluorescent device is said to be 25%.
  • the behavior of triplet excitons generated inside organic matter has been theoretically investigated. S. M.
  • triplet excitons triplet excitons
  • the initially generated singlet is generated.
  • the light emitting region of the organic EL element according to the present embodiment has at least two light emitting layers (that is, a first light emitting layer and a second light emitting layer), and the triplet of the first host material in the first light emitting layer.
  • the term energy T 1 (H1) and the triplet energy T 1 (H2) of the second host material in the second light emitting layer satisfy the relationship of the above formula (Equation 1), the first light emitting layer
  • the recombination region is locally present at the interface between the first light emitting layer and the hole transport layer or the electron barrier layer, quenching due to excess electrons can be considered.
  • quenching due to excess holes is considered.
  • the organic EL element utilizes the first light emitting layer that mainly generates triplet excitons and the triplet excitons that have moved from the first light emitting layer to implement the TTF mechanism.
  • the second light emitting layer which is mainly expressed, is provided as a different region, and as the second host material in the second light emitting layer, triplet energy smaller than that of the first host material in the first light emitting layer is provided. The luminescence efficiency is improved by providing a difference in triplet energy by using the compound having.
  • the first light emitting layer is arranged between the anode and the cathode
  • the second light emitting layer is arranged between the first light emitting layer and the cathode.
  • the first light emitting layer and the second light emitting layer may be provided in this order from the anode side, or the second light emitting layer and the first light emitting layer may be provided in this order from the anode side. You may be. Regardless of the order of the first light emitting layer and the second light emitting layer, the effect of having a laminated structure of the light emitting layer is expected by selecting a combination of materials satisfying the relationship of the above formula (Equation 1). can.
  • the first light emitting layer is arranged on the anode side of the second light emitting layer.
  • the first light emitting layer when the first light emitting layer is arranged on the anode side of the second light emitting layer, the first light emitting layer is in direct contact with the hole transport band. Is preferable.
  • the hole transport zone does not have the fourth anode-side organic layer, it is preferable that the first light emitting layer and the third anode-side organic layer are in direct contact with each other.
  • the hole transport zone has a fourth anode-side organic layer, it is preferable that the first light emitting layer and the fourth anode-side organic layer are in direct contact with each other.
  • the first light emitting layer and the second light emitting layer are in direct contact with each other.
  • the layer structure in which the first light emitting layer and the second light emitting layer are in direct contact with each other is, for example, any one of the following aspects (LS1), (LS2) and (LS3). Aspects may also be included.
  • (LS1) In the process of vapor deposition of the compound related to the first light emitting layer and the step of vapor deposition of the compound related to the second light emitting layer, there is a region where both the first host material and the second host material coexist. An aspect in which the region is generated and exists at the interface between the first light emitting layer and the second light emitting layer.
  • LS2 When the first light emitting layer and the second light emitting layer contain a luminescent compound, the step of vapor deposition of the compound related to the first light emitting layer and the step of vapor deposition of the compound related to the second light emitting layer are performed.
  • LS3 When the first light emitting layer and the second light emitting layer contain a luminescent compound, the step of vapor deposition of the compound related to the first light emitting layer and the step of vapor deposition of the compound related to the second light emitting layer are performed.
  • a region made of the luminescent compound, a region made of the first host material, or a region made of the second host material is generated, and the region is the interface between the first light emitting layer and the second light emitting layer.
  • the first light emitting layer contains the first host material.
  • the first host material is a compound different from the second host material contained in the second light emitting layer.
  • the first light emitting layer preferably contains the first light emitting compound.
  • the first luminescent compound is not particularly limited.
  • the first luminescent compound is preferably a compound having a maximum peak wavelength of 500 nm or less, more preferably a compound having a maximum peak wavelength of 480 nm or less, and having a maximum peak wavelength of 430 nm or more and 480 nm. It is more preferable that the compound exhibits the following luminescence.
  • the first luminescent compound is preferably a fluorescent compound having a maximum peak wavelength of 500 nm or less, and more preferably a fluorescent compound having a maximum peak wavelength of 480 nm or less.
  • a fluorescent compound having a maximum peak wavelength of 430 nm or more and 480 nm or less is more preferable.
  • the first luminescent compound is preferably a compound that does not contain an azine ring structure in the molecule.
  • the first luminescent compound is preferably not a boron-containing complex, and more preferably the first luminescent compound is not a complex.
  • Examples of the fluorescent light emitting compound that fluoresces in blue that can be used in the first light emitting layer include pyrene derivatives, styrylamine derivatives, chrysene derivatives, fluoranthene derivatives, fluorene derivatives, diamine derivatives, and triarylamine derivatives. Compounds selected from the group can be used.
  • the blue emission means the emission in which the maximum peak wavelength of the emission spectrum is in the range of 430 nm or more and 500 nm or less.
  • the first light emitting layer does not contain a metal complex. Further, in the organic EL device according to the present embodiment, it is also preferable that the first light emitting layer does not contain a boron-containing complex.
  • the first light emitting layer does not contain a phosphorescent material (dopant material). Further, it is preferable that the first light emitting layer does not contain a heavy metal complex and a phosphorescent rare earth metal complex.
  • the heavy metal complex include an iridium complex, an osmium complex, a platinum complex, and the like.
  • the method for measuring the maximum peak wavelength of the compound is as follows. A 5 ⁇ mol / L toluene solution of the compound to be measured is prepared, placed in a quartz cell, and the emission spectrum (vertical axis: emission intensity, horizontal axis: wavelength) of this sample is measured at room temperature (300 K).
  • the emission spectrum can be measured by a spectrofluorometer (device name: F-7000) manufactured by Hitachi High-Tech Science Co., Ltd.
  • the emission spectrum measuring device is not limited to the device used here.
  • the peak wavelength of the emission spectrum having the maximum emission intensity is defined as the maximum peak wavelength.
  • the maximum peak wavelength of fluorescence emission may be referred to as the maximum peak wavelength of fluorescence emission (FL-peak).
  • the peak having the maximum emission intensity when the peak having the maximum emission intensity is set as the maximum peak and the height of the maximum peak is set to 1, the heights of other peaks appearing in the emission spectrum are 0. It is preferably less than 6.
  • the peak in the emission spectrum is a maximum value. Further, in the emission spectrum of the first luminescent compound, the number of peaks is preferably less than three.
  • the singlet energy S 1 (H1) of the first host material and the singlet energy S 1 (D1) of the first luminescent compound are represented by the following mathematical formula (Equation 20). It is preferable to satisfy the relationship. S 1 (H1)> S 1 (D1) ... (Equation 20)
  • the singlet energy S 1 means the energy difference between the lowest excited singlet state and the ground state.
  • the singlet exciter generated on the first host material is the first from the first host material. It facilitates energy transfer to one luminescent compound and contributes to the fluorescence emission of the first luminescent compound.
  • the triplet energy T 1 (H1) of the first host material and the triplet energy T 1 (D1) of the first luminescent compound are represented by the following mathematical formula (Equation 20A). It is preferable to satisfy the relationship. T 1 (D1)> T 1 (H1) ... (Equation 20A)
  • the triplet exciter generated in the first light emitting layer has a higher triplet energy. Since it moves on the first host material instead of one luminescent compound, it is easy to move to the second light emitting layer.
  • the organic EL device according to the present embodiment preferably satisfies the relationship of the following mathematical formula (Equation 20B).
  • T 1 Triple energy T 1
  • Examples of the method for measuring the triplet energy T 1 include the following methods.
  • a solution of the compound to be measured dissolved in EPA (diethyl ether: isopentan: ethanol 5: 5: 2 (volume ratio)) so as to be 10-5 mol / L or more and 10-4 mol / L or less.
  • this solution is placed in a quartz cell to prepare a measurement sample.
  • the phosphorescence spectrum vertical axis: phosphorescence emission intensity, horizontal axis: wavelength
  • a tangent line is drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side is drawn as follows.
  • the tangents at each point on the curve toward the long wavelength side This tangent increases in slope as the curve rises (ie, as the vertical axis increases).
  • the tangent line drawn at the point where the value of the slope reaches the maximum value is defined as the tangent line to the rising edge of the phosphorescent spectrum on the short wavelength side.
  • the maximum point having a peak intensity of 15% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and the slope value closest to the maximum value on the shortest wavelength side is the maximum.
  • the tangent line drawn at the point where the value is taken is taken as the tangent line to the rising edge of the phosphorescent spectrum on the short wavelength side.
  • the F-7000 type spectrofluorometer main body manufactured by Hitachi High-Tech Science Co., Ltd. or the F-4500 type spectrofluorometer main body manufactured by Hitachi High Technology Co., Ltd. can be used.
  • the measuring device is not limited to this, and may be measured by combining a cooling device, a low temperature container, an excitation light source, and a light receiving device.
  • Examples of the method for measuring the singlet energy S1 using a solution include the following methods.
  • a toluene solution of 10-5 mol / L or more and 10-4 mol / L or less of the compound to be measured is prepared, placed in a quartz cell, and the absorption spectrum of this sample at room temperature (300 K) (vertical axis: absorption intensity, horizontal).
  • Axis: Wavelength.) Is measured.
  • a tangent line is drawn for the falling edge of the absorption spectrum on the long wavelength side, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis is substituted into the conversion formula (F2) shown below to calculate the single term energy. do.
  • Conversion formula (F2): S 1 [eV] 1239.85 / ⁇ edge
  • Examples of the absorption spectrum measuring device include, but are not limited to, a spectrophotometer (device name: U3310) manufactured by Hitachi, Ltd.
  • the tangent to the falling edge of the absorption spectrum on the long wavelength side is drawn as follows. When moving on the spectrum curve from the maximum value on the longest wavelength side to the long wavelength direction among the maximum values of the absorption spectrum, consider the tangents at each point on the curve. This tangent repeats that the slope decreases and then increases as the curve descends (ie, as the value on the vertical axis decreases).
  • the tangent line drawn at the point where the slope value takes the minimum value on the longest wavelength side (except when the absorbance is 0.1 or less) is defined as the tangent line to the fall of the long wavelength side of the absorption spectrum.
  • the maximum point having an absorbance value of 0.2 or less is not included in the maximum value on the longest wavelength side.
  • the first light emitting layer preferably contains the first light emitting compound in an amount of 0.5% by mass or more of the total mass of the first light emitting layer.
  • the first light emitting layer preferably contains the first light emitting compound in an amount of 10% by mass or less of the total mass of the first light emitting layer, and preferably contains 7% by mass or less of the total mass of the first light emitting layer. It is more preferable to contain 5% by mass or less of the total mass of the first light emitting layer.
  • the first light emitting layer preferably contains the first compound as the first host material in an amount of 60% by mass or more of the total mass of the first light emitting layer. It is more preferable to contain 70% by mass or more of the total mass of the first light emitting layer, further preferably 80% by mass or more of the total mass of the first light emitting layer, and the total mass of the first light emitting layer. It is more preferably contained in an amount of 90% by mass or more, and even more preferably 95% by mass or more based on the total mass of the first light emitting layer.
  • the first light emitting layer preferably contains the first host material in an amount of 99.5% by mass or less based on the total mass of the first light emitting layer. However, when the first light emitting layer contains the first host material and the first luminescent compound, the upper limit of the total content of the first host material and the first luminescent compound is 100% by mass. be.
  • the film thickness of the first light emitting layer is preferably 3 nm or more, and more preferably 5 nm or more. When the film thickness of the first light emitting layer is 3 nm or more, the film thickness is sufficient to cause the recombination of holes and electrons in the first light emitting layer. In the organic EL device according to the present embodiment, the film thickness of the first light emitting layer is preferably 15 nm or less, and more preferably 10 nm or less. When the film thickness of the first light emitting layer is 15 nm or less, the film thickness is sufficiently thin for the triplet excitons to move to the second light emitting layer. In the organic EL device according to the present embodiment, the film thickness of the first light emitting layer is more preferably 3 nm or more and 15 nm or less.
  • the second light emitting layer contains a second host material.
  • the second host material is a compound different from the first host material contained in the first light emitting layer.
  • the second light emitting layer preferably contains a second light emitting compound.
  • the second luminescent compound is not particularly limited.
  • the second luminescent compound is preferably a compound having a maximum peak wavelength of 500 nm or less, more preferably a compound having a maximum peak wavelength of 480 nm or less, and having a maximum peak wavelength of 430 nm or more and 480 nm. It is more preferable that the compound exhibits the following luminescence.
  • the second luminescent compound is preferably a fluorescent compound having a maximum peak wavelength of 500 nm or less, and more preferably a fluorescent compound having a maximum peak wavelength of 480 nm or less.
  • a fluorescent compound having a maximum peak wavelength of 430 nm or more and 480 nm or less is more preferable.
  • the method for measuring the maximum peak wavelength of the compound is as described above.
  • the second light emitting layer emits light having a maximum peak wavelength of 500 nm or less when the device is driven.
  • the half width of the maximum peak of the second luminescent compound is preferably 1 nm or more and 20 nm or less.
  • the Stokes shift of the second luminescent compound preferably exceeds 7 nm. If the Stokes shift of the second luminescent compound exceeds 7 nm, it becomes easy to prevent a decrease in luminous efficiency due to self-absorption. Self-absorption is a phenomenon in which the same compound absorbs the emitted light, which causes a decrease in luminous efficiency. Since self-absorption is prominently observed in compounds with a small Stokes shift (that is, a large overlap between the absorption spectrum and the fluorescence spectrum), a large Stokes shift (overlap between the absorption spectrum and the fluorescence spectrum) is required to suppress self-absorption. It is preferable to use a compound (small).
  • the Stokes shift can be measured by the method described below.
  • the compound to be measured is dissolved in toluene at a concentration of 2.0 ⁇ 10-5 mol / L to prepare a sample for measurement.
  • the measurement sample placed in the quartz cell is irradiated with continuous light in the ultraviolet-visible region at room temperature (300 K), and the absorption spectrum (vertical axis: absorbance, horizontal axis: wavelength) is measured.
  • a spectrophotometer can be used for the absorption spectrum measurement, and for example, a spectrophotometer U-3900 / 3900H type manufactured by Hitachi High-Tech Science Co., Ltd. can be used.
  • the compound to be measured is dissolved in toluene at a concentration of 4.9 ⁇ 10-6 mol / L to prepare a sample for measurement.
  • the measurement sample placed in the quartz cell was irradiated with excitation light at room temperature (300 K), and the fluorescence spectrum (vertical axis: fluorescence intensity, horizontal axis: wavelength) was measured.
  • a spectrophotometer can be used for the fluorescence spectrum measurement, and for example, a spectrofluorometer F-7000 type manufactured by Hitachi High-Tech Science Co., Ltd. can be used. From these absorption spectra and fluorescence spectra, the difference between the absorption maximum wavelength and the fluorescence maximum wavelength is calculated to obtain a Stokes shift (SS).
  • the unit of Stokes shift SS is nm.
  • the triplet energy T 1 (D2) of the second luminescent compound and the triplet energy T 1 (H2) of the second host material are calculated by the following mathematical formula (Equation 30A). It is preferable to satisfy the relationship. T 1 (D2)> T 1 (H2) ... (Equation 30A)
  • the triplet excitation generated in the first light emitting layer by satisfying the relationship of the above formula (Equation 30A) between the second luminescent compound and the second host material.
  • the energy is transferred to the molecule of the second host material instead of the second luminescent compound having higher triplet energy.
  • triplet excitons generated by the recombination of holes and electrons on the second host material do not move to the second luminescent compound with higher triplet energy.
  • the triplet excitons generated by recombination on the molecule of the second luminescent compound rapidly transfer energy to the molecule of the second host material.
  • the singlet energy S 1 (H2) of the second host material and the singlet energy S 1 (D2) of the second luminescent compound are represented by the following mathematical formula (Equation 4). It is preferable to satisfy the relationship. S 1 (H2)> S 1 (D2) ... (Equation 4)
  • the singlet energy of the second luminescent compound is increased by satisfying the relationship of the above formula (Equation 4) between the second luminescent compound and the second host material. Because it is smaller than the singlet energy of the second host material, the singlet exciter generated by the TTF phenomenon transfers energy from the second host material to the second luminescent compound, and the energy of the second luminescent compound is transferred. Contributes to fluorescent emission.
  • the second luminescent compound is preferably a compound that does not contain an azine ring structure in the molecule.
  • the second luminescent compound is preferably not a boron-containing complex, and more preferably the second luminescent compound is not a complex.
  • the blue fluorescent compound that can be used for the second light emitting layer is selected from the group consisting of, for example, a pyrene derivative, a styrylamine derivative, a chrysene derivative, a fluoranthene derivative, a fluorene derivative, a diamine derivative, and a triarylamine derivative. You can use the compounds that are used.
  • the second light emitting layer does not contain a metal complex. Further, in the organic EL device according to the present embodiment, it is also preferable that the second light emitting layer does not contain a boron-containing complex.
  • the second light emitting layer does not contain a phosphorescent material (dopant material). Further, it is preferable that the second light emitting layer does not contain a heavy metal complex and a phosphorescent rare earth metal complex.
  • the heavy metal complex include an iridium complex, an osmium complex, a platinum complex, and the like.
  • the second light emitting layer contains the second light emitting compound in an amount of 0.5% by mass or more of the total mass of the second light emitting layer.
  • the second light emitting layer preferably contains the second light emitting compound in an amount of 10% by mass or less of the total mass of the second light emitting layer, and preferably contains 7% by mass or less of the total mass of the second light emitting layer. It is more preferable to contain 5% by mass or less of the total mass of the second light emitting layer.
  • the second light emitting layer preferably contains the second compound as the second host material in an amount of 60% by mass or more of the total mass of the second light emitting layer, and is 70 of the total mass of the second light emitting layer. It is more preferably contained in an amount of mass% or more, more preferably 80% by mass or more of the total mass of the second light emitting layer, and further preferably 90% by mass or more of the total mass of the second light emitting layer. Even more preferably, it is contained in an amount of 95% by mass or more based on the total mass of the second light emitting layer.
  • the second light emitting layer preferably contains the second host material in an amount of 99.5% by mass or less based on the total mass of the second light emitting layer. When the second light emitting layer contains the second host material and the second luminescent compound, the upper limit of the total content of the second host material and the second luminescent compound is 100% by mass.
  • the film thickness of the second light emitting layer is preferably 5 nm or more, more preferably 10 nm or more, and further preferably 15 nm or more.
  • the film thickness of the second light emitting layer is 5 nm or more, it is easy to prevent the triplet excitons that have moved from the first light emitting layer to the second light emitting layer to return to the first light emitting layer again.
  • the film thickness of the second light emitting layer is 5 nm or more, triplet excitons can be charged and separated from the recombination portion in the first light emitting layer.
  • the film thickness of the second light emitting layer is preferably 20 nm or less.
  • the film thickness of the second light emitting layer is 20 nm or less, the density of triplet excitons in the second light emitting layer can be improved to make the TTF phenomenon more likely to occur.
  • the film thickness of the second light emitting layer is preferably 5 nm or more and 20 nm or less.
  • the triplet energy T 1 (H2) of the second host material preferably satisfies the relationship of the following mathematical formula (Equation 9), and more preferably satisfies the relationship of the following mathematical formula (Equation 10).
  • the triplet energy T 1 (D1) of the first luminescent compound preferably satisfies the relationship of the following mathematical formula (Equation 9A), and more preferably satisfies the relationship of the following mathematical formula (Equation 10A). 2.7eV> T 1 (D1)> T 1 (H1)> T 1 (H2) ... (Equation 9A) 2.6 eV> T 1 (D1)> T 1 (H1)> T 1 (H2) ... (Equation 10A)
  • the triplet energy T 1 (D2) of the second luminescent compound preferably satisfies the relationship of the following mathematical formula (Equation 9B), and more preferably satisfies the relationship of the following mathematical formula (Equation 10B).
  • Equation 9B The triplet energy T 1 (D2) of the second luminescent compound preferably satisfies the relationship of the following mathematical formula (Equation 9B), and more preferably satisfies the relationship of the following mathematical formula (Equation 10B).
  • the triplet energy T 1 (DX) of the first luminescent compound or the second luminescent compound and the triplet energy T 1 (H1) of the first host material are present.
  • the triplet energy T 1 (D1) of the first luminescent compound preferably satisfies the relationship of the following mathematical formula (Equation 11A). 0 eV ⁇ T 1 (D1) -T 1 (H1) ⁇ 0.6 eV ... (Equation 11A)
  • the triplet energy T 1 (D2) of the second luminescent compound preferably satisfies the relationship of the following mathematical formula (Equation 11B). 0 eV ⁇ T 1 (D2) -T 1 (H2) ⁇ 0.8 eV ... (Equation 11B)
  • the triplet energy T 1 (H1) of the first host material satisfies the relationship of the following mathematical formula (Equation 12).
  • the triplet energy T 1 (H1) of the first host material preferably satisfies the relationship of the following mathematical formula (Equation 12A), and satisfies the relationship of the following mathematical formula (Equation 12B). It is also preferable. T 1 (H1)> 2.10 eV ... (Equation 12A) T 1 (H1)> 2.15 eV ... (Equation 12B)
  • the triplet energy T 1 (H1) of the first host material satisfies the relationship of the mathematical formula (Equation 12A) or the equation (Equation 12B), so that the first light emission occurs.
  • the triplet exciter generated in the layer easily moves to the second light emitting layer, and also easily suppresses the reverse movement from the second light emitting layer to the first light emitting layer. As a result, singlet excitons are efficiently generated in the second light emitting layer, and the luminous efficiency is improved.
  • the triplet energy T 1 (H1) of the first host material preferably satisfies the relationship of the following mathematical formula (Equation 12C), and satisfies the relationship of the following mathematical formula (Equation 12D). It is also preferable. 2.08 eV> T 1 (H1)> 1.87 eV ... (Equation 12C) 2.05 eV> T 1 (H1)> 1.90 eV ... (Equation 12D)
  • the triplet energy T 1 (H1) of the first host material satisfies the relationship of the mathematical formula (Equation 12C) or the equation (Equation 12D), so that the first light emission occurs.
  • the energy of the triplet excitons generated in the layer is reduced, and the life of the blue organic EL element of the organic EL element can be expected to be extended.
  • the triplet energy T 1 (D1) of the first luminescent compound satisfies the relationship of the following mathematical formula (Equation 14A), and the relationship of the following mathematical formula (Equation 14B) is satisfied. It is also preferable to satisfy. 2.60eV> T 1 (D1) ... (Equation 14A) 2.50eV> T 1 (D1) ... (Equation 14B)
  • the first light emitting layer contains the first light emitting compound satisfying the relationship of the above formula (Equation 14A) or (Equation 14B)
  • the life of the blue organic EL element of the organic EL element is extended.
  • the triplet energy T 1 (D2) of the second luminescent compound satisfies the relationship of the following mathematical formula (Equation 14C), and the relationship of the following mathematical formula (Equation 14D) is satisfied. It is also preferable to satisfy. 2.60eV> T 1 (D2) ... (Equation 14C) 2.50eV> T 1 (D2) ... (Number 14D)
  • the second light emitting layer contains a compound satisfying the relationship of the above formula (Equation 14C) or (Equation 14D)
  • the life of the blue organic EL element of the organic EL element is extended.
  • the triplet energy T 1 (H2) of the second host material satisfies the relationship of the following mathematical formula (Equation 13).
  • the first The hole mobility ⁇ h (H1) of one host material when the stacking order of the first light emitting layer and the second light emitting layer is the order of the first light emitting layer and the second light emitting layer from the anode side, the first The hole mobility ⁇ h (H1) of one host material, the electron mobility ⁇ e (H1) of the first host material, the hole mobility ⁇ h (H2) of the second host material, and the second host. It is also preferable that the electron mobility ⁇ e (H2) of the material satisfies the relationship of the following mathematical formula (Equation 32). ( ⁇ e (H2) / ⁇ h (H2))> ( ⁇ e (H1) / ⁇ h (H1)) ... (Equation 32)
  • the first host material and the second host material are, for example, the first compound represented by the following general formula (1), the following general formula (1X), and the general formula (1X). 12X), the first compound represented by the general formula (13X), the general formula (14X), the general formula (15X) or the general formula (16X), and the second compound represented by the following general formula (2). It is also preferable that the compound is selected from the group consisting of the above. Further, the first compound can also be used as the first host material and the second host material.
  • the general formula (1) used as the second host material or the following general formula (1X)
  • the compound represented by the general formula (12X), the general formula (13X), the general formula (14X), the general formula (15X) or the general formula (16X) may be referred to as a second compound for convenience.
  • the first compound is, for example, the following general formula (1), general formula (1X), general formula (12X), general formula (13X), general formula. (14X), a compound represented by the general formula (15X) or the general formula (16X).
  • the first compound is preferably a compound represented by the following general formula (1).
  • the first compound represented by the following general formula (1) has at least one group represented by the following general formula (11).
  • R 101 to R 110 is a group represented by the general formula (11).
  • the plurality of groups represented by the general formula (11) are the same or different from each other.
  • L 101 is Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • Ar 101 is A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms.
  • mx is 0, 1, 2, 3, 4 or 5
  • the two or more L 101s are the same as or different from each other.
  • the two or more Ar 101s are the same or different from each other. * In the general formula (11) indicates the bonding position with the pyrene ring in the general formula (1).
  • R 901 , R 902 , R 903 , R 904 , R 905 , R 906 , R 907 , R 801 and R 802 are independent of each other.
  • the plurality of R 901s are the same as or different from each other.
  • the plurality of R 902s are the same as or different from each other.
  • the plurality of R 903s are present, the plurality of R 903s are the same as or different from each other.
  • the plurality of R 904s are present, the plurality of R 904s are the same as or different from each other.
  • the plurality of R 905s are present, the plurality of R 905s are the same as or different from each other.
  • the plurality of R 906s are present, the plurality of R 906s are the same as or different from each other.
  • the plurality of R 907s are the same as or different from each other.
  • the plurality of R 801s are the same as or different from each other.
  • the plurality of R 802s are the same as or different from each other.
  • Ar 101 is preferably a substituted or unsubstituted aryl group having 6 to 50 carbon atoms.
  • Ar 101 comprises a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted pyrenyl group, and the like. It is preferably a substituted or unsubstituted phenylyl group or a substituted or unsubstituted fluorenyl group.
  • the first compound is preferably represented by the following general formula (101).
  • R 101 to R 110 indicates the connection position with L 101
  • one of R 111 to R 120 indicates the connection position with L 101
  • L 101 is Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • mx is 0, 1, 2, 3, 4 or 5 When two or more L 101s are present, the two or more L 101s are the same as or different from each other. )
  • L 101 is preferably a single-bonded, substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms.
  • R 101 to R 110 are groups represented by the general formula (11).
  • R 101 to R 110 are groups represented by the general formula (11), and Ar 101 has a substituted or unsubstituted ring-forming carbon number of 6 to 50. It is preferably an aryl group.
  • Ar 101 is not a substituted or unsubstituted pyrenyl group
  • L 101 is not a substituted or unsubstituted pyrenylene group
  • R 101 to R are not groups represented by the general formula (11). It is preferable that the substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms as 110 is not a substituted or unsubstituted pyrenyl group.
  • R 101 to R 110 which are not the groups represented by the general formula (11), are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, substituted or unsubstituted.
  • R 101 to R 110 which are not the groups represented by the general formula (11), are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, or substituted or absent. Substitution ring formation A cycloalkyl group having 3 to 50 carbon atoms is preferable.
  • R 101 to R 110 which are not groups represented by the general formula (11), are preferably hydrogen atoms.
  • the first compound is preferably a compound represented by the following general formula (1X).
  • R 101 to R 112 is a group represented by the general formula (11X).
  • the plurality of groups represented by the general formula (11X) are the same or different from each other.
  • L 101 is Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • Ar 101 is A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms.
  • mx is 1, 2, 3, 4 or 5
  • the two or more L 101s are the same as or different from each other.
  • the two or more Ar 101s are the same or different from each other. * In the general formula (11X) indicates the bonding position with the benz [a] anthracene ring in the general formula (1X). )
  • the group represented by the general formula (11X) is preferably a group represented by the following general formula (111X).
  • X 1 is CR 143 R 144 , oxygen atom, sulfur atom, or NR 145 .
  • L 111 and L 112 are independent of each other. Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • ma is 1, 2, 3 or 4 mb is 1, 2, 3 or 4 ma + mb is 2, 3 or 4,
  • Ar 101 is synonymous with Ar 101 in the general formula (11X).
  • R 141 , R 142 , R 143 , R 144 and R 145 are independent of each other.
  • L 111 is bonded to the position of the carbon atom of * 2 in the ring structure represented by the general formula (111aX), and L 112 is the general formula (11aX).
  • the group represented by the general formula (111X) is represented by the following general formula (111bX).
  • X 1 , L 111 , L 112 , ma, mb, Ar 101 , R 141 , R 142 , R 143 , R 144 and R 145 are independently X 1 , L 111 , L in the general formula (111X). It is synonymous with 112 , ma, mb, Ar 101 , R 141 , R 142 , R 143 , R 144 and R 145 .
  • a plurality of R 141s are the same as or different from each other.
  • a plurality of R 142s are the same as or different from each other.
  • the group represented by the general formula (111X) is preferably a group represented by the general formula (111bX).
  • ma is preferably 1 or 2
  • mb is preferably 1 or 2.
  • ma is preferably 1 and mb is preferably 1.
  • Ar 101 is preferably an aryl group having 6 to 50 substituted or unsubstituted ring-forming carbon atoms.
  • Ar 101 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, It is preferably a substituted or unsubstituted benz [a] anthryl group, a substituted or unsubstituted pyrenyl group, a substituted or unsubstituted phenylyl group, or a substituted or unsubstituted fluorenyl group.
  • the compound represented by the general formula (1X) is preferably represented by the following general formula (101X).
  • R 111 and R 112 indicates the position of connection with L 101
  • one of R 133 and R 134 indicates the position of connection with L 101
  • R 101 to R 110 , R 121 to R 130 , R 111 or R 112 not connected to L 101 , and R 133 or R 134 not connected to L 101 are independent of each other.
  • L 101 is Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • mx is 1, 2, 3, 4 or 5 When two or more L 101s are present, the two or more L 101s are the same as or different from each other. )
  • L 101 is preferably a single-bonded, substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms.
  • the compound represented by the general formula (1X) is preferably represented by the following general formula (102X).
  • R 111 and R 112 indicates the position of connection with L 111
  • one of R 133 and R 134 indicates the position of connection with L 112
  • R 101 to R 110 , R 121 to R 130 , R 111 or R 112 not connected to L 111 , and R 133 or R 134 not connected to L 112 are independent of each other.
  • X 1 is CR 143 R 144 , oxygen atom, sulfur atom, or NR 145 .
  • L 111 and L 112 are independent of each other. Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • ma is 1, 2, 3 or 4 mb is 1, 2, 3 or 4 ma + mb is 2, 3, 4 or 5
  • R 141 , R 142 , R 143 , R 144 and R 145 are independent of each other.
  • ma in the general formula (102X) is preferably 1 or 2
  • mb is preferably 1 or 2.
  • ma in the general formula (102X) is It is preferably 1 and mb is preferably 1.
  • the group represented by the general formula (11X) is a group represented by the following general formula (11AX) or a group represented by the following general formula (11BX). Is also preferable.
  • R 121 to R 131 are independent of each other. Hydrogen atom, Substituent or unsubstituted alkyl groups having 1 to 50 carbon atoms, Substituted or unsubstituted haloalkyl groups having 1 to 50 carbon atoms, Substituent or unsubstituted alkenyl groups having 2 to 50 carbon atoms, Substituent or unsubstituted alkynyl groups having 2 to 50 carbon atoms, Substituted or unsubstituted ring-forming cycloalkyl group having 3 to 50 carbon atoms, -A group represented by Si (R 901 ) (R 902 ) (R 903 ), A group represented by -O- (R 904 ), A group represented by -S- (R 905 ), Substituent or unsubstituted aralkyl groups having 7 to 50 carbon atoms,
  • the plurality of groups represented by the general formula (11AX) are the same as or different from each other.
  • the plurality of groups represented by the general formula (11BX) are the same as or different from each other.
  • L 131 and L 132 are independent of each other Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • the * in the general formula (11AX) and the general formula (11BX) indicates the bonding position with the benz [a] anthracene ring in the general formula (1X), respectively.
  • the compound represented by the general formula (1X) is preferably represented by the following general formula (103X).
  • R 101 to R 110 and R 112 are synonymous with R 101 to R 110 and R 112 in the general formula (1X), respectively.
  • R 121 to R 131 , L 131 and L 132 are synonymous with R 121 to R 131 , L 131 and L 132 in the general formula (11BX), respectively.
  • L 131 is preferably an arylene group having 6 to 50 substituted or unsubstituted ring-forming carbon atoms.
  • L 132 is preferably an arylene group having 6 to 50 substituted or unsubstituted ring-forming carbon atoms.
  • R 101 to R 112 are groups represented by the general formula (11X).
  • R 101 to R 112 are groups represented by the general formula (11X), and Ar 101 in the general formula (11X) is ,
  • Substituent or unsubstituted, ring-forming is preferably an aryl group having 6 to 50 carbon atoms.
  • Ar 101 is not a substituted or unsubstituted benz [a] anthryl group
  • L 101 is not a substituted or unsubstituted benz [a] anthrylene group.
  • a substituted or unsubstituted aryl group having 6 to 50 carbon atoms as R 101 to R 110 which is not a group represented by the general formula (11X), is not a substituted or unsubstituted benz [a] anthryl group. Is also preferable.
  • R 101 to R 112 which are not groups represented by the general formula (11X), are independently hydrogen atoms and substituted or unsubstituted carbon atoms 1 to 50, respectively.
  • Alkyl group, substituted or unsubstituted ring-forming carbon number 3 to 50 cycloalkyl group, substituted or unsubstituted ring-forming carbon number 6 to 50 aryl group, or substituted or unsubstituted ring-forming atom number 5 to 50 It is preferably a heterocyclic group of.
  • R 101 to R 112 which are not groups represented by the general formula (11X), are hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms. Alternatively, it is preferably a substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms.
  • R 101 to R 112 which are not groups represented by the general formula (11X), are preferably hydrogen atoms.
  • the first compound is preferably a compound represented by the following general formula (12X).
  • R 1201 to R 1210 Bond to each other to form a substituted or unsubstituted monocycle, or to bond to each other to form a substituted or unsubstituted fused ring.
  • R 1201 to R 1210 which do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring, are independent of each other.
  • the substituent when the substituted or unsubstituted monocycle has a substituent the substituent when the substituted or unsubstituted condensed ring has a substituent, and at least one of R 1201 to R 1210 are present.
  • the plurality of groups represented by the general formula (121) are the same or different from each other.
  • L 1201 is Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • Ar 1201 A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms.
  • mx2 is 0, 1, 2, 3, 4 or 5 If there are two or more L 1201 , the two or more L 1201s are the same or different from each other. If there are two or more Ar 1201 , the two or more Ar 1201s are the same or different from each other.
  • * In the general formula (121) indicates the bonding position with the ring represented by the general formula (12X). )
  • the pair consisting of two adjacent R 1201 to R 1210 includes a pair of R 1201 and R 1202 , a pair of R 1202 and R 1203 , and R 1203 and R 1204 . , R 1205 and R 1205, R 1205 and R 1206 , R 1207 and R 1208 , R 1208 and R 1209 , and R 1209 and R 1210 . ..
  • the first compound is preferably a compound represented by the following general formula (13X).
  • R 1301 to R 1310 is a group represented by the general formula (131).
  • the plurality of groups represented by the general formula (131) are the same or different from each other.
  • L 1301 is Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • Ar 1301 A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms.
  • mx3 is 0, 1, 2, 3, 4 or 5 If there are two or more L 1301 , the two or more L 1301s are the same or different from each other. If there are two or more Ar 1301 , the two or more Ar 1301s are the same or different from each other. * In the general formula (131) indicates the bonding position with the fluoranthene ring in the general formula (13X). )
  • none of the adjacent pairs of R 1301 to R 1310 which are not the groups represented by the general formula (131), are bonded to each other.
  • the two adjacent sets are the set of R 1301 and R 1302 , the set of R 1302 and R 1303 , the set of R 1303 and R 1304 , and the set of R 1304 and R 1305 .
  • R 1305 and R 1306 , R 1307 and R 1308 , R 1308 and R 1309 , and R 1309 and R 1310 are the two adjacent sets.
  • the first compound is preferably a compound represented by the following general formula (14X).
  • R 1401 to R 1410 is a group represented by the general formula (141).
  • the plurality of groups represented by the general formula (141) are the same or different from each other.
  • L 1401 is Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • Ar 1401 A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms.
  • mx4 is 0, 1, 2, 3, 4 or 5 If there are two or more L 1401 , the two or more L 1401s are the same or different from each other. If there are two or more Ar 1401 , the two or more Ar 1401s are the same or different from each other. * In the general formula (141) indicates the bonding position with the ring represented by the general formula (14X). )
  • the first compound is preferably a compound represented by the following general formula (15X).
  • R 1501 to R 1514 is a group represented by the general formula (151).
  • the plurality of groups represented by the general formula (151) are the same or different from each other.
  • L 1501 is Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • Ar 1501 A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms.
  • mx5 is 0, 1, 2, 3, 4 or 5 If there are two or more L 1501 , the two or more L 1501s are the same or different from each other. If there are two or more Ar 1501 , the two or more Ar 1501s are the same or different from each other. * In the general formula (151) indicates the bonding position with the ring represented by the general formula (15X). )
  • the first compound is preferably a compound represented by the following general formula (16X).
  • R 1601 to R 1614 is a group represented by the general formula (161).
  • the plurality of groups represented by the general formula (161) are the same or different from each other.
  • L 1601 is Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • Ar 1601 A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms.
  • mx6 is 0, 1, 2, 3, 4 or 5 If there are two or more L 1601 , the two or more L 1601s are the same or different from each other. If there are two or more Ar 1601 , the two or more Ar 1601s are the same or different from each other. * In the general formula (161) indicates the bonding position with the ring represented by the general formula (16X). )
  • the first host material has a linked structure containing a benzene ring and a naphthalene ring linked by a single bond in the molecule, and the benzene ring and naphthalene in the linked structure.
  • Benzene ring and naphthalene ring in the linked structure are bridged in at least one portion other than the single bond, respectively, with or without condensing a monocyclic ring or a fused ring on the ring independently. It is also preferable that they are further connected by. Since the first host material has a connecting structure including such cross-linking, it can be expected to suppress deterioration of the chromaticity of the organic EL element.
  • the first host material in this case has a linked structure (benzene-) in which a benzene ring and a naphthalene ring linked by a single bond as represented by the following formula (X1) or formula (X2) are contained in the molecule. It may be referred to as a naphthalene-linked structure) as the minimum unit, and a monocyclic ring or a fused ring may be further condensed on the benzene ring, or a monocyclic or fused ring may be further condensed on the naphthalene ring. May be condensed.
  • the first host material contains, in the molecule, a naphthalene ring and a naphthalene ring linked by a single bond, as represented by the following formula (X3), formula (X4), or formula (X5).
  • a naphthalene ring contains a benzene ring, so that it contains a benzene-naphthalene linked structure.
  • the cross-linking contains a double bond. That is, it is also preferable that the benzene ring and the naphthalene ring have a structure in which the benzene ring and the naphthalene ring are further linked by a crosslinked structure containing a double bond in a portion other than the single bond.
  • the benzene ring and the naphthalene ring in the benzene-naphthalene linking structure are further linked by cross-linking at at least one portion other than the single bond, for example, in the case of the above formula (X1), the link represented by the following formula (X11). It becomes a structure (condensed ring), and in the case of the above formula (X3), it becomes a connected structure (condensed ring) represented by the following formula (X31).
  • the first host material has a biphenyl structure in which the first benzene ring and the second benzene ring are connected by a single bond in the molecule, and the biphenyl structure has a biphenyl structure. It is also preferable that the first benzene ring and the second benzene ring of the above are further linked by cross-linking at at least one portion other than the single bond.
  • the first benzene ring and the second benzene ring in the biphenyl structure are further connected by the cross-linking at one portion other than the single bond. Since the first host material has a biphenyl structure including such cross-linking, it can be expected to suppress deterioration of the chromaticity of the organic EL device.
  • the cross-linking contains a double bond. In the organic EL device according to the present embodiment, it is also preferable that the cross-linking does not contain a double bond.
  • first benzene ring and the second benzene ring in the biphenyl structure are further linked by the cross-linking at two portions other than the single bond.
  • the first benzene ring and the second benzene ring in the biphenyl structure are further linked by the cross-linking at two portions other than the single bond, and the cross-linking is double. It is also preferable that it does not contain a bond. Since the first host material has a biphenyl structure including such cross-linking, it can be expected to suppress deterioration of the chromaticity of the organic EL device.
  • the biphenyl structure becomes It has a linked structure (condensed ring) such as the following formulas (BP11) to (BP15).
  • the formula (BP11) is a structure in which one portion other than the single bond is linked by a crosslink that does not contain a double bond.
  • the formula (BP12) is a structure in which one portion other than the single bond is linked by a crosslink including a double bond.
  • the formula (BP13) is a structure in which two portions other than the single bond are linked by a crosslink that does not contain a double bond.
  • the formula (BP14) has a structure in which one of the two portions other than the single bond is linked by a cross-link containing no double bond, and the other of the two portions other than the single bond is linked by a cross-link containing a double bond. Is.
  • the formula (BP15) is a structure in which two portions other than the single bond are linked by a crosslink including a double bond.
  • the groups described as "substituted or unsubstituted” are preferably "unsubstituted” groups.
  • the first compound that can be used in the organic EL device according to the present embodiment can be produced by a known method.
  • the first compound can also be produced by following a known method and using a known alternative reaction and raw material suitable for the desired product.
  • Specific examples of the first compound that can be used in the organic EL device according to the present embodiment include the following compounds. However, the present invention is not limited to specific examples of these first compounds.
  • D represents a deuterium atom
  • Me represents a methyl group
  • tBu represents a tert-butyl group.
  • R 201 to R 208 are independent of each other. Hydrogen atom, Substituent or unsubstituted alkyl groups having 1 to 50 carbon atoms, Substituted or unsubstituted haloalkyl groups having 1 to 50 carbon atoms, Substituent or unsubstituted alkenyl groups having 2 to 50 carbon atoms, Substituent or unsubstituted alkynyl groups having 2 to 50 carbon atoms, Substituted or unsubstituted ring-forming cycloalkyl group having 3 to 50 carbon atoms, -A group represented by Si (R 901 ) (R 902 ) (R 903 ), A group represented by -O- (R 904 ), A group represented by -S- (R 905 ), A group represented by -N (R 906 ) (R 907 ), Substituent or unsubstituted aralkyl groups having 7
  • L 201 and L 202 are independent of each other. Single bond, A substituted or unsubstituted ring-forming arylene group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 50 atoms.
  • Ar 201 and Ar 202 are independent of each other. A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted ring-forming heterocyclic group having 5 to 50 atoms. )
  • R 901 , R 902 , R 903 , R 904 , R 905 , R 906 , R 907 , R 801 and R 802 are independent of each other.
  • the plurality of R 901s are the same as or different from each other.
  • the plurality of R 902s are the same as or different from each other.
  • the plurality of R 903s are present, the plurality of R 903s are the same as or different from each other.
  • the plurality of R 904s are present, the plurality of R 904s are the same as or different from each other.
  • the plurality of R 905s are present, the plurality of R 905s are the same as or different from each other.
  • the plurality of R 906s are present, the plurality of R 906s are the same as or different from each other.
  • the plurality of R 907s are the same as or different from each other.
  • the plurality of R 801s are the same as or different from each other.
  • the plurality of R 802s are the same as or different from each other.
  • L 201 and L 202 are independently single-bonded, or substituted or unsubstituted, ring-forming arylene groups having 6 to 50 carbon atoms, and Ar 201 and Ar 202 are independently substituted, respectively. Alternatively, it is preferably an unsubstituted aryl group having 6 to 50 carbon atoms.
  • Ar 201 and Ar 202 are independently phenyl group, naphthyl group, phenanthryl group, biphenyl group, terphenyl group, diphenylfluorenyl group, dimethylfluorenyl group, benzodiphenylfluorenyl group, respectively.
  • a benzodimethylfluorenyl group, a dibenzofuranyl group, a dibenzothienyl group, a naphthobenzofuranyl group, or a naphthobenzothienyl group is preferable.
  • R 201 to R 208 are each independently hydrogen atom, substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, and substituted. Alternatively, it is preferably an unsubstituted cycloalkyl group having 3 to 50 carbon atoms, or a group represented by ⁇ Si (R 901 ) (R 902 ) (R 903 ).
  • L 201 is a single-bonded or unsubstituted ring-forming carbon number 6-22 arylene group
  • Ar 201 is a substituted or unsubstituted ring-forming carbon number 6-22 aryl group. Is preferable.
  • R 201 to R 208 are each independently hydrogen atom, substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, and substituted. Alternatively, it is preferably an unsubstituted cycloalkyl group having 3 to 50 carbon atoms, or a group represented by ⁇ Si (R 901 ) (R 902 ) (R 903 ).
  • R 201 to R 208 are preferably hydrogen atoms.
  • the second compound is preferably a compound in which L 202 in the general formula (2) is a single bond and Ar 202 is an unsubstituted phenyl group.
  • the second compound is preferably a compound in which L 202 in the general formula (2) is a single bond and Ar 202 is an unsubstituted 2-naphthyl group.
  • the second compound is preferably a compound in which L 202 in the general formula (2) is a single bond and Ar 202 is an unsubstituted 1-naphthyl group.
  • the second compound is a compound in which L 202 in the general formula (2) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is a compound in which L 202 in the general formula (2) is an unsubstituted m-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is a compound in which L 202 in the general formula (2) is an unsubstituted o-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is a compound in which L 202 in the general formula (2) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted 1-naphthyl group. ..
  • the second compound is a compound in which L 202 in the general formula (2) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted 2-naphthyl group. ..
  • the second compound may be a compound in which L 202 in the general formula (2) is an unsubstituted 1,4-naphthalenediyl group and Ar 202 is an unsubstituted phenyl group. preferable.
  • the second compound is a compound in which L 202 in the general formula (2) is an unsubstituted m-phenylene group and Ar 202 is an unsubstituted 2-naphthyl group. ..
  • the second compound is preferably a compound represented by the following general formula (2X).
  • R 201 and R 203 to R 208 are independently synonymous with R 201 and R 203 to R 208 in the general formula (2).
  • L 201 , L 202 , Ar 201 and Ar 202 are synonymous with L 201 , L 202 , Ar 201 and Ar 202 in the general formula (2), respectively.
  • L 203 is synonymous with L 201 in the general formula (2).
  • L 201 , L 202 and L 203 are the same as or different from each other.
  • Ar 203 is synonymous with Ar 201 in the general formula (2).
  • Ar 201 , Ar 202 and Ar 203 are the same as or different from each other.
  • the second compound is preferably a compound in which L 202 in the general formula (2X) is a single bond and Ar 202 is an unsubstituted phenyl group.
  • the second compound is preferably a compound in which L 202 in the general formula (2X) is a single bond and Ar 202 is an unsubstituted 2-naphthyl group.
  • the second compound is preferably a compound in which L 202 in the general formula (2X) is a single bond and Ar 202 is an unsubstituted 1-naphthyl group.
  • the second compound is preferably a compound in which L 202 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is preferably a compound in which L 202 in the general formula (2X) is an unsubstituted m-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is preferably a compound in which L 202 in the general formula (2X) is an unsubstituted o-phenylene group and Ar 202 is an unsubstituted phenyl group.
  • the second compound is a compound in which L 202 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted 1-naphthyl group. ..
  • the second compound is preferably a compound in which L 202 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 202 is an unsubstituted 2-naphthyl group. ..
  • the second compound may be a compound in which L 202 in the general formula (2X) is an unsubstituted 1,4-naphthalenediyl group and Ar 202 is an unsubstituted phenyl group. preferable.
  • the second compound is preferably a compound in which L 202 in the general formula (2X) is an unsubstituted m-phenylene group and Ar 202 is an unsubstituted 2-naphthyl group. ..
  • the second compound is preferably a compound in which L 201 in the general formula (2X) is a single bond and Ar 201 is an unsubstituted phenyl group.
  • the second compound is preferably a compound in which L 201 in the general formula (2X) is a single bond and Ar 201 is an unsubstituted 2-naphthyl group.
  • the second compound is preferably a compound in which L 201 in the general formula (2X) is a single bond and Ar 201 is an unsubstituted 1-naphthyl group.
  • the second compound is preferably a compound in which L 201 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 201 is an unsubstituted phenyl group.
  • the second compound is preferably a compound in which L 201 in the general formula (2X) is an unsubstituted m-phenylene group and Ar 201 is an unsubstituted phenyl group.
  • the second compound is preferably a compound in which L 201 in the general formula (2X) is an unsubstituted o-phenylene group and Ar 201 is an unsubstituted phenyl group.
  • the second compound is preferably a compound in which L 201 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 201 is an unsubstituted 1-naphthyl group. ..
  • the second compound is preferably a compound in which L 201 in the general formula (2X) is an unsubstituted p-phenylene group and Ar 201 is an unsubstituted 2-naphthyl group. ..
  • the second compound may be a compound in which L 201 in the general formula (2X) is an unsubstituted 1,4-naphthalenediyl group and Ar 201 is an unsubstituted phenyl group. preferable.
  • the second compound is a compound in which L 201 in the general formula (2X) is an unsubstituted m-phenylene group and Ar 201 is an unsubstituted 2-naphthyl group. ..
  • the groups described as "substituted or unsubstituted” are preferably "unsubstituted” groups.
  • the second light emitting layer preferably contains the second compound represented by the general formula (2) as the second host material. Therefore, for example, the second light emitting layer contains the second compound represented by the general formula (2) in an amount of 50% by mass or more of the total mass of the second light emitting layer.
  • R 201 to R 208 which are substituents of the anthracene skeleton, suppress the interaction between molecules.
  • a hydrogen atom is preferable from the viewpoint of preventing a decrease in electron mobility and suppressing a decrease in electron mobility.
  • R 201 to R 208 are substituted or unsubstituted aryl groups having 6 to 50 ring-forming carbon atoms, or substituted or absent. It may be a heterocyclic group having 5 to 50 atoms forming a ring of substitution.
  • R 201 to R 208 become bulky substituents such as an alkyl group and a cycloalkyl group, the interaction between the molecules is suppressed, the electron mobility with respect to the first host material decreases, and the above formula (number). There is a risk that the relationship of ⁇ e (H2)> ⁇ e (H1) described in 30) will not be satisfied.
  • satisfying the relationship of ⁇ e (H2)> ⁇ e (H1) reduces the recombination ability of holes and electrons in the first light emitting layer. And it can be expected to suppress the decrease in luminous efficiency.
  • the substituents include a haloalkyl group, an alkenyl group, an alkynyl group, a group represented by -Si (R 901 ) (R 902 ) (R 903 ), a group represented by -O- (R 904 ), and-.
  • the group represented by S- (R 905 ), the group represented by -N (R 906 ) (R 907 ), the aralkyl group, the group represented by -C ( O) R 801 and the group represented by -COOR 802 .
  • the groups to be formed, halogen atoms, cyano groups, and nitro groups may be bulky, and the alkyl groups and cycloalkyl groups may be further bulky.
  • R 201 to R 208 which are substituents of the anthracene skeleton, are preferably not bulky substituents and are not alkyl groups or cycloalkyl groups.
  • R 801 group More preferably, it is not a group represented by, a halogen atom, a cyano group, and a nitro group.
  • the substituents in the case of "substituted or unsubstituted" in R 201 to R 208 are the above-mentioned potentially bulky substituents, particularly substituted or unsubstituted alkyl groups, and substituted or unsubstituted groups. It is also preferable that it does not contain an unsubstituted cycloalkyl group.
  • the substituent in the case of "substituted or unsubstituted" in R 201 to R 208 does not contain a substituted or unsubstituted alkyl group and a substituted or unsubstituted cycloalkyl group, whereby an alkyl group, a cycloalkyl group, etc.
  • R 201 to R 208 which are substituents of the anthracene skeleton, are not bulky substituents, and R 201 to R 208 , which are substituents, are unsubstituted. Further, when R 201 to R 208 which are substituents of the anthracene skeleton are not bulky substituents and the substituents are bonded to R 201 to R 208 which are not bulky substituents, the substituents are also bulky.
  • the second compound can be produced by a known method.
  • the second compound can also be produced by following a known method and using a known alternative reaction and raw material suitable for the desired product.
  • Specific examples of the second compound include the following compounds. However, the present invention is not limited to specific examples of these second compounds.
  • the organic EL device has one or more organic layers in addition to the first anode-side organic layer, the second anode-side organic layer, the third anode-side organic layer, and the light-emitting layer in the light-emitting region. You may be doing it.
  • the organic layer include at least one layer selected from the group consisting of an electron injection layer, an electron transport layer, a hole barrier layer and an electron barrier layer.
  • the organic EL device may be composed of only the first anode-side organic layer, the second anode-side organic layer, the third anode-side organic layer, and the light-emitting layer in the light-emitting region.
  • it may further have at least one layer selected from the group consisting of an electron injection layer, an electron transport layer, a hole barrier layer, and the like.
  • FIG. 1 shows a schematic configuration of an example of an organic EL device according to the present embodiment.
  • the organic EL element 1 includes a substrate 2, an anode 3, a cathode 4, and an organic layer 10 arranged between the anode 3 and the cathode 4.
  • the organic layer 10 includes a first anode-side organic layer 61, a second anode-side organic layer 62, a third anode-side organic layer 63, a light-emitting layer 50, an electron transport layer 8, and electron injection in this order from the anode 3 side.
  • the layers 9 are laminated in this order.
  • FIG. 2 shows a schematic configuration of another example of the organic EL element according to the present embodiment.
  • the organic EL element 1A includes a substrate 2, an anode 3, a cathode 4, and an organic layer 11 arranged between the anode 3 and the cathode 4.
  • the organic layer 11 the first anode-side organic layer 61, the second anode-side organic layer 62, the third anode-side organic layer 63, the fourth anode-side organic layer 64, and the light-emitting layer 50 are arranged in this order from the anode 3 side.
  • the electron transport layer 8 and the electron injection layer 9 are laminated in this order.
  • FIG. 3 shows a schematic configuration of another example of the organic EL element according to the present embodiment.
  • the organic EL element 1B includes a substrate 2, an anode 3, a cathode 4, and an organic layer 12 arranged between the anode 3 and the cathode 4.
  • the first anode-side organic layer 61, the second anode-side organic layer 62, the third anode-side organic layer 63, the first light-emitting layer 51, and the second light-emitting layer are arranged in this order from the anode 3 side. 52, the electron transport layer 8, and the electron injection layer 9 are laminated in this order.
  • FIG. 4 shows a schematic configuration of another example of the organic EL element according to the present embodiment.
  • the organic EL element 1C includes a substrate 2, an anode 3, a cathode 4, and an organic layer 13 arranged between the anode 3 and the cathode 4.
  • the first anode-side organic layer 61, the second anode-side organic layer 62, the third anode-side organic layer 63, the fourth anode-side organic layer 64, and the first anode-side organic layer 61 are arranged in this order from the anode 3 side.
  • the light emitting layer 51, the second light emitting layer 52, the electron transport layer 8, and the electron injection layer 9 are laminated in this order.
  • the light emitting region 5 includes a light emitting layer 50.
  • the light emitting region 5B includes a first light emitting layer 51 and a second light emitting layer 52.
  • the hole transport zone includes the first anode-side organic layer 61, the second anode-side organic layer 62, and the third anode-side organic layer 63.
  • the hole transport zone includes the first anode-side organic layer 61, the second anode-side organic layer 62, the third anode-side organic layer 63, and the third anode-side organic layer 63.
  • a fourth anode-side organic layer 64 is included.
  • the present invention is not limited to the configuration of the organic EL element shown in FIGS. 1 to 4.
  • Examples of the organic EL element having another configuration include an organic EL element in which the second light emitting layer and the first light emitting layer are laminated in this order from the anode side in the light emitting region.
  • the organic EL device may also have an intervening layer as an organic layer arranged between the first light emitting layer and the second light emitting layer.
  • the intervening layer does not contain a luminescent compound to the extent that it can be realized.
  • the content of the luminescent compound in the intervening layer is not only 0% by mass, but also, for example, a component unintentionally mixed in the manufacturing process or a component contained as an impurity in the raw material is a luminescent compound. It is permissible for the intervening layer to contain these components.
  • the intervening layer when all the materials constituting the intervening layer are Material A, Material B and Material C, the content of each of Material A, Material B and Material C in the intervening layer is 10% by mass or more. , Material A, Material B and Material C have a total content of 100% by mass.
  • the intervening layer may be referred to as a “non-doped layer”.
  • the layer containing the luminescent compound may be referred to as a "dope layer".
  • the Singlet light emitting region and the TTF light emitting region can be easily separated, so that the luminous efficiency can be improved.
  • an intervening layer non-doped layer
  • the Singlet light emitting region and the TTF light emitting region are separated from each other. It is expected that the overlapping region will be reduced and the decrease in TTF efficiency due to the collision between the triplet exciton and the carrier will be suppressed. That is, it is considered that the insertion of the intervening layer (non-doped layer) between the light emitting layers contributes to the improvement of the efficiency of TTF light emission.
  • the intervening layer is a non-doped layer.
  • the intervening layer does not contain metal atoms. Therefore, the intervening layer does not contain a metal complex.
  • the intervening layer includes an intervening layer material.
  • the intervening layer material is not a luminescent compound.
  • the intervening layer material is not particularly limited as long as it is a material other than a luminescent compound.
  • Examples of the interposition layer material include 1) heterocyclic compounds such as oxadiazole derivatives, benzoimidazole derivatives, and phenanthroline derivatives, and 2) condensed aromatics such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, and chrysene derivatives.
  • Compounds, 3) Aromatic amine compounds such as triarylamine derivatives or condensed polycyclic aromatic amine derivatives can be mentioned.
  • one or both host materials of the first host material and the second host material can be used, but the Singlet light emitting region and the TTF light emitting region are separated from each other, and the Singlet light emitting region and the TTF light emitting region are separated from each other.
  • the material is not particularly limited as long as it does not inhibit.
  • the intervening layer includes the intervening layer material as a material constituting the intervening layer.
  • the intervening layer preferably contains the intervening layer material in an amount of 60% by mass or more, more preferably 70% by mass or more, based on the total mass of the intervening layer, and more preferably 70% by mass or more of the total mass of the intervening layer. 80% by mass or more, more preferably 90% by mass or more of the total mass of the intervening layer, still more preferably 95% by mass or more of the total mass of the intervening layer. ..
  • the intervening layer may contain only one type of intervening layer material, or may contain two or more types.
  • the intervening layer contains two or more kinds of intervening layer materials
  • the upper limit of the total content of the two or more kinds of intervening layer materials is 100% by mass.
  • this embodiment does not exclude that the intervening layer contains a material other than the intervening layer material.
  • the intervening layer may be composed of a single layer, or may be composed of two or more layers laminated.
  • the film thickness of the intervening layer is not particularly limited as long as it can suppress the overlap between the Singlet light emitting region and the TTF light emitting region, but it is preferably 3 nm or more and 15 nm or less per layer, and 5 nm or more and 10 nm or less. More preferably.
  • the film thickness of the intervening layer is 3 nm or more, it becomes easy to separate the Singlet light emitting region and the TTF-derived light emitting region.
  • the film thickness of the intervening layer is 15 nm or less, it becomes easy to suppress the phenomenon that the host material of the intervening layer emits light.
  • the intervening layer contains an intervening layer material as a material constituting the intervening layer, and includes triplet energy T 1 (H1) of the first host material and triplet energy T 1 (H2) of the second host material. It is preferable that the triplet energy T 1 (M mid ) of at least one intervening layer material satisfies the relationship of the following mathematical formula (Equation 21). T 1 (H1) ⁇ T 1 (M mid ) ⁇ T 1 (H2) ... (Equation 21)
  • the intervening layer contains two or more intervening layer materials as materials constituting the intervening layer, the triplet energy T 1 (H1) of the first host material and the triplet energy T 1 (H2) of the second host material.
  • the triplet energy T 1 ( MEA ) of each intervening layer material more preferably satisfy the relationship of the following mathematical formula (Equation 21A).
  • the organic EL element according to the present embodiment may further have a diffusion layer.
  • the organic EL element according to the present embodiment has a diffusion layer
  • the diffusion layer is arranged between the first light emitting layer and the second light emitting layer.
  • the substrate is used as a support for an organic EL element.
  • the substrate for example, glass, quartz, plastic, or the like can be used.
  • a flexible substrate is a bendable (flexible) substrate, and examples thereof include a plastic substrate.
  • the material for forming the plastic substrate include polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyimide, polyethylene naphthalate and the like.
  • Inorganic vapor deposition film can also be used.
  • anode For the anode formed on the substrate, it is preferable to use a metal having a large work function (specifically, 4.0 eV or more), an alloy, an electrically conductive compound, a mixture thereof, or the like.
  • a metal having a large work function specifically, 4.0 eV or more
  • an alloy an electrically conductive compound, a mixture thereof, or the like.
  • ITO Indium Tin Oxide
  • indium tin oxide containing silicon or silicon oxide indium oxide-zinc oxide, tungsten oxide, and indium oxide containing zinc oxide.
  • Graphene Graphene and the like.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • nitrides of metallic materials for example, titanium nitride
  • indium oxide-zinc oxide can be formed by a sputtering method by using a target in which 1% by mass or more and 10% by mass or less of zinc oxide is added to indium oxide.
  • indium oxide containing tungsten oxide and zinc oxide contained 0.5% by mass or more and 5% by mass or less of tungsten oxide and 0.1% by mass or more and 1% by mass or less of zinc oxide with respect to indium oxide.
  • a target it can be formed by a sputtering method.
  • it may be produced by a vacuum vapor deposition method, a coating method, an inkjet method, a spin coating method or the like.
  • the hole injection layer formed in contact with the anode is formed by using a composite material that facilitates hole injection regardless of the work function of the anode.
  • Possible electrode materials eg, metals, alloys, electrically conductive compounds, and mixtures thereof, and other elements belonging to Group 1 or Group 2 of the Periodic Table of the Elements
  • Possible electrode materials can be used.
  • Elements belonging to Group 1 or Group 2 of the Periodic Table of the Elements which are materials with a small work function, that is, alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg), calcium (Ca), and strontium.
  • Alkali earth metals such as (Sr), rare earth metals such as alloys containing them (for example, MgAg, AlLi), europium (Eu), ytterbium (Yb), and alloys containing these can also be used.
  • a vacuum vapor deposition method or a sputtering method can be used.
  • a coating method, an inkjet method, or the like can be used.
  • cathode As the cathode, it is preferable to use a metal having a small work function (specifically, 3.8 eV or less), an alloy, an electrically conductive compound, a mixture thereof, or the like.
  • a cathode material include elements belonging to Group 1 or Group 2 of the Periodic Table of the Elements, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), and calcium (Ca). ), Alkali earth metals such as strontium (Sr), and rare earth metals such as alloys containing them (for example, MgAg, AlLi), Europium (Eu), Itterbium (Yb), and alloys containing them.
  • a vacuum vapor deposition method or a sputtering method can be used.
  • a silver paste or the like is used, a coating method, an inkjet method, or the like can be used.
  • a cathode is formed using various conductive materials such as indium oxide-tin oxide containing Al, Ag, ITO, graphene, silicon or silicon oxide, regardless of the size of the work function. can do.
  • These conductive materials can be formed into a film by using a sputtering method, an inkjet method, a spin coating method, or the like.
  • an electron transport layer is arranged between the light emitting region and the cathode.
  • the electron transport layer is a layer containing a substance having a high electron transport property.
  • the electron transport layer includes 1) a metal complex such as an aluminum complex, a berylium complex, and a zinc complex, 2) a heteroarocyclic compound such as an imidazole derivative, a benzoimidazole derivative, an azine derivative, a carbazole derivative, and a phenanthroline derivative, and 3) a polymer compound. Can be used.
  • Alq tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq 3 ), bis (10-hydroxybenzo [h] quinolinato) beryllium (abbreviation: BeBq 2 ), Metal complexes such as BAlq, Znq, ZnPBO, and ZnBTZ can be used.
  • a benzimidazole compound can be preferably used.
  • the substances described here are mainly substances having electron mobility of 10-6 cm 2 / (V ⁇ s) or more.
  • a substance other than the above may be used as the electron transport layer as long as it is a substance having higher electron transport property than hole transport property.
  • the electron transport layer may be composed of a single layer, or may be composed of two or more layers made of the above substances laminated.
  • a polymer compound can also be used for the electron transport layer.
  • PF-Py poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)]
  • PF-BPy poly [(9,9-dioctylfluorene-2) , 7-diyl) -co- (2,2'-bipyridine-6,6'-diyl)]
  • PF-BPy poly [(9,9-dioctylfluorene-2) , 7-diyl) -co- (2,2'-bipyridine-6,6'-diyl)]
  • the electron injection layer is a layer containing a substance having a high electron injection property.
  • the electron injection layer includes lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiOx), etc.
  • Alkali metals such as, alkaline earth metals, or compounds thereof can be used.
  • a substance having electron transportability containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a substance containing magnesium (Mg) in Alq or the like may be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • a composite material is excellent in electron injection property and electron transport property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting generated electrons, and specifically, for example, a substance (metal complex, heteroaromatic compound, etc.) constituting the above-mentioned electron transport layer is used. be able to.
  • the electron donor may be any substance that exhibits electron donating property to the organic compound. Specifically, alkali metals, alkaline earth metals and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, itterbium and the like can be mentioned.
  • alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxides, calcium oxides, barium oxides and the like can be mentioned.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • the method for forming each layer of the organic EL element of the present embodiment is not limited except as specifically mentioned above, but is limited to dry film deposition methods such as vacuum deposition method, sputtering method, plasma method, ion plating method, and spin coating.
  • dry film deposition methods such as vacuum deposition method, sputtering method, plasma method, ion plating method, and spin coating.
  • Known methods such as a coating method, a dipping method, a flow coating method, and a wet film forming method such as an inkjet method can be adopted.
  • the film thickness of each organic layer of the organic EL device of the present embodiment is not limited unless otherwise specified above. Generally, if the film thickness is too thin, defects such as pinholes are likely to occur, and if the film thickness is too thick, a high applied voltage is required and efficiency is deteriorated. Therefore, the film thickness of each organic layer of an organic EL element is usually several. The range from nm to 1 ⁇ m is preferable.
  • the organic electroluminescence device preferably emits light having a maximum peak wavelength of 500 nm or less when the device is driven.
  • the organic electroluminescence device according to the present embodiment more preferably emits light having a maximum peak wavelength of 430 nm or more and 480 nm or less when the device is driven.
  • the maximum peak wavelength of the light emitted by the organic EL element when the element is driven is measured as follows.
  • the spectral radiance spectrum when a voltage is applied to the organic EL element so that the current density is 10 mA / cm 2 is measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta).
  • the peak wavelength of the emission spectrum having the maximum emission intensity is measured, and this is defined as the maximum peak wavelength (unit: nm).
  • the energy level HOMO of the highest occupied molecular orbital is measured in the atmosphere using a photoelectron spectrometer. Specifically, the energy level HOMO of the highest occupied molecular orbital can be measured by the method described in the examples.
  • the electron mobility can be measured by performing impedance measurement using a mobility evaluation element manufactured by the following procedure.
  • the mobility evaluation element is manufactured, for example, by the following procedure.
  • a compound Target to be measured for electron mobility is vapor-deposited so as to cover the aluminum electrode to form a layer to be measured.
  • the following compound ET-A is vapor-deposited on the measurement target layer to form an electron transport layer.
  • LiF is vapor-deposited on the film of the electron transport layer to form an electron injection layer.
  • Metallic aluminum (Al) is vapor-deposited on the film formation of the electron injection layer to form a metal cathode.
  • the electrical time constant ⁇ of the mobility evaluation element is obtained from the frequency fmax indicating the peak from the following formula (C2).
  • Calculation formula (C2): ⁇ 1 / (2 ⁇ fmax) ⁇ in the above formula (C2) is a symbol representing the pi.
  • the electron mobility ⁇ e is calculated from the relationship of the following calculation formula (C3-1).
  • the hole mobility can be measured by measuring the impedance using the mobility evaluation element manufactured by the following procedure.
  • the mobility evaluation element is manufactured, for example, by the following procedure.
  • the following compound HA-2 is vapor-deposited on a glass substrate with an ITO transparent electrode (anode) so as to cover the transparent electrode to form a hole injection layer.
  • the following compound HT-A is vapor-deposited on the film formation of the hole injection layer to form a hole transport layer.
  • the compound Target to be measured for the hole mobility is vapor-deposited to form the measurement target layer.
  • Metallic aluminum (Al) is vapor-deposited on the measurement target layer to form a metal cathode.
  • An element for evaluating the mobility of holes is installed in an impedance measuring device to measure impedance. Impedance measurement is performed by sweeping the measurement frequency from 1 Hz to 1 MHz. At that time, a DC voltage V is applied to the element at the same time as the AC amplitude 0.1 V. From the measured impedance Z, the modulus M is calculated using the relationship of the above calculation formula (C1). In the board plot with the imaginary part of the modulus M on the vertical axis and the frequency [Hz] on the horizontal axis, the electrical time constant ⁇ of the mobility evaluation element is obtained from the above calculation formula (C2) from the frequency fmax indicating the peak.
  • the hole mobility ⁇ h is calculated from the relationship of the following formula (C3-2).
  • the square root E 1/2 of the electric field strength can be calculated from the relationship of the following formula (C4).
  • Calculation formula (C4): E 1/2 V 1/2 / d 1/2
  • a Solartron 1260 type is used as an impedance measuring device, and for higher accuracy, a Solartron 1296 type dielectric constant measurement interface can be used together.
  • the organic electroluminescence display device (hereinafter, also referred to as an organic EL display device) according to the second embodiment will be described.
  • the same components as those of the first embodiment are given the same reference numerals and names, and the description is omitted or simplified.
  • the same materials and compounds as those described in the first embodiment can be used.
  • the organic electroluminescence display device of the present embodiment has an anode and a cathode arranged so as to face each other, and has a blue organic EL element as a blue pixel, a green organic EL element as a green pixel, and a red organic EL as a red pixel.
  • the blue pixel includes an organic EL element according to any aspect of the first embodiment as the blue organic EL element, and the green organic EL element is arranged between the anode and the cathode.
  • the red organic EL element has a red light emitting region arranged between the anode and the cathode, and has the first anode side organic layer and the second anode side.
  • the organic layer and the third anode-side organic layer are formed between the light emitting region, the green light emitting region, and the red light emitting region of the blue organic EL element and the anode. It is commonly provided in the green organic EL element and the red organic EL element.
  • the organic EL display device of the present embodiment as an example of the aspect of the blue organic EL element included in the blue pixel, the first aspect, the second aspect, the third aspect, the fourth aspect and the first embodiment of the first embodiment A fifth aspect is mentioned.
  • the light emitting region included in the blue organic EL element included in the blue pixel may be referred to as a blue light emitting region.
  • the organic EL display device when the organic EL element according to the first aspect of the first embodiment is included is It has an anode and a cathode arranged opposite each other, It has a blue organic EL element as a blue pixel, a green organic EL element as a green pixel, and a red organic EL element as a red pixel.
  • the blue organic EL element has a blue light emitting region arranged between the anode and the cathode.
  • the blue light emitting region includes at least one blue light emitting layer.
  • the green organic EL element has a green light emitting region arranged between the anode and the cathode.
  • the green light emitting region includes at least one green light emitting layer.
  • the red organic EL element has a red light emitting region arranged between the anode and the cathode.
  • the red light emitting region includes at least one red light emitting layer.
  • the blue organic EL element, the green organic EL element, and the red organic EL element are the blue organic EL element between the blue light emitting region, the green light emitting region, and the red light emitting region, and the anode. It has a first anode-side organic layer, a second anode-side organic layer, and a third anode-side organic layer that are commonly provided across the green organic EL element and the red organic EL element.
  • the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are formed by the blue light emitting region, the green light emitting region, the red light emitting region, and the anode. In between, the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are arranged in this order from the anode side.
  • the third anode-side organic layer does not contain the compound contained in the second anode-side organic layer.
  • the total of the film thickness of the second anode-side organic layer and the film thickness of the third anode-side organic layer is 30 nm or more and 150 nm or less.
  • the ratio of the film thickness of the second anode-side organic layer to the film thickness of the third anode-side organic layer satisfies the relationship of the mathematical formula (Equation 1).
  • the organic EL display device when the organic EL element according to the second aspect of the first embodiment is included is It has an anode and a cathode arranged opposite each other, It has a blue organic EL element as a blue pixel, a green organic EL element as a green pixel, and a red organic EL element as a red pixel.
  • the blue organic EL element has a blue light emitting region arranged between the anode and the cathode.
  • the blue light emitting region includes at least one blue light emitting layer.
  • the green organic EL element has a green light emitting region arranged between the anode and the cathode.
  • the green light emitting region includes at least one green light emitting layer.
  • the red organic EL element has a red light emitting region arranged between the anode and the cathode.
  • the red light emitting region includes at least one red light emitting layer.
  • the blue organic EL element, the green organic EL element, and the red organic EL element are the blue organic EL element between the blue light emitting region, the green light emitting region, and the red light emitting region, and the anode. It has a first anode-side organic layer, a second anode-side organic layer, and a third anode-side organic layer that are commonly provided across the green organic EL element and the red organic EL element.
  • the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are formed by the blue light emitting region, the green light emitting region, the red light emitting region, and the anode. In between, the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are arranged in this order from the anode side.
  • the third anode-side organic layer does not contain the compound contained in the second anode-side organic layer.
  • the third anode-side organic layer contains the compound represented by the general formula (C1) or the compound represented by the general formula (C2).
  • the total of the film thickness of the second anode-side organic layer and the film thickness of the third anode-side organic layer is 30 nm or more and 150 nm or less.
  • the ratio of the film thickness of the second anode-side organic layer to the film thickness of the third anode-side organic layer satisfies the relationship of the above formula (Equation A2).
  • the organic EL display device when the organic EL element according to the third aspect of the first embodiment is included is It has an anode and a cathode arranged opposite each other, It has a blue organic EL element as a blue pixel, a green organic EL element as a green pixel, and a red organic EL element as a red pixel.
  • the blue organic EL element has a blue light emitting region arranged between the anode and the cathode.
  • the blue light emitting region includes at least one blue light emitting layer.
  • the green organic EL element has a green light emitting region arranged between the anode and the cathode.
  • the green light emitting region includes at least one green light emitting layer.
  • the red organic EL element has a red light emitting region arranged between the anode and the cathode.
  • the red light emitting region includes at least one red light emitting layer.
  • the blue organic EL element, the green organic EL element, and the red organic EL element are the blue organic EL element between the blue light emitting region, the green light emitting region, and the red light emitting region, and the anode. It has a first anode-side organic layer, a second anode-side organic layer, and a third anode-side organic layer that are commonly provided across the green organic EL element and the red organic EL element.
  • the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are formed by the blue light emitting region, the green light emitting region, the red light emitting region, and the anode. In between, the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are arranged in this order from the anode side.
  • the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer each contain one or more different compounds.
  • the third anode-side organic layer does not contain the compound contained in the second anode-side organic layer.
  • the third anode-side organic layer contains a third hole transport zone material and contains a third hole transport zone material.
  • the hole mobility ⁇ h (cHT3) of the third hole transport band material is larger than 1.0 ⁇ 10 -5 cm 2 / Vs, which is the highest occupied molecular orbital of the third hole transport band material.
  • the energy level HOMO (cHT3) is -5.6 eV or less.
  • the organic EL display device when the organic EL element according to the fourth aspect of the first embodiment is included is It has an anode and a cathode arranged opposite each other, It has a blue organic EL element as a blue pixel, a green organic EL element as a green pixel, and a red organic EL element as a red pixel.
  • the blue organic EL element has a blue light emitting region arranged between the anode and the cathode.
  • the blue light emitting region includes at least one blue light emitting layer.
  • the green organic EL element has a green light emitting region arranged between the anode and the cathode.
  • the green light emitting region includes at least one green light emitting layer.
  • the red organic EL element has a red light emitting region arranged between the anode and the cathode.
  • the red light emitting region includes at least one red light emitting layer.
  • the blue organic EL element, the green organic EL element, and the red organic EL element are the blue organic EL element between the blue light emitting region, the green light emitting region, and the red light emitting region, and the anode. It has a first anode-side organic layer, a second anode-side organic layer, and a third anode-side organic layer that are commonly provided across the green organic EL element and the red organic EL element.
  • the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are formed by the blue light emitting region, the green light emitting region, the red light emitting region, and the anode. In between, the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are arranged in this order from the anode side.
  • the third anode-side organic layer does not contain the compound contained in the second anode-side organic layer.
  • the total film thickness of the second anode-side organic layer and the film thickness of the third anode-side organic layer is 100 nm or more.
  • the organic EL display device when the organic EL element according to the fifth aspect of the first embodiment is included is It has an anode and a cathode arranged opposite each other, It has a blue organic EL element as a blue pixel, a green organic EL element as a green pixel, and a red organic EL element as a red pixel.
  • the blue organic EL element has a blue light emitting region arranged between the anode and the cathode.
  • the blue light emitting region includes at least one blue light emitting layer.
  • the green organic EL element has a green light emitting region arranged between the anode and the cathode.
  • the green light emitting region includes at least one green light emitting layer.
  • the red organic EL element has a red light emitting region arranged between the anode and the cathode.
  • the red light emitting region includes at least one red light emitting layer.
  • the blue organic EL element, the green organic EL element, and the red organic EL element are the blue organic EL element between the blue light emitting region, the green light emitting region, and the red light emitting region, and the anode. It has a first anode-side organic layer, a second anode-side organic layer, and a third anode-side organic layer that are commonly provided across the green organic EL element and the red organic EL element.
  • the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are formed by the blue light emitting region, the green light emitting region, the red light emitting region, and the anode. In between, the first anode-side organic layer, the second anode-side organic layer, and the third anode-side organic layer are arranged in this order from the anode side.
  • the third anode-side organic layer does not contain the compound contained in the second anode-side organic layer.
  • the total of the film thickness of the second anode-side organic layer and the film thickness of the third anode-side organic layer is 30 nm or more.
  • the ratio of the film thickness of the second anode-side organic layer to the film thickness of the third anode-side organic layer satisfies the relationship of the above formula (Equation A4).
  • the third anode-side organic layer contains a third hole transport band material, and the singlet energy of the third hole transport band material is larger than 3.12 eV.
  • the organic EL display device of the present embodiment is not limited to these aspects.
  • the elements that can be included in the blue organic EL element of the organic EL display device of each aspect of the present embodiment are the same as the elements that can be included in the organic EL element described in the first embodiment.
  • the blue pixel of the organic EL display device of the present embodiment includes the organic EL element according to any one of the first embodiments as the blue organic EL element, the light emission efficiency of the blue organic EL element of the blue pixel is improved. do. As a result, the performance of the organic EL display device is improved.
  • the light emitting region of the blue organic EL element has the first light emitting layer and the second light emitting layer satisfying the relationship of the above formula (Equation 1), so that the light emitting layer of the light emitting region
  • the luminous efficiency of the blue organic EL element of the blue pixel is improved as compared with the case where is a single layer.
  • the fourth anode-side organic layer is arranged between the light emitting region of the blue organic EL element and the third anode-side organic layer, so that the blue organic EL of the blue pixel is arranged. The life of the element is extended.
  • a layer commonly provided over a plurality of elements may be referred to as a common layer.
  • a layer that is not provided in common across a plurality of elements may be referred to as a non-common layer.
  • a band commonly provided over a plurality of elements may be referred to as a common band.
  • a blue organic EL element, a green organic EL element, and a red organic EL element between the blue light emitting region of the blue organic EL element, the green light emitting layer of the green organic EL element, and the red light emitting layer of the red organic EL element, and the anode.
  • the hole transport band that is commonly provided throughout the above is a common band.
  • FIG. 5 shows an organic EL display device 100A according to an embodiment.
  • the organic EL display device 100A has an electrode supported by the substrate 2A and an organic layer.
  • the organic EL display device 100A has an anode 3 and a cathode 4 arranged so as to face each other.
  • the organic EL display device 100A includes a blue organic EL element 10B as a blue pixel, a green organic EL element 10G as a green pixel, and a red organic EL element 10R as a red pixel. Note that FIG.
  • FIG. 5 is a schematic view of the organic EL display device 100A, and does not limit the size of the organic EL display device 100A, the thickness of each layer, or the like.
  • the green light emitting layer 53 and the red light emitting layer 54 are represented by the same thickness, but the thickness of these layers is not limited to be the same in an actual organic EL display device. The same applies to the organic EL display devices shown in FIGS. 6 to 8.
  • the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R of the organic EL display device 100A as a common band between the anode 3 and the light emitting regions of the organic EL elements 10B, 10G, and 10R.
  • Hole transport zone is arranged.
  • the first anode-side organic layer 61A, the second anode-side organic layer 62A, and the third anode-side organic layer 63A are arranged in this order from the anode 3 side. It is laminated.
  • the hole transport band of the organic EL display device 100A is commonly provided over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R.
  • the electron transport layer 8 and the electron injection layer 9 as common layers are laminated in this order between the light emitting regions of the organic EL elements 10B, 10G, and 10R of the organic EL display device 100A and the cathode.
  • the blue light emitting region 5 of the blue organic EL element 10B of the organic EL display device 100A is the same as the light emitting region 5 of the first embodiment.
  • the blue light emitting region 5 has a blue light emitting layer 50B.
  • the blue light emitting layer 50B is a layer corresponding to the light emitting layer 50 of the first embodiment.
  • the green light emitting region of the green organic EL element 10G of the organic EL display device 100A has a green light emitting layer 53.
  • a green organic layer 531 which is a non-common layer is arranged between the green light emitting layer 53 and the third anode-side organic layer 63A.
  • the red light emitting region of the red organic EL element 10R of the organic EL display device 100A has a red light emitting layer 54.
  • the red organic layer 541 which is a non-common layer, is arranged between the red light emitting layer 54 and the third anode-side organic layer 63A.
  • the anode 3 of the organic EL display device 100A is composed of the anodes of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R.
  • the anode 3 is independently provided for each of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. Therefore, the organic EL display device 100A can individually drive the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R.
  • the anodes of the organic EL elements 10B, 10G, and 10R are insulated from each other by an insulating material (not shown) or the like.
  • the cathode 4 of the organic EL display device 100A is composed of the cathodes of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R, respectively.
  • the cathode 4 is commonly provided in the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R.
  • the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R as pixels are arranged in parallel on the substrate 2A.
  • FIG. 6 shows a schematic configuration of another example of the organic EL display device according to the second embodiment.
  • the organic EL display device 100B shown in FIG. 6 has the same configuration as the organic EL display device 100A shown in FIG. 5, except for the blue organic EL element 11B as a blue pixel, and thus differs from the organic EL display device 100A. ..
  • the blue organic EL element 11B has a fourth anode-side organic layer 64A as a non-common layer between the blue light-emitting layer 50B and the third anode-side organic layer 63A.
  • the fourth anode-side organic layer 64A is in direct contact with the blue light emitting layer 50B and the third anode-side organic layer 63A.
  • the fourth anode-side organic layer 64A is preferably an electron barrier layer.
  • FIG. 7 shows a schematic configuration of another example of the organic EL display device according to the second embodiment.
  • the organic EL display device 100C shown in FIG. 7 has the same configuration as the organic EL display device 100A shown in FIG. 5 except for the blue organic EL element 12B as a blue pixel, and thus differs from the organic EL display device 100A. ..
  • the blue light emitting region 5B of the blue organic EL element 12B is the same as the light emitting region 5B of the first embodiment.
  • the blue light emitting region 5B has a first light emitting layer 51 and a second light emitting layer 52, and the first light emitting layer 51 and the second light emitting layer 52 are laminated in this order.
  • FIG. 8 shows a schematic configuration of another example of the organic EL display device according to the second embodiment.
  • the organic EL display device 100D shown in FIG. 8 has the same configuration as the organic EL display device 100A shown in FIG. 5, except for the blue organic EL element 13B as a blue pixel, and thus differs from the organic EL display device 100A. ..
  • the blue organic EL element 13B has a fourth anode-side organic layer 64A as a non-common layer between the first light-emitting layer 51 and the third anode-side organic layer 63A in the blue light-emitting region 5B.
  • the fourth anode-side organic layer 64A is in direct contact with the first light emitting layer 51 and the third anode-side organic layer 63A.
  • the fourth anode-side organic layer 64A is preferably an electron barrier layer.
  • the present invention is not limited to the configuration of the organic EL display device shown in FIGS. 5 to 8.
  • the green organic layer 531 is not arranged between the green light emitting layer 53 and the third anode-side organic layer 63A, and the green light emitting layer 53 and the third Is in direct contact with the anode-side organic layer 63A.
  • the red organic layer 541 is not arranged between the red light emitting layer 54 and the third anode side organic layer 63A, and the red light emitting layer 54 and the third Is in direct contact with the anode-side organic layer 63A.
  • the blue organic EL element, the green organic EL element, and the red organic EL element each independently have a layer different from the layers shown in FIGS. 5 to 8. You may be doing it.
  • a hole barrier layer as a common layer may be arranged between the light emitting region and the electron transport layer.
  • the blue organic EL element, the green organic EL element, and the red organic EL element are elements that emit phosphorescence even if they independently emit fluorescence. You may.
  • the blue organic EL element is preferably an element that emits fluorescence.
  • the third anode-side organic layer as a common layer contains a third hole transport band material, and the hole mobility of the third hole transport band material.
  • ⁇ h (cHT3) is greater than 1.0 ⁇ 10-5 cm 2 / Vs, and the energy level HOMO (cHT3) of the highest occupied molecular orbital of the third hole transport zone material is -5.6 eV or less.
  • the third hole-side organic layer as a common layer contains such a hole mobility and a third hole transport zone material which is HOMO, so that the light emitting region of the blue pixel, the green pixel, and the red pixel can be reached.
  • the hole injection property of is increased.
  • the green organic layer 531 and the red organic layer 541 the hole injection property into these layers is enhanced.
  • the first anode-side organic layer as a common layer contains the first hole transport band material of the first embodiment.
  • the second anode-side organic layer as a common layer contains the second hole transport band material of the first embodiment.
  • the fourth anode-side organic layer as a non-common layer contains the fourth hole transport band material of the first embodiment.
  • the blue organic EL element of the organic EL display device according to the present embodiment preferably emits light having a maximum peak wavelength of 500 nm or less when the element is driven. It is more preferable that the blue organic EL element of the organic EL display device according to the present embodiment emits light having a maximum peak wavelength of 430 nm or more and 480 nm or less when the element is driven.
  • the maximum peak wavelength of the light emitted by the organic EL element when the element is driven is measured as follows.
  • the spectral radiance spectrum when a voltage is applied to the organic EL element so that the current density is 10 mA / cm 2 is measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta).
  • the peak wavelength of the emission spectrum having the maximum emission intensity is measured, and this is defined as the maximum peak wavelength (unit: nm).
  • the green light emitting layer contains a host material.
  • the green light emitting layer contains, for example, a host material in an amount of 50% by mass or more of the total mass of the green light emitting layer.
  • the green light emitting layer of the green organic EL element contains a green light emitting compound exhibiting light emission having a maximum peak wavelength of 500 nm or more and 550 nm or less.
  • the green luminescent compound is, for example, a fluorescent compound having a maximum peak wavelength of 500 nm or more and 550 nm or less.
  • the green luminescent compound is, for example, a phosphorescent compound having a maximum peak wavelength of 500 nm or more and 550 nm or less.
  • the green emission means the emission in which the maximum peak wavelength of the emission spectrum is in the range of 500 nm or more and 550 nm or less.
  • a fluorescent compound is a compound capable of emitting light from a singlet excited state
  • a phosphorescent compound is a compound capable of emitting light from a triplet excited state.
  • a compound that fluoresces in green that can be used for the green light emitting layer for example, an aromatic amine derivative or the like can be used.
  • a green phosphorescent compound that can be used in the green light emitting layer for example, an iridium complex or the like is used.
  • the maximum peak wavelength of the phosphorescent compound (maximum peak wavelength of phosphorescence) can be measured by the following method.
  • a solution of the compound to be measured dissolved in EPA (diethyl ether: isopentan: ethanol 5: 5: 2 (volume ratio)) so as to be 10-5 mol / L or more and 10-4 mol / L or less. Is prepared, and this EPA solution is placed in a quartz cell to prepare a measurement sample.
  • the phosphorescence spectrum (vertical axis: phosphorescence emission intensity, horizontal axis: wavelength) is measured at a low temperature (77 [K]), and among the maximum values of this phosphorescence spectrum, the maximum on the shortest wavelength side.
  • Let the value be the maximum peak wavelength of phosphorescence.
  • a spectrofluorometer F-7000 manufactured by Hitachi High-Tech Science Corporation
  • the measuring device is not limited to this, and may be measured by combining a cooling device, a low temperature container, an excitation light source, and a light receiving device.
  • the maximum peak wavelength of phosphorescence emission may be referred to as the maximum peak wavelength of phosphorescence emission (PH-peak).
  • the green organic EL element includes a green organic layer between the green light emitting layer and the third anode-side organic layer.
  • the green organic layer may be in direct contact with the hole transport zone. Further, the green organic layer may be in direct contact with the green light emitting layer. Since the green organic EL element has the green organic layer, it is easy to adjust the light emitting position in the green organic EL element.
  • the green organic layer contains a green organic material.
  • the hole transport zone material according to the first embodiment can be used.
  • the green organic material may be the same compound as the hole transport zone material contained in the hole transport zone, or may be a different compound, but the green organic material and the hole transport zone material are preferably different from each other. ..
  • the hole mobility of the green organic material is preferably larger than the hole mobility of the hole transport zone material contained in the hole transport zone.
  • the green organic material is a compound different from the host material and the green light emitting compound contained in the green light emitting layer.
  • the red light emitting layer contains a host material.
  • the red light emitting layer contains, for example, a host material in an amount of 50% by mass or more of the total mass of the red light emitting layer.
  • the red light emitting layer of the red organic EL element contains a red light emitting compound exhibiting light emission having a maximum peak wavelength of 600 nm or more and 640 nm or less.
  • the red luminescent compound is, for example, a fluorescent compound having a maximum peak wavelength of 600 nm or more and 640 nm or less.
  • the red luminescent compound is, for example, a phosphorescent compound having a maximum peak wavelength of 600 nm or more and 640 nm or less.
  • the red emission means the emission in which the maximum peak wavelength of the emission spectrum is in the range of 600 nm or more and 640 nm or less.
  • red phosphorescent compound that can be used for the red light emitting layer for example, a metal complex such as an iridium complex, a platinum complex, a terbium complex, and a europium complex can be used.
  • the red organic EL element preferably includes a red organic layer between the red light emitting layer and the third anode-side organic layer.
  • the red organic layer may be in direct contact with the hole transport zone. Further, the red organic layer may be in direct contact with the red light emitting layer.
  • since the red organic EL element has the red organic layer it is easy to adjust the light emitting position in the red organic EL element.
  • the red organic layer contains a red organic material.
  • the hole transport zone material according to the first embodiment can be used.
  • the red organic material may be the same compound as the hole transport zone material contained in the hole transport zone, or may be a different compound, but the red organic material and the hole transport zone material are preferably different from each other. ..
  • the hole mobility of the red organic material is preferably larger than the hole mobility of the hole transport band material contained in the hole transport band.
  • the red organic material is a compound different from the host material and the red light emitting compound contained in the red light emitting layer.
  • the red organic material contained in the red organic layer of the red organic EL element and the green organic material contained in the green organic layer of the green organic EL element may be the same compound or different compounds, but the red organic material may be used. It is preferable that the material and the green organic material are different from each other.
  • the hole mobility of the red organic material is preferably larger than the hole mobility of the green organic material.
  • the film thickness of the red organic layer is preferably thicker than the film thickness of the green organic layer.
  • the host material contained in the green light emitting layer and the host material contained in the red light emitting layer have, for example, a highly luminescent substance (dopant material) dispersed in the light emitting layer. It is a compound for causing.
  • a highly luminescent substance dispersed in the light emitting layer. It is a compound for causing.
  • the host material contained in the green light emitting layer and the host material contained in the red light emitting layer for example, the lowest empty orbital level (LUMO level) is higher than the substance having high light emission, and the highest occupied orbital level (HOMO). A substance having a low level) can be used.
  • the host material contained in the green light emitting layer and the host material contained in the red light emitting layer for example, the following compounds (1) to (4) can be used independently of each other.
  • Metal complexes such as aluminum complex, beryllium complex, or zinc complex
  • Heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, or phenanthroline derivatives
  • Condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, or chrysene derivatives.
  • Aromatic amine compounds such as triarylamine derivatives or condensed polycyclic aromatic amine derivatives
  • the organic EL display device of this embodiment will be further described with reference to FIG.
  • the description of the configuration common to the organic EL element according to the first embodiment will be simplified or omitted.
  • the anode 3 is arranged to face the cathode 4.
  • the anode 3 is usually a non-common layer.
  • the anodes in each of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R are physically separated from each other. , For example, they are insulated from each other by an insulating material (not shown).
  • the cathode 4 is arranged to face the anode 3.
  • the cathode 4 may be a common layer or a non-common layer.
  • the cathode 4 is preferably a common layer commonly provided over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R.
  • the cathode 4 is in direct contact with the electron injection layer 9.
  • the thickness of the cathode 4 is the same over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R.
  • each of the cathodes 4 of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R can be manufactured without replacing the mask or the like. As a result, the productivity of the organic EL display device 100A is improved.
  • the electron transport layer 8 is a common layer commonly provided over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. In one embodiment, the electron transport layer 8 is arranged between each light emitting layer of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R, and the electron injection layer 9. In one embodiment, the electron transport layer 8 is in direct contact with the light emitting region 5 (blue light emitting layer 50B), the green light emitting layer 53, and the red light emitting layer 54 on the anode 3 side thereof. The electron transport layer 8 is in direct contact with the electron injection layer 9 on the cathode 4 side thereof.
  • the electron transport layer 8 is a common layer and has the same thickness over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. Since the electron transport layer 8 is a common layer, the electron transport layers 8 of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R can be manufactured without replacing the mask or the like. As a result, the productivity of the organic EL display device 100A is improved.
  • the electron injection layer 9 is a common layer commonly provided over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. In one embodiment, the electron injection layer 9 is arranged between the electron transport layer 8 and the cathode 4. In one embodiment, the electron injection layer 9 is in direct contact with the electron transport layer 8. In one embodiment, the electron injection layer 9 is a common layer and has the same thickness over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R.
  • each of the electron injection layers 9 of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R can be manufactured without replacing the mask or the like. As a result, the productivity of the organic EL display device 100A is improved.
  • the layers other than the light emitting layer, the first light emitting layer, the second light emitting layer, the fourth anode side organic layer, the green light emitting layer, the red light emitting layer, the green organic layer and the red organic layer are blue organic. It is preferable that the EL element, the green organic EL element, and the red organic EL element are provided in common. Manufacturing efficiency is improved by reducing the number of non-common layers in the organic EL display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

陰極(3)及び陽極(3)の間に配置された発光領域(5)と、第一の陽極側有機層(61)と、第二の陽極側有機層(62)と、第三の陽極側有機層(63)と、を有し、発光領域(5)は、少なくとも1つの発光層(50)を含み、第二の陽極側有機層は、第三の陽極側有機層が含有する化合物とは、異なる化合物を少なくとも1種以上含有し、第三の陽極側有機層(63)の膜厚が20nm以上であり、第二の陽極側有機層(62)に含まれる構成材料の屈折率NM2と、第三の陽極側有機層(63)に含まれる構成材料の屈折率NM3との差NM2-NM3が、下記数式(数N1)の関係を満たす、有機エレクトロルミネッセンス素子(1)。 NM2-NM3≧0.05 …(数N1)

Description

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
 本発明は、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)は、携帯電話及びテレビ等のフルカラーディスプレイへ応用されている。有機EL素子に電圧を印加すると、陽極から正孔が発光層に注入され、また陰極から電子が発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子が25%の割合で生成し、及び三重項励起子が75%の割合で生成する。
 例えば、特許文献1、特許文献2及び特許文献3においては、有機EL素子の性能向上を図るための検討がなされている。有機EL素子の性能としては、例えば、輝度、発光波長、色度、発光効率、駆動電圧、及び寿命が挙げられる。有機EL素子の課題の一つとして、光取り出し効率の低さがある。特に、隣接する層の屈折率の違いから起こる反射による減衰は、有機EL素子の光取り出し効率を低下させる大きな要因となっている。この影響を低減させるために、低屈折率材料からなる層を備えた有機EL素子の構成が提案されている。
国際公開第2020/189316号 特開2019-161218号公報 国際公開第2011/093056号
 本発明の目的は、発光効率が向上した有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス表示装置、当該有機エレクトロルミネッセンス素子を搭載した電子機器、並びに当該有機エレクトロルミネッセンス表示装置を搭載した電子機器を提供することである。
 本発明の一態様によれば、陰極と、陽極と、前記陰極及び前記陽極の間に配置された発光領域と、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層と、を有し、前記発光領域は、少なくとも1つの発光層を含み、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記陽極及び前記発光領域の間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が、30nm以上、かつ150nm以下であり、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の比は、下記数式(数A1)の関係を満たす、有機エレクトロルミネッセンス素子が提供される。
 0.50<TL/TL<4.0 …(数A1)
(TLは、前記第二の陽極側有機層の膜厚であり、TLは、前記第三の陽極側有機層の膜厚であり、膜厚の単位は、nmである。)
 本発明の一態様によれば、陰極と、陽極と、前記陰極及び前記陽極の間に配置された発光領域と、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層と、を有し、前記発光領域は、少なくとも1つの発光層を含み、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記陽極及び前記発光領域の間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、前記第三の陽極側有機層は、下記一般式(C1)で表される化合物又は下記一般式(C2)で表される化合物を含有し、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が、30nm以上、かつ150nm以下であり、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の比は、下記数式(数A2)の関係を満たす、有機エレクトロルミネッセンス素子が提供される。
 0.30<TL/TL<4.0 …(数A2)
(TLは、前記第二の陽極側有機層の膜厚であり、TLは、前記第三の陽極側有機層の膜厚であり、膜厚の単位は、nmである。)
Figure JPOXMLDOC01-appb-C000018
(前記一般式(C1)において、
 LA1、LA2及びLA3は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar111、Ar112及びAr113は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  -Si(RC1)(RC2)(RC3)であり、
 RC1、RC2及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 RC1が複数存在する場合、複数のRC1は、互いに同一であるか、又は異なり、
 RC2が複数存在する場合、複数のRC2は、互いに同一であるか、又は異なり、
 RC3が複数存在する場合、複数のRC3は、互いに同一であるか、又は異なる。)
Figure JPOXMLDOC01-appb-C000019
(前記一般式(C2)において、
 LB1、LB2、LB3及びLB4は、それぞれ独立に、
  単結合、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基であり、
 Ar121、Ar122、Ar123、Ar124及びAr125は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(前記一般式(C1)で表される化合物及び前記一般式(C2)で表される化合物において、「置換もしくは無置換の」という場合における置換基は、-N(RC6)(RC7)で表される基ではなく、RC6及びRC7は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。)
 本発明の一態様によれば、陰極と、陽極と、前記陰極及び前記陽極の間に配置された発光領域と、前記陽極と前記発光領域の間に配置された正孔輸送帯域と、を含み、前記発光領域は、少なくとも1つの発光層を含み、前記正孔輸送帯域は、少なくとも、第二の陽極側有機層と、第三の陽極側有機層と、を有し、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記陽極及び前記発光領域の間において、前記陽極側から、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、前記第二の陽極側有機層は、前記一般式(C1)で表される化合物及び下記一般式(C3)で表される化合物からなる群から選択される少なくとも一種の化合物を含有し、前記第三の陽極側有機層は、前記一般式(C1)で表される化合物を含有し、ただし、前記第二の陽極側有機層は、前記第三の陽極側有機層が含有する化合物とは、異なる化合物を少なくとも1種以上含有し、前記第二の陽極側有機層に含まれる構成材料の屈折率NMと、前記第三の陽極側有機層に含まれる構成材料の屈折率NMとの差NM-NMが、下記数式(数N1)の関係を満たし、前記第三の陽極側有機層の前記陽極側の界面から、前記発光領域中の最も陽極側に配置された発光層の前記陽極側の界面までの距離が20nm以上である、有機エレクトロルミネッセンス素子が提供される。
 NM-NM≧0.05 …(数N1)
Figure JPOXMLDOC01-appb-C000020
(前記一般式(C3)において、
 LC1、LC2、LC3及びLC4は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 n2は、1、2、3又は4であり、
 n2が1の場合、LC5は、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 n2が2、3又は4の場合、複数のLC5は、互いに同一であるか、又は異なり、
 n2が2、3又は4の場合、複数のLC5は、
  互いに結合して置換もしくは無置換の単環を形成するか、
  互いに結合して置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないLC5は、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar131、Ar132、Ar133及びAr134は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  -Si(RC1)(RC2)(RC3)であり、
 RC1、RC2及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 RC1が複数存在する場合、複数のRC1は、互いに同一であるか、又は異なり、
 RC2が複数存在する場合、複数のRC2は、互いに同一であるか、又は異なり、
 RC3が複数存在する場合、複数のRC3は、互いに同一であるか、又は異なり、
 下記一般式(C3-1)で表される第一のアミノ基と、下記一般式(C3-2)で表される第二のアミノ基とが、同じ基である。
Figure JPOXMLDOC01-appb-C000021
(前記一般式(C3-1)及び(C3-2)において、*は、それぞれ、LC5との結合位置である。)
(前記一般式(C1)で表される化合物及び前記一般式(C3)で表される化合物において、「置換もしくは無置換の」という場合における置換基は、-N(RC6)(RC7)で表される基ではなく、RC6及びRC7は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。)
 本発明の一態様によれば、陰極と、陽極と、前記陰極及び前記陽極の間に配置された発光領域と、前記陽極と前記発光領域の間に配置された正孔輸送帯域と、を含み、前記発光領域は、少なくとも1つの発光層を含み、前記正孔輸送帯域は、少なくとも、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層と、を有し、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記陽極及び前記発光領域の間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、前記第一の陽極側有機層は、第一の有機材料と第二の有機材料とを含有し、第一の有機材料と第二の有機材料とは、互いに異なり、前記第一の陽極側有機層中の前記第二の有機材料の含有量が50質量%未満であり、前記第二の陽極側有機層は、前記一般式(C1)で表される化合物及び前記一般式(C3)で表される化合物からなる群から選択される少なくとも一種の化合物を含有し、前記一般式(C3-1)で表される第一のアミノ基と、前記一般式(C3-2)で表される第二のアミノ基とが、同じ基でも、異なる基でもよく、前記第三の陽極側有機層は、前記一般式(C1)で表される化合物を含有し、ただし、前記第二の陽極側有機層は、前記第三の陽極側有機層が含有する化合物とは、異なる化合物を少なくとも1種以上含有し、前記第二の陽極側有機層に含まれる構成材料の屈折率NMと、前記第三の陽極側有機層に含まれる構成材料の屈折率NMとの差NM-NMが、前記数式(数N1)の関係を満たし、前記第三の陽極側有機層の膜厚が20nm以上である、有機エレクトロルミネッセンス素子が提供される。
 本発明の一態様によれば、有機エレクトロルミネッセンス表示装置であって、互いに対向して配置された陽極及び陰極を有し、青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、前記青色画素は、本発明の一態様に係る有機エレクトロルミネッセンス素子を前記青色有機EL素子として含み、前記緑色有機EL素子は、前記陽極と前記陰極との間に配置された緑色発光領域を有し、前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光領域を有し、前記青色有機EL素子が前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層を有する場合、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色有機EL素子の前記発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられ、前記青色有機EL素子が第一の陽極側有機層を有さず、前記第二の陽極側有機層及び前記第三の陽極側有機層を有する場合、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色有機EL素子の前記発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられている、有機エレクトロルミネッセンス表示装置が提供される。
 本発明の一態様によれば、本発明の一態様に係る有機エレクトロルミネッセンス素子を搭載した、電子機器が提供される。
 本発明の一態様によれば、本発明の一態様に係る有機エレクトロルミネッセンス表示装置を搭載した、電子機器が提供される。
 本発明の一態様によれば、発光効率が向上した有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス表示装置、当該有機エレクトロルミネッセンス素子を搭載した電子機器、並びに当該有機エレクトロルミネッセンス表示装置を搭載した電子機器を提供することができる。
第一実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。 第一実施形態に係る有機エレクトロルミネッセンス素子の別の一例の概略構成を示す図である。 第一実施形態に係る有機エレクトロルミネッセンス素子の別の一例の概略構成を示す図である。 第一実施形態に係る有機エレクトロルミネッセンス素子の別の一例の概略構成を示す図である。 第二実施形態に係る有機エレクトロルミネッセンス表示装置の一例の概略構成を示す図である。 第二実施形態に係る有機エレクトロルミネッセンス表示装置の別の一例の概略構成を示す図である。 第二実施形態に係る有機エレクトロルミネッセンス表示装置の別の一例の概略構成を示す図である。 第二実施形態に係る有機エレクトロルミネッセンス表示装置の別の一例の概略構成を示す図である。
[定義]
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、及び三重水素(tritium)を包含する。
 本明細書において、化学構造式中、「R」等の記号や重水素原子を表す「D」が明示されていない結合可能位置には、水素原子、即ち、軽水素原子、重水素原子、又は三重水素原子が結合しているものとする。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、別途記載のない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジン環は環形成炭素数5であり、フラン環は環形成炭素数4である。また、例えば、9,9-ジフェニルフルオレニル基の環形成炭素数は13であり、9,9’-スピロビフルオレニル基の環形成炭素数は25である。
 また、ベンゼン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ベンゼン環の環形成炭素数に含めない。そのため、アルキル基が置換しているベンゼン環の環形成炭素数は、6である。また、ナフタレン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ナフタレン環の環形成炭素数に含めない。そのため、アルキル基が置換しているナフタレン環の環形成炭素数は、10である。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば、単環、縮合環、及び環集合)の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば、環を構成する原子の結合を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、別途記載のない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。例えば、ピリジン環に結合している水素原子、又は置換基を構成する原子の数は、ピリジン環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているピリジン環の環形成原子数は、6である。また、例えば、キナゾリン環の炭素原子に結合している水素原子、又は置換基を構成する原子については、キナゾリン環の環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているキナゾリン環の環形成原子数は10である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、無置換のZZ基とは「置換もしくは無置換のZZ基」が「無置換のZZ基」である場合を表し、置換のZZ基とは「置換もしくは無置換のZZ基」が「置換のZZ基」である場合を表す。
 本明細書において、「置換もしくは無置換のZZ基」という場合における「無置換」とは、ZZ基における水素原子が置換基と置き換わっていないことを意味する。「無置換のZZ基」における水素原子は、軽水素原子、重水素原子、又は三重水素原子である。
 また、本明細書において、「置換もしくは無置換のZZ基」という場合における「置換」とは、ZZ基における1つ以上の水素原子が、置換基と置き換わっていることを意味する。「AA基で置換されたBB基」という場合における「置換」も同様に、BB基における1つ以上の水素原子が、AA基と置き換わっていることを意味する。
「本明細書に記載の置換基」
 以下、本明細書に記載の置換基について説明する。
 本明細書に記載の「無置換のアリール基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
 本明細書に記載の「無置換のアルケニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のアルキニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のシクロアルキル基」の環形成炭素数は、本明細書に別途記載のない限り、3~50であり、好ましくは3~20、より好ましくは3~6である。
 本明細書に記載の「無置換のアリーレン基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の2価の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキレン基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
・「置換もしくは無置換のアリール基」
 本明細書に記載の「置換もしくは無置換のアリール基」の具体例(具体例群G1)としては、以下の無置換のアリール基(具体例群G1A)及び置換のアリール基(具体例群G1B)等が挙げられる。(ここで、無置換のアリール基とは「置換もしくは無置換のアリール基」が「無置換のアリール基」である場合を指し、置換のアリール基とは「置換もしくは無置換のアリール基」が「置換のアリール基」である場合を指す。)本明細書において、単に「アリール基」という場合は、「無置換のアリール基」と「置換のアリール基」の両方を含む。
 「置換のアリール基」は、「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアリール基」としては、例えば、下記具体例群G1Aの「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基、及び下記具体例群G1Bの置換のアリール基の例等が挙げられる。尚、ここに列挙した「無置換のアリール基」の例、及び「置換のアリール基」の例は、一例に過ぎず、本明細書に記載の「置換のアリール基」には、下記具体例群G1Bの「置換のアリール基」におけるアリール基自体の炭素原子に結合する水素原子がさらに置換基と置き換わった基、及び下記具体例群G1Bの「置換のアリール基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアリール基(具体例群G1A):
フェニル基、
p-ビフェニル基、
m-ビフェニル基、
o-ビフェニル基、
p-ターフェニル-4-イル基、
p-ターフェニル-3-イル基、
p-ターフェニル-2-イル基、
m-ターフェニル-4-イル基、
m-ターフェニル-3-イル基、
m-ターフェニル-2-イル基、
o-ターフェニル-4-イル基、
o-ターフェニル-3-イル基、
o-ターフェニル-2-イル基、
1-ナフチル基、
2-ナフチル基、
アントリル基、
ベンゾアントリル基、
フェナントリル基、
ベンゾフェナントリル基、
フェナレニル基、
ピレニル基、
クリセニル基、
ベンゾクリセニル基、
トリフェニレニル基、
ベンゾトリフェニレニル基、
テトラセニル基、
ペンタセニル基、
フルオレニル基、
9,9’-スピロビフルオレニル基、
ベンゾフルオレニル基、
ジベンゾフルオレニル基、
フルオランテニル基、
ベンゾフルオランテニル基、
ペリレニル基、及び
下記一般式(TEMP-1)~(TEMP-15)で表される環構造から1つの水素原子を除くことにより誘導される1価のアリール基。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
・置換のアリール基(具体例群G1B):
o-トリル基、
m-トリル基、
p-トリル基、
パラ-キシリル基、
メタ-キシリル基、
オルト-キシリル基、
パラ-イソプロピルフェニル基、
メタ-イソプロピルフェニル基、
オルト-イソプロピルフェニル基、
パラ-t-ブチルフェニル基、
メタ-t-ブチルフェニル基、
オルト-t-ブチルフェニル基、
3,4,5-トリメチルフェニル基、
9,9-ジメチルフルオレニル基、
9,9-ジフェニルフルオレニル基、
9,9-ビス(4-メチルフェニル)フルオレニル基、
9,9-ビス(4-イソプロピルフェニル)フルオレニル基、
9,9-ビス(4-t-ブチルフェニル)フルオレニル基、
シアノフェニル基、
トリフェニルシリルフェニル基、
トリメチルシリルフェニル基、
フェニルナフチル基、
ナフチルフェニル基、及び
前記一般式(TEMP-1)~(TEMP-15)で表される環構造から誘導される1価の基の1つ以上の水素原子が置換基と置き換わった基。
・「置換もしくは無置換の複素環基」
 本明細書に記載の「複素環基」は、環形成原子にヘテロ原子を少なくとも1つ含む環状の基である。ヘテロ原子の具体例としては、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子、及びホウ素原子が挙げられる。
 本明細書に記載の「複素環基」は、単環の基であるか、又は縮合環の基である。
 本明細書に記載の「複素環基」は、芳香族複素環基であるか、又は非芳香族複素環基である。
 本明細書に記載の「置換もしくは無置換の複素環基」の具体例(具体例群G2)としては、以下の無置換の複素環基(具体例群G2A)、及び置換の複素環基(具体例群G2B)等が挙げられる。(ここで、無置換の複素環基とは「置換もしくは無置換の複素環基」が「無置換の複素環基」である場合を指し、置換の複素環基とは「置換もしくは無置換の複素環基」が「置換の複素環基」である場合を指す。)本明細書において、単に「複素環基」という場合は、「無置換の複素環基」と「置換の複素環基」の両方を含む。
 「置換の複素環基」は、「無置換の複素環基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換の複素環基」の具体例は、下記具体例群G2Aの「無置換の複素環基」の水素原子が置き換わった基、及び下記具体例群G2Bの置換の複素環基の例等が挙げられる。尚、ここに列挙した「無置換の複素環基」の例や「置換の複素環基」の例は、一例に過ぎず、本明細書に記載の「置換の複素環基」には、具体例群G2Bの「置換の複素環基」における複素環基自体の環形成原子に結合する水素原子がさらに置換基と置き換わった基、及び具体例群G2Bの「置換の複素環基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
 具体例群G2Aは、例えば、以下の窒素原子を含む無置換の複素環基(具体例群G2A1)、酸素原子を含む無置換の複素環基(具体例群G2A2)、硫黄原子を含む無置換の複素環基(具体例群G2A3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4)を含む。
 具体例群G2Bは、例えば、以下の窒素原子を含む置換の複素環基(具体例群G2B1)、酸素原子を含む置換の複素環基(具体例群G2B2)、硫黄原子を含む置換の複素環基(具体例群G2B3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4)を含む。
・窒素原子を含む無置換の複素環基(具体例群G2A1):
ピロリル基、
イミダゾリル基、
ピラゾリル基、
トリアゾリル基、
テトラゾリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ピリジル基、
ピリダジニル基、
ピリミジニル基、
ピラジニル基、
トリアジニル基、
インドリル基、
イソインドリル基、
インドリジニル基、
キノリジニル基、
キノリル基、
イソキノリル基、
シンノリル基、
フタラジニル基、
キナゾリニル基、
キノキサリニル基、
ベンゾイミダゾリル基、
インダゾリル基、
フェナントロリニル基、
フェナントリジニル基、
アクリジニル基、
フェナジニル基、
カルバゾリル基、
ベンゾカルバゾリル基、
モルホリノ基、
フェノキサジニル基、
フェノチアジニル基、
アザカルバゾリル基、及びジアザカルバゾリル基。
・酸素原子を含む無置換の複素環基(具体例群G2A2):
フリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
キサンテニル基、
ベンゾフラニル基、
イソベンゾフラニル基、
ジベンゾフラニル基、
ナフトベンゾフラニル基、
ベンゾオキサゾリル基、
ベンゾイソキサゾリル基、
フェノキサジニル基、
モルホリノ基、
ジナフトフラニル基、
アザジベンゾフラニル基、
ジアザジベンゾフラニル基、
アザナフトベンゾフラニル基、及び
ジアザナフトベンゾフラニル基。
・硫黄原子を含む無置換の複素環基(具体例群G2A3):
チエニル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ベンゾチオフェニル基(ベンゾチエニル基)、
イソベンゾチオフェニル基(イソベンゾチエニル基)、
ジベンゾチオフェニル基(ジベンゾチエニル基)、
ナフトベンゾチオフェニル基(ナフトベンゾチエニル基)、
ベンゾチアゾリル基、
ベンゾイソチアゾリル基、
フェノチアジニル基、
ジナフトチオフェニル基(ジナフトチエニル基)、
アザジベンゾチオフェニル基(アザジベンゾチエニル基)、
ジアザジベンゾチオフェニル基(ジアザジベンゾチエニル基)、
アザナフトベンゾチオフェニル基(アザナフトベンゾチエニル基)、及び
ジアザナフトベンゾチオフェニル基(ジアザナフトベンゾチエニル基)。
・下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4):
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYは、それぞれ独立に、酸素原子、硫黄原子、NH、又はCHである。ただし、X及びYのうち少なくとも1つは、酸素原子、硫黄原子、又はNHである。
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYの少なくともいずれかがNH、又はCHである場合、前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基には、これらNH、又はCHから1つの水素原子を除いて得られる1価の基が含まれる。
・窒素原子を含む置換の複素環基(具体例群G2B1):
(9-フェニル)カルバゾリル基、
(9-ビフェニリル)カルバゾリル基、
(9-フェニル)フェニルカルバゾリル基、
(9-ナフチル)カルバゾリル基、
ジフェニルカルバゾール-9-イル基、
フェニルカルバゾール-9-イル基、
メチルベンゾイミダゾリル基、
エチルベンゾイミダゾリル基、
フェニルトリアジニル基、
ビフェニリルトリアジニル基、
ジフェニルトリアジニル基、
フェニルキナゾリニル基、及びビフェニリルキナゾリニル基。
・酸素原子を含む置換の複素環基(具体例群G2B2):
フェニルジベンゾフラニル基、
メチルジベンゾフラニル基、
t-ブチルジベンゾフラニル基、及び
スピロ[9H-キサンテン-9,9’-[9H]フルオレン]の1価の残基。
・硫黄原子を含む置換の複素環基(具体例群G2B3):
フェニルジベンゾチオフェニル基、
メチルジベンゾチオフェニル基、
t-ブチルジベンゾチオフェニル基、及び
スピロ[9H-チオキサンテン-9,9’-[9H]フルオレン]の1価の残基。
・前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4):
 前記「1価の複素環基の1つ以上の水素原子」とは、該1価の複素環基の環形成炭素原子に結合している水素原子、X及びYの少なくともいずれかがNHである場合の窒素原子に結合している水素原子、及びX及びYの一方がCHである場合のメチレン基の水素原子から選ばれる1つ以上の水素原子を意味する。
・「置換もしくは無置換のアルキル基」
 本明細書に記載の「置換もしくは無置換のアルキル基」の具体例(具体例群G3)としては、以下の無置換のアルキル基(具体例群G3A)及び置換のアルキル基(具体例群G3B)が挙げられる。(ここで、無置換のアルキル基とは「置換もしくは無置換のアルキル基」が「無置換のアルキル基」である場合を指し、置換のアルキル基とは「置換もしくは無置換のアルキル基」が「置換のアルキル基」である場合を指す。)以下、単に「アルキル基」という場合は、「無置換のアルキル基」と「置換のアルキル基」の両方を含む。
 「置換のアルキル基」は、「無置換のアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキル基」の具体例としては、下記の「無置換のアルキル基」(具体例群G3A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のアルキル基(具体例群G3B)の例等が挙げられる。本明細書において、「無置換のアルキル基」におけるアルキル基は、鎖状のアルキル基を意味する。そのため、「無置換のアルキル基」は、直鎖である「無置換のアルキル基」、及び分岐状である「無置換のアルキル基」が含まれる。尚、ここに列挙した「無置換のアルキル基」の例や「置換のアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルキル基」には、具体例群G3Bの「置換のアルキル基」におけるアルキル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G3Bの「置換のアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルキル基(具体例群G3A):
メチル基、
エチル基、
n-プロピル基、
イソプロピル基、
n-ブチル基、
イソブチル基、
s-ブチル基、及び
t-ブチル基。
・置換のアルキル基(具体例群G3B):
ヘプタフルオロプロピル基(異性体を含む)、
ペンタフルオロエチル基、
2,2,2-トリフルオロエチル基、及び
トリフルオロメチル基。
・「置換もしくは無置換のアルケニル基」
 本明細書に記載の「置換もしくは無置換のアルケニル基」の具体例(具体例群G4)としては、以下の無置換のアルケニル基(具体例群G4A)、及び置換のアルケニル基(具体例群G4B)等が挙げられる。(ここで、無置換のアルケニル基とは「置換もしくは無置換のアルケニル基」が「無置換のアルケニル基」である場合を指し、「置換のアルケニル基」とは「置換もしくは無置換のアルケニル基」が「置換のアルケニル基」である場合を指す。)本明細書において、単に「アルケニル基」という場合は、「無置換のアルケニル基」と「置換のアルケニル基」の両方を含む。
 「置換のアルケニル基」は、「無置換のアルケニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルケニル基」の具体例としては、下記の「無置換のアルケニル基」(具体例群G4A)が置換基を有する基、及び置換のアルケニル基(具体例群G4B)の例等が挙げられる。尚、ここに列挙した「無置換のアルケニル基」の例や「置換のアルケニル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルケニル基」には、具体例群G4Bの「置換のアルケニル基」におけるアルケニル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G4Bの「置換のアルケニル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルケニル基(具体例群G4A):
ビニル基、
アリル基、
1-ブテニル基、
2-ブテニル基、及び
3-ブテニル基。
・置換のアルケニル基(具体例群G4B):
1,3-ブタンジエニル基、
1-メチルビニル基、
1-メチルアリル基、
1,1-ジメチルアリル基、
2-メチルアリル基、及び
1,2-ジメチルアリル基。
・「置換もしくは無置換のアルキニル基」
 本明細書に記載の「置換もしくは無置換のアルキニル基」の具体例(具体例群G5)としては、以下の無置換のアルキニル基(具体例群G5A)等が挙げられる。(ここで、無置換のアルキニル基とは、「置換もしくは無置換のアルキニル基」が「無置換のアルキニル基」である場合を指す。)以下、単に「アルキニル基」という場合は、「無置換のアルキニル基」と「置換のアルキニル基」の両方を含む。
 「置換のアルキニル基」は、「無置換のアルキニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキニル基」の具体例としては、下記の「無置換のアルキニル基」(具体例群G5A)における1つ以上の水素原子が置換基と置き換わった基等が挙げられる。
・無置換のアルキニル基(具体例群G5A):エチニル基。
・「置換もしくは無置換のシクロアルキル基」
 本明細書に記載の「置換もしくは無置換のシクロアルキル基」の具体例(具体例群G6)としては、以下の無置換のシクロアルキル基(具体例群G6A)、及び置換のシクロアルキル基(具体例群G6B)等が挙げられる。(ここで、無置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「無置換のシクロアルキル基」である場合を指し、置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「置換のシクロアルキル基」である場合を指す。)本明細書において、単に「シクロアルキル基」という場合は、「無置換のシクロアルキル基」と「置換のシクロアルキル基」の両方を含む。
 「置換のシクロアルキル基」は、「無置換のシクロアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のシクロアルキル基」の具体例としては、下記の「無置換のシクロアルキル基」(具体例群G6A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のシクロアルキル基(具体例群G6B)の例等が挙げられる。尚、ここに列挙した「無置換のシクロアルキル基」の例や「置換のシクロアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のシクロアルキル基」には、具体例群G6Bの「置換のシクロアルキル基」におけるシクロアルキル基自体の炭素原子に結合する1つ以上の水素原子が置換基と置き換わった基、及び具体例群G6Bの「置換のシクロアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のシクロアルキル基(具体例群G6A):
シクロプロピル基、
シクロブチル基、
シクロペンチル基、
シクロヘキシル基、
1-アダマンチル基、
2-アダマンチル基、
1-ノルボルニル基、及び
2-ノルボルニル基。
・置換のシクロアルキル基(具体例群G6B):
4-メチルシクロヘキシル基。
・「-Si(R901)(R902)(R903)で表される基」
 本明細書に記載の-Si(R901)(R902)(R903)で表される基の具体例(具体例群G7)としては、
-Si(G1)(G1)(G1)、
-Si(G1)(G2)(G2)、
-Si(G1)(G1)(G2)、
-Si(G2)(G2)(G2)、
-Si(G3)(G3)(G3)、及び
-Si(G6)(G6)(G6)
が挙げられる。ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -Si(G1)(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G1)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G1)(G1)(G2)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G2)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -Si(G6)(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「-O-(R904)で表される基」
 本明細書に記載の-O-(R904)で表される基の具体例(具体例群G8)としては、
-O(G1)、
-O(G2)、
-O(G3)、及び
-O(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-S-(R905)で表される基」
 本明細書に記載の-S-(R905)で表される基の具体例(具体例群G9)としては、
-S(G1)、
-S(G2)、
-S(G3)、及び
-S(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-N(R906)(R907)で表される基」
 本明細書に記載の-N(R906)(R907)で表される基の具体例(具体例群G10)としては、
-N(G1)(G1)、
-N(G2)(G2)、
-N(G1)(G2)、
-N(G3)(G3)、及び
-N(G6)(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -N(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -N(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -N(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -N(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「ハロゲン原子」
 本明細書に記載の「ハロゲン原子」の具体例(具体例群G11)としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
・「置換もしくは無置換のフルオロアルキル基」
 本明細書に記載の「置換もしくは無置換のフルオロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がフッ素原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がフッ素原子で置き換わった基(パーフルオロ基)も含む。「無置換のフルオロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のフルオロアルキル基」は、「フルオロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のフルオロアルキル基」には、「置換のフルオロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のフルオロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のフルオロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がフッ素原子と置き換わった基の例等が挙げられる。
・「置換もしくは無置換のハロアルキル基」
 本明細書に記載の「置換もしくは無置換のハロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がハロゲン原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がハロゲン原子で置き換わった基も含む。「無置換のハロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のハロアルキル基」は、「ハロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のハロアルキル基」には、「置換のハロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のハロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のハロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がハロゲン原子と置き換わった基の例等が挙げられる。ハロアルキル基をハロゲン化アルキル基と称する場合がある。
・「置換もしくは無置換のアルコキシ基」
 本明細書に記載の「置換もしくは無置換のアルコキシ基」の具体例としては、-O(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルコキシ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアルキルチオ基」
 本明細書に記載の「置換もしくは無置換のアルキルチオ基」の具体例としては、-S(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルキルチオ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアリールオキシ基」
 本明細書に記載の「置換もしくは無置換のアリールオキシ基」の具体例としては、-O(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールオキシ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のアリールチオ基」
 本明細書に記載の「置換もしくは無置換のアリールチオ基」の具体例としては、-S(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールチオ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のトリアルキルシリル基」
 本明細書に記載の「トリアルキルシリル基」の具体例としては、-Si(G3)(G3)(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。-Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。「トリアルキルシリル基」の各アルキル基の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20であり、より好ましくは1~6である。
・「置換もしくは無置換のアラルキル基」
 本明細書に記載の「置換もしくは無置換のアラルキル基」の具体例としては、-(G3)-(G1)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」であり、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。従って、「アラルキル基」は、「アルキル基」の水素原子が置換基としての「アリール基」と置き換わった基であり、「置換のアルキル基」の一態様である。「無置換のアラルキル基」は、「無置換のアリール基」が置換した「無置換のアルキル基」であり、「無置換のアラルキル基」の炭素数は、本明細書に別途記載のない限り、7~50であり、好ましくは7~30であり、より好ましくは7~18である。
 「置換もしくは無置換のアラルキル基」の具体例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリール基は、本明細書に別途記載のない限り、好ましくはフェニル基、p-ビフェニル基、m-ビフェニル基、o-ビフェニル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-ターフェニル-4-イル基、o-ターフェニル-3-イル基、o-ターフェニル-2-イル基、1-ナフチル基、2-ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジメチルフルオレニル基、及び9,9-ジフェニルフルオレニル基等である。
 本明細書に記載の置換もしくは無置換の複素環基は、本明細書に別途記載のない限り、好ましくはピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、又は9-カルバゾリル基)、ベンゾカルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、アザジベンゾフラニル基、ジアザジベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、アザジベンゾチオフェニル基、ジアザジベンゾチオフェニル基、(9-フェニル)カルバゾリル基((9-フェニル)カルバゾール-1-イル基、(9-フェニル)カルバゾール-2-イル基、(9-フェニル)カルバゾール-3-イル基、又は(9-フェニル)カルバゾール-4-イル基)、(9-ビフェニリル)カルバゾリル基、(9-フェニル)フェニルカルバゾリル基、ジフェニルカルバゾール-9-イル基、フェニルカルバゾール-9-イル基、フェニルトリアジニル基、ビフェニリルトリアジニル基、ジフェニルトリアジニル基、フェニルジベンゾフラニル基、及びフェニルジベンゾチオフェニル基等である。
 本明細書において、カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000026
 本明細書において、(9-フェニル)カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000027
 前記一般式(TEMP-Cz1)~(TEMP-Cz9)中、*は、結合位置を表す。
 本明細書において、ジベンゾフラニル基、及びジベンゾチオフェニル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000028
 前記一般式(TEMP-34)~(TEMP-41)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換のアルキル基は、本明細書に別途記載のない限り、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基等である。
・「置換もしくは無置換のアリーレン基」
 本明細書に記載の「置換もしくは無置換のアリーレン基」は、別途記載のない限り、上記「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアリーレン基」の具体例(具体例群G12)としては、具体例群G1に記載の「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換の2価の複素環基」
 本明細書に記載の「置換もしくは無置換の2価の複素環基」は、別途記載のない限り、上記「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換の2価の複素環基」の具体例(具体例群G13)としては、具体例群G2に記載の「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換のアルキレン基」
 本明細書に記載の「置換もしくは無置換のアルキレン基」は、別途記載のない限り、上記「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアルキレン基」の具体例(具体例群G14)としては、具体例群G3に記載の「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリーレン基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-42)~(TEMP-68)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 前記一般式(TEMP-42)~(TEMP-52)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-42)~(TEMP-52)中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000031
 前記一般式(TEMP-53)~(TEMP-62)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 式Q及びQ10は、単結合を介して互いに結合して環を形成してもよい。
 前記一般式(TEMP-53)~(TEMP-62)中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000032
 前記一般式(TEMP-63)~(TEMP-68)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-63)~(TEMP-68)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換の2価の複素環基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-69)~(TEMP-102)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 前記一般式(TEMP-69)~(TEMP-82)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 前記一般式(TEMP-83)~(TEMP-102)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 以上が、「本明細書に記載の置換基」についての説明である。
・「結合して環を形成する場合」
 本明細書において、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、互いに結合して、置換もしくは無置換の縮合環を形成するか、又は互いに結合せず」という場合は、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合しない」場合と、を意味する。
 本明細書における、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(以下、これらの場合をまとめて「結合して環を形成する場合」と称する場合がある。)について、以下、説明する。母骨格がアントラセン環である下記一般式(TEMP-103)で表されるアントラセン化合物の場合を例として説明する。
Figure JPOXMLDOC01-appb-C000040
 例えば、R921~R930のうちの「隣接する2つ以上からなる組の1組以上が、互いに結合して、環を形成する」場合において、1組となる隣接する2つからなる組とは、R921とR922との組、R922とR923との組、R923とR924との組、R924とR930との組、R930とR925との組、R925とR926との組、R926とR927との組、R927とR928との組、R928とR929との組、並びにR929とR921との組である。
 上記「1組以上」とは、上記隣接する2つ以上からなる組の2組以上が同時に環を形成してもよいことを意味する。例えば、R921とR922とが互いに結合して環Qを形成し、同時にR925とR926とが互いに結合して環Qを形成した場合は、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-104)で表される。
Figure JPOXMLDOC01-appb-C000041
 「隣接する2つ以上からなる組」が環を形成する場合とは、前述の例のように隣接する「2つ」からなる組が結合する場合だけではなく、隣接する「3つ以上」からなる組が結合する場合も含む。例えば、R921とR922とが互いに結合して環Qを形成し、かつ、R922とR923とが互いに結合して環Qを形成し、互いに隣接する3つ(R921、R922及びR923)からなる組が互いに結合して環を形成して、アントラセン母骨格に縮合する場合を意味し、この場合、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-105)で表される。下記一般式(TEMP-105)において、環Q及び環Qは、R922を共有する。
Figure JPOXMLDOC01-appb-C000042
 形成される「単環」、又は「縮合環」は、形成された環のみの構造として、飽和の環であっても不飽和の環であってもよい。「隣接する2つからなる組の1組」が「単環」、又は「縮合環」を形成する場合であっても、当該「単環」、又は「縮合環」は、飽和の環、又は不飽和の環を形成することができる。例えば、前記一般式(TEMP-104)において形成された環Q及び環Qは、それぞれ、「単環」又は「縮合環」である。また、前記一般式(TEMP-105)において形成された環Q、及び環Qは、「縮合環」である。前記一般式(TEMP-105)の環Qと環Qとは、環Qと環Qとが縮合することによって縮合環となっている。前記一般式(TMEP-104)の環Qがベンゼン環であれば、環Qは、単環である。前記一般式(TMEP-104)の環Qがナフタレン環であれば、環Qは、縮合環である。
 「不飽和の環」とは、芳香族炭化水素環、又は芳香族複素環を意味する。「飽和の環」とは、脂肪族炭化水素環、又は非芳香族複素環を意味する。
 芳香族炭化水素環の具体例としては、具体例群G1において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 芳香族複素環の具体例としては、具体例群G2において具体例として挙げられた芳香族複素環基が水素原子によって終端された構造が挙げられる。
 脂肪族炭化水素環の具体例としては、具体例群G6において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 「環を形成する」とは、母骨格の複数の原子のみ、あるいは母骨格の複数の原子とさらに1以上の任意の元素で環を形成することを意味する。例えば、前記一般式(TEMP-104)に示す、R921とR922とが互いに結合して形成された環Qは、R921が結合するアントラセン骨格の炭素原子と、R922が結合するアントラセン骨格の炭素原子と、1以上の任意の元素とで形成する環を意味する。具体例としては、R921とR922とで環Qを形成する場合において、R921が結合するアントラセン骨格の炭素原子と、R922とが結合するアントラセン骨格の炭素原子と、4つの炭素原子とで単環の不飽和の環を形成する場合、R921とR922とで形成する環は、ベンゼン環である。
 ここで、「任意の元素」は、本明細書に別途記載のない限り、好ましくは、炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素である。任意の元素において(例えば、炭素元素、又は窒素元素の場合)、環を形成しない結合は、水素原子等で終端されてもよいし、後述する「任意の置換基」で置換されてもよい。炭素元素以外の任意の元素を含む場合、形成される環は複素環である。
 単環または縮合環を構成する「1以上の任意の元素」は、本明細書に別途記載のない限り、好ましくは2個以上15個以下であり、より好ましくは3個以上12個以下であり、さらに好ましくは3個以上5個以下である。
 本明細書に別途記載のない限り、「単環」、及び「縮合環」のうち、好ましくは「単環」である。
 本明細書に別途記載のない限り、「飽和の環」、及び「不飽和の環」のうち、好ましくは「不飽和の環」である。
 本明細書に別途記載のない限り、「単環」は、好ましくはベンゼン環である。
 本明細書に別途記載のない限り、「不飽和の環」は、好ましくはベンゼン環である。
 「隣接する2つ以上からなる組の1組以上」が、「互いに結合して、置換もしくは無置換の単環を形成する」場合、又は「互いに結合して、置換もしくは無置換の縮合環を形成する」場合、本明細書に別途記載のない限り、好ましくは、隣接する2つ以上からなる組の1組以上が、互いに結合して、母骨格の複数の原子と、1個以上15個以下の炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素とからなる置換もしくは無置換の「不飽和の環」を形成する。
 上記の「単環」、又は「縮合環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 上記の「飽和の環」、又は「不飽和の環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 以上が、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(「結合して環を形成する場合」)についての説明である。
・「置換もしくは無置換の」という場合の置換基
 本明細書における一実施形態においては、前記「置換もしくは無置換の」という場合の置換基(本明細書において、「任意の置換基」と呼ぶことがある。)は、例えば、
無置換の炭素数1~50のアルキル基、
無置換の炭素数2~50のアルケニル基、
無置換の炭素数2~50のアルキニル基、
無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
無置換の環形成炭素数6~50のアリール基、及び
無置換の環形成原子数5~50の複素環基
からなる群から選択される基等であり、
 ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。
 R901が2個以上存在する場合、2個以上のR901は、互いに同一であるか、又は異なり、
 R902が2個以上存在する場合、2個以上のR902は、互いに同一であるか、又は異なり、
 R903が2個以上存在する場合、2個以上のR903は、互いに同一であるか、又は異なり、
 R904が2個以上存在する場合、2個以上のR904は、互いに同一であるか、又は異なり、
 R905が2個以上存在する場合、2個以上のR905は、互いに同一であるか、又は異なり、
 R906が2個以上存在する場合、2個以上のR906は、互いに同一であるか、又は異なり、
 R907が2個以上存在する場合、2個以上のR907は、互いに同一であるか又は異なる。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び
環形成原子数5~50の複素環基
からなる群から選択される基である。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び
環形成原子数5~18の複素環基
からなる群から選択される基である。
 上記任意の置換基の各基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基の具体例である。
 本明細書において別途記載のない限り、隣接する任意の置換基同士で、「飽和の環」、又は「不飽和の環」を形成してもよく、好ましくは、置換もしくは無置換の飽和の5員環、置換もしくは無置換の飽和の6員環、置換もしくは無置換の不飽和の5員環、又は置換もしくは無置換の不飽和の6員環を形成し、より好ましくは、ベンゼン環を形成する。
 本明細書において別途記載のない限り、任意の置換基は、さらに置換基を有してもよい。任意の置換基がさらに有する置換基としては、上記任意の置換基と同様である。
 本明細書において、「AA~BB」を用いて表される数値範囲は、「AA~BB」の前に記載される数値AAを下限値とし、「AA~BB」の後に記載される数値BBを上限値として含む範囲を意味する。
〔第一実施形態〕
(有機エレクトロルミネッセンス素子)
 本実施形態の有機エレクトロルミネッセンス素子(有機EL素子)は、陰極と、陽極と、陰極及び陽極の間に配置された発光領域と、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層と、を有し、発光領域は、少なくとも1つの発光層を含み、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層は、陽極及び発光領域の間において、陽極側から、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の順に配置され、第三の陽極側有機層は、第二の陽極側有機層が含有する化合物を含有しない。本実施形態の有機EL素子は、これらの要素に加えて、さらに別の要素を含んだ種々の態様の有機EL素子であってもよい。例えば、本実施形態の有機EL素子の態様の例として、以下の第一の態様、第二の態様、第三の態様、第四の態様及び第五の態様が挙げられる。なお、本実施形態の有機EL素子は、これらの態様に限定されない。
 本実施形態の第一の態様に係る有機EL素子は、陰極と、陽極と、前記陰極及び前記陽極の間に配置された発光領域と、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層と、を有し、前記発光領域は、少なくとも1つの発光層を含み、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記陽極及び前記発光領域の間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が、30nm以上、かつ150nm以下であり、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の比は、下記数式(数A1)の関係を満たす。
 0.50<TL/TL<4.0 …(数A1)
(TLは、前記第二の陽極側有機層の膜厚であり、TLは、前記第三の陽極側有機層の膜厚であり、膜厚の単位は、nmである。)
 本実施形態の第二の態様に係る有機EL素子は、陰極と、陽極と、前記陰極及び前記陽極の間に配置された発光領域と、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層と、を有し、前記発光領域は、少なくとも1つの発光層を含み、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記陽極及び前記発光領域の間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、前記第三の陽極側有機層は、下記一般式(C1)で表される化合物又は下記一般式(C2)で表される化合物を含有し、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が、30nm以上、かつ150nm以下であり、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の比は、下記数式(数A2)の関係を満たす。
 0.30<TL/TL<4.0 …(数A2)
(TLは、前記第二の陽極側有機層の膜厚であり、TLは、前記第三の陽極側有機層の膜厚であり、膜厚の単位は、nmである。)
Figure JPOXMLDOC01-appb-C000043
(前記一般式(C1)において、
 LA1、LA2及びLA3は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar111、Ar112及びAr113は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  -Si(RC1)(RC2)(RC3)であり、
 RC1、RC2及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 RC1が複数存在する場合、複数のRC1は、互いに同一であるか、又は異なり、
 RC2が複数存在する場合、複数のRC2は、互いに同一であるか、又は異なり、
 RC3が複数存在する場合、複数のRC3は、互いに同一であるか、又は異なる。)
Figure JPOXMLDOC01-appb-C000044
(前記一般式(C2)において、
 LB1、LB2、LB3及びLB4は、それぞれ独立に、
  単結合、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基であり、
 Ar121、Ar122、Ar123、Ar124及びAr125は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(前記一般式(C1)で表される化合物及び前記一般式(C2)で表される化合物において、「置換もしくは無置換の」という場合における置換基は、-N(RC6)(RC7)で表される基ではなく、RC6及びRC7は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。)
 本実施形態の第三の態様に係る有機EL素子は、陰極と、陽極と、前記陰極及び前記陽極の間に配置された発光領域と、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層と、を有し、前記発光領域は、少なくとも1つの発光層を含み、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記陽極及び前記発光領域の間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、前記第一の陽極側有機層と、前記第二の陽極側有機層と、前記第三の陽極側有機層とは、それぞれ異なる化合物を1つ以上含み、前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、前記第三の陽極側有機層は、第三の正孔輸送帯域材料を含有し、前記第三の正孔輸送帯域材料の正孔移動度μh(cHT3)は、1.0×10-5cm/Vsよりも大きく、前記第三の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT3)は、-5.6eV以下である。
 本実施形態の第四の態様に係る有機EL素子は、陰極と、陽極と、前記陰極及び前記陽極の間に配置された発光領域と、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層と、を有し、前記発光領域は、少なくとも1つの発光層を含み、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記陽極及び前記発光領域の間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が100nm以上である。
 本実施形態の第五の態様に係る有機EL素子は、陰極と、陽極と、前記陰極及び前記陽極の間に配置された発光領域と、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層と、を有し、前記発光領域は、少なくとも1つの発光層を含み、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記陽極及び前記発光領域の間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が、30nm以上であり、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の比は、下記数式(数A4)の関係を満たし、前記第三の陽極側有機層は、第三の正孔輸送帯域材料を含有し、前記第三の正孔輸送帯域材料の一重項エネルギーが、3.12eVよりも大きい。
 0.30<TL/TL<5.0 …(数A4)
(TLは、前記第二の陽極側有機層の膜厚であり、TLは、前記第三の陽極側有機層の膜厚であり、膜厚の単位は、nmである。)
 本実施形態の各態様の有機EL素子が有することができる要素について、以下、説明する。前述の第一の態様、第二の態様、第三の態様、第四の態様及び第五の態様は、以下で説明される要素の中から選ばれる1つ以上の要素を含んだ態様の例である。
 本実施形態によれば、有機EL素子の素子性能を向上させることができる。本実施形態の一態様において、有機EL素子の発光効率が向上する。本実施形態の一態様において、有機EL素子が長寿命化する。
 低屈折率材料からなる層を正孔輸送帯域における有機層(例えば、正孔輸送層)として用いることで、エバネエッセントモードによる発光ロスを軽減することができる。さらに正孔輸送帯域における有機層(例えば、正孔輸送層)として、高屈折率材料からなる有機層を陽極側に配置し、低屈折率材料からなる有機層を発光層側に配置することにより、薄膜モードにおける発光ロスの低減ができる。とりわけ、ボトムエミッション型の有機エレクトロルミネッセンス素子での光取り出しは、有機薄膜層における発光ロスだけでなく、基板モードの発光ロスも同時に防ぐことができ、さらに効率を向上させることができる。特に、低屈折率材料からなる有機層の膜厚が20nm以上であれば、光取り出し効率を効果的に高めることができる。また、正孔輸送帯域における有機層において、互いに異なる2種の材料を組み合わせることにより、容易に正孔供給特性の調整を行うことができる。
(正孔輸送帯域)
 本明細書において、陽極及び発光領域の間に配置された複数の有機層からなる領域を正孔輸送帯域と称する場合がある。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層の膜厚TL及び第三の陽極側有機層の膜厚TLの比TL/TLが、所定の関係を満たす。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層の膜厚及び第三の陽極側有機層の膜厚の比は、下記数式(数A1)、数式(数A2)、数式(数A3)又は数式(数A4)の関係を満たす。
 0.50<TL/TL<4.0 …(数A1)
 0.30<TL/TL<4.0 …(数A2)
 0.75<TL/TL<3.0 …(数A3)
 0.30<TL/TL<5.0 …(数A4)
(TLは、前記第二の陽極側有機層の膜厚であり、TLは、前記第三の陽極側有機層の膜厚であり、膜厚の単位は、nmである。)
 本実施形態の有機EL素子の一態様において、比TL/TLは、1以上である。
 本実施形態の有機EL素子の一態様において、比TL/TLは、2.5以下である。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層の膜厚及び第三の陽極側有機層の膜厚の合計が、30nm以上であるか、70nm以上であるか、又は100nm以上である。
 本実施形態の有機EL素子において、発光領域の陽極側に配置される正孔輸送帯域の有機層の膜厚が大きく(例えば、第二の陽極側有機層の膜厚及び第三の陽極側有機層の膜厚の合計が30nm以上であり)、第二の陽極側有機層の膜厚及び第三の陽極側有機層の膜厚比を所定範囲内(例えば、前記数式(数A1)、数式(数A2)、数式(数A3)又は数式(数A4)の範囲内)であることにより、発光層の励起エネルギーが正孔輸送帯域に移動することを防止できると考えられる。発光層の励起エネルギーの移動を防止することにより、有機EL素子の発光効率が向上すると考えられる。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層の膜厚及び第三の陽極側有機層の膜厚の合計が、150nm以下である。
 本実施形態の有機EL素子の一態様において、第一の陽極側有機層の膜厚、第二の陽極側有機層の膜厚及び第三の陽極側有機層の膜厚の合計が、150nm以下である。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層の膜厚が、15nm以上であるか、又は20nm以上である。
 第三の陽極側有機層の膜厚が15nm以上であることにより、第三の陽極側有機層は、発光層の励起エネルギーの移動を防止し易くなると考えられる。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層の膜厚は、80nm以下であるか、75nm以下であるか、又は60nm以下である。
 光取り出し効率の向上の観点から、第三の陽極側有機層の膜厚は、15nm以上75nm以下であることが好ましく、20nm以上60nm以下であることがより好ましい。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層に含まれる構成材料の屈折率NMと、第三の陽極側有機層に含まれる構成材料の屈折率NMとの差NM-NMが、下記数式(数N1)の関係を満たす。第二の陽極側有機層に含まれる構成材料の屈折率NMは、第二の陽極側有機層が一種の化合物を含有する場合は、当該一種の化合物の屈折率に相当し、第二の陽極側有機層が複数種の化合物を含有する場合は、当該複数種の化合物を含有する混合物の屈折率に相当する。第三の陽極側有機層に含まれる構成材料の屈折率NMについても、第二の陽極側有機層に含まれる構成材料の屈折率NMと同様に規定される。屈折率は、後述する実施例に記載の測定方法で測定することができる。本明細書においては、多入射角分光エリプソメトリー測定で測定した値の基板平行方向(Ordinary方向)の2.7eVにおける屈折率の値を測定対象材料の屈折率とする。2.7eVにおける屈折率は、460nmにおける屈折率と対応する。
 NM-NM≧0.05 …(数N1)
 前記数式(数N1)の関係を満たすことにより、有機EL素子の光取り出し効率が向上する。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層に含まれる構成材料の屈折率NMと、第三の陽極側有機層に含まれる構成材料の屈折率NMとの差NM-NMが、下記数式(数N2)又は(数N3)の関係を満たす。
 NM-NM≧0.10 …(数N2)
 NM-NM≧0.075 …(数N3)
 本明細書においては、基板平行方向(Ordinary方向)の2.7eV(460nm)における屈折率をnORDと表記し、基板垂直方向(Extra-Ordinary方向)の2.7eV(460nm)における屈折率をnEXTと表記する場合がある。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層に含まれる構成材料の460nmにおける屈折率nORDと屈折率nEXTとの差nORD-nEXTは、0.1以上であることが好ましい。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物の屈折率は、1.94以上である。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層が含有する化合物の屈折率は、1.89以下である。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層の陽極側の界面から、発光領域中の最も陽極側に配置された発光層の陽極側の界面までの距離が20nm以上である。
 第三の陽極側有機層の陽極側の界面から、発光領域中の最も陽極側に配置された発光層の陽極側の界面までの距離が20nm以上であることにより、光取り出し効率が向上し易くなる。
 第三の陽極側有機層の陽極側の界面から、発光領域中の最も陽極側に配置された発光層の陽極側の界面までの距離は、例えば、第三の陽極側有機層が、陽極側で第二の陽極側有機層と直接接し、陰極側で発光領域中の最も陽極側に配置された発光層と直接接する場合は、第三の陽極側有機層の膜厚に相当する。
 また、第三の陽極側有機層の陽極側の界面から、発光領域中の最も陽極側に配置された発光層の陽極側の界面までの距離は、例えば、第三の陽極側有機層が、陽極側で第二の陽極側有機層と直接接し、陰極側で後述する第四の陽極側有機層と直接接し、第四の陽極側有機層が、陰極側で発光領域中の最も陽極側に配置された発光層と直接接する場合は、第三の陽極側有機層の膜厚と第四の陽極側有機層との合計膜厚に相当する。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層の陽極側の界面から、発光領域中の最も陽極側に配置された発光層の陽極側の界面までの距離が30nm以上である。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層は、前記一般式(C1)で表される化合物又は前記一般式(C2)で表される化合物を含有する。
 本実施形態の有機EL素子の一態様において、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層とは、それぞれ異なる化合物を1つ以上含む。
 本実施形態の有機EL素子の一態様において、第一の陽極側有機層及び第二の陽極側有機層は、いずれも、前記一般式(C1)で表される化合物又は前記一般式(C2)で表される化合物を含有してもよいが、第一の陽極側有機層及び第二の陽極側有機層が含有する化合物は、第三の陽極側有機層が含有する化合物と、分子構造が異なる。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物は、いずれも、第三の陽極側有機層が含有する化合物とは、異なる。
 この条件を満たす態様としては、例えば、第二の陽極側有機層が化合物AAの一種を含有し、第三の陽極側有機層が化合物BBの一種を含有する場合が挙げられる。
 また、例えば、第二の陽極側有機層が化合物AA及び化合物ABの二種を含有し、第三の陽極側有機層が化合物BBの一種を含有する場合も、化合物AA及び化合物ABは、いずれも、化合物BBとは異なるので、当該条件を満たす。化合物AAと化合物ABと化合物BBとは互いに異なる化合物である。
 一方、例えば、第二の陽極側有機層が化合物AA及び化合物ABの二種を含有し、第三の陽極側有機層が化合物ABの一種を含有する場合は、化合物ABに関して、第二の陽極側有機層及び第三の陽極側有機層が同じ化合物を含有するので、当該条件を満たさない。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層は、第三の正孔輸送帯域材料を含有する。第三の陽極側有機層が含有する化合物を第三の正孔輸送帯域材料と称する場合がある。
 本実施形態の有機EL素子の一態様において、第三の正孔輸送帯域材料の正孔移動度μh(cHT3)は、1.0×10-5cm/Vsよりも大きい。
 本実施形態の有機EL素子の一態様において、第三の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT3)は、-5.6eV以下である。
 本実施形態の有機EL素子の一態様において、第三の正孔輸送帯域材料の正孔移動度μh(cHT3)が1.0×10-5cm/Vsよりも大きく、かつ、第三の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT3)が-5.6eV以下である。第三の正孔輸送帯域材料の正孔移動度μh(cHT3)及びHOMO(cHT3)がこのような範囲であれば、第三の陽極側有機層の正孔移動度が高く、かつ、発光領域中の発光層への正孔注入性も高い。
 本実施形態の有機EL素子の一態様において、第三の正孔輸送帯域材料の一重項エネルギーは、3.12eVよりも大きい。
 本実施形態の有機EL素子の一態様において、第三の正孔輸送帯域材料の一重項エネルギーは、3.15eV以上である。
 本実施形態の有機EL素子の一態様において、第三の正孔輸送帯域材料の一重項エネルギーは、3.40eV以下であるか、又は3.30eV以下である。
 本実施形態の有機EL素子の一態様において、第三の正孔輸送帯域材料は、前記一般式(C1)で表される化合物又は前記一般式(C2)で表される化合物である。
 前記一般式(C1)で表される化合物は、下記一般式(C11)で表される化合物であることが好ましい。
 本実施形態の有機EL素子の一態様において、第三の正孔輸送帯域材料は、下記一般式(C11)で表される化合物である。
Figure JPOXMLDOC01-appb-C000045
(前記一般式(C11)において、Ar111、Ar112、Ar113及びLA3は、それぞれ、前記一般式(C1)におけるAr111、Ar112、Ar113及びLA3と同義であり、n1及びn2は、4であり、
 複数のRC11は、互いに同一であるか、又は異なり、
 複数のRC11のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 複数のRC12は、互いに同一であるか、又は異なり、
 複数のRC12のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRC11及びRC12は、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)、
  -O-(R904)、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 前記一般式(C1)及び前記一般式(C11)で表される化合物において、Ar111、Ar112及びAr113の内、少なくとも1つは、下記一般式(21a)、一般式(21b)、一般式(21c)、一般式(21d)及び一般式(21e)で表される基からなる群から選択される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000046
(前記一般式(21a)、一般式(21b)、一般式(21c)、一般式(21d)及び一般式(21e)において、
 X21は、NR21、CR2223、酸素原子又は硫黄原子であり、
 X21が複数ある場合、複数のX21は、互いに同一であるか、又は異なり、
 X21がCR2223である場合、R22とR23とからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R21、並びに前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR22及びR23は、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R211~R218のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR211~R218は、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(21a)、一般式(21b)、一般式(21c)一般式(21d)及び一般式(21e)における*は、それぞれ独立に、LA1、LA2及びLA3との結合位置である。)
 前記一般式(21a)、一般式(21b)、一般式(21c)、一般式(21d)及び一般式(21e)で表される基からなる群から選択される基ではないAr111、Ar112及びAr113は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基であることが好ましく、置換もしくは無置換のフェニル基又は置換もしくは無置換のビフェニル基であることがより好ましい。
 前記一般式(C1)で表される化合物において、Ar111、Ar112及びAr113の内、2つが、前記一般式(21a)、一般式(21b)、一般式(21c)、一般式(21d)及び一般式(21e)で表される基からなる群から選択される基であり、Ar111、Ar112及びAr113の内、その他の1つが、置換もしくは無置換の環形成炭素数6~30のアリール基であることも好ましい。
 前記一般式(C1)で表される化合物において、Ar111、Ar112及びAr113の内、1つが、前記一般式(21a)、一般式(21b)、一般式(21c)、一般式(21d)及び一般式(21e)で表される基からなる群から選択される基であり、Ar111、Ar112及びAr113の内、その他の2つが、置換もしくは無置換の環形成炭素数6~30のアリール基であることも好ましい。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層は、第二の正孔輸送帯域材料を含有する。第二の陽極側有機層が含有する化合物を第二の正孔輸送帯域材料と称する場合がある。
 本実施形態の有機EL素子の一態様において、第二の正孔輸送帯域材料と第三の正孔輸送帯域材料とが、互いに異なる化合物である。
 本実施形態の有機EL素子の一態様において、第二の正孔輸送帯域材料の正孔移動度μh(cHT2)は、1.0×10-4cm/Vsよりも大きい。
 本実施形態の有機EL素子の一態様において、第二の正孔輸送帯域材料の正孔移動度μh(cHT2)は、第三の正孔輸送帯域材料の正孔移動度μh(cHT3)よりも大きい。
 本実施形態の有機EL素子の一態様において、第二の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT2)と、第三の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT3)と、が下記数式(数B1)の関係を満たす。
 HOMO(cHT2)<HOMO(cHT3) …(数B1)
 本実施形態の有機EL素子の一態様において、第二の正孔輸送帯域材料の正孔移動度μh(cHT2)は、1.0×10-4cm/Vsよりも大きく、第三の正孔輸送帯域材料の正孔移動度μh(cHT3)は、1.0×10-5cm/Vsよりも大きく、かつ、第二の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT2)と、第三の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT3)と、が前記数式(数B1)の関係を満たす。
 本実施形態の有機EL素子の一態様において、第二の正孔輸送帯域材料は、前記一般式(C1)又は前記一般式(C2)で表される化合物である。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層及び第三の陽極側有機層は、いずれも、前記一般式(C1)で表される化合物を含有してもよいが、第二の陽極側有機層が含有する化合物と、第三の陽極側有機層が含有する化合物とは、分子構造が異なる。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層及び第三の陽極側有機層は、いずれも、前記一般式(C2)で表される化合物を含有してもよいが、第二の陽極側有機層が含有する化合物と、第三の陽極側有機層が含有する化合物とは、分子構造が異なる。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層は、下記一般式(cHT3-1)で表される化合物、一般式(cHT3-2)で表される化合物、一般式(cHT3-3)で表される化合物及び一般式(cHT3-4)で表される化合物からなる群から選択される少なくともいずれかの化合物を含有する。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
(前記一般式(cHT3-1)、一般式(cHT3-2)、一般式(cHT3-3)及び一般式(cHT3-4)において、
 Ar311は、下記一般式(1-a)、一般式(1-b)、一般式(1-c)及び一般式(1-d)のいずれかで表される基であり、
 Ar312及びAr313は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  -Si(RC1)(RC2)(RC3)であり、
 RC1、RC2及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 RC1が複数存在する場合、複数のRC1は、互いに同一であるか、又は異なり、
 RC2が複数存在する場合、複数のRC2は、互いに同一であるか、又は異なり、
 RC3が複数存在する場合、複数のRC3は、互いに同一であるか、又は異なり、
 LD1、LD2及びLD3は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 RD20~RD24のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 RD31~RD38のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 RD40~RD44のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 Xは、酸素原子、硫黄原子又はC(RD45)(RD46)であり、
 RD45及びRD46からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 RD25、前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRD20~RD24、RD31~RD38、RD40~RD44、RD45並びにRD46は、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 複数のRD20は、互いに同一であるか、又は異なり、
 複数のRD40は、互いに同一であるか、又は異なり、
 前記一般式(cHT3-1)、一般式(cHT3-2)、一般式(cHT3-3)及び一般式(cHT3-4)で表される化合物中の、R901~R904は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数ある場合、複数のR901は、互いに同一であるか、又は異なり、
 R902が複数ある場合、複数のR902は、互いに同一であるか、又は異なり、
 R903が複数ある場合、複数のR903は、互いに同一であるか、又は異なり、
 R904が複数ある場合、複数のR904は、互いに同一であるか、又は異なる。)
Figure JPOXMLDOC01-appb-C000051
(前記一般式(1-a)中、
 R51~R55のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
 R51~R55は、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の炭素数1~6のアルキル基であり、
 **は、LD1との結合位置を表す。)
Figure JPOXMLDOC01-appb-C000052
(前記一般式(1-b)中、
 R61~R68のうち1つは、*bに結合する単結合であり、
 *bに結合する単結合ではないR61~R68のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
 *bに結合する単結合ではないR61~R68は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~6のアルキル基、又は置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 **は、LD1との結合位置を表す。)
Figure JPOXMLDOC01-appb-C000053
(前記一般式(1-c)中、
 R71~R80のうち1つは、*dに結合する単結合であり、
 *dに結合する単結合ではないR71~R80のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
 *dに結合する単結合ではないR71~R80は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 **は、LD1との結合位置を表す。)
Figure JPOXMLDOC01-appb-C000054
(前記一般式(1-d)中、
 R141~R145のうち1つは、*h1に結合する単結合であり、R141~R145のうち他の1つは、*h2に結合する単結合であり、
 *h1に結合する単結合ではなく、かつ、*h2に結合する単結合ではないR141~R145のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
 R151~R155のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R161~R165のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 *h1に結合する単結合ではなく、かつ、*h2に結合する単結合ではないR141~R145、並びに前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR151~R155及びR161~R165は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 **は、LD1との結合位置を表す。)
 前記一般式(cHT3-1)で表される化合物は、一般式(cHT3-11)で表される化合物でもよい。
Figure JPOXMLDOC01-appb-C000055
(前記一般式(cHT3-11)において、Ar312、Ar313、LD1、LD2、LD3及びRD25は、それぞれ、前記一般式(cHT3-1)におけるAr312、Ar313、LD1、LD2、LD3及びRD25と同義であり、
 RD26~RD29のうち1つがLD1に結合する単結合であり、*kは、結合位置を表し、
 RD21~RD24並びにLD1に結合する単結合ではないRD26~RD29のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRD21~RD24並びにRD26~RD29は、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 本実施形態の有機EL素子の一態様において、前記一般式(cHT3-11)のRD26、RD28又はRD29がLD1に結合する単結合である。
 前記一般式(cHT3-11)のRD26がLD1に結合する単結合である場合、前記一般式(cHT3-11)で表される化合物は、下記一般式(cHT3-12)で表される。
Figure JPOXMLDOC01-appb-C000056
 前記一般式(cHT3-11)のRD28がLD1に結合する単結合である場合、前記一般式(cHT3-11)で表される化合物は、下記一般式(cHT3-13)で表される。
Figure JPOXMLDOC01-appb-C000057
 前記一般式(cHT3-11)のRD29がLD1に結合する単結合である場合、前記一般式(cHT3-11)で表される化合物は、下記一般式(cHT3-14)で表される。
Figure JPOXMLDOC01-appb-C000058
(前記一般式(cHT3-12)、前記一般式(cHT3-13)及び前記一般式(cHT3-14)において、Ar312、Ar313、LD1、LD2、LD3及びRD21~RD29は、それぞれ、前記一般式(cHT3-11)におけるAr312、Ar313、LD1、LD2、LD3及びRD21~RD29と同義である。)
 前記一般式(cHT3-3)で表される化合物は、一般式(cHT3-31)で表される化合物でもよい。
Figure JPOXMLDOC01-appb-C000059
(前記一般式(cHT3-31)において、Ar312、Ar313、LD1、LD2、LD3及びXは、それぞれ、前記一般式(cHT3-3)におけるAr312、Ar313、LD1、LD2、LD3及びXと同義であり、
 RD47~RD50のうち1つがLD1に結合する単結合であり、*mは、結合位置を表し、
 RD41~RD44並びにLD1に結合する単結合ではないRD47~RD50のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRD41~RD50は、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 本実施形態の有機EL素子の一態様において、LD1が、単結合又は置換もしくは無置換のフェニレン基である。
 本実施形態の有機EL素子の一態様において、前記一般式(cHT3-1)~(cHT3-4)、(cHT3-11)~(cHT3-14)及び(cHT3-31)で表される化合物において、「置換もしくは無置換の」という場合における置換基は、-N(RC6)(RC7)で表される基ではない。
 本実施形態において、RC6及びRC7は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基であり、複数のRC6は、互いに同一であるか又は異なり、複数のRC7は、互いに同一であるか又は異なる。
 「置換もしくは無置換の」という場合における置換基が-N(RC6)(RC7)で表される基ではない場合、前記一般式(cHT3-1)~(cHT3-4)、(cHT3-11)~(cHT3-14)及び(cHT3-31)で表される化合物は、モノアミン化合物である。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層が含有する化合物は、置換もしくは無置換のアミノ基を分子中に2つ有するジアミン化合物である。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層が含有する化合物は、置換もしくは無置換のアミノ基を分子中に3つ有するトリアミン化合物である。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層が含有する化合物は、置換もしくは無置換のアミノ基を分子中に4つ有するテトラアミン化合物である。
 前記一般式(cHT3-1)~(cHT3-4)、(cHT3-11)~(cHT3-14)及び(cHT3-31)で表される化合物が、ジアミン化合物である場合、前記一般式(cHT3-1)~(cHT3-4)、(cHT3-11)~(cHT3-14)及び(cHT3-31)で表される化合物は、「置換もしくは無置換の」という場合における置換基として-N(RC6)(RC7)で表される基を1つ有する。
 前記一般式(cHT3-1)~(cHT3-4)、(cHT3-11)~(cHT3-14)及び(cHT3-31)で表される化合物が、トリアミン化合物である場合、前記一般式(cHT3-1)~(cHT3-4)、(cHT3-11)~(cHT3-14)及び(cHT3-31)で表される化合物は、「置換もしくは無置換の」という場合における置換基として-N(RC6)(RC7)で表される基を2つ有する。
 前記一般式(cHT3-1)~(cHT3-4)、(cHT3-11)~(cHT3-14)及び(cHT3-31)で表される化合物が、テトラアミン化合物である場合、前記一般式(cHT3-1)~(cHT3-4)、(cHT3-11)~(cHT3-14)及び(cHT3-31)で表される化合物は、「置換もしくは無置換の」という場合における置換基として-N(RC6)(RC7)で表される基を3つ有する。
 本実施形態の有機EL素子の一態様において、第三の正孔輸送帯域材料が、前記一般式(cHT3-1)~(cHT3-4)、(cHT3-11)~(cHT3-14)及び(cHT3-31)で表される化合物からなる群から選択される少なくともいずれかの化合物である。
 本実施形態の有機EL素子の一態様において、第三の正孔輸送帯域材料は、モノアミン化合物、ジアミン化合物、トリアミン化合物又はテトラアミン化合物である。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層は、下記一般式(cHT2-1)で表される化合物、一般式(cHT2-2)で表される化合物及び一般式(cHT2-3)で表される化合物からなる群から選択される少なくともいずれかの化合物を含有する。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
(前記一般式(cHT2-1)、一般式(cHT2-2)及び一般式(cHT2-3)において、
 Ar112、Ar113、Ar121,Ar122、Ar123及びAr124は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  -Si(RC1)(RC2)(RC3)であり、
 RC1、RC2及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 RC1が複数存在する場合、複数のRC1は、互いに同一であるか、又は異なり、
 RC2が複数存在する場合、複数のRC2は、互いに同一であるか、又は異なり、
 RC3が複数存在する場合、複数のRC3は、互いに同一であるか、又は異なり、
 LA1、LA2、LA3、LB1、LB2、LB3及びLB4は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 nbは、1、2、3又は4であり、
 nbが1の場合、LB5は、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 nbが2、3又は4の場合、複数のLB5は、互いに同一であるか、又は異なり、
 nbが2、3又は4の場合、複数のLB5は、
  互いに結合して置換もしくは無置換の単環を形成するか、
  互いに結合して置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないLB5は、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 RA35とRA36とからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 RA25、並びに前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRA35及びRA36は、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 RA20~RA24のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 RA30~RA34のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRA20~RA24並びにRA30~RA34は、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 複数のRA20は、互いに同一であるか、又は異なり、
 複数のRA30は、互いに同一であるか、又は異なり、
 前記一般式(cHT2-1)、一般式(cHT2-2)及び一般式(cHT2-3)で表される化合物中の、R901~R904は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数ある場合、複数のR901は、互いに同一であるか、又は異なり、
 R902が複数ある場合、複数のR902は、互いに同一であるか、又は異なり、
 R903が複数ある場合、複数のR903は、互いに同一であるか、又は異なり、
 R904が複数ある場合、複数のR904は、互いに同一であるか、又は異なる。)
 本実施形態の有機EL素子の一態様において、前記一般式(cHT2-3)で表される化合物中の下記一般式(c21)で表される第一のアミノ基と、下記一般式(c22)で表される第二のアミノ基とが、同じ基であるか、又は異なる基である。
Figure JPOXMLDOC01-appb-C000063
(前記一般式(c21)及び(c22)において、*は、それぞれ、LB5との結合位置である。)
 本実施形態の有機EL素子の一態様において、前記一般式(cHT2-1)、(cHT2-2)及び(cHT2-3)で表される化合物において、「置換もしくは無置換の」という場合における置換基は、-N(RC6)(RC7)で表される基ではない。
 本実施形態において、RC6及びRC7は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基であり、複数のRC6は、互いに同一であるか又は異なり、複数のRC7は、互いに同一であるか又は異なる。
 「置換もしくは無置換の」という場合における置換基が-N(RC6)(RC7)で表される基ではない場合、前記一般式(cHT2-1)及び(cHT2-2)で表される化合物は、モノアミン化合物である。
 「置換もしくは無置換の」という場合における置換基が-N(RC6)(RC7)で表される基ではない場合、前記一般式(cHT2-3)で表される化合物は、ジアミン化合物である。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層は、前記一般式(cHT2-1)で表される化合物、一般式(cHT2-2)で表される化合物及び一般式(cHT2-3)で表される化合物からなる群から選択される少なくともいずれかの化合物を含有し、かつ、第三の陽極側有機層は、前記一般式(cHT3-1)で表される化合物、一般式(cHT3-2)で表される化合物、一般式(cHT3-3)で表される化合物及び一般式(cHT3-4)で表される化合物からなる群から選択される少なくともいずれかの化合物を含有する。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物は、モノアミン化合物である。モノアミン化合物は、置換もしくは無置換のアミノ基を分子中に1つだけ有する化合物である。
 本実施形態の有機EL素子の一態様において、前記一般式(cHT2-1)で表される化合物及び一般式(cHT2-2)で表される化合物は、モノアミン化合物である。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物は、置換もしくは無置換のアミノ基を分子中に2つ有するジアミン化合物である。
 本実施形態の有機EL素子の一態様において、前記一般式(cHT2-3)で表される化合物は、ジアミン化合物である。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物は、置換もしくは無置換のアミノ基を分子中に3つ有するトリアミン化合物である。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物は、置換もしくは無置換のアミノ基を分子中に4つ有するテトラアミン化合物である。
 前記一般式(cHT2-1)及び一般式(cHT2-2)で表される化合物が、トリアミン化合物である場合、前記一般式(cHT2-1)及び一般式(cHT2-2)で表される化合物は、「置換もしくは無置換の」という場合における置換基として-N(RC6)(RC7)で表される基を2つ有する。
 前記一般式(cHT2-1)及び一般式(cHT2-2)で表される化合物が、テトラアミン化合物である場合、前記一般式(cHT2-1)及び一般式(cHT2-2)で表される化合物は、「置換もしくは無置換の」という場合における置換基として-N(RC6)(RC7)で表される基を3つ有する。
 前記一般式(cHT2-3)で表される化合物が、トリアミン化合物である場合、前記一般式(cHT2-3)で表される化合物は、「置換もしくは無置換の」という場合における置換基として-N(RC6)(RC7)で表される基を1つ有する。
 前記一般式(cHT2-3)で表される化合物が、テトラアミン化合物である場合、前記一般式(cHT2-3)で表される化合物は、「置換もしくは無置換の」という場合における置換基として-N(RC6)(RC7)で表される基を2つ有する。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物は、下記一般式(2-a)で表される基、一般式(2-b)で表される基、一般式(2-c)で表される基、一般式(2-d)で表される基、一般式(2-e)で表される基及び一般式(2-f)で表される基からなる群から選択される少なくとも1種の基を有する。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物は、前記一般式(cHT2-1)で表される化合物、一般式(cHT2-2)で表される化合物及び一般式(cHT2-3)で表される化合物からなる群から選択される少なくともいずれかの化合物であり、かつ、前記一般式(cHT2-1)、一般式(cHT2-2)及び一般式(cHT2-3)におけるAr112、Ar113、Ar121、Ar122、Ar123及びAr124の少なくともいずれかが、下記一般式(2-a)で表される基、一般式(2-b)で表される基、一般式(2-c)で表される基、一般式(2-d)で表される基、一般式(2-e)で表される基及び一般式(2-f)で表される基からなる群から選択される少なくとも1種の基を有する。
Figure JPOXMLDOC01-appb-C000064
(前記一般式(2-a)中、
 R251~R255のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
 R251~R255は、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の炭素数1~6のアルキル基であり、
 **は、結合位置を表す。)
Figure JPOXMLDOC01-appb-C000065
(前記一般式(2-b)中、
 R261~R268のうち1つは、*bに結合する単結合であり、
 *bに結合する単結合ではないR261~R268のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
 *bに結合する単結合ではないR261~R268は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 **は、結合位置を表す。)
Figure JPOXMLDOC01-appb-C000066
(前記一般式(2-c)中、
 R271~R282のうち1つは、*cに結合する単結合であり、
 *cに結合する単結合ではないR271~R282のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
 *cに結合する単結合ではないR271~R282は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 **は、結合位置を表す。)
Figure JPOXMLDOC01-appb-C000067
(前記一般式(2-d)中、
 R291~R300のうち1つは、*dに結合する単結合であり、
 *dに結合する単結合ではないR291~R300のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
 *dに結合する単結合ではないR291~R300は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 **は、結合位置を表す。)
Figure JPOXMLDOC01-appb-C000068
(前記一般式(2-e)中、
 Zは、酸素原子、硫黄原子、NR319又はC(R320)(R321)であり、
 R311~R321のうち1つが、*eに結合する単結合であるか、又はR311~R318のうち隣接する2つ以上からなる組が互いに結合して形成する下記の置換もしくは無置換のベンゼン環のいずれかの炭素原子が*eに単結合で結合し、
 *eに結合する単結合ではないR311~R318のうち隣接する2つ以上からなる組が、
  互いに結合して、置換もしくは無置換のベンゼン環を形成するか、又は
  互いに結合せず、
 *eに結合する単結合ではなく、かつ、前記置換もしくは無置換のベンゼン環を形成しないR311~R318は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の環形成炭素数6~12のアリール基、又は
  置換もしくは無置換の環形成原子数5~10の複素環基であり、
 *eに結合する単結合ではないR319は、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 *eに結合する単結合ではないR320及びR321からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 *eに結合する単結合ではなく、かつ、前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR320及びR321は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 **は、結合位置を表す。)
Figure JPOXMLDOC01-appb-C000069
(前記一般式(2-f)中、
 R341~R345のうち1つは、*h1に結合する単結合であり、R341~R345のうち他の1つは、*h2に結合する単結合であり、
 *h1に結合する単結合ではなく、かつ、*h2に結合する単結合ではないR341~R345のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
 R351~R355のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R361~R365のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 *h1に結合する単結合ではなく、かつ、*h2に結合する単結合ではないR341~R345、並びに前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR351~R355及びR361~R365は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 **は、結合位置を表す。)
 本実施形態の有機EL素子の一態様において、前記一般式(2-a)で表される基、一般式(2-b)で表される基、一般式(2-c)で表される基、一般式(2-d)で表される基、一般式(2-e)で表される基及び一般式(2-f)で表される基は、それぞれ独立に、前記モノアミン化合物のアミノ基の窒素原子に対して、直接結合するか、フェニレン基を介して結合するか、又はビフェニレン基を介して結合する。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物が、前記一般式(cHT2-1)で表される化合物であり、かつ、Ar112及びAr113の少なくともいずれかが、前記一般式(2-a)で表される基、一般式(2-b)で表される基、一般式(2-c)で表される基、一般式(2-d)で表される基、一般式(2-e)で表される基及び一般式(2-f)で表される基からなる群から選択される基である。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物が、前記一般式(cHT2-2)で表される化合物であり、かつ、Ar112及びAr113の少なくともいずれかが、前記一般式(2-a)で表される基、一般式(2-b)で表される基、一般式(2-c)で表される基、一般式(2-d)で表される基、一般式(2-e)で表される基及び一般式(2-f)で表される基からなる群から選択される基である。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物が、前記一般式(cHT2-3)で表される化合物であり、かつ、Ar121、Ar122、Ar123及びAr124の少なくともいずれかが、前記一般式(2-a)で表される基、一般式(2-b)で表される基、一般式(2-c)で表される基、一般式(2-d)で表される基、一般式(2-e)で表される基及び一般式(2-f)で表される基からなる群から選択される基である。
 本実施形態の有機EL素子において、ZがNR319である場合、R312又はR317が、*eに結合する単結合であることが好ましい。
 本実施形態の有機EL素子の一態様において、前記一般式(2-e)で表される基は、下記一般式(2-e7)で表される基である。
Figure JPOXMLDOC01-appb-C000070
(前記一般式(2-e7)中、R311~R316、R318及びR319は、それぞれ、前記一般式(2-e)におけるR311~R316、R318及びR319と同義であり、**は、結合位置を表す。)
 本実施形態の有機EL素子において、ZがNR319である場合、R315、R316又はR318が、*eに結合する単結合であることも好ましい。
 本実施形態の有機EL素子の一態様において、前記一般式(2-e)で表される基は、下記一般式(2-e4)、一般式(2-e5)又は一般式(2-e6)で表される基である。
Figure JPOXMLDOC01-appb-C000071
(前記一般式(2-e4)、一般式(2-e5)及び一般式(2-e6)中、R311~R319は、それぞれ、前記一般式(2-e)におけるR311~R319と同義であり、**は、結合位置を表す。)
 本実施形態の有機EL素子の一態様において、前記一般式(2-e)で表される基は、下記一般式(2-e1)、一般式(2-e2)又は一般式(2-e3)で表される基である。
Figure JPOXMLDOC01-appb-C000072
(前記一般式(2-e1)、一般式(2-e2)及び一般式(2-e3)中、
 Zは、酸素原子、硫黄原子、NR319又はC(R320)(R321)であり、
 R311~R325のうち1つが、*eに結合する単結合であり、
 *eに結合する単結合ではないR311~R318並びにR322~R325は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、
  置換もしくは無置換の環形成炭素数6~12のアリール基、又は
  置換もしくは無置換の環形成原子数5~10の複素環基であり、
 *eに結合する単結合ではないR319は、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 *eに結合する単結合ではないR320及びR321からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 *eに結合する単結合ではなく、かつ、前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR320及びR321は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~6のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~12のアリール基であり、
 **は、結合位置を表す。)
 本実施形態の有機EL素子の一態様において、前記一般式(2-a)、(2-b)、(2-c)、(2-d)、(2-e)、(2-f)、(2-e1)、(2-e2)、(2-e3)、(2-e4)、(2-e5)、(2-e6)及び(2-e7)中の**は、それぞれ独立に、LA2、LA3、LB1、LB2、LB3もしくはLB4との結合位置であるか、又は、アミノ基の窒素原子との結合位置である。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物は、分子中にチオフェン環を含まない化合物である。
 本実施形態の有機EL素子の一態様において、第二の正孔輸送帯域材料が、前記一般式(cHT2-1)で表される化合物、一般式(cHT2-2)で表される化合物及び一般式(cHT2-3)で表される化合物からなる群から選択される少なくともいずれかの化合物である。
 本実施形態の有機EL素子の一態様において、第二の正孔輸送帯域材料は、モノアミン化合物、ジアミン化合物、トリアミン化合物又はテトラアミン化合物である。
 本実施形態の有機EL素子の一態様において、第一の陽極側有機層は、第一の正孔輸送帯域材料を含有する。
 本実施形態の有機EL素子の一態様において、第一の正孔輸送帯域材料と第三の正孔輸送帯域材料とが、互いに異なる化合物である。
 本実施形態の有機EL素子の一態様において、第一の正孔輸送帯域材料と第二の正孔輸送帯域材料とが、互いに異なる化合物でもよく、互いに同じ化合物でもよい。第一の正孔輸送帯域材料と第二の正孔輸送帯域材料とが、互いに同じ化合物である場合、第一の陽極側有機層は、第一の正孔輸送帯域材料、第二の正孔輸送帯域材料及び第三の正孔輸送帯域材料とは異なる分子構造の化合物(例えば、ドープ化合物)を含有することが好ましい。
 本実施形態の有機EL素子の一態様において、第一の陽極側有機層は、互いに異なる第一の有機材料及び第二の有機材料を含有することも好ましい。第一の陽極側有機層中の第二の有機材料の含有量が50質量%未満であることが好ましい、第一の陽極側有機層が第一の有機材料及び第二の有機材料を含有することで、陽極から第一の陽極側有機層へのホール注入性が良好になる。
 第一の陽極側有機層が含有する第一の有機材料は、第一の正孔輸送帯域材料であることが好ましく、第二の有機材料は、ドープ化合物であることが好ましい。
 第一の陽極側有機層が、第一の正孔輸送帯域材料及びドープ化合物を含有する場合、第一の陽極側有機層中のドープ化合物の含有量は、0.5質量%以上5質量%以下であることが好ましく、1.0質量%以上3.0質量%以下であることがより好ましい。第一の陽極側有機層中の第一の正孔輸送帯域材料の含有量は、40質量%以上であることが好ましく、45質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。第一の陽極側有機層中の第一の正孔輸送帯域材料の含有量は、99.5質量%以下であることが好ましい。第一の陽極側有機層中の第一の正孔輸送帯域材料及びドープ化合物の含有量の合計は、100質量%以下である。
 本実施形態の有機EL素子の一態様において、ドープ化合物は、下記一般式(P11)で表される第一の環構造及び下記一般式(P12)で表される第二の環構造の少なくともいずれかを含む化合物である。
Figure JPOXMLDOC01-appb-C000073
(前記一般式(P11)で表される第一の環構造は、前記ドープ化合物の分子中で、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環及び置換もしくは無置換の環形成原子数5~50の複素環の少なくともいずれかの環構造と縮合し、
 =Z10で表される構造は、下記一般式(11a)、(11b)、(11c)、(11d)、(11e)、(11f)、(11g)、(11h)、(11i)、(11j)、(11k)又は(11m)で表される。)
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
(前記一般式(11a)、(11b)、(11c)、(11d)、(11e)、(11f)、(11g)、(11h)、(11i)、(11j)、(11k)又は(11m)中、R11~R14並びにR1101~R1110は、それぞれ独立に、
  水素原子、
  ハロゲン原子、
  ヒドロキシ基、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(前記一般式(P12)において、Z~Zは、それぞれ独立に、
  窒素原子、
  R15と結合する炭素原子、又は
  前記ドープ化合物の分子中の他の原子と結合する炭素原子であり、
 Z~Zの内、少なくとも1つは、前記ドープ化合物の分子中の他の原子と結合する炭素原子であり、
 R15は、
  水素原子、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  カルボキシ基、
  置換もしくは無置換のエステル基、
  置換もしくは無置換のカルバモイル基、
  ニトロ基、及び
  置換もしくは無置換のシロキサニル基からなる群から選択され、
 R15が複数存在する場合、複数のR15は互いに同一であるか、又は異なる。)
(前記ドープ化合物中、R901~R907は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数ある場合、複数のR901は、互いに同一であるか、又は異なり、
 R902が複数ある場合、複数のR902は、互いに同一であるか、又は異なり、
 R903が複数ある場合、複数のR903は、互いに同一であるか、又は異なり、
 R904が複数ある場合、複数のR904は、互いに同一であるか、又は異なり、
 R905が複数ある場合、複数のR905は、互いに同一であるか、又は異なり、
 R906が複数ある場合、複数のR906は、互いに同一であるか、又は異なり、
 R907が複数ある場合、複数のR907は、互いに同一であるか、又は異なる。)
 本明細書におけるエステル基は、アルキルエステル基及びアリールエステル基からなる群から選択される少なくともいずれかの基である。
 本明細書におけるアルキルエステル基は、例えば、-C(=O)ORで表される。Rは、例えば、置換もしくは無置換の炭素数1~50(好ましくは炭素数1~10)のアルキル基である。
 本明細書におけるアリールエステル基は、例えば、-C(=O)ORArで表される。RArは、例えば、置換もしくは無置換の環形成炭素数6~30のアリール基である。
 本明細書におけるシロキサニル基は、エーテル結合を介したケイ素化合物基であり、例えば、トリメチルシロキサニル基である。
 本明細書におけるカルバモイル基は、-CONHで表される。
 本明細書における置換のカルバモイル基は、例えば、-CONH-Ar、又は-CONH-Rで表される。Arは、例えば、置換もしくは無置換の環形成炭素数6~50(好ましくは環形成炭素数6~10)のアリール基及び環形成原子数5~50(好ましくは環形成原子数5~14)の複素環基からなる群から選択される少なくともいずれかの基である。Arは、置換もしくは無置換の環形成炭素数6~50のアリール基と置換もしくは無置換の環形成原子数5~50複素環基とが結合した基であってもよい。
 Rは、例えば、置換もしくは無置換の炭素数1~50(好ましくは炭素数1~6)のアルキル基である。
 前記ドープ化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
(ドープ化合物の具体例)
 ドープ化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これらドープ化合物の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層と発光領域とが、直接、接している。
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層と第三の陽極側有機層とが、直接、接している。
 本実施形態の有機EL素子の一態様において、陽極と第一の陽極側有機層とが、直接、接している。
 本実施形態の有機EL素子の一態様において、有機EL素子は、第四の陽極側有機層をさらに有し、第四の陽極側有機層は、第三の陽極側有機層と発光領域との間に配置されている。
 本実施形態の有機EL素子の一態様において、第四の陽極側有機層と発光領域とが、直接、接している。
 本実施形態の有機EL素子の一態様において、第四の陽極側有機層と第三の陽極側有機層とが、直接、接している。
 本実施形態の有機EL素子の一態様において、第一の陽極側有機層、第二の陽極側有機層、第三の陽極側有機層及び第四の陽極側有機層が、陽極側から、この順に配置されている。
 本実施形態の有機EL素子の一態様において、第四の陽極側有機層は、障壁層である。例えば、発光層の陽極側に障壁層が配置される場合、当該障壁層は、正孔を輸送し、かつ電子が当該障壁層よりも陽極側に配置された正孔輸送帯域の各有機層に到達することを阻止する。また、励起エネルギーが発光層からその周辺層に漏れ出さないように、発光層に直接接する障壁層を設けてもよい。発光層の陽極側に配置される障壁層は、発光層で生成した励起子が正孔輸送帯域の各有機層に移動することを阻止する。発光層と障壁層とが直接接していることが好ましい。
 本実施形態の有機EL素子の一態様において、第四の陽極側有機層の膜厚は、第三の陽極側有機層の膜厚よりも薄い。
 本実施形態の有機EL素子の一態様において、第四の陽極側有機層の膜厚は、20nm以下である。
 本実施形態の有機EL素子の一態様において、第四の陽極側有機層の膜厚は、5nm以上である。
 本実施形態の有機EL素子は、第三の陽極側有機層よりも膜厚が小さい第四の陽極側有機層(好ましくは、電子障壁層)を備えていることにより、長寿命化すると考えられる。
 本実施形態の有機EL素子の一態様において、第一の陽極側有機層の膜厚、第二の陽極側有機層の膜厚、第三の陽極側有機層の膜厚及び第四の陽極側有機層の膜厚の合計が150nm以下である。
 本実施形態の有機EL素子の一態様において、第四の陽極側有機層は、第四の正孔輸送帯域材料を含有する。第四の陽極側有機層が含有する化合物を第四の正孔輸送帯域材料と称する場合がある。
 本実施形態の有機EL素子の一態様において、第四の正孔輸送帯域材料と第三の正孔輸送帯域材料とが、互いに異なる化合物である。
 本実施形態の有機EL素子の一態様において、第四の正孔輸送帯域材料と第三の正孔輸送帯域材料と第二の正孔輸送帯域材料とが、互いに異なる化合物である。
 本実施形態の有機EL素子の一態様において、第四の陽極側有機層は、前記一般式(C1)で表される化合物又は前記一般式(C2)で表される化合物を含有する。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層及び第四の陽極側有機層は、いずれも、前記一般式(C1)で表される化合物を含有してもよいが、第三の陽極側有機層が含有する化合物と、第四の陽極側有機層が含有する化合物とは、分子構造が異なる。
 本実施形態の有機EL素子の一態様において、第四の正孔輸送帯域材料は、モノアミン化合物、ジアミン化合物、トリアミン化合物又はテトラアミン化合物である。
 本実施形態の有機EL素子の一態様において、第四の正孔輸送帯域材料が、前記一般式(cHT3-1)で表される化合物、一般式(cHT3-2)で表される化合物、一般式(cHT3-3)で表される化合物及び一般式(cHT3-4)で表される化合物からなる群から選択される少なくともいずれかの化合物である。
 本実施形態の有機EL素子の一態様において、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層と、第四の陽極側有機層とが、それぞれ異なる化合物を1つ以上含む。
 本実施形態の有機EL素子の一態様において、第一の陽極側有機層、第二の陽極側有機層、第三の陽極側有機層及び第四の陽極側有機層は、置換もしくは無置換のアミノ基を分子中に1つだけ有するモノアミン化合物を含有する。
 本実施形態の有機EL素子の一態様において、第一の陽極側有機層、第二の陽極側有機層、第三の陽極側有機層及び第四の陽極側有機層は、ジアミン化合物を含有しない。ジアミン化合物は、置換もしくは無置換のアミノ基を分子中に2つ有する化合物である。
 前記一般式(C1)で表される化合物は、モノアミン化合物であることが好ましい。
 本実施形態の有機EL素子の一態様において、第一の陽極側有機層、第二の陽極側有機層、第三の陽極側有機層及び第四の陽極側有機層の少なくともいずれかの有機層は、ジアミン化合物を含有することもできる。前記一般式(C2)で表される化合物は、ジアミン化合物であることが好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域が含有する化合物中のR901、R902、R903及びR904は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なる。
 本実施形態において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
 本実施形態において、第一の正孔輸送帯域材料、第二の正孔輸送帯域材料、第三の正孔輸送帯域材料及び第四の正孔輸送帯域材料を、正孔輸送帯域材料と称する場合がある。
 本実施形態に係る有機EL素子において、正孔輸送帯域材料は、分子中に置換もしくは無置換の3-カルバゾリル基を含んでいる化合物でもよい。また、本実施形態に係る有機EL素子において、正孔輸送帯域材料は、分子中に置換もしくは無置換の3-カルバゾリル基を含まない化合物でもよい。
(正孔輸送帯域材料の製造方法)
 本実施形態に係る正孔輸送帯域材料は、公知の方法により製造でき、又は当該方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることで、製造できる。
(正孔輸送帯域材料の具体例)
 本実施形態に係る正孔輸送帯域材料の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら具体例に限定されない。
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000237
Figure JPOXMLDOC01-appb-C000238
Figure JPOXMLDOC01-appb-C000239
Figure JPOXMLDOC01-appb-C000240
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000242
Figure JPOXMLDOC01-appb-C000243
Figure JPOXMLDOC01-appb-C000244
Figure JPOXMLDOC01-appb-C000245
Figure JPOXMLDOC01-appb-C000246
(第二の陽極側有機層が含有する化合物の例)
 本実施形態の有機EL素子の一態様において、第二の陽極側有機層が含有する化合物は、次に列挙する化合物群から選択される少なくとも一種の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000247
Figure JPOXMLDOC01-appb-C000248
(第三の陽極側有機層が含有する化合物の例)
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層が含有する化合物は、次に列挙する化合物群から選択される少なくとも一種の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000249
(発光領域)
 発光領域は、少なくとも1つの発光層を含む。
 本実施形態に係る有機EL素子において、発光領域は、蛍光発光性物質と有機化合物とを含有することが好ましい。発光領域が含有する蛍光発光性物質は、後述する蛍光発光性化合物であることも好ましい。発光領域が含有する有機化合物は、後述するホスト材料であることも好ましい。
 本実施形態の有機EL素子の一態様において、発光領域は、1つの発光層を含む。
 本実施形態の有機EL素子の一態様において、発光領域は、1つの発光層のみからなる。
 本実施形態の有機EL素子の一態様において、発光領域は、2つの発光層として第一の発光層及び第二の発光層を含む。
 本実施形態の有機EL素子の一態様において、発光領域は、2つの発光層のみからなる。
 本実施形態に係る有機EL素子において、発光層は、発光性化合物を含有することが好ましい。発光性化合物は、特に限定されないが、例えば、後述する第一の発光性化合物及び第二の発光性化合物からなる群から選択される少なくともいずれかの発光性化合物を含有していてもよい。本実施形態に係る有機EL素子において、発光層は、発光性化合物を、発光層の全質量の0.5質量%以上含有することが好ましい。発光層は、発光性化合物を、発光層の全質量の10質量%以下、含有することが好ましく、発光層の全質量の7質量%以下、含有することがより好ましく、発光層の全質量の5質量%以下、含有することがさらに好ましい。
 本実施形態の有機EL素子の一態様において、発光領域中の少なくとも1つの発光層は、最大ピーク波長が500nm以下の発光を示す発光性化合物を含有する。本実施形態の有機EL素子の一態様において、当該発光性化合物が示す発光の最大ピーク波長が480nm以下である。本実施形態の有機EL素子の一態様において、当該発光性化合物が示す発光の最大ピーク波長が430nm以上480nm以下である。
 本実施形態の有機EL素子の一態様において、発光領域中の少なくとも1つの発光層は、最大ピーク波長が500nm以下の蛍光発光を示す発光性化合物を含有する。本実施形態の有機EL素子の一態様において、当該発光性化合物が示す蛍光発光の最大ピーク波長が480nm以下である。本実施形態の有機EL素子の一態様において、当該発光性化合物が示す蛍光発光の最大ピーク波長が430nm以上480nm以下である。
 本実施形態に係る有機EL素子において、発光領域が、第一のホスト材料を含有する第一の発光層及び第二のホスト材料を含有する第二の発光層を少なくとも有することも好ましい。第一のホスト材料と第二のホスト材料とは互いに異なる。
 本明細書において、「ホスト材料」とは、例えば、「層の50質量%以上」含まれる材料である。したがって、例えば、第一の発光層は、第一のホスト材料を、第一の発光層の全質量の50質量%以上、含有する。また、例えば、第二の発光層は、第二のホスト材料を、第二の発光層の全質量の50質量%以上、含有する。また、例えば、「ホスト材料」は、層の60質量%以上、層の70質量%以上、層の80質量%以上、層の90質量%以上、又は層の95質量%以上含まれていてもよい。
 第一のホスト材料の三重項エネルギーT(H1)と第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数1)の関係を満たすことが好ましい。
  T(H1)>T(H2) …(数1)
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)と第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数5)の関係を満たすことが好ましい。
 T(H1)-T(H2)>0.03eV …(数5)
 本実施形態に係る有機EL素子は、前記数式(数1)の関係を満たす第一の発光層及び第二の発光層を有する場合、素子の発光効率を向上させることができる。
 従来、有機エレクトロルミネッセンス素子の発光効率を向上させるための技術として、Tripret-Tripret-Annhilation(TTAと称する場合がある。)が知られている。TTAは、三重項励起子と三重項励起子とが衝突して、一重項励起子を生成するという機構(メカニズム)である。なお、TTAメカニズムは、国際公開第2010/134350号に記載のようにTTFメカニズムと称する場合もある。
 TTF現象を説明する。陽極から注入された正孔と、陰極から注入された電子とは、発光層内で再結合し励起子を生成する。そのスピン状態は、従来から知られているように、一重項励起子が25%、三重項励起子が75%の比率である。従来知られている蛍光素子においては、25%の一重項励起子が基底状態に緩和するときに光を発するが、残りの75%の三重項励起子については光を発することなく熱的失活過程を経て基底状態に戻る。従って、従来の蛍光素子の内部量子効率の理論限界値は25%といわれていた。
 一方、有機物内部で生成した三重項励起子の挙動が理論的に調べられている。S.M.Bachiloらによれば(J.Phys.Chem.A,104,7711(2000))、五重項等の高次の励起子がすぐに三重項に戻ると仮定すると、三重項励起子(以下、と記載する)の密度が上がってきたとき、三重項励起子同士が衝突し下記式のような反応が起きる。ここで、Aは、基底状態を表し、は、最低励起一重項励起子を表す。
   →(4/9)A+(1/9)+(13/9)
 即ち、5→4A+1Aとなり、当初生成した75%の三重項励起子のうち、1/5即ち20%が一重項励起子に変化することが予測されている。従って、光として寄与する一重項励起子は、当初生成する25%分に75%×(1/5)=15%を加えた40%ということになる。このとき、全発光強度中に占めるTTF由来の発光比率(TTF比率)は、15/40、すなわち37.5%となる。また、当初生成した75%の三重項励起子のお互いが衝突して一重項励起子が生成した(2つの三重項励起子から1つの一重項励起子が生成した)とすると、当初生成する一重項励起子25%分に75%×(1/2)=37.5%を加えた62.5%という非常に高い内部量子効率が得られる。このとき、TTF比率は、37.5/62.5=60%である。
 本実施形態に係る有機EL素子の発光領域が少なくとも2つの発光層(すなわち、第一の発光層及び第二の発光層)を有し、第一の発光層中の第一のホスト材料の三重項エネルギーT(H1)と、第二の発光層中の第二のホスト材料の三重項エネルギーT(H2)とが、前記数式(数1)の関係を満たす場合、第一の発光層で正孔と電子との再結合によって生成した三重項励起子は、当該第一の発光層と直接に接する有機層との界面にキャリアが過剰に存在していても、第一の発光層と当該有機層との界面に存在する三重項励起子がクエンチされ難くなると考えられる。例えば、再結合領域が、第一の発光層と正孔輸送層又は電子障壁層との界面に局所的に存在する場合には、過剰な電子によるクエンチが考えられる。一方、再結合領域が、第一の発光層と電子輸送層又は正孔障壁層との界面に局所的に存在する場合には、過剰な正孔によるクエンチが考えられる。
 前記数式(数1)の関係を満たすように第一の発光層及び第二の発光層を備えることで、第一の発光層で生成した三重項励起子は、過剰キャリアによってクエンチされずに第二の発光層へと移動し、また、第二の発光層から第一の発光層へ逆移動することを抑制できる。その結果、第二の発光層において、TTFメカニズムが発現して、一重項励起子が効率良く生成され、発光効率が向上する。
 このように、本実施形態に係る有機EL素子が、三重項励起子を主に生成させる第一の発光層と、第一の発光層から移動してきた三重項励起子を活用してTTFメカニズムを主に発現させる第二の発光層と、を異なる領域として備え、第二の発光層中の第二のホスト材料として、第一の発光層中の第一のホスト材料よりも小さな三重項エネルギーを有する化合物を用いて、三重項エネルギーの差を設けることで、発光効率が向上する。
 本実施形態に係る有機EL素子において、第一の発光層は、陽極と陰極との間に配置され、第二の発光層は、第一の発光層と陰極との間に配置されていることも好ましい。陽極側から、第一の発光層と第二の発光層とをこの順序に有していてもよいし、陽極側から、第二の発光層と第一の発光層とをこの順序に有していてもよい。第一の発光層と第二の発光層の順序がいずれの場合も、前記数式(数1)の関係を満たす材料の組合せを選択することにより、発光層が積層構成であることによる効果が期待できる。
 本実施形態に係る有機EL素子において、第一の発光層は、第二の発光層よりも陽極側に配置されていることも好ましい。
 本実施形態に係る有機EL素子において、第一の発光層が第二の発光層よりも陽極側に配置されている場合、第一の発光層は、正孔輸送帯域と、直接、接していることが好ましい。正孔輸送帯域が第四の陽極側有機層を有さない場合、第一の発光層と第三の陽極側有機層とが直接、接していることが好ましい。正孔輸送帯域が第四の陽極側有機層を有する場合、第一の発光層と第四の陽極側有機層とが直接、接していることが好ましい。
 本実施形態に係る有機EL素子において、第一の発光層と第二の発光層とが、直接、接していることも好ましい。
 本明細書において、「第一の発光層と第二の発光層とが、直接、接している」層構造は、例えば、以下の態様(LS1)、(LS2)及び(LS3)のいずれかの態様も含み得る。
 (LS1)第一の発光層に係る化合物の蒸着の工程と第二の発光層に係る化合物の蒸着の工程を経る過程で第一のホスト材料及び第二のホスト材料の両方が混在する領域が生じ、当該領域が第一の発光層と第二の発光層との界面に存在する態様。
 (LS2)第一の発光層及び第二の発光層が発光性の化合物を含む場合に、第一の発光層に係る化合物の蒸着の工程と第二の発光層に係る化合物の蒸着の工程を経る過程で第一のホスト材料、第二のホスト材料及び発光性の化合物が混在する領域が生じ、当該領域が第一の発光層と第二の発光層との界面に存在する態様。
 (LS3)第一の発光層及び第二の発光層が発光性の化合物を含む場合に、第一の発光層に係る化合物の蒸着の工程と第二の発光層に係る化合物の蒸着の工程を経る過程で当該発光性の化合物からなる領域、第一のホスト材料からなる領域、又は第二のホスト材料からなる領域が生じ、当該領域が第一の発光層と第二の発光層との界面に存在する態様。
(第一の発光層)
 第一の発光層は、第一のホスト材料を含む。第一のホスト材料は、第二の発光層が含有する第二のホスト材料とは、異なる化合物である。
 第一の発光層は、第一の発光性化合物を含むことが好ましい。第一の発光性化合物は、特に限定されない。第一の発光性化合物は、最大ピーク波長が500nm以下の発光を示す化合物であることが好ましく、最大ピーク波長が480nm以下の発光を示す化合物であることがより好ましく、最大ピーク波長が430nm以上480nm以下の発光を示す化合物であることがさらに好ましい。第一の発光性化合物は、最大ピーク波長が500nm以下の蛍光発光を示す蛍光発光性化合物であることが好ましく、最大ピーク波長が480nm以下の蛍光発光を示す蛍光発光性化合物であることがより好ましく、最大ピーク波長が430nm以上480nm以下の蛍光発光を示す蛍光発光性化合物であることがさらに好ましい。
 本実施形態に係る有機EL素子において、第一の発光性化合物は、分子中にアジン環構造を含まない化合物であることが好ましい。
 本実施形態に係る有機EL素子において、第一の発光性化合物は、ホウ素含有錯体ではないことが好ましく、第一の発光性化合物は、錯体ではないことがより好ましい。
 第一の発光層に用いることができる青色で蛍光発光する蛍光発光性化合物としては、例えば、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体及びトリアリールアミン誘導体等からなる群から選択される化合物を使用できる。
 本明細書において、青色の発光とは、発光スペクトルの最大ピーク波長が430nm以上、500nm以下の範囲内である発光をいう。
 本実施形態に係る有機EL素子において、第一の発光層は、金属錯体を含有しないことが好ましい。また、本実施形態に係る有機EL素子において、第一の発光層は、ホウ素含有錯体を含有しないことも好ましい。
 本実施形態に係る有機EL素子において、第一の発光層は、燐光発光性材料(ドーパント材料)を含まないことが好ましい。
 また、第一の発光層は、重金属錯体及び燐光発光性の希土類金属錯体を含まないことが好ましい。ここで、重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。
 化合物の最大ピーク波長の測定方法は、次の通りである。測定対象となる化合物の5μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の発光スペクトル(縦軸:発光強度、横軸:波長とする。)を測定する。発光スペクトルは、株式会社日立ハイテクサイエンス製の分光蛍光光度計(装置名:F-7000)により測定できる。なお、発光スペクトル測定装置は、ここで用いた装置に限定されない。
 発光スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を最大ピーク波長とする。なお、本明細書において、蛍光発光の最大ピーク波長を蛍光発光最大ピーク波長(FL-peak)と称する場合がある。
 第一の発光性化合物の発光スペクトルにおいて、発光強度が最大となるピークを最大ピークとし、当該最大ピークの高さを1としたとき、当該発光スペクトルに現れる他のピークの高さは、0.6未満であることが好ましい。なお、発光スペクトルにおけるピークは、極大値とする。
 また、第一の発光性化合物の発光スペクトルにおいて、ピークの数が3つ未満であることが好ましい。
 本実施形態に係る有機EL素子において、第一のホスト材料の一重項エネルギーS(H1)と、第一の発光性化合物の一重項エネルギーS(D1)とが下記数式(数20)の関係を満たすことが好ましい。
 S(H1)>S(D1) …(数20)
 一重項エネルギーSとは、最低励起一重項状態と基底状態とのエネルギー差を意味する。
 第一のホスト材料と第一の発光性化合物とが、数式(数20)の関係を満たすことにより、第一のホスト材料上で生成された一重項励起子は、第一のホスト材料から第一の発光性化合物へエネルギー移動し易くなり、第一の発光性化合物の蛍光性発光に寄与する。
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)と、第一の発光性化合物の三重項エネルギーT(D1)とが下記数式(数20A)の関係を満たすことが好ましい。
 T(D1)>T(H1) …(数20A)
 第一のホスト材料と第一の発光性化合物とが、数式(数20A)の関係を満たす事により、第一の発光層内で生成した三重項励起子は、より高い三重項エネルギーを有する第一の発光性化合物ではなく、第一のホスト材料上を移動するため、第二の発光層へ移動し易くなる。
 本実施形態に係る有機EL素子は、下記数式(数20B)の関係を満たすことが好ましい。
  T(D1)>T(H1)>T(H2) …(数20B)
(三重項エネルギーT
 三重項エネルギーTの測定方法としては、下記の方法が挙げられる。
 測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、10-5mol/L以上10-4mol/L以下となるように溶解して溶液を作製し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を三重項エネルギーTとする。
  換算式(F1):T[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 燐光の測定には、(株)日立ハイテクサイエンス製のF-7000形分光蛍光光度計本体又は(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いることができる。なお、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
(一重項エネルギーS
 溶液を用いた一重項エネルギーSの測定方法(溶液法と称する場合がある。)としては、下記の方法が挙げられる。
 測定対象となる化合物の10-5mol/L以上10-4mol/L以下のトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出する。
  換算式(F2):S[eV]=1239.85/λedge
 吸収スペクトル測定装置としては、例えば、日立社製の分光光度計(装置名:U3310)が挙げられるが、これに限定されない。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
 本実施形態に係る有機EL素子において、第一の発光層は、第一の発光性化合物を、第一の発光層の全質量の0.5質量%以上含有することが好ましい。
 第一の発光層は、第一の発光性化合物を、第一の発光層の全質量の10質量%以下、含有することが好ましく、第一の発光層の全質量の7質量%以下、含有することがより好ましく、第一の発光層の全質量の5質量%以下、含有することがさらに好ましい。
 本実施形態に係る有機EL素子において、第一の発光層は、第一のホスト材料としての第一の化合物を、第一の発光層の全質量の60質量%以上、含有することが好ましく、第一の発光層の全質量の70質量%以上、含有することがより好ましく、第一の発光層の全質量の80質量%以上、含有することがさらに好ましく、第一の発光層の全質量の90質量%以上、含有することがよりさらに好ましく、第一の発光層の全質量の95質量%以上、含有することがさらになお好ましい。
 第一の発光層は、第一のホスト材料を、第一の発光層の全質量の99.5質量%以下、含有することが好ましい。
 ただし、第一の発光層が第一のホスト材料と第一の発光性化合物とを含有する場合、第一のホスト材料及び第一の発光性化合物の合計含有率の上限は、100質量%である。
 本実施形態に係る有機EL素子において、第一の発光層の膜厚は、3nm以上であることが好ましく、5nm以上であることがより好ましい。第一の発光層の膜厚が3nm以上であれば、第一の発光層において、正孔と電子との再結合を起こすのに充分な膜厚である。
 本実施形態に係る有機EL素子において、第一の発光層の膜厚は、15nm以下であることが好ましく、10nm以下であることがより好ましい。第一の発光層の膜厚が15nm以下であれば、第二の発光層へ三重項励起子が移動するのに充分に薄い膜厚である。
 本実施形態に係る有機EL素子において、第一の発光層の膜厚は、3nm以上、15nm以下であることがより好ましい。
(第二の発光層)
 第二の発光層は、第二のホスト材料を含む。第二のホスト材料は、第一の発光層が含有する第一のホスト材料とは、異なる化合物である。
 第二の発光層は、第二の発光性化合物を含むことが好ましい。第二の発光性化合物は、特に限定されない。第二の発光性化合物は、最大ピーク波長が500nm以下の発光を示す化合物であることが好ましく、最大ピーク波長が480nm以下の発光を示す化合物であることがより好ましく、最大ピーク波長が430nm以上480nm以下の発光を示す化合物であることがさらに好ましい。第二の発光性化合物は、最大ピーク波長が500nm以下の蛍光発光を示す蛍光発光性化合物であることが好ましく、最大ピーク波長が480nm以下の蛍光発光を示す蛍光発光性化合物であることがより好ましく、最大ピーク波長が430nm以上480nm以下の蛍光発光を示す蛍光発光性化合物であることがさらに好ましい。
 化合物の最大ピーク波長の測定方法は、前述の通りである。
 本実施形態に係る有機EL素子において、第二の発光層は、素子駆動時に最大ピーク波長が500nm以下の光を放射することが好ましい。
 本実施形態に係る有機EL素子において、第二の発光性化合物の最大ピークの半値幅が、1nm以上、20nm以下であることが好ましい。
 本実施形態に係る有機EL素子において、第二の発光性化合物のストークスシフトは、7nmを超えることが好ましい。
 第二の発光性化合物のストークスシフトが7nmを越えていれば、自己吸収による発光効率の低下を防止し易くなる。
 自己吸収とは、放出した光を同一化合物が吸収する現象であり、発光効率の低下を引き起こす現象である。自己吸収は、ストークスシフトの小さい(すなわち、吸収スペクトルと蛍光スペクトルの重なりが大きい)化合物で顕著に観測されるため、自己吸収を抑制するには、ストークスシフトの大きい(吸収スペクトルと蛍光スペクトルの重なりが小さい)化合物を用いることが好ましい。ストークスシフトは、次に記載する方法で測定できる。測定対象となる化合物を2.0×10-5mol/Lの濃度でトルエンに溶解し、測定用試料を調製する。石英セルへ入れた測定用試料に室温(300K)で紫外-可視領域の連続光を照射し、吸収スペクトル(縦軸:吸光度、横軸:波長)を測定する。吸収スペクトル測定には、分光光度計を用いることができ、例えば、日立ハイテクサイエンス社の分光光度計U-3900/3900H形を用いることができる。また、測定対象となる化合物を4.9×10-6mol/Lの濃度でトルエンに溶解し、測定用試料を調製する。石英セルへ入れた測定用試料に室温(300K)で励起光を照射し、蛍光スペクトル(縦軸:蛍光強度、横軸:波長)を測定した。蛍光スペクトル測定には、分光光度計を用いることができ、例えば、日立ハイテクサイエンス社の分光蛍光光度計F-7000形を用いることができる。これらの吸収スペクトルと蛍光スペクトルから、吸収極大波長と蛍光極大波長の差を算出し、ストークスシフト(SS)を求める。ストークスシフトSSの単位は、nmである。
 本実施形態に係る有機EL素子において、第二の発光性化合物の三重項エネルギーT(D2)と、第二のホスト材料の三重項エネルギーT(H2)とが下記数式(数30A)の関係を満たすことが好ましい。
 T(D2)>T(H2) …(数30A)
 本実施形態に係る有機EL素子において、第二の発光性化合物と、第二のホスト材料とが、前記数式(数30A)の関係を満たすことにより、第一の発光層で生成した三重項励起子は、第二の発光層に移動する際、より高い三重項エネルギーを有する第二の発光性化合物ではなく、第二のホスト材料の分子にエネルギー移動する。また、第二のホスト材料上で正孔及び電子が再結合して発生した三重項励起子は、より高い三重項エネルギーを持つ第二の発光性化合物には移動しない。第二の発光性化合物の分子上で再結合し発生した三重項励起子は、速やかに第二のホスト材料の分子にエネルギー移動する。
 第二のホスト材料の三重項励起子が第二の発光性化合物に移動することなく、TTF現象によって第二のホスト材料上で三重項励起子同士が効率的に衝突することで、一重項励起子が生成される。
 本実施形態に係る有機EL素子において、第二のホスト材料の一重項エネルギーS(H2)と第二の発光性化合物の一重項エネルギーS(D2)とが、下記数式(数4)の関係を満たすことが好ましい。
 S(H2)>S(D2) …(数4)
 本実施形態に係る有機EL素子において、第二の発光性化合物と、第二のホスト材料とが、前記数式(数4)の関係を満たすことにより、第二の発光性化合物の一重項エネルギーは、第二のホスト材料の一重項エネルギーより小さいため、TTF現象によって生成された一重項励起子は、第二のホスト材料から第二の発光性化合物へエネルギー移動し、第二の発光性化合物の蛍光性発光に寄与する。
 本実施形態に係る有機EL素子において、第二の発光性化合物は、分子中にアジン環構造を含まない化合物であることが好ましい。
 本実施形態に係る有機EL素子において、第二の発光性化合物は、ホウ素含有錯体ではないことが好ましく、第二の発光性化合物は、錯体ではないことがより好ましい。
 第二の発光層に用いることができる青色で蛍光発光する化合物としては、例えば、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体及びトリアリールアミン誘導体等からなる群から選択される化合物を使用できる。
 本実施形態に係る有機EL素子において、第二の発光層は、金属錯体を含有しないことが好ましい。また、本実施形態に係る有機EL素子において、第二の発光層は、ホウ素含有錯体を含有しないことも好ましい。
 本実施形態に係る有機EL素子において、第二の発光層は、燐光発光性材料(ドーパント材料)を含まないことが好ましい。
 また、第二の発光層は、重金属錯体及び燐光発光性の希土類金属錯体を含まないことが好ましい。ここで、重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。
 本実施形態に係る有機EL素子において、第二の発光層は、第二の発光性化合物を、第二の発光層の全質量の0.5質量%以上、含有することがさらに好ましい。
 第二の発光層は、第二の発光性化合物を、第二の発光層の全質量の10質量%以下、含有することが好ましく、第二の発光層の全質量の7質量%以下、含有することがより好ましく、第二の発光層の全質量の5質量%以下、含有することがさらに好ましい。
 第二の発光層は、第二のホスト材料としての第二の化合物を、第二の発光層の全質量の60質量%以上、含有することが好ましく、第二の発光層の全質量の70質量%以上、含有することがより好ましく、第二の発光層の全質量の80質量%以上、含有することがさらに好ましく、第二の発光層の全質量の90質量%以上、含有することがよりさらに好ましく、第二の発光層の全質量の95質量%以上、含有することがさらになお好ましい。
 第二の発光層は、第二のホスト材料を、第二の発光層の全質量の99.5質量%以下、含有することが好ましい。
 第二の発光層が第二のホスト材料と第二の発光性化合物とを含有する場合、第二のホスト材料及び第二の発光性化合物の合計含有率の上限は、100質量%である。
 本実施形態に係る有機EL素子において、第二の発光層の膜厚は、5nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることがさらに好ましい。第二の発光層の膜厚が5nm以上であれば、第一の発光層から第二の発光層へ移動してきた三重項励起子が、再び第一の発光層に戻ることを抑制し易い。また、第二の発光層の膜厚が5nm以上であれば、第一の発光層における再結合部分から三重項励起子を充分離すことができる。
 本実施形態に係る有機EL素子において、第二の発光層の膜厚は、20nm以下であることが好ましい。第二の発光層の膜厚が20nm以下であれば、第二の発光層中の三重項励起子の密度を向上させて、TTF現象をさらに起こり易くすることができる。
 本実施形態に係る有機EL素子において、第二の発光層の膜厚は、5nm以上、20nm以下であることが好ましい。
 本実施形態に係る有機EL素子において、第一の発光性化合物又は第二の発光性化合物の三重項エネルギーT(DX)と、第一のホスト材料の三重項エネルギーT(H1)と第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数9)の関係を満たすことが好ましく、下記数式(数10)の関係を満たすことがより好ましい。
  2.7eV>T(DX)>T(H1)>T(H2) …(数9)
  2.6eV>T(DX)>T(H1)>T(H2) …(数10)
 第一の発光性化合物の三重項エネルギーT(D1)は、下記数式(数9A)の関係を満たすことが好ましく、下記数式(数10A)の関係を満たすことがより好ましい。
  2.7eV>T(D1)>T(H1)>T(H2) …(数9A)
  2.6eV>T(D1)>T(H1)>T(H2) …(数10A)
 第二の発光性化合物の三重項エネルギーT(D2)は、下記数式(数9B)の関係を満たすことが好ましく、下記数式(数10B)の関係を満たすことがより好ましい。
  2.7eV>T(D2)>T(H1)>T(H2) …(数9B)
  2.6eV>T(D2)>T(H1)>T(H2) …(数10B)
 本実施形態に係る有機EL素子において、第一の発光性化合物又は第二の発光性化合物の三重項エネルギーT(DX)と、第一のホスト材料の三重項エネルギーT(H1)とが、下記数式(数11)の関係を満たすことが好ましい。
  0eV<T(DX)-T(H1)<0.6eV …(数11)
 第一の発光性化合物の三重項エネルギーT(D1)は、下記数式(数11A)の関係を満たすことが好ましい。
  0eV<T(D1)-T(H1)<0.6eV …(数11A)
 第二の発光性化合物の三重項エネルギーT(D2)は、下記数式(数11B)の関係を満たすことが好ましい。
  0eV<T(D2)-T(H2)<0.8eV …(数11B)
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)が、下記数式(数12)の関係を満たすことが好ましい。
  T(H1)>2.0eV …(数12)
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)が、下記数式(数12A)の関係を満たすことも好ましく、下記数式(数12B)の関係を満たすことも好ましい。
  T(H1)>2.10eV …(数12A)
  T(H1)>2.15eV …(数12B)
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)が、前記数式(数12A)又は前記数式(数12B)の関係を満たすことにより、第一の発光層で生成した三重項励起子は、第二の発光層へと移動し易くなり、また、第二の発光層から第一の発光層へ逆移動することを抑制し易くなる。その結果、第二の発光層において、一重項励起子が効率良く生成され、発光効率が向上する。
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)が、下記数式(数12C)の関係を満たすことも好ましく、下記数式(数12D)の関係を満たすことも好ましい。
  2.08eV>T(H1)>1.87eV …(数12C)
  2.05eV>T(H1)>1.90eV …(数12D)
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)が、前記数式(数12C)又は前記数式(数12D)の関係を満たすことにより、第一の発光層で生成した三重項励起子のエネルギーが小さくなり、有機EL素子の青色有機EL素子の長寿命化が期待できる。
 本実施形態に係る有機EL素子において、第一の発光性化合物の三重項エネルギーT(D1)が、下記数式(数14A)の関係を満たすことも好ましく、下記数式(数14B)の関係を満たすことも好ましい。
  2.60eV>T(D1) …(数14A)
  2.50eV>T(D1) …(数14B)
 第一の発光層が、前記数式(数14A)又は(数14B)の関係を満たす第一の発光性化合物を含有することにより、有機EL素子の青色有機EL素子が長寿命化する。
 本実施形態に係る有機EL素子において、第二の発光性化合物の三重項エネルギーT(D2)が、下記数式(数14C)の関係を満たすことも好ましく、下記数式(数14D)の関係を満たすことも好ましい。
  2.60eV>T(D2) …(数14C)
  2.50eV>T(D2) …(数14D)
 第二の発光層が、前記数式(数14C)又は(数14D)の関係を満たす化合物を含有することにより、有機EL素子の青色有機EL素子が長寿命化する。
 本実施形態に係る有機EL素子において、第二のホスト材料の三重項エネルギーT(H2)が、下記数式(数13)の関係を満たすことが好ましい。
  T(H2)≧1.9eV …(数13)
 本実施形態に係る有機EL素子において、第一の発光層と第二の発光層との積層順が、陽極側から、第一の発光層と第二の発光層との順序である場合、第一のホスト材料の電子移動度μe(H1)と、第二のホスト材料の電子移動度μe(H2)とが、下記数式(数30)の関係を満たすことも好ましい。
  μe(H2)>μe(H1) …(数30)
 第一のホスト材料と第二のホスト材料とが、前記数式(数30)の関係を満たすことで、第一の発光層でのホールと電子との再結合能が向上する。
 本実施形態に係る有機EL素子において、第一の発光層と第二の発光層との積層順が、陽極側から、第一の発光層と第二の発光層との順序である場合、第一のホスト材料の正孔移動度μh(H1)と、第二のホスト材料の正孔移動度μh(H2)とが、下記数式(数31)の関係を満たすことも好ましい。
  μh(H1)>μh(H2) …(数31)
 本実施形態に係る有機EL素子において、第一の発光層と第二の発光層との積層順が、陽極側から、第一の発光層と第二の発光層との順序である場合、第一のホスト材料の正孔移動度μh(H1)と、第一のホスト材料の電子移動度μe(H1)と、第二のホスト材料の正孔移動度μh(H2)と、第二のホスト材料の電子移動度μe(H2)とが、下記数式(数32)の関係を満たすことも好ましい。
  (μe(H2)/μh(H2))>(μe(H1)/μh(H1)) …(数32)
(第一のホスト材料及び第二のホスト材料)
 本実施形態に係る有機EL素子において、第一のホスト材料及び第二のホスト材料は、例えば、下記一般式(1)で表される第一の化合物、下記一般式(1X)、一般式(12X)、一般式(13X)、一般式(14X)、一般式(15X)又は一般式(16X)で表される第一の化合物、及び下記一般式(2)で表される第二の化合物等からなる群から選択される化合物であることも好ましい。また、第一の化合物を第一のホスト材料及び第二のホスト材料として用いることもでき、この場合、第二のホスト材料として用いた前記一般式(1)、又は下記一般式(1X)、一般式(12X)、一般式(13X)、一般式(14X)、一般式(15X)又は一般式(16X)で表される化合物を、便宜的に第二の化合物と称する場合がある。
・第一の化合物
 本実施形態に係る有機EL素子において、第一の化合物は、例えば、下記一般式(1)、一般式(1X)、一般式(12X)、一般式(13X)、一般式(14X)、一般式(15X)又は一般式(16X)で表される化合物である。
・一般式(1)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(1)で表される化合物であることも好ましい。下記一般式(1)で表される第一の化合物は、下記一般式(11)で表される基を少なくとも1つ有する。
Figure JPOXMLDOC01-appb-C000250
 前記一般式(1)において、
 R101~R110は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(11)で表される基であり、
 ただし、R101~R110の少なくとも1つは、前記一般式(11)で表される基であり、
 前記一般式(11)で表される基が複数存在する場合、複数の前記一般式(11)で表される基は、互いに同一であるか又は異なり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar101は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mxは、0、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なり、
 Ar101が2以上存在する場合、2以上のAr101は、互いに同一であるか、又は異なり、
 前記一般式(11)中の*は、前記一般式(1)中のピレン環との結合位置を示す。
 前記一般式(1)で表される第一の化合物中、R901、R902、R903、R904、R905、R906、R907、R801及びR802は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
 R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なる。
 一実施形態において、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 一実施形態において、Ar101は、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基、置換もしくは無置換のピレニル基、置換もしくは無置換のフェナントリル基、又は置換もしくは無置換のフルオレニル基であることが好ましい。
 一実施形態において、前記第一の化合物は、下記一般式(101)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000251
(前記一般式(101)において、
 R101~R120は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 ただし、R101~R110のうち1つがL101との結合位置を示し、R111~R120のうち1つがL101との結合位置を示し、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 mxは、0、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なる。)
 一実施形態において、L101は、単結合、又は置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましい。
 一実施形態において、R101~R110のうち2つ以上が、前記一般式(11)で表される基であることが好ましい。
 一実施形態において、R101~R110のうち2つ以上が、前記一般式(11)で表される基であり、かつ、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 一実施形態において、Ar101は、置換もしくは無置換のピレニル基ではなく、L101は、置換もしくは無置換のピレニレン基ではなく、前記一般式(11)で表される基ではないR101~R110としての置換もしくは無置換の環形成炭素数6~50のアリール基は、置換もしくは無置換のピレニル基ではないことが好ましい。
 一実施形態において、前記一般式(11)で表される基ではないR101~R110は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 一実施形態において、前記一般式(11)で表される基ではないR101~R110は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数3~50のシクロアルキル基であることが好ましい。
 一実施形態において、前記一般式(11)で表される基ではないR101~R110は、水素原子であることが好ましい。
・一般式(1X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(1X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000252
(前記一般式(1X)において、
 R101~R112は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(11X)で表される基であり、
 ただし、R101~R112の少なくとも1つは、前記一般式(11X)で表される基であり、
 前記一般式(11X)で表される基が複数存在する場合、複数の前記一般式(11X)で表される基は、互いに同一であるか又は異なり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar101は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mxは、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なり、
 Ar101が2以上存在する場合、2以上のAr101は、互いに同一であるか、又は異なり、
 前記一般式(11X)中の*は、前記一般式(1X)中のベンズ[a]アントラセン環との結合位置を示す。)
 本実施形態に係る有機EL素子において、前記一般式(11X)で表される基は、下記一般式(111X)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000253
(前記一般式(111X)において、
 Xは、CR143144、酸素原子、硫黄原子、又はNR145であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、1、2、3又は4であり、
 mbは、1、2、3又は4であり、
 ma+mbは、2、3又は4であり、
 Ar101は、前記一般式(11X)におけるAr101と同義であり、
 R141、R142、R143、R144及びR145は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR141は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR142は、互いに同一であるか、又は異なる。)
 前記一般式(111X)で表される基における下記一般式(111aX)で表される環構造中の炭素原子*1~*8の位置のうち、*1~*4のいずれか1つの位置にL111が結合し、*1~*4の残りの3つの位置にR141が結合し、*5~*8のいずれか1つの位置にL112が結合し、*5~*8の残りの3つの位置にR142が結合する。
Figure JPOXMLDOC01-appb-C000254
 例えば、前記一般式(111X)で表される基において、L111が前記一般式(111aX)で表される環構造中の*2の炭素原子の位置に結合し、L112が前記一般式(111aX)で表される環構造中の*7の炭素原子の位置に結合する場合、前記一般式(111X)で表される基は、下記一般式(111bX)で表される。
Figure JPOXMLDOC01-appb-C000255
(前記一般式(111bX)において、
 X、L111、L112、ma、mb、Ar101、R141、R142、R143、R144及びR145は、それぞれ独立に、前記一般式(111X)におけるX、L111、L112、ma、mb、Ar101、R141、R142、R143、R144及びR145と同義であり、
 複数のR141は、互いに同一であるか、又は異なり、
 複数のR142は、互いに同一であるか、又は異なる。)
 本実施形態に係る有機EL素子において、前記一般式(111X)で表される基は、前記一般式(111bX)で表される基であることが好ましい。
 前記一般式(1X)で表される化合物において、maは、1又は2であり、mbは、1又は2であることが好ましい。
 前記一般式(1X)で表される化合物において、maは、1であり、mbは、1であることが好ましい。
 前記一般式(1X)で表される化合物において、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記一般式(1X)で表される化合物において、Ar101は、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基、置換もしくは無置換のベンズ[a]アントリル基、置換もしくは無置換のピレニル基、置換もしくは無置換のフェナントリル基、又は置換もしくは無置換のフルオレニル基であることが好ましい。
 前記一般式(1X)で表される化合物は、下記一般式(101X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000256
(前記一般式(101X)において、
 R111及びR112のうち1つがL101との結合位置を示し、R133及びR134のうち1つがL101との結合位置を示し、
 R101~R110、R121~R130、L101との結合位置ではないR111又はR112、並びにL101との結合位置ではないR133又はR134は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 mxは、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なる。)
 前記一般式(1X)で表される化合物において、L101は、単結合、又は置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましい。
 前記一般式(1X)で表される化合物は、下記一般式(102X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000257
(前記一般式(102X)において、
 R111及びR112のうち1つがL111との結合位置を示し、R133及びR134のうち1つがL112との結合位置を示し、
 R101~R110、R121~R130、L111との結合位置ではないR111又はR112並びにL112との結合位置ではないR133又はR134は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 Xは、CR143144、酸素原子、硫黄原子、又はNR145であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、1、2、3又は4であり、
 mbは、1、2、3又は4であり、
 ma+mbは、2、3、4又は5であり、
 R141、R142、R143、R144及びR145は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR141は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR142は、互いに同一であるか、又は異なる。)
 前記一般式(1X)で表される化合物において、前記一般式(102X)中のmaは、1又は2であり、mbは、1又は2であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(102X)中のmaは、
1であり、mbは、1であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基は、下記一般式(11AX)で表される基、又は下記一般式(11BX)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000258
(前記一般式(11AX)及び前記一般式(11BX)において、
 R121~R131は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(11AX)で表される基が複数存在する場合、複数の前記一般式(11AX)で表される基は、互いに同一であるか又は異なり、
 前記一般式(11BX)で表される基が複数存在する場合、複数の前記一般式(11BX)で表される基は、互いに同一であるか又は異なり、
 L131及びL132は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 前記一般式(11AX)及び前記一般式(11BX)中の*は、それぞれ、前記一般式(1X)中のベンズ[a]アントラセン環との結合位置を示す。)
 前記一般式(1X)で表される化合物は、下記一般式(103X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000259
(前記一般式(103X)において、
 R101~R110並びにR112は、それぞれ、前記一般式(1X)におけるR101~R110並びにR112と同義であり、
 R121~R131、L131及びL132は、それぞれ、前記一般式(11BX)におけるR121~R131、L131及びL132と同義である。)
 前記一般式(1X)で表される化合物において、L131は、置換もしくは無置換の環形成炭素数6~50のアリーレン基であることも好ましい。
 前記一般式(1X)で表される化合物において、L132は、置換もしくは無置換の環形成炭素数6~50のアリーレン基であることも好ましい。
 前記一般式(1X)で表される化合物において、R101~R112のうち2つ以上が、前記一般式(11X)で表される基であることも好ましい。
 本前記一般式(1X)で表される化合物において、R101~R112のうち2つ以上が、前記一般式(11X)で表される基であり、一般式(11X)中のAr101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記一般式(1X)で表される化合物において、Ar101は、置換もしくは無置換のベンズ[a]アントリル基ではなく、L101は、置換もしくは無置換のベンズ[a]アントリレン基ではなく、前記一般式(11X)で表される基ではないR101~R110としての置換もしくは無置換の環形成炭素数6~50のアリール基は、置換もしくは無置換のベンズ[a]アントリル基ではないことも好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数3~50のシクロアルキル基であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、水素原子であることが好ましい。
・一般式(12X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(12X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000260
(前記一般式(12X)において、
 R1201~R1210のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ及び前記置換もしくは無置換の縮合環を形成しないR1201~R1210は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(121)で表される基であり、
 ただし、前記置換もしくは無置換の単環が置換基を有する場合の当該置換基、前記置換もしくは無置換の縮合環が置換基を有する場合の当該置換基、並びにR1201~R1210の少なくとも1つが、前記一般式(121)で表される基であり、
 前記一般式(121)で表される基が複数存在する場合、複数の前記一般式(121)で表される基は、互いに同一であるか又は異なり、
 L1201は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1201は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx2は、0、1、2、3、4又は5であり、
 L1201が2以上存在する場合、2以上のL1201は、互いに同一であるか、又は異なり、
 Ar1201が2以上存在する場合、2以上のAr1201は、互いに同一であるか、又は異なり、
 前記一般式(121)中の*は、前記一般式(12X)で表される環との結合位置を示す。)
 前記一般式(12X)において、R1201~R1210のうちの隣接する2つからなる組とは、R1201とR1202との組、R1202とR1203との組、R1203とR1204との組、R1204とR1205との組、R1205とR1206との組、R1207とR1208との組、R1208とR1209との組、並びにR1209とR1210との組である。
・一般式(13X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(13X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000261
(前記一般式(13X)において、
 R1301~R1310は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(131)で表される基であり、
 ただし、R1301~R1310の少なくとも1つは、前記一般式(131)で表される基であり、
 前記一般式(131)で表される基が複数存在する場合、複数の前記一般式(131)で表される基は、互いに同一であるか又は異なり、
 L1301は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1301は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx3は、0、1、2、3、4又は5であり、
 L1301が2以上存在する場合、2以上のL1301は、互いに同一であるか、又は異なり、
 Ar1301が2以上存在する場合、2以上のAr1301は、互いに同一であるか、又は異なり、
 前記一般式(131)中の*は、前記一般式(13X)中のフルオランテン環との結合位置を示す。)
 本実施形態に係る有機EL素子において、前記一般式(131)で表される基ではないR1301~R1310のうち隣接する2つ以上からなる組は、いずれも、互いに結合しない。前記一般式(13X)において隣接する2つからなる組とは、R1301とR1302との組、R1302とR1303との組、R1303とR1304との組、R1304とR1305との組、R1305とR1306との組、R1307とR1308との組、R1308とR1309との組、並びにR1309とR1310との組である。
・一般式(14X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(14X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000262
(前記一般式(14X)において、
 R1401~R1410は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(141)で表される基であり、
 ただし、R1401~R1410の少なくとも1つは、前記一般式(141)で表される基であり、
 前記一般式(141)で表される基が複数存在する場合、複数の前記一般式(141)で表される基は、互いに同一であるか又は異なり、
 L1401は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1401は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx4は、0、1、2、3、4又は5であり、
 L1401が2以上存在する場合、2以上のL1401は、互いに同一であるか、又は異なり、
 Ar1401が2以上存在する場合、2以上のAr1401は、互いに同一であるか、又は異なり、
 前記一般式(141)中の*は、前記一般式(14X)で表される環との結合位置を示す。)
・一般式(15X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(15X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000263
(前記一般式(15X)において、
 R1501~R1514は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(151)で表される基であり、
 ただし、R1501~R1514の少なくとも1つは、前記一般式(151)で表される基であり、
 前記一般式(151)で表される基が複数存在する場合、複数の前記一般式(151)で表される基は、互いに同一であるか又は異なり、
 L1501は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1501は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx5は、0、1、2、3、4又は5であり、
 L1501が2以上存在する場合、2以上のL1501は、互いに同一であるか、又は異なり、
 Ar1501が2以上存在する場合、2以上のAr1501は、互いに同一であるか、又は異なり、
 前記一般式(151)中の*は、前記一般式(15X)で表される環との結合位置を示す。)
・一般式(16X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(16X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000264
(前記一般式(16X)において、
 R1601~R1614は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(161)で表される基であり、
 ただし、R1601~R1614の少なくとも1つは、前記一般式(161)で表される基であり、
 前記一般式(161)で表される基が複数存在する場合、複数の前記一般式(161)で表される基は、互いに同一であるか又は異なり、
 L1601は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1601は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx6は、0、1、2、3、4又は5であり、
 L1601が2以上存在する場合、2以上のL1601は、互いに同一であるか、又は異なり、
 Ar1601が2以上存在する場合、2以上のAr1601は、互いに同一であるか、又は異なり、
 前記一般式(161)中の*は、前記一般式(16X)で表される環との結合位置を示す。)
 本実施形態に係る有機EL素子において、第一のホスト材料は、分子中に、単結合で連結されたベンゼン環とナフタレン環とを含む連結構造を有し、当該連結構造中のベンゼン環及びナフタレン環には、それぞれ独立に、さらに単環又は縮合環が縮合しているか又は縮合しておらず、当該連結構造中のベンゼン環とナフタレン環とが、当該単結合以外の少なくとも1つの部分において架橋によりさらに連結していることも好ましい。
 第一のホスト材料が、このような架橋を含んだ連結構造を有していることにより、有機EL素子の色度悪化の抑制が期待できる。
 この場合の第一のホスト材料は、分子中に、下記式(X1)又は式(X2)で表されるような、単結合で連結されたベンゼン環とナフタレン環とを含む連結構造(ベンゼン-ナフタレン連結構造と称する場合がある。)を最小単位として有していればよく、当該ベンゼン環にさらに単環又は縮合環が縮合していてもよいし、当該ナフタレン環にさらに単環又は縮合環が縮合していてもよい。例えば、第一のホスト材料が、分子中に、下記式(X3)、式(X4)、又は式(X5)で表されるような、単結合で連結されたナフタレン環とナフタレン環とを含む連結構造(ナフタレン-ナフタレン連結構造と称する場合がある。)においても、一方のナフタレン環は、ベンゼン環を含んでいるため、ベンゼン-ナフタレン連結構造を含んでいることになる。
Figure JPOXMLDOC01-appb-C000265
 本実施形態に係る有機EL素子において、前記架橋が二重結合を含むことも好ましい。
すなわち、前記ベンゼン環と前記ナフタレン環とが、単結合以外の部分において二重結合を含む架橋構造によりさらに連結した構造を有することも好ましい。
 ベンゼン-ナフタレン連結構造中のベンゼン環とナフタレン環とが、単結合以外の少なくとも1つの部分において架橋によりさらに連結すると、例えば、前記式(X1)の場合、下記式(X11)で表される連結構造(縮合環)になり、前記式(X3)の場合、下記式(X31)で表される連結構造(縮合環)になる。
 ベンゼン-ナフタレン連結構造中のベンゼン環とナフタレン環とが、単結合以外の部分において二重結合を含む架橋によりさらに連結すると、例えば、前記式(X1)の場合、下記式(X12)で表される連結構造(縮合環)になり、前記式(X2)の場合、下記式(X21)又は式(X22)で表される連結構造(縮合環)になり、前記式(X4)の場合、下記式(X41)で表される連結構造(縮合環)になり、前記式(X5)の場合、下記式(X51)で表される連結構造(縮合環)になる。
 ベンゼン-ナフタレン連結構造中のベンゼン環とナフタレン環とが、単結合以外の少なくとも1つの部分においてヘテロ原子(例えば、酸素原子)を含む架橋によりさらに連結すると、例えば、前記式(X1)の場合、下記式(X13)で表される連結構造(縮合環)になる。
Figure JPOXMLDOC01-appb-C000266
 本実施形態に係る有機EL素子において、第一のホスト材料は、分子中に、第一のベンゼン環と第二のベンゼン環とが単結合で連結されたビフェニル構造を有し、当該ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、当該単結合以外の少なくとも1つの部分において架橋によりさらに連結していることも好ましい。
 本実施形態に係る有機EL素子において、前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、前記単結合以外の1つの部分において前記架橋によりさらに連結していることも好ましい。第一のホスト材料が、このような架橋を含んだビフェニル構造を有していることにより、有機EL素子の色度悪化の抑制が期待できる。
 本実施形態に係る有機EL素子において、前記架橋が二重結合を含むことも好ましい。
 本実施形態に係る有機EL素子において、前記架橋が二重結合を含まないことも好ましい。
 前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、前記単結合以外の2つの部分において前記架橋によりさらに連結していることも好ましい。
 本実施形態に係る有機EL素子において、前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、前記単結合以外の2つの部分において前記架橋によりさらに連結し、前記架橋が二重結合を含まないことも好ましい。第一のホスト材料が、このような架橋を含んだビフェニル構造を有していることにより、有機EL素子の色度悪化の抑制が期待できる。
 例えば、下記式(BP1)で表される前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、単結合以外の少なくとも1つの部分において架橋によりさらに連結すると、当該ビフェニル構造は、下記式(BP11)~(BP15)等の連結構造(縮合環)になる。
Figure JPOXMLDOC01-appb-C000267
 前記式(BP11)は、前記単結合以外の1つの部分において二重結合を含まない架橋によって連結した構造である。
 前記式(BP12)は、前記単結合以外の1つの部分において二重結合を含む架橋によって連結した構造である。
 前記式(BP13)は、前記単結合以外の2つの部分において二重結合を含まない架橋によって連結した構造である。
 前記式(BP14)は、前記単結合以外の2つの部分の一方において二重結合を含まない架橋によって連結し、前記単結合以外の2つの部分の他方において二重結合を含む架橋によって連結した構造である。
 前記式(BP15)は、前記単結合以外の2つの部分において二重結合を含む架橋によって連結した構造である。
 前記第一の化合物及び前記第二の化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
(第一の化合物の製造方法)
 本実施形態に係る有機EL素子に使用できる第一の化合物は、公知の方法により製造できる。また、第一の化合物は、公知の方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることによっても、製造できる。
(第一の化合物の具体例)
 本実施形態に係る有機EL素子に使用できる第一の化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら第一の化合物の具体例に限定されない。
 本明細書において、化合物の具体例中、Dは、重水素原子を示し、Meは、メチル基を示し、tBuは、tert-ブチル基を示す。
Figure JPOXMLDOC01-appb-C000268
Figure JPOXMLDOC01-appb-C000269
Figure JPOXMLDOC01-appb-C000270
Figure JPOXMLDOC01-appb-C000271
Figure JPOXMLDOC01-appb-C000272
Figure JPOXMLDOC01-appb-C000273
Figure JPOXMLDOC01-appb-C000274
Figure JPOXMLDOC01-appb-C000275
Figure JPOXMLDOC01-appb-C000276
Figure JPOXMLDOC01-appb-C000277
Figure JPOXMLDOC01-appb-C000278
Figure JPOXMLDOC01-appb-C000279
Figure JPOXMLDOC01-appb-C000280
Figure JPOXMLDOC01-appb-C000281
Figure JPOXMLDOC01-appb-C000282
Figure JPOXMLDOC01-appb-C000283
Figure JPOXMLDOC01-appb-C000284
・第二の化合物
 本実施形態に係る一般式(2)で表される第二の化合物について説明する。
Figure JPOXMLDOC01-appb-C000285
(前記一般式(2)において、
 R201~R208は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 L201及びL202は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar201及びAr202は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(本実施形態に係る第二の化合物中、R901、R902、R903、R904、R905、R906、R907、R801及びR802は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
 R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なる。)
 一実施形態において、L201及びL202は、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~50のアリーレン基であり、Ar201及びAr202は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 一実施形態において、Ar201及びAr202は、それぞれ独立に、フェニル基、ナフチル基、フェナントリル基、ビフェニル基、ターフェニル基、ジフェニルフルオレニル基、ジメチルフルオレニル基、ベンゾジフェニルフルオレニル基、ベンゾジメチルフルオレニル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフトベンゾフラニル基、又はナフトベンゾチエニル基であることが好ましい。
 一実施形態において、前記一般式(2)で表される第二の化合物中、R201~R208は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は-Si(R901)(R902)(R903)で表される基であることが好ましい。
 一実施形態において、L201は、単結合、又は無置換の環形成炭素数6~22のアリーレン基であり、Ar201は、置換もしくは無置換の環形成炭素数6~22のアリール基であることが好ましい。
 一実施形態において、前記一般式(2)で表される第二の化合物中、R201~R208は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は-Si(R901)(R902)(R903)で表される基であることが好ましい。
 一実施形態において、前記一般式(2)で表される第二の化合物中、R201~R208は、水素原子であることが好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が単結合であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が単結合であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が単結合であり、Ar202が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のp-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のm-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のo-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のp-フェニレン基であり、Ar202が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のp-フェニレン基であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換の1,4-ナフタレンジイル基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2)中のL202が無置換のm-フェニレン基であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、下記一般式(2X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000286
(前記一般式(2X)において、
 R201並びにR203~R208は、それぞれ独立に、前記一般式(2)におけるR201並びにR203~R208と同義であり、
 L201、L202、Ar201及びAr202は、それぞれ、前記一般式(2)におけるL201、L202、Ar201及びAr202と同義であり、
 L203は、前記一般式(2)におけるL201と同義であり、
 L201、L202及びL203は、互いに同一であるか、又は異なり、
 Ar203は、前記一般式(2)におけるAr201と同義であり、
 Ar201、Ar202及びAr203は、互いに同一であるか、又は異なる。)
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が単結合であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が単結合であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が単結合であり、Ar202が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のp-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のm-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のo-フェニレン基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のp-フェニレン基であり、Ar202が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のp-フェニレン基であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換の1,4-ナフタレンジイル基であり、Ar202が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL202が無置換のm-フェニレン基であり、Ar202が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が単結合であり、Ar201が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が単結合であり、Ar201が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が単結合であり、Ar201が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のp-フェニレン基であり、Ar201が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のm-フェニレン基であり、Ar201が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のo-フェニレン基であり、Ar201が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のp-フェニレン基であり、Ar201が無置換の1-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のp-フェニレン基であり、Ar201が無置換の2-ナフチル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換の1,4-ナフタレンジイル基であり、Ar201が無置換のフェニル基である化合物であることも好ましい。
 一実施形態において、第二の化合物は、前記一般式(2X)中のL201が無置換のm-フェニレン基であり、Ar201が無置換の2-ナフチル基である化合物であることも好ましい。
 第二の化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
 一実施形態において、第二の発光層は、前記一般式(2)で表される第二の化合物を第二のホスト材料として含有することが好ましい。したがって、例えば、第二の発光層は、前記一般式(2)で表される第二の化合物を、第二の発光層の全質量の50質量%以上、含有する。
 本実施形態に係る有機EL素子において、前記一般式(2)で表される第二の化合物中、アントラセン骨格の置換基であるR201~R208は、分子間の相互作用が抑制されることを防ぎ、電子移動度の低下を抑制する点から、水素原子であることが好ましいが、R201~R208は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基でもよい。
 R201~R208がアルキル基及びシクロアルキル基等のかさ高い置換基となった場合、分子間の相互作用が抑制され、第一のホスト材料に対し電子移動度が低下し、前記数式(数30)に記載のμe(H2)>μe(H1)の関係を満たさなくなるおそれがある。第二の化合物を第二の発光層に用いた場合には、μe(H2)>μe(H1)の関係を満たす事で第一の発光層でのホールと電子との再結合能の低下、及び発光効率の低下を抑制することが期待できる。なお、置換基としては、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基がかさ高くなるおそれがあり、アルキル基、及びシクロアルキル基がさらにかさ高くなるおそれがある。
 前記一般式(2)で表される第二の化合物中、アントラセン骨格の置換基であるR201~R208は、かさ高い置換基ではないことが好ましく、アルキル基及びシクロアルキル基ではないことが好ましく、アルキル基、シクロアルキル基、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基ではないことがより好ましい。
 前記第二の化合物中、R201~R208における「置換もしくは無置換の」という場合における置換基は、前述のかさ高くなるおそれのある置換基、特に置換もしくは無置換のアルキル基、及び置換もしくは無置換のシクロアルキル基を含まないことも好ましい。R201~R208における「置換もしくは無置換の」という場合における置換基が、置換もしくは無置換のアルキル基、及び置換もしくは無置換のシクロアルキル基を含まないことにより、アルキル基及びシクロアルキル基等のかさ高い置換基が存在する事による分子間の相互作用が抑制されるのを防ぎ、電子移動度の低下を防ぐことができ、また、このような第二の化合物を第二の発光層に用いた場合には、第一の発光層でのホールと電子との再結合能の低下、及び発光効率の低下を抑制できる。
 アントラセン骨格の置換基であるR201~R208がかさ高い置換基ではなく、置換基としてのR201~R208は、無置換であることがさらに好ましい。また、アントラセン骨格の置換基であるR201~R208がかさ高い置換基ではない場合において、かさ高くない置換基としてのR201~R208に置換基が結合する場合、当該置換基もかさ高い置換基ではないことが好ましく、置換基としてのR201~R208に結合する当該置換基は、アルキル基及びシクロアルキル基ではないことが好ましく、アルキル基、シクロアルキル基、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基ではないことがより好ましい。
(第二の化合物の製造方法)
 第二の化合物は、公知の方法により製造できる。また、第二の化合物は、公知の方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることによっても、製造できる。
(第二の化合物の具体例)
 第二の化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら第二の化合物の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000287
Figure JPOXMLDOC01-appb-C000288
Figure JPOXMLDOC01-appb-C000289
(有機EL素子のその他の層)
 本実施形態に係る有機EL素子は、第一の陽極側有機層、第二の陽極側有機層、第三の陽極側有機層及び発光領域中の発光層以外に、1以上の有機層を有していてもよい。有機層としては、例えば、電子注入層、電子輸送層、正孔障壁層及び電子障壁層からなる群から選択される少なくともいずれかの層が挙げられる。
 本実施形態に係る有機EL素子において、第一の陽極側有機層、第二の陽極側有機層、第三の陽極側有機層及び発光領域中の発光層だけで構成されていてもよいが、例えば、電子注入層、電子輸送層、及び正孔障壁層等からなる群から選択される少なくともいずれかの層をさらに有していてもよい。
 図1に、本実施形態に係る有機EL素子の一例の概略構成を示す。
 有機EL素子1は、基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を含む。有機層10は、陽極3側から順に、第一の陽極側有機層61、第二の陽極側有機層62、第三の陽極側有機層63、発光層50、電子輸送層8、及び電子注入層9が、この順番で積層されて構成される。
 図2に、本実施形態に係る有機EL素子の別の一例の概略構成を示す。
 有機EL素子1Aは、基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層11と、を含む。有機層11は、陽極3側から順に、第一の陽極側有機層61、第二の陽極側有機層62、第三の陽極側有機層63、第四の陽極側有機層64、発光層50、電子輸送層8、及び電子注入層9が、この順番で積層されて構成される。
 図3に、本実施形態に係る有機EL素子の別の一例の概略構成を示す。
 有機EL素子1Bは、基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層12と、を含む。有機層12は、陽極3側から順に、第一の陽極側有機層61、第二の陽極側有機層62、第三の陽極側有機層63、第一の発光層51、第二の発光層52、電子輸送層8、及び電子注入層9が、この順番で積層されて構成される。
 図4に、本実施形態に係る有機EL素子の別の一例の概略構成を示す。
 有機EL素子1Cは、基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層13と、を含む。有機層13は、陽極3側から順に、第一の陽極側有機層61、第二の陽極側有機層62、第三の陽極側有機層63、第四の陽極側有機層64、第一の発光層51、第二の発光層52、電子輸送層8、及び電子注入層9が、この順番で積層されて構成される。
 図1の有機EL素子1及び図2の有機EL素子1Aにおいて、発光領域5は、発光層50を含む。
 図3の有機EL素子1B及び図4の有機EL素子1Cにおいて、発光領域5Bは、第一の発光層51及び第二の発光層52を含む。
 図1の有機EL素子1及び図3の有機EL素子1Bにおいて、正孔輸送帯域は、第一の陽極側有機層61、第二の陽極側有機層62及び第三の陽極側有機層63を含む。
 図2の有機EL素子1A及び図4の有機EL素子1Cにおいて、正孔輸送帯域は、第一の陽極側有機層61、第二の陽極側有機層62、第三の陽極側有機層63及び第四の陽極側有機層64を含む。
 本発明は、図1~図4に示す有機EL素子の構成に限定されない。別の構成の有機EL素子としては、例えば、発光領域において第二の発光層及び第一の発光層が陽極側からこの順番で積層された有機EL素子が挙げられる。
(介在層)
 本実施形態に係る有機EL素子は、第一の発光層と第二の発光層との間に配置される有機層として、介在層を有することもできる。
 本実施形態において、Singlet発光領域とTTF発光領域とが重ならない様にする為、それを実現できる程度に介在層は発光性化合物を含まない。
 例えば、発光性化合物の介在層における含有率が、0質量%だけでなく、例えば、製造の工程で意図せずに混入した成分、又は原材料に不純物として含まれる成分が発光性化合物である場合、介在層がこれらの成分を含むことは許容される。
 例えば、介在層を構成する全ての材料が、材料A、材料B及び材料Cである場合、材料A、材料B及び材料Cの介在層における各々の含有率は、いずれも10質量%以上であり、材料A、材料B及び材料Cの合計含有率は100質量%である。
 以下では、介在層を「ノンドープ層」と称することがある。また、発光性化合物を含む層を「ドープ層」と称することがある。
 一般的に、発光層を積層構成とした場合、Singlet発光領域とTTF発光領域とが分離され易くなるため、発光効率を改善できるとされている。
 本実施形態の有機EL素子において、発光領域中の第一の発光層と第二の発光層との間に介在層(ノンドープ層)が配置されている場合、Singlet発光領域とTTF発光領域とが重なる領域が低減し、三重項励起子とキャリアとの衝突に起因するTTF効率の低下が抑制されることが期待される。つまり、発光層間への介在層(ノンドープ層)の挿入は、TTF発光の効率向上に寄与すると考えられる。
 介在層は、ノンドープ層である。
 介在層は、金属原子を含まない。そのため、介在層は、金属錯体を含有しない。
 介在層は、介在層材料を含む。介在層材料は、発光性化合物ではない。
 介在層材料としては、発光性化合物以外の材料であれば、特に限定されない。
 介在層材料としては、例えば、1)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、2)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、3)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物が挙げられる。
 介在層材料は、第一のホスト材料及び第二のホスト材料の一方、又は両方のホスト材料を用いる事もできるが、Singlet発光領域とTTF発光領域とを離間させ、Singlet発光とTTF発光とを阻害しない材料であれば、特に制限されない。
 本実施形態に係る有機EL素子において、介在層は、当該介在層を構成する全ての材料の前記介在層における各々の含有率が、いずれも10質量%以上である。
 介在層は、当該介在層を構成する材料として前記介在層材料を含む。
 介在層は、前記介在層材料を、介在層の全質量の60質量%以上、含有することが好ましく、介在層の全質量の70質量%以上、含有することがより好ましく、介在層の全質量の80質量%以上、含有することがさらに好ましく、介在層の全質量の90質量%以上、含有することがよりさらに好ましく、介在層の全質量の95質量%以上、含有することがさらになお好ましい。
 介在層は、介在層材料を1種のみ含んでもよいし、2種以上含んでもよい。
 介在層が介在層材料を2種以上含有する場合、2種以上の介在層材料の合計含有率の上限は、100質量%である。
 なお、本実施形態は、介在層に、介在層材料以外の材料が含まれることを除外しない。
 介在層は単層で構成されていてもよいし、二層以上積層されて構成されていてもよい。
 介在層の膜厚は、Singlet発光領域とTTF発光領域とが重なることを抑制できる形態であれば特に制限は無いが、1層あたり、3nm以上15nm以下であることが好ましく、5nm以上10nm以下であることがより好ましい。
 介在層の膜厚が3nm以上であれば、Singlet発光領域とTTF由来の発光領域とを分離しやすくなる。
 介在層の膜厚が15nm以下であれば、介在層のホスト材料が発光してしまう現象を抑制しやすくなる。
 介在層は、当該介在層を構成する材料として介在層材料を含み、第一のホスト材料の三重項エネルギーT(H1)と、第二のホスト材料の三重項エネルギーT(H2)と、少なくとも1つの介在層材料の三重項エネルギーT(Mmid)が、下記数式(数21)の関係を満たすことが好ましい。
 T(H1)≧T(Mmid)≧T(H2) …(数21)
 介在層が、当該介在層を構成する材料として介在層材料を2以上含む場合、第一のホスト材料の三重項エネルギーT(H1)と、第二のホスト材料の三重項エネルギーT(H2)と、各々の介在層材料の三重項エネルギーT(MEA)とが、下記数式(数21A)の関係を満たすことがより好ましい。
 T(H1)≧T(MEA)≧T(H2) …(数21A)
 また、本実施形態に係る有機EL素子は、拡散層をさらに有していてもよい。
 本実施形態に係る有機EL素子が拡散層を有する場合、拡散層は、第一の発光層と第二の発光層との間に配置されていることが好ましい。
 有機EL素子の構成についてさらに説明する。以下、符号の記載は省略することがある。
(基板)
 基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、及びプラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、及びポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、および酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
(電子輸送層)
 本実施形態の有機EL素子の一態様において、発光領域と陰極との間に電子輸送層が配置されている。
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、ZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。本実施態様においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層で構成されていてもよいし、上記物質からなる層が二層以上積層されて構成されていてもよい。
 また、電子輸送層には、高分子化合物を用いることもできる。例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)などを用いることができる。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(層形成方法)
 本実施形態の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法などの湿式成膜法などの公知の方法を採用することができる。
(膜厚)
 本実施形態の有機EL素子の各有機層の膜厚は、上記で特に言及した場合を除いて限定されない。一般に、膜厚が薄すぎるとピンホール等の欠陥が生じやすく、膜厚が厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常、有機EL素子の各有機層の膜厚は、数nmから1μmの範囲が好ましい。
(有機EL素子の発光波長)
 本実施形態に係る有機エレクトロルミネッセンス素子は、素子駆動時に最大のピーク波長が500nm以下の光を放射することが好ましい。
 本実施形態に係る有機エレクトロルミネッセンス素子は、素子駆動時に最大のピーク波長が、430nm以上480nm以下の光を放射することがより好ましい。
 素子駆動時に有機EL素子が放射する光の最大のピーク波長の測定は、以下のようにして行う。電流密度が10mA/cmとなるように有機EL素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ社製)で計測する。得られた分光放射輝度スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を測定し、これを最大のピーク波長(単位:nm)とする。
(HOMOの測定方法)
 本明細書において、最高被占軌道のエネルギー準位HOMOは、大気下で、光電子分光装置を用いて測定する。具体的には、実施例に記載の方法により最高被占軌道のエネルギー準位HOMOを測定できる。
(電子移動度の測定方法)
 電子移動度は、下記の手順で作製された移動度評価用素子を用い、インピーダンス測定を行うことで測定できる。移動度評価用素子は、例えば、下記の手順で作製される。
 アルミニウム電極(陽極)付きガラス基板上に、アルミニウム電極を覆うようにして電子移動度の測定対象となる化合物Targetを蒸着して測定対象層を形成する。この測定対象層の上に、下記化合物ET-Aを蒸着して電子輸送層を形成する。この電子輸送層の成膜の上に、LiFを蒸着して電子注入層を形成する。この電子注入層の成膜の上に金属アルミニウム(Al)を蒸着して金属陰極を形成する。
 以上の移動度評価用素子構成を略式的に示すと、次のとおりである。
 glass/Al(50)/Target(200)/ET-A(10)/LiF(1)/Al(50)
 なお、括弧内の数字は、膜厚(nm)を示す。
Figure JPOXMLDOC01-appb-C000290
 電子移動度の移動度評価用素子を、インピーダンス測定装置に設置し、インピーダンス測定を行う。インピーダンス測定は、測定周波数を1Hzから1MHzまで掃引して行う。その際、素子には交流振幅0.1Vと同時に、直流電圧Vを印加する。測定されたインピーダンスZから、下記計算式(C1)の関係を用いて、モジュラスMを計算する。
  計算式(C1):M=jωZ
 上記計算式(C1)において、jは、その平方が-1になる虚数単位、ωは、角周波数[rad/s]である。
 モジュラスMの虚部を縦軸、周波数[Hz]を横軸にしたボーデプロットにおいて、ピークを示す周波数fmaxから移動度評価用素子の電気的な時定数τを下記計算式(C2)から求める。
  計算式(C2):τ=1/(2πfmax)
 上記計算式(C2)のπは、円周率を表す記号である。
 上記τを用いて、下記計算式(C3-1)の関係から電子移動度μeを算出する。
 計算式(C3-1):μe=d/(Vτ)
 上記計算式(C3-1)のdは、素子を構成する有機薄膜の総膜厚であり、電子移動度の移動度評価用素子構成の場合、d=210[nm]である。
(正孔移動度の測定方法)
 正孔移動度は、下記の手順で作製された移動度評価用素子を用い、インピーダンス測定を行うことで測定できる。移動度評価用素子は、例えば、下記の手順で作製される。
 ITO透明電極(陽極)付きガラス基板上に、透明電極を覆うようにして下記化合物HA-2を蒸着して正孔注入層を形成する。この正孔注入層の成膜の上に、下記化合物HT-Aを蒸着して正孔輸送層を形成する。続けて、正孔移動度の測定対象となる化合物Targetを蒸着して測定対象層を形成する。この測定対象層の上に、金属アルミニウム(Al)を蒸着して金属陰極を形成する。
 以上の移動度評価用素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HA-2(5)/HT-A(10)/Target(200)/Al(80)
 なお、括弧内の数字は、膜厚(nm)を示す。
Figure JPOXMLDOC01-appb-C000291
 正孔移動度の移動度評価用素子を、インピーダンス測定装置に設置し、インピーダンス測定を行う。インピーダンス測定は、測定周波数を1Hzから1MHzまで掃引して行う。その際、素子には交流振幅0.1Vと同時に、直流電圧Vを印加する。測定されたインピーダンスZから、前記計算式(C1)の関係を用いて、モジュラスMを計算する。
 モジュラスMの虚部を縦軸、周波数[Hz]を横軸にしたボーデプロットにおいて、ピークを示す周波数fmaxから移動度評価用素子の電気的な時定数τを前記計算式(C2)から求める。
 前記計算式(C2)から求めたτを用いて、下記計算式(C3-2)の関係から正孔移動度μhを算出する。
 計算式(C3-2):μh=d/(Vτ)
 上記計算式(C3-2)のdは、素子を構成する有機薄膜の総膜厚であり、正孔移動度の移動度評価用素子構成の場合、d=215[nm]である。
 本明細書における電子移動度及び正孔移動度は、電界強度の平方根E1/2=500[V1/2/cm1/2]の際の値である。電界強度の平方根E1/2は、下記計算式(C4)の関係から算出することができる。
  計算式(C4):E1/2=V1/2/d1/2
 前記インピーダンス測定にはインピーダンス測定装置としてソーラトロン社の1260型を用い、高精度化のため、ソーラトロン社の1296型誘電率測定インターフェイスを併せて用いることができる。
〔第二実施形態〕
 第二実施形態に係る有機エレクトロルミネッセンス表示装置(以下、有機EL表示装置とも称する)について説明する。第二実施形態の説明において第一実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化する。また、第二実施形態では、特に言及されない材料や化合物については、第一実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
(有機エレクトロルミネッセンス表示装置)
 本実施形態の有機エレクトロルミネッセンス表示装置は、互いに対向して配置された陽極及び陰極を有し、青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、前記青色画素は、第一実施形態のいずれかの態様に係る有機EL素子を前記青色有機EL素子として含み、前記緑色有機EL素子は、前記陽極と前記陰極との間に配置された緑色発光領域を有し、前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光領域を有し、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色有機EL素子の前記発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられている。
 本実施形態の有機EL表示装置において、青色画素に含まれる青色有機EL素子の態様の例として、第一実施形態の第一の態様、第二の態様、第三の態様、第四の態様及び第五の態様が挙げられる。本明細書の有機EL表示装置において、青色画素に含まれる青色有機EL素子が有する発光領域を青色発光領域と称する場合がある。
 例えば、第一実施形態の第一の態様に係る有機EL素子を含む場合の有機EL表示装置は、
 互いに対向して配置された陽極及び陰極を有し、
 青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、
 前記青色有機EL素子は、前記陽極と前記陰極との間に配置された青色発光領域を有し、
 前記青色発光領域は、少なくとも1つの青色発光層を含み、
 前記緑色有機EL素子は、前記陽極と前記陰極との間に配置された緑色発光領域を有し、
 前記緑色発光領域は、少なくとも1つの緑色発光層を含み、
 前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光領域を有し、
 前記赤色発光領域は、少なくとも1つの赤色発光層を含み、
 前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられた第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層を有し、
 前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、
 前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、
 前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が、30nm以上、かつ150nm以下であり、
 前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の比は、前記数式(数1)の関係を満たす。
 例えば、第一実施形態の第二の態様に係る有機EL素子を含む場合の有機EL表示装置は、
 互いに対向して配置された陽極及び陰極を有し、
 青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、
 前記青色有機EL素子は、前記陽極と前記陰極との間に配置された青色発光領域を有し、
 前記青色発光領域は、少なくとも1つの青色発光層を含み、
 前記緑色有機EL素子は、前記陽極と前記陰極との間に配置された緑色発光領域を有し、
 前記緑色発光領域は、少なくとも1つの緑色発光層を含み、
 前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光領域を有し、
 前記赤色発光領域は、少なくとも1つの赤色発光層を含み、
 前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられた第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層を有し、
 前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、
 前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、
 前記第三の陽極側有機層は、前記一般式(C1)で表される化合物又は前記一般式(C2)で表される化合物を含有し、
 前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が、30nm以上、かつ150nm以下であり、
 前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の比は、前記数式(数A2)の関係を満たす。
 例えば、第一実施形態の第三の態様に係る有機EL素子を含む場合の有機EL表示装置は、
 互いに対向して配置された陽極及び陰極を有し、
 青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、
 前記青色有機EL素子は、前記陽極と前記陰極との間に配置された青色発光領域を有し、
 前記青色発光領域は、少なくとも1つの青色発光層を含み、
 前記緑色有機EL素子は、前記陽極と前記陰極との間に配置された緑色発光領域を有し、
 前記緑色発光領域は、少なくとも1つの緑色発光層を含み、
 前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光領域を有し、
 前記赤色発光領域は、少なくとも1つの赤色発光層を含み、
 前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられた第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層を有し、
 前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、
 前記第一の陽極側有機層と、前記第二の陽極側有機層と、前記第三の陽極側有機層とは、それぞれ異なる化合物を1つ以上含み、
 前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、
 前記第三の陽極側有機層は、第三の正孔輸送帯域材料を含有し、
 前記第三の正孔輸送帯域材料の正孔移動度μh(cHT3)は、1.0×10-5cm/Vsよりも大きく、前記第三の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT3)は、-5.6eV以下である。
 例えば、第一実施形態の第四の態様に係る有機EL素子を含む場合の有機EL表示装置は、
 互いに対向して配置された陽極及び陰極を有し、
 青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、
 前記青色有機EL素子は、前記陽極と前記陰極との間に配置された青色発光領域を有し、
 前記青色発光領域は、少なくとも1つの青色発光層を含み、
 前記緑色有機EL素子は、前記陽極と前記陰極との間に配置された緑色発光領域を有し、
 前記緑色発光領域は、少なくとも1つの緑色発光層を含み、
 前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光領域を有し、
 前記赤色発光領域は、少なくとも1つの赤色発光層を含み、
 前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられた第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層を有し、
 前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、
 前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、
 前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が100nm以上である。
 例えば、第一実施形態の第五の態様に係る有機EL素子を含む場合の有機EL表示装置は、
 互いに対向して配置された陽極及び陰極を有し、
 青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、
 前記青色有機EL素子は、前記陽極と前記陰極との間に配置された青色発光領域を有し、
 前記青色発光領域は、少なくとも1つの青色発光層を含み、
 前記緑色有機EL素子は、前記陽極と前記陰極との間に配置された緑色発光領域を有し、
 前記緑色発光領域は、少なくとも1つの緑色発光層を含み、
 前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光領域を有し、
 前記赤色発光領域は、少なくとも1つの赤色発光層を含み、
 前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられた第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層を有し、
 前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、
 前記第三の陽極側有機層は、前記第二の陽極側有機層が含有する化合物を含有せず、
 前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が、30nm以上であり、
 前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の比は、前記数式(数A4)の関係を満たし、
 前記第三の陽極側有機層は、第三の正孔輸送帯域材料を含有し、前記第三の正孔輸送帯域材料の一重項エネルギーが、3.12eVよりも大きい。
 本実施形態の有機EL表示装置は、これらの態様に限定されない。
 本実施形態の各態様の有機EL表示装置の青色有機EL素子が含み得る要素は、第一実施形態において説明した有機EL素子が含み得る要素と同様である。
 本実施形態の有機EL表示装置の青色画素が、第一実施形態のいずれかの態様に係る有機EL素子を青色有機EL素子として含んでいるため、青色画素の青色有機EL素子の発光効率が向上する。その結果、有機EL表示装置の性能が向上する。
 また、青色有機EL素子の発光領域が、第一実施形態と同様に、前記数式(数1)の関係を満たす第一の発光層及び第二の発光層を有することにより、発光領域の発光層が単層である場合と比べて、青色画素の青色有機EL素子の発光効率が向上する。
 また、青色有機EL素子の発光領域と第三の陽極側有機層との間に、第一実施形態と同様、第四の陽極側有機層が配置されていることにより、青色画素の青色有機EL素子が長寿命化する。
 本明細書において、複数の素子に亘って共通して設けられている層を共通層と称する場合がある。本明細書において、複数の素子に亘って共通して設けられていない層を非共通層と称する場合がある。
 また、本明細書においては、複数の素子に亘って共通して設けられている帯域を共通帯域と称する場合がある。青色有機EL素子の青色発光領域、緑色有機EL素子の緑色発光層及び赤色有機EL素子の赤色発光層のそれぞれと、陽極との間において、青色有機EL素子、緑色有機EL素子及び赤色有機EL素子に亘って共通して設けられている正孔輸送帯域は、共通帯域である。
 なお、本明細書において、「画素」、「発光層」、「有機層」又は「材料」に付された「青色」、「緑色」又は「赤色」は、それぞれ、「画素」、「発光層」、「有機層」又は「材料」の各要素を他の要素と区別するために付されており、「青色」、「緑色」又は「赤色」は、「画素」、「発光層」、「有機層」又は「材料」が発する光の色を示す場合があるが、各要素の外観を「青色」、「緑色」又は「赤色」に特定するために付されているものではない。
 第二実施形態に係る有機EL表示装置の一例の構成について図5を参照して説明する。
 図5には、一実施形態に係る有機EL表示装置100Aが記載されている。
 有機EL表示装置100Aは、基板2Aによって支持された電極及び有機層を有する。
 有機EL表示装置100Aは、互いに対向して配置された陽極3及び陰極4を有する。
 有機EL表示装置100Aは、青色画素としての青色有機EL素子10B、緑色画素としての緑色有機EL素子10G及び赤色画素としての赤色有機EL素子10Rを有する。
 なお、図5は、有機EL表示装置100Aの概略図であって、有機EL表示装置100Aのサイズや各層の厚み等を限定するものではない。例えば、図5において緑色発光層53及び赤色発光層54は、それぞれ同じ厚みで表現されているが、実際の有機EL表示装置においてこれらの層の厚みが同じであることを限定するものではなく、図6~図8に示す有機EL表示装置ついても同様である。
 有機EL表示装置100Aの青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rにおいては、陽極3と、有機EL素子10B,10G,10Rの各発光領域との間に、共通帯域としての正孔輸送帯域が配置されている。
 有機EL表示装置100Aの正孔輸送帯域においては、陽極3側から順に、第一の陽極側有機層61A、第二の陽極側有機層62A及び第三の陽極側有機層63Aが、この順番で積層されている。有機EL表示装置100Aの正孔輸送帯域は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して設けられている。
 有機EL表示装置100Aの有機EL素子10B,10G,10Rの各発光領域と陰極との間に、共通層としての電子輸送層8、及び電子注入層9が、この順番で積層されている。
 有機EL表示装置100Aの青色有機EL素子10Bの青色発光領域5は、第一実施形態の発光領域5と同様である。青色発光領域5は、青色発光層50Bを有する。青色発光層50Bは、第一実施形態の発光層50と対応する層である。
 有機EL表示装置100Aの緑色有機EL素子10Gの緑色発光領域は、緑色発光層53を有する。緑色有機EL素子10Gにおいて、緑色発光層53と第三の陽極側有機層63Aとの間に、非共通層である緑色有機層531が配置されている。
 有機EL表示装置100Aの赤色有機EL素子10Rの赤色発光領域は、赤色発光層54を有する。赤色有機EL素子10Rにおいて、赤色発光層54と第三の陽極側有機層63Aとの間に、非共通層である赤色有機層541が配置されている。
 有機EL表示装置100Aの陽極3は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれの陽極によって構成される。陽極3は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれに独立して設けられている。そのため、有機EL表示装置100Aは、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rを個別に駆動させることが可能である。有機EL素子10B,10G,10Rのそれぞれの陽極は、図示されない絶縁材などで互いに絶縁されている。有機EL表示装置100Aの陰極4は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれの陰極によって構成される。陰極4は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに共通して設けられている。
 一実施形態においては、画素としての青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rが基板2Aの上に並列に配置されている。
 図6に、第二実施形態に係る有機EL表示装置の別の一例の概略構成を示す。
 図6に示す有機EL表示装置100Bは、青色画素としての青色有機EL素子11B以外、図5に示す有機EL表示装置100Aと同様の構成であるため、有機EL表示装置100Aと異なる点について説明する。
 青色有機EL素子11Bは、青色発光層50Bと第三の陽極側有機層63Aとの間に、非共通層としての第四の陽極側有機層64Aを有する。図6の場合、第四の陽極側有機層64Aが青色発光層50B及び第三の陽極側有機層63Aと直接接している。第四の陽極側有機層64Aは、電子障壁層であることが好ましい。
 図7に、第二実施形態に係る有機EL表示装置の別の一例の概略構成を示す。
 図7に示す有機EL表示装置100Cは、青色画素としての青色有機EL素子12B以外、図5に示す有機EL表示装置100Aと同様の構成であるため、有機EL表示装置100Aと異なる点について説明する。
 青色有機EL素子12Bの青色発光領域5Bは、第一実施形態の発光領域5Bと同様である。青色発光領域5Bは、第一の発光層51及び第二の発光層52を有し、第一の発光層51及び第二の発光層52がこの順番で積層される。
 図8に、第二実施形態に係る有機EL表示装置の別の一例の概略構成を示す。
 図8に示す有機EL表示装置100Dは、青色画素としての青色有機EL素子13B以外、図5に示す有機EL表示装置100Aと同様の構成であるため、有機EL表示装置100Aと異なる点について説明する。
 青色有機EL素子13Bは、青色発光領域5Bの第一の発光層51と第三の陽極側有機層63Aとの間に、非共通層としての第四の陽極側有機層64Aを有する。図8の場合、第四の陽極側有機層64Aが第一の発光層51及び第三の陽極側有機層63Aと直接接している。第四の陽極側有機層64Aは、電子障壁層であることが好ましい。
 本発明は、図5~図8に示す有機EL表示装置の構成に限定されない。
 例えば、本実施形態の有機EL表示装置の一態様において、緑色発光層53と第三の陽極側有機層63Aとの間に緑色有機層531が配置されておらず、緑色発光層53と第三の陽極側有機層63Aとが直接接する。
 例えば、本実施形態の有機EL表示装置の一態様において、赤色発光層54と第三の陽極側有機層63Aとの間に赤色有機層541が配置されておらず、赤色発光層54と第三の陽極側有機層63Aとが直接接する。
 例えば、本実施形態の有機EL表示装置の一態様において、青色有機EL素子、緑色有機EL素子及び赤色有機EL素子は、それぞれ独立に、図5~図8に示す層とは異なる層をさらに有していてもよい。例えば、発光領域と電子輸送層との間に共通層としての正孔障壁層が配置されていてもよい。
 例えば、本実施形態の有機EL表示装置の一態様において、青色有機EL素子、緑色有機EL素子及び赤色有機EL素子は、それぞれ独立に、蛍光発光する素子であっても、燐光発光する素子であってもよい。青色有機EL素子は、蛍光発光する素子であることが好ましい。
 本実施形態の有機EL表示装置の一態様において、共通層として第三の陽極側有機層は、第三の正孔輸送帯域材料を含有し、第三の正孔輸送帯域材料の正孔移動度μh(cHT3)は、1.0×10-5cm/Vsよりも大きく、第三の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT3)は、-5.6eV以下である。共通層としての第三の陽極側有機層が、このような正孔移動度及びHOMOである第三の正孔輸送帯域材料を含有することで、青色画素、緑色画素及び赤色画素の発光領域への正孔注入性が高くなる。また、有機EL表示装置が、第四の陽極側有機層、緑色有機層531及び赤色有機層541を有する場合、これらの層への正孔注入性が高くなる。
 本実施形態の有機EL表示装置の一態様において、共通層としての第一の陽極側有機層は、第一実施形態の第一の正孔輸送帯域材料を含有する。
 本実施形態の有機EL表示装置の一態様において、共通層としての第二の陽極側有機層は、第一実施形態の第二の正孔輸送帯域材料を含有する。
 本実施形態の有機EL表示装置の一態様において、非共通層としての第四の陽極側有機層は、第一実施形態の第四の正孔輸送帯域材料を含有する。
(有機EL素子の発光波長)
 本実施形態に係る有機EL表示装置の青色有機EL素子は、素子駆動時に最大ピーク波長が500nm以下の光を放射することが好ましい。
 本実施形態に係る有機EL表示装置の青色有機EL素子は、素子駆動時に最大ピーク波長が、430nm以上480nm以下の光を放射することがより好ましい。
 素子駆動時に有機EL素子が放射する光の最大ピーク波長の測定は、以下のようにして行う。電流密度が10mA/cmとなるように有機EL素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ社製)で計測する。得られた分光放射輝度スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を測定し、これを最大ピーク波長(単位:nm)とする。
 本実施形態の有機EL表示装置の一態様において、緑色発光層は、ホスト材料を含有する。緑色発光層は、例えば、ホスト材料を緑色発光層の全質量の50質量%以上、含有する。
 本実施形態の有機EL表示装置の一態様において、緑色有機EL素子の緑色発光層は、最大ピーク波長が500nm以上、550nm以下の発光を示す緑色発光性化合物を含む。緑色発光性化合物は、例えば、最大ピーク波長が500nm以上、550nm以下の蛍光発光を示す蛍光発光性化合物である。また、緑色発光性化合物は、例えば、最大ピーク波長が500nm以上、550nm以下の燐光発光を示す燐光発光性化合物である。本明細書において、緑色の発光とは、発光スペクトルの最大ピーク波長が500nm以上、550nm以下の範囲内である発光をいう。
 蛍光性化合物は、一重項励起状態から発光可能な化合物であり、燐光発光性の化合物は、三重項励起状態から発光可能な化合物である。
 緑色発光層に用いることができる緑色で蛍光発光する化合物として、例えば、芳香族アミン誘導体等を使用できる。緑色発光層に用いることができる緑色で燐光発光する化合物として、例えば、イリジウム錯体等が使用される。
(燐光発光最大ピーク波長(PH-peak))
 燐光発光性化合物の最大ピーク波長(燐光発光最大ピーク波長)は、次の方法により測定することができる。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、10-5mol/L以上10-4mol/L以下となるように溶解して溶液を作製し、このEPA溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの極大値のうち、最も短波長側の極大値を燐光発光最大ピーク波長とする。燐光の測定には、分光蛍光光度計F-7000(株式会社日立ハイテクサイエンス製)を用いることができる。なお、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。なお、本明細書において、燐光発光の最大ピーク波長を燐光発光最大ピーク波長(PH-peak)と称する場合がある。
 本実施形態の有機EL表示装置の一態様において、緑色有機EL素子は、緑色発光層と、第三の陽極側有機層との間に、緑色有機層を備える。緑色有機層は、正孔輸送帯域と、直接、接していてもよい。また、緑色有機層は、緑色発光層と、直接、接していてもよい。緑色有機EL素子が緑色有機層を有することにより、緑色有機EL素子における発光位置を調整し易い。
 緑色有機層は、緑色有機材料を含有する。緑色有機材料としては、第一実施形態に係る正孔輸送帯域材料を用いることができる。緑色有機材料は、正孔輸送帯域が含有する正孔輸送帯域材料と同じ化合物であってもよいし、異なる化合物でもよいが、緑色有機材料と正孔輸送帯域材料とは、互いに異なることが好ましい。緑色有機材料の正孔移動度は、正孔輸送帯域が含有する正孔輸送帯域材料の正孔移動度よりも大きいことが好ましい。緑色有機材料は、緑色発光層が含有するホスト材料及び緑色発光性化合物とは異なる化合物である。
 本実施形態の有機EL表示装置の一態様において、赤色発光層は、ホスト材料を含有する。赤色発光層は、例えば、ホスト材料を赤色発光層の全質量の50質量%以上、含有する。
 本実施形態の有機EL表示装置の一態様において、赤色有機EL素子の赤色発光層は、最大ピーク波長が600nm以上、640nm以下の発光を示す赤色発光性化合物を含む。赤色発光性化合物は、例えば、最大ピーク波長が600nm以上、640nm以下の蛍光発光を示す蛍光発光性化合物である。また、赤色発光性化合物は、例えば、最大ピーク波長が600nm以上、640nm以下の燐光発光を示す燐光発光性化合物である。本明細書において、赤色の発光とは、発光スペクトルの最大ピーク波長が600nm以上、640nm以下の範囲内である発光をいう。
 赤色発光層に用いることができる赤色で蛍光発光する化合物として、例えば、テトラセン誘導体及びジアミン誘導体等を使用できる。赤色発光層に用いることができる赤色で燐光発光する化合物として、例えば、イリジウム錯体、白金錯体、テルビウム錯体及びユーロピウム錯体等の金属錯体を使用できる。
 本実施形態の有機EL表示装置の一態様において、赤色有機EL素子は、赤色発光層と、第三の陽極側有機層との間に、赤色有機層を備えることが好ましい。赤色有機層は、正孔輸送帯域と、直接、接していてもよい。また、赤色有機層は、赤色発光層と、直接、接していてもよい。実施形態の有機EL表示装置の一態様において、赤色有機EL素子が赤色有機層を有することにより、赤色有機EL素子における発光位置を調整し易い。
 赤色有機層は、赤色有機材料を含有する。赤色有機材料としては、第一実施形態に係る正孔輸送帯域材料を用いることができる。赤色有機材料は、正孔輸送帯域が含有する正孔輸送帯域材料と同じ化合物であってもよいし、異なる化合物でもよいが、赤色有機材料と正孔輸送帯域材料とは、互いに異なることが好ましい。赤色有機材料の正孔移動度は、正孔輸送帯域が含有する正孔輸送帯域材料の正孔移動度よりも大きいことが好ましい。赤色有機材料は、赤色発光層が含有するホスト材料及び赤色発光性化合物とは異なる化合物である。
 赤色有機EL素子の赤色有機層が含有する赤色有機材料と、緑色有機EL素子の緑色有機層が含有する緑色有機材料とが、同じ化合物であってもよいし、異なる化合物でもよいが、赤色有機材料と緑色有機材料とが、互いに異なることが好ましい。赤色有機材料の正孔移動度は、緑色有機材料の正孔移動度よりも大きいことが好ましい。
 本実施形態の有機EL表示装置の一態様において、赤色有機層の膜厚は、緑色有機層の膜厚よりも厚いことが好ましい。
 本実施形態の有機EL表示装置の一態様において、緑色発光層が含有するホスト材料及び赤色発光層が含有するホスト材料は、例えば、発光性の高い物質(ドーパント材料)を発光層中に分散させさせるための化合物である。緑色発光層が含有するホスト材料及び赤色発光層が含有するホスト材料としては、例えば、発光性の高い物質よりも最低空軌道準位(LUMO準位)が高く、最高被占有軌道準位(HOMO準位)が低い物質を用いることができる。
 緑色発光層が含有するホスト材料及び赤色発光層が含有するホスト材料としては、例えば、それぞれ独立に、下記(1)~(4)の化合物を使用できる。
 (1)アルミニウム錯体、ベリリウム錯体、若しくは亜鉛錯体等の金属錯体、
 (2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、
 (3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、
 (4)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物
 本実施形態の有機EL表示装置について、図5を参照してさらに説明する。第一実施形態に係る有機EL素子と共通する構成については記載を簡略化又は省略する。
(陽極)
 一実施形態において、陽極3は、陰極4に対して対向して配置されている。
 一実施形態において、陽極3は、通常、非共通層である。一実施形態において、例えば、陽極3が非共通層である場合、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれにおける陽極は、互いに物理的に切り分けられた状態であり、例えば、図示されない絶縁材などで互いに絶縁されている。
(陰極)
 一実施形態において、陰極4は、陽極3に対して対向して配置されている。
 一実施形態において、陰極4は、共通層であっても、非共通層であってもよい。
 一実施形態において、陰極4は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して設けられた共通層であることが好ましい。
 一実施形態において、陰極4は、電子注入層9と直接接している。
 一実施形態において、陰極4が共通層である場合、陰極4の膜厚は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って同じである。陰極4が共通層である場合、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれの陰極4を、マスク等を入れ替えずに作製できる。その結果、有機EL表示装置100Aの生産性が向上する。
(電子輸送層)
 一実施形態において、電子輸送層8は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して設けられた、共通層である。
 一実施形態において、電子輸送層8は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの各発光層と、電子注入層9との間に配置されている。
 一実施形態において、電子輸送層8は、その陽極3側で、発光領域5(青色発光層50B)、緑色発光層53及び赤色発光層54と、直接、接している。
 電子輸送層8は、その陰極4側で、電子注入層9と直接接している。
 一実施形態において、電子輸送層8は、共通層であり、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って同じ膜厚である。電子輸送層8が共通層であるため、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれの電子輸送層8を、マスク等を入れ替えずに作製できる。その結果、有機EL表示装置100Aの生産性が向上する。
(電子注入層)
 一実施形態において、電子注入層9は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して設けられた共通層である。
 一実施形態において、電子注入層9は、電子輸送層8と陰極4との間に配置されている。
 一実施形態において、電子注入層9は、電子輸送層8に直接接している。
 一実施形態において、電子注入層9は、共通層であり、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って同じ膜厚である。電子注入層9が共通層であるため、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれの電子注入層9を、マスク等を入れ替えずに作製できる。その結果、有機EL表示装置100Aの生産性が向上する。
 一実施形態において、発光層、第一の発光層、第二の発光層、第四の陽極側有機層、緑色発光層、赤色発光層、緑色有機層及び赤色有機層以外の層は、青色有機EL素子、緑色有機EL素子及び赤色有機EL素子に亘って共通して設けられていることが好ましい。有機EL表示装置における非共通層の数を少なくすることで、製造効率が向上する。
<有機EL表示装置の製造方法>
 本実施形態の有機EL表示装置について、図5に示す有機EL表示装置100Aの製造方法を例に挙げて説明する。
 まず、基板2A上に陽極3を成膜する。
 次に、共通層としての陽極側有機層(第一の陽極側有機層61A、第二の陽極側有機層62A及び第三の陽極側有機層63A)を陽極3の上に亘って順に成膜し、共通帯域としての正孔輸送帯域を形成する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの正孔輸送帯域中の各有機層は、それぞれ、同じ膜厚で成膜される。
 次に、第三の陽極側有機層63Aの上であって、青色有機EL素子10Bの陽極3に対応する領域に、所定の成膜用マスク(青色有機EL素子用マスク)を用いて青色発光層50Bを成膜する。
 次に、第三の陽極側有機層63Aの上であって、緑色有機EL素子10Gの陽極3に対応する領域に、所定の成膜用マスク(緑色有機EL素子用マスク)を用いて、緑色有機層531を成膜する。緑色有機層531の成膜に続けて、緑色有機層531の上に緑色発光層53を成膜する。
 次に、第三の陽極側有機層63Aの上であって、赤色有機EL素子10Rの陽極3に対応する領域に、所定の成膜用マスク(赤色有機EL素子用マスク)を用いて、赤色有機層541を成膜する。赤色有機層541の成膜に続けて、赤色有機層541の上に赤色発光層54を成膜する。
 発光層50、緑色発光層53及び赤色発光層54は、互いに異なる材料で成膜される。
 なお、第三の陽極側有機層63Aの成膜の次に、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの非共通層を成膜する順番は、特に限定されない。
 例えば、第三の陽極側有機層63Aを成膜した後、緑色有機EL素子10Gの緑色有機層531及び緑色発光層53を成膜し、その後、赤色有機EL素子10Rの赤色有機層541及び赤色発光層54を成膜し、その後、青色有機EL素子10Bの青色発光層50Bを成膜する、という順番でもよい。
 また、例えば、第三の陽極側有機層63Aを成膜した後、赤色有機EL素子10Rの赤色有機層541及び赤色発光層54を成膜し、その後、緑色有機EL素子10Gの緑色有機層531及び緑色発光層53を成膜し、その後、青色有機EL素子10Bの青色発光層50Bを成膜する、という順番でもよい。
 次に、共通層としての電子輸送層8を、青色発光層50B、緑色発光層53及び赤色発光層54の上に亘って成膜する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの電子輸送層8は、同じ材料、かつ、同じ膜厚で成膜する。
 次に、共通層としての電子注入層9を電子輸送層8の上に成膜する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの電子注入層9は、同じ材料、かつ、同じ膜厚で成膜する。
 次に、電子注入層9の上に共通層としての陰極4を成膜する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの陰極4は、同じ材料、かつ、同じ膜厚で成膜する。
 以上のようにして、図5に示す有機EL表示装置100Aを製造する。
 図6に示す有機EL表示装置100Bは、第四の陽極側有機層64Aを有する点で、図5に示す有機EL表示装置100Aと異なる。図6に示す有機EL表示装置100Bの製造においては、第三の陽極側有機層63Aの上であって、青色有機EL素子11Bの陽極3に対応する領域に、所定の成膜用マスク(青色有機EL素子用マスク)を用いて、第四の陽極側有機層64Aを成膜する。次いで、第四の陽極側有機層64Aの上に青色発光層50Bを成膜する。有機EL表示装置100Bのその他の製造工程は、有機EL表示装置100Aと同様である。
 図7に示す有機EL表示装置100Cは、発光領域5Bが第一の発光層51及び第二の発光層52を有する点で、図5に示す有機EL表示装置100Aと異なる。図7に示す有機EL表示装置100Cの製造においては、第三の陽極側有機層63Aの上であって、青色有機EL素子12Bの陽極3に対応する領域に、所定の成膜用マスク(青色有機EL素子用マスク)を用いて、第一の発光層51を成膜する。次いで、第一の発光層51の上に第二の発光層52を成膜する。その後、共通層としての電子輸送層8を、第二の発光層52、緑色発光層53及び赤色発光層54の上に亘って成膜する。有機EL表示装置100Cのその他の製造工程は、有機EL表示装置100Aと同様である。
 図8に示す有機EL表示装置100Dは、第四の陽極側有機層64Aを有する点で、図7に示す有機EL表示装置100Cと異なる。図8に示す有機EL表示装置100Dの製造においては、第三の陽極側有機層63Aの上であって、青色有機EL素子13Bの陽極3に対応する領域に、所定の成膜用マスク(青色有機EL素子用マスク)を用いて、第四の陽極側有機層64Aを成膜する。次いで、第四の陽極側有機層64Aの上に第一の発光層51を成膜する。その後、第一の発光層51の上に第二の発光層52を成膜する。有機EL表示装置100Dのその他の製造工程は、有機EL表示装置100Cと同様である。
 本実施形態の有機EL表示装置は、第一実施形態のいずれかの態様に係る有機EL素子を青色有機EL素子、緑色有機EL素子及び赤色有機EL素子として含んでいてもよい。この場合の有機EL表示装置は、青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、前記青色画素、前記緑色画素及び前記赤色画素は、それぞれ、第一実施形態のいずれかの態様に係る有機EL素子を前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子として含み、前記青色有機EL素子における前記発光領域は、前記陽極と前記陰極との間に配置された青色発光領域であり、前記緑色有機EL素子における前記発光領域は、前記陽極と前記陰極との間に配置された緑色発光領域であり、前記赤色有機EL素子における前記発光領域は、前記陽極と前記陰極との間に配置された赤色発光領域であり、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられている。この場合の有機EL表示装置の青色画素、緑色画素及び赤色画素は、第一実施形態の有機EL素子を含んでいるため、青色画素、緑色画素及び赤色画素の有機EL素子の光取り出し効率が向上すると共に有機EL表示装置の性能が向上する。
〔第三実施形態〕
(有機エレクトロルミネッセンス素子)
 第三実施形態に係る有機エレクトロルミネッセンス素子について説明する。第三実施形態の説明において第一実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化するが、いずれも第三実施形態に係る有機EL素子に対して適用される。また、第三実施形態では、特に言及されない材料や化合物については、第一実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
 第三実施形態に係る有機EL素子は、陰極と、陽極と、前記陰極及び前記陽極の間に配置された発光領域と、前記陽極と前記発光領域の間に配置された正孔輸送帯域と、を含み、前記発光領域は、少なくとも1つの発光層を含み、前記正孔輸送帯域は、少なくとも、第二の陽極側有機層と、第三の陽極側有機層と、を有し、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記陽極及び前記発光領域の間において、前記陽極側から、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、前記第二の陽極側有機層は、前記一般式(C1)で表される化合物及び下記一般式(C3)で表される化合物からなる群から選択される少なくとも一種の化合物を含有し、前記第三の陽極側有機層は、前記一般式(C1)で表される化合物を含有し、ただし、前記第二の陽極側有機層は、前記第三の陽極側有機層が含有する化合物とは、異なる化合物を少なくとも1種以上含有し、前記第二の陽極側有機層に含まれる構成材料の屈折率NMと、前記第三の陽極側有機層に含まれる構成材料の屈折率NMとの差NM-NMが、下記数式(数N1)の関係を満たし、前記第三の陽極側有機層の前記陽極側の界面から、前記発光領域中の最も陽極側に配置された発光層の前記陽極側の界面までの距離が20nm以上である。
 NM-NM≧0.05 …(数N1)
 第三実施形態に係る有機EL素子は、次の特徴を有する。
 第三実施形態に係る有機EL素子は、第一の陽極側有機層を有していなくてもよい。ただし、第三実施形態に係る有機EL素子の正孔輸送帯域は、第一の陽極側有機層を有していてもよく、この場合、第一の陽極側有機層は、陽極と第二の陽極側有機層との間に配置されている。
 本実施形態の有機EL素子の一態様においても、第一実施形態と同様、第一の陽極側有機層は、互いに異なる第一の有機材料及び第二の有機材料を含有することも好ましい。第一の陽極側有機層中の第二の有機材料の含有量が50質量%未満であることが好ましい。第一の陽極側有機層が第一の有機材料及び第二の有機材料を含有することで、陽極から第一の陽極側有機層へのホール注入性が良好になる。
 第三実施形態に係る有機EL素子において、第二の陽極側有機層及び第三の陽極側有機層がそれぞれ所定の化合物を含有し、ただし、第二の陽極側有機層は、第三の陽極側有機層が含有する化合物とは、異なる化合物を少なくとも1種以上含有する。例えば、第二の陽極側有機層が化合物AA及び化合物ABの2種の化合物を含有し、第三の陽極側有機層が化合物AAの1種の化合物を含有する場合、化合物ABは、第三の陽極側有機層が含有する化合物AAとは異なるので、「第二の陽極側有機層は、第三の陽極側有機層が含有する化合物とは、異なる化合物を少なくとも1種以上含有する」という条件を満たす。
 第三実施形態に係る有機EL素子において、第二の陽極側有機層に含まれる構成材料の屈折率NMと、第三の陽極側有機層に含まれる構成材料の屈折率NMとの差NM-NMが、前記数式(数N1)の関係を満たす。
 第三実施形態に係る有機EL素子において、第二の陽極側有機層に含まれる構成材料の屈折率NMと、第三の陽極側有機層に含まれる構成材料の屈折率NMとの差NM-NMが、下記数式(数N2)又は(数N3)の関係を満たすことも好ましい。
 NM-NM≧0.10 …(数N2)
 NM-NM≧0.075 …(数N3)
 第三実施形態に係る有機EL素子において、第三の陽極側有機層の陽極側の界面から、発光領域中の最も陽極側に配置された発光層の陽極側の界面までの距離が20nm以上である。
 第三実施形態に係る有機EL素子の一態様において、第三の陽極側有機層の膜厚が、15nm以上であるか、又は20nm以上である。
 本実施形態の有機EL素子の一態様において、第三の陽極側有機層の膜厚は、80nm以下であるか、75nm以下であるか、又は60nm以下である。
 第三実施形態に係る有機EL素子において、光取り出し効率の向上の観点から、第三の陽極側有機層の膜厚は、15nm以上75nm以下であることが好ましく、20nm以上60nm以下であることがより好ましい。
 第三実施形態に係る有機EL素子の一態様において、第一の陽極側有機層の膜厚、第二の陽極側有機層の膜厚及び第三の陽極側有機層の膜厚の合計が150nm以下である。
 第三実施形態に係る有機EL素子の一態様において、有機EL素子は、第四の陽極側有機層をさらに有し、第四の陽極側有機層は、第三の陽極側有機層と発光領域との間に配置されている。
 第三実施形態に係る有機EL素子の一態様において、第一の陽極側有機層の膜厚、第二の陽極側有機層の膜厚、第三の陽極側有機層の膜厚及び第四の陽極側有機層の膜厚の合計が150nm以下である。
 その他の点は、第一実施形態に係る有機EL素子と同様であるため、第一実施形態において説明した有機EL素子の構成は、いずれも第三実施形態に係る有機EL素子に対して適用される。
 第三実施形態に係る有機EL素子における一般式(C1)で表される化合物は、第一実施形態において説明した一般式(C1)で表される化合物と同義である。
 第三実施形態に係る有機EL素子における一般式(C3)で表される化合物は、次の通りである。
Figure JPOXMLDOC01-appb-C000292
(前記一般式(C3)において、
 LC1、LC2、LC3及びLC4は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 n2は、1、2、3又は4であり、
 n2が1の場合、LC5は、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 n2が2、3又は4の場合、複数のLC5は、互いに同一であるか、又は異なり、
 n2が2、3又は4の場合、複数のLC5は、
  互いに結合して置換もしくは無置換の単環を形成するか、
  互いに結合して置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないLC5は、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar131、Ar132、Ar133及びAr134は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  -Si(RC1)(RC2)(RC3)であり、
 RC1、RC2及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 RC1が複数存在する場合、複数のRC1は、互いに同一であるか、又は異なり、
 RC2が複数存在する場合、複数のRC2は、互いに同一であるか、又は異なり、
 RC3が複数存在する場合、複数のRC3は、互いに同一であるか、又は異なる。)
(前記一般式(C3)で表される化合物において、「置換もしくは無置換の」という場合における置換基は、-N(RC6)(RC7)で表される基ではなく、RC6及びRC7は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。)
 前記一般式(C3)で表される化合物において、下記一般式(C3-1)で表される第一のアミノ基と、下記一般式(C3-2)で表される第二のアミノ基とが、同じ基であっても、異なる基でもよいが、同じ基であることが好ましい。
Figure JPOXMLDOC01-appb-C000293
(前記一般式(C3-1)及び(C3-2)において、*は、それぞれ、LC5との結合位置である。)
 第三実施形態に係る有機EL素子の一態様において、第二の陽極側有機層は、モノアミン化合物又はジアミン化合物を含有し、第三の陽極側有機層は、モノアミン化合物を含有し、ジアミン化合物を含有しない。
 第三実施形態に係る有機EL素子の一態様において、第二の陽極側有機層が含有する化合物(第二の正孔輸送帯域材料)は、第一実施形態と同様である。
 第三実施形態に係る有機EL素子の一態様において、第三の陽極側有機層が含有する化合物(第三の正孔輸送帯域材料)は、第一実施形態と同様である。
 第三実施形態に係る有機EL素子においても、第二の陽極側有機層と第三の陽極側有機層とが前記数式(数N1)の関係を満たすことにより、光取り出し効率が向上する。さらに、第三の陽極側有機層の陽極側の界面から、発光領域中の最も陽極側に配置された発光層の陽極側の界面までの距離が20nm以上であることにより、光取り出し効率が向上し易くなる。
〔第四実施形態〕
 第四実施形態に係る有機EL表示装置について説明する。第四実施形態の説明において第一、第二及び第三実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化するが、いずれも第四実施形態に係る有機EL表示装置に対して適用される。また、第四実施形態では、特に言及されない材料や化合物については、第一、第二及び第三実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
(有機エレクトロルミネッセンス表示装置)
 本実施形態の有機EL表示装置は、青色画素に含まれる青色有機EL素子が第三実施形態の有機EL素子である点で第二実施形態に係る有機EL表示装置と相違し、その他の点では第二実施形態に係る有機EL表示装置と同様である。そのため、第二実施形態において説明した有機EL表示装置の構成は、いずれも本実施形態に係る有機EL表示装置に対して適用し得る。
 なお、青色有機EL素子が第一の陽極側有機層を有さず、第二の陽極側有機層及び第三の陽極側有機層を有する場合、第二の陽極側有機層及び第三の陽極側有機層は、青色有機EL素子の前記発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられている。
 本実施形態の有機EL表示装置の青色画素が、第三実施形態の有機EL素子を青色有機EL素子として含んでいるため、青色画素の青色有機EL素子の光取り出し効率が向上する。その結果、有機EL表示装置の性能が向上する。
 本実施形態の有機EL表示装置は、第三実施形態のいずれかの態様に係る有機EL素子を青色有機EL素子、緑色有機EL素子及び赤色有機EL素子として含んでいてもよい。この場合の有機EL表示装置は、互いに対向して配置された陽極及び陰極を有し、青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、前記青色画素、前記緑色画素及び前記赤色画素は、それぞれ、第三実施形態のいずれかの態様に係る有機EL素子を前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子として含み、前記青色有機EL素子における前記発光領域は、前記陽極と前記陰極との間に配置された青色発光領域であり、前記緑色有機EL素子における前記発光領域は、前記陽極と前記陰極との間に配置された緑色発光領域であり、前記赤色有機EL素子における前記発光領域は、前記陽極と前記陰極との間に配置された赤色発光領域であり、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられている。この場合の有機EL表示装置の青色画素、緑色画素及び赤色画素は、第三実施形態の有機EL素子を含んでいるため、青色画素、緑色画素及び赤色画素の有機EL素子の光取り出し効率が向上すると共に有機EL表示装置の性能が向上する。
〔第五実施形態〕
(タンデム型有機エレクトロルミネッセンス素子)
 本実施形態の有機EL素子は、複数の発光領域が電荷発生層(中間層等と称する場合もある。)を介して積層された、いわゆるタンデム型の有機EL素子である。タンデム型の有機EL素子としては、例えば、次のような有機EL素子が挙げられる。
 本実施形態のタンデム型有機EL素子は、2つ以上の発光ユニットと、前記2つ以上の発光ユニット同士の間に配置された1つ以上の電荷発生層と、を有し、2つ以上の発光ユニットのうちの少なくとも1つが、第一の正孔輸送帯域と第一の発光領域とを含む第一の発光ユニットである。例えば、本実施形態において、第一の発光ユニットが含む第一の正孔輸送帯域は、第一実施形態又は第三実施形態において説明した正孔輸送帯域であり、第一の発光領域は、第一実施形態又は第三実施形態において説明した発光領域である。
 タンデム型有機EL素子が有する複数の発光ユニットは、いずれも、発光領域よりも陽極側に2以上の陽極側有機層を有することが好ましい。各発光ユニットが2以上の陽極側有機層を有する場合、各陽極側有機層の構成材料の屈折率は、互いに異なることが好ましく、より屈折率の高い構成材料を含有する陽極側有機層が、より屈折率の低い構成材料を含有する陽極側有機層に対して陽極側に配置されていることがより好ましい。各発光ユニットがこのような屈折率の関係の陽極側有機層を有する場合において、当該陽極側有機層の構成材料同士の屈折率の差が、0.05以上であるか、0.075以上であるか、又は0.10以上であることが好ましい。各発光ユニットが、陽極側に高屈折率の構成材料からなる有機層を有し、発光領域側に低屈折率の構成材料からなる有機層を有することにより、タンデム型有機EL素子の光取り出し効率が向上すると共にタンデム型有機EL素子の性能が向上する。
 タンデム型有機EL素子における電荷発生層は、電圧印加時において、正孔及び電子を発生する層を意味する。タンデム型有機EL素子が発光ユニット同士の間に複数の電荷発生層を有する場合、複数の電荷発生層をまとめて電荷発生ユニットと称する場合がある。
 本明細書において、電荷発生層又は電荷発生ユニットと、各発光ユニットの発光領域との間に配置された複数の有機層からなる領域についても、正孔輸送帯域と称する場合がある。
 本実施形態の一態様において、タンデム型有機EL素子は、発光ユニットとしての第一の発光ユニット及び第二の発光ユニット、並びに第一の発光ユニット及び第二の発光ユニットとの間に配置された第一の電荷発生層と、を有する。第二の発光ユニットは、第二の正孔輸送帯域及び第二の発光領域を含む。第一の正孔輸送帯域、第一の発光領域、第一の電荷発生層、第二の正孔輸送帯域及び第二の発光領域が、陽極側からこの順に配置されている。
 本実施形態の一態様において、タンデム型有機EL素子は、第三の発光ユニット及び第二の電荷発生層をさらに有し、第三の発光ユニットは、第二の発光ユニットと陰極との間に配置され、第二の電荷発生層は、第三の発光ユニットと第二の発光ユニットとの間に配置されている。第三の発光ユニットは、第三の正孔輸送帯域及び第三の発光領域を含む。第一の正孔輸送帯域、第一の発光領域、第一の電荷発生層、第二の正孔輸送帯域、第二の発光領域、第二の電荷発生層、第三の正孔輸送帯域及び第三の発光領域が、陽極側からこの順に配置されている。
 本実施形態のタンデム型の有機EL素子において、第二の発光領域及び第三の発光領域は、それぞれ独立に、少なくとも1つの発光層を含む。第二の発光領域及び第三の発光領域が含んでいる発光層は、それぞれ独立に、第一の発光領域が含んでいる発光層と同じでも異なっていてもよい。
 本実施形態のタンデム型の有機EL素子において、第二の正孔輸送帯域及び第三の正孔輸送帯域は、それぞれ独立に、少なくとも1つの有機層を含み、第二の正孔輸送帯域及び第三の正孔輸送帯域が含んでいる有機層は、それぞれ独立に、第一の正孔輸送帯域が含んでいる有機層のいずれかと同じでも異なっていてもよい。第二の正孔輸送帯域及び第三の正孔輸送帯域は、それぞれ独立に、2以上の陽極側有機層を有していてもよい。第二の正孔輸送帯域及び第三の正孔輸送帯域が有する2以上の陽極側有機層は、それぞれ独立に、第一の発光ユニットが有する第二の陽極側有機層及び第三の陽極側有機層であってもよいし、第一の発光ユニットが有する第二の陽極側有機層及び第三の陽極側有機層とは異なる陽極側有機層でもよい。
 本実施形態のタンデム型有機EL素子において、第二の正孔輸送帯域及び第三の正孔輸送帯域が有する3以上の陽極側有機層は、それぞれ独立に、第一の発光ユニットが有する、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層であってもよいし、第一の発光ユニットが有する第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層とは異なる陽極側有機層でもよい。
 第二の正孔輸送帯域及び第三の正孔輸送帯域において、第三の陽極側有機層は、第二の陽極側有機層よりも発光領域側に配置される。第二の正孔輸送帯域及び第三の正孔輸送帯域における第二の陽極側有機層の構成材料は、それぞれ、第一の発光ユニットにおける第二の陽極側有機層の構成材料と互いに同一であるか又は異なる。第二の正孔輸送帯域及び第三の正孔輸送帯域における第三の陽極側有機層の構成材料は、それぞれ、第一の発光ユニットにおける第三の陽極側有機層の構成材料と互いに同一であるか又は異なる。第二の正孔輸送帯域及び第三の正孔輸送帯域において、第二の陽極側有機層の構成材料の屈折率は、第三の陽極側有機層の構成材料の屈折率より大きいことが好ましい。第二の正孔輸送帯域及び第三の正孔輸送帯域において、第二の陽極側有機層に含まれる構成材料の屈折率NMと、第三の陽極側有機層に含まれる構成材料の屈折率NMとの差NM-NMが、前記数式(数N1)、(数N2)又は(数N3)の関係を満たすことが好ましい。
 第二の正孔輸送帯域及び第三の正孔輸送帯域において、第一の陽極側有機層は、第二の陽極側有機層と電荷発生層との間に配置される。第二の正孔輸送帯域及び第三の正孔輸送帯域における第一の陽極側有機層の構成材料は、それぞれ、第一の発光ユニットにおける第一の陽極側有機層の構成材料と互いに同一であるか又は異なる。
 本実施形態のタンデム型有機EL素子において、第一の電荷発生層及び第二の電荷発生層は、電圧印加時において、正孔及び電子を発生する層を意味する。例えば、第一の電荷発生層が複数層で構成される場合、第一の電荷発生層は、陽極側に配置されて第一の発光ユニットに対して電子を注入するN層と、陰極側に配置されて第二の発光ユニットに対して正孔を注入するP層とを有することが好ましい。例えば、第二の電荷発生層が複数層で構成される場合、第二の電荷発生層は、陽極側に配置されて第二の発光ユニットに対して電子を注入するN層と、陰極側に配置されて第三の発光ユニットに対して正孔を注入するP層とを有することが好ましい。第一の電荷発生層及び第二の電荷発生層に用いることのできる材料としては、例えば、タンデム型の有機EL素子の電荷発生層に用いることのできる公知の材料が挙げられる。
 本実施形態のタンデム型有機EL素子は、各発光ユニットの発光領域と、電荷発生層、電荷発生ユニット又は陰極との間に電子輸送帯域を有することが好ましい。電子輸送帯域は、例えば、電子輸送層、電子注入層及び正孔障壁層の少なくともいずれかの層を含むことが好ましい。
 複数の発光ユニットを有するタンデム型有機EL素子の構成としては、例えば、下記(TND1)~(TND4)のような素子構成が挙げられる。
 (TND1)陽極/第一の発光ユニット/第一の電荷発生層/第二の発光ユニット/陰極
 (TND2)陽極/第一の発光ユニット/第一の電荷発生ユニット/第二の発光ユニット/陰極
 (TND3)陽極/第一の発光ユニット/第一の電荷発生層/第二の発光ユニット/第二の電荷発生層/第三の発光ユニット/陰極
 (TND4)陽極/第一の発光ユニット/第一の電荷発生ユニット/第二の発光ユニット/第二の電荷発生ユニット/第三の発光ユニット/陰極
 本実施形態のタンデム型有機EL素子において、発光ユニット及び電荷発生層(又は電荷発生ユニット)の数は、ここに示した(TND1)~(TND4)の例に限定されない。
 本実施形態のタンデム型有機EL素子は、例えば、発光装置に用いられる。
〔第六実施形態〕
(電子機器)
 本実施形態に係る電子機器は、上述の実施形態のいずれかの有機EL素子又は上述の実施形態のいずれかの有機EL表示装置を搭載している。電子機器としては、例えば、表示装置及び発光装置等が挙げられる。表示装置としては、例えば、表示部品(例えば、有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明及び車両用灯具等が挙げられる。
 本実施形態の電子機器の一態様において、発光装置は、前記実施形態のタンデム型の有機EL素子を搭載している。本実施形態の電子機器の一態様において、発光装置は、前記実施形態のタンデム型の有機EL素子と、色変換層と、を有することが好ましい。発光装置は、カラーフィルタを有することが好ましい。色変換層は、タンデム型の有機EL素子とカラーフィルタとの間に位置することが好ましい。色変換層は、光を吸収して発光する物質を含むことが好ましく、光を吸収して発光する物質が、量子ドットであることが好ましい。発光装置において、色変換層は、タンデム型の有機EL素子からの発光が色変換層に照射されるように配置されていることが好ましい。
 本実施形態の電子機器の一態様において、表示装置は、本実施形態の発光装置を搭載している。発光装置は、表示装置に用いることもでき、例えば、表示装置のバックライトとして用いることもできる。
〔実施形態の変形〕
 なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
 例えば、発光層は、1層又は2層に限られず、2を超える複数の発光層が積層されていてもよい。例えば、その他の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。
 また、例えば、発光層の陰極側に障壁層を隣接させて設けてもよい。発光層の陰極側で直接接して配置された障壁層は、正孔、及び励起子の少なくともいずれかを阻止することが好ましい。
 例えば、発光層の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、かつ正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、発光層と電子輸送層との間に当該障壁層を含むこともできる。
 また、励起エネルギーが発光層からその周辺層に漏れ出さないように、障壁層を発光層に隣接させて設けてもよい。障壁層は、発光層で生成した励起子が当該障壁層よりも電極側の層(例えば、電子輸送層等)に移動することを阻止する。発光層と障壁層とが直接接していることが好ましい。
 その他、本発明の実施における具体的な構造、及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。
<化合物>
 実施例及び比較例に係る有機EL素子の製造に用いた化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000294
Figure JPOXMLDOC01-appb-C000295
Figure JPOXMLDOC01-appb-C000296
Figure JPOXMLDOC01-appb-C000297
Figure JPOXMLDOC01-appb-C000298
Figure JPOXMLDOC01-appb-C000299
Figure JPOXMLDOC01-appb-C000300
Figure JPOXMLDOC01-appb-C000301
Figure JPOXMLDOC01-appb-C000302
Figure JPOXMLDOC01-appb-C000303
Figure JPOXMLDOC01-appb-C000304
Figure JPOXMLDOC01-appb-C000305
Figure JPOXMLDOC01-appb-C000306
<有機EL素子の作製>
 有機EL素子を以下のように作製し、評価した。
〔実施例1-1〕
 25mm×75mm×1.1mm厚のITO(Indium Tin Oxide)透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO透明電極の膜厚は、130nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT-14及び化合物HA1を共蒸着し、膜厚10nmの第一の陽極側有機層(正孔注入層と称する場合もある。)を成膜した。この第一の陽極側有機層中の化合物HT-14の割合を97質量%とし、化合物HA1の割合を3質量%とした。
 第一の陽極側有機層の上に化合物HT-14を蒸着し、膜厚40nmの第二の陽極側有機層(第一の正孔輸送層と称する場合もある。)を成膜した。
 第二の陽極側有機層の上に化合物HT-15を蒸着し、膜厚45nmの第三の陽極側有機層(電子障壁層と称する場合もある。)を成膜した。
 第三の陽極側有機層の上に化合物BH1(第一のホスト材料)及び化合物BD(第一の発光性化合物)を、化合物BDの割合が1質量%となるように共蒸着し、膜厚5nmの第一の発光層を成膜した。
 第一の発光層の上に化合物BH2(第二のホスト材料)及び化合物BD(第二の発光性化合物)を、化合物BDの割合が1質量%となるように共蒸着し、膜厚15nmの第二の発光層を成膜した。
 第二の発光層の上に化合物ET1を蒸着し、膜厚5nmの第一の電子輸送層(正孔障壁層(HBL)と称する場合もある。)を成膜した。
 第一の電子輸送層の上に化合物ET2及び化合物Liqを共蒸着し、膜厚25nmの第二の電子輸送層(ET)を成膜した。この第二の電子輸送層中の化合物ET2の割合を50質量%とし、化合物Liqの割合を50質量%とした。
 第二の電子輸送層の上にYb(イッテルビウム)を蒸着して膜厚1nmの電子注入層を成膜した。
 電子注入層の上に金属Alを蒸着して膜厚80nmの陰極を成膜した。
 実施例1-1の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-14:HA1(10,97%:3%)/HT-14(40)/HT-15(45)/BH1:BD(5,99%:1%)/BH2:BD(15,99%:1%)/ET1(5)/ET2:Liq(25,50%:50%)/Yb(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
 同じく括弧内において、パーセント表示された数字(97%:3%)は、第一の陽極側有機層における化合物HT-14及び化合物HA1の割合(質量%)を示し、パーセント表示された数字(99%:1%)は、第一の発光層又は第二の発光層におけるホスト材料(化合物BH1又はBH2)及び発光性化合物(化合物BD)の割合(質量%)を示し、パーセント表示された数字(50%:50%)は、電子注入層における化合物ET2及び化合物Liqの割合(質量%)を示す。
〔実施例1-2〕
 実施例1-2の有機EL素子は、表1に示すとおり、第三の陽極側有機層の形成に用いた化合物HT-15を化合物HT-16に変更して、第三の陽極側有機層を形成したこと以外、実施例1-1と同様にして作製した。
〔実施例1-3〕
 実施例1-3の有機EL素子は、表1に示すとおり、第三の陽極側有機層の膜厚を35nmに変更したこと、第三の陽極側有機層の上に化合物HT-17を蒸着し、膜厚10nmの第四の陽極側有機層(電子障壁層と称する場合もある。)を成膜したこと、並びに第四の陽極側有機層の上に第一の発光層を成膜したこと以外、実施例1-1と同様にして作製した。
〔実施例1-4〕
 実施例1-4の有機EL素子は、表1に示すとおり、第三の陽極側有機層の形成に用いた化合物HT-15を化合物HT-16に変更して、第三の陽極側有機層を形成したこと以外、実施例1-3と同様にして作製した。
〔実施例1-5〕
 実施例1-5の有機EL素子は、表1に示すとおり、第二の陽極側有機層の膜厚を20nmに変更したこと、並びに第三の陽極側有機層の膜厚を65nmに変更したこと以外、実施例1-1と同様にして作製した。
〔実施例1-6〕
 実施例1-6の有機EL素子は、表1に示すとおり、第二の陽極側有機層の膜厚を60nmに変更したこと、並びに第三の陽極側有機層の膜厚を25nmに変更したこと以外、実施例1-1と同様にして作製した。
〔比較例1-1〕
 比較例1-1の有機EL素子は、表1に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例1-1と同様にして作製した。
〔比較例1-2〕
 比較例1-2の有機EL素子は、表1に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例1-2と同様にして作製した。
<有機EL素子の評価>
 作製した有機EL素子について、以下の評価を行った。評価結果を表1~表21に示す。また、第二の陽極側有機層の膜厚TLと第三の陽極側有機層の膜厚TLとの膜厚比TL/TLを表1~表21に示す。
(外部量子効率EQE)
 電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、ランバシアン放射を行ったと仮定し外部量子効率EQE(単位:%)を算出した。
(寿命LT95)
 作製した有機EL素子に、電流密度が50mA/cmとなるように電圧を印加し、初期輝度に対して輝度が95%となるまでの時間(LT95(単位:時間))を寿命として測定した。輝度は、分光放射輝度計CS-2000(コニカミノルタ株式会社製)を用いて測定した。
(駆動電圧)
 電流密度が10mA/cmとなるように、作製した有機EL素子の陽極と陰極との間に通電したときの電圧(単位:V)を計測した。
Figure JPOXMLDOC01-appb-T000307
〔実施例1-7及び実施例1-9〕
 実施例1-7及び実施例1-9の有機EL素子は、それぞれ、第三の陽極側有機層の形成に用いた化合物HT-15を表2に示す化合物に変更して、第三の陽極側有機層を形成したこと以外、実施例1-1と同様にして作製した。
〔実施例1-8及び実施例1-10〕
 実施例1-8及び実施例1-10の有機EL素子は、それぞれ、第三の陽極側有機層の形成に用いた化合物HT-15を表2に示す化合物に変更して、第三の陽極側有機層を形成したこと以外、実施例1-3と同様にして作製した。
〔比較例1-4及び比較例1-5〕
 比較例1-4及び比較例1-5の有機EL素子は、それぞれ、第三の陽極側有機層の形成に用いた化合物HT-15を表2に示す化合物に変更して、第三の陽極側有機層を形成したこと以外、比較例1-1と同様にして作製した。
Figure JPOXMLDOC01-appb-T000308
〔実施例1-11〕
 実施例1-11の有機EL素子は、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-14を表3に示す化合物に変更して、第一の陽極側有機層及び第二の陽極側有機層を形成したこと、並びに第一の電子輸送層の形成に用いた化合物ET1を化合物ET3に変更して、第一の電子輸送層を形成したこと以外、実施例1-1と同様にして作製した。
〔比較例1-6〕
 比較例1-6の有機EL素子は、表3に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例1-11と同様にして作製した。
Figure JPOXMLDOC01-appb-T000309
〔実施例1-12、実施例1-13及び実施例1-14〕
 実施例1-12、実施例1-13及び実施例1-14の有機EL素子は、それぞれ、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-14を表4に示す化合物に変更して、第一の陽極側有機層及び第二の陽極側有機層を形成したこと以外、実施例1-1と同様にして作製した。
〔比較例1-7、比較例1-8及び比較例1-9〕
 比較例1-7、比較例1-8及び比較例1-9の有機EL素子は、それぞれ、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-14を表4に示す化合物に変更して、第一の陽極側有機層及び第二の陽極側有機層を形成したこと以外、比較例1-1と同様にして作製した。
Figure JPOXMLDOC01-appb-T000310
〔実施例1-15、実施例1-16及び実施例1-17〕
 実施例1-15、実施例1-16及び実施例1-17の有機EL素子は、それぞれ、第三の陽極側有機層の形成に用いた化合物HT-15を表5に示す化合物に変更して、第三の陽極側有機層を形成したこと以外、実施例1-1と同様にして作製した。
〔実施例1-18及び実施例1-19〕
 実施例1-18及び実施例1-19の有機EL素子は、それぞれ、第三の陽極側有機層の形成に用いた化合物HT-15及び第四の陽極側有機層の形成に用いた化合物HT-17を表5に示す化合物に変更して、第三の陽極側有機層及び第四の陽極側有機層を形成したこと以外、実施例1-3と同様にして作製した。
〔実施例1-20及び実施例1-21〕
 実施例1-20及び実施例1-21の有機EL素子は、それぞれ、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-14及び第三の陽極側有機層の形成に用いた化合物HT-15を表5に示す化合物に変更して、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層を形成したこと以外、実施例1-1と同様にして作製した。
〔実施例1-22〕
 実施例1-22の有機EL素子は、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-14、第三の陽極側有機層の形成に用いた化合物HT-15及び第四の陽極側有機層の形成に用いた化合物HT-17を表5に示す化合物に変更して、第三の陽極側有機層及び第四の陽極側有機層を形成したこと以外、実施例1-3と同様にして作製した。
〔比較例1-10~比較例1-14〕
 比較例1-10~比較例1-14の有機EL素子は、それぞれ、第三の陽極側有機層の形成に用いた化合物HT-15を表5に示す化合物に変更して、第三の陽極側有機層を形成したこと以外、比較例1-1と同様にして作製した。
〔比較例1-15及び比較例1-16〕
 比較例1-15及び比較例1-16の有機EL素子は、それぞれ、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-14及び第三の陽極側有機層の形成に用いた化合物HT-15を表5に示す化合物に変更して、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層を形成したこと以外、比較例1-1と同様にして作製した。
Figure JPOXMLDOC01-appb-T000311
〔実施例2-1〕
 25mm×75mm×1.1mm厚のITO(Indium Tin Oxide)透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO透明電極の膜厚は、130nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT-14及び化合物HA1を共蒸着し、膜厚10nmの第一の陽極側有機層(正孔注入層と称する場合もある。)を成膜した。この第一の陽極側有機層中の化合物HT-14の割合を97質量%とし、化合物HA1の割合を3質量%とした。
 第一の陽極側有機層の上に化合物HT-14を蒸着し、膜厚40nmの第二の陽極側有機層(第一の正孔輸送層と称する場合もある。)を成膜した。
 第二の陽極側有機層の上に化合物HT-15を蒸着し、膜厚45nmの第三の陽極側有機層(電子障壁層と称する場合もある。)を成膜した。
 第三の陽極側有機層の上に化合物BH2(ホスト材料)及び化合物BD(発光性化合物)を、化合物BDの割合が1質量%となるように共蒸着し、膜厚20nmの発光層を成膜した。
 発光層の上に化合物ET1を蒸着し、膜厚5nmの第一の電子輸送層(正孔障壁層(HBL)と称する場合もある。)を成膜した。
 第一の電子輸送層の上に化合物ET2及び化合物Liqを共蒸着し、膜厚25nmの第二の電子輸送層(ET)を成膜した。この第二の電子輸送層中の化合物ET2の割合を50質量%とし、化合物Liqの割合を50質量%とした。
 第二の電子輸送層の上にYb(イッテルビウム)を蒸着して膜厚1nmの電子注入層を成膜した。
 電子注入層の上に金属Alを蒸着して膜厚80nmの陰極を成膜した。
 実施例2-1の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-14:HA1(10,97%:3%)/HT-14(40)/HT-15(45)/BH2:BD(20,99%:1%)/ET1(5)/ET2:Liq(25,50%:50%)/Yb(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
 同じく括弧内において、パーセント表示された数字(97%:3%)は、第一の陽極側有機層における化合物HT-14及び化合物HA1の割合(質量%)を示し、パーセント表示された数字(99%:1%)は、発光層におけるホスト材料(化合物BH2)及び発光性化合物(化合物BD)の割合(質量%)を示し、パーセント表示された数字(50%:50%)は、電子注入層における化合物ET2及び化合物Liqの割合(質量%)を示す。
〔実施例2-2〕
 実施例2-2の有機EL素子は、表6に示すとおり、第三の陽極側有機層の膜厚を35nmに変更したこと、第三の陽極側有機層の上に化合物HT-17を蒸着し、膜厚10nmの第四の陽極側有機層(電子障壁層と称する場合もある。)を成膜したこと、並びに第四の陽極側有機層の上に発光層を成膜したこと以外、実施例2-1と同様にして作製した。
〔実施例2-3〕
 実施例2-3の有機EL素子は、表6に示すとおり、化合物HT-15を化合物HT-16に変更して、第三の陽極側有機層を成膜したこと以外、実施例2-2と同様にして作製した。
〔比較例2-1〕
 比較例2-1の有機EL素子は、表6に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例2-1と同様にして作製した。
〔比較例2-2〕
 比較例2-2の有機EL素子は、表6に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと、並びに化合物HT-15を化合物HT-16に変更して、第三の陽極側有機層を成膜したこと以外、実施例2-1と同様にして作製した。
Figure JPOXMLDOC01-appb-T000312
〔実施例2-4、実施例2-6~2-8〕
 実施例2-4、実施例2-6~2-8の有機EL素子は、それぞれ、第三の陽極側有機層の形成に用いた化合物HT-15を表7に示す化合物に変更して、第三の陽極側有機層を形成したこと以外、実施例2-2と同様にして作製した。
〔実施例2-5、実施例2-9及び実施例2-10〕
 実施例2-5、実施例2-9及び実施例2-10の有機EL素子は、それぞれ、第三の陽極側有機層の形成に用いた化合物HT-15及び第四の陽極側有機層の形成に用いた化合物HT-17を表7に示す化合物に変更して、第三の陽極側有機層及び第四の陽極側有機層を形成したこと以外、実施例2-2と同様にして作製した。
〔比較例2-3~比較例2-9〕
 比較例2-3~比較例2-9の有機EL素子は、それぞれ、第三の陽極側有機層の形成に用いた化合物HT-15を表7に示す化合物に変更して、第三の陽極側有機層を形成したこと以外、比較例2-1と同様にして作製した。
Figure JPOXMLDOC01-appb-T000313
〔実施例2-11〕
 実施例2-11の有機EL素子は、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-14及び第四の陽極側有機層の形成に用いた化合物HT-17を表8に示す化合物に変更して、第一の陽極側有機層、第二の陽極側有機層及び第四の陽極側有機層を形成したこと以外、実施例2-2と同様にして作製した。
〔実施例2-12〕
 実施例2-12の有機EL素子は、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-14及び第三の陽極側有機層の形成に用いた化合物HT-15を表8に示す化合物に変更して、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層を形成したこと以外、実施例2-2と同様にして作製した。
〔実施例2-13〕
 実施例2-13の有機EL素子は、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-14、第三の陽極側有機層の形成に用いた化合物HT-15及び第四の陽極側有機層の形成に用いた化合物HT-17を表8に示す化合物に変更して、第一の陽極側有機層、第二の陽極側有機層、第三の陽極側有機層及び第四の陽極側有機層を形成したこと以外、実施例2-2と同様にして作製した。
〔比較例2-10〕
 比較例2-10の有機EL素子は、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-14を表8に示す化合物に変更して、第一の陽極側有機層及び第二の陽極側有機層を形成したこと以外、比較例2-1と同様にして作製した。
〔比較例2-11及び比較例2-12〕
 比較例2-11及び比較例2-12の有機EL素子は、それぞれ、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-14及び第三の陽極側有機層の形成に用いた化合物HT-15を表8に示す化合物に変更して、第一の陽極側有機層及び第二の陽極側有機層を形成したこと以外、比較例2-1と同様にして作製した。
Figure JPOXMLDOC01-appb-T000314
〔実施例3-1〕
 25mm×75mm×1.1mm厚のITO(Indium Tin Oxide)透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO透明電極の膜厚は、130nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT-19及び化合物HA1を共蒸着し、膜厚10nmの第一の陽極側有機層(正孔注入層と称する場合もある。)を成膜した。この第一の陽極側有機層中の化合物HT-19の割合を97質量%とし、化合物HA1の割合を3質量%とした。
 第一の陽極側有機層の上に化合物HT-19を蒸着し、膜厚45nmの第二の陽極側有機層(第一の正孔輸送層と称する場合もある。)を成膜した。
 第二の陽極側有機層の上に化合物HT-80を蒸着し、膜厚45nmの第三の陽極側有機層(電子障壁層と称する場合もある。)を成膜した。
 第三の陽極側有機層の上に化合物BH1(第一のホスト材料)及び化合物BD(第一の発光性化合物)を、化合物BDの割合が1質量%となるように共蒸着し、膜厚5nmの第一の発光層を成膜した。
 第一の発光層の上に化合物BH2(第二のホスト材料)及び化合物BD(第二の発光性化合物)を、化合物BDの割合が1質量%となるように共蒸着し、膜厚15nmの第二の発光層を成膜した。
 第二の発光層の上に化合物ET3を蒸着し、膜厚5nmの第一の電子輸送層(正孔障壁層(HBL)と称する場合もある。)を成膜した。
 第一の電子輸送層の上に化合物ET2及び化合物Liqを共蒸着し、膜厚25nmの第二の電子輸送層(ET)を成膜した。この第二の電子輸送層中の化合物ET2の割合を50質量%とし、化合物Liqの割合を50質量%とした。
 第二の電子輸送層の上にYb(イッテルビウム)を蒸着して膜厚1nmの電子注入層を成膜した。
 電子注入層の上に金属Alを蒸着して膜厚50nmの陰極を成膜した。
 実施例3-1の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-19:HA1(10,97%:3%)/HT-19(45)/HT-80(45)/BH1:BD(5,99%:1%)/BH2:BD(15,99%:1%)/ET3(5)/ET2:Liq(25,50%:50%)/Yb(1)/Al(50)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
 同じく括弧内において、パーセント表示された数字(97%:3%)は、第一の陽極側有機層における化合物HT-19及び化合物HA1の割合(質量%)を示し、パーセント表示された数字(99%:1%)は、第一の発光層又は第二の発光層におけるホスト材料(化合物BH1又はBH2)及び発光性化合物(化合物BD)の割合(質量%)を示し、パーセント表示された数字(50%:50%)は、電子注入層における化合物ET2及び化合物Liqの割合(質量%)を示す。以下、同様の表記とする。
〔比較例3-1〕
 比較例3-1の有機EL素子は、表9に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-1と同様にして作製した。
〔実施例3-2〕
 実施例3-2の有機EL素子は、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を表9に示す化合物に変更したこと以外、実施例3-1と同様にして作製した。
〔比較例3-2〕
 比較例3-2の有機EL素子は、表9に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-2と同様にして作製した。
Figure JPOXMLDOC01-appb-T000315
〔実施例3-3〕
 実施例3-3の有機EL素子は、第三の陽極側有機層の形成に用いた化合物を、表10に示す化合物に変更し、並びに第一の電子輸送層の形成に用いた化合物ET3を化合物ET1に変更したこと以外、実施例3-1と同様にして作製した。
〔比較例3-3〕
 比較例3-3の有機EL素子は、表10に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-3と同様にして作製した。
〔実施例3-4~3-6〕
 実施例3-4~3-6の有機EL素子は、それぞれ、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を表10に示す化合物に変更したこと以外、実施例3-3と同様にして作製した。
〔比較例3-4~3-6〕
 比較例3-4~3-6の有機EL素子は、それぞれ、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を表10に示す化合物に変更したこと以外、比較例3-3と同様にして作製した。
Figure JPOXMLDOC01-appb-T000316
〔実施例3-7〕
 25mm×75mm×1.1mm厚のITO(Indium Tin Oxide)透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO透明電極の膜厚は、130nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT-19及び化合物HA1を共蒸着し、膜厚10nmの第一の陽極側有機層(正孔注入層と称する場合もある。)を成膜した。この第一の陽極側有機層中の化合物HT-19の割合を97質量%とし、化合物HA1の割合を3質量%とした。
 第一の陽極側有機層の上に化合物HT-19を蒸着し、膜厚40nmの第二の陽極側有機層(第一の正孔輸送層と称する場合もある。)を成膜した。
 第二の陽極側有機層の上に化合物HT-85を蒸着し、膜厚40nmの第三の陽極側有機層(第二の正孔輸送層と称する場合もある。)を成膜した。
 第三の陽極側有機層の上に化合物HT-17を蒸着し、膜厚10nmの第四の陽極側有機層(電子障壁層と称する場合もある。)を成膜した。
 第四の陽極側有機層の上に化合物BH1(第一のホスト材料)及び化合物BD(第一の発光性化合物)を、化合物BDの割合が1質量%となるように共蒸着し、膜厚5nmの第一の発光層を成膜した。
 第一の発光層の上に化合物BH2(第二のホスト材料)及び化合物BD(第二の発光性化合物)を、化合物BDの割合が1質量%となるように共蒸着し、膜厚15nmの第二の発光層を成膜した。
 第二の発光層の上に化合物ET3を蒸着し、膜厚5nmの第一の電子輸送層(正孔障壁層(HBL)と称する場合もある。)を成膜した。
 第一の電子輸送層の上に化合物ET2及び化合物Liqを共蒸着し、膜厚25nmの第二の電子輸送層(ET)を成膜した。この第二の電子輸送層中の化合物ET2の割合を50質量%とし、化合物Liqの割合を50質量%とした。
 第二の電子輸送層の上にYb(イッテルビウム)を蒸着して膜厚1nmの電子注入層を成膜した。
 電子注入層の上に金属Alを蒸着して膜厚50nmの陰極を成膜した。
 実施例3-7の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-19:HA1(10,97%:3%)/HT-19(40)/HT-85(40)/HT-17(10)/BH1:BD(5,99%:1%)/BH2:BD(15,99%:1%)/ET3(5)/ET2:Liq(25,50%:50%)/Yb(1)/Al(50)
〔比較例3-7〕
 比較例3-7の有機EL素子は、表11に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-7と同様にして作製した。
〔実施例3-8〕
 実施例3-8の有機EL素子は、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を表11に示す化合物に変更したこと以外、実施例3-7と同様にして作製した。
〔比較例3-8〕
 比較例3-8の有機EL素子は、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を表11に示す化合物に変更したこと以外、比較例3-7と同様にして作製した。
Figure JPOXMLDOC01-appb-T000317
〔実施例3-9〕
 実施例3-9の有機EL素子は、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を、表12に示す化合物に変更し、並びに電子注入層の形成に用いたYbをLiF(フッ化リチウム)に変更したこと以外、実施例3-1と同様にして作製した。
〔比較例3-9〕
 比較例3-9の有機EL素子は、表12に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-9と同様にして作製した。
Figure JPOXMLDOC01-appb-T000318
〔実施例3-10〕
 実施例3-10の有機EL素子は、第三の陽極側有機層の形成に用いた化合物を、表13に示す化合物に変更し、並びに第一の発光層及び第二の発光層の形成に用いた化合物BDを化合物BD2に変更したこと以外、実施例3-1と同様にして作製した。
〔比較例3-10〕
 比較例3-10の有機EL素子は、表13に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-10と同様にして作製した。
〔実施例3-11~3-13〕
 実施例3-11~3-13の有機EL素子は、それぞれ、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を表13に示す化合物に変更したこと以外、実施例3-10と同様にして作製した。
〔比較例3-11~3-13〕
 比較例3-11~3-13の有機EL素子は、それぞれ、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を表13に示す化合物に変更したこと以外、比較例3-10と同様にして作製した。
Figure JPOXMLDOC01-appb-T000319
〔実施例3-14〕
 実施例3-14の有機EL素子は、第三の陽極側有機層の形成に用いた化合物を、表14に示す化合物に変更し、並びに第二の発光層の形成に用いた化合物BH2を化合物BH3に変更したこと以外、実施例3-1と同様にして作製した。
〔比較例3-14〕
 比較例3-14の有機EL素子は、表14に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-14と同様にして作製した。
Figure JPOXMLDOC01-appb-T000320
〔実施例3-15〕
 実施例3-15の有機EL素子は、第三の陽極側有機層の形成に用いた化合物を、表15に示す化合物に変更し、並びに第一発光層の形成に用いた化合物BH1を化合物BH4に変更したこと以外、実施例3-1と同様にして作製した。
〔比較例3-15〕
 比較例3-15の有機EL素子は、表15に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-15と同様にして作製した。
Figure JPOXMLDOC01-appb-T000321
〔実施例3-16〕
 25mm×75mm×1.1mm厚のITO(Indium Tin Oxide)透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO透明電極の膜厚は、130nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT-74及び化合物HA1を共蒸着し、膜厚10nmの第一の陽極側有機層(正孔注入層と称する場合もある。)を成膜した。この第一の陽極側有機層中の化合物HT-74の割合を97質量%とし、化合物HA1の割合を3質量%とした。
 第一の陽極側有機層の上に化合物HT-74を蒸着し、膜厚40nmの第二の陽極側有機層(第一の正孔輸送層と称する場合もある。)を成膜した。
 第二の陽極側有機層の上に化合物HT-91を蒸着し、膜厚40nmの第三の陽極側有機層(第二の電子輸送層と称する場合もある。)を成膜した。
 第三の陽極側有機層の上に化合物HT-17を蒸着し、膜厚10nmの第四の陽極側有機層(電子障壁層と称する場合もある。)を成膜した。
 第四の陽極側有機層の上に化合物BH2(ホスト材料)及び化合物BD(発光性化合物)を、化合物BDの割合が1質量%となるように共蒸着し、膜厚20nmの発光層を成膜した。
 発光層の上に化合物ET3を蒸着し、膜厚5nmの第一の電子輸送層(正孔障壁層(HBL)と称する場合もある。)を成膜した。
 第一の電子輸送層の上に化合物ET2及び化合物Liqを共蒸着し、膜厚25nmの第二の電子輸送層(ET)を成膜した。この第二の電子輸送層中の化合物ET2の割合を50質量%とし、化合物Liqの割合を50質量%とした。
 第二の電子輸送層の上にYb(イッテルビウム)を蒸着して膜厚1nmの電子注入層を成膜した。
 電子注入層の上に金属Alを蒸着して膜厚50nmの陰極を成膜した。
 実施例3-16の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-74:HA1(10,97%:3%)/HT-74(40)/HT-91(40)/HT-17(10)/BH2:BD(20,99%:1%)/ET3(5)/ET2:Liq(25,50%:50%)/Yb(1)/Al(50)
〔比較例3-16〕
 比較例3-16の有機EL素子は、表16に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-16と同様にして作製した。
Figure JPOXMLDOC01-appb-T000322
〔実施例3-17〕
 実施例3-17の有機EL素子は、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を、表17に示す化合物に変更し、並びに第一の電子輸送層の形成に用いた化合物ET3を化合物ET1に変更したこと以外、実施例3-16と同様にして作製した。
〔比較例3-17〕
 比較例3-17の有機EL素子は、表17に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-17と同様にして作製した。
〔実施例3-18〕
 実施例3-18の有機EL素子は、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物を表17に示す化合物に変更したこと以外、実施例3-17と同様にして作製した。
〔比較例3-18〕
 比較例3-18の有機EL素子は、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物を表17に示す化合物に変更したこと以外、比較例3-17と同様にして作製した。
Figure JPOXMLDOC01-appb-T000323
〔実施例3-19〕
 実施例3-19の有機EL素子は、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を、表18に示す化合物に変更し、並びに電子注入層の形成に用いたYbをLiF(フッ化リチウム)に変更したこと以外、実施例3-16と同様にして作製した。
〔比較例3-19〕
 比較例3-19の有機EL素子は、表18に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-19と同様にして作製した。
〔実施例3-20~3-21〕
 実施例3-20~3-21の有機EL素子は、それぞれ、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物を表18に示す化合物に変更したこと以外、実施例3-19と同様にして作製した。
〔比較例3-20~3-21〕
 比較例3-20~3-21の有機EL素子は、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物を表18に示す化合物に変更したこと以外、比較例3-19と同様にして作製した。
Figure JPOXMLDOC01-appb-T000324
〔実施例3-22〕
 実施例3-22の有機EL素子は、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を、表19に示す化合物に変更し、並びに発光層の形成に用いた化合物BDを化合物BD2に変更したこと以外、実施例3-16と同様にして作製した。
〔比較例3-22〕
 比較例3-22の有機EL素子は、表19に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-22と同様にして作製した。
Figure JPOXMLDOC01-appb-T000325
〔実施例3-23〕
 実施例3-23の有機EL素子は、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を、表20に示す化合物に変更し、並びに発光層の形成に用いた化合物BH2を化合物BH3に変更したこと以外、実施例3-16と同様にして作製した。
〔比較例3-23〕
 比較例3-23の有機EL素子は、表20に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-23と同様にして作製した。
Figure JPOXMLDOC01-appb-T000326
〔実施例3-24〕
 実施例3-24の有機EL素子は、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層の形成に用いた化合物を、表21に示す化合物に変更し、第二の陽極側有機層及び第三の陽極側有機層の膜厚を表21に示す膜厚に変更し、第四の陽極側有機層を形成せずに、第三の陽極側有機層の上に発光層を形成した以外、実施例3-16と同様にして作製した。
 実施例3-24の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-70:HA1(10,97%:3%)/HT-70(45)/HT-95(45)/BH2:BD(20,99%:1%)/ET3(5)/ET2:Liq(25,50%:50%)/Yb(1)/Al(50)
〔比較例3-24〕
 比較例3-24の有機EL素子は、表21に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと以外、実施例3-24と同様にして作製した。
Figure JPOXMLDOC01-appb-T000327
〔実施例4-1〕
 25mm×75mm×1.1mm厚のITO(Indium Tin Oxide)透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO透明電極の膜厚は、80nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT-19及び化合物HA1を共蒸着し、膜厚10nmの第一の陽極側有機層(正孔注入層と称する場合もある。)を成膜した。この第一の陽極側有機層中の化合物HT-19の割合を97質量%とし、化合物HA1の割合を3質量%とした。
 第一の陽極側有機層の上に化合物HT-19を蒸着し、膜厚24nmの第二の陽極側有機層(第一の正孔輸送層と称する場合もある。)を成膜した。
 第二の陽極側有機層の上に化合物HT-16を蒸着し、膜厚40nmの第三の陽極側有機層(電子障壁層と称する場合もある。)を成膜した。
 このようにして、第一の陽極側有機層、第二の陽極側有機層及び第三の陽極側有機層を含む第一の正孔輸送帯域を形成した。
 第三の陽極側有機層の上に化合物BH2(ホスト材料)及び化合物BD(発光性化合物)を共蒸着し、膜厚15nmの発光層を成膜し、第一の発光領域を形成した。この発光層中の化合物BH2の濃度を99質量%とし、化合物BDの濃度を1質量%とした。
 次に、第一の発光領域の発光層の上に化合物ET3を蒸着し、膜厚5nmの第一の電子輸送層(正孔障壁層と称する場合もある。)を成膜し、この第一の電子輸送層の上に化合物ET4を蒸着し、膜厚10nmの第二の電子輸送層を成膜して、第一の電子輸送層及び第二の電子輸送層を含む第一の電子輸送帯域を形成した。
 以上のように、第一の正孔輸送帯域、第一の発光領域及び第一の電子輸送帯域を含む第一の発光ユニットを形成した。
 次に、第一の発光ユニットの上に、第一N層及び第一P層を含む第一の電荷発生ユニットを形成した。まず、第二の電子輸送層の上に、化合物ET5と、Liとを共蒸着し、膜厚10nmの第一N層を形成した。第一N層における化合物ET5の濃度を96質量%とし、Liの濃度を4質量%とした。
 次に、この第一N層の上に、化合物HT-19と、化合物HA1とを共蒸着し、膜厚8nmの第一P層を形成した。第一P層における化合物HT-19の濃度を97質量%とし、化合物HA1の濃度を3質量%とした。
 以上のように、第一の電荷発生ユニットを形成した。
 次に、第一の電荷発生ユニットの上に、正孔輸送層、第二の発光領域(赤色燐光発光層及び緑色燐光発光層)、並びに第二の電子輸送帯域(第一の電子輸送層及び第二の電子輸送層)を含む第二の発光ユニットを形成した。
 まず、第二の発光ユニットにおいては、第一の電荷発生ユニットの第一P層の上に化合物HT-16を蒸着し、膜厚13nmの正孔輸送層を成膜した。
 次に、正孔輸送層の上に、化合物PRH1(燐光ホスト材料)と、燐光発光性の化合物PRD1とを共蒸着し、膜厚8nmの赤色燐光発光層を成膜した。赤色燐光発光層における化合物PRH1の濃度を96質量%とし、化合物PRD1の濃度を4質量%とした。
 次に、赤色燐光発光層の上に、化合物PGH1(燐光ホスト材料)と、燐光発光性の化合物PGD1とを共蒸着し、膜厚40nmの緑色燐光発光層を成膜した。緑色燐光発光層における化合物PGH1の濃度を97質量%とし、化合物PGD1の濃度を3質量%とした。このように、第二の発光ユニットにおいては、赤色燐光発光層及び緑色燐光発光層を含む第二の発光領域を形成した。
 次に、第二の発光ユニットにおいては、緑色燐光発光層の上に、化合物ET3を蒸着し、膜厚5nmの第一の電子輸送層(正孔障壁層ともいう)を成膜し、この第一の電子輸送層の上に化合物ET4を蒸着し、膜厚20nmの第二の電子輸送層を成膜し、第一の電子輸送層及び第二の電子輸送層を含む第二の電子輸送帯域を形成した。
 以上のように、第二の発光ユニットを形成した。
 次に、第二の発光ユニットの上に、第二N層及び第二P層を含む第二の電荷発生ユニットを形成した。まず、第二の発光ユニットの第二の電子輸送層の上に、化合物ET5と、Liとを共蒸着し、膜厚20nmの第二N層を形成した。第二N層における化合物ET5の濃度を96質量%とし、Liの濃度を4質量%とした。
 次に、この第二N層の上に、化合物HT-19と、化合物HA1とを共蒸着し、膜厚25nmの第二P層を形成した。第二P層における化合物HT-19の濃度を97質量%とし、化合物HA1の濃度を3質量%とした。
 以上のように、第二の電荷発生ユニットを形成した。
 次に、第二の電荷発生ユニットの上に、第三の正孔輸送帯域(第二の陽極側有機層及び第三の陽極側有機層)、第三の発光領域、並びに第三の電子輸送帯域(第一の電子輸送層及び第二の電子輸送層)を含む第三の発光ユニットを形成した。
 まず、第二の電荷発生ユニットの第二P層の上に化合物HT-19を蒸着し、膜厚56nmの第二の陽極側有機層を成膜した。
 次に、この第二の陽極側有機層の上に化合物HT-16を蒸着し、膜厚52nmの第三の陽極側有機層を成膜した。
 このようにして、第三の発光ユニットにおいては、第二の陽極側有機層及び第三の陽極側有機層を含む第三の正孔輸送帯域を形成した。
 第三の発光ユニットにおいては、第三の陽極側有機層の上に化合物BH2(ホスト材料)及び化合物BD(発光性化合物)を共蒸着し、膜厚20nmの発光層を成膜し、第三の発光領域を形成した。この第三の発光領域の発光層中の化合物BH2の濃度を99質量%とし、化合物BDの濃度を1質量%とした。
 次に、第三の発光ユニットにおいては、第三の発光領域の発光層の上に化合物ET3を蒸着し、膜厚5nmの第一の電子輸送層(正孔障壁層ともいう)を成膜し、この第一の電子輸送層の上に、化合物ET4と、Liqとを共蒸着し、膜厚15nmの第二の電子輸送層を成膜した。この第二の電子輸送層における化合物ET4の濃度を50質量%とし、Liqの濃度を50質量%とした。なお、Liqは、(8-キノリノラト)リチウム((8-Quinolinolato)lithium)の略称である。
 次に、第三の発光ユニットにおいては、第二の電子輸送層の上にイッテルビウム(Yb)を蒸着し、膜厚1nmの電子注入層を成膜した。
 このようにして、第三の発光ユニットにおいては、第一の電子輸送層、第二の電子輸送層及び電子注入層を含む第三の電子輸送帯域を形成した。
 以上のように、第三の発光ユニットを形成した。
 次に、第三の発光ユニットの電子注入層の上に金属Alを蒸着して膜厚80nmの陰極を形成した。
 以上のようにして、白色ボトムエミッション型の有機EL素子を作製した。
 実施例4-1の素子構成を略式的に示すと、次のとおりである。
ITO(80)/HT-19:HA1(10,97%:3%)/HT-19(24)/HT-16(40)/BH2:BD(15,99%:1%)/ET3(5)/ET4(10)/ET5:Li(10,96%:4%)/HT-19:HA1(8,97%:3%)/HT-16(13)/PRH1:PRD1(8,96%:4%)/PGH1:PGD1(40,97%:3%)/ET3(5)/ET4(20)/ET5:Li(20,96%:4%)/HT-19:HA1(25,97%:3%)/HT-19(56)/HT-16(52)/BH2:BD(20,99%:1%)/ET3(5)/ET4:Liq(15,50%:50%)/Yb(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
 実施例4-1の素子構成に関して、同じく括弧内において、パーセント表示された数字(97%:3%)は、第一の陽極側有機層又は第一P層における化合物HT-19及び化合物HA1の割合(質量%)又は緑色燐光発光層における化合物PGH1及び化合物PGD1の割合(質量%)を示し、パーセント表示された数字(99%:1%)は、発光層における化合物BH2及び化合物BDの割合(質量%)を示し、パーセント表示された数字(96%:4%)は、第一N層における化合物ET5及びLiの割合(質量%)又は赤色燐光発光層における化合物PRH1及び化合物PRD1の割合(質量%)を示し、パーセント表示された数字(50%:50%)は、電子注入層における化合物ET4及びLiqの割合(質量%)を示す。以下、同様の表記とする。
〔比較例4-1〕
 比較例4-1の有機EL素子は、第一の発光ユニットにおける第二の陽極側有機層の膜厚を59nmに変更し、第一の発光ユニットにおける第三の陽極側有機層の膜厚を5nmに変更し、第一の電荷発生ユニットにおける第一P層の膜厚を16nmに変更し、第二の発光ユニットにおける正孔輸送層の膜厚を5nmに変更し、第三の発光ユニットにおける第二の陽極側有機層の膜厚を100nmに変更し、第三の陽極側有機層の膜厚を5nmに変更したこと以外、実施例4-1の有機EL素子と同様に作製した。
 比較例4-1の素子構成を略式的に示すと、次のとおりである。
ITO(80)/HT-19:HA1(10,97%:3%)/HT-19(59)/HT-16(5)/BH2:BD(15,99%:1%)/ET3(5)/ET4(10)/ET5:Li(10,96%:4%)/HT-19:HA1(16,97%:3%)/HT-16(5)/PRH1:PRD1(8,96%:4%)/PGH1:PGD1(40,97%:3%)/ET3(5)/ET4(10)/HT5:HA1(25,97%:3%)/HT-19(100)/HT-16(5)/BH2:BD(20,99%:1%)/ET3(5)/ET4:Liq(15,50%:50%)/Yb(1)/Al(80)
<有機EL素子の評価>
 作製した実施例4-1及び比較例4-1の有機EL素子について、以下の評価を行った。電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000A(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルにおける460nmにおけるピーク強度を青色発光のピーク強度とし、530nmにおけるピーク強度を緑色発光のピーク強度とし、620nmにおけるピーク強度を赤色発光のピーク強度として計測し、ピーク強度を比較した。比較例4-1の各色のピーク強度を100%と設定した際の実施例4-1の各色のピーク強度を、表22に示す。
Figure JPOXMLDOC01-appb-T000328
〔実施例5-1〕
 25mm×75mm×1.1mm厚のITO(Indium Tin Oxide)透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO透明電極の膜厚は、130nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT-77及び化合物HA1を共蒸着し、膜厚10nmの第一の陽極側有機層(正孔注入層と称する場合もある。)を成膜した。この第一の陽極側有機層中の化合物HT-77の割合を97質量%とし、化合物HA1の割合を3質量%とした。
 第一の陽極側有機層の上に化合物HT-77を蒸着し、膜厚40nmの第二の陽極側有機層(第一の正孔輸送層と称する場合もある。)を成膜した。
 第二の陽極側有機層の上に化合物HT-93を蒸着し、膜厚35nmの第三の陽極側有機層(第二の正孔輸送層と称する場合もある。)を成膜した。
 第三の陽極側有機層の上に化合物HT-95を蒸着し、膜厚10nmの第四の陽極側有機層(電子障壁層と称する場合もある。)を成膜した。
 第四の陽極側有機層の上に化合物BH2(ホスト材料)及び化合物BD(発光性化合物)を、化合物BDの割合が1質量%となるように共蒸着し、膜厚20nmの発光層を成膜した。
 発光層の上に化合物ET1を蒸着し、膜厚5nmの第一の電子輸送層(正孔障壁層(HBL)と称する場合もある。)を成膜した。
 第一の電子輸送層の上に化合物ET2及び化合物Liqを共蒸着し、膜厚25nmの第二の電子輸送層(ET)を成膜した。この第二の電子輸送層中の化合物ET2の割合を50質量%とし、化合物Liqの割合を50質量%とした。
 第二の電子輸送層の上にYb(イッテルビウム)を蒸着して膜厚1nmの電子注入層を成膜した。
 電子注入層の上に金属Alを蒸着して膜厚80nmの陰極を成膜した。
 実施例5-1の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-77:HA1(10,97%:3%)/HT-77(40)/HT-93(35)/HT-95(10)/BH2:BD(20,99%:1%)/ET1(5)/ET2:Liq(25,50%:50%)/Yb(1)/Al(80)
〔実施例5-2、実施例5-4~5-7〕
 実施例5-2、実施例5-4~5-7の有機EL素子は、それぞれ、第三の陽極側有機層の形成に用いた化合物HT-93及び第四の陽極側有機層の形成に用いた化合物HT-95を表23に示す化合物に変更して、第三の陽極側有機層及び第四の陽極側有機層を成膜したこと以外、実施例5-1と同様にして作製した。
〔実施例5-3〕
 実施例5-3の有機EL素子は、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-77、第三の陽極側有機層の形成に用いた化合物HT-93及び第四の陽極側有機層の形成に用いた化合物HT-95を表23に示す化合物に変更して、第一、第二、第三及び第四の陽極側有機層を成膜したこと以外、実施例5-1と同様にして作製した。
〔比較例5-1〕
 比較例5-1の有機EL素子は、表23に示すとおり、第二の陽極側有機層及び第三の陽極側有機層の膜厚を変更したこと、並びに第四の陽極側有機層を成膜せずに、第三の陽極側有機層の上に発光層を成膜したこと以外、実施例5-1と同様にして作製した。
〔比較例5-2、比較例5-4~5-7〕
 比較例5-2、比較例5-4~5-7の有機EL素子は、それぞれ、表23に示すとおり、第三の陽極側有機層の形成に用いた化合物HT-93を表23に示す化合物に変更して、第三の陽極側有機層を成膜したこと以外、比較例5-1と同様にして作製した。
〔比較例5-3〕
 比較例5-3の有機EL素子は、表23に示すとおり、第一の陽極側有機層及び第二の陽極側有機層の形成に用いた化合物HT-77、第三の陽極側有機層の形成に用いた化合物HT-93を表23に示す化合物に変更して、第一、第二及び第三の陽極側有機層を成膜したこと以外、比較例5-1と同様にして作製した。
Figure JPOXMLDOC01-appb-T000329
<化合物の評価>
(一重項エネルギーS
 測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定した。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出した。
  換算式(F2):S[eV]=1239.85/λedge
 吸収スペクトル測定装置としては、日立社製の分光光度計(装置名:U3310)を用いた。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
(蛍光発光最大ピーク波長(FL-peak)の測定)
 測定対象となる化合物を、4.9×10-6mol/Lの濃度でトルエンに溶解し、トルエン溶液を調製した。蛍光スペクトル測定装置(分光蛍光光度計F-7000(株式会社日立ハイテクサイエンス製))を用いて、トルエン溶液を390nmで励起した場合の蛍光発光最大ピーク波長λ(単位:nm)を測定した。
 化合物BDの蛍光発光最大ピーク波長λは、452nmであった。
(最高被占軌道のエネルギー準位HOMO)
 最高被占軌道のエネルギー準位HOMOは、大気下で、光電子分光装置(理研計器株式会社製、「AC-3」)を用いて測定した。具体的には、材料に光を照射し、その際に電荷分離によって生じる電子量を測定することにより、化合物の最高被占軌道のエネルギー準位HOMOを測定した。
(正孔移動度μh)
 正孔移動度μhは、下記の手順で作成された移動度評価用素子を用いて測定される。
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
 洗浄後の前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HA-2を蒸着し、膜厚5nmの正孔注入層を形成した。
 この正孔注入層の成膜の上に、化合物HT-Aを蒸着し、膜厚10nmの正孔輸送層を形成した。
 続けて、正孔移動度μhの測定対象となる化合物Targetを蒸着し、膜厚200nmの測定対象層を形成した。
 そして、この測定対象層の上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属陰極を形成した。
 以上の移動度評価用素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HA-2(5)/HT-A(10)/Target(200)/Al(80)
 なお、括弧内の数字は、膜厚(nm)を示す。
Figure JPOXMLDOC01-appb-C000330
 続いて、正孔移動度は、上記の手順で作成された移動度評価用素子を用いて、下記の手順により測定される。
 上記の移動度評価用素子を、インピーダンス測定装置に設置し、インピーダンス測定を行った。
 インピーダンス測定は、測定周波数を1Hzから1MHzまで掃引して行った。その際、素子には交流振幅0.1Vと同時に、直流電圧Vを印加した。
 測定されたインピーダンスZから、下記計算式(C1)の関係を用いて、モジュラスMを計算した。
  計算式(C1):M=jωZ
 上記計算式(C1)において、jは、その平方が-1になる虚数単位、ωは、角周波数[rad/s]である。
 モジュラスMの虚部を縦軸、周波数[Hz]を横軸にしたボーデプロットにおいて、ピークを示す周波数fmaxから移動度評価用素子の電気的な時定数τを下記計算式(C2)から求めた。
  計算式(C2):τ=1/(2πfmax)
 上記計算式(C2)のπは、円周率を表す記号である。
 上記τを用いて、下記計算式(C3)の関係から正孔移動度μhを算出した。
 計算式(C3):μh=d/(Vτ)
 上記計算式(C3)のdは、素子を構成する有機薄膜の総膜厚であり、上記の移動度評価用素子構成にあるように、d=215[nm]である。
 本明細書における移動度は、電界強度の平方根E1/2=500[V1/2/cm1/2]の際の値である。電界強度の平方根E1/2は、下記計算式(C4)の関係から算出することができる。
  計算式(C4):E1/2=V1/2/d1/2
 本実施例では、インピーダンス測定にはインピーダンス測定装置としてソーラトロン社の1260型を用い、高精度化のため、ソーラトロン社の1296型誘電率測定インターフェイスを併せて用いた。
 有機EL素子の製造に用いた化合物の他、下記化合物HT-31、HT-32及びRef-HT1についても物性値を測定した。物性値の測定結果を表24に示す。
Figure JPOXMLDOC01-appb-C000331
Figure JPOXMLDOC01-appb-C000332
Figure JPOXMLDOC01-appb-T000333
(屈折率)
 有機層を構成する構成材料(化合物)の屈折率は、次のようにして測定した。
 ガラス基板上に、測定対象材料を50nm程度の膜厚で真空蒸着し、分光エリプソメトリー装置(J.A.Woollam社製(米国)M-2000UI)により測定角45°~75°の範囲で5°おきに入射光(紫外~可視光~近赤外)を照射しサンプル表面から反射された光の偏向状態の変化を測定した。消衰係数の測定精度を高めるために、あわせて基板法線方向(有機EL素子基板の面に対し垂直方向)の透過スペクトルを当該装置で測定した。これと同様に、測定対象材料を蒸着していないガラス基板のみについても、同様の測定を行った。得られた測定情報について、J.A.Woollam社製解析ソフトウェア(Complete EASE)でフィッティングを行った。
 フィッティングの条件としては、一軸回転対称の異方性モデルを用い、当該ソフトウェアにおいて二乗平均誤差を示すパラメータMSEが3.0以下となるようにして、基板上に成膜された有機膜の面内方向と法線方向の屈折率、面内方向と法線方向の消衰係数、オーダーパラメーターを算出した。オーダーパラメーターは、消衰係数(面内方向)の長波長側のピークをS1とし、S1のピーク波長によって算出した。ガラス基板についてのフィッティングの条件としては、等方性モデルを用いた。
 基板上に真空蒸着された低分子材料の膜は、通常、基板法線方向を回転対象軸とした一軸回転対称性となる。基板上に形成した薄膜内における分子軸と基板法線方向のなす角をθ、薄膜の多入射角分光エリプソメトリー測定により得られる基板平行方向(Ordinary方向)及び垂直方向(Extra-Ordinary方向)の消衰係数をそれぞれko及びkeとした場合、下記式で表されるS’がオーダーパラメーターである。
S’=1-<cos2θ>=2ko/(ke+2ko)=2/3(1-S)
S=(1/2)<3cos2θ-1>=(ke-ko)/(ke+2ko)
 当該分子配向の評価方法は公知の手法であり、詳細はOrganic Electronics誌,2009年,第10巻,127頁に記載されている。また、薄膜を形成する方法は、真空蒸着法とする。
 多入射角分光エリプソメトリー測定から得られるオーダーパラメーターS’は、全ての分子が基板と平行方向に配向した場合に1.0となる。また、分子が配向せずにランダムである場合は0.66となる。
 本明細書においては、上記で測定した値の基板平行方向(Ordinary方向)の2.7eVにおける屈折率の値を測定対象材料の屈折率とした。2.7eVにおける屈折率は、460nmにおける屈折率と対応する。本明細書においては、基板平行方向(Ordinary方向)の2.7eV(460nm)における屈折率をnORDと表記し、基板垂直方向(Extra-Ordinary方向)の2.7eV(460nm)における屈折率をnEXTと表記する場合がある。
 1つの層に複数の化合物が含まれる場合の当該層の構成材料の屈折率は、測定対象材料としての複数の化合物をガラス基板上に共蒸着した膜、又は測定対象材料としての複数の化合物を含有する混合物を蒸着した膜について、前述と同様に分光エリプソメトリー装置で測定した。
 表9~21、23及び25は、実施例と比較例のそれぞれについて、第二の陽極側有機層及び第三の陽極側有機層の構成材料と、第二の陽極側有機層の屈折率NM及び第三の陽極側有機層の構成材料の屈折率NMの屈折率差NM-NMとを示している。
Figure JPOXMLDOC01-appb-T000334
 表26は、正孔輸送帯域の形成に用いた化合物の460nmにおける屈折率nORD及び屈折率nEXT、並びに差nORD-nEXTを示している。
Figure JPOXMLDOC01-appb-T000335
 1,1A,1B,1C…有機EL素子、10,11,12,13…有機層、100A,100B,100C,100D…有機EL表示装置、10B,11B,12B,13B…青色有機EL素子、10G…緑色有機EL素子、10R…赤色有機EL素子、2,2A…基板、3…陽極、4…陰極、5…発光領域、50…発光層、50B…青色発光層、51…第一の発光層、52…第二の発光層、53…緑色発光層、531…緑色有機層、54…赤色発光層、541…赤色有機層、5B…青色発光領域、61,61A…第一の陽極側有機層、62,62A…第二の陽極側有機層、63,63A…第三の陽極側有機層、64,64A…第四の陽極側有機層、8…電子輸送層、9…電子注入層。

Claims (30)

  1.  陰極と、
     陽極と、
     前記陰極及び前記陽極の間に配置された発光領域と、
     前記陽極と前記発光領域の間に配置された正孔輸送帯域と、を含み、
     前記発光領域は、少なくとも1つの発光層を含み、
     前記正孔輸送帯域は、少なくとも、第一の陽極側有機層と、第二の陽極側有機層と、第三の陽極側有機層と、を有し、
     前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記陽極及び前記発光領域の間において、前記陽極側から、前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層の順に配置され、
     前記第一の陽極側有機層は、第一の有機材料と第二の有機材料とを含有し、
     前記第一の有機材料と前記第二の有機材料とは、互いに異なり、
     前記第一の陽極側有機層中の前記第二の有機材料の含有量が50質量%未満であり、
     前記第二の陽極側有機層は、下記一般式(C1)で表される化合物及び下記一般式(C3)で表される化合物からなる群から選択される少なくとも一種の化合物を含有し、
     前記第三の陽極側有機層は、下記一般式(C1)で表される化合物を含有し、
     ただし、前記第二の陽極側有機層は、前記第三の陽極側有機層が含有する化合物とは、異なる化合物を少なくとも1種以上含有し、
     前記第二の陽極側有機層に含まれる構成材料の屈折率NMと、前記第三の陽極側有機層に含まれる構成材料の屈折率NMとの差NM-NMが、下記数式(数N1)の関係を満たし、
     前記第三の陽極側有機層の膜厚が20nm以上である、
     有機エレクトロルミネッセンス素子。
     NM-NM≧0.05 …(数N1)
    Figure JPOXMLDOC01-appb-C000001

    (前記一般式(C1)において、
     LA1、LA2及びLA3は、それぞれ独立に、
      単結合、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     Ar111、Ar112及びAr113は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~50のアリール基、
      置換もしくは無置換の環形成原子数5~50の複素環基、又は
      -Si(RC1)(RC2)(RC3)であり、
     RC1、RC2及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
     RC1が複数存在する場合、複数のRC1は、互いに同一であるか、又は異なり、
     RC2が複数存在する場合、複数のRC2は、互いに同一であるか、又は異なり、
     RC3が複数存在する場合、複数のRC3は、互いに同一であるか、又は異なる。)
    Figure JPOXMLDOC01-appb-C000002

    (前記一般式(C3)において、
     LC1、LC2、LC3及びLC4は、それぞれ独立に、
      単結合、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     n2は、1、2、3又は4であり、
     n2が1の場合、LC5は、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     n2が2、3又は4の場合、複数のLC5は、互いに同一であるか、又は異なり、
     n2が2、3又は4の場合、複数のLC5は、
      互いに結合して置換もしくは無置換の単環を形成するか、
      互いに結合して置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないLC5は、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     Ar131、Ar132、Ar133及びAr134は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~50のアリール基、
      置換もしくは無置換の環形成原子数5~50の複素環基、又は
      -Si(RC1)(RC2)(RC3)であり、
     RC1、RC2及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
     RC1が複数存在する場合、複数のRC1は、互いに同一であるか、又は異なり、
     RC2が複数存在する場合、複数のRC2は、互いに同一であるか、又は異なり、
     RC3が複数存在する場合、複数のRC3は、互いに同一であるか、又は異なる。)
    (前記一般式(C1)で表される化合物及び前記一般式(C3)で表される化合物において、「置換もしくは無置換の」という場合における置換基は、-N(RC6)(RC7)で表される基ではなく、RC6及びRC7は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。)
  2.  前記一般式(C3)で表される化合物における下記一般式(C3-1)で表される第一のアミノ基と、下記一般式(C3-2)で表される第二のアミノ基とが、同じ基である、
     請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003

    (前記一般式(C3-1)及び(C3-2)において、*は、それぞれ、LC5との結合位置である。)
  3.  前記第三の陽極側有機層の膜厚が、20nm以上60nm以下である、
     請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
  4.  前記第三の陽極側有機層の前記陽極側の界面から、前記発光領域中の最も陽極側に配置された発光層の前記陽極側の界面までの距離が30nm以上である、
     請求項1から請求項3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  5.  前記第二の陽極側有機層に含まれる構成材料の屈折率NMと、前記第三の陽極側有機層に含まれる構成材料の屈折率NMとの差NM-NMが、下記数式(数N3)の関係を満たす、
     請求項1に記載の有機エレクトロルミネッセンス素子。
     NM-NM≧0.075 …(数N3)
  6.  前記第二の陽極側有機層に含まれる構成材料の屈折率NMと、前記第三の陽極側有機層に含まれる構成材料の屈折率NMとの差NM-NMが、下記数式(数N2)の関係を満たす、
     請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
     NM-NM≧0.10 …(数N2)
  7.  前記第二の陽極側有機層が含有する化合物は、いずれも、前記第三の陽極側有機層が含有する化合物とは、異なる、
     請求項1から請求項6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  8.  前記第二の陽極側有機層が含有する化合物の屈折率は、1.94以上である、
     請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  9.  前記第三の陽極側有機層が含有する化合物の屈折率は、1.89以下である、
     請求項1から請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  10.  前記発光領域は、蛍光発光性物質と有機化合物とを含有する、
     請求項1から請求項9のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  11.  前記発光領域は、1つの発光層を含む、
     請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  12.  前記発光領域は、1つの発光層のみからなる、
     請求項1に記載の有機エレクトロルミネッセンス素子。
  13.  前記発光領域は、2つの発光層のみからなる、
     請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  14.  第四の陽極側有機層をさらに有し、
     前記第四の陽極側有機層は、前記第三の陽極側有機層と前記発光領域との間に配置されている、
     請求項1から請求項13のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  15.  前記第一の陽極側有機層の膜厚、前記第二の陽極側有機層の膜厚、前記第三の陽極側有機層の膜厚及び前記第四の陽極側有機層の膜厚の合計が150nm以下である、
     請求項14に記載の有機エレクトロルミネッセンス素子。
  16.  前記第三の陽極側有機層と前記発光領域とが、直接、接している、
     請求項1から請求項15のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  17.  前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の比は、下記数式(数A3)の関係を満たす、
     請求項1から請求項16のいずれか一項に記載の有機エレクトロルミネッセンス素子。
     0.75<TL/TL<3.0 …(数A3)
    (TLは、前記第二の陽極側有機層の膜厚であり、TLは、前記第三の陽極側有機層の膜厚であり、膜厚の単位は、nmである。)
  18.  前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が100nm以上である、
     請求項1から請求項17のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  19.  前記第一の陽極側有機層の膜厚、前記第二の陽極側有機層の膜厚及び前記第三の陽極側有機層の膜厚の合計が150nm以下である、
     請求項1から請求項18のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  20.  前記第三の陽極側有機層は、第三の正孔輸送帯域材料を含有し、
     前記第三の正孔輸送帯域材料の正孔移動度μh(cHT3)は、1.0×10-5cm/Vsよりも大きく、
     前記第三の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT3)は、-5.6eV以下である、
     請求項1から請求項19のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  21.  前記第二の陽極側有機層は、第二の正孔輸送帯域材料を含有し、
     前記第三の陽極側有機層は、第三の正孔輸送帯域材料を含有し、
     前記第二の正孔輸送帯域材料と前記第三の正孔輸送帯域材料とは、互いに異なる化合物であり、
     前記第二の正孔輸送帯域材料の正孔移動度μh(cHT2)は、1.0×10-4cm/Vsよりも大きく、
     前記第三の正孔輸送帯域材料の正孔移動度μh(cHT3)は、1.0×10-5cm/Vsよりも大きく、
     前記第二の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT2)と、前記第三の正孔輸送帯域材料の最高被占軌道のエネルギー準位HOMO(cHT3)と、が下記数式(数B1)の関係を満たす、
     請求項1から請求項20のいずれか一項に記載の有機エレクトロルミネッセンス素子。
     HOMO(cHT2)<HOMO(cHT3) …(数B1)
  22.  前記第三の陽極側有機層は、第三の正孔輸送帯域材料を含有し、
     前記第三の正孔輸送帯域材料の一重項エネルギーが、3.12eVよりも大きい、
     請求項1から請求項21のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  23.  前記第三の陽極側有機層は、下記一般式(cHT3-11)で表される化合物、一般式(cHT3-2)で表される化合物、一般式(cHT3-31)で表される化合物及び一般式(cHT3-4)で表される化合物からなる群から選択される少なくともいずれかの化合物を含有する、
     請求項1から請求項22のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    Figure JPOXMLDOC01-appb-C000007

    (前記一般式(cHT3-11)、一般式(cHT3-2)、一般式(cHT3-31)及び一般式(cHT3-4)において、
     Ar311は、下記一般式(1-a)、一般式(1-b)、一般式(1-c)及び一般式(1-d)のいずれかで表される基であり、
     Ar312及びAr313は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~50のアリール基、
      置換もしくは無置換の環形成原子数5~50の複素環基、又は
      -Si(RC1)(RC2)(RC3)であり、
     RC1、RC2及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
     RC1が複数存在する場合、複数のRC1は、互いに同一であるか、又は異なり、
     RC2が複数存在する場合、複数のRC2は、互いに同一であるか、又は異なり、
     RC3が複数存在する場合、複数のRC3は、互いに同一であるか、又は異なり、
     LD1、LD2及びLD3は、それぞれ独立に、
      単結合、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     RD26~RD29のうち1つがLD1に結合する単結合であり、*kは、結合位置を表し、
     RD21~RD24並びにLD1に結合する単結合ではないRD26~RD29のうち隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     RD31~RD38のうち隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     RD47~RD50のうち1つがLD1に結合する単結合であり、*mは、結合位置を表し、
     RD41~RD44並びにLD1に結合する単結合ではないRD47~RD50のうち隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     Xは、酸素原子、硫黄原子又はC(RD45)(RD46)であり、
     RD45及びRD46からなる組が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     RD25、前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRD21~RD24、RD26~RD29、RD31~RD38、並びにRD41~RD50は、それぞれ独立に、
      水素原子、
      シアノ基、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      -Si(R901)(R902)(R903)で表される基、
      -O-(R904)で表される基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     前記一般式(cHT3-11)、一般式(cHT3-2)、一般式(cHT3-31)及び一般式(cHT3-4)で表される化合物中の、R901~R904は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     R901が複数ある場合、複数のR901は、互いに同一であるか、又は異なり、
     R902が複数ある場合、複数のR902は、互いに同一であるか、又は異なり、
     R903が複数ある場合、複数のR903は、互いに同一であるか、又は異なり、
     R904が複数ある場合、複数のR904は、互いに同一であるか、又は異なる。)
    Figure JPOXMLDOC01-appb-C000008

    (前記一般式(1-a)中、
     R51~R55のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
     R51~R55は、それぞれ独立に、
      水素原子、又は
      置換もしくは無置換の炭素数1~6のアルキル基であり、
     **は、LD1との結合位置を表す。)
    Figure JPOXMLDOC01-appb-C000009

    (前記一般式(1-b)中、
     R61~R68のうち1つは、*bに結合する単結合であり、
     *bに結合する単結合ではないR61~R68のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
     *bに結合する単結合ではないR61~R68は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~6のアルキル基、又は置換もしくは無置換の環形成炭素数6~12のアリール基であり、
     **は、LD1との結合位置を表す。)
    Figure JPOXMLDOC01-appb-C000010

    (前記一般式(1-c)中、
     R71~R80のうち1つは、*dに結合する単結合であり、
     *dに結合する単結合ではないR71~R80のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
     *dに結合する単結合ではないR71~R80は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~6のアルキル基、又は
      置換もしくは無置換の環形成炭素数6~12のアリール基であり、
     **は、LD1との結合位置を表す。)
    Figure JPOXMLDOC01-appb-C000011

    (前記一般式(1-d)中、
     R141~R145のうち1つは、*h1に結合する単結合であり、R141~R145のうち他の1つは、*h2に結合する単結合であり、
     *h1に結合する単結合ではなく、かつ、*h2に結合する単結合ではないR141~R145のうち隣接する2つ以上からなる組は、いずれも、互いに結合せず、
     R151~R155のうち隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R161~R165のうち隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     *h1に結合する単結合ではなく、かつ、*h2に結合する単結合ではないR141~R145、並びに前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR151~R155及びR161~R165は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~6のアルキル基、又は
      置換もしくは無置換の環形成炭素数6~12のアリール基であり、
     **は、LD1との結合位置を表す。)
  24.  前記第二の陽極側有機層は、下記一般式(cHT2-1)で表される化合物、一般式(cHT2-2)で表される化合物及び一般式(cHT2-3)で表される化合物からなる群から選択される少なくともいずれかの化合物を含有する、
     請求項1から請求項22のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000012

    Figure JPOXMLDOC01-appb-C000013

    Figure JPOXMLDOC01-appb-C000014

    (前記一般式(cHT2-1)、一般式(cHT2-2)及び一般式(cHT2-3)において、
     Ar112、Ar113、Ar121,Ar122、Ar123及びAr124は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~50のアリール基、
      置換もしくは無置換の環形成原子数5~50の複素環基、又は
      -Si(RC1)(RC2)(RC3)であり、
     RC1、RC2及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
     RC1が複数存在する場合、複数のRC1は、互いに同一であるか、又は異なり、
     RC2が複数存在する場合、複数のRC2は、互いに同一であるか、又は異なり、
     RC3が複数存在する場合、複数のRC3は、互いに同一であるか、又は異なり、
     LA1、LA2、LA3、LB1、LB2、LB3及びLB4は、それぞれ独立に、
      単結合、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     nbは、1、2、3又は4であり、
     nbが1の場合、LB5は、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     nbが2、3又は4の場合、複数のLB5は、互いに同一であるか、又は異なり、
     nbが2、3又は4の場合、複数のLB5は、
      互いに結合して置換もしくは無置換の単環を形成するか、
      互いに結合して置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないLB5は、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     RA35とRA36とからなる組が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     RA25、並びに前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRA35及びRA36は、それぞれ独立に、
      水素原子、
      シアノ基、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      -Si(R901)(R902)(R903)で表される基、
      -O-(R904)で表される基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     RA20~RA24のうち隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     RA30~RA34のうち隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRA20~RA24並びにRA30~RA34は、それぞれ独立に、
      水素原子、
      シアノ基、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      -Si(R901)(R902)(R903)で表される基、
      -O-(R904)で表される基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     複数のRA20は、互いに同一であるか、又は異なり、
     複数のRA30は、互いに同一であるか、又は異なり、
     前記一般式(cHT2-1)、一般式(cHT2-2)及び一般式(cHT2-3)で表される化合物中の、R901~R904は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     R901が複数ある場合、複数のR901は、互いに同一であるか、又は異なり、
     R902が複数ある場合、複数のR902は、互いに同一であるか、又は異なり、
     R903が複数ある場合、複数のR903は、互いに同一であるか、又は異なり、
     R904が複数ある場合、複数のR904は、互いに同一であるか、又は異なる。)
  25.  前記第二の陽極側有機層は、下記一般式(cHT2-1)で表される化合物、一般式(cHT2-2)で表される化合物及び一般式(cHT2-3)で表される化合物からなる群から選択される少なくともいずれかの化合物を含有する、
     請求項23に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000015

    Figure JPOXMLDOC01-appb-C000016

    Figure JPOXMLDOC01-appb-C000017

    (前記一般式(cHT2-1)、一般式(cHT2-2)及び一般式(cHT2-3)において、
     Ar112、Ar113、Ar121,Ar122、Ar123及びAr124は、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~50のアリール基、
      置換もしくは無置換の環形成原子数5~50の複素環基、又は
      -Si(RC1)(RC2)(RC3)であり、
     RC1、RC2及びRC3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
     RC1が複数存在する場合、複数のRC1は、互いに同一であるか、又は異なり、
     RC2が複数存在する場合、複数のRC2は、互いに同一であるか、又は異なり、
     RC3が複数存在する場合、複数のRC3は、互いに同一であるか、又は異なり、
     LA1、LA2、LA3、LB1、LB2、LB3及びLB4は、それぞれ独立に、
      単結合、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     nbは、1、2、3又は4であり、
     nbが1の場合、LB5は、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     nbが2、3又は4の場合、複数のLB5は、互いに同一であるか、又は異なり、
     nbが2、3又は4の場合、複数のLB5は、
      互いに結合して置換もしくは無置換の単環を形成するか、
      互いに結合して置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないLB5は、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
     RA35とRA36とからなる組が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     RA25、並びに前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRA35及びRA36は、それぞれ独立に、
      水素原子、
      シアノ基、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      -Si(R901)(R902)(R903)で表される基、
      -O-(R904)で表される基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     RA20~RA24のうち隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     RA30~RA34のうち隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRA20~RA24並びにRA30~RA34は、それぞれ独立に、
      水素原子、
      シアノ基、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      -Si(R901)(R902)(R903)で表される基、
      -O-(R904)で表される基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     複数のRA20は、互いに同一であるか、又は異なり、
     複数のRA30は、互いに同一であるか、又は異なり、
     前記一般式(cHT2-1)、一般式(cHT2-2)及び一般式(cHT2-3)で表される化合物中の、R901~R904は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     R901が複数ある場合、複数のR901は、互いに同一であるか、又は異なり、
     R902が複数ある場合、複数のR902は、互いに同一であるか、又は異なり、
     R903が複数ある場合、複数のR903は、互いに同一であるか、又は異なり、
     R904が複数ある場合、複数のR904は、互いに同一であるか、又は異なる。)
  26.  前記第二の陽極側有機層が含有する化合物は、モノアミン化合物である、
     請求項1から請求項25のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  27.  2つ以上の発光ユニットと、
     前記2つ以上の発光ユニット同士の間に配置された1つ以上の電荷発生層と、を有し、
     前記2つ以上の発光ユニットのうちの少なくとも1つが、第一の正孔輸送帯域としての前記正孔輸送帯域、及び第一の発光領域としての前記発光領域を含む第一の発光ユニットである、
     請求項1から請求項26のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  28.  有機エレクトロルミネッセンス表示装置であって、
     互いに対向して配置された陽極及び陰極を有し、
     青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、
     前記青色画素は、請求項1から請求項27のいずれか一項に記載の有機エレクトロルミネッセンス素子を前記青色有機EL素子として含み、
     前記緑色有機EL素子は、前記陽極と前記陰極との間に配置された緑色発光領域を有し、
     前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光領域を有し、
     前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色有機EL素子の前記発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられている、
     有機エレクトロルミネッセンス表示装置。
  29.  有機エレクトロルミネッセンス表示装置であって、
     互いに対向して配置された陽極及び陰極を有し、
     青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、
     前記青色画素、前記緑色画素及び前記赤色画素は、それぞれ、請求項1から請求項27のいずれか一項に記載の有機エレクトロルミネッセンス素子を前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子として含み、
     前記青色有機EL素子における前記発光領域は、前記陽極と前記陰極との間に配置された青色発光領域であり、
     前記緑色有機EL素子における前記発光領域は、前記陽極と前記陰極との間に配置された緑色発光領域であり、
     前記赤色有機EL素子における前記発光領域は、前記陽極と前記陰極との間に配置された赤色発光領域であり、
     前記第一の陽極側有機層、前記第二の陽極側有機層及び前記第三の陽極側有機層は、前記青色発光領域、前記緑色発光領域及び前記赤色発光領域のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられている、
     有機エレクトロルミネッセンス表示装置。
  30.  請求項1から請求項27のいずれか一項に記載の有機エレクトロルミネッセンス素子を搭載した、電子機器。
PCT/JP2022/000808 2021-01-13 2022-01-13 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器 WO2022154029A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237027504A KR20230131254A (ko) 2021-01-13 2022-01-13 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스표시 장치 및 전자 기기
CN202280009701.4A CN116761868A (zh) 2021-01-13 2022-01-13 有机电致发光元件、有机电致发光显示装置和电子设备

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2021003672 2021-01-13
JP2021-003672 2021-01-13
JP2021023381 2021-02-17
JP2021-023381 2021-02-17
JP2021-076715 2021-04-28
JP2021076715 2021-04-28
JP2021-096578 2021-06-09
JP2021096578 2021-06-09
JP2021-106128 2021-06-25
JP2021106128 2021-06-25
US17/511,477 US20220231231A1 (en) 2021-01-13 2021-10-26 Organic electroluminescent element, organic electroluminescent display device, and electronic device
US17/511,477 2021-10-26

Publications (1)

Publication Number Publication Date
WO2022154029A1 true WO2022154029A1 (ja) 2022-07-21

Family

ID=82405554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000808 WO2022154029A1 (ja) 2021-01-13 2022-01-13 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器

Country Status (4)

Country Link
US (1) US20220231231A1 (ja)
KR (1) KR20230131254A (ja)
CN (1) CN116761868A (ja)
WO (1) WO2022154029A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242927A (ja) * 2006-03-09 2007-09-20 Seiko Epson Corp 発光装置及び発光装置の製造方法
JP2011054668A (ja) * 2009-08-31 2011-03-17 Panasonic Electric Works Co Ltd 有機電界発光素子
WO2019088231A1 (ja) * 2017-11-01 2019-05-09 出光興産株式会社 トップエミッション型の有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス発光装置、及び電子機器
KR20190088030A (ko) * 2018-01-17 2019-07-25 주식회사 엘지화학 유기 발광 소자
WO2020080416A1 (ja) * 2018-10-16 2020-04-23 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2020080417A1 (ja) * 2018-10-16 2020-04-23 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2020116562A1 (ja) * 2018-12-05 2020-06-11 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2020127145A2 (de) * 2018-12-20 2020-06-25 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2020209307A1 (ja) * 2019-04-08 2020-10-15 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、及び化合物
WO2021025162A1 (ja) * 2019-08-08 2021-02-11 出光興産株式会社 新規化合物、それを用いた有機エレクトロルミネッセンス素子及び電子機器
WO2021049654A1 (ja) * 2019-09-13 2021-03-18 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766291B2 (en) * 2008-10-28 2014-07-01 The Regents Of The University Of Michigan Stacked white OLED having separate red, green and blue sub-elements
JP2011084717A (ja) * 2009-09-18 2011-04-28 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
CN102781906B (zh) 2010-01-26 2014-06-04 保土谷化学工业株式会社 具有三苯胺结构的化合物及有机电致发光器件
JP6486824B2 (ja) * 2013-08-09 2019-03-20 出光興産株式会社 有機エレクトロルミネッセンス用組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液及び有機エレクトロルミネッセンス素子
WO2016129536A1 (ja) * 2015-02-13 2016-08-18 出光興産株式会社 有機el発光装置および電子機器
KR101961346B1 (ko) * 2016-05-27 2019-03-25 주식회사 엘지화학 유기 발광 소자
JP7242283B2 (ja) 2018-03-08 2023-03-20 エスケーマテリアルズジェイエヌシー株式会社 有機電界発光素子
EP3939970B1 (en) 2019-03-15 2023-12-27 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence devices, organic electroluminescence device, and electronic device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242927A (ja) * 2006-03-09 2007-09-20 Seiko Epson Corp 発光装置及び発光装置の製造方法
JP2011054668A (ja) * 2009-08-31 2011-03-17 Panasonic Electric Works Co Ltd 有機電界発光素子
WO2019088231A1 (ja) * 2017-11-01 2019-05-09 出光興産株式会社 トップエミッション型の有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス発光装置、及び電子機器
KR20190088030A (ko) * 2018-01-17 2019-07-25 주식회사 엘지화학 유기 발광 소자
WO2020080416A1 (ja) * 2018-10-16 2020-04-23 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2020080417A1 (ja) * 2018-10-16 2020-04-23 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2020116562A1 (ja) * 2018-12-05 2020-06-11 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2020127145A2 (de) * 2018-12-20 2020-06-25 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2020209307A1 (ja) * 2019-04-08 2020-10-15 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、及び化合物
WO2021025162A1 (ja) * 2019-08-08 2021-02-11 出光興産株式会社 新規化合物、それを用いた有機エレクトロルミネッセンス素子及び電子機器
WO2021049654A1 (ja) * 2019-09-13 2021-03-18 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Also Published As

Publication number Publication date
CN116761868A (zh) 2023-09-15
US20220231231A1 (en) 2022-07-21
KR20230131254A (ko) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2021049653A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021049651A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021090932A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021132535A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021210582A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021210305A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021256564A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021090933A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021162057A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021090931A1 (ja) 有機el表示装置及び電子機器
WO2021090930A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021049655A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021049663A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022138950A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022154030A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022230844A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022260118A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022260117A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022114156A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス発光装置及び電子機器
WO2012005724A1 (en) Host material for organic light emitting devices
WO2021049661A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022154029A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022138948A1 (ja) 有機エレクトロルミネッセンス素子、発光装置、有機エレクトロルミネッセンス表示装置及び電子機器
JP2021044508A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022138949A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280009701.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237027504

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237027504

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP