WO2022260117A1 - 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器 - Google Patents

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器 Download PDF

Info

Publication number
WO2022260117A1
WO2022260117A1 PCT/JP2022/023245 JP2022023245W WO2022260117A1 WO 2022260117 A1 WO2022260117 A1 WO 2022260117A1 JP 2022023245 W JP2022023245 W JP 2022023245W WO 2022260117 A1 WO2022260117 A1 WO 2022260117A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
ring
carbon atoms
Prior art date
Application number
PCT/JP2022/023245
Other languages
English (en)
French (fr)
Inventor
行俊 甚出
悠太 東野
尚人 松本
拓史 塩見
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN202280035963.8A priority Critical patent/CN117337624A/zh
Priority to KR1020247000575A priority patent/KR20240021855A/ko
Publication of WO2022260117A1 publication Critical patent/WO2022260117A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths

Definitions

  • the present invention relates to an organic electroluminescence element, an organic electroluminescence display device, and an electronic device.
  • organic electroluminescence device When a voltage is applied to an organic electroluminescence device (hereinafter sometimes referred to as an "organic EL device"), holes are injected into the light-emitting layer from the anode, and electrons are injected into the light-emitting layer from the cathode. Then, in the light-emitting layer, the injected holes and electrons recombine to form excitons. At this time, singlet excitons are generated at a rate of 25% and triplet excitons are generated at a rate of 75% according to the electron spin statistical law. Fluorescent organic EL devices that use light emission from singlet excitons are being applied to full-color displays such as mobile phones and televisions, but the internal quantum efficiency is said to be limited to 25%. Therefore, studies have been made to improve the performance of organic EL elements.
  • TADF Thermally activated Delayed Fluorescence
  • ⁇ ST small energy difference
  • Patent Literature 1 Patent Literature 2, and Patent Literature 3 describe organic electroluminescence elements using delayed fluorescent compounds.
  • An object of the present invention is to provide an organic electroluminescence element and an organic electroluminescence display device capable of realizing high performance, particularly at least one of low voltage, high efficiency and long life, an electronic device equipped with the organic electroluminescence element, and the An object of the present invention is to provide an electronic device equipped with an organic electroluminescence display device.
  • an anode a cathode; a light-emitting layer included between the anode and the cathode; a first layer included between the anode and the light-emitting layer;
  • the light-emitting layer contains a delayed fluorescence compound
  • the first layer contains a first compound represented by the following general formula (3),
  • the ionization potential Ip(HT1) of the first compound satisfies the following formula (Equation 1)
  • An organic electroluminescence device is provided in which the hole mobility ⁇ h(HT1) of the first compound satisfies the following formula (Equation 2).
  • Ip(HT1) ⁇ 5.70 eV (Equation 1) ⁇ h(HT1) ⁇ 1.0 ⁇ 10 ⁇ 5 cm 2 /Vs (equation 2)
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, n is 0, 1, 2 or 3; L1 is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 50 ring-forming atoms, When multiple L 1 are present, the multiple L 1 are the same or different from each other, The set consisting of A 1 and A 2 is combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, A 1 and A 2 that do not form a substituted or unsubstituted monocyclic ring and do not form a substitute
  • R901 , R902 , R903 , R904 , R905 , R906 , R907 , R908 , R909 , R931 , R932 , R933 , R934 , R935 , R 936 and R 937 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the multiple R 901 are present, the multiple R 901 are the same or different from each other,
  • the multiple R 902 are present, the multiple R 902 are the same or different from each other,
  • multiple R 903 are present
  • an anode a cathode; a light-emitting layer included between the anode and the cathode; a first layer included between the anode and the light-emitting layer;
  • the light-emitting layer contains a delayed fluorescence compound
  • An organic electroluminescence device is provided in which the first layer contains a first compound represented by the following general formula (30).
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, n is 0, 1, 2 or 3; L1 is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 50 ring-forming atoms, When multiple L 1 are present, the multiple L 1 are the same or different from each other, The set consisting of A 1 and A 2 is combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, A 1 and A 2 that do not form a substituted or unsubstituted monocyclic ring and do not form a substitute
  • R901 , R902 , R903 , R904 , R905 , R906 , R907 , R908 , R909 , R931 , R932 , R933 , R934 , R935 , R 936 and R 937 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the multiple R 901 are present, the multiple R 901 are the same or different from each other,
  • the multiple R 902 are present, the multiple R 902 are the same or different from each other,
  • multiple R 903 the
  • an electronic device equipped with the above-described organic electroluminescence element according to one aspect of the present invention.
  • an organic electroluminescent display device comprising: having an anode and a cathode arranged opposite each other; Having a blue organic EL element as a blue pixel, a green organic EL element as a green pixel, and a red organic EL element as a red pixel,
  • the green pixel includes the above-described organic electroluminescence element according to one aspect of the present invention as the green organic EL element,
  • the green organic EL element is a green light-emitting layer as the light-emitting layer; said first layer disposed between said green light-emitting layer and said anode;
  • the blue organic EL element has a blue light-emitting layer arranged between the anode and the cathode, and a blue organic layer arranged between the blue light-emitting layer and the anode
  • the red organic EL element is an organic electroluminescence display device having a red light-emitting layer arranged between the anode and the cathode, and a
  • an electronic device equipped with the above-described organic electroluminescence display device according to one aspect of the present invention.
  • an organic electroluminescence element and an organic electroluminescence display device capable of achieving high performance, particularly at least one of low voltage, high efficiency, and long life, and an electronic device equipped with the organic electroluminescence element and an electronic device equipped with the organic electroluminescence display device.
  • FIG. 1 is a schematic diagram of an apparatus for measuring transient PL
  • FIG. 4 is a diagram showing an example of a decay curve of transient PL
  • FIG. 2 is a diagram showing the energy levels of compound M1 and compound M2 in the light-emitting layer of an example of the organic electroluminescence device according to the first embodiment of the present invention, and the relationship between energy transfer.
  • FIG. 1 is a schematic diagram of an apparatus for measuring transient PL
  • FIG. 4 is a diagram showing an example of a decay curve of transient PL
  • FIG. 2 is a diagram showing the energy levels of compound M1 and compound M2 in the light-emitting layer of an example of the organic electroluminescence device according to the first embodiment of the present invention, and the relationship between energy transfer.
  • FIG. 5 is a diagram showing energy levels of compound M1, compound M2, and compound M3 in a light-emitting layer of an example of the organic electroluminescence device according to the second embodiment of the present invention, and energy transfer relationships.
  • FIG. 10 is a diagram showing the relationship between energy levels and energy transfer of compound M2 and compound M4 in a light-emitting layer of an example of an organic electroluminescence device according to the third embodiment of the present invention. It is a figure which shows the schematic structure of another example of the organic electroluminescent element which concerns on 4th embodiment of this invention.
  • FIG. 10 is a diagram showing a schematic configuration of an example of an organic electroluminescence display device according to a sixth embodiment of the present invention
  • FIG. 12 is a diagram showing a schematic configuration of another example of the organic electroluminescence display device according to the sixth embodiment of the present invention.
  • a hydrogen atom includes isotopes with different neutron numbers, ie, protium, deuterium, and tritium.
  • a hydrogen atom that is, a hydrogen atom, a deuterium atom, or Assume that the tritium atoms are bonded.
  • the number of ring-forming carbon atoms refers to a compound having a structure in which atoms are cyclically bonded (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compounds, and heterocyclic compounds). represents the number of carbon atoms among the atoms that When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the number of ring-forming carbon atoms. The same applies to the "number of ring-forming carbon atoms" described below unless otherwise specified.
  • a benzene ring has 6 ring carbon atoms
  • a naphthalene ring has 10 ring carbon atoms
  • a pyridine ring has 5 ring carbon atoms
  • a furan ring has 4 ring carbon atoms.
  • the 9,9-diphenylfluorenyl group has 13 ring-forming carbon atoms
  • the 9,9′-spirobifluorenyl group has 25 ring-forming carbon atoms.
  • the number of ring-forming carbon atoms in the benzene ring substituted with the alkyl group is 6.
  • the naphthalene ring substituted with an alkyl group has 10 ring-forming carbon atoms.
  • the number of ring-forming atoms refers to compounds (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compound, and heterocyclic compound) represents the number of atoms constituting the ring itself. Atoms that do not constitute a ring (e.g., a hydrogen atom that terminates the bond of an atom that constitutes a ring) and atoms contained in substituents when the ring is substituted by substituents are not included in the number of ring-forming atoms. The same applies to the "number of ring-forming atoms" described below unless otherwise specified.
  • the pyridine ring has 6 ring-forming atoms
  • the quinazoline ring has 10 ring-forming atoms
  • the furan ring has 5 ring-forming atoms.
  • hydrogen atoms bonded to the pyridine ring or atoms constituting substituents are not included in the number of atoms forming the pyridine ring. Therefore, the number of ring-forming atoms of the pyridine ring to which hydrogen atoms or substituents are bonded is 6.
  • the expression "substituted or unsubstituted XX to YY carbon number ZZ group” represents the number of carbon atoms when the ZZ group is unsubstituted, and is substituted. Do not include the number of carbon atoms in the substituents.
  • "YY” is larger than “XX”, “XX” means an integer of 1 or more, and “YY” means an integer of 2 or more.
  • "YY" is larger than “XX”, “XX” means an integer of 1 or more, and "YY” means an integer of 2 or more.
  • an unsubstituted ZZ group represents a case where a "substituted or unsubstituted ZZ group" is an "unsubstituted ZZ group", and a substituted ZZ group is a "substituted or unsubstituted ZZ group”. is a "substituted ZZ group”.
  • "unsubstituted” in the case of "substituted or unsubstituted ZZ group” means that a hydrogen atom in the ZZ group is not replaced with a substituent.
  • a hydrogen atom in the "unsubstituted ZZ group” is a protium atom, a deuterium atom, or a tritium atom.
  • substituted in the case of “substituted or unsubstituted ZZ group” means that one or more hydrogen atoms in the ZZ group are replaced with a substituent.
  • substituted in the case of "a BB group substituted with an AA group” similarly means that one or more hydrogen atoms in the BB group are replaced with an AA group.
  • the number of ring-forming carbon atoms in the "unsubstituted aryl group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
  • the number of ring-forming atoms of the "unsubstituted heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5 to 18, unless otherwise specified. be.
  • the number of carbon atoms in the "unsubstituted alkyl group” described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
  • the number of carbon atoms in the "unsubstituted alkenyl group” described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
  • the number of carbon atoms in the "unsubstituted alkynyl group” described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
  • the number of ring-forming carbon atoms in the "unsubstituted cycloalkyl group” described herein is 3 to 50, preferably 3 to 20, more preferably 3 to 6, unless otherwise specified. be.
  • the number of ring-forming carbon atoms of the "unsubstituted arylene group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
  • the number of ring-forming atoms of the "unsubstituted divalent heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5, unless otherwise specified herein. ⁇ 18.
  • the number of carbon atoms in the "unsubstituted alkylene group” described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
  • the unsubstituted aryl group refers to the case where the "substituted or unsubstituted aryl group” is the “unsubstituted aryl group", and the substituted aryl group is the “substituted or unsubstituted aryl group” It refers to a "substituted aryl group."
  • the term “aryl group” includes both "unsubstituted aryl group” and "substituted aryl group.”
  • a "substituted aryl group” means a group in which one or more hydrogen atoms of an "unsubstituted aryl group” are replaced with a substituent.
  • substituted aryl group examples include, for example, a group in which one or more hydrogen atoms of the "unsubstituted aryl group” of Specific Example Group G1A below is replaced with a substituent, and a substituted aryl group of Specific Example Group G1B below.
  • Examples include:
  • the examples of the "unsubstituted aryl group” and the examples of the “substituted aryl group” listed here are only examples, and the “substituted aryl group” described herein includes the following specific examples A group in which the hydrogen atom bonded to the carbon atom of the aryl group itself in the "substituted aryl group” of Group G1B is further replaced with a substituent, and the hydrogen atom of the substituent in the "substituted aryl group” of Specific Example Group G1B below Furthermore, groups substituted with substituents are also included.
  • aryl group (specific example group G1A): phenyl group, a p-biphenyl group, m-biphenyl group, an o-biphenyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, benzoanthryl group, a phenanthryl group, a benzophenanthryl group, a phenalenyl group, a pyrenyl group, a chryseny
  • Substituted aryl group (specific example group G1B): an o-tolyl group, m-tolyl group, p-tolyl group, para-xylyl group, meta-xylyl group, an ortho-xylyl group, para-isopropylphenyl group, meta-isopropylphenyl group, an ortho-isopropylphenyl group, para-t-butylphenyl group, meta-t-butylphenyl group, ortho-t-butylphenyl group, 3,4,5-trimethylphenyl group, 9,9-dimethylfluorenyl group, 9,9-diphenylfluorenyl group, 9,9-bis(4-methylphenyl)fluorenyl group, 9,9-bis(4-isopropylphenyl)fluorenyl group, 9,9-bis(4-t-butylphenyl) fluorenyl group, a cyanophenyl group,
  • heterocyclic group is a cyclic group containing at least one heteroatom as a ring-forming atom. Specific examples of heteroatoms include nitrogen, oxygen, sulfur, silicon, phosphorus, and boron atoms.
  • a “heterocyclic group” as described herein is a monocyclic group or a condensed ring group.
  • a “heterocyclic group” as described herein is either an aromatic heterocyclic group or a non-aromatic heterocyclic group.
  • specific examples of the "substituted or unsubstituted heterocyclic group" described herein include the following unsubstituted heterocyclic groups (specific example group G2A), and substituted heterocyclic groups ( Specific example group G2B) and the like can be mentioned.
  • unsubstituted heterocyclic group refers to the case where “substituted or unsubstituted heterocyclic group” is “unsubstituted heterocyclic group”, and substituted heterocyclic group refers to “substituted or unsubstituted "Heterocyclic group” refers to a "substituted heterocyclic group”.
  • heterocyclic group refers to a "substituted heterocyclic group”.
  • a “substituted heterocyclic group” means a group in which one or more hydrogen atoms of an "unsubstituted heterocyclic group” are replaced with a substituent.
  • Specific examples of the "substituted heterocyclic group” include groups in which the hydrogen atoms of the "unsubstituted heterocyclic group” of the following specific example group G2A are replaced, and examples of the substituted heterocyclic groups of the following specific example group G2B. mentioned.
  • the examples of the "unsubstituted heterocyclic group” and the examples of the “substituted heterocyclic group” listed here are only examples, and the "substituted heterocyclic group” described herein specifically includes A group in which the hydrogen atom bonded to the ring-forming atom of the heterocyclic group itself in the "substituted heterocyclic group" of Example Group G2B is further replaced with a substituent, and a substituent in the "substituted heterocyclic group" of Specific Example Group G2B A group in which a hydrogen atom of is further replaced with a substituent is also included.
  • Specific example group G2A includes, for example, the following nitrogen atom-containing unsubstituted heterocyclic groups (specific example group G2A1), oxygen atom-containing unsubstituted heterocyclic groups (specific example group G2A2), sulfur atom-containing unsubstituted (specific example group G2A3), and a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4).
  • nitrogen atom-containing unsubstituted heterocyclic groups specifically example group G2A1
  • oxygen atom-containing unsubstituted heterocyclic groups specifically example group G2A2
  • sulfur atom-containing unsubstituted specifically example group G2A3
  • a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4).
  • Specific example group G2B includes, for example, the following substituted heterocyclic group containing a nitrogen atom (specific example group G2B1), substituted heterocyclic group containing an oxygen atom (specific example group G2B2), substituted heterocyclic ring containing a sulfur atom group (specific example group G2B3), and one or more hydrogen atoms of a monovalent heterocyclic group derived from a ring structure represented by the following general formulas (TEMP-16) to (TEMP-33) as a substituent Including substituted groups (example group G2B4).
  • an unsubstituted heterocyclic group containing a nitrogen atom (specific example group G2A1): pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, a thiazolyl group, an isothiazolyl group, a thiadiazolyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, pyrazinyl group, a triazinyl group, an indolyl group, an isoindolyl group, an indolizinyl group, a quinolidinyl group, quinolyl group, an isoquinolyl group, cinnolyl group, a phthalazinyl group, a quinazolinyl
  • an unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2): furyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, xanthenyl group, benzofuranyl group, an isobenzofuranyl group, a dibenzofuranyl group, a naphthobenzofuranyl group, a benzoxazolyl group, a benzisoxazolyl group, a phenoxazinyl group, a morpholino group, a dinaphthofuranyl group, an azadibenzofuranyl group, a diazadibenzofuranyl group, azanaphthobenzofuranyl group and diazanaphthobenzofuranyl group;
  • thienyl group an unsubstituted heterocyclic group containing a sulfur atom
  • thienyl group a thiazolyl group, an isothiazolyl group, a thiadiazolyl group, benzothiophenyl group (benzothienyl group), isobenzothiophenyl group (isobenzothienyl group), dibenzothiophenyl group (dibenzothienyl group), naphthobenzothiophenyl group (naphthobenzothienyl group), a benzothiazolyl group, a benzoisothiazolyl group, a phenothiazinyl group, a dinaphthothiophenyl group (dinaphthothienyl group), azadibenzothiophenyl group (azadibenzothienyl group), diazadibenzothiophenyl group (diazadibenzothiopheny
  • X A and Y A are each independently an oxygen atom, a sulfur atom, NH, or CH 2 . However, at least one of X A and Y A is an oxygen atom, a sulfur atom, or NH.
  • the monovalent heterocyclic groups derived from the represented ring structures include monovalent groups obtained by removing one hydrogen atom from these NH or CH2 .
  • a substituted heterocyclic group containing a nitrogen atom (specific example group G2B1): (9-phenyl)carbazolyl group, (9-biphenylyl)carbazolyl group, (9-phenyl) phenylcarbazolyl group, (9-naphthyl)carbazolyl group, diphenylcarbazol-9-yl group, a phenylcarbazol-9-yl group, a methylbenzimidazolyl group, ethylbenzimidazolyl group, a phenyltriazinyl group, a biphenylyltriazinyl group, a diphenyltriazinyl group, a phenylquinazolinyl group and a biphenylylquinazolinyl group;
  • a substituted heterocyclic group containing an oxygen atom (specific example group G2B2): phenyldibenzofuranyl group, methyldibenzofuranyl group, A t-butyldibenzofuranyl group and a monovalent residue of spiro[9H-xanthene-9,9′-[9H]fluorene].
  • a substituted heterocyclic group containing a sulfur atom (specific example group G2B3): a phenyldibenzothiophenyl group, a methyldibenzothiophenyl group, A t-butyldibenzothiophenyl group and a monovalent residue of spiro[9H-thioxanthene-9,9′-[9H]fluorene].
  • the "one or more hydrogen atoms of the monovalent heterocyclic group” means that at least one of the hydrogen atoms bonded to the ring-forming carbon atoms of the monovalent heterocyclic group, XA and YA is NH.
  • unsubstituted alkyl group refers to the case where "substituted or unsubstituted alkyl group” is “unsubstituted alkyl group”
  • substituted alkyl group refers to the case where "substituted or unsubstituted alkyl group” is It refers to a "substituted alkyl group”.
  • alkyl group includes both an "unsubstituted alkyl group” and a "substituted alkyl group”.
  • a “substituted alkyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkyl group” (specific example group G3A) are replaced with substituents, and substituted alkyl groups (specific examples Examples of group G3B) and the like can be mentioned.
  • the alkyl group in the "unsubstituted alkyl group” means a chain alkyl group.
  • the "unsubstituted alkyl group” includes a linear “unsubstituted alkyl group” and a branched “unsubstituted alkyl group”.
  • the examples of the "unsubstituted alkyl group” and the examples of the “substituted alkyl group” listed here are only examples, and the "substituted alkyl group” described herein includes specific example group G3B A group in which the hydrogen atom of the alkyl group itself in the "substituted alkyl group” of Specific Example Group G3B is further replaced with a substituent, and a group in which the hydrogen atom of the substituent in the "substituted alkyl group” of Specific Example Group G3B is further replaced by a substituent included.
  • Unsubstituted alkyl group (specific example group G3A): methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and t-butyl group.
  • Substituted alkyl group (specific example group G3B): a heptafluoropropyl group (including isomers), pentafluoroethyl group, 2,2,2-trifluoroethyl group and trifluoromethyl group;
  • Substituted or unsubstituted alkenyl group Specific examples of the "substituted or unsubstituted alkenyl group" described in the specification (specific example group G4) include the following unsubstituted alkenyl groups (specific example group G4A) and substituted alkenyl groups (specific example group G4B) and the like.
  • unsubstituted alkenyl group refers to the case where "substituted or unsubstituted alkenyl group” is “unsubstituted alkenyl group", "substituted alkenyl group” means "substituted or unsubstituted alkenyl group ” is a “substituted alkenyl group”.
  • alkenyl group simply referring to an “alkenyl group” includes both an “unsubstituted alkenyl group” and a “substituted alkenyl group”.
  • a “substituted alkenyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkenyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkenyl group” include groups in which the following "unsubstituted alkenyl group” (specific example group G4A) has a substituent, and substituted alkenyl groups (specific example group G4B). be done.
  • Unsubstituted alkenyl group (specific example group G4A): a vinyl group, allyl group, 1-butenyl group, 2-butenyl group, and 3-butenyl group.
  • Substituted alkenyl group (specific example group G4B): 1,3-butandienyl group, 1-methylvinyl group, 1-methylallyl group, 1,1-dimethylallyl group, a 2-methylallyl group and a 1,2-dimethylallyl group;
  • Substituted or unsubstituted alkynyl group Specific examples of the "substituted or unsubstituted alkynyl group" described in the specification (specific example group G5) include the following unsubstituted alkynyl groups (specific example group G5A).
  • the unsubstituted alkynyl group refers to the case where a "substituted or unsubstituted alkynyl group" is an "unsubstituted alkynyl group”.
  • alkynyl group simply referred to as an "alkynyl group” means "unsubstituted includes both "alkynyl group” and "substituted alkynyl group”.
  • a “substituted alkynyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkynyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkynyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkynyl group” (specific example group G5A) are replaced with substituents.
  • Substituted or unsubstituted cycloalkyl group Specific examples of the "substituted or unsubstituted cycloalkyl group” described in the specification (specific example group G6) include the following unsubstituted cycloalkyl groups (specific example group G6A), and substituted cycloalkyl groups ( Specific example group G6B) and the like can be mentioned.
  • unsubstituted cycloalkyl group refers to the case where "substituted or unsubstituted cycloalkyl group” is “unsubstituted cycloalkyl group", and substituted cycloalkyl group refers to "substituted or unsubstituted "Cycloalkyl group” refers to a "substituted cycloalkyl group”.
  • cycloalkyl group means an "unsubstituted cycloalkyl group” and a “substituted cycloalkyl group.” including both.
  • a “substituted cycloalkyl group” means a group in which one or more hydrogen atoms in an "unsubstituted cycloalkyl group” are replaced with a substituent.
  • Specific examples of the "substituted cycloalkyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted cycloalkyl group” (specific example group G6A) are replaced with substituents, and substituted cycloalkyl groups (Specific example group G6B) and the like.
  • the examples of the "unsubstituted cycloalkyl group” and the examples of the “substituted cycloalkyl group” listed here are only examples, and the "substituted cycloalkyl group” described herein specifically includes A group in which one or more hydrogen atoms bonded to a carbon atom of the cycloalkyl group itself in the “substituted cycloalkyl group” of Example Group G6B is replaced with a substituent, and in the “substituted cycloalkyl group” of Specific Example Group G6B A group in which a hydrogen atom of a substituent is further replaced with a substituent is also included.
  • cycloalkyl group (specific example group G6A): a cyclopropyl group, cyclobutyl group, a cyclopentyl group, a cyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group and 2-norbornyl group.
  • cycloalkyl group (specific example group G6B): 4-methylcyclohexyl group;
  • G7 A group represented by -Si (R 901 ) (R 902 ) (R 903 )
  • Specific examples of the group represented by —Si(R 901 )(R 902 )(R 903 ) described in the specification include: -Si(G1)(G1)(G1), - Si (G1) (G2) (G2), - Si (G1) (G1) (G2), -Si(G2)(G2)(G2), -Si(G3)(G3)(G3) and -Si(G6)(G6)(G6) is mentioned.
  • G1 is a "substituted or unsubstituted aryl group" described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G1's in -Si(G1)(G1)(G1) are the same or different from each other.
  • a plurality of G2 in -Si (G1) (G2) (G2) are the same or different from each other.
  • a plurality of G1's in -Si(G1)(G1)(G2) are the same or different from each other.
  • a plurality of G2 in -Si(G2)(G2)(G2) are the same or different from each other.
  • a plurality of G3 in -Si(G3)(G3)(G3) are the same or different from each other.
  • a plurality of G6 in -Si(G6)(G6)(G6) are the same or different from each other.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G9 A group represented by -S- (R 905 )
  • Specific examples of the group represented by -S-(R 905 ) described in the specification include: -S (G1), -S(G2), -S (G3) and -S (G6) are mentioned.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G1's in -N(G1)(G1) are the same or different from each other.
  • a plurality of G2 in -N(G2)(G2) are the same or different from each other.
  • a plurality of G3s in -N(G3)(G3) are the same or different from each other.
  • a plurality of G6 in -N(G6)(G6) are the same or different from each other.
  • halogen atom described in this specification (specific example group G11) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • the "substituted or unsubstituted fluoroalkyl group” described in this specification means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group” is replaced with a fluorine atom. Also includes a group (perfluoro group) in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group” are replaced with fluorine atoms.
  • the carbon number of the “unsubstituted fluoroalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • a "substituted fluoroalkyl group” means a group in which one or more hydrogen atoms of a “fluoroalkyl group” are replaced with a substituent.
  • substituted fluoroalkyl group described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted fluoroalkyl group” are further replaced with a substituent, and A group in which one or more hydrogen atoms of a substituent in a "substituted fluoroalkyl group” is further replaced with a substituent is also included.
  • Specific examples of the "unsubstituted fluoroalkyl group” include groups in which one or more hydrogen atoms in the above “alkyl group” (specific example group G3) are replaced with fluorine atoms.
  • Substituted or unsubstituted haloalkyl group "Substituted or unsubstituted haloalkyl group” described herein means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group" is replaced with a halogen atom Also includes a group in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group” are replaced with halogen atoms.
  • the carbon number of the “unsubstituted haloalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • a "substituted haloalkyl group” means a group in which one or more hydrogen atoms of a “haloalkyl group” are replaced with a substituent.
  • the "substituted haloalkyl group" described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted haloalkyl group” are further replaced with a substituent group, and a “substituted A group in which one or more hydrogen atoms of the substituent in the "haloalkyl group of" is further replaced with a substituent is also included.
  • Specific examples of the "unsubstituted haloalkyl group” include groups in which one or more hydrogen atoms in the above “alkyl group” (specific example group G3) are replaced with halogen atoms.
  • a haloalkyl group may be referred to as a halogenated alkyl group.
  • Substituted or unsubstituted alkoxy group A specific example of the "substituted or unsubstituted alkoxy group" described in this specification is a group represented by -O(G3), where G3 is the "substituted or unsubstituted alkyl group".
  • the carbon number of the "unsubstituted alkoxy group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • Substituted or unsubstituted alkylthio group A specific example of the "substituted or unsubstituted alkylthio group” described in this specification is a group represented by -S(G3), where G3 is the "substituted or unsubstituted unsubstituted alkyl group".
  • the carbon number of the "unsubstituted alkylthio group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • Substituted or unsubstituted aryloxy group Specific examples of the “substituted or unsubstituted aryloxy group” described in this specification are groups represented by —O(G1), where G1 is the “substituted or an unsubstituted aryl group”.
  • the number of ring-forming carbon atoms in the "unsubstituted aryloxy group” is 6-50, preferably 6-30, more preferably 6-18, unless otherwise specified in the specification.
  • a specific example of the "substituted or unsubstituted arylthio group” described in this specification is a group represented by -S(G1), wherein G1 is the "substituted or unsubstituted unsubstituted aryl group".
  • the number of ring-forming carbon atoms in the "unsubstituted arylthio group” is 6-50, preferably 6-30, more preferably 6-18, unless otherwise specified in the specification.
  • ⁇ "Substituted or unsubstituted trialkylsilyl group” Specific examples of the "trialkylsilyl group” described in this specification are groups represented by -Si(G3)(G3)(G3), where G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group”. A plurality of G3 in -Si(G3)(G3)(G3) are the same or different from each other. The number of carbon atoms in each alkyl group of the "trialkylsilyl group” is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified in the specification.
  • a specific example of the "substituted or unsubstituted aralkyl group” described in this specification is a group represented by -(G3)-(G1), wherein G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group", and G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • an "aralkyl group” is a group in which a hydrogen atom of an "alkyl group” is replaced with an "aryl group” as a substituent, and is one aspect of a “substituted alkyl group”.
  • An “unsubstituted aralkyl group” is an "unsubstituted alkyl group” substituted with an "unsubstituted aryl group", and the number of carbon atoms in the "unsubstituted aralkyl group” is unless otherwise specified herein. , 7-50, preferably 7-30, more preferably 7-18.
  • substituted or unsubstituted aralkyl group include a benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group , 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, and 2- ⁇ -naphthylisopropyl group.
  • a substituted or unsubstituted aryl group described herein is preferably a phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl- 4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl- 2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, phenanthryl group , pyrenyl group, chrysenyl group, triphenylenyl group, fluorenyl group, 9,9′-spirobifluorenyl group,
  • substituted or unsubstituted heterocyclic groups described herein are preferably pyridyl, pyrimidinyl, triazinyl, quinolyl, isoquinolyl, quinazolinyl, benzimidazolyl, phenyl, unless otherwise stated herein.
  • nantholinyl group carbazolyl group (1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, or 9-carbazolyl group), benzocarbazolyl group, azacarbazolyl group, diazacarbazolyl group , dibenzofuranyl group, naphthobenzofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, dibenzothiophenyl group, naphthobenzothiophenyl group, azadibenzothiophenyl group, diazadibenzothiophenyl group, ( 9-phenyl)carbazolyl group ((9-phenyl)carbazol-1-yl group, (9-phenyl)carbazol-2-yl group, (9-phenyl)carbazol-3-yl group, or (9-phenyl)carbazole -4-yl group), (9-
  • a carbazolyl group is specifically any one of the following groups unless otherwise specified in the specification.
  • the (9-phenyl)carbazolyl group is specifically any one of the following groups, unless otherwise stated in the specification.
  • a dibenzofuranyl group and a dibenzothiophenyl group are specifically any of the following groups, unless otherwise specified.
  • substituted or unsubstituted alkyl groups described herein are preferably methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, and t- butyl group and the like.
  • Substituted or unsubstituted divalent heterocyclic group Unless otherwise specified, the "substituted or unsubstituted divalent heterocyclic group” described herein is the above “substituted or unsubstituted heterocyclic group” except that one hydrogen atom on the heterocyclic ring is removed. is a divalent group derived from Specific examples of the "substituted or unsubstituted divalent heterocyclic group" (specific example group G13) include one hydrogen on the heterocyclic ring from the "substituted or unsubstituted heterocyclic group” described in specific example group G2. Examples include divalent groups derived by removing atoms.
  • Substituted or unsubstituted alkylene group Unless otherwise specified, the "substituted or unsubstituted alkylene group” described herein is derived from the above “substituted or unsubstituted alkyl group” by removing one hydrogen atom on the alkyl chain. is the base of the valence. Specific examples of the "substituted or unsubstituted alkylene group” (specific example group G14) include the "substituted or unsubstituted alkyl group” described in specific example group G3 by removing one hydrogen atom on the alkyl chain. Induced divalent groups and the like can be mentioned.
  • the substituted or unsubstituted arylene group described in this specification is preferably any group of the following general formulas (TEMP-42) to (TEMP-68), unless otherwise specified in this specification.
  • Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
  • * represents a binding position.
  • Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
  • Formulas Q9 and Q10 may be linked together through a single bond to form a ring.
  • * represents a binding position.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • * represents a bonding position.
  • the substituted or unsubstituted divalent heterocyclic group described herein is preferably any group of the following general formulas (TEMP-69) to (TEMP-102), unless otherwise specified herein is.
  • Q 1 to Q 9 are each independently a hydrogen atom or a substituent.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • R 921 and R 922 when “one or more pairs of two or more adjacent pairs of R 921 to R 930 are combined to form a ring", is a pair of R 921 and R 922 , a pair of R 922 and R 923 , a pair of R 923 and R 924 , a pair of R 924 and R 930 , a pair of R 930 and R 925 , R 925 and R 926 , R 926 and R 927 , R 927 and R 928 , R 928 and R 929 , and R 929 and R 921 .
  • one or more pairs means that two or more of the groups consisting of two or more adjacent groups may form a ring at the same time.
  • R 921 and R 922 are bonded together to form ring Q A
  • R 925 and R 926 are bonded together to form ring Q B
  • the general formula (TEMP-103) The represented anthracene compound is represented by the following general formula (TEMP-104).
  • a group consisting of two or more adjacent pairs forms a ring is not limited to the case where a group consisting of two adjacent "two” bonds as in the above example, but It also includes the case where a pair is combined.
  • R 921 and R 922 are bonded together to form ring Q A
  • R 922 and R 923 are bonded together to form ring Q C
  • the adjacent three R 921 , R 922 and R 923
  • the anthracene compound represented by the above general formula (TEMP-103) has It is represented by the general formula (TEMP-105).
  • ring Q A and ring Q C share R 922 .
  • the "monocyclic ring” or “condensed ring” to be formed may be a saturated ring or an unsaturated ring as the structure of only the formed ring. Even when “one pair of adjacent pairs" forms a “single ring” or a “fused ring", the “single ring” or “fused ring” is a saturated ring, or Unsaturated rings can be formed.
  • ring Q A and ring Q B formed in the general formula (TEMP-104) are each a “monocyclic ring” or a "fused ring”.
  • the ring Q A and the ring Q C formed in the general formula (TEMP-105) are “fused rings”.
  • the ring Q A and the ring Q C in the general formula (TEMP-105) form a condensed ring by condensing the ring Q A and the ring Q C. If the ring Q A of the general formula (TMEP-104) is a benzene ring, the ring Q A is monocyclic. When the ring Q A of the general formula (TMEP-104) is a naphthalene ring, the ring Q A is a condensed ring.
  • Unsaturated ring means an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • a “saturated ring” means an aliphatic hydrocarbon ring or a non-aromatic heterocyclic ring.
  • Specific examples of the aromatic hydrocarbon ring include structures in which the groups listed as specific examples in the specific example group G1 are terminated with a hydrogen atom.
  • Specific examples of the aromatic heterocyclic ring include structures in which the aromatic heterocyclic groups listed as specific examples in the specific example group G2 are terminated with a hydrogen atom.
  • Specific examples of the aliphatic hydrocarbon ring include structures in which the groups listed as specific examples in the specific example group G6 are terminated with a hydrogen atom.
  • Forming a ring means forming a ring only with a plurality of atoms of the mother skeleton, or with a plurality of atoms of the mother skeleton and one or more arbitrary elements.
  • the ring Q A formed by combining R 921 and R 922 shown in the general formula (TEMP-104) has the carbon atom of the anthracene skeleton to which R 921 is bonded and the anthracene skeleton to which R 922 is bonded. It means a ring formed by a skeleton carbon atom and one or more arbitrary elements.
  • R 921 and R 922 form a ring Q A , the carbon atom of the anthracene skeleton to which R 921 is bound, the carbon atom of the anthracene skeleton to which R 922 is bound, and four carbon atoms and form a monocyclic unsaturated ring, the ring formed by R 921 and R 922 is a benzene ring.
  • the "arbitrary element” is preferably at least one element selected from the group consisting of carbon element, nitrogen element, oxygen element, and sulfur element, unless otherwise specified in this specification.
  • a bond that does not form a ring may be terminated with a hydrogen atom or the like, or may be substituted with an “optional substituent” described later.
  • the ring formed is a heterocycle.
  • “One or more arbitrary elements” constituting a single ring or condensed ring are preferably 2 or more and 15 or less, more preferably 3 or more and 12 or less, unless otherwise specified in the specification. , more preferably 3 or more and 5 or less.
  • “monocyclic ring” and “condensed ring” “monocyclic ring” is preferred, unless otherwise stated in the present specification.
  • the “saturated ring” and the “unsaturated ring” the “unsaturated ring” is preferred, unless otherwise specified in the present specification.
  • “monocyclic” is preferably a benzene ring.
  • the “unsaturated ring” is preferably a benzene ring.
  • the substituent is, for example, the “optional substituent” described later.
  • substituents in the case where the above “monocyclic ring” or “condensed ring” has a substituent are the substituents described in the section “Substituents described herein” above.
  • the substituent is, for example, the “optional substituent” described later.
  • substituents in the case where the above "monocyclic ring” or “condensed ring” has a substituent are the substituents described in the section "Substituents described herein" above. The above is the case where “one or more pairs of two or more adjacent pairs are bonded to each other to form a substituted or unsubstituted monocyclic ring", and “one or more pairs of two or more adjacent pairs are bonded to each other to form a substituted or unsubstituted condensed ring"("bonded to form a ring").
  • the substituent in the case of “substituted or unsubstituted” is, for example, an unsubstituted alkyl group having 1 to 50 carbon atoms, an unsubstituted alkenyl group having 2 to 50 carbon atoms, an unsubstituted alkynyl group having 2 to 50 carbon atoms, an unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901 ) (R 902 ) (R 903 ), —O—(R 904 ), -S-(R 905 ), -N(R 906 )(R 907 ), halogen atom, cyano group, nitro group, a group selected from the group consisting of an unsubstituted aryl group
  • the two or more R 901 are the same or different from each other, when two or more R 902 are present, the two or more R 902 are the same or different from each other; when two or more R 903 are present, the two or more R 903 are the same or different from each other, when two or more R 904 are present, the two or more R 904 are the same or different from each other; when two or more R 905 are present, the two or more R 905 are the same or different from each other, when two or more R 906 are present, the two or more R 906 are the same or different from each other; When two or more R 907 are present, the two or more R 907 are the same or different from each other.
  • the substituents referred to above as "substituted or unsubstituted” are an alkyl group having 1 to 50 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a heterocyclic group having 5 to 50 ring atoms.
  • the substituents referred to above as "substituted or unsubstituted” are an alkyl group having 1 to 18 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a heterocyclic group having 5 to 18 ring atoms.
  • any adjacent substituents may form a “saturated ring” or an “unsaturated ring”, preferably a substituted or unsubstituted saturated 5 forming a membered ring, a substituted or unsubstituted saturated 6-membered ring, a substituted or unsubstituted unsaturated 5-membered ring, or a substituted or unsubstituted unsaturated 6-membered ring, more preferably a benzene ring do.
  • any substituent may have further substituents. Substituents further possessed by the optional substituents are the same as the above optional substituents.
  • the numerical range represented using “AA to BB” has the numerical value AA described before “AA to BB” as the lower limit, and the numerical value BB described after “AA to BB” as the upper limit.
  • the organic EL device includes an organic layer between both electrodes of an anode and a cathode.
  • This organic layer includes at least one layer composed of an organic compound.
  • this organic layer is formed by laminating a plurality of layers composed of an organic compound.
  • the organic layer may further contain an inorganic compound.
  • at least two of the organic layers are a light-emitting layer contained between the anode and the cathode and a first layer contained between the light-emitting layer and the anode.
  • the organic layer may be composed of, for example, a light-emitting layer and a first layer, or may include a layer that can be employed in an organic EL device.
  • Layers that can be employed in the organic EL device are not particularly limited, but are selected from the group consisting of, for example, a hole injection layer, a hole transport layer, an electron blocking layer, an electron injection layer, an electron transport layer, and a hole blocking layer. at least one layer of
  • the organic EL device of this embodiment has an anode, a cathode, a light-emitting layer included between the anode and the cathode, and a first layer included between the anode and the light-emitting layer.
  • the light-emitting layer contains a delayed fluorescence compound
  • the first layer contains a first compound represented by the following general formula (3)
  • the ionization potential Ip (HT1) of the first compound is the following Formula (1) is satisfied
  • the hole mobility ⁇ h(HT1) of the first compound satisfies the following formula (Formula 2).
  • a region composed of a plurality of organic layers arranged between the anode and the light-emitting layer may be referred to as a hole transport zone.
  • a layer commonly provided over a plurality of elements may be referred to as a common layer, and a layer not commonly provided over a plurality of elements may be referred to as a non-common layer.
  • organic EL elements are mounted as red pixels, green pixels, and blue pixels (RGB pixels) in an organic EL display device, the same material and the same film thickness are usually used for the RGB pixels from the viewpoint of improving mass productivity and reducing manufacturing costs.
  • a hole transport layer is formed as a common layer. In an organic EL display device equipped with RGB pixels, it is necessary to optimize the total film thickness of the hole transport band according to the emission wavelength for each pixel in order to adjust the cavity.
  • the pixel for cavity adjustment is an organic EL element that emits phosphorescent light
  • this has been dealt with by separately providing a thick layer (for example, an electron barrier layer) as a non-common layer, but cavity adjustment is performed.
  • a thick layer for example, an electron barrier layer
  • the pixel is an organic EL element that emits light by the TADF mechanism, it is necessary to increase the thickness of the non-common layer.
  • a first layer for example, an electron barrier layer included between a light-emitting layer and an anode has specific parameters (formula (1) and formula (number 2)
  • an amine compound the first compound represented by the general formula (3)
  • the hole injection property into the delayed fluorescence-emitting layer having a large absolute value of the ionization potential Ip can be improved. I found As a result, even when the first layer is thickened, it is thought that deterioration in device performance can be suppressed.
  • the organic EL element according to the present embodiment at least one of low voltage, high efficiency, and long life can be realized even when the first layer is thickened.
  • the element is mounted in an organic EL display device in which at least one of RGB pixels emits light by the TADF mechanism, cavity adjustment can be easily performed by simply increasing the film thickness of the first layer. can.
  • the mass productivity of the organic EL display device can be improved.
  • FIG. 1 shows a schematic configuration of an example of the organic EL element according to this embodiment.
  • the organic EL element 1 includes a translucent substrate 2 , an anode 3 , a cathode 4 , and an organic layer 10 arranged between the anode 3 and the cathode 4 .
  • the organic layer 10 is configured by laminating an anode-side organic layer 63, a first layer 61, a light-emitting layer 5, an electron transport layer 8, and an electron injection layer 9 in this order from the anode 3 side.
  • D1 represents the film thickness of the first layer 61 .
  • the hole-transporting zone includes the anode-side organic layer 63 and the first layer 61 .
  • the first layer 61 is preferably adjacent to the light-emitting layer 5 .
  • the first layer 61 is also preferably adjacent to the anode-side organic layer 63 .
  • the first layer 61 is preferably a hole transport layer or an electron blocking layer, more preferably an electron blocking layer.
  • the anode-side organic layer 63 is preferably adjacent to the first layer 61 .
  • the anode-side organic layer 63 is also preferably adjacent to the anode 3 .
  • the anode-side organic layer 63 is preferably a hole injection layer or a hole transport layer, more preferably a hole injection layer.
  • the material for the hole injection layer and the material for the hole transport layer described in ⁇ Structure of Organic EL Element> described later can be used.
  • the light-emitting layer 5 preferably does not contain a phosphorescent material (dopant material).
  • the light-emitting layer 5 preferably does not contain a phosphorescent metal complex.
  • the light-emitting layer 5 preferably does not contain a phosphorescent rare earth metal complex.
  • the light emitting layer 5 may contain a metal complex, it is preferable not to contain it.
  • the film thickness of the first layer is 5 nm or more. In one aspect of this embodiment, the film thickness of the first layer is 10 nm or more. In one aspect of this embodiment, the thickness of the first layer is 15 nm or more. In one aspect of this embodiment, the thickness of the first layer is 20 nm or more. In one aspect of this embodiment, the thickness of the first layer is 25 nm or more. In one aspect of this embodiment, the film thickness of the first layer is 30 nm or more.
  • the first layer contains a first compound represented by the following general formula (3).
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, n is 0, 1, 2 or 3; L1 is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 50 ring-forming atoms, When multiple L 1 are present, the multiple L 1 are the same or different from each other, The set consisting of A 1 and A 2 is combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, A 1 and A 2 that do not form a substituted or unsubstituted monocyclic ring and do not form a substitute
  • R901 , R902 , R903 , R904 , R905 , R906 , R907 , R908 , R909 , R931 , R932 , R933 , R934 , R935 , R 936 and R 937 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the multiple R 901 are present, the multiple R 901 are the same or different from each other,
  • the multiple R 902 are present, the multiple R 902 are the same or different from each other,
  • multiple R 903 are present
  • n is preferably 1 or 2, more preferably 1.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted dibenzofuranyl a substituted or unsubstituted dibenzothienyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted phenanthrenyl group.
  • Ar 1 and Ar 2 are each independently an unsubstituted phenyl group, an unsubstituted biphenyl group, an unsubstituted terphenyl group, an unsubstituted dibenzofuranyl group, and an unsubstituted dibenzothienyl group. , a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted carbazolyl group, an unsubstituted naphthyl group, or an unsubstituted phenanthrenyl group.
  • L 1 in the group represented by -(L 1 )n- is preferably a group represented by any one of the following general formulas (L1) to (L9).
  • one of the two * in the general formulas (L1) to (L9) is a six-membered ring carbon to which R 31 to R 38 are bonded. atom and any one of the five-membered ring carbon atoms to which A 1 to A 2 are bonded, and the other * is bonded to the nitrogen atom.
  • one of the two * in the general formulas (L1) to (L9) is a six-membered ring to which R 31 to R 38 are bonded. and any one of the carbon atoms of the five-membered ring to which A 1 to A 2 are bonded, or is bonded to another L 1 , and the other * is a nitrogen atom or another L 1 Join.
  • one or more pairs of groups consisting of two or more adjacent groups of Ra do not form a substituted or unsubstituted monocyclic ring, and a substituted or unsubstituted condensed ring It is also preferred not to form In the general formulas (L1) to (L9), one or more pairs of groups consisting of two or more adjacent groups of Ra are bonded to each other to form a substituted or unsubstituted monocyclic ring, or bonded to each other to form a substituted or unsubstituted condensed ring.
  • n is also preferably 1 or 2.
  • the first compound is preferably a compound represented by the following general formula (31A), (32A), (33A) or (34A).
  • a 1 , A 2 and R 31 to R 38 are each independently synonymous with A 1 , A 2 and R 31 to R 38 in general formula (3). and one or more sets of two or more adjacent Ra combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, one or more sets of adjacent two or more of R 311 to R 315 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, one or more sets of adjacent two or more of R 316 to R 320 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, Ra
  • Ra and R 311 to R 320 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • Ra is each independently hydrogen atom, an unsubstituted alkyl group having 1 to 50 carbon atoms, It is preferably an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or an unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, A hydrogen atom is more preferred.
  • n is also preferably 0.
  • the first compound is also preferably a compound represented by the following general formula (3-1), (3-2), (3-3) or (3-4).
  • a 1 , A 2 and R 31 to R 38 are each independently A 1 , A 2 and R 31 to is synonymous with R 38 ; one or more sets of adjacent two or more of R 311 to R 315 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, one or more sets of adjacent two or more of R 316 to R 320 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, R 311 to R 320 which do not form a substituted or unsubstituted monocyclic ring and which do not form a substituted or unsubstituted condensed ring are each independently synonymous with R 31 to R 38 in the general formula (3). is. )
  • R 311 to R 320 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • one or more pairs of groups consisting of two or more adjacent R 311 to R 315 are bonded to each other to form a substituted or unsubstituted monocyclic ring, or bonded to each other , to form a substituted or unsubstituted condensed ring.
  • one or more pairs of groups consisting of two or more adjacent R 316 to R 320 are bonded to each other to form a substituted or unsubstituted monocyclic ring, or bonded to each other , to form a substituted or unsubstituted condensed ring.
  • the substituents in the case of "substituted or unsubstituted” are each independently a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothienyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted carbazolyl group, A substituted or unsubstituted naphthyl group or a substituted or unsubstituted phenanthrenyl group is preferred.
  • the substituents in the case of "substituted or unsubstituted” are each independently an unsubstituted phenyl group, an unsubstituted biphenyl group, an unsubstituted dibenzofuranyl group, an unsubstituted dibenzothienyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted carbazolyl group, An unsubstituted naphthyl group or an unsubstituted phenanthrenyl group is more preferable.
  • the substituents in the case of "substituted or unsubstituted” are each independently preferably the same as the substituents in the case of "substituted or unsubstituted” in Ar 1 and Ar 2 . .
  • a 1 and A 2 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted is preferably an aryl group having 6 to 50 ring-forming carbon atoms.
  • a 1 and A 2 are each independently more preferably a methyl group or a substituted or unsubstituted phenyl group.
  • the ring formed by the bonding is preferably a substituted or unsubstituted condensed ring.
  • the ring formed by bonding to each other is more preferably a substituted or unsubstituted spirofluorene ring.
  • a 1 and A 2 are also preferably methyl groups.
  • R 31 to R 38 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, Alternatively, it is preferably a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
  • R 31 to R 38 are more preferably each independently a hydrogen atom or a substituted or unsubstituted phenyl group.
  • R 31 to R 38 are more preferably hydrogen atoms.
  • the ionization potential Ip(HT1) of the first compound preferably satisfies the following formula (Formula 1A).
  • the method for measuring the ionization potential Ip is as described in Examples. Ip(HT1) ⁇ 5.73 eV (Equation 1A)
  • the hole mobility ⁇ h(HT1) of the first compound preferably satisfies the following formula (Formula 2A). ⁇ h(HT1) ⁇ 5.0 ⁇ 10 ⁇ 5 cm 2 /Vs (Equation 2A)
  • the ionization potential Ip(HT1) of the first compound satisfies the above formula (Formula 1A) and the hole mobility ⁇ h(HT1) of the first compound satisfies the above formula (Formula 2A).
  • the hole mobility can be measured by performing impedance measurement using a mobility evaluation element manufactured by the following procedure.
  • the mobility evaluation element is produced, for example, by the following procedure.
  • the following compound HT-A is vapor-deposited on the film of the hole injection layer to form the hole transport layer.
  • a compound Target whose hole mobility is to be measured, is vapor-deposited to form a layer to be measured.
  • Metal aluminum (Al) is deposited on the layer to be measured to form a metal cathode.
  • the configuration of the above mobility evaluation element is schematically shown as follows. ITO(130)/HA-2(5)/HT-A(10)/Target(200)/Al(80)
  • the numbers in parentheses indicate the film thickness (nm).
  • An element for evaluating hole mobility is installed in an impedance measuring device, and impedance measurement is performed. Impedance measurement is performed by sweeping the measurement frequency from 1 Hz to 1 MHz. At that time, a DC voltage V is applied to the element simultaneously with an AC amplitude of 0.1V.
  • the modulus M is calculated from the measured impedance Z using the relationship of the formula (C1).
  • the electric time constant ⁇ of the mobility evaluation element is obtained from the above calculation formula (C2) from the frequency fmax showing the peak.
  • the hole mobility ⁇ h is calculated from the relationship of the following calculation formula (C3-2) using ⁇ obtained from the calculation formula (C2).
  • the square root E 1/2 of the electric field strength can be calculated from the relationship of the following formula (C4).
  • Calculation formula (C4): E 1/2 V 1/2 /d 1/2
  • Model 1260 of Solartron Co., Ltd. is used as an impedance measuring device, and for higher accuracy, Model 1296 permittivity measurement interface of Solartron Co., Ltd. can be used together.
  • the first compound can be produced by a known method.
  • Specific examples of the first compound include the following compounds. However, the present invention is not limited to specific examples of these compounds.
  • the light-emitting layer of the first embodiment contains at least a delayed fluorescent compound.
  • the light-emitting layer includes the compound M2 as a delayed fluorescent compound and the fluorescent compound M1 will be described below.
  • the light-emitting layer of the organic EL device of this embodiment contains a compound M2 as a delayed fluorescent compound and a fluorescent compound M1.
  • compound M2 is preferably a host material (also referred to as a matrix material).
  • Compound M1 is preferably a dopant material (also referred to as a guest material, emitter, or light-emitting material).
  • Compound M2 ⁇ Delayed Fluorescence Delayed fluorescence Delayed fluorescence is explained on pages 261 to 268 of "Physical properties of organic semiconductor devices" (edited by Chihaya Adachi, published by Kodansha). In that literature, if the energy difference ⁇ E13 between the excited singlet state and the excited triplet state of the fluorescent light-emitting material can be reduced, the reverse energy from the excited triplet state to the excited singlet state, which usually has a low transition probability, Migration is described to occur with high efficiency and to develop Thermally Activated delayed Fluorescence (TADF). Furthermore, FIG. 10.38 in the document explains the generation mechanism of delayed fluorescence. Compound M2 in the present embodiment is preferably a compound exhibiting thermally activated delayed fluorescence generated by such a mechanism.
  • delayed fluorescence emission can be confirmed by transient PL (Photo Luminescence) measurement.
  • Transient PL measurement is a method of irradiating a sample with a pulse laser to excite it, and measuring the attenuation behavior (transient characteristics) of PL emission after stopping the irradiation.
  • PL emission in the TADF material is classified into an emission component from singlet excitons generated by the first PL excitation and an emission component from singlet excitons generated via triplet excitons.
  • the lifetime of singlet excitons generated by the first PL excitation is on the order of nanoseconds and is very short. Therefore, the light emission from the singlet excitons is rapidly attenuated after irradiation with the pulse laser.
  • delayed fluorescence is emitted from singlet excitons generated via long-lived triplet excitons, so it gradually decays.
  • the emission intensity derived from delayed fluorescence can be obtained.
  • FIG. 2 A schematic diagram of an exemplary apparatus for measuring transient PL is shown in FIG. An example of a transient PL measurement method and delayed fluorescence behavior analysis using FIG. 2 will be described.
  • a transient PL measurement apparatus 100 in FIG. A streak camera 104 for forming a dimensional image and a personal computer 105 for taking in and analyzing a two-dimensional image are provided. Note that the measurement of transient PL is not limited to the apparatus shown in FIG.
  • the sample housed in the sample chamber 102 is obtained by forming a thin film on a quartz substrate, which is doped with a doping material at a concentration of 12% by mass with respect to the matrix material.
  • a thin film sample housed in the sample chamber 102 is irradiated with a pulse laser from the pulse laser unit 101 to excite the doping material. Emission is extracted in a direction 90 degrees to the irradiation direction of the excitation light, the extracted light is spectroscopically separated by the spectroscope 103 , and a two-dimensional image is formed in the streak camera 104 .
  • a two-dimensional image can be obtained in which the vertical axis corresponds to time, the horizontal axis corresponds to wavelength, and the bright spots correspond to emission intensity.
  • By cutting out this two-dimensional image along a predetermined time axis it is possible to obtain an emission spectrum in which the vertical axis is the emission intensity and the horizontal axis is the wavelength. Also, by cutting out the two-dimensional image along the wavelength axis, it is possible to obtain an attenuation curve (transient PL) in which the vertical axis is the logarithm of the emission intensity and the horizontal axis is time.
  • the following reference compound H1 was used as the matrix material, and the following reference compound D1 was used as the doping material to prepare the thin film sample A as described above, and the transient PL measurement was performed.
  • the attenuation curves were analyzed using the thin film sample A and thin film sample B described above.
  • a thin film sample B was prepared as described above using the following reference compound H2 as a matrix material and the aforementioned reference compound D1 as a doping material.
  • Fig. 3 shows attenuation curves obtained from transient PL measured for thin film sample A and thin film sample B.
  • the vertical axis is the luminous intensity and the horizontal axis is the time. Based on this emission decay curve, the fluorescence intensity of the fluorescence emitted from the singlet excited state generated by photoexcitation and the delayed fluorescence emitted from the singlet excited state generated by reverse energy transfer via the triplet excited state ratio can be estimated.
  • the ratio of the intensity of delayed fluorescence that decays slowly to the intensity of fluorescence that decays quickly is relatively large.
  • Prompt luminescence is luminescence immediately observed from the excited state after excitation with pulsed light (light emitted from a pulse laser) having a wavelength that the delayed fluorescent material absorbs.
  • Delayed luminescence is luminescence that is not observed immediately after excitation by the pulsed light, but is observed thereafter.
  • the amount and ratio of Prompt luminescence and Delay luminescence can be obtained by a method similar to that described in "Nature 492, 234-238, 2012" (reference document 1). It should be noted that the device used to calculate the amounts of Prompt emission and Delay emission is not limited to the device described in Reference Document 1 or the device described in FIG.
  • a sample prepared by the following method is used for measuring the delayed fluorescence of compound M2.
  • compound M2 is dissolved in toluene to prepare a dilute solution with an absorbance of 0.05 or less at the excitation wavelength to remove the self-absorption contribution.
  • the sample solution is freeze-degassed and sealed in a cell with a lid under an argon atmosphere to obtain an oxygen-free sample solution saturated with argon.
  • the fluorescence spectrum of the above sample solution is measured with a spectrofluorophotometer FP-8600 (manufactured by JASCO Corporation), and the fluorescence spectrum of the ethanol solution of 9,10-diphenylanthracene is also measured under the same conditions. Using the fluorescence area intensity of both spectra, Morris et al. J. Phys. Chem. 80 (1976) 969, to calculate the total fluorescence quantum yield.
  • the value of X D /X P is preferably 0.05 or more.
  • the amount and ratio of prompt luminescence and delay luminescence of compounds other than compound M2 in this specification are measured in the same manner as the amount and ratio of prompt luminescence and delay luminescence of compound M2.
  • the delayed fluorescent compound M2 is preferably a compound represented by the following general formula (2).
  • a 2 is a group represented by the following general formula (21), when k is 2, 3 or 4, the plurality of A 2 are the same or different;
  • D 2 is a group represented by the following general formula (22), when m is 2, 3 or 4, the plurality of D 2 are the same or different from each other;
  • CN is a cyano group.
  • Rx in the general formula (2), R 201 to R 205 which do not form the substituted or unsubstituted monocyclic ring in the general formula (21) and do not form the substituted or unsubstituted condensed ring, and R 211 to R 218 which do not form a substituted or unsubstituted monocyclic ring and which do not form a substituted or unsubstituted condensed ring in the general formula (22) are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms
  • R901 , R902 , R903 , R904 , R905 , R906 , R907 , R908 , R909 , R931 , R932 , R933 , R934 , R935 , R 936 and R 937 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the multiple R 901 are present, the multiple R 901 are the same or different from each other,
  • the multiple R 902 are present, the multiple R 902 are the same or different from each other,
  • multiple R 903 the
  • n in the general formula (2) is 2.
  • Compound M2 is also preferably a dicyanobenzene compound in which two cyano groups are bonded to a benzene ring.
  • Compound M2 is also preferably a compound represented by the following general formula (201).
  • Compound M2 is also preferably a compound represented by the following general formula (210) or general formula (230).
  • n in compound M2 is preferably 2.
  • Compound M2 is also preferably a compound represented by the following general formula (211).
  • D 21 and D 22 are each independently synonymous with D 2 ;
  • D21 and D22 are the same or different from each other.
  • k in compound M2 is preferably 1 or 2, more preferably 2.
  • Compound M2 is also preferably a compound represented by the following general formula (202) or general formula (203).
  • a 21 and A 22 are the same or different from each other.
  • Compound M2 is also preferably a compound represented by the following general formula (221).
  • a 21 and A 22 are each independently synonymous with A 2 ; D21 and D22 are each independently synonymous with D2. )
  • Compound M2 is also preferably a compound represented by the following general formula (222).
  • R 201 to R 205 each independently have the same meaning as R 201 to R 205 in general formula (21), and R 211 to R 218 each independently It has the same meaning as R 211 to R 218 in formula (22).
  • the plurality of R 201 are the same or different from each other
  • the plurality of R 202 are the same or different from each other
  • the plurality of R 203 are the same or different from each other
  • the plurality of R 204 are the same or different from each other
  • the plurality of R 205 are the same or different from each other
  • the plurality of R 211 are the same or different from each other
  • the plurality of R 212 are the same or different from each other different
  • the plurality of R 213 are the same or different from each other
  • the plurality of R 214 are the same or different from each other
  • the plurality of R 215 are the same or different from each other
  • the plurality of R 216 are
  • the plurality of R 217 may be the same or different from each other
  • the plurality of R 218 may be the same or different from each other.
  • Rx, R 201 to R 205 that do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring, and the substituted or unsubstituted monocyclic ring and R 211 to R 218 that do not form a substituted or unsubstituted condensed ring are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • Rx, R 201 to R 205 that do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring, and the substituted or unsubstituted monocyclic ring and R 211 to R 218 that do not form a substituted or unsubstituted condensed ring are each independently A hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms is preferred.
  • Rx, R 201 to R 205 that do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring, and the substituted or unsubstituted monocyclic ring and R 211 to R 218 which do not form a substituted or unsubstituted condensed ring are preferably hydrogen atoms.
  • a 2 in compound M2 is preferably any group selected from the group consisting of groups represented by the following general formulas (A21) to (A25).
  • a 21 and A 22 in compound M2 are each independently preferably any group selected from the group consisting of groups represented by the following general formulas (A21) to (A25).
  • R 200 that does not form a substituted or unsubstituted monocyclic ring and does not form a substituted or unsubstituted condensed ring is independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50
  • A2 in compound M2 is preferably any group selected from the group consisting of groups represented by general formulas (A21), (A24) and (A25).
  • a 21 and A 22 in compound M2 are each independently preferably any group selected from the group consisting of groups represented by the general formulas (A21), (A24) and (A25).
  • A2 in compound M2 is preferably a group represented by general formula (A21).
  • a 21 and A 22 in compound M2 are preferably groups represented by general formula (A21).
  • a 2 in compound M2 is a group represented by general formula (A21), and R 200 in general formula (A21) is preferably a hydrogen atom.
  • a 21 and A 22 in compound M2 are groups represented by general formula (A21), and R 200 in general formula (A21) is preferably a hydrogen atom.
  • R 200 in the general formulas (A21) to (A25) are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • R 200 in the general formulas (A21) to (A25) are each independently A hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms is preferred.
  • R 200 in general formulas (A21) to (A25) is preferably a hydrogen atom.
  • D2 in compound M2 is preferably any group selected from the group consisting of groups represented by the following general formulas (B21) to (B23).
  • D 21 and D 22 in compound M2 are each independently preferably any group selected from the group consisting of groups represented by the following general formulas (B21) to (B23).
  • R 211 to R 214 and R 241 to R 244 in the general formula (B22) are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • One or more pairs of adjacent two or more of R 251 to R 258 in the general formula (B23) are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, R 211 to R 218 in the general formula (B21), R 211 to R 214 which do not form a substituted or unsubstituted monocyclic ring and which do not form a substituted or unsubstituted condensed ring in the general formula (B22), and R 241 to R 244 and R 251 to R 258 which
  • X 21 is a sulfur atom, an oxygen atom, NR 261 or CR 262 R 263 ;
  • the set consisting of R 262 and R 263 is combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, R 261 , R 219 and R 220 that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted condensed ring, and R 219 and R 220 that do not form a substituted or unsubstituted mono
  • the benzene ring of the general formula (2) to which the groups represented by the general formulas (B21) to (B23) are bonded is explicitly shown in the general formula (2). is the benzene ring itself, not the benzene ring contained in A 2 , D 2 and Rx. Also in the compounds represented by the general formulas (201), (210), (230), (211), (202), (203) and (221) described later, The groups represented by the general formulas (B21) to (B23) are bonded to the benzene ring itself, as in the case of the general formula (2).
  • R 211 to R 218 in the general formula (B21), R 211 to R 214 and R 241 to R 244 in the general formula (B22), R 251 to R 258 in the general formula (B23), and R 219 and R 220 in the general formula (B24) are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • R 211 to R 218 in the general formula (B21), R 211 to R 214 and R 241 to R 244 in the general formula (B22), R 251 to R 258 in the general formula (B23), and R 219 and R 220 in the general formula (B24) are each independently A hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms is preferred.
  • R 211 to R 218 in the general formula (B21), R 211 to R 214 and R 241 to R 244 in the general formula (B22), R 251 to R 258 in general formula (B23) and R 219 and R 220 in general formula (B24) are preferably hydrogen atoms.
  • R 261 is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • R 262 and R 263 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • the general formula (B22) is any ring structure selected from the group consisting of the following general formulas (a1) to (a6), px and py in the general formula (B23) are each independently 2, at least one ring J is a ring structure represented by the general formula (B25), and at least one ring K is , is preferably a ring structure represented by the general formula (B25).
  • R 211 to R 214 and R 241 to R 244 are respectively synonymous with R 211 to R 214 and R 241 to R 244 in the general formula (B22);
  • X 21 , R 219 and R 220 are respectively synonymous with X 21 , R 219 and R 220 in the general formula (B25);
  • * in the general formulas (a1) to (a6) indicates the bonding position with the benzene ring in the general formula (2).
  • D2 in compound M2 preferably has the general formula (B22) or the general formula (B23).
  • D21 and D22 in compound M2 are each independently preferably represented by general formula ( B22) or general formula ( B23).
  • D2 in compound M2 is also preferably a group represented by the following general formula (121), general formula (122) or general formula (131).
  • D21 and D22 in compound M2 are each independently preferably a group represented by the following general formula ( 121), general formula (122) or general formula (131).
  • R 211 to R 214 and R 241 to R 244 have the same definitions as R 211 to R 214 and R 241 to R 244 in general formula (B22).
  • R 211 to R 214 and R 241 to R 244 have the same definitions as R 211 to R 214 and R 241 to R 244 in general formula (B22).
  • two are ring structures represented by the general formula (B24), and the remaining two are rings represented by the general formula (B25).
  • R 251 to R 258 have the same definitions as R 251 to R 258 in general formula (B23);
  • One of Ring J 1 and Ring J 2 is a ring structure represented by the above general formula (B24), and the other of Ring J 1 and Ring J 2 is a ring structure represented by the above general formula (B25).
  • One of ring K 1 and ring K 2 is a ring structure represented by the general formula (B24), and the other of ring K 1 and ring K 2 is a ring structure represented by the general formula (B25).
  • can be, * in the general formulas (121), (122) and (131) indicates the bonding position with the benzene ring in the general formula (2).
  • ring G 1 and ring G 3 are ring structures represented by the general formula (B24), and ring G 2 and ring G 4 are ring structures represented by the general formula (B25).
  • Ring J 1 is a ring structure represented by the above general formula (B24)
  • Ring J 2 is a ring structure represented by the above general formula (B25)
  • Ring K 1 is a ring structure represented by the above general formula (B25).
  • It is a ring structure represented by general formula (B24)
  • ring K 2 is preferably a ring structure represented by general formula (B25).
  • D 2 , D 21 and D 22 are each independently preferably a group represented by general formula (131).
  • D 2 , D 21 and D 22 are each independently a group represented by the following general formula (123), general formula (124), general formula (125) or general formula (132) is preferred.
  • R 211 to R 214 and R 241 to R 244 are each independently R 211 to R 214 in general formula (B22). and R 241 to R 244 , and R 191 to R 194 are each independently the same as R 219 and R 220 in the general formula (B24),
  • R 251 to R 258 each independently have the same meaning as R 251 to R 258 in the general formula (B23), and R 195 to R 198 each independently represent the general formula have the same meanings as R 219 and R 220 in (B24);
  • X 21 and X 22 are each independently synonymous with X 21 in general formula (B25). , * indicate the bonding position with the benzene ring in the general formula (2).
  • D 2 , D 21 and D 22 are each independently preferably a group represented by general formula (132).
  • X 21 in the group represented by general formula (132) is preferably a sulfur atom.
  • X 22 is a sulfur atom or an oxygen atom.
  • X21 in compound M2 is preferably a sulfur atom, an oxygen atom or CR262R263 .
  • X 21 in the compound M2 is preferably a sulfur atom or an oxygen atom.
  • the substituents in the case of "substituted or unsubstituted” are halogen atom, an unsubstituted alkyl group having 1 to 25 carbon atoms, It is preferably an unsubstituted aryl group having 6 to 25 ring carbon atoms or an unsubstituted heterocyclic group having 5 to 25 ring atoms.
  • the substituents in the case of "substituted or unsubstituted” are an unsubstituted alkyl group having 1 to 10 carbon atoms, It is preferably an unsubstituted aryl group having 6 to 12 ring carbon atoms or an unsubstituted heterocyclic group having 5 to 12 ring atoms.
  • the group represented by -O-(R 904 ) is a hydroxy group when R 904 is a hydrogen atom.
  • the group represented by -S-(R 905 ) is a thiol group when R 905 is a hydrogen atom.
  • the group represented by -Ge(R 933 )(R 934 )(R 935 ) is a substituted germanium group when R 933 , R 934 and R 935 are substituents.
  • the group represented by -B(R 936 )(R 937 ) is a substituted boryl group when R 936 and R 937 are substituents.
  • Compound M2 can be produced by a known method.
  • Compound M2 can be produced, for example, by the method described in Examples below.
  • compound M2 include the following compounds. However, the present invention is not limited to specific examples of these compounds.
  • compound M1 is not a phosphorescent metal complex.
  • Compound M1 is preferably not a heavy metal complex.
  • compound M1 is preferably not a metal complex.
  • Compound M1 is preferably a compound that does not show thermally activated delayed fluorescence.
  • a fluorescent material can be used as the compound M1.
  • fluorescent materials include bisarylaminonaphthalene derivatives, aryl-substituted naphthalene derivatives, bisarylaminoanthracene derivatives, aryl-substituted anthracene derivatives, bisarylaminopyrene derivatives, aryl-substituted pyrene derivatives, bisarylamino chrysene derivatives, aryl-substituted chrysene derivatives, bisarylaminofluoranthene derivatives, aryl-substituted fluoranthene derivatives, indenoperylene derivatives, acenaphthofluoranthene derivatives, compounds containing boron atoms, pyrromethene boron complex compounds, compounds having a pyrromethene skeleton, metal complexes of compounds having a pyrromethene skeleton, diketopyrrolopyrrol
  • the fluorescent compound M1 is preferably a compound represented by the following general formula (1).
  • Ring A, ring B, ring D, ring E and ring F each independently a ring structure selected from the group consisting of a substituted or unsubstituted aryl ring having 6 to 30 ring-forming carbon atoms and a substituted or unsubstituted heterocyclic ring having 5 to 30 ring-forming atoms; one of ring B and ring D is present, or both ring B and ring D are present; When both ring B and ring D are present, ring B and ring D share the bond connecting Zc and Zh, one of ring E and ring F is present, or both ring E and ring F are present; when both ring E and ring F are present, ring E and ring F share a bond connecting Zf and Zi; Za is a nitrogen atom or a carbon atom, Zb is ring B, if present, is a nitrogen or carbon atom; when ring B is absent, an oxygen atom, a sulfur atom,
  • the bond between Y and Za, the bond between Y and Zd, and the bond between Y and Ze are all single bonds, and these single bonds are covalent bonds, not coordinate bonds.
  • the heterocyclic ring includes, for example, a ring structure (heterocyclic ring) obtained by removing the bond from the "heterocyclic group” exemplified in the above “substituent described herein”. These heterocycles may have a substituent or may be unsubstituted.
  • the aryl ring includes, for example, a ring structure (aryl ring) obtained by removing the bond from the "aryl group” exemplified in the above "substituent described herein”. These aryl rings may have a substituent or may be unsubstituted.
  • compound M1 is also preferably a compound represented by the following general formula (11).
  • Ring A, ring D and ring E each independently a ring structure selected from the group consisting of a substituted or unsubstituted aryl ring having 6 to 30 ring-forming carbon atoms and a substituted or unsubstituted heterocyclic ring having 5 to 30 ring-forming atoms;
  • Za is a nitrogen atom or a carbon atom
  • Zb is an oxygen atom, a sulfur atom, NRb, C(Rb 1 )(Rb 2 ) or Si(Rb 3 )(Rb 4 );
  • Zc is a nitrogen atom or a carbon atom,
  • Zd is a nitrogen atom or a carbon atom,
  • Ze is a nitrogen atom or a carbon atom
  • Zf is a nitrogen atom or a carbon atom
  • Zg is an oxygen atom, a sulfur atom, NRg, C(Rg 1 )(Rg 2 ) or Si(Rg 3 )(Rg 4
  • compound M1 is also preferably a compound represented by the following general formula (16).
  • R 161 to R 177 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aralkyl group having
  • compound M1 is also preferably a compound represented by general formula (D10) below.
  • the compound represented by the general formula (1) is also preferably a compound represented by the following general formula (D10).
  • X 1 is CR 1 or a nitrogen atom
  • X2 is CR2 or a nitrogen atom
  • X3 is CR3 or a nitrogen atom
  • X4 is CR4 or a nitrogen atom
  • X5 is CR5 or a nitrogen atom
  • X6 is CR6 or a nitrogen atom
  • X7 is CR7 , a nitrogen atom, or a carbon atom bonded to X8 by a single bond
  • X 8 is CR 8 , a nitrogen atom, or a carbon atom bonded to X 7 by a single bond
  • X 9 is CR 9 or a nitrogen atom
  • X 10 is CR 10 or a nitrogen atom
  • X 11 is CR 11 or a nitrogen atom
  • X 12 is CR 12 or a nitrogen atom
  • Q is CR Q or a nitrogen atom
  • Y is NR Y1 , an oxygen atom, a sulfur atom, C(
  • the compound represented by the general formula (D10) is also preferably represented by the following general formula (D12).
  • R 1 to R 13 , R Y1 , and R Q are each independently as defined in general formula (D10).
  • the compound represented by the general formula (D10) is also preferably represented by the following general formula (D13).
  • R 1 to R 3 , R 5 to R 13 and R Q are each independently as defined in general formula (D10) above;
  • One or more sets of two or more adjacent R x1 to R x4 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other,
  • R X1 to R x4 which do not form a substituted or unsubstituted monocyclic ring and which do not form a substituted or unsubstituted condensed ring are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cyclo
  • R 1 to R 3 , R 5 to R 13 , R Q and R x1 to R x4 are each independently a hydrogen atom, substituted or unsubstituted is also preferably an alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • R 1 to R 3 , R 5 to R 13 , R Q and R x1 to R x4 are each independently a hydrogen atom, substituted or unsubstituted is also preferably an alkyl group having 1 to 25 carbon atoms, a substituted or unsubstituted aryl group having 6 to 25 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 25 ring atoms.
  • the compound represented by the general formula (D10) is also preferably represented by the following general formula (D14).
  • R 2 , R 6 , R 13 , R Q and R x2 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, It is a substituted or unsubstituted aryl group having 6 to 12 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 18 ring atoms.
  • the fluorescent compound M1 is also preferably a compound represented by the following general formula (20).
  • X is a nitrogen atom or a carbon atom bonded to Y
  • Y is a hydrogen atom or a substituent
  • R 21 to R 26 are each independently a hydrogen atom or a substituent, or a set of R 21 and R 22 , a set of R 22 and R 23 , a set of R 24 and R 25 , and R 25 and R any one or more pairs of the 26 pairs are bonded together to form a ring
  • Y as a substituent and R 21 to R 26 are each independently a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted halogenated alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted alkoxy
  • Compound M1 can be produced by a known method.
  • compound M1 Specific examples of compound M1 are shown below. However, the present invention is not limited to specific examples of these compounds.
  • the coordinate bond between the boron atom and the nitrogen atom in the pyrromethene skeleton can be represented in various ways, such as a solid line, a broken line, an arrow, or omitted. In this specification, they are represented by solid lines, dashed lines, or omitted.
  • compound M1 When compound M1 is a fluorescent compound, compound M1 preferably emits light with a maximum peak wavelength of 400 nm or more and 700 nm or less.
  • the maximum peak wavelength refers to the maximum emission intensity in the fluorescence spectrum measured for a toluene solution in which the compound to be measured is dissolved at a concentration of 10 ⁇ 6 mol/liter or more and 10 ⁇ 5 mol/liter or less. It refers to the peak wavelength of the fluorescence spectrum.
  • a spectrofluorophotometer F-7000, manufactured by Hitachi High-Tech Science Co., Ltd. is used as a measuring device.
  • Compound M1 preferably exhibits red or green emission.
  • red light emission refers to light emission having a maximum peak wavelength of fluorescence spectrum within the range of 600 nm or more and 660 nm or less.
  • the maximum peak wavelength of compound M1 is preferably 600 nm or more and 660 nm or less, more preferably 600 nm or more and 640 nm or less, still more preferably 610 nm or more and 630 nm or less.
  • green light emission refers to light emission having a maximum peak wavelength of fluorescence spectrum within the range of 500 nm or more and 560 nm or less.
  • the maximum peak wavelength of compound M1 is preferably 500 nm or more and 560 nm or less, more preferably 500 nm or more and 540 nm or less, still more preferably 510 nm or more and 540 nm or less.
  • blue light emission refers to light emission having a maximum peak wavelength of fluorescence spectrum within the range of 430 nm or more and 480 nm or less.
  • the maximum peak wavelength of the compound M1 is preferably 430 nm or more and 480 nm or less, more preferably 440 nm or more and 480 nm or less.
  • Measurement of the maximum peak wavelength of light emitted from the organic EL element is performed as follows.
  • a spectral radiance spectrum is measured by a spectral radiance meter CS-2000 (manufactured by Konica Minolta Co., Ltd.) when a voltage is applied to the organic EL element so that the current density is 10 mA/cm 2 .
  • the peak wavelength of the emission spectrum at which the emission intensity is maximum is measured, and this is defined as the maximum peak wavelength (unit: nm).
  • the singlet energy S 1 (Mat2) of the compound M2 as a delayed fluorescent compound and the singlet energy S 1 (Mat1) of the fluorescent compound M1 are expressed by the following formula ( It is preferable to satisfy the relationship of Equation 3).
  • the energy gap T 77K (Mat2) at 77 [K] of compound M2 and the energy gap T 77K (Mat1) at 77 [K] of compound M1 satisfy the relationship of the following formula (Equation 3A).
  • the fluorescent compound M1 mainly emits light in the light-emitting layer.
  • the energy gap at 77 [K] differs from the triplet energy that is usually defined. Measurement of triplet energy is performed as follows. First, a sample is prepared by sealing a solution of a compound to be measured in an appropriate solvent in a quartz glass tube.
  • the phosphorescence spectrum (vertical axis: phosphorescent emission intensity, horizontal axis: wavelength) was measured at a low temperature (77 [K]), and a tangent line was drawn with respect to the rise on the short wavelength side of the phosphorescence spectrum, Based on the wavelength value at the intersection of the tangent line and the horizontal axis, triplet energy is calculated from a predetermined conversion formula.
  • the heat-activated delayed fluorescence compound is preferably a compound having a small ⁇ ST. When ⁇ ST is small, even at a low temperature (77 [K]), intersystem crossing and reverse intersystem crossing are likely to occur, and an excited singlet state and an excited triplet state coexist.
  • the spectrum measured in the same manner as above includes light emission from both the excited singlet state and the excited triplet state, and it is difficult to distinguish from which state the light is emitted.
  • basically the value of the triplet energy is considered to be dominant. Therefore, in this embodiment, although the measurement method is the same as the normal triplet energy T, in order to distinguish the difference in its strict meaning, the value measured as follows is referred to as the energy gap T 77K . .
  • the phosphorescence spectrum (vertical axis: phosphorescent emission intensity, horizontal axis: wavelength) is measured at a low temperature (77 [K]), and a tangent line is drawn to the rise on the short wavelength side of this phosphorescent spectrum.
  • a tangent line to the rise on the short wavelength side of the phosphorescence spectrum is drawn as follows.
  • This tangent line increases in slope as the curve rises (ie as the vertical axis increases).
  • the tangent line drawn at the point where the value of this slope takes the maximum value is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
  • the maximum point with a peak intensity of 15% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and is closest to the maximum value on the short wavelength side.
  • the tangent line drawn at the point where the value is taken is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
  • F-4500 type spectrofluorophotometer body manufactured by Hitachi High Technology Co., Ltd. can be used for measurement of phosphorescence.
  • the measuring device is not limited to this, and measurement may be performed by combining a cooling device, a cryogenic container, an excitation light source, and a light receiving device.
  • a method for measuring the singlet energy S1 using a solution includes the following methods.
  • a 10 ⁇ mol/L toluene solution of the compound to be measured is prepared, placed in a quartz cell, and the absorption spectrum (vertical axis: absorption intensity, horizontal axis: wavelength) of this sample is measured at room temperature (300 K).
  • a tangent line is drawn with respect to the fall on the long wavelength side of this absorption spectrum, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis is substituted into the following conversion formula (F2) to calculate the singlet energy.
  • Conversion formula (F2): S 1 [eV] 1239.85/ ⁇ edge
  • Examples of the absorption spectrum measuring device include, but are not limited to, a spectrophotometer manufactured by Hitachi (device name: U3310).
  • a tangent to the fall on the long wavelength side of the absorption spectrum is drawn as follows. Among the maximum values of the absorption spectrum, consider the tangent line at each point on the curve when moving from the maximum value on the longest wavelength side to the long wavelength direction on the spectrum curve. This tangent line repeats the slope decreasing and then increasing as the curve falls (that is, as the value on the vertical axis decreases). The tangent line drawn at the point where the slope value takes the minimum value on the long wavelength side (except when the absorbance is 0.1 or less) is taken as the tangent line to the fall on the long wavelength side of the absorption spectrum. The maximum absorbance value of 0.2 or less is not included in the maximum value on the longest wavelength side.
  • the difference (S 1 ⁇ T 77K ) between the singlet energy S 1 and the energy gap T 77K at 77 [K] is defined as ⁇ ST.
  • the difference ⁇ ST (Mat2) between the singlet energy S 1 (Mat2) of compound M2 and the energy gap T 77K (Mat2) of compound M2 at 77 [K] is preferably less than 0.3 eV and more It is preferably less than 0.2 eV, more preferably less than 0.1 eV, still more preferably less than 0.01 eV. That is, ⁇ ST(Mat2) preferably satisfies any one of the following formulas (Equation 1A) to (Equation 1D).
  • ⁇ ST (Mat2) S 1 (Mat2) ⁇ T 77K (Mat2) ⁇ 0.3 eV (equation 1A)
  • ⁇ ST (Mat2) S 1 (Mat2) ⁇ T 77K (Mat2) ⁇ 0.2 eV (Equation 1B)
  • ⁇ ST (Mat2) S 1 (Mat2) ⁇ T 77K (Mat2) ⁇ 0.1 eV (Equation 1C)
  • ⁇ ST (Mat2) S 1 (Mat2) ⁇ T 77K (Mat2) ⁇ 0.01 eV (numerical 1D)
  • the organic EL element of this embodiment preferably emits red light or green light.
  • the maximum peak wavelength of the light emitted from the organic EL element is preferably 500 nm or more and 560 nm or less.
  • the maximum peak wavelength of light emitted from the organic EL element is preferably 600 nm or more and 660 nm or less.
  • the maximum peak wavelength of light emitted from the organic EL element is preferably 430 nm or more and 480 nm or less.
  • Measurement of the maximum peak wavelength of light emitted from the organic EL element is performed as follows.
  • a spectral radiance spectrum is measured by a spectral radiance meter CS-2000 (manufactured by Konica Minolta Co., Ltd.) when a voltage is applied to the organic EL element so that the current density is 10 mA/cm 2 .
  • the peak wavelength of the emission spectrum at which the emission intensity is maximum is measured, and this is defined as the maximum peak wavelength (unit: nm).
  • the thickness of the light-emitting layer in the organic EL element of the present embodiment is preferably 5 nm to 50 nm, more preferably 7 nm to 50 nm, and most preferably 10 nm to 50 nm. When it is 5 nm or more, formation of a light-emitting layer and adjustment of chromaticity are likely to be facilitated, and when it is 50 nm or less, an increase in driving voltage is likely to be suppressed.
  • the content ratio of the compound M2 and the compound M1 contained in the light-emitting layer is preferably, for example, within the following range.
  • the content of compound M2 is preferably 10% by mass or more and 80% by mass or less, more preferably 10% by mass or more and 60% by mass or less, and even more preferably 20% by mass or more and 60% by mass or less.
  • the content of compound M1 is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.01% by mass or more and 5% by mass or less, and 0.01% by mass or more and 1% by mass or less. is more preferable.
  • the light-emitting layer contains a material other than the compound M2 and the compound M1.
  • the light-emitting layer may contain only one type of compound M2, or may contain two or more types.
  • the light-emitting layer may contain only one type of compound M1, or may contain two or more types.
  • FIG. 4 is a diagram showing an example of the relationship between the energy levels of compound M2 and compound M1 in a light-emitting layer.
  • S0 represents the ground state.
  • S1(Mat2) represents the lowest excited singlet state of compound M2.
  • T1(Mat2) represents the lowest excited triplet state of compound M2.
  • S1 (Mat1) represents the lowest excited singlet state of compound M1.
  • T1 (Mat1) represents the lowest excited triplet state of compound M1.
  • the dashed arrow from S1 (Mat2) to S1 (Mat1) in FIG. 4 represents Forster energy transfer from the lowest excited singlet state of compound M2 to compound M1. As shown in FIG.
  • the organic EL element according to the first embodiment can be used for an organic electroluminescence display (hereinafter sometimes referred to as an organic EL display). Also, the organic EL element according to the first embodiment can be used in electronic devices such as display devices and light-emitting devices.
  • the substrate is used as a support for organic EL elements.
  • the substrate for example, glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • a flexible substrate is a (flexible) substrate that can be bent, and examples thereof include a plastic substrate.
  • Materials for forming the plastic substrate include, for example, polycarbonate, polyarylate, polyethersulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyimide, and polyethylene naphthalate. Inorganic deposition films can also be used.
  • anode For the anode formed on the substrate, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • ITO Indium Tin Oxide
  • indium oxide-tin oxide containing silicon or silicon oxide indium oxide-zinc oxide, tungsten oxide, and indium oxide containing zinc oxide , graphene and the like.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • nitrides of metal materials eg, titanium nitride
  • indium oxide-zinc oxide can be formed by a sputtering method using a target in which 1% by mass or more and 10% by mass or less of zinc oxide is added to indium oxide.
  • indium oxide containing tungsten oxide and zinc oxide contains 0.5% by mass or more and 5% by mass or less of tungsten oxide and 0.1% by mass or more and 1% by mass or less of zinc oxide relative to indium oxide.
  • a target it can be formed by a sputtering method.
  • it may be produced by a vacuum vapor deposition method, a coating method, an inkjet method, a spin coating method, or the like.
  • the hole injection layer formed in contact with the anode is formed using a composite material that facilitates hole injection regardless of the work function of the anode.
  • materials that can be used as electrode materials such as metals, alloys, electrically conductive compounds, and mixtures thereof, as well as elements belonging to Groups 1 and 2 of the Periodic Table of the Elements.
  • Elements belonging to group 1 or 2 of the periodic table which are materials with a small work function, i.e. alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca) and strontium ( Sr) and other alkaline earth metals, alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these can also be used.
  • alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca) and strontium ( Sr) and other alkaline earth metals, alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these can also be used.
  • alkali metals such as lithium (Li) and cesium (Cs)
  • cathode For the cathode, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a small work function (specifically, 3.8 eV or less).
  • cathode materials include elements belonging to Group 1 or Group 2 of the periodic table, ie, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), and calcium (Ca). and alkaline earth metals such as strontium (Sr), alloys containing these (e.g., MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these.
  • alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), and calcium (Ca).
  • alkaline earth metals such as strontium (Sr), alloys containing these (e.g., MgAg, AlLi), rare earth metals such as
  • a vacuum deposition method or a sputtering method can be used.
  • a coating method, an inkjet method, or the like can be used.
  • a cathode is formed using various conductive materials such as Al, Ag, ITO, graphene, silicon, or indium oxide-tin oxide containing silicon oxide, regardless of the magnitude of the work function. can do.
  • These conductive materials can be deposited using a sputtering method, an inkjet method, a spin coating method, or the like.
  • a hole injection layer is a layer containing a substance having a high hole injection property.
  • Substances with high hole injection properties include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, Tungsten oxide, manganese oxide, or the like can be used.
  • TDATA 4,4′,4′′-tris(N,N-diphenylamino)triphenylamine
  • TDATA 4,4′,4′′-tris(N,N-diphenylamino)triphenylamine
  • MTDATA 4,4′ , 4′′-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine
  • DPAB 4,4′-bis[N-(4-diphenylaminophenyl)-N-phenyl Amino]biphenyl
  • DNTPD 1,3,5-tris[N-(4-diphenylaminophenyl)-N-phenylamino]benzene
  • DPA3B 1,3,5-tris[N-(4-diphenylaminophenyl)-N-phenylamino]benzene
  • high-molecular compounds can also be used as substances with high hole-injection properties.
  • PVK poly(N-vinylcarbazole)
  • PVTPA poly(4-vinyltriphenylamine)
  • PTPDMA poly[N-(4- ⁇ N'-[4-(4-diphenylamino) phenyl]phenyl-N'-phenylamino ⁇ phenyl)methacrylamide]
  • PTPDMA poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine]
  • polymer compounds such as Poly-TPD).
  • polymer compounds added with acids such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS) and polyaniline/poly(styrenesulfonic acid) (PAni/PSS) are used.
  • PDOT/PSS poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid)
  • PAni/PSS polyaniline/poly(styrenesulfonic acid)
  • a hole-transport layer is a layer containing a substance having a high hole-transport property.
  • Aromatic amine compounds, carbazole derivatives, anthracene derivatives and the like can be used in the hole transport layer.
  • NPB 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl
  • TPD N,N'-bis(3-methylphenyl)-N,N'- Diphenyl-[1,1′-biphenyl]-4,4′-diamine
  • BAFLP 4-phenyl-4′-(9-phenylfluoren-9-yl)triphenylamine
  • BAFLP 4-phenyl-4′-bis[N-(9,9-dimethylfluoren-2-yl)-N-phenylamino]biphenyl
  • DFLDPBi 4,4′,4′′-triphenyl
  • CBP 9-[4-(N-carbazolyl)]phenyl-10-phenylanthracene (CzPA), 9-phenyl-3-[4-(10-phenyl-9-anthryl)phenyl]
  • Carbazole derivatives such as -9H-carbazole (PCzPA) and anthracene derivatives such as t-BuDNA, DNA, and DAnth may also be used.
  • Polymer compounds such as poly(N-vinylcarbazole) (abbreviation: PVK) and poly(4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • the layer containing a substance with a high hole-transport property is not limited to a single layer, and may be a stack of two or more layers containing the above substances.
  • the electron transport layer is a layer containing a substance having a high electron transport property.
  • the electron transport layer contains 1) metal complexes such as aluminum complexes, beryllium complexes and zinc complexes, 2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives and phenanthroline derivatives, and 3) polymer compounds. can be used.
  • low-molecular-weight organic compounds include Alq, tris(4-methyl-8-quinolinolato)aluminum (abbreviation: Almq 3 ), bis(10-hydroxybenzo[h]quinolinato)beryllium (abbreviation: BeBq 2 ), Metal complexes such as BAlq, Znq, ZnPBO, and ZnBTZ can be used.
  • 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole abbreviation: PBD
  • 1,3-bis[5- (ptert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene abbreviation: OXD-7
  • 3-(4-tert-butylphenyl)-4-phenyl-5-(4- biphenylyl)-1,2,4-triazole abbreviation: TAZ
  • Complex compounds such as triazole (abbreviation: p-EtTAZ), bathophenanthroline (abbreviation: BPhen), bathocuproine (abbreviation: BCP), 4,4'-bis(5-methylbenzoxa
  • Benzimidazole compounds can be preferably used in this embodiment.
  • the substances described here are mainly substances having an electron mobility of 10 ⁇ 6 cm 2 /(V ⁇ s) or more. Note that a substance other than the above substances may be used for the electron-transporting layer as long as the substance has higher electron-transporting property than hole-transporting property. Further, the electron transport layer may be composed of a single layer, or may be composed of two or more layers of the above substances laminated.
  • a polymer compound can also be used for the electron transport layer.
  • poly[(9,9-dihexylfluorene-2,7-diyl)-co-(pyridine-3,5-diyl)] (abbreviation: PF-Py)
  • poly[(9,9-dioctylfluorene-2 ,7-diyl)-co-(2,2′-bipyridine-6,6′-diyl)] abbreviation: PF-BPy
  • PF-BPy poly[(9,9-dioctylfluorene-2 ,7-diyl)-co-(2,2′-bipyridine-6,6′-diyl)]
  • the electron injection layer is a layer containing a substance with high electron injection properties.
  • the electron injection layer includes lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiOx), and the like.
  • Alkali metals such as, alkaline earth metals, or compounds thereof can be used.
  • a substance having an electron-transporting property containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a substance containing magnesium (Mg) in Alq, or the like may be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • a composite material has excellent electron-injecting and electron-transporting properties because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material that is excellent in transporting the generated electrons.
  • a substance (metal complex, heteroaromatic compound, etc.) constituting the electron transport layer described above is used. be able to.
  • the electron donor any substance can be used as long as it exhibits an electron donating property with respect to an organic compound.
  • alkali metals, alkaline earth metals, and rare earth metals are preferred, and examples include lithium, cesium, magnesium, calcium, erbium, and ytterbium.
  • alkali metal oxides and alkaline earth metal oxides are preferred, and examples thereof include lithium oxide, calcium oxide and barium oxide.
  • Lewis bases such as magnesium oxide can also be used.
  • An organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • the organic EL element 1 of this embodiment includes a hole transport zone having one or more organic layers between the anode 3 and the light emitting layer 5 .
  • the hole-transporting zone is composed of the first layer 61 and the anode-side organic layer 63 .
  • the hole transport zone preferably comprises multiple organic layers.
  • the method for forming each layer of the organic EL element of the present embodiment is not limited to those specifically mentioned above, but dry film formation methods such as a vacuum deposition method, a sputtering method, a plasma method, and an ion plating method, and spin coating methods.
  • a known method such as a coating method, a dipping method, a flow coating method, or a wet film forming method such as an inkjet method can be employed.
  • the film thickness of each organic layer of the organic EL element of the present embodiment is not particularly limited except as mentioned above. A range of several nm to 1 ⁇ m is usually preferable because an applied voltage is required and the efficiency deteriorates.
  • the organic EL device of the second embodiment differs from the organic EL device of the first embodiment in that the light-emitting layer includes the delayed fluorescent compound M2, the fluorescent compound M1, and the compound M3. Other points are the same as in the first embodiment. That is, in the organic EL device of the second embodiment, the light-emitting layer contains the delayed fluorescent compound M2, the fluorescent light-emitting compound M1, and the compound M3, and the first layer is the first compound (the general compound represented by formula (3)), the ionization potential Ip(HT1) of the first compound satisfies the above formula (Formula 1), and the hole mobility ⁇ h(HT1) of the first compound satisfies the above formula (Formula 2) is satisfied.
  • the first compound the general compound represented by formula (3)
  • the compound M2 contained in the light-emitting layer is preferably a host material
  • the compound M1 is preferably a dopant material
  • the compound M3 is preferably a host material.
  • One of compound M2 and compound M3 may be referred to as a first host material, and the other may be referred to as a second host material.
  • the compound M2 described in the first embodiment can be used.
  • the compound M1 the compound M1 described in the first embodiment can be used.
  • the first compound the first compound described in the first embodiment can be used.
  • Compound M3 may be a thermally activated delayed fluorescent compound or a compound that does not exhibit thermally activated delayed fluorescence, but is preferably a compound that does not exhibit thermally activated delayed fluorescence.
  • compound M3 is preferably a compound represented by the following general formula (3X) or (3Y).
  • A3 is a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms
  • L3 is single bond, a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring atoms, two groups selected from the group consisting of a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms and a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms are bonded a divalent group formed, or a substituted or unsubstituted arylene group having 6 to 30 ring-forming carbon atoms and a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms
  • R901 , R902 , R903 , R904 , R905 , R906 , R907 , R908 , R909 , R931 , R932 , R933 , R934 , R935 , R936 and R 937 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the multiple R 901 are present, the multiple R 901 are the same or different from each other,
  • the multiple R 902 are present, the multiple R 902 are the same or different from each other,
  • multiple R 903 the multiple R 90
  • Compound M3 is also preferably a compound represented by any one of the following general formulas (31) to (36).
  • a 3 and L 3 are respectively synonymous with A 3 and L 3 in the general formula (3X)
  • one or more sets of adjacent two or more of R 341 to R 350 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • X 31 is a sulfur atom, an oxygen atom, NR 352 or CR 353 R 354 ;
  • the set consisting of R 353 and R 354 is combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, R 341 to R 350 and R 352 that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted condensed ring, and R 352 do not
  • R 352 is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • R 353 and R 354 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • X 31 is preferably a sulfur atom or an oxygen atom.
  • a 3 is preferably a group represented by any one of general formulas (A31) to (A37) below.
  • A3 is also preferably a group represented by general formula (A34), (A35) or (A37).
  • Compound M3 is also preferably a compound represented by any one of the following general formulas (311) to (316).
  • L 3 has the same definition as L 3 in the general formula (3X)
  • One or more sets of two or more adjacent ones of the plurality of R 300 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • one or more sets of adjacent two or more of R 341 to R 350 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, R 300 that does not form a substituted or unsubstituted monocyclic ring and does not form a substituted or unsubstituted condensed ring, and R 300 that does not form a substituted or unsubstituted monocyclic ring and does not form a substituted or unsubstituted R 341 to
  • Compound M3 is also preferably a compound represented by the following general formula (321).
  • L 3 has the same definition as L 3 in the general formula (3X), R 31 to R 38 and R 301 to R 308 each independently form R 31 to R 38 which do not form the above substituted or unsubstituted monocyclic ring and which do not form the above substituted or unsubstituted condensed ring; Synonymous. )
  • L 3 is preferably a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms.
  • L3 is single bond, a substituted or unsubstituted phenylene group, A substituted or unsubstituted biphenylene group or a substituted or unsubstituted terphenylene group is preferred.
  • L3 is preferably a group represented by general formula (317) below.
  • R 310 each independently has the same definition as R 31 to R 38 that do not form the above-mentioned substituted or unsubstituted monocyclic ring and do not form the above-mentioned substituted or unsubstituted condensed ring; , indicates the binding position.
  • L3 preferably also contains a divalent group represented by general formula (318) or general formula (319) below. In compound M3, L3 is also preferably a divalent group represented by general formula (318) or general formula (319) below.
  • Compound M3 is also preferably a compound represented by the following general formula (322) or general formula (323).
  • L31 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring atoms, or a substituted or unsubstituted arylene group having 6 to 50 ring atoms, and a substituted or unsubstituted 5 to 50 ring atoms is a divalent group formed by combining two groups selected from the group consisting of divalent heterocyclic groups of provided that L 31 includes a divalent group represented by the following general formula (318) or general formula (319), R 31 to R 38 , R 300 and R 321 to R 328 each independently do not form the above-mentioned substituted or unsubstituted monocyclic ring and do not form the above-mentioned substituted or unsubstituted condensed ring. Synonymous with R38. )
  • R 302 in the general formula (318), R 303 in the general formula (318), R 303 in the general formula (319), R 304 not forming a ring represented by the general formula (320), and the general R 305 in formula (320) is each independently synonymous with R 31 to R 38 which do not form a substituted or unsubstituted monocyclic ring and which do not form a substituted or unsubstituted condensed ring;
  • Each * in the general formulas (318) to (320) indicates a bonding position.
  • the group represented by the general formula (319) as L 3 or L 31 is, for example, a group represented by the following general formula (319A).
  • R 303 , R 304 and R 305 each independently do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring 31 to R 38 , and each * in the general formula (319A) indicates a binding position.
  • Compound M3 is a compound represented by the general formula (322), and L 31 is preferably a group represented by the general formula (318).
  • Compound M3 is also preferably a compound represented by the following general formula (324).
  • R 31 to R 38 , R 300 and R 302 each independently do not form the substituted or unsubstituted monocyclic ring and the substituted or unsubstituted condensed ring is synonymous with R 31 to R 38 that do not form
  • R 31 to R 38 that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted condensed ring are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, A substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, or a group represented by the general formula (3A), R B in the general formula (3A) is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • R 31 to R 38 that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted condensed ring are each independently hydrogen atom, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a group represented by the general formula (3A), R 1 B in the general formula (3A) is preferably a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms.
  • R 31 to R 38 that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted condensed ring are each independently hydrogen atom, A substituted or unsubstituted phenyl group, or a group represented by the general formula (3A), R 2 B in general formula (3A) is preferably a substituted or unsubstituted phenyl group.
  • Compound M3 is also preferably a compound having no pyridine ring, pyrimidine ring, or triazine ring.
  • Y 31 to Y 36 are each independently CR 3 or a nitrogen atom; provided that two or more of Y 31 to Y 36 are nitrogen atoms,
  • R 3 When a plurality of R 3 are present, one or more sets of two or more adjacent R 3 among the plurality of R 3 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • Each R 3 that does not form a substituted or unsubstituted monocyclic ring and does not form a substituted or unsubstituted condensed ring is independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms,
  • R B , L 31 , L 32 and n 3 are each independently synonymous with R B , L 31 , L 32 and n 3 in the general formula (3A), when there are a plurality of RBs , the plurality of RBs are the same or different from each other,
  • L 31 is a single bond
  • n 3 is 1
  • L 32 is bonded to the carbon atom of the six-membered ring in the general formula (3Y)
  • * is a bonding site with the carbon atom of the six-membered ring in the general formula (3Y).
  • Compound M3 preferably does not contain a pyridine ring in its molecule.
  • Compound M3 is also preferably a compound represented by the following general formula (31a) or general formula (32a).
  • R 31 to R 33 in the general formula (31a) and R 34 in the general formula (32a) do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed ring R 35 to R 37 each independently have the same definition as R 3 in general formula (3Y).
  • the compound M3 is also preferably a compound represented by the general formula (31a).
  • Each R 3 in the general formula (3Y) is independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, A substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms or a group represented by the general formula (3B) is preferred.
  • Each R 3 in the general formula (3Y) is independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or a group represented by the general formula (3B) is preferred.
  • the compound M3 represented by the general formula (3Y) preferably has at least one group selected from the group consisting of groups represented by the following general formulas (B31) to (B44) in the molecule.
  • R 300 One or more sets of two or more adjacent ones of the plurality of R 300 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • the set consisting of R 331 and R 332 is combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • R 300 , R 331 and R 332 which do not form a substituted or unsubstituted monocyclic ring and which do not form a substituted or unsubstituted condensed ring
  • R 333 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloal
  • one or more sets of adjacent two or more of R 341 to R 350 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, provided that at least one of R 341 to R 351 represents a bonding position with another atom in the molecule of compound M3, X 31 is a sulfur atom, an oxygen atom, NR 352 or CR 353 R 354 ;
  • the set consisting of R 353 and R 354 is combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, R 341 to R 351 that do not form the substituted or unsubstituted monocyclic ring and do not form the substituted or unsubstituted condensed
  • the compound M3 represented by the general formula (3Y) preferably has at least one group selected from the group consisting of the groups represented by the general formulas (B38) to (B44) in the molecule.
  • At least one of Y 31 to Y 36 is CR 3 , It is preferable that at least one R 3 is a group represented by the general formula (3B), and R 3 B is any one of the groups represented by the general formulas (B31) to (B44).
  • At least one of Y 31 to Y 36 is CR 3 , It is preferable that at least one R 3 is a group represented by the general formula (3B), and R 3 B is any one of the groups represented by the general formulas (B38) to (B44).
  • L 31 is single bond, A substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, a trivalent group, a tetravalent group, a pentavalent group or a hexavalent group derived from the arylene group, or a substituted or unsubstituted ring A divalent group formed by combining two groups selected from the group consisting of arylene groups having 6 to 50 carbon atoms, a trivalent group derived from the divalent group, a tetravalent group, a pentavalent group or a hexavalent group, L 32 are each independently A single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms is preferred.
  • L 31 is a single bond, or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, n3 is 1; L32 is A single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms is preferred.
  • L 31 is single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, or a divalent group formed by combining two groups selected from the group consisting of a substituted or unsubstituted phenylene group and a substituted or unsubstituted biphenylene group, the divalent a trivalent group, a tetravalent group, a pentavalent group or a hexavalent group derived from the group, n3 is 1; L32 is single bond, A substituted or unsubstituted phenylene group or a substituted or unsubstituted biphenylene group is preferred.
  • R 352 is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms
  • a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • R 353 and R 354 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • the substituents in the case of "substituted or unsubstituted” are halogen atom, an unsubstituted alkyl group having 1 to 25 carbon atoms, It is preferably an unsubstituted aryl group having 6 to 25 ring carbon atoms or an unsubstituted heterocyclic group having 5 to 25 ring atoms.
  • the substituents in the case of "substituted or unsubstituted” are an unsubstituted alkyl group having 1 to 10 carbon atoms, It is preferably an unsubstituted aryl group having 6 to 12 ring carbon atoms or an unsubstituted heterocyclic group having 5 to 12 ring atoms.
  • Compound M3 according to the present embodiment can be produced by a known method.
  • Specific examples of compound M3 of the present embodiment include the following compounds. However, the present invention is not limited to specific examples of these compounds.
  • the singlet energy S 1 (Mat2) of the compound M2 and the singlet energy S 1 (Mat3) of the compound M3 satisfy the relationship of the following formula (Formula 4).
  • the energy gap T 77K (Mat3) at 77 [K] of compound M3 is preferably larger than the energy gap T 77K ( Mat2) at 77 [K] of compound M2.
  • the energy gap T 77K (Mat3) at 77 [K] of compound M3 is preferably larger than the energy gap T 77K ( Mat1) at 77 [K] of compound M1.
  • the singlet energy S 1 (Mat2) of the compound M2, the singlet energy S 1 (Mat1) of the compound M1, and the singlet energy S 1 (Mat3) of the compound M3 are as follows. It is preferable to satisfy the relationship of the formula (Formula 5). S 1 (Mat3)>S 1 (Mat2)>S 1 (Mat1) (Equation 5)
  • the energy gap T 77K (Mat2) at 77 [K] of compound M2 the energy gap T 77K (Mat1) at 77 [K] of compound M1, and 77 [K] of compound M3 It is preferable that the energy gap T 77K (Mat3) at satisfy the relationship of the following formula (Formula 5A).
  • the fluorescent compound M1 mainly emits light in the light-emitting layer.
  • the organic EL element of this embodiment preferably emits red light or green light.
  • the maximum peak wavelength of light emitted from the organic EL device can be measured by the same method as for the organic EL device of the first embodiment.
  • the content ratios of compound M1, compound M2, and compound M3 contained in the light-emitting layer are preferably within the following ranges, for example.
  • the content of compound M1 is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.01% by mass or more and 5% by mass or less, and 0.01% by mass or more and 1% by mass or less. is more preferable.
  • the content of compound M2 is preferably 10% by mass or more and 80% by mass or less, more preferably 10% by mass or more and 60% by mass or less, and even more preferably 20% by mass or more and 60% by mass or less.
  • the content of compound M3 is preferably 10% by mass or more and 80% by mass or less.
  • the upper limit of the total content of compound M1, compound M2, and compound M3 in the light-emitting layer is 100% by mass. It should be noted that this embodiment does not exclude materials other than the compound M1, the compound M2, and the compound M3 from being included in the light-emitting layer.
  • the light-emitting layer may contain only one type of compound M1, or may contain two or more types.
  • the light-emitting layer may contain only one type of compound M2, or may contain two or more types.
  • the light-emitting layer may contain only one type of compound M3, or may contain two or more types.
  • FIG. 5 is a diagram showing an example of the energy level relationship of the compound M1, the compound M2, and the compound M3 in the light-emitting layer.
  • S0 represents the ground state.
  • S1 (Mat1) represents the lowest excited singlet state of compound M1
  • T1 (Mat1) represents the lowest excited triplet state of compound M1.
  • S1(Mat2) represents the lowest excited singlet state of compound M2, and T1(Mat2) represents the lowest excited triplet state of compound M2.
  • S1(Mat3) represents the lowest excited singlet state of compound M3, and T1(Mat3) represents the lowest excited triplet state of compound M3.
  • the second embodiment it is possible to provide an organic EL device capable of achieving high performance, particularly at least one of low voltage, high efficiency and long life.
  • the organic EL element according to the second embodiment can be used for an organic EL display device.
  • the organic EL device according to the second embodiment can be used in electronic devices such as display devices and light-emitting devices.
  • the organic EL device of the third embodiment differs from the organic EL device of the first embodiment in that the light-emitting layer contains the delayed fluorescent compound M2 and the compound M4. Other points are the same as in the first embodiment. That is, in the organic EL device of the third embodiment, the light emitting layer contains the delayed fluorescent compound M2 and the compound M4, and the first layer is the first compound (the compound represented by the general formula (3) ), the ionization potential Ip(HT1) of the first compound satisfies the above equation (Equation 1), and the hole mobility ⁇ h(HT1) of the first compound satisfies the above equation (Equation 2).
  • the compound M2 contained in the light-emitting layer is preferably a dopant material, and the compound M4 is preferably a host material.
  • Compound M4 may be a compound with delayed fluorescence or a compound that does not exhibit delayed fluorescence.
  • compound M4 is not particularly limited, for example, compound M3 described in the second embodiment can be used.
  • compound M3 described in the second embodiment can be used.
  • compound M3 described in the second embodiment can be used.
  • the first compound the first compound described in the first embodiment can be used.
  • the compound M2 described in the first embodiment can be used.
  • the energy gap T 77K (Mat4) at 77 [K] of compound M4 is preferably larger than the energy gap T 77K ( Mat2) at 77 [K] of compound M2.
  • the compound M2 mainly emits light in the light-emitting layer.
  • the content of compound M2 and compound M4 in the light-emitting layer is preferably, for example, within the following range.
  • the content of compound M2 is preferably 10% by mass or more and 80% by mass or less, more preferably 10% by mass or more and 60% by mass or less, and even more preferably 20% by mass or more and 60% by mass or less.
  • the content of compound M4 is preferably 20% by mass or more and 90% by mass or less, more preferably 40% by mass or more and 90% by mass or less, and even more preferably 40% by mass or more and 80% by mass or less. . It should be noted that this embodiment does not exclude materials other than the compound M2 and the compound M4 being contained in the light-emitting layer.
  • the light-emitting layer may contain only one type of compound M2, or may contain two or more types.
  • the light-emitting layer may contain only one type of fourth compound, or may contain two or more types thereof.
  • FIG. 6 is a diagram showing an example of the relationship between the energy levels of compound M2 and compound M4 in the light-emitting layer.
  • S0 represents the ground state.
  • S1(Mat2) represents the lowest excited singlet state of compound M2
  • T1(Mat2) represents the lowest excited triplet state of compound M2.
  • S1(Mat4) represents the lowest excited singlet state of compound M4, and T1(Mat4) represents the lowest excited triplet state of compound M4.
  • a material with a small ⁇ ST Mat2
  • the lowest excited triplet state T1 of the compound M2 can reverse intersystem cross to the lowest excited singlet state S1 by thermal energy. be.
  • the light-emitting layer does not contain a fluorescent dopant in the lowest excited singlet state S1 (Mat2) smaller than the lowest excited singlet state S1 of the compound M2, the compound Emission from the lowest excited singlet state S1(Mat2) of M2 can be observed. It is believed that the internal quantum efficiency can be theoretically increased to 100% by utilizing delayed fluorescence by this TADF mechanism.
  • the third embodiment it is possible to provide an organic EL device capable of achieving high performance, particularly at least one of low voltage, high efficiency and long life.
  • the organic EL element according to the third embodiment can be used for organic EL display devices.
  • the organic EL device according to the third embodiment can be used in electronic devices such as display devices and light-emitting devices.
  • the configuration of the organic EL device according to the fourth embodiment will be described.
  • the same components as those of the first to third embodiments are given the same reference numerals and names, and description thereof is omitted or simplified.
  • materials and compounds that are not particularly mentioned can be the same materials and compounds as the materials and compounds described in the first to third embodiments.
  • the organic EL element according to the fourth embodiment differs from the organic EL elements according to the above embodiments in that a second layer is further arranged between the anode and the first layer.
  • the second layer contains a second compound.
  • the first compound and the second compound are different compounds.
  • Other points are the same as those of the above embodiment.
  • the organic EL element of the fourth embodiment includes, for example, the following organic EL elements.
  • the light-emitting layer has the same meaning as the light-emitting layer in the first embodiment.
  • a light-emitting layer is synonymous with the light-emitting layer in the second embodiment.
  • the light-emitting layer has the same meaning as the light-emitting layer in the third embodiment.
  • FIG. 7 shows a schematic configuration of an example of the organic EL device according to the fourth embodiment.
  • FIG. 7 illustrates a case where the light-emitting layer 5 of the first embodiment is applied as the light-emitting layer.
  • the organic EL element 1A includes a translucent substrate 2, an anode 3, a cathode 4, and an organic layer 10A arranged between the anode 3 and the cathode 4.
  • FIG. The organic layer 10A is composed of an anode-side organic layer 63, a second layer 62, a first layer 61, a light-emitting layer 5, an electron-transporting layer 8, and an electron-injecting layer 9, which are laminated in this order from the anode 3 side. consists of In FIG. 1, D1 represents the film thickness of the first layer 61, and D2 represents the film thickness of the second layer 62. In FIG.
  • the fourth embodiment it is possible to provide an organic EL device capable of achieving high performance, particularly at least one of low voltage, high efficiency and long life.
  • the organic EL element according to the fourth embodiment can be used for organic EL display devices.
  • the organic EL device according to the fourth embodiment can be used in electronic devices such as display devices and light-emitting devices.
  • the second layer is preferably a hole transport layer.
  • the second layer is preferably adjacent to the first layer.
  • the second layer is preferably adjacent to the anode-side organic layer.
  • the film thickness of the second layer is 20 nm or more and 200 nm or less.
  • the second layer contains a second compound.
  • the second compound is not particularly limited, for example, the materials (aromatic amine compounds, carbazole derivatives, anthracene derivatives, etc.) that can be used in the hole-transporting layer described in ⁇ Structure of Organic EL Device> above. can be used.
  • Ip (HT2) of the second compound The ionization potential Ip(HT2) of the second compound preferably satisfies the following formula (Equation 11). Ip(HT2) ⁇ 5.0 eV (Equation 11)
  • the hole mobility ⁇ h(HT2) of the second compound preferably satisfies the following formula (Equation 12). ⁇ h(HT2) ⁇ 1.0 ⁇ 10 ⁇ 5 cm 2 /Vs (Equation 12)
  • the ionization potential Ip(HT2) of the second compound satisfies the above formula (Formula 11), and the hole mobility ⁇ h(HT2) of the second compound satisfies the above formula (Formula 12). preferable.
  • the configuration of the organic EL device according to the fifth embodiment will be described.
  • the same components as those of the first to fourth embodiments are given the same reference numerals and names, and their descriptions are omitted or simplified.
  • materials and compounds that are not particularly mentioned can be the same materials and compounds as the materials and compounds described in the first to fourth embodiments.
  • the organic EL device according to the fifth embodiment differs from the organic EL device according to the above embodiments in that the compound contained in the first layer is a first compound represented by the following general formula (30). Other points are the same as those of the above embodiment.
  • the organic EL device of the fifth embodiment includes an anode, a cathode, a light-emitting layer included between the anode and the cathode, a first layer included between the anode and the light-emitting layer, wherein the light-emitting layer contains a delayed fluorescent compound, and the first layer contains a first compound represented by the following general formula (30).
  • the first compound contained in the first layer is not particularly limited as long as it has a structure represented by the following general formula (30).
  • the ionization potential Ip 30 (HT1) of the first compound (the first compound represented by the following general formula (30)) contained in the first layer is the first compound ( It is preferably in the same range as the ionization potential Ip (HT1) of the first compound represented by the general formula (3).
  • the hole mobility ⁇ h 30 (HT1) of the first compound (the first compound represented by the following general formula (30)) contained in the first layer is the first compound (the general It is preferably in the same range as the hole mobility ⁇ h (HT1) of the first compound represented by the formula (3).
  • a first layer included between the light emitting layer and the anode has a specific structure of an amine compound having a 1-fluorenyl group (generally The compound represented by the formula (30)) was found to improve the hole injection properties into the delayed fluorescence-emitting layer having a large absolute value of the ionization potential Ip. As a result, even when the first layer is thickened, it is thought that deterioration in device performance can be suppressed.
  • the organic EL element according to the fifth embodiment when the organic EL element according to the fifth embodiment is mounted in an organic EL display device in which at least one of RGB pixels emits light by the TADF mechanism, the film thickness of the first layer is simply increased. , the cavity adjustment can be easily performed. Moreover, the mass productivity of the organic EL display device can be improved. Also, the organic EL device according to the fifth embodiment can be used in electronic devices such as display devices and light-emitting devices.
  • the organic EL element of the fifth embodiment includes, for example, the following organic EL elements.
  • the first compound contained in the first layer (the first compound represented by the general formula (3)) is replaced with the first compound represented by the following general formula (30).
  • the light-emitting layer is synonymous with the light-emitting layer in the first embodiment.
  • the first compound contained in the first layer (the first compound represented by the general formula (3)) is replaced with the first compound represented by the following general formula (30)
  • the light-emitting layer is synonymous with the light-emitting layer in the first embodiment.
  • the first compound contained in the first layer (the first compound represented by the general formula (3)) is replaced with the first compound represented by the following general formula (30) EL element.
  • the light emitting layer is synonymous with the light emitting layer of the second embodiment.
  • the first compound contained in the first layer (the first compound represented by the general formula (3)) is replaced with the first compound represented by the following general formula (30), and
  • the light emitting layer is synonymous with the light emitting layer of the second embodiment.
  • the first compound contained in the first layer (the first compound represented by the general formula (3)) is replaced with the first compound represented by the following general formula (30).
  • the light emitting layer is synonymous with the light emitting layer of the third embodiment.
  • the first compound contained in the first layer (the first compound represented by the general formula (3)) is replaced with the first compound represented by the following general formula (30), and
  • the light emitting layer is synonymous with the light emitting layer of the third embodiment.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, n is 0, 1, 2 or 3; L1 is a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 50 ring-forming atoms, When multiple L 1 are present, the multiple L 1 are the same or different from each other, The set consisting of A 1 and A 2 is combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, A 1 and A 2 that do not form a substituted or unsubstituted monocyclic ring and do not form a substitute
  • R901 , R902 , R903 , R904 , R905 , R906 , R907 , R908 , R909 , R931 , R932 , R933 , R934 , R935 , R 936 and R 937 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the multiple R 901 are present, the multiple R 901 are the same or different from each other,
  • the multiple R 902 are present, the multiple R 902 are the same or different from each other,
  • multiple R 903 the
  • n is preferably 1 or 2, more preferably 1.
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted dibenzo A furanyl group, a substituted or unsubstituted dibenzothienyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted phenanthrenyl group is preferred. .
  • Ar 1 and Ar 2 each independently represent an unsubstituted phenyl group, an unsubstituted biphenyl group, an unsubstituted terphenyl group, an unsubstituted dibenzofuranyl group, an unsubstituted dibenzo A thienyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted carbazolyl group, an unsubstituted naphthyl group, or an unsubstituted phenanthrenyl group is more preferable.
  • the first compound represented by the general formula (30) is preferably a compound represented by the general formula (31A).
  • L 1 in the group represented by -(L 1 )n- is a group represented by any one of the general formulas (L1) to (L9). is preferred.
  • Ra and R 311 to R 320 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted ring-forming carbon It is preferably an aryl group having 6 to 50 atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
  • Ra is each independently a hydrogen atom, an unsubstituted alkyl group having 1 to 50 carbon atoms, an unsubstituted aryl group having 6 to 50 ring carbon atoms, or an unsubstituted It is preferably a substituted heterocyclic group having 5 to 50 ring-forming atoms, more preferably a hydrogen atom.
  • one or more pairs of groups consisting of two or more adjacent R 311 to R 315 are bonded to each other to form a substituted or unsubstituted monocyclic ring, or bonded to each other to form a substituted or unsubstituted condensed ring.
  • one or more groups consisting of two or more adjacent R 316 to R 320 are bonded to each other to form a substituted or unsubstituted monocyclic ring, or bonded to each other to form a substituted or unsubstituted condensed ring.
  • the substituents in the case of "substituted or unsubstituted” are each independently a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group , a substituted or unsubstituted dibenzofuranyl group, a substituted or unsubstituted dibenzothienyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted A phenanthrenyl group is preferred.
  • the substituents in the case of "substituted or unsubstituted” are each independently an unsubstituted phenyl group, an unsubstituted biphenyl group, an unsubstituted dibenzofuranyl group, an unsubstituted dibenzo A thienyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted carbazolyl group, an unsubstituted naphthyl group, or an unsubstituted phenanthrenyl group is more preferable.
  • a 1 and A 2 when a set consisting of A 1 and A 2 is not bonded to each other, A 1 and A 2 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms , or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • a 1 and A 2 when the set of A 1 and A 2 is not bonded to each other, A 1 and A 2 are each independently a methyl group or a substituted or unsubstituted phenyl group. is more preferable.
  • the ring formed by the bonding when pairs of A 1 and A 2 are bonded to each other, the ring formed by the bonding is preferably a substituted or unsubstituted condensed ring. In general formulas (30) and (31A), when a pair of A 1 and A 2 are bonded to each other, the ring formed by bonding to each other is more preferably a substituted or unsubstituted spirofluorene ring. .
  • a 1 and A 2 are also preferably methyl groups.
  • R 32 to R 38 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted ring-forming carbon atom of 6 It is preferably an aryl group of up to 50 or a substituted or unsubstituted heterocyclic group of 5 to 50 ring atoms.
  • R 32 to R 38 are more preferably each independently a hydrogen atom or a substituted or unsubstituted phenyl group.
  • R 32 to R 38 are more preferably hydrogen atoms.
  • the first compound represented by the general formula (30) corresponds to one aspect of the first compound represented by the general formula (3) described in the first embodiment. . Therefore, specific examples of the first compound represented by the general formula (30) are shown in the first embodiment.
  • the organic EL display device of the sixth embodiment has an anode and a cathode which are arranged to face each other, and includes a blue organic EL element as a blue pixel, a green organic EL element as a green pixel, and a red organic EL element as a red pixel.
  • the green pixel includes the organic EL element according to any one of the first to fifth embodiments as the green organic EL element, and the green organic EL element emits green light as the light-emitting layer and the first layer disposed between the green light-emitting layer and the anode, wherein the blue organic EL element includes a blue light-emitting layer disposed between the anode and the cathode. and a blue organic layer disposed between the blue light-emitting layer and the anode, wherein the red organic EL element includes a red light-emitting layer disposed between the anode and the cathode, and the red light-emitting layer disposed between the anode and the cathode. a red organic layer disposed between a light-emitting layer and the anode.
  • the green organic EL element included in the green pixel is an organic EL element that emits light by the TADF mechanism, and the green organic EL element is the organic EL element according to the first embodiment to the fifth embodiment. It is an organic EL element according to any one of. That is, in the organic EL display device of the sixth embodiment, the first layer included between the green light-emitting layer and the anode is A specific structure containing an amine compound (first compound represented by general formula (3)) of a specific structure that satisfies specific parameters (formula (1) and formula (2)) or having a 1-fluorenyl group amine compound (compound represented by general formula (30)).
  • first compound represented by general formula (3) A specific structure containing an amine compound (first compound represented by general formula (3)) of a specific structure that satisfies specific parameters (formula (1) and formula (2)) or having a 1-fluorenyl group amine compound (compound represented by general formula (30)).
  • the organic EL display device of the sixth embodiment cavity adjustment can be easily performed by simply increasing the film thickness of the first layer of the green organic EL element, for example. According to the organic EL display device of the sixth embodiment, since the green organic EL element capable of realizing at least one of low voltage, high efficiency and long life is mounted, high performance is realized.
  • blue”, “green” or “red” attached to “pixel”, “light-emitting layer”, “organic layer” or “material” respectively means “pixel”, “light-emitting layer”, Each element of “organic layer” or “material” is attached to distinguish it from other elements, and “blue”, “green” or “red” is used for “pixel”, “light emitting layer”, “organic layer or the color of light emitted by the "material”, but are not attached to specify the appearance of each element as “blue”, “green” or “red”.
  • FIG. 8 shows an organic EL display device 100A according to one embodiment.
  • the organic EL display device 100A has electrodes and organic layers supported by a substrate 2A.
  • the organic EL display device 100A has an anode 3 and a cathode 4 arranged to face each other.
  • the organic EL display device 100A has a blue organic EL element 10B as a blue pixel, a green organic EL element 10G as a green pixel, and a red organic EL element 10R as a red pixel. Note that FIG.
  • FIG. 8 is a schematic diagram of the organic EL display device 100A, and does not limit the size of the organic EL display device 100A, the thickness of each layer, and the like.
  • the blue light-emitting layer 53, the green light-emitting layer 50, and the red light-emitting layer 54 are expressed with the same thickness. not something to do. The same applies to the organic EL display device shown in FIG.
  • the blue organic EL device 10B has a blue organic layer 531 as a non-common layer between the blue light-emitting layer 53 and the anode-side organic layer 63 .
  • the blue organic layer 531 is in direct contact with the blue light emitting layer 53 .
  • Blue organic layer 531 is preferably an electron blocking layer.
  • the green organic EL device 10G has a first layer 61 as a non-common layer between the green light-emitting layer 50 and the anode-side organic layer 63 .
  • the green light emitting layer 50 is a layer corresponding to any one of the light emitting layers of the first, second, third and fifth embodiments.
  • the first layer 61 is a layer corresponding to the first layer of any one of the first, second, third and fifth embodiments.
  • the first layer 61 is in direct contact with the green light emitting layer 50 .
  • the first layer 61 is preferably an electron blocking layer.
  • the red organic EL element 10 ⁇ /b>R has a red organic layer 541 as a non-common layer between the red light-emitting layer 54 and the anode-side organic layer 63 .
  • the red organic layer 541 is in direct contact with the red light emitting layer 54 .
  • Red organic layer 541 is preferably an electron blocking layer.
  • the green organic EL element 10G and the red organic EL element 10R of the organic EL display device 100A between the blue light emitting layer 53, the green light emitting layer 50 and the red light emitting layer 54 and the anode 3
  • An anode-side organic layer 63 is arranged as a common layer.
  • the electron transport layer 8 and the electron injection layer 9 as common layers are arranged in this order from the anode 3 side. Laminated.
  • the anode 3 is provided independently for each of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. Therefore, the organic EL display device 100A can individually drive the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. Anodes of the organic EL elements 10B, 10G, and 10R are insulated from each other by an insulating material (not shown) or the like.
  • the cathode 4 is commonly provided for the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R.
  • a blue organic EL element 10B, a green organic EL element 10G, and a red organic EL element 10R as pixels are arranged in parallel on the substrate 2A.
  • FIG. 9 shows a schematic configuration of another example of the organic EL display device according to the sixth embodiment.
  • the organic EL display device 100B shown in FIG. 9 between each of the blue organic layer 531, the first layer 61 and the red organic layer 541 and the anode 3 (in the case of FIG. 9, the anode-side organic layer 63), It has a second layer 62 (common layer) arranged in common over the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R.
  • the second layer 62 as a common layer is a layer corresponding to the second layer 62 of either the fourth embodiment or the fifth embodiment.
  • Each of the blue organic layer 531, the first layer 61, and the red organic layer 541 and the common layer (second layer 62) are preferably adjacent to each other.
  • the second layer 62 is preferably in direct contact with the anode-side organic layer 63 .
  • the present invention is not limited to the configuration of the organic EL display device shown in FIGS.
  • the blue organic EL element, the green organic EL element, and the red organic EL element each independently further include layers different from the layers shown in FIGS.
  • a hole blocking layer may be arranged as a common layer between the light-emitting layer and the electron-transporting layer.
  • the blue organic EL element and the red organic EL element may independently emit fluorescence or phosphorescence.
  • the green organic EL element is preferably an element that emits fluorescent light.
  • the blue light-emitting layer contains a host material.
  • the blue light-emitting layer contains, for example, a host material in an amount of 50% by mass or more of the total mass of the blue light-emitting layer.
  • the blue light emitting layer of the blue organic EL element contains a blue light emitting compound that emits light having a maximum peak wavelength of 430 nm or more and 500 nm or less.
  • a blue-light-emitting compound is, for example, a fluorescence-emitting compound that emits fluorescence with a maximum peak wavelength of 430 nm or more and 500 nm or less.
  • the blue light-emitting compound is, for example, a phosphorescent compound that emits phosphorescence with a maximum peak wavelength of 430 nm or more and 500 nm or less.
  • blue light emission refers to light emission having a maximum peak wavelength of an emission spectrum in the range of 430 nm or more and 500 nm or less.
  • a fluorescent compound is a compound capable of emitting light from a singlet excited state
  • a phosphorescent compound is a compound capable of emitting light from a triplet excited state.
  • Examples of compounds that can be used in the blue light-emitting layer and emit blue fluorescence include pyrene derivatives, styrylamine derivatives, chrysene derivatives, fluoranthene derivatives, fluorene derivatives, diamine derivatives, and triarylamine derivatives.
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex is used.
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex.
  • FIr6 bis[2-(4′,6′-difluorophenyl)pyridinato-N,C2′]iridium(III) tetrakis(1-pyrazolyl)borate
  • FIrpic bis[2-(4′ ,6′-difluorophenyl)pyridinato-N,C2′]iridium (III) picolinate
  • FIrpic bis[2-(3′,5′bistrifluoromethylphenyl)pyridinato-N,C2′]iridium (III ) picolinate
  • Ir(CF3ppy)2(pic) bis[
  • the maximum peak wavelength (phosphorescence emission maximum peak wavelength) of a phosphorescent compound can be measured by the following method.
  • An EPA solution is placed in a quartz cell and used as a measurement sample.
  • the phosphorescence spectrum (vertical axis: phosphorescent emission intensity, horizontal axis: wavelength) is measured at a low temperature (77 [K]), and among the maximum values of this phosphorescence spectrum, the maximum on the shortest wavelength side The value is defined as the maximum peak wavelength of phosphorescent emission.
  • a spectrofluorophotometer F-7000 (manufactured by Hitachi High-Tech Science Co., Ltd.) can be used to measure phosphorescence. Note that the measuring device is not limited to this, and measurement may be performed by combining a cooling device, a cryogenic container, an excitation light source, and a light receiving device.
  • the maximum peak wavelength of phosphorescence emission may be referred to as the maximum peak wavelength of phosphorescence emission (PH-peak).
  • the blue organic EL element preferably includes a blue organic layer between the blue light-emitting layer and the anode-side organic layer.
  • the blue organic layer may be in direct contact with the anode-side organic layer.
  • the blue organic layer may be in direct contact with the blue light-emitting layer.
  • the blue organic EL element includes a blue organic layer between the blue light emitting layer and the second layer. The blue organic layer may be in direct contact with the second layer. Also, the blue organic layer may be in direct contact with the blue light-emitting layer. Since the blue organic EL element has a blue organic layer, it is easy to adjust the light emitting position in the blue organic EL element.
  • the blue organic layer contains a blue organic material.
  • the blue organic material for example, the material (aromatic amine compound, carbazole derivative, anthracene derivative, etc.) that can be used for the hole transport layer described in ⁇ Structure of Organic EL Device> can be used. can.
  • the blue organic material may be the same compound as the second compound contained in the second layer, or may be a different compound.
  • the material and the second compound are different from each other.
  • the blue organic material is a compound different from the host material and blue light emitting compound contained in the blue light emitting layer.
  • the red light-emitting layer contains a host material.
  • the red light-emitting layer contains, for example, a host material in an amount of 50% by mass or more based on the total mass of the red light-emitting layer.
  • the red light emitting layer of the red organic EL element contains a red light emitting compound that emits light with a maximum peak wavelength of 600 nm or more and 640 nm or less.
  • the red light-emitting compound is, for example, a fluorescence-emitting compound that emits fluorescence with a maximum peak wavelength of 600 nm or more and 640 nm or less.
  • the red light-emitting compound is, for example, a phosphorescent compound that emits phosphorescence with a maximum peak wavelength of 600 nm or more and 640 nm or less.
  • red light emission refers to light emission having a maximum peak wavelength of an emission spectrum in the range of 600 nm or more and 640 nm or less.
  • a tetracene derivative, a diamine derivative, or the like can be used as a compound that emits red fluorescence and can be used in the red light-emitting layer.
  • a red phosphorescent compound that can be used in the red light-emitting layer for example, metal complexes such as iridium complexes, platinum complexes, terbium complexes and europium complexes can be used.
  • the red organic EL element preferably has a red organic layer between the red light-emitting layer and the anode-side organic layer.
  • the red organic layer may be in direct contact with the anode-side organic layer.
  • the red organic layer may be in direct contact with the red light-emitting layer.
  • the red organic EL element includes a red organic layer between the red light-emitting layer and the second layer. The red organic layer may be in direct contact with the second layer. Also, the red organic layer may be in direct contact with the red light-emitting layer. Since the red organic EL element has the red organic layer, it is easy to adjust the light emitting position in the red organic EL element.
  • the red organic layer contains a red organic material.
  • the red organic material for example, the materials (aromatic amine compounds, carbazole derivatives, anthracene derivatives, etc.) that can be used in the hole transport layer described in ⁇ Structure of Organic EL Device> can be used. can.
  • the red organic material may be the same compound as the second compound contained in the second layer, or may be a different compound.
  • the material and the second compound are different from each other.
  • the red organic material is a compound different from the host material and the red light emitting compound contained in the red light emitting layer.
  • the red organic material contained in the red organic layer of the red organic EL element and the blue organic material contained in the blue light-emitting layer of the blue organic EL element may be the same compound or different compounds.
  • the material and the blue organic material are different from each other.
  • the host material contained in the blue light-emitting layer and the host material contained in the red light-emitting layer are, for example, highly luminescent substances (dopant materials) dispersed in the light-emitting layer. It is a compound for As the host material contained in the blue light-emitting layer and the host material contained in the red light-emitting layer, for example, the lowest unoccupied molecular orbital level (LUMO level) is higher than the substance with high light-emitting property, and the highest occupied molecular orbital level (HOMO level) can be used.
  • LUMO level lowest unoccupied molecular orbital level
  • HOMO level highest occupied molecular orbital level
  • the following compounds (1) to (4) can be used independently.
  • metal complexes such as aluminum complexes, beryllium complexes, or zinc complexes
  • heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, or phenanthroline derivatives
  • condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, or chrysene derivatives
  • Aromatic amine compounds such as triarylamine derivatives or condensed polycyclic aromatic amine derivatives
  • the organic EL display device of this embodiment will be further described with reference to FIG.
  • the description of the configuration common to the organic EL device according to the first embodiment is simplified or omitted.
  • anode 3 In one embodiment, the anode 3 is arranged opposite the cathode 4 . In one embodiment, anode 3 is typically a non-common layer. In one embodiment, for example, when anode 3 is a non-common layer, the anodes in each of blue organic EL element 10B, green organic EL element 10G, and red organic EL element 10R are physically separated from each other. , for example, are insulated from each other by an insulating material (not shown) or the like.
  • the cathode 4 is arranged opposite the anode 3 .
  • cathode 4 may be a common layer or a non-common layer.
  • the cathode 4 is preferably a common layer commonly provided over the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R.
  • cathode 4 is in direct contact with electron injection layer 9 .
  • the thickness of cathode 4 is the same across blue organic EL element 10B, green organic EL element 10G and red organic EL element 10R.
  • the cathode 4 When the cathode 4 is a common layer, the cathodes 4 of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R can be manufactured without exchanging masks or the like. As a result, the productivity of the organic EL display device 100A is improved.
  • the electron transport layer 8 is a common layer that is commonly provided over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. In one embodiment, the electron-transporting layer 8 is arranged between the light-emitting layers of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R and the electron-injecting layer 9 . In one embodiment, the electron-transporting layer 8 is in direct contact with the blue-emitting layer 53 , the green-emitting layer 50 and the red-emitting layer 54 on its anode 3 side. The electron transport layer 8 is in direct contact with the electron injection layer 9 on its cathode 4 side.
  • the electron transport layer 8 is a common layer and has the same thickness across the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R. Since the electron transport layer 8 is a common layer, the electron transport layers 8 of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R can be produced without exchanging masks or the like. As a result, the productivity of the organic EL display device 100A is improved.
  • the electron injection layer 9 is a common layer commonly provided over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. In one embodiment, electron injection layer 9 is positioned between electron transport layer 8 and cathode 4 . In one embodiment, electron injection layer 9 is directly in contact with electron transport layer 8 . In one embodiment, the electron injection layer 9 is a common layer and has the same thickness across the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R.
  • the electron injection layer 9 is a common layer, the electron injection layers 9 of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R can be produced without exchanging masks or the like. As a result, the productivity of the organic EL display device 100A is improved.
  • the layers other than the blue light emitting layer 53, the green light emitting layer 50, the red light emitting layer 54, the blue organic layer 531, the first layer 61, and the red organic layer 541 are the blue organic EL element and the green organic EL element. and red organic EL elements. Manufacturing efficiency is improved by reducing the number of non-common layers in the organic EL display device.
  • the organic EL display device of the present embodiment will be described by taking as an example a method of manufacturing the organic EL display device 100A shown in FIG.
  • the anode 3 is deposited on the substrate 2A.
  • an anode-side organic layer 63 is deposited over the anode 3 as a common layer.
  • the anode-side organic layers 63 of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R are each formed with the same film thickness.
  • a blue organic layer 531 is formed on the anode-side organic layer 63 and in a region corresponding to the anode 3 of the blue organic EL element 10B using a predetermined film formation mask (blue organic EL element mask). form a film.
  • a predetermined film formation mask blue organic EL element mask
  • the blue light emitting layer 53 is deposited on the blue organic layer 531 .
  • a predetermined film-forming mask green organic EL element mask
  • 61 is deposited.
  • the green light emitting layer 50 is deposited on the first layer 61 .
  • a red organic layer 541 is formed on the anode-side organic layer 63 and in a region corresponding to the anode 3 of the red organic EL element 10R using a predetermined film-forming mask (red organic EL element mask). to form a film.
  • the red light-emitting layer 54 is deposited on the red organic layer 541 .
  • the blue light-emitting layer 53, the green light-emitting layer 50, and the red light-emitting layer 54 are formed of different materials.
  • the order of forming the non-common layers of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R after the formation of the anode-side organic layer 63 is not particularly limited.
  • the first layer 61 and the green light-emitting layer 50 of the green organic EL device 10G are formed, and then the red organic layer 541 and the red light-emitting layer of the red organic EL device 10R are formed.
  • 54 may be deposited, and then the blue organic layer 531 and the blue light emitting layer 53 of the blue organic EL element 10B may be deposited.
  • the red organic layer 541 and the red light-emitting layer 54 of the red organic EL element 10R are formed, and then the first layer 61 and the green layer of the green organic EL element 10G are formed.
  • the order of forming the light-emitting layer 50 and then forming the blue organic layer 531 and the blue light-emitting layer 53 of the blue organic EL element 10B may be employed.
  • an electron transport layer 8 as a common layer is formed over the blue light emitting layer 53, the green light emitting layer 50 and the red light emitting layer .
  • the electron transport layers 8 of the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R are formed with the same material and the same film thickness.
  • an electron injection layer 9 as a common layer is formed on the electron transport layer 8 .
  • the electron injection layers 9 of the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R are formed with the same material and the same film thickness.
  • a cathode 4 is formed as a common layer on the electron injection layer 9 .
  • the cathodes 4 of the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R are formed of the same material and with the same film thickness. As described above, the organic EL display device 100A shown in FIG. 8 is manufactured.
  • An organic EL display device 100B shown in FIG. 9 is different from the organic EL display device 100A shown in FIG. 8 in that it has a second layer 62 .
  • the regions corresponding to the anodes 3 of the blue organic EL element, the green organic EL element, and the red organic EL element are provided with a second A second layer 62 is deposited.
  • a blue organic layer 531 and a blue light-emitting layer 53 are formed in a region corresponding to the anode 3 of the blue organic EL element 10B using a predetermined film formation mask (blue organic EL element mask). film.
  • a first layer 61 and a green light-emitting layer 50 are formed in a region corresponding to the anode 3 of the green organic EL element 10G using a predetermined film formation mask (green organic EL element mask).
  • a red organic layer 541 and a red light-emitting layer 54 are formed in a region corresponding to the anode 3 of the red organic EL element 10R using a predetermined film formation mask (red organic EL element mask).
  • Other manufacturing steps of the organic EL display device 100B are the same as those of the organic EL display device 100A.
  • An electronic device is equipped with the organic EL element of any one of the above embodiments or the organic EL display device of any one of the above embodiments.
  • Examples of electronic devices include display devices and light-emitting devices.
  • Examples of display devices include display components (eg, organic EL panel modules, etc.), televisions, mobile phones, tablets, and personal computers.
  • Light-emitting devices include, for example, illumination and vehicle lamps.
  • the light-emitting layer is not limited to one layer, and two or more than two light-emitting layers may be laminated.
  • the other light-emitting layer may be a fluorescent light-emitting layer or a phosphorescent light-emitting layer that utilizes light emission due to electronic transition from the triplet excited state directly to the ground state.
  • these light-emitting layers may be in direct contact with each other, or a plurality of light-emitting units may be formed via an intermediate layer (sometimes referred to as a charge generation layer or the like). It may be a so-called tandem type organic EL element that is laminated.
  • a barrier layer may be provided adjacent to the cathode side of the light-emitting layer.
  • a blocking layer disposed directly on the cathode side of the light-emitting layer preferably blocks holes and/or excitons.
  • the barrier layer transports electrons, and holes reach a layer closer to the cathode than the barrier layer (e.g., electron transport layer). prevent you from doing
  • the organic EL device includes an electron-transporting layer, it can also include the barrier layer between the light-emitting layer and the electron-transporting layer.
  • a barrier layer may be provided adjacent to the light-emitting layer to prevent excitation energy from leaking from the light-emitting layer to its surrounding layers.
  • the barrier layer prevents excitons generated in the light-emitting layer from moving to a layer closer to the electrode than the barrier layer (for example, an electron transport layer). It is preferred that the light-emitting layer and the barrier layer are in direct contact.
  • the structure of the comparative compound used for manufacturing the organic EL element according to the comparative example is shown below.
  • Example 1-1 A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate (manufactured by Geomatec Co., Ltd.) with an ITO transparent electrode (anode) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 1 minute. The film thickness of ITO was set to 130 nm. After washing, the glass substrate with the transparent electrode lines was mounted on a substrate holder of a vacuum vapor deposition apparatus. First, the compound HT-1 and the compound HA were added to the surface on which the transparent electrode lines were formed so as to cover the transparent electrodes. was co-deposited to form a hole injection layer with a thickness of 10 nm.
  • the concentration of compound HT-1 in the hole injection layer was set to 97 mass %, and the concentration of compound HA was set to 3 mass %.
  • a compound HT-1 was deposited as a second compound on the hole injection layer to form a second layer (sometimes referred to as a first hole transport layer (HT)) having a thickness of 90 nm. formed.
  • a compound EBL-1 as a first compound is vapor-deposited, and a first layer (second hole transport layer (HT) or electron barrier layer (EBL)) having a thickness of 30 nm is formed. ) was formed.
  • the compound M3-1 as the compound M3, the compound TADF-1 as the compound M2, and the compound FD-1 as the compound M1 are co-deposited to form a film having a thickness of 25 nm.
  • a light-emitting layer was formed.
  • the concentration of compound M3-1 in the light-emitting layer was 74% by mass
  • the concentration of compound TADF-1 was 25% by mass
  • the concentration of compound FD-1 was 1% by mass.
  • compound HBL-1 was deposited on the light-emitting layer to form a hole blocking layer with a thickness of 5 nm.
  • the compound ET-1 and the compound Liq were co-deposited on the hole blocking layer to form an electron transport layer with a thickness of 50 nm.
  • the concentration of the compound ET-1 and the concentration of the compound Liq in the electron transport layer were set to 50% by mass and 50% by mass, respectively.
  • Yb was deposited on the electron transport layer to form an electron injection layer with a thickness of 1 nm.
  • Metal aluminum (Al) was deposited on the electron injection layer to form a metal Al cathode with a film thickness of 80 nm.
  • the element configuration of the organic EL element according to Example 1-1 is schematically shown as follows.
  • the numbers in parentheses indicate the film thickness (unit: nm). Also in parentheses, the percentage numbers (97%: 3%) indicate the proportions (% by mass) of the compound HT-1 and the compound HA in the hole injection layer, and the percentage numbers (74%: 25%).
  • %: 1%) indicates the ratio (% by mass) of the compound M3-1, the compound TADF-1 and the compound FD-1 in the light-emitting layer, and the percentage numbers (50%: 50%) indicate the electron-transporting layer. shows the ratio (% by mass) of compound ET-1 and compound Liq in .
  • Example 1-1 (Examples 1-2 to 1-3 and Comparative Examples 1-1 to 1-4)
  • the first compound used in Example 1-1 was changed to the compound shown in Table 1. Except for this, it was produced in the same manner as in Example 1-1.
  • Example 2-1 The organic EL device according to Example 2-1 was prepared in the same manner as in Example 1-1 except that the compounds M1, M2 and M3 used in Example 1-1 were changed to the compounds shown in Table 2. made.
  • Example 2-2 and Comparative Examples 2-1 to 2-3 The organic EL devices according to Example 2-2 and Comparative Examples 2-1 to 2-3 were the same as in Examples except that the first compound used in Example 2-1 was changed to the compound shown in Table 2. It was prepared in the same manner as 2-1.
  • Example 3-1 The organic EL device according to Example 3-1 was prepared in the same manner as in Example 1-1 except that the compounds M1, M2 and M3 used in Example 1-1 were changed to the compounds shown in Table 2. made.
  • Example 3-2 and Comparative Examples 3-1 to 3-3 The organic EL devices according to Example 3-2 and Comparative Examples 3-1 to 3-3 were the same as in Examples except that the first compound used in Example 3-1 was changed to the compound shown in Table 2. It was prepared in the same manner as 3-1.
  • maximum peak wavelength ⁇ p A spectral radiance spectrum was measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta, Inc.) when a voltage was applied to the device so that the current density was 10 mA/cm 2 .
  • the maximum peak wavelength ⁇ p (unit: nm) was obtained from the obtained spectral radiance spectrum.
  • a voltage (unit: V) was measured when electricity was applied between the anode and the cathode so that the current density was 10 mA/cm 2 .
  • Example quantum efficiency EQE A spectral radiance spectrum was measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta, Inc.) when a voltage was applied to the device so that the current density was 10 mA/cm 2 . From the obtained spectral radiance spectrum, the external quantum efficiency EQE (unit: %) was calculated assuming that Lambassian radiation was performed.
  • the organic EL devices of Examples 1-1 to 1-3 satisfy the formulas (Formula 1) and Formula (Formula 2) and contain the first compound represented by the general formula (3) in the first layer. .
  • the organic EL devices of Examples 1-1 to 1-3 have a lower voltage and a longer length than the organic EL device of Comparative Example 1-1 in which the first compound is replaced with a compound that does not satisfy the formula (Equation 2). It emitted light with long life and high EQE.
  • the organic EL devices of Examples 1-1 to 1-3 emitted at high EQE.
  • the first compounds used in Examples 1-1 to 1-3 are also compounds satisfying the general formula (30).
  • the organic EL devices of Examples 2-1 and 2-2 and Examples 3-1 and 3-2 satisfy the formulas (Formula 1) and Formula (2), and are represented by the general formula (3) A first compound is included in the first layer.
  • the organic EL devices of Examples 2-1 and 2-2 are compared to the organic EL devices of Comparative Examples 2-1 and 2-3 in which the first compound is replaced with a compound that does not satisfy the formula (Equation 1). , emitted at high EQE.
  • the organic EL devices of Examples 3-1 and 3-2 are compared to the organic EL devices of Comparative Examples 3-1 and 3-3 in which the first compound is replaced with a compound that does not satisfy the formula (Equation 1). , emitted at high EQE.
  • the first compounds used in Examples 2-1 to 2-2 and 3-1 to 3-2 are also compounds satisfying the general formula (30).
  • the fluorescence spectrum of the above sample solution was measured with a spectrofluorophotometer FP-8600 (manufactured by JASCO Corporation), and the fluorescence spectrum of an ethanol solution of 9,10-diphenylanthracene was also measured under the same conditions. Using the fluorescence area intensity of both spectra, Morris et al. J. Phys. Chem. 80 (1976) 969, the total fluorescence quantum yield was calculated according to formula (1).
  • the delayed fluorescence emission in this example means that the amount of delayed emission (delayed emission) is 5% or more of the amount of prompt emission (immediate emission). Specifically, when the amount of prompt light emission (immediate light emission) is X P and the amount of delay light emission (delayed light emission) is X D , the value of X D /X P is 0.05 or more. means.
  • the amount and ratio of prompt luminescence and delay luminescence can be determined by a method similar to that described in “Nature 492, 234-238, 2012” (reference document 1). It should be noted that the device used to calculate the amounts of Prompt emission and Delay emission is not limited to the device described in Reference Document 1 or the device described in FIG.
  • Compounds TADF-2 and TADF-3 were also measured in the same manner as compound TADF-1. For compounds TADF-1, TADF-2 and TADF-3, it was confirmed that the amount of delayed luminescence (delayed luminescence) was 5% or more of the amount of prompt luminescence (immediate luminescence). Specifically, the compounds TADF-1, TADF-2 and TADF-3 had X D /X P values of 0.05 or more.
  • the singlet energy S1 of the compound to be measured was measured by the aforementioned solution method.
  • the singlet energy S 1 of compound M3-1 was 3.41 eV.
  • the singlet energy S 1 of compound M3-2 was 3.43 eV.
  • the singlet energy S 1 of compound TADF-1 was 2.66 eV.
  • the singlet energy S 1 of compound TADF-2 was 2.66 eV.
  • the singlet energy S 1 of compound TADF-3 was 2.65 eV.
  • the singlet energy S 1 of compound FD-1 was 2.45 eV.
  • the singlet energy S 1 of compound FD-2 was 2.41 eV.
  • T77K (Energy gap T77K ) T77K of the compound to be measured was measured.
  • T 77K was measured by the method for measuring the energy gap T 77K described in the above "Relationship between triplet energy and energy gap at 77 [K]".
  • ⁇ ST ⁇ ST was calculated based on the measured lowest excited singlet energy S 1 and the energy gap T 77K at 77[K].
  • ⁇ ST of compound M3-1 was 0.69 eV.
  • the ⁇ ST of compound M3-2 was 0.59 eV.
  • the ⁇ ST of compound TADF-1 was less than 0.01 eV.
  • the ⁇ ST of compound TADF-2 was less than 0.01 eV.
  • the ⁇ ST of compound TADF-3 was less than 0.01 eV.
  • the ⁇ ST of compound FD-1 was 0.27 eV.
  • the ⁇ ST of compound FD-2 was 0.41 eV.
  • Ip ionization potential Ip
  • AC-3 photoelectron spectrometer manufactured by Riken Keiki Co., Ltd.
  • the ionization potential of the compound was measured by irradiating the material with light and measuring the amount of electrons generated by charge separation at that time. The ionization potential is sometimes written as Ip.
  • the hole mobility ⁇ h is measured using a mobility evaluation device prepared according to the following procedure.
  • a 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate manufactured by Geomatec Co., Ltd.
  • an ITO transparent electrode anode
  • the film thickness of ITO was set to 130 nm.
  • the washed glass substrate was mounted on a substrate holder of a vacuum vapor deposition apparatus, and compound HA-2 was vapor-deposited on the surface on which the transparent electrode lines were formed so as to cover the transparent electrodes to a film thickness of 5 nm.
  • a hole injection layer was formed.
  • Compound HT-A was vapor-deposited on the film of the hole injection layer to form a hole transport layer with a film thickness of 10 nm. Subsequently, a compound Target, whose hole mobility ⁇ h is to be measured, was vapor-deposited to form a measurement target layer having a thickness of 200 nm. Metal aluminum (Al) was vapor-deposited on the layer to be measured to form a metal cathode with a film thickness of 80 nm.
  • the configuration of the above mobility evaluation element is schematically shown as follows. ITO(130)/HA-2(5)/HT-A(10)/Target(200)/Al(80) The numbers in parentheses indicate the film thickness (nm).
  • the hole mobility is measured by the following procedure using the mobility evaluation element produced by the above procedure.
  • the electrical time constant ⁇ of the mobility evaluation element was obtained from the following calculation formula (C2) from the frequency fmax showing the peak.
  • Calculation formula (C2): ⁇ 1/(2 ⁇ fmax) ⁇ in the above formula (C2) is a symbol representing the circumference ratio.
  • the hole mobility ⁇ h was calculated from the relationship of the following formula (C3).
  • the square root E 1/2 of the electric field strength can be calculated from the relationship of the following formula (C4).
  • Calculation formula (C4): E 1/2 V 1/2 /d 1/2
  • the impedance measurement device, Model 1260, manufactured by Solartron was used for impedance measurement
  • a permittivity measurement interface, Model 1296, manufactured by Solartron was also used for higher accuracy.
  • 1,5-dibromo-2,4-difluorobenzene 50 g, 184 mmol
  • chlorotrimethylsilane 60 g, 552 mmol
  • THF 200 mL
  • 230 ml of lithium diisopropylamide 2M, THF solution
  • intermediate M11 73 g, 175 mmol
  • dichloromethane 200 mL
  • Iodine monochloride 85 g, 525 mmol
  • dichloromethane 200 mL
  • saturated aqueous sodium hydrogen sulfite solution 100 mL
  • the organic layer was extracted with dichloromethane
  • the extracted organic layer was washed with water and brine
  • the washed organic layer was dried over magnesium sulfate.
  • the dried organic layer was concentrated on a rotary evaporator.
  • the compound obtained after concentration was purified by silica gel column chromatography to give intermediate M12 (65 g, 124 mmol, 71% yield).
  • the compound obtained after concentration was purified by silica gel column chromatography to give intermediate M13 (10 g, 24 mmol, 56% yield).
  • the structure of the purified compound was identified by ASAP/MS.
  • ASAP/MS is an abbreviation for Atmospheric Pressure Solid Analysis Probe Mass Spectrometry.
  • intermediate M13 (10 g, 24 mmol), copper cyanide (10.6 g, 118 mmol), and DMF (15 mL) were placed in a 200 mL three-necked flask, and heated and stirred at 150°C for 8 hours. After stirring and cooling to room temperature, the reaction solution was poured into 10 mL of aqueous ammonia. Next, the organic layer was extracted with methylene chloride, the extracted organic layer was washed with water and brine, and the washed organic layer was dried with magnesium sulfate.
  • 3-bromodibenzothiophene (26.3 g, 100 mmol), chlorotrimethylsilane (33 g, 300 mmol), and THF (150 mL) were placed in a 500 mL three-necked flask.
  • a dry ice/acetone bath cooled the material in the three-necked flask to ⁇ 78° C. before adding 125 mL of lithium diisopropylamide (2M, THF solution) dropwise. Stir at ⁇ 78° C. for 2 hours, then return to room temperature and stir for additional 2 hours.
  • intermediate M-14 (3.0 g, 9.48 mmol), intermediate Me (3.6 g, 9.5 mmol), potassium carbonate (2.6 g, 19 mmol) and 50 mL of DMF was added and stirred at 100° C. for 4 hours.
  • 100 mL of ion-exchanged water was added to the reaction solution, and the precipitated solid was collected by filtration.
  • the solid collected by filtration was purified by silica gel column chromatography to obtain 4.1 g of a yellow solid.
  • the resulting yellow solid was identified as intermediate Mf by ASAP-MS analysis (64% yield).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

陽極(3)と、陰極(4)と、陽極(3)と陰極(4)との間に含まれる発光層(5)と、陽極(3)と発光層(5)の間に含まれる第一の層(61)と、を有し、発光層(5)は、遅延蛍光性の化合物を含み、第一の層(61)は、下記一般式(3)で表される第一化合物を含み、第一化合物のイオン化ポテンシャルIp(HT1)が下記数式(数1)を満たし、第一化合物の正孔移動度μh(HT1)が下記数式(数2)を満たす有機エレクトロルミネッセンス素子(1)。 Ip(HT1)≧5.70eV …(数1) μh(HT1)≧1.0×10-5cm/Vs …(数2)

Description

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
 本発明は、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)に電圧を印加すると、陽極から正孔が発光層に注入され、また陰極から電子が発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子が25%の割合で生成し、及び三重項励起子が75%の割合で生成する。
 一重項励起子からの発光を用いる蛍光型の有機EL素子は、携帯電話及びテレビ等のフルカラーディスプレイへ応用されつつあるが、内部量子効率25%が限界といわれている。そのため、有機EL素子の性能を向上するための検討が行われている。
 例えば、一重項励起子に加えて三重項励起子を利用して、有機EL素子をさらに効率的に発光させることが期待されている。このような背景から、熱活性化遅延蛍光(以下、単に「遅延蛍光」という場合がある。)を利用した高効率の蛍光型の有機EL素子が提案され、研究がなされている。
 TADF(Thermally Activated Delayed Fluorescence、熱活性化遅延蛍光)機構(メカニズム)は、一重項準位と三重項準位とのエネルギー差(ΔST)の小さな材料を用いた場合に、三重項励起子から一重項励起子への逆項間交差が熱的に生じる現象を利用するメカニズムである。熱活性化遅延蛍光については、例えば、『安達千波矢編、「有機半導体のデバイス物性」、講談社、2012年4月1日発行、261-268ページ』に記載されている。
 例えば、特許文献1、特許文献2及び特許文献3には、遅延蛍光性化合物を用いた有機エレクトロルミネッセンス素子が記載されている。
国際公開第2020/241580号 国際公開第2019/013063号 米国特許出願公開2020/0203621号明細書
 ディスプレイ等の電子機器の性能を向上させるために、有機エレクトロルミネッセンス素子の性能の更なる向上が要望されている。
 本発明の目的は、高性能化、特に低電圧、高効率及び長寿命の少なくともいずれかを実現できる有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス表示装置、当該有機エレクトロルミネッセンス素子を搭載した電子機器、並びに当該有機エレクトロルミネッセンス表示装置を搭載した電子機器を提供することである。
 本発明の一態様によれば、
 陽極と、
 陰極と、
 前記陽極と前記陰極との間に含まれる発光層と、
 前記陽極と前記発光層の間に含まれる第一の層と、を有し、
 前記発光層は、遅延蛍光性の化合物を含み、
 前記第一の層は、下記一般式(3)で表される第一化合物を含み、
 前記第一化合物のイオン化ポテンシャルIp(HT1)が下記数式(数1)を満たし、
 前記第一化合物の正孔移動度μh(HT1)が下記数式(数2)を満たす有機エレクトロルミネッセンス素子が提供される。
  Ip(HT1)≧5.70eV     …(数1)
  μh(HT1)≧1.0×10-5cm/Vs …(数2)
Figure JPOXMLDOC01-appb-C000007
(前記一般式(3)において、
 Ar及びArは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 nは、0、1、2又は3であり、
 Lは、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基であり、
 Lが複数存在する場合、複数のLは、互いに同一であるか、又は異なり、
 A及びAからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないA及びAは、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  Lと結合する単結合、又は
  前記一般式(3)中の窒素原子と結合する単結合であり、
 R31~R34及びR35~R38のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR31~R38は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  Lと結合する単結合もしくは前記一般式(3)中の窒素原子と結合する単結合であり、
 ただし、A及びA並びにR31~R38の内、いずれか1つが、Lと結合する単結合もしくは前記一般式(3)中の窒素原子と結合する単結合であり、
 前記一般式(3)中、*は、A~Aが結合する五員環の炭素原子及びR31~R38が結合する六員環の炭素原子のいずれか1つとの結合位置を表す。)
(前記一般式(3)において、R901、R902、R903、R904、R905、R906、R907、R908、R909、R931、R932、R933、R934、R935、R936及びR937は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R908が複数存在する場合、複数のR908は、互いに同一であるか又は異なり、
 R909が複数存在する場合、複数のR909は、互いに同一であるか又は異なり、
 R931が複数存在する場合、複数のR931は、互いに同一であるか又は異なり、
 R932が複数存在する場合、複数のR932は、互いに同一であるか又は異なり、
 R933が複数存在する場合、複数のR933は、互いに同一であるか又は異なり、
 R934が複数存在する場合、複数のR934は、互いに同一であるか又は異なり、
 R935が複数存在する場合、複数のR935は、互いに同一であるか又は異なり、
 R936が複数存在する場合、複数のR936は、互いに同一であるか又は異なり、
 R937が複数存在する場合、複数のR937は、互いに同一であるか又は異なる。)
 本発明の一態様によれば、
 陽極と、
 陰極と、
 前記陽極と前記陰極との間に含まれる発光層と、
 前記陽極と前記発光層の間に含まれる第一の層と、を有し、
 前記発光層は、遅延蛍光性の化合物を含み、
 前記第一の層は下記一般式(30)で表される第一化合物を含む、有機エレクトロルミネッセンス素子が提供される。
Figure JPOXMLDOC01-appb-C000008
(前記一般式(30)において、
 Ar及びArは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 nは、0、1、2又は3であり、
 Lは、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基であり、
 Lが複数存在する場合、複数のLは、互いに同一であるか、又は異なり、
 A及びAからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないA及びAは、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R32~R34及びR35~R38のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR32~R38は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(前記一般式(30)において、R901、R902、R903、R904、R905、R906、R907、R908、R909、R931、R932、R933、R934、R935、R936及びR937は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R908が複数存在する場合、複数のR908は、互いに同一であるか又は異なり、
 R909が複数存在する場合、複数のR909は、互いに同一であるか又は異なり、
 R931が複数存在する場合、複数のR931は、互いに同一であるか又は異なり、
 R932が複数存在する場合、複数のR932は、互いに同一であるか又は異なり、
 R933が複数存在する場合、複数のR933は、互いに同一であるか又は異なり、
 R934が複数存在する場合、複数のR934は、互いに同一であるか又は異なり、
 R935が複数存在する場合、複数のR935は、互いに同一であるか又は異なり、
 R936が複数存在する場合、複数のR936は、互いに同一であるか又は異なり、
 R937が複数存在する場合、複数のR937は、互いに同一であるか又は異なる。)
 本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を搭載した電子機器が提供される。
 本発明の一態様によれば、有機エレクトロルミネッセンス表示装置であって、
 互いに対向して配置された陽極及び陰極を有し、
 青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、
 前記緑色画素は、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を前記緑色有機EL素子として含み、
 前記緑色有機EL素子は、
  前記発光層としての緑色発光層と、
  前記緑色発光層と前記陽極との間に配置された前記第一の層と、を含み、
 前記青色有機EL素子は、前記陽極と前記陰極との間に配置された青色発光層と、前記青色発光層と前記陽極との間に配置された青色有機層と、を有し、
 前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光層と、前記赤色発光層と前記陽極との間に配置された赤色有機層と、を有する有機エレクトロルミネッセンス表示装置が提供される。
 本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス表示装置を搭載した電子機器が提供される。
 本発明の一態様によれば、高性能化、特に低電圧、高効率及び長寿命の少なくともいずれかを実現できる有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス表示装置、当該有機エレクトロルミネッセンス素子を搭載した電子機器、並びに当該有機エレクトロルミネッセンス表示装置を搭載した電子機器を提供することができる。
本発明の第一実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。 過渡PLを測定する装置の概略図である。 過渡PLの減衰曲線の一例を示す図である。 本発明の第一実施形態に係る有機エレクトロルミネッセンス素子の一例の発光層における化合物M1及び化合物M2のエネルギー準位、並びにエネルギー移動の関係を示す図である。 本発明の第二実施形態に係る有機エレクトロルミネッセンス素子の一例の発光層における化合物M1、化合物M2及び化合物M3のエネルギー準位、並びにエネルギー移動の関係を示す図である。 本発明の第三実施形態に係る有機エレクトロルミネッセンス素子の一例の発光層における化合物M2及び化合物M4のエネルギー準位、並びにエネルギー移動の関係を示す図である。 本発明の第四実施形態に係る有機エレクトロルミネッセンス素子の別の一例の概略構成を示す図である。 本発明の第六実施形態に係る有機エレクトロルミネッセンス表示装置の一例の概略構成を示す図である。 本発明の第六実施形態に係る有機エレクトロルミネッセンス表示装置の別の一例の概略構成を示す図である。
[定義]
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、及び三重水素(tritium)を包含する。
 本明細書において、化学構造式中、「R」等の記号や重水素原子を表す「D」が明示されていない結合可能位置には、水素原子、即ち、軽水素原子、重水素原子、又は三重水素原子が結合しているものとする。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、別途記載のない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジン環は環形成炭素数5であり、フラン環は環形成炭素数4である。また、例えば、9,9-ジフェニルフルオレニル基の環形成炭素数は13であり、9,9’-スピロビフルオレニル基の環形成炭素数は25である。
 また、ベンゼン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ベンゼン環の環形成炭素数に含めない。そのため、アルキル基が置換しているベンゼン環の環形成炭素数は、6である。また、ナフタレン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ナフタレン環の環形成炭素数に含めない。そのため、アルキル基が置換しているナフタレン環の環形成炭素数は、10である。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば、単環、縮合環、及び環集合)の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば、環を構成する原子の結合を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、別途記載のない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。例えば、ピリジン環に結合している水素原子、又は置換基を構成する原子の数は、ピリジン環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているピリジン環の環形成原子数は、6である。また、例えば、キナゾリン環の炭素原子に結合している水素原子、又は置換基を構成する原子については、キナゾリン環の環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているキナゾリン環の環形成原子数は10である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、無置換のZZ基とは「置換もしくは無置換のZZ基」が「無置換のZZ基」である場合を表し、置換のZZ基とは「置換もしくは無置換のZZ基」が「置換のZZ基」である場合を表す。
 本明細書において、「置換もしくは無置換のZZ基」という場合における「無置換」とは、ZZ基における水素原子が置換基と置き換わっていないことを意味する。「無置換のZZ基」における水素原子は、軽水素原子、重水素原子、又は三重水素原子である。
 また、本明細書において、「置換もしくは無置換のZZ基」という場合における「置換」とは、ZZ基における1つ以上の水素原子が、置換基と置き換わっていることを意味する。「AA基で置換されたBB基」という場合における「置換」も同様に、BB基における1つ以上の水素原子が、AA基と置き換わっていることを意味する。
「本明細書に記載の置換基」
 以下、本明細書に記載の置換基について説明する。
 本明細書に記載の「無置換のアリール基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
 本明細書に記載の「無置換のアルケニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のアルキニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のシクロアルキル基」の環形成炭素数は、本明細書に別途記載のない限り、3~50であり、好ましくは3~20、より好ましくは3~6である。
 本明細書に記載の「無置換のアリーレン基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の2価の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキレン基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
・「置換もしくは無置換のアリール基」
 本明細書に記載の「置換もしくは無置換のアリール基」の具体例(具体例群G1)としては、以下の無置換のアリール基(具体例群G1A)及び置換のアリール基(具体例群G1B)等が挙げられる。(ここで、無置換のアリール基とは「置換もしくは無置換のアリール基」が「無置換のアリール基」である場合を指し、置換のアリール基とは「置換もしくは無置換のアリール基」が「置換のアリール基」である場合を指す。)本明細書において、単に「アリール基」という場合は、「無置換のアリール基」と「置換のアリール基」の両方を含む。
 「置換のアリール基」は、「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアリール基」としては、例えば、下記具体例群G1Aの「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基、及び下記具体例群G1Bの置換のアリール基の例等が挙げられる。尚、ここに列挙した「無置換のアリール基」の例、及び「置換のアリール基」の例は、一例に過ぎず、本明細書に記載の「置換のアリール基」には、下記具体例群G1Bの「置換のアリール基」におけるアリール基自体の炭素原子に結合する水素原子がさらに置換基と置き換わった基、及び下記具体例群G1Bの「置換のアリール基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアリール基(具体例群G1A):
フェニル基、
p-ビフェニル基、
m-ビフェニル基、
o-ビフェニル基、
p-ターフェニル-4-イル基、
p-ターフェニル-3-イル基、
p-ターフェニル-2-イル基、
m-ターフェニル-4-イル基、
m-ターフェニル-3-イル基、
m-ターフェニル-2-イル基、
o-ターフェニル-4-イル基、
o-ターフェニル-3-イル基、
o-ターフェニル-2-イル基、
1-ナフチル基、
2-ナフチル基、
アントリル基、
ベンゾアントリル基、
フェナントリル基、
ベンゾフェナントリル基、
フェナレニル基、
ピレニル基、
クリセニル基、
ベンゾクリセニル基、
トリフェニレニル基、
ベンゾトリフェニレニル基、
テトラセニル基、
ペンタセニル基、
フルオレニル基、
9,9’-スピロビフルオレニル基、
ベンゾフルオレニル基、
ジベンゾフルオレニル基、
フルオランテニル基、
ベンゾフルオランテニル基、
ペリレニル基、及び
下記一般式(TEMP-1)~(TEMP-15)で表される環構造から1つの水素原子を除くことにより誘導される1価のアリール基。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
・置換のアリール基(具体例群G1B):
o-トリル基、
m-トリル基、
p-トリル基、
パラ-キシリル基、
メタ-キシリル基、
オルト-キシリル基、
パラ-イソプロピルフェニル基、
メタ-イソプロピルフェニル基、
オルト-イソプロピルフェニル基、
パラ-t-ブチルフェニル基、
メタ-t-ブチルフェニル基、
オルト-t-ブチルフェニル基、
3,4,5-トリメチルフェニル基、
9,9-ジメチルフルオレニル基、
9,9-ジフェニルフルオレニル基、
9,9-ビス(4-メチルフェニル)フルオレニル基、
9,9-ビス(4-イソプロピルフェニル)フルオレニル基、
9,9-ビス(4-t-ブチルフェニル)フルオレニル基、
シアノフェニル基、
トリフェニルシリルフェニル基、
トリメチルシリルフェニル基、
フェニルナフチル基、
ナフチルフェニル基、及び
前記一般式(TEMP-1)~(TEMP-15)で表される環構造から誘導される1価の基の1つ以上の水素原子が置換基と置き換わった基。
・「置換もしくは無置換の複素環基」
 本明細書に記載の「複素環基」は、環形成原子にヘテロ原子を少なくとも1つ含む環状の基である。ヘテロ原子の具体例としては、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子、及びホウ素原子が挙げられる。
 本明細書に記載の「複素環基」は、単環の基であるか、又は縮合環の基である。
 本明細書に記載の「複素環基」は、芳香族複素環基であるか、又は非芳香族複素環基である。
 本明細書に記載の「置換もしくは無置換の複素環基」の具体例(具体例群G2)としては、以下の無置換の複素環基(具体例群G2A)、及び置換の複素環基(具体例群G2B)等が挙げられる。(ここで、無置換の複素環基とは「置換もしくは無置換の複素環基」が「無置換の複素環基」である場合を指し、置換の複素環基とは「置換もしくは無置換の複素環基」が「置換の複素環基」である場合を指す。)本明細書において、単に「複素環基」という場合は、「無置換の複素環基」と「置換の複素環基」の両方を含む。
 「置換の複素環基」は、「無置換の複素環基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換の複素環基」の具体例は、下記具体例群G2Aの「無置換の複素環基」の水素原子が置き換わった基、及び下記具体例群G2Bの置換の複素環基の例等が挙げられる。尚、ここに列挙した「無置換の複素環基」の例や「置換の複素環基」の例は、一例に過ぎず、本明細書に記載の「置換の複素環基」には、具体例群G2Bの「置換の複素環基」における複素環基自体の環形成原子に結合する水素原子がさらに置換基と置き換わった基、及び具体例群G2Bの「置換の複素環基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
 具体例群G2Aは、例えば、以下の窒素原子を含む無置換の複素環基(具体例群G2A1)、酸素原子を含む無置換の複素環基(具体例群G2A2)、硫黄原子を含む無置換の複素環基(具体例群G2A3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4)を含む。
 具体例群G2Bは、例えば、以下の窒素原子を含む置換の複素環基(具体例群G2B1)、酸素原子を含む置換の複素環基(具体例群G2B2)、硫黄原子を含む置換の複素環基(具体例群G2B3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4)を含む。
・窒素原子を含む無置換の複素環基(具体例群G2A1):
ピロリル基、
イミダゾリル基、
ピラゾリル基、
トリアゾリル基、
テトラゾリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ピリジル基、
ピリダジニル基、
ピリミジニル基、
ピラジニル基、
トリアジニル基、
インドリル基、
イソインドリル基、
インドリジニル基、
キノリジニル基、
キノリル基、
イソキノリル基、
シンノリル基、
フタラジニル基、
キナゾリニル基、
キノキサリニル基、
ベンゾイミダゾリル基、
インダゾリル基、
フェナントロリニル基、
フェナントリジニル基、
アクリジニル基、
フェナジニル基、
カルバゾリル基、
ベンゾカルバゾリル基、
モルホリノ基、
フェノキサジニル基、
フェノチアジニル基、
アザカルバゾリル基、及び
ジアザカルバゾリル基。
・酸素原子を含む無置換の複素環基(具体例群G2A2):
フリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
キサンテニル基、
ベンゾフラニル基、
イソベンゾフラニル基、
ジベンゾフラニル基、
ナフトベンゾフラニル基、
ベンゾオキサゾリル基、
ベンゾイソキサゾリル基、
フェノキサジニル基、
モルホリノ基、
ジナフトフラニル基、
アザジベンゾフラニル基、
ジアザジベンゾフラニル基、
アザナフトベンゾフラニル基、及び
ジアザナフトベンゾフラニル基。
・硫黄原子を含む無置換の複素環基(具体例群G2A3):
チエニル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ベンゾチオフェニル基(ベンゾチエニル基)、
イソベンゾチオフェニル基(イソベンゾチエニル基)、
ジベンゾチオフェニル基(ジベンゾチエニル基)、
ナフトベンゾチオフェニル基(ナフトベンゾチエニル基)、
ベンゾチアゾリル基、
ベンゾイソチアゾリル基、
フェノチアジニル基、
ジナフトチオフェニル基(ジナフトチエニル基)、
アザジベンゾチオフェニル基(アザジベンゾチエニル基)、
ジアザジベンゾチオフェニル基(ジアザジベンゾチエニル基)、
アザナフトベンゾチオフェニル基(アザナフトベンゾチエニル基)、及び
ジアザナフトベンゾチオフェニル基(ジアザナフトベンゾチエニル基)。
・下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYは、それぞれ独立に、酸素原子、硫黄原子、NH、又はCHである。ただし、X及びYのうち少なくとも1つは、酸素原子、硫黄原子、又はNHである。
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYの少なくともいずれかがNH、又はCHである場合、前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基には、これらNH、又はCHから1つの水素原子を除いて得られる1価の基が含まれる。
・窒素原子を含む置換の複素環基(具体例群G2B1):
(9-フェニル)カルバゾリル基、
(9-ビフェニリル)カルバゾリル基、
(9-フェニル)フェニルカルバゾリル基、
(9-ナフチル)カルバゾリル基、
ジフェニルカルバゾール-9-イル基、
フェニルカルバゾール-9-イル基、
メチルベンゾイミダゾリル基、
エチルベンゾイミダゾリル基、
フェニルトリアジニル基、
ビフェニリルトリアジニル基、
ジフェニルトリアジニル基、
フェニルキナゾリニル基、及び
ビフェニリルキナゾリニル基。
・酸素原子を含む置換の複素環基(具体例群G2B2):
フェニルジベンゾフラニル基、
メチルジベンゾフラニル基、
t-ブチルジベンゾフラニル基、及び
スピロ[9H-キサンテン-9,9’-[9H]フルオレン]の1価の残基。
・硫黄原子を含む置換の複素環基(具体例群G2B3):
フェニルジベンゾチオフェニル基、
メチルジベンゾチオフェニル基、
t-ブチルジベンゾチオフェニル基、及び
スピロ[9H-チオキサンテン-9,9’-[9H]フルオレン]の1価の残基。
・前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4):
 前記「1価の複素環基の1つ以上の水素原子」とは、該1価の複素環基の環形成炭素原子に結合している水素原子、XA及びYAの少なくともいずれかがNHである場合の窒素原子に結合している水素原子、及びXA及びYAの一方がCH2である場合のメチレン基の水素原子から選ばれる1つ以上の水素原子を意味する。
・「置換もしくは無置換のアルキル基」
 本明細書に記載の「置換もしくは無置換のアルキル基」の具体例(具体例群G3)としては、以下の無置換のアルキル基(具体例群G3A)及び置換のアルキル基(具体例群G3B)が挙げられる。(ここで、無置換のアルキル基とは「置換もしくは無置換のアルキル基」が「無置換のアルキル基」である場合を指し、置換のアルキル基とは「置換もしくは無置換のアルキル基」が「置換のアルキル基」である場合を指す。)以下、単に「アルキル基」という場合は、「無置換のアルキル基」と「置換のアルキル基」の両方を含む。
 「置換のアルキル基」は、「無置換のアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキル基」の具体例としては、下記の「無置換のアルキル基」(具体例群G3A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のアルキル基(具体例群G3B)の例等が挙げられる。本明細書において、「無置換のアルキル基」におけるアルキル基は、鎖状のアルキル基を意味する。そのため、「無置換のアルキル基」は、直鎖である「無置換のアルキル基」、及び分岐状である「無置換のアルキル基」が含まれる。尚、ここに列挙した「無置換のアルキル基」の例や「置換のアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルキル基」には、具体例群G3Bの「置換のアルキル基」におけるアルキル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G3Bの「置換のアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルキル基(具体例群G3A):
メチル基、
エチル基、
n-プロピル基、
イソプロピル基、
n-ブチル基、
イソブチル基、
s-ブチル基、及びt-ブチル基。
・置換のアルキル基(具体例群G3B):
ヘプタフルオロプロピル基(異性体を含む)、
ペンタフルオロエチル基、
2,2,2-トリフルオロエチル基、及び
トリフルオロメチル基。
・「置換もしくは無置換のアルケニル基」
 本明細書に記載の「置換もしくは無置換のアルケニル基」の具体例(具体例群G4)としては、以下の無置換のアルケニル基(具体例群G4A)、及び置換のアルケニル基(具体例群G4B)等が挙げられる。(ここで、無置換のアルケニル基とは「置換もしくは無置換のアルケニル基」が「無置換のアルケニル基」である場合を指し、「置換のアルケニル基」とは「置換もしくは無置換のアルケニル基」が「置換のアルケニル基」である場合を指す。)本明細書において、単に「アルケニル基」という場合は、「無置換のアルケニル基」と「置換のアルケニル基」の両方を含む。
 「置換のアルケニル基」は、「無置換のアルケニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルケニル基」の具体例としては、下記の「無置換のアルケニル基」(具体例群G4A)が置換基を有する基、及び置換のアルケニル基(具体例群G4B)の例等が挙げられる。尚、ここに列挙した「無置換のアルケニル基」の例や「置換のアルケニル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルケニル基」には、具体例群G4Bの「置換のアルケニル基」におけるアルケニル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G4Bの「置換のアルケニル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルケニル基(具体例群G4A):
ビニル基、
アリル基、
1-ブテニル基、
2-ブテニル基、及び
3-ブテニル基。
・置換のアルケニル基(具体例群G4B):
1,3-ブタンジエニル基、
1-メチルビニル基、
1-メチルアリル基、
1,1-ジメチルアリル基、
2-メチルアリル基、及び
1,2-ジメチルアリル基。
・「置換もしくは無置換のアルキニル基」
 本明細書に記載の「置換もしくは無置換のアルキニル基」の具体例(具体例群G5)としては、以下の無置換のアルキニル基(具体例群G5A)等が挙げられる。(ここで、無置換のアルキニル基とは、「置換もしくは無置換のアルキニル基」が「無置換のアルキニル基」である場合を指す。)以下、単に「アルキニル基」という場合は、「無置換のアルキニル基」と「置換のアルキニル基」の両方を含む。
 「置換のアルキニル基」は、「無置換のアルキニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキニル基」の具体例としては、下記の「無置換のアルキニル基」(具体例群G5A)における1つ以上の水素原子が置換基と置き換わった基等が挙げられる。
・無置換のアルキニル基(具体例群G5A):
エチニル基。
・「置換もしくは無置換のシクロアルキル基」
 本明細書に記載の「置換もしくは無置換のシクロアルキル基」の具体例(具体例群G6)としては、以下の無置換のシクロアルキル基(具体例群G6A)、及び置換のシクロアルキル基(具体例群G6B)等が挙げられる。(ここで、無置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「無置換のシクロアルキル基」である場合を指し、置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「置換のシクロアルキル基」である場合を指す。)本明細書において、単に「シクロアルキル基」という場合は、「無置換のシクロアルキル基」と「置換のシクロアルキル基」の両方を含む。
 「置換のシクロアルキル基」は、「無置換のシクロアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のシクロアルキル基」の具体例としては、下記の「無置換のシクロアルキル基」(具体例群G6A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のシクロアルキル基(具体例群G6B)の例等が挙げられる。尚、ここに列挙した「無置換のシクロアルキル基」の例や「置換のシクロアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のシクロアルキル基」には、具体例群G6Bの「置換のシクロアルキル基」におけるシクロアルキル基自体の炭素原子に結合する1つ以上の水素原子が置換基と置き換わった基、及び具体例群G6Bの「置換のシクロアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のシクロアルキル基(具体例群G6A):
シクロプロピル基、
シクロブチル基、
シクロペンチル基、
シクロヘキシル基、
1-アダマンチル基、
2-アダマンチル基、
1-ノルボルニル基、及び
2-ノルボルニル基。
・置換のシクロアルキル基(具体例群G6B):
4-メチルシクロヘキシル基。
・「-Si(R901)(R902)(R903)で表される基」
 本明細書に記載の-Si(R901)(R902)(R903)で表される基の具体例(具体例群G7)としては、
-Si(G1)(G1)(G1)、
-Si(G1)(G2)(G2)、
-Si(G1)(G1)(G2)、
-Si(G2)(G2)(G2)、
-Si(G3)(G3)(G3)、及び-Si(G6)(G6)(G6)
が挙げられる。ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -Si(G1)(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G1)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G1)(G1)(G2)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G2)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -Si(G6)(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「-O-(R904)で表される基」
 本明細書に記載の-O-(R904)で表される基の具体例(具体例群G8)としては、
-O(G1)、
-O(G2)、
-O(G3)、及び
-O(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-S-(R905)で表される基」
 本明細書に記載の-S-(R905)で表される基の具体例(具体例群G9)としては、
-S(G1)、
-S(G2)、
-S(G3)、及び
-S(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-N(R906)(R907)で表される基」
 本明細書に記載の-N(R906)(R907)で表される基の具体例(具体例群G10)としては、
-N(G1)(G1)、
-N(G2)(G2)、
-N(G1)(G2)、
-N(G3)(G3)、及び
-N(G6)(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -N(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -N(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -N(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -N(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「ハロゲン原子」
 本明細書に記載の「ハロゲン原子」の具体例(具体例群G11)としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
・「置換もしくは無置換のフルオロアルキル基」
 本明細書に記載の「置換もしくは無置換のフルオロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がフッ素原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がフッ素原子で置き換わった基(パーフルオロ基)も含む。「無置換のフルオロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のフルオロアルキル基」は、「フルオロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のフルオロアルキル基」には、「置換のフルオロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のフルオロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のフルオロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がフッ素原子と置き換わった基の例等が挙げられる。
・「置換もしくは無置換のハロアルキル基」
 本明細書に記載の「置換もしくは無置換のハロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がハロゲン原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がハロゲン原子で置き換わった基も含む。「無置換のハロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のハロアルキル基」は、「ハロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のハロアルキル基」には、「置換のハロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のハロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のハロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がハロゲン原子と置き換わった基の例等が挙げられる。ハロアルキル基をハロゲン化アルキル基と称する場合がある。
・「置換もしくは無置換のアルコキシ基」
 本明細書に記載の「置換もしくは無置換のアルコキシ基」の具体例としては、-O(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルコキシ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアルキルチオ基」
 本明細書に記載の「置換もしくは無置換のアルキルチオ基」の具体例としては、-S(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルキルチオ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアリールオキシ基」
 本明細書に記載の「置換もしくは無置換のアリールオキシ基」の具体例としては、-O(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールオキシ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のアリールチオ基」
 本明細書に記載の「置換もしくは無置換のアリールチオ基」の具体例としては、-S(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールチオ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のトリアルキルシリル基」
 本明細書に記載の「トリアルキルシリル基」の具体例としては、-Si(G3)(G3)(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。-Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。「トリアルキルシリル基」の各アルキル基の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20であり、より好ましくは1~6である。
・「置換もしくは無置換のアラルキル基」
 本明細書に記載の「置換もしくは無置換のアラルキル基」の具体例としては、-(G3)-(G1)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」であり、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。従って、「アラルキル基」は、「アルキル基」の水素原子が置換基としての「アリール基」と置き換わった基であり、「置換のアルキル基」の一態様である。「無置換のアラルキル基」は、「無置換のアリール基」が置換した「無置換のアルキル基」であり、「無置換のアラルキル基」の炭素数は、本明細書に別途記載のない限り、7~50であり、好ましくは7~30であり、より好ましくは7~18である。
 「置換もしくは無置換のアラルキル基」の具体例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリール基は、本明細書に別途記載のない限り、好ましくはフェニル基、p-ビフェニル基、m-ビフェニル基、o-ビフェニル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-ターフェニル-4-イル基、o-ターフェニル-3-イル基、o-ターフェニル-2-イル基、1-ナフチル基、2-ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジメチルフルオレニル基、及び9,9-ジフェニルフルオレニル基等である。
 本明細書に記載の置換もしくは無置換の複素環基は、本明細書に別途記載のない限り、好ましくはピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、又は9-カルバゾリル基)、ベンゾカルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、アザジベンゾフラニル基、ジアザジベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、アザジベンゾチオフェニル基、ジアザジベンゾチオフェニル基、(9-フェニル)カルバゾリル基((9-フェニル)カルバゾール-1-イル基、(9-フェニル)カルバゾール-2-イル基、(9-フェニル)カルバゾール-3-イル基、又は(9-フェニル)カルバゾール-4-イル基)、(9-ビフェニリル)カルバゾリル基、(9-フェニル)フェニルカルバゾリル基、ジフェニルカルバゾール-9-イル基、フェニルカルバゾール-9-イル基、フェニルトリアジニル基、ビフェニリルトリアジニル基、ジフェニルトリアジニル基、フェニルジベンゾフラニル基、及びフェニルジベンゾチオフェニル基等である。
 本明細書において、カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000013
 本明細書において、(9-フェニル)カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000014
 前記一般式(TEMP-Cz1)~(TEMP-Cz9)中、*は、結合位置を表す。
 本明細書において、ジベンゾフラニル基、及びジベンゾチオフェニル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000015
 前記一般式(TEMP-34)~(TEMP-41)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換のアルキル基は、本明細書に別途記載のない限り、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基等である。
・「置換もしくは無置換のアリーレン基」
 本明細書に記載の「置換もしくは無置換のアリーレン基」は、別途記載のない限り、上記「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアリーレン基」の具体例(具体例群G12)としては、具体例群G1に記載の「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換の2価の複素環基」
 本明細書に記載の「置換もしくは無置換の2価の複素環基」は、別途記載のない限り、上記「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換の2価の複素環基」の具体例(具体例群G13)としては、具体例群G2に記載の「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換のアルキレン基」
 本明細書に記載の「置換もしくは無置換のアルキレン基」は、別途記載のない限り、上記「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアルキレン基」の具体例(具体例群G14)としては、具体例群G3に記載の「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリーレン基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-42)~(TEMP-68)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 前記一般式(TEMP-42)~(TEMP-52)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-42)~(TEMP-52)中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000018
 前記一般式(TEMP-53)~(TEMP-62)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 式Q及びQ10は、単結合を介して互いに結合して環を形成してもよい。
 前記一般式(TEMP-53)~(TEMP-62)中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000019
 前記一般式(TEMP-63)~(TEMP-68)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-63)~(TEMP-68)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換の2価の複素環基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-69)~(TEMP-102)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 前記一般式(TEMP-69)~(TEMP-82)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 前記一般式(TEMP-83)~(TEMP-102)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 以上が、「本明細書に記載の置換基」についての説明である。
・「結合して環を形成する場合」
 本明細書において、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、互いに結合して、置換もしくは無置換の縮合環を形成するか、又は互いに結合せず」という場合は、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合しない」場合と、を意味する。
 本明細書における、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(以下、これらの場合をまとめて「結合して環を形成する場合」と称する場合がある。)について、以下、説明する。母骨格がアントラセン環である下記一般式(TEMP-103)で表されるアントラセン化合物の場合を例として説明する。
Figure JPOXMLDOC01-appb-C000027
 例えば、R921~R930のうちの「隣接する2つ以上からなる組の1組以上が、互いに結合して、環を形成する」場合において、1組となる隣接する2つからなる組とは、R921とR922との組、R922とR923との組、R923とR924との組、R924とR930との組、R930とR925との組、R925とR926との組、R926とR927との組、R927とR928との組、R928とR929との組、並びにR929とR921との組である。
 上記「1組以上」とは、上記隣接する2つ以上からなる組の2組以上が同時に環を形成してもよいことを意味する。例えば、R921とR922とが互いに結合して環Qを形成し、同時にR925とR926とが互いに結合して環Qを形成した場合は、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-104)で表される。
Figure JPOXMLDOC01-appb-C000028
 「隣接する2つ以上からなる組」が環を形成する場合とは、前述の例のように隣接する「2つ」からなる組が結合する場合だけではなく、隣接する「3つ以上」からなる組が結合する場合も含む。例えば、R921とR922とが互いに結合して環Qを形成し、かつ、R922とR923とが互いに結合して環Qを形成し、互いに隣接する3つ(R921、R922及びR923)からなる組が互いに結合して環を形成して、アントラセン母骨格に縮合する場合を意味し、この場合、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-105)で表される。下記一般式(TEMP-105)において、環Q及び環Qは、R922を共有する。
Figure JPOXMLDOC01-appb-C000029
 形成される「単環」、又は「縮合環」は、形成された環のみの構造として、飽和の環であっても不飽和の環であってもよい。「隣接する2つからなる組の1組」が「単環」、又は「縮合環」を形成する場合であっても、当該「単環」、又は「縮合環」は、飽和の環、又は不飽和の環を形成することができる。例えば、前記一般式(TEMP-104)において形成された環Q及び環Qは、それぞれ、「単環」又は「縮合環」である。また、前記一般式(TEMP-105)において形成された環Q、及び環Qは、「縮合環」である。前記一般式(TEMP-105)の環Qと環Qとは、環Qと環Qとが縮合することによって縮合環となっている。前記一般式(TMEP-104)の環Qがベンゼン環であれば、環Qは、単環である。前記一般式(TMEP-104)の環Qがナフタレン環であれば、環Qは、縮合環である。
 「不飽和の環」とは、芳香族炭化水素環、又は芳香族複素環を意味する。「飽和の環」とは、脂肪族炭化水素環、又は非芳香族複素環を意味する。
 芳香族炭化水素環の具体例としては、具体例群G1において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 芳香族複素環の具体例としては、具体例群G2において具体例として挙げられた芳香族複素環基が水素原子によって終端された構造が挙げられる。
 脂肪族炭化水素環の具体例としては、具体例群G6において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 「環を形成する」とは、母骨格の複数の原子のみ、あるいは母骨格の複数の原子とさらに1以上の任意の元素で環を形成することを意味する。例えば、前記一般式(TEMP-104)に示す、R921とR922とが互いに結合して形成された環Qは、R921が結合するアントラセン骨格の炭素原子と、R922が結合するアントラセン骨格の炭素原子と、1以上の任意の元素とで形成する環を意味する。具体例としては、R921とR922とで環Qを形成する場合において、R921が結合するアントラセン骨格の炭素原子と、R922とが結合するアントラセン骨格の炭素原子と、4つの炭素原子とで単環の不飽和の環を形成する場合、R921とR922とで形成する環は、ベンゼン環である。
 ここで、「任意の元素」は、本明細書に別途記載のない限り、好ましくは、炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素である。任意の元素において(例えば、炭素元素、又は窒素元素の場合)、環を形成しない結合は、水素原子等で終端されてもよいし、後述する「任意の置換基」で置換されてもよい。炭素元素以外の任意の元素を含む場合、形成される環は複素環である。
 単環または縮合環を構成する「1以上の任意の元素」は、本明細書に別途記載のない限り、好ましくは2個以上15個以下であり、より好ましくは3個以上12個以下であり、さらに好ましくは3個以上5個以下である。
 本明細書に別途記載のない限り、「単環」、及び「縮合環」のうち、好ましくは「単環」である。
 本明細書に別途記載のない限り、「飽和の環」、及び「不飽和の環」のうち、好ましくは「不飽和の環」である。
 本明細書に別途記載のない限り、「単環」は、好ましくはベンゼン環である。
 本明細書に別途記載のない限り、「不飽和の環」は、好ましくはベンゼン環である。
 「隣接する2つ以上からなる組の1組以上」が、「互いに結合して、置換もしくは無置換の単環を形成する」場合、又は「互いに結合して、置換もしくは無置換の縮合環を形成する」場合、本明細書に別途記載のない限り、好ましくは、隣接する2つ以上からなる組の1組以上が、互いに結合して、母骨格の複数の原子と、1個以上15個以下の炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素とからなる置換もしくは無置換の「不飽和の環」を形成する。
 上記の「単環」、又は「縮合環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 上記の「飽和の環」、又は「不飽和の環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 以上が、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(「結合して環を形成する場合」)についての説明である。
・「置換もしくは無置換の」という場合の置換基
 本明細書における一実施形態においては、前記「置換もしくは無置換の」という場合の置換基(本明細書において、「任意の置換基」と呼ぶことがある。)は、例えば、
無置換の炭素数1~50のアルキル基、
無置換の炭素数2~50のアルケニル基、
無置換の炭素数2~50のアルキニル基、
無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
無置換の環形成炭素数6~50のアリール基、及び
無置換の環形成原子数5~50の複素環基からなる群から選択される基等であり、
 ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。
 R901が2個以上存在する場合、2個以上のR901は、互いに同一であるか、又は異なり、
 R902が2個以上存在する場合、2個以上のR902は、互いに同一であるか、又は異なり、
 R903が2個以上存在する場合、2個以上のR903は、互いに同一であるか、又は異なり、
 R904が2個以上存在する場合、2個以上のR904は、互いに同一であるか、又は異なり、
 R905が2個以上存在する場合、2個以上のR905は、互いに同一であるか、又は異なり、
 R906が2個以上存在する場合、2個以上のR906は、互いに同一であるか、又は異なり、
 R907が2個以上存在する場合、2個以上のR907は、互いに同一であるか又は異なる。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び環形成原子数5~50の複素環基からなる群から選択される基である。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び環形成原子数5~18の複素環基からなる群から選択される基である。
 上記任意の置換基の各基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基の具体例である。
 本明細書において別途記載のない限り、隣接する任意の置換基同士で、「飽和の環」、又は「不飽和の環」を形成してもよく、好ましくは、置換もしくは無置換の飽和の5員環、置換もしくは無置換の飽和の6員環、置換もしくは無置換の不飽和の5員環、又は置換もしくは無置換の不飽和の6員環を形成し、より好ましくは、ベンゼン環を形成する。
 本明細書において別途記載のない限り、任意の置換基は、さらに置換基を有してもよい。任意の置換基がさらに有する置換基としては、上記任意の置換基と同様である。
 本明細書において、「AA~BB」を用いて表される数値範囲は、「AA~BB」の前に記載される数値AAを下限値とし、「AA~BB」の後に記載される数値BBを上限値として含む範囲を意味する。
〔第一実施形態〕
 本発明の第一実施形態に係る有機EL素子の構成について説明する。
 本実施形態に係る有機EL素子は、陽極および陰極の両電極間に有機層を備える。この有機層は、有機化合物で構成される層を少なくとも一つ含む。あるいは、この有機層は、有機化合物で構成される複数の層が積層されてなる。有機層は、無機化合物をさらに含んでいてもよい。
 本実施形態において、有機層のうち少なくとも二層は、陽極及び陰極の間に含まれる発光層と、発光層及び陽極の間に含まれる第一の層である。有機層は、例えば、発光層と第一の層とで構成されていてもよいし、有機EL素子に採用され得る層を含んでいてもよい。有機EL素子に採用され得る層としては、特に限定されないが、例えば、正孔注入層、正孔輸送層、電子障壁層、電子注入層、電子輸送層、及び正孔障壁層からなる群から選択される少なくともいずれかの層が挙げられる。
 本実施形態の有機EL素子は、陽極と、陰極と、前記陽極と前記陰極との間に含まれる発光層と、前記陽極と前記発光層の間に含まれる第一の層と、を有し、前記発光層は、遅延蛍光性の化合物を含み、前記第一の層は、下記一般式(3)で表される第一化合物を含み、前記第一化合物のイオン化ポテンシャルIp(HT1)は下記数式(数1)を満たし、前記第一化合物の正孔移動度μh(HT1)は下記数式(数2)を満たす。
  Ip(HT1)≧5.70eV     …(数1)
  μh(HT1)≧1.0×10-5cm/Vs …(数2)
 本明細書において、陽極及び発光層の間に配置された複数の有機層からなる領域を正孔輸送帯域と称する場合がある。本明細書において、複数の素子に亘って共通して設けられている層を共通層と称し、複数の素子に亘って共通して設けられていない層を非共通層と称する場合がある。
 TADFメカニズムを利用した有機EL素子においては、使用態様に応じて、正孔輸送帯域の総膜厚を厚膜化したいという要請がある。その理由について説明する。
 赤色画素、緑色画素及び青色画素(RGB画素)として有機EL素子を有機EL表示装置に搭載する場合、量産性向上及び製造コスト削減の観点から、通常、RGB画素に亘って同じ材料かつ同じ膜厚で、共通層として正孔輸送層を形成している。
 RGB画素を搭載した有機EL表示装置においては、キャビティ調整を行うため、画素ごとに発光波長に応じた正孔輸送帯域の総膜厚を最適化する必要がある。具体的には、RGB画素のうちで波長が最長ではない画素に合わせて、残りの画素の正孔輸送帯域の総膜厚を決定する必要がある。
 ここで、キャビティ調整を行う画素が燐光発光する有機EL素子である場合は、非共通層として厚い膜厚の層(例えば電子障壁層)を別途設けることで対応していたが、キャビティ調整を行う画素がTADFメカニズムで発光する有機EL素子である場合においても、非共通層を厚膜化する必要がある。
 しかし、TADFメカニズムで発光する有機EL素子の場合は、非共通層を単に厚膜化すると、発光層へのホールの輸送性が低下するため、素子性能が低下することが課題であった。これは、遅延蛍光発光層のイオン化ポテンシャルIpの絶対値が、燐光発光層のイオン化ポテンシャルIpの絶対値に比べて大きいためと考えられる。一方、非共通層を複数層設けて正孔輸送帯域の総膜厚を厚くすることも考えられるが、この手法では量産性が低下するという課題が生じる。
 本発明者らは、TADFメカニズムで発光する有機EL素子において、発光層及び陽極の間に含まれる第一の層(例えば電子障壁層)に、特定のパラメータ(数式(数1)及び数式(数2))を満たす特定構造のアミン化合物(一般式(3)で表される第一化合物)を含ませることで、イオン化ポテンシャルIpの絶対値が大きい遅延蛍光発光層へのホール注入性を向上できることを見出した。その結果、第一の層を厚膜化した場合でも、素子性能の低下を抑制できると考えられる。
 よって、本実施形態に係る有機EL素子によれば、第一の層を厚膜化した場合でも、低電圧、高効率及び長寿命の少なくともいずれかを実現できる
 また、本実施形態に係る有機EL素子を、RGB画素の少なくともいずれかがTADFメカニズムで発光する有機EL表示装置に搭載した場合には、第一の層の膜厚を単に厚膜化することで、キャビティ調整を容易に行うことができる。また、有機EL表示装置の量産性を向上させることができる。
 図1に、本実施形態に係る有機EL素子の一例の概略構成を示す。
 有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を含む。有機層10は、陽極3側から順に、陽極側有機層63、第一の層61、発光層5、電子輸送層8、および電子注入層9が、この順番で積層されて構成される。図1中、D1は、第一の層61の膜厚を表す。
 図1の有機EL素子1において、正孔輸送帯域は、陽極側有機層63と、第一の層61とを含む。
 第一の層61は、発光層5に隣接することが好ましい。
 第一の層61は、陽極側有機層63に隣接することも好ましい。
 第一の層61は、正孔輸送層又は電子障壁層であることが好ましく、電子障壁層であることがより好ましい。
 陽極側有機層63は、第一の層61に隣接することが好ましい。
 陽極側有機層63は、陽極3に隣接することも好ましい。
 陽極側有機層63は、正孔注入層又は正孔輸送層であることが好ましく、正孔注入層であることがより好ましい。
 陽極側有機層63には、例えば、後述の<有機EL素子の構成>で記載した正孔注入層の材料及び正孔輸送層の材料を使用することができる。
 発光層5は、燐光発光性材料(ドーパント材料)を含まないことが好ましい。
 発光層5は、燐光発光性の金属錯体を含まないことが好ましい。
 また、発光層5は、重金属錯体を含まないことが好ましい。重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。
 また、発光層5は、燐光発光性の希土類金属錯体を含まないことが好ましい。
 また、発光層5は、金属錯体を含んでもよいが、含まないことが好ましい。
 本実施形態の一態様において、第一の層の膜厚は、5nm以上である。
 本実施形態の一態様において、第一の層の膜厚は、10nm以上である。
 本実施形態の一態様において、第一の層の膜厚は、15nm以上である。
 本実施形態の一態様において、第一の層の膜厚は、20nm以上である。
 本実施形態の一態様において、第一の層の膜厚は、25nm以上である。
 本実施形態の一態様において、第一の層の膜厚は、30nm以上である。
<第一の層>
 第一の層は、下記一般式(3)で表される第一化合物を含む。
(一般式(3)で表される第一化合物)
Figure JPOXMLDOC01-appb-C000030
(前記一般式(3)において、
 Ar及びArは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 nは、0、1、2又は3であり、
 Lは、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基であり、
 Lが複数存在する場合、複数のLは、互いに同一であるか、又は異なり、
 A及びAからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないA及びAは、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  Lと結合する単結合、又は
  前記一般式(3)中の窒素原子と結合する単結合であり、
 R31~R34及びR35~R38のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR31~R38は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  Lと結合する単結合もしくは前記一般式(3)中の窒素原子と結合する単結合であり、
 ただし、A及びA並びにR31~R38の内、いずれか1つが、Lと結合する単結合もしくは前記一般式(3)中の窒素原子と結合する単結合であり、
 前記一般式(3)中、*は、A~Aが結合する五員環の炭素原子及びR31~R38が結合する六員環の炭素原子のいずれか1つとの結合位置を表す。)
(前記一般式(3)において、R901、R902、R903、R904、R905、R906、R907、R908、R909、R931、R932、R933、R934、R935、R936及びR937は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R908が複数存在する場合、複数のR908は、互いに同一であるか又は異なり、
 R909が複数存在する場合、複数のR909は、互いに同一であるか又は異なり、
 R931が複数存在する場合、複数のR931は、互いに同一であるか又は異なり、
 R932が複数存在する場合、複数のR932は、互いに同一であるか又は異なり、
 R933が複数存在する場合、複数のR933は、互いに同一であるか又は異なり、
 R934が複数存在する場合、複数のR934は、互いに同一であるか又は異なり、
 R935が複数存在する場合、複数のR935は、互いに同一であるか又は異なり、
 R936が複数存在する場合、複数のR936は、互いに同一であるか又は異なり、
 R937が複数存在する場合、複数のR937は、互いに同一であるか又は異なる。)
 前記第一化合物において、nは、1又は2であることが好ましく、nは、1であることがより好ましい。
 前記第一化合物において、Ar及びArは、それぞれ独立に、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基、置換もしくは無置換のジベンゾフラニル基、置換もしくは無置換のジベンゾチエニル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のカルバゾリル基、置換もしくは無置換のナフチル基、又は置換もしくは無置換のフェナントレニル基であることが好ましい。
 前記第一化合物において、Ar及びArは、それぞれ独立に、無置換のフェニル基、無置換のビフェニル基、無置換のターフェニル基、無置換のジベンゾフラニル基、無置換のジベンゾチエニル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のカルバゾリル基、無置換のナフチル基、又は無置換のフェナントレニル基であることがより好ましい。
 前記第一化合物において、-(L)n-で表される基におけるLは、下記一般式(L1)~(L9)のいずれかで表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
(前記一般式(L1)~(L9)において、
 Raのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRaは、それぞれ独立に、前記一般式(3)におけるR31~R38と同義であり、複数存在するRaは、互いに同一であるか、又は異なる。
 -(L)n-におけるnが1の場合、前記一般式(L1)~(L9)中、2つの*のうち、一方の*は、R31~R38が結合する六員環の炭素原子、及びA~Aが結合する五員環の炭素原子のいずれか1つと結合し、他方の*は、窒素原子と結合する。
 -(L)n-におけるnが2又は3の場合、前記一般式(L1)~(L9)中、2つの*のうち、一方の*は、R31~R38が結合する六員環の炭素原子、及びA~Aが結合する五員環の炭素原子のいずれか1つと結合するか、もしくは他のLと結合し、他方の*は、窒素原子もしくは他のLと結合する。)
 前記一般式(L1)~(L9)において、Raのうちの隣接する2つ以上からなる組の1組以上が、置換もしくは無置換の単環を形成せず、かつ置換もしくは無置換の縮合環を形成しないことも好ましい。
 前記一般式(L1)~(L9)において、Raのうちの隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
 前記第一化合物において、nは、1又は2であることも好ましい。
 本実施形態において、前記第一化合物は、下記一般式(31A)、(32A)、(33A)又は(34A)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
(前記一般式(31A)~(34A)において、A、A及びR31~R38は、それぞれ独立に、前記一般式(3)におけるA、A及びR31~R38と同義であり、
 Raのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R311~R315のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R316~R320のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRa及びR311~R320は、それぞれ独立に、前記一般式(3)におけるR31~R38と同義であり、
 複数存在するRaは、互いに同一であるか、又は異なり、
 *は、Raを有する六員環の炭素原子との結合位置を表す。)
 前記第一化合物において、
 Ra及びR311~R320は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記第一化合物において、Raは、それぞれ独立に、
  水素原子、
  無置換の炭素数1~50のアルキル基、
  無置換の環形成炭素数6~50のアリール基、又は
  無置換の環形成原子数5~50の複素環基であることが好ましく、
  水素原子であることがより好ましい。
 前記第一化合物において、nは、0であることも好ましい。
 前記第一化合物は、下記一般式(3-1)、(3-2)、(3-3)又は(3-4)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000034
(前記一般式(3-1)~(3-4)において、A、A及びR31~R38は、それぞれ独立に、前記一般式(3)におけるA、A及びR31~R38と同義であり、
 R311~R315のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R316~R320のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR311~R320は、それぞれ独立に、前記一般式(3)におけるR31~R38と同義である。)
 前記第一化合物において、R311~R320は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記第一化合物において、R311~R315のうちの隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
 前記第一化合物において、R316~R320のうちの隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
 前記Ar及びArにおいて、「置換もしくは無置換の」という場合の置換基は、それぞれ独立に、
  置換もしくは無置換のフェニル基、
  置換もしくは無置換のビフェニル基、
  置換もしくは無置換のターフェニル基、
  置換もしくは無置換のジベンゾフラニル基、
  置換もしくは無置換のジベンゾチエニル基、
  置換もしくは無置換のフルオレニル基、
  置換もしくは無置換のカルバゾリル基、
  置換もしくは無置換のナフチル基、又は
  置換もしくは無置換のフェナントレニル基であることが好ましい。
 前記Ar及びArにおいて、「置換もしくは無置換の」という場合の置換基は、それぞれ独立に、
  無置換のフェニル基、
  無置換のビフェニル基、
  無置換のジベンゾフラニル基、
  無置換のジベンゾチエニル基、
  置換もしくは無置換のフルオレニル基、
  置換もしくは無置換のカルバゾリル基、
  無置換のナフチル基、又は
  無置換のフェナントレニル基であることがより好ましい。
 前記第一化合物において、「置換もしくは無置換の」という場合の置換基は、それぞれ独立に、前記Ar及びArにおける「置換もしくは無置換の」という場合の置換基と同様であることが好ましい。
 前記第一化合物において、A及びAからなる組が互いに結合しない場合、A及びAは、それぞれ独立に、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記第一化合物において、A及びAからなる組が互いに結合しない場合、A及びAは、それぞれ独立に、メチル基、又は置換もしくは無置換のフェニル基であることがより好ましい。
 前記第一化合物において、A及びAからなる組が互いに結合する場合、互いに結合して形成される環は、置換もしくは無置換の縮合環であることが好ましい。
 前記第一化合物において、A及びAからなる組が互いに結合する場合、互いに結合して形成される環は、置換もしくは無置換のスピロフルオレン環であることがより好ましい。
 前記第一化合物において、A及びAは、メチル基であることも好ましい。
 前記第一化合物において、R31~R38は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記第一化合物において、R31~R38は、それぞれ独立に、水素原子、又は置換もしくは無置換のフェニル基であることがより好ましい。
 前記第一化合物において、R31~R38は水素原子であることがさらに好ましい。
(第一化合物のイオン化ポテンシャルIp(HT1))
 前記第一化合物のイオン化ポテンシャルIp(HT1)は、下記数式(数1A)を満たすことが好ましい。
 イオン化ポテンシャルIpの測定方法は、実施例に記載の通りである。
  Ip(HT1)≧5.73eV        …(数1A)
(第一化合物の正孔移動度μh(HT1))
 前記第一化合物の正孔移動度μh(HT1)は、下記数式(数2A)を満たすことが好ましい。
  μh(HT1)≧5.0×10-5cm/Vs …(数2A)
 前記第一化合物のイオン化ポテンシャルIp(HT1)が前記数式(数1A)を満たし、かつ前記第一化合物の正孔移動度μh(HT1)が前記数式(数2A)を満たすことが好ましい。
(正孔移動度の測定方法)
 正孔移動度は、下記の手順で作製された移動度評価用素子を用い、インピーダンス測定を行うことで測定できる。移動度評価用素子は、例えば、下記の手順で作製される。
 ITO透明電極(陽極)付きガラス基板上に、透明電極を覆うようにして下記化合物HA-2を蒸着して正孔注入層を形成する。この正孔注入層の成膜の上に、下記化合物HT-Aを蒸着して正孔輸送層を形成する。続けて、正孔移動度の測定対象となる化合物Targetを蒸着して測定対象層を形成する。この測定対象層の上に、金属アルミニウム(Al)を蒸着して金属陰極を形成する。
 以上の移動度評価用素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HA-2(5)/HT-A(10)/Target(200)/Al(80)
 なお、括弧内の数字は、膜厚(nm)を示す。
Figure JPOXMLDOC01-appb-C000035
 正孔移動度の移動度評価用素子を、インピーダンス測定装置に設置し、インピーダンス測定を行う。インピーダンス測定は、測定周波数を1Hzから1MHzまで掃引して行う。その際、素子には交流振幅0.1Vと同時に、直流電圧Vを印加する。測定されたインピーダンスZから、前記計算式(C1)の関係を用いて、モジュラスMを計算する。
 モジュラスMの虚部を縦軸、周波数[Hz]を横軸にしたボーデプロットにおいて、ピークを示す周波数fmaxから移動度評価用素子の電気的な時定数τを前記計算式(C2)から求める。
 前記計算式(C2)から求めたτを用いて、下記計算式(C3-2)の関係から正孔移動度μhを算出する。
 計算式(C3-2):μh=d/(Vτ)
 上記計算式(C3-2)のdは、素子を構成する有機薄膜の総膜厚であり、正孔移動度の移動度評価用素子構成の場合、d=215[nm]である。
 本明細書における正孔移動度は、電界強度の平方根E1/2=500[V1/2/cm1/2]の際の値である。電界強度の平方根E1/2は、下記計算式(C4)の関係から算出することができる。
  計算式(C4):E1/2=V1/2/d1/2
 前記インピーダンス測定にはインピーダンス測定装置としてソーラトロン社の1260型を用い、高精度化のため、ソーラトロン社の1296型誘電率測定インターフェイスを併せて用いることができる。
・第一化合物の製造方法
 第一化合物は、公知の方法により製造することができる。
 第一化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら化合物の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 第一実施形態の発光層は、少なくとも遅延蛍光性の化合物を含む。
 以下では、第一実施形態のうち、発光層が、遅延蛍光性の化合物としての化合物M2と、蛍光発光性の化合物M1とを含む態様について説明する。
<発光層>
 本実施形態の有機EL素子の発光層は、遅延蛍光性の化合物としての化合物M2と、蛍光発光性の化合物M1とを含む。
 この態様の場合、化合物M2は、ホスト材料(マトリックス材料と称する場合もある。)であることが好ましい。化合物M1は、ドーパント材料(ゲスト材料、エミッター、発光材料と称する場合もある。)であることが好ましい。
(化合物M2)
・遅延蛍光性
 遅延蛍光については、「有機半導体のデバイス物性」(安達千波矢編、講談社発行)の261~268ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギー差ΔE13を小さくすることができれば、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(Thermally Activated delayed Fluorescence, TADF)が発現すると説明されている。さらに、当該文献中の図10.38で、遅延蛍光の発生メカニズムが説明されている。本実施形態における化合物M2は、このようなメカニズムで発生する熱活性化遅延蛍光性を示す化合物であることが好ましい。
 一般に、遅延蛍光の発光は過渡PL(Photo Luminescence)測定により確認できる。
 過渡PL測定から得た減衰曲線に基づいて遅延蛍光の挙動を解析することもできる。過渡PL測定とは、試料にパルスレーザーを照射して励起させ、照射を止めた後のPL発光の減衰挙動(過渡特性)を測定する手法である。TADF材料におけるPL発光は、最初のPL励起で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初のPL励起で生成する一重項励起子の寿命は、ナノ秒オーダーであり、非常に短い。そのため、当該一重項励起子からの発光は、パルスレーザーを照射後、速やかに減衰する。
 一方、遅延蛍光は、寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初のPL励起で生成する一重項励起子からの発光と、三重項励起子を経由して生成する一重項励起子からの発光とでは、時間的に大きな差がある。そのため、遅延蛍光由来の発光強度を求めることができる。
 図2には、過渡PLを測定するための例示的装置の概略図が示されている。図2を用いた過渡PLの測定方法、および遅延蛍光の挙動解析の一例を説明する。
 図2の過渡PL測定装置100は、所定波長の光を照射可能なパルスレーザー部101と、測定試料を収容する試料室102と、測定試料から放射された光を分光する分光器103と、2次元像を結像するためのストリークカメラ104と、2次元像を取り込んで解析するパーソナルコンピュータ105とを備える。なお、過渡PLの測定は、図2に記載の装置に限定されない。
 試料室102に収容される試料は、マトリックス材料に対し、ドーピング材料が12質量%の濃度でドープされた薄膜を石英基板に成膜することで得られる。
 試料室102に収容された薄膜試料に対し、パルスレーザー部101からパルスレーザーを照射してドーピング材料を励起させる。励起光の照射方向に対して90度の方向へ発光を取り出し、取り出した光を分光器103で分光し、ストリークカメラ104内で2次元像を結像する。その結果、縦軸が時間に対応し、横軸が波長に対応し、輝点が発光強度に対応する2次元画像を得ることができる。この2次元画像を所定の時間軸で切り出すと、縦軸が発光強度であり、横軸が波長である発光スペクトルを得ることができる。また、当該2次元画像を波長軸で切り出すと、縦軸が発光強度の対数であり、横軸が時間である減衰曲線(過渡PL)を得ることができる。
 例えば、マトリックス材料として、下記参考化合物H1を用い、ドーピング材料として下記参考化合物D1を用いて上述のようにして薄膜試料Aを作製し、過渡PL測定を行った。
Figure JPOXMLDOC01-appb-C000050
 ここでは、前述の薄膜試料A、および薄膜試料Bを用いて減衰曲線を解析した。薄膜試料Bは、マトリックス材料として下記参考化合物H2を用い、ドーピング材料として前記参考化合物D1を用いて、上述のようにして薄膜試料を作製した。
 図3には、薄膜試料Aおよび薄膜試料Bについて測定した過渡PLから得た減衰曲線が示されている。
Figure JPOXMLDOC01-appb-C000051
 上記したように過渡PL測定によって、縦軸を発光強度とし、横軸を時間とする発光減衰曲線を得ることができる。この発光減衰曲線に基づいて、光励起により生成した一重項励起状態から発光する蛍光と、三重項励起状態を経由し、逆エネルギー移動により生成する一重項励起状態から発光する遅延蛍光との、蛍光強度比を見積もることができる。遅延蛍光性の材料では、素早く減衰する蛍光の強度に対し、緩やかに減衰する遅延蛍光の強度の割合が、ある程度大きい。
 具体的には、遅延蛍光性の材料からの発光としては、Prompt発光(即時発光)と、Delay発光(遅延発光)とが存在する。Prompt発光(即時発光)とは、当該遅延蛍光性の材料が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察される発光である。Delay発光(遅延発光)とは、当該パルス光による励起後、即座には観察されず、その後観察される発光である。
 Prompt発光とDelay発光の量とその比は、“Nature 492, 234-238, 2012”(参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、または図2に記載の装置に限定されない。
 また、本明細書では、化合物M2の遅延蛍光性の測定には、次に示す方法により作製した試料を用いる。例えば、化合物M2をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製する。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とする。
 上記試料溶液の蛍光スペクトルを分光蛍光光度計FP-8600(日本分光社製)で測定し、また同条件で9,10-ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定する。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出する。
 本実施形態においては、測定対象化合物(化合物M2)のPrompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることが好ましい。
 本明細書における化合物M2以外の化合物のPrompt発光とDelay発光の量とその比の測定も、化合物M2のPrompt発光とDelay発光の量とその比の測定と同様である。
・一般式(2)で表される化合物
 本実施形態において、遅延蛍光性の化合物M2は、下記一般式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000052
(前記一般式(2)において、
 kは、1、2、3又は4であり、
 mは、1、2、3又は4であり、
 nは、1又は2であり、
 tは、0、1、2又は3であり、
 但し、k+m+n+t=6であり、
 tが2又は3のとき、複数のRxは、互いに同一であるか又は異なり、
 Aは、下記一般式(21)で表される基であり、
 kが2、3又は4のとき、複数のAは、互いに同一であるか又は異なり、
 Dは、下記一般式(22)で表される基であり、
 mが2、3又は4のとき、複数のDは、互いに同一であるか又は異なり、
 CNは、シアノ基である。)
Figure JPOXMLDOC01-appb-C000053
(前記一般式(21)において、
 R201~R205のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記一般式(22)において、
 R211~R218のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記一般式(21)及び(22)中の*は、それぞれ、前記一般式(2)中のベンゼン環との結合位置を示す。)
(前記一般式(2)のRx、前記一般式(21)における前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR201~R205、並びに前記一般式(22)における前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR211~R218は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(化合物M2及び化合物M3において、R901、R902、R903、R904、R905、R906、R907、R908、R909、R931、R932、R933、R934、R935、R936及びR937は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R908が複数存在する場合、複数のR908は、互いに同一であるか又は異なり、
 R909が複数存在する場合、複数のR909は、互いに同一であるか又は異なり、
 R931が複数存在する場合、複数のR931は、互いに同一であるか又は異なり、
 R932が複数存在する場合、複数のR932は、互いに同一であるか又は異なり、
 R933が複数存在する場合、複数のR933は、互いに同一であるか又は異なり、
 R934が複数存在する場合、複数のR934は、互いに同一であるか又は異なり、
 R935が複数存在する場合、複数のR935は、互いに同一であるか又は異なり、
 R936が複数存在する場合、複数のR936は、互いに同一であるか又は異なり、
 R937が複数存在する場合、複数のR937は、互いに同一であるか又は異なる。)
 前記一般式(2)におけるnは、2であることが好ましい。化合物M2は、ベンゼン環にシアノ基が2つ結合したジシアノベンゼン化合物であることも好ましい。
 化合物M2は、下記一般式(201)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000054
(前記一般式(201)において、A、D及びRxは、それぞれ、前記一般式(2)
におけるA、D及びRxと同義であり、
 kは、1、2又は3であり、
 mは、1、2又は3であり、
 tは、0、1又は2であり、
 但し、k+m+t=4である。)
 化合物M2は、下記一般式(210)又は一般式(230)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000055
(前記一般式(210)及び一般式(230)において、A、D及びRxは、それぞれ、前記一般式(2)におけるA、D及びRxと同義であり、
 kは、1、2又は3であり、
 mは、1、2又は3であり、
 tは、0、1又は2であり、
 但し、k+m+t=4である。)
 化合物M2におけるmは、2であることが好ましい。
 化合物M2は、下記一般式(211)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000056
(前記一般式(211)において、
 D21及びD22は、それぞれ独立に、Dと同義であり、
 A及びRxは、それぞれ、前記一般式(2)におけるA及びRxと同義であり、
 kは、1又は2であり、
 tは、0又は1であり、
 但し、k+t=2である。)
 化合物M2において、D21及びD22は、互いに同一であるか又は異なる。
 化合物M2におけるkは、1又は2であることが好ましく、2であることがより好ましい。
 化合物M2は、下記一般式(202)又は一般式(203)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000057
(前記一般式(202)又は一般式(203)において、
 A21及びA22は、それぞれ独立に、Aと同義であり、
 D及びRxは、それぞれ、前記一般式(2)におけるD及びRxと同義であり、
 mは、1又は2であり、
 tは、0又は1であり、
 但し、m+t=2である。)
 化合物M2において、A21及びA22は、互いに同一であるか又は異なる。
 化合物M2は、下記一般式(221)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000058
(前記一般式(221)において、
 A21及びA22は、それぞれ独立に、Aと同義であり、
 D21及びD22は、それぞれ独立に、Dと同義である。)
 化合物M2は、下記一般式(222)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000059
(前記一般式(222)において、R201~R205は、それぞれ独立に、前記一般式(21)におけるR201~R205と同義であり、R211~R218は、それぞれ独立に、前記一般式(22)におけるR211~R218と同義である。)
 化合物M2において、複数のR201は、互いに同一であるか又は異なり、複数のR202は、互いに同一であるか又は異なり、複数のR203は、互いに同一であるか又は異なり、複数のR204は、互いに同一であるか又は異なり、複数のR205は、互いに同一であるか又は異なり、複数のR211は、互いに同一であるか又は異なり、複数のR212は、互いに同一であるか又は異なり、複数のR213は、互いに同一であるか又は異なり、複数のR214は、互いに同一であるか又は異なり、複数のR215は、互いに同一であるか又は異なり、複数のR216は、互いに同一であるか又は異なり、複数のR217は、互いに同一であるか又は異なり、複数のR218は、互いに同一であるか又は異なる。
 化合物M2において、Rx、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR201~R205、並びに前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR211~R218は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 化合物M2において、Rx、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR201~R205、並びに前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR211~R218は、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 化合物M2において、Rx、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR201~R205、並びに前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR211~R218は、水素原子であることが好ましい。
 化合物M2におけるAは、下記一般式(A21)~(A25)で表される基からなる群から選択されるいずれかの基であることが好ましい。
 化合物M2におけるA21及びA22は、それぞれ独立に、下記一般式(A21)~(A25)で表される基からなる群から選択されるいずれかの基であることが好ましい。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
(前記一般式(A21)~(A25)において、
 複数のR200のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR200は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(A21)~(A25)中の*は、それぞれ、前記一般式(2)中のベンゼン環との結合位置を示す。)
 化合物M2におけるAは、前記一般式(A21)、(A24)及び(A25)で表される基からなる群から選択されるいずれかの基であることが好ましい。
 化合物M2におけるA21及びA22は、それぞれ独立に、前記一般式(A21)、(A24)及び(A25)で表される基からなる群から選択されるいずれかの基であることが好ましい。
 化合物M2におけるAは、前記一般式(A21)で表される基であることが好ましい。
 化合物M2におけるA21及びA22は、前記一般式(A21)で表される基であることが好ましい。
 化合物M2において、複数のR200のうちの隣接する2つ以上からなる組は、いずれも、互いに結合しないことも好ましい。
 化合物M2におけるAは、前記一般式(A21)で表される基であり、一般式(A21)中のR200が水素原子であることが好ましい。
 化合物M2におけるA21及びA22は、前記一般式(A21)で表される基であり、一般式(A21)中のR200が水素原子であることが好ましい。
 前記一般式(A21)~(A25)におけるR200は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記一般式(A21)~(A25)におけるR200は、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記一般式(A21)~(A25)におけるR200は、水素原子であることが好ましい。
 化合物M2におけるDは、下記一般式(B21)~(B23)で表される基からなる群から選択されるいずれかの基であることが好ましい。
 化合物M2におけるD21及びD22は、それぞれ独立に、下記一般式(B21)~(B23)で表される基からなる群から選択されるいずれかの基であることが好ましい。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
(前記一般式(B22)におけるR211~R214、R241~R244のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記一般式(B23)におけるR251~R258のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記一般式(B21)におけるR211~R218、前記一般式(B22)における置換もしくは無置換の単環を形成せず、かつ、置換もしくは無置換の縮合環を形成しないR211~R214及びR241~R244、並びに前記一般式(B23)における置換もしくは無置換の単環を形成せず、かつ、置換もしくは無置換の縮合環を形成しないR251~R258は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(B22)及び前記一般式(B23)において、
 環G、環J及び環Kは、それぞれ独立に、下記一般式(B24)及び一般式(B25)で表される環構造からなる群から選択されるいずれかの環構造であり、
 環G、環J及び環Kは、隣接する環と任意の位置で縮合し、
 pa、px及びpyは、それぞれ独立に、1、2、3又は4であり、
 paが2、3又は4の場合、複数の環Gは、互いに同一であるか、又は異なり、
 pxが2、3又は4の場合、複数の環Jは、互いに同一であるか、又は異なり、
 pyが2、3又は4の場合、複数の環Kは、互いに同一であるか、又は異なり、
 前記一般式(B21)~(B23)中の*は、前記一般式(2)中のベンゼン環との結合位置を示す。)
Figure JPOXMLDOC01-appb-C000065
(前記一般式(B24)において、
 R219及びR220からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記一般式(B25)において、
 X21は、硫黄原子、酸素原子、NR261又はCR262263であり、
 R262及びR263からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R261、置換もしくは無置換の単環を形成せず、かつ、置換もしくは無置換の縮合環を形成しないR219及びR220、並びに置換もしくは無置換の単環を形成せず、かつ、置換もしくは無置換の縮合環を形成しないR262及びR263は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 本実施形態に係る化合物において、前記一般式(B21)~(B23)で表される基等が結合する前記一般式(2)のベンゼン環とは、前記一般式(2)において明示的に示されているベンゼン環そのものであって、A、D及びRxに含まれるベンゼン環ではない。後述する一般式(201)、(210)、(230)、(211)、(202)、(203)及び(221)で表される化合物においても、これら一般式において明示的に示されているベンゼン環そのものに、前記一般式(B21)~(B23)で表される基等は、前記一般式(2)の場合と同様、結合する。
 前記一般式(B21)におけるR211~R218のうちの隣接する2つ以上からなる組は、いずれも互いに結合しない。
 化合物M2において、
 前記一般式(B21)におけるR211~R218
 前記一般式(B22)におけるR211~R214及びR241~R244
 前記一般式(B23)におけるR251~R258、並びに
 前記一般式(B24)におけるR219及びR220は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 化合物M2において、
 前記一般式(B21)におけるR211~R218
 前記一般式(B22)におけるR211~R214及びR241~R244
 前記一般式(B23)におけるR251~R258、並びに
 前記一般式(B24)におけるR219及びR220は、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 化合物M2において、
 前記一般式(B21)におけるR211~R218
 前記一般式(B22)におけるR211~R214及びR241~R244
 前記一般式(B23)におけるR251~R258、並びに
 前記一般式(B24)におけるR219及びR220は、水素原子であることが好ましい。
 化合物M2において、R261は、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 化合物M2において、R262及びR263からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 置換もしくは無置換の単環を形成せず、かつ、置換もしくは無置換の縮合環を形成しないR262及びR263は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 化合物M2において、
 前記一般式(B22)は、下記一般式(a1)~(a6)からなる群から選択されるいずれかの環構造であり、
 前記一般式(B23)中のpx及びpyが、それぞれ独立に、2であって、少なくとも1つの環Jは、前記一般式(B25)で表される環構造であり、少なくとも1つの環Kは、前記一般式(B25)で表される環構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
(前記一般式(a1)~(a6)において、
 R211~R214、R241~R244は、それぞれ、前記一般式(B22)におけるR211~R214、R241~R244と同義であり、
 X21、R219及びR220は、それぞれ、前記一般式(B25)におけるX21、R219及びR220と同義であり、
 前記一般式(a1)~(a6)中の*は、前記一般式(2)中のベンゼン環との結合位置を示す。)
 化合物M2におけるDは、前記一般式(B22)又は前記一般式(B23)であることが好ましい。
 化合物M2におけるD21及びD22は、それぞれ独立に、前記一般式(B22)又は前記一般式(B23)であることが好ましい。
 化合物M2におけるDは、下記一般式(121)、一般式(122)又は一般式(131)で表される基であることも好ましい。
 化合物M2におけるD21及びD22は、それぞれ独立に、下記一般式(121)、一般式(122)又は一般式(131)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
(前記一般式(121)及び一般式(122)において、R211~R214及びR241~R244は、前記一般式(B22)におけるR211~R214及びR241~R244と同義であり、
 環G1、環G、環G及び環Gの内、2つが前記一般式(B24)で表される環構造であり、残りの2つが前記一般式(B25)で表される環構造であり、
 前記一般式(131)において、R251~R258は、前記一般式(B23)におけるR251~R258と同義であり、
 環J及び環Jの一方が、前記一般式(B24)で表される環構造であり、環J及び環Jの他方が、前記一般式(B25)で表される環構造であり、
 環K及び環Kの一方が、前記一般式(B24)で表される環構造であり、環K及び環Kの他方が、前記一般式(B25)で表される環構造であり、
 前記一般式(121)、一般式(122)及び一般式(131)中の*は、前記一般式(2)中のベンゼン環との結合位置を示す。)
 化合物M2において、環G及び環Gが、前記一般式(B24)で表される環構造であり、環G及び環Gが前記一般式(B25)で表される環構造であることが好ましい。
 化合物M2において、環Jが、前記一般式(B24)で表される環構造であり、環Jが、前記一般式(B25)で表される環構造であり、環Kが、前記一般式(B24)で表される環構造であり、環Kが、前記一般式(B25)で表される環構造であることが好ましい。
 化合物M2において、D、D21及びD22は、それぞれ独立に、前記一般式(131)で表される基であることが好ましい。
 化合物M2において、D、D21及びD22は、それぞれ独立に、下記一般式(123)、一般式(124)、一般式(125)又は一般式(132)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
(前記一般式(123)、一般式(124)及び一般式(125)において、R211~R214及びR241~R244は、それぞれ独立に、前記一般式(B22)におけるR211~R214及びR241~R244と同義であり、R191~R194は、それぞれ独立に、前記一般式(B24)におけるR219及びR220と同義であり、
 前記一般式(132)において、R251~R258は、それぞれ独立に、前記一般式(B23)におけるR251~R258と同義であり、R195~R198は、それぞれ独立に、前記一般式(B24)におけるR219及びR220と同義であり、
 前記一般式(123)、一般式(124)、一般式(125)及び一般式(132)において、X21及びX22は、それぞれ独立に、前記一般式(B25)におけるX21と同義であり、*は、前記一般式(2)中のベンゼン環との結合位置を示す。)
 前記一般式(123)、一般式(124)及び一般式(125)において、R191~R194のうちの隣接する2つ以上からなる組は、いずれも互いに結合しないことが好ましい。
 前記一般式(132)において、R195~R198のうちの隣接する2つ以上からなる組は、いずれも互いに結合しないことが好ましい。
 化合物M2において、D、D21及びD22は、それぞれ独立に、前記一般式(132)で表される基であることが好ましい。
 化合物M2において、一般式(132)で表される基におけるX21が硫黄原子であることが好ましい。化合物M2において、一般式(132)で表される基におけるX21が硫黄原子であり、X22が硫黄原子又は酸素原子であることがより好ましい。
 化合物M2におけるX21は、硫黄原子、酸素原子又はCR262263であることが好ましい。
 前記化合物M2におけるX21は、硫黄原子又は酸素原子であることが好ましい。
 化合物M2において、「置換もしくは無置換の」という場合における置換基が、
  無置換の炭素数1~25のアルキル基、
  無置換の炭素数2~25のアルケニル基、
  無置換の炭素数2~25のアルキニル基、
  無置換の環形成炭素数3~25のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  -S(=O)938で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  無置換の環形成炭素数6~25のアリール基、又は
  無置換の環形成原子数5~25の複素環基であり、
 R901~R909、並びにR931~R938は、それぞれ独立に、
  水素原子、
  無置換の炭素数1~25のアルキル基、
  無置換の環形成炭素数6~25のアリール基、又は
  無置換の環形成原子数5~25の複素環基であることが好ましい。
 化合物M2において、「置換もしくは無置換の」という場合における置換基が、
  ハロゲン原子、
  無置換の炭素数1~25のアルキル基、
  無置換の環形成炭素数6~25のアリール基、又は
  無置換の環形成原子数5~25の複素環基であることが好ましい。
 化合物M2において、「置換もしくは無置換の」という場合における置換基が、
  無置換の炭素数1~10のアルキル基、
  無置換の環形成炭素数6~12のアリール基、又は
  無置換の環形成原子数5~12の複素環基であることが好ましい。
 化合物M2において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることも好ましい。
 本明細書において、-O-(R904)で表される基は、R904が水素原子の場合、ヒドロキシ基である。
 本明細書において、-S-(R905)で表される基は、R905が水素原子の場合、チオール基である。
 本明細書において、-P(=O)(R931)(R932)で表される基は、R931及びR932が置換基の場合、置換ホスフィンオキシド基であり、R931及びR932がアリール基の場合、アリールホスホリル基である。
 本明細書において、-Ge(R933)(R934)(R935)で表される基は、R933、R934及びR935が置換基の場合、置換ゲルマニウム基である。
 本明細書において、-B(R936)(R937)で表される基は、R936及びR937が置換基の場合、置換ボリル基である。
・化合物M2の製造方法
 化合物M2は、公知の方法により製造することができる。
 化合物M2は、例えば、後述する実施例に記載の方法により製造することができる。
 化合物M2の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら化合物の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
(化合物M1)
 本実施形態において、化合物M1は、燐光発光性の金属錯体ではない。化合物M1は、重金属錯体ではないことが好ましい。また、化合物M1は、金属錯体ではないことが好ましい。
 また、化合物M1は、熱活性化遅延蛍光性を示さない化合物であることが好ましい。
 化合物M1としては、蛍光発光性材料を用いることができる。蛍光発光性材料としては、具体的には、例えば、ビスアリールアミノナフタレン誘導体、アリール置換ナフタレン誘導体、ビスアリールアミノアントラセン誘導体、アリール置換アントラセン誘導体、ビスアリールアミノピレン誘導体、アリール置換ピレン誘導体、ビスアリールアミノクリセン誘導体、アリール置換クリセン誘導体、ビスアリールアミノフルオランテン誘導体、アリール置換フルオランテン誘導体、インデノペリレン誘導体、アセナフトフルオランテン誘導体、ホウ素原子を含む化合物、ピロメテンホウ素錯体化合物、ピロメテン骨格を有する化合物、ピロメテン骨格を有する化合物の金属錯体、ジケトピロロピロール誘導体、ペリレン誘導体、及びナフタセン誘導体などが挙げられる。
 本実施形態において、蛍光発光性の化合物M1は、下記一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000132
(前記一般式(1)において、
 環A、環B、環D、環E及び環Fは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~30のアリール環、及び
  置換もしくは無置換の環形成原子数5~30の複素環からなる群から選択される環構造であり、
 環B及び環Dの一方が存在するか、又は環B及び環Dの両方が存在し、
 環B及び環Dの両方が存在する場合、環B及び環Dは、ZcとZhとを繋ぐ結合を共有し、
 環E及び環Fの一方が存在するか、又は環E及び環Fの両方が存在し、
 環E及び環Fの両方が存在する場合、環E及び環Fは、ZfとZiとを繋ぐ結合を共有し、
 Zaは、窒素原子又は炭素原子であり、
 Zbは、
  環Bが存在する場合、窒素原子又は炭素原子であり、
  環Bが存在しない場合、酸素原子、硫黄原子、NRb、C(Rb)(Rb)又はSi(Rb)(Rb)であり、
 Zcは、窒素原子又は炭素原子であり、
 Zdは、
  環Dが存在する場合、窒素原子又は炭素原子であり、
  環Dが存在しない場合、酸素原子、硫黄原子又はNRdであり、
 Zeは、
  環Eが存在する場合、窒素原子又は炭素原子であり、
  環Eが存在しない場合、酸素原子、硫黄原子又はNReであり、
 Zfは、窒素原子又は炭素原子であり、
 Zgは、
  環Fが存在する場合、窒素原子又は炭素原子であり、
  環Fが存在しない場合、酸素原子、硫黄原子、NRg、C(Rg)(Rg)又はSi(Rg)(Rg)であり、
 Zhは、窒素原子又は炭素原子であり、
 Ziは、窒素原子又は炭素原子であり、
 Yは、ホウ素原子、リン原子、SiRh、P=O又はP=Sであり、
 Rb、Rb、Rb、Rb、Rb、Rd、Re、Rg、Rg、Rg、Rg、Rg及びRhは、それぞれ独立に、水素原子又は置換基であり、
 置換基としてのRb、Rb、Rb、Rb、Rb、Rd、Re、Rg、Rg、Rg、Rg、Rg及びRhは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の環形成原子数5~30の複素環基、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  -Si(R911)(R912)(R913)で表される基、
  -O-(R914)で表される基、
  -S-(R915)で表される基、又は
  -N(R916)(R917)で表される基であり、
 ただし、YとZaとの結合、YとZdとの結合、並びにYとZeとの結合は、いずれも単結合である。)
 YとZaとの結合、YとZdとの結合、並びにYとZeとの結合は、いずれも単結合であり、この単結合は、共有結合であり、配位結合ではない。
 本明細書において、複素環としては、例えば、前述の「本明細書に記載の置換基」で例示した「複素環基」から結合手を除いた環構造(複素環)が挙げられる。これらの複素環は置換基を有していてもよいし、無置換でもよい。
 本明細書において、アリール環としては、例えば、前述の「本明細書に記載の置換基」で例示した「アリール基」から結合手を除いた環構造(アリール環)が挙げられる。これらのアリール環は置換基を有していてもよいし、無置換でもよい。
 本実施形態において、化合物M1は、下記一般式(11)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000133
(前記一般式(11)において、
 環A、環D及び環Eは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~30のアリール環、及び
  置換もしくは無置換の環形成原子数5~30の複素環からなる群から選択される環構造であり、
 Zaは、窒素原子又は炭素原子であり、
 Zbは、酸素原子、硫黄原子、NRb、C(Rb)(Rb)又はSi(Rb)(Rb)であり、
 Zcは、窒素原子又は炭素原子であり、
 Zdは、窒素原子又は炭素原子であり、
 Zeは、窒素原子又は炭素原子であり、
 Zfは、窒素原子又は炭素原子であり、
 Zgは、酸素原子、硫黄原子、NRg、C(Rg)(Rg)又はSi(Rg)(Rg)であり、
 Zhは、窒素原子又は炭素原子であり、
 Ziは、窒素原子又は炭素原子であり、
 Yは、ホウ素原子、リン原子、SiRh、P=O又はP=Sであり、
 Rb、Rb、Rb、Rb、Rb、Rg、Rg、Rg、Rg、Rg及びRhは、それぞれ独立に、前記一般式(1)におけるRb、Rb、Rb、Rb、Rb、Rg、Rg、Rg、Rg、Rg及びRhと同義である。)
 本実施形態において、化合物M1は、下記一般式(16)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000134
(前記一般式(16)において、
 R161~R177のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 並びに前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR161~R177は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -Si(R961)(R962)(R963)で表される基、
  -O-(R964)で表される基、
  -S-(R965)で表される基、
  -N(R966)(R967)で表される基、
  -C(=O)R968で表される基、
  -COOR969で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R961~R969は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R961が複数存在する場合、複数のR961は、互いに同一であるか又は異なり、
 R962が複数存在する場合、複数のR962は、互いに同一であるか又は異なり、
 R963が複数存在する場合、複数のR963は、互いに同一であるか又は異なり、
 R964が複数存在する場合、複数のR964は、互いに同一であるか又は異なり、
 R965が複数存在する場合、複数のR965は、互いに同一であるか又は異なり、
 R966が複数存在する場合、複数のR966は、互いに同一であるか又は異なり、
 R967が複数存在する場合、複数のR967は、互いに同一であるか又は異なり、
 R968が複数存在する場合、複数のR968は、互いに同一であるか又は異なり、
 R969が複数存在する場合、複数のR969は、互いに同一であるか又は異なる。)
(一般式(D10)で表される化合物)
 本実施形態において、化合物M1は、下記一般式(D10)で表される化合物であることも好ましい。前記一般式(1)で表される化合物は、下記一般式(D10)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000135
(前記一般式(D10)において、
 Xは、CRまたは窒素原子であり、
 Xは、CRまたは窒素原子であり、
 Xは、CRまたは窒素原子であり、
 Xは、CRまたは窒素原子であり、
 Xは、CRまたは窒素原子であり、
 Xは、CRまたは窒素原子であり、
 Xは、CRであるか、窒素原子であるか、またはXと単結合で結合する炭素原子であり、
 Xは、CRであるか、窒素原子であるか、またはXと単結合で結合する炭素原子であり、
 Xは、CRまたは窒素原子であり、
 X10は、CR10または窒素原子であり、
 X11は、CR11または窒素原子であり、
 X12は、CR12または窒素原子であり、
 Qは、CRまたは窒素原子であり、
 Yは、NRY1、酸素原子、硫黄原子、C(RY2)(RY3)またはSi(RY4)(RY5)であり、
 R~R並びにR~R11のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R3、およびRY1のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
  R3、およびRY1のうちの隣接する2つ以上からなる組の1組以上が互いに結合して形成された単環又は縮合環における少なくとも一つの水素は、
  炭素数1~50のアルキル基、
  環形成炭素数6~50のアリール基、
  環形成原子数5~50の複素環基、
  -O-(R920)で表される基、および
  -N(R921)(R922)で表される基からなる群から選択される少なくともいずれかの置換基で置換されていているか、もしくは置換されておらず、
当該置換基における少なくとも一つの水素は、環形成炭素数6~50のアリール基または炭素数1~50のアルキル基で置換されているか、もしくは置換されておらず、
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR~R11、並びにR12~R13、およびRは、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R911)(R912)(R913)で表される基、
  -O-(R914)で表される基、
  -S-(R915)で表される基、
  -N(R916)(R917)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R918で表される基、
  -COOR919で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないRY1は、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、または
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 RY2およびRY3からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないRY2およびRY3、並びにRY4およびRY5は、それぞれ独立に、
  水素原子、
  ハロゲン原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、または
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R911~R922は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R911が複数存在する場合、複数のR911は、互いに同一であるか又は異なり、
 R912が複数存在する場合、複数のR912は、互いに同一であるか又は異なり、
 R913が複数存在する場合、複数のR913は、互いに同一であるか又は異なり、
 R914が複数存在する場合、複数のR914は、互いに同一であるか又は異なり、
 R915が複数存在する場合、複数のR915は、互いに同一であるか又は異なり、
 R916が複数存在する場合、複数のR916は、互いに同一であるか又は異なり、
 R917が複数存在する場合、複数のR917は、互いに同一であるか又は異なり、
 R918が複数存在する場合、複数のR918は、互いに同一であるか又は異なり、
 R919が複数存在する場合、複数のR919は、互いに同一であるか又は異なり、
 R920が複数存在する場合、複数のR920は、互いに同一であるか又は異なり、
 R921が複数存在する場合、複数のR921は、互いに同一であるか又は異なり、
 R922が複数存在する場合、複数のR922は、互いに同一であるか又は異なる。)
 前記一般式(D10)で表される化合物は、下記一般式(D12)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000136
(前記一般式(D12)において、R~R13、RY1、Rは、それぞれ独立に、前記一般式(D10)で定義した通りである。)
 前記一般式(D10)で表される化合物は、下記一般式(D13)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000137
(前記一般式(D13)において、
 R~R、R~R13およびRは、それぞれ独立に、前記一般式(D10)で定義した通りであり、
 Rx1~Rx4のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないRX1~Rx4は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -Si(R931)(R932)(R933)で表される基、
  -O-(R934)で表される基、
  -S-(R935)で表される基、
  -N(R936)(R937)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R938で表される基、
  -COOR939で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R931~R939は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R931が複数存在する場合、複数のR931は、互いに同一であるか又は異なり、
 R932が複数存在する場合、複数のR932は、互いに同一であるか又は異なり、
 R933が複数存在する場合、複数のR933は、互いに同一であるか又は異なり、
 R934が複数存在する場合、複数のR934は、互いに同一であるか又は異なり、
 R935が複数存在する場合、複数のR935は、互いに同一であるか又は異なり、
 R936が複数存在する場合、複数のR936は、互いに同一であるか又は異なり、
 R937が複数存在する場合、複数のR937は、互いに同一であるか又は異なり、
 R938が複数存在する場合、複数のR938は、互いに同一であるか又は異なり、
 R939が複数存在する場合、複数のR939は、互いに同一であるか又は異なる。)
 なお、前記一般式(D13)において、例えば、R及びRからなる組が、互いに結合して、置換もしくは無置換の単環を形成するか、互いに結合して、置換もしくは無置換の縮合環を形成するか、又は互いに結合しない。
 前記一般式(D10)及び(D13)で表される化合物において、R~R、R~R13、R及びRx1~Rx4は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、または置換もしくは無置換の環形成原子数5~50のヘテロアリール基であることも好ましい。
 前記一般式(D10)及び(D13)で表される化合物において、R~R、R~R13、R及びRx1~Rx4は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~25のアルキル基、置換もしくは無置換の環形成炭素数6~25のアリール基、または置換もしくは無置換の環形成原子数5~25のヘテロアリール基であることも好ましい。
 前記一般式(D10)で表される化合物は、下記一般式(D14)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000138
(前記一般式(D14)において、R、R6、13、およびRx2は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~10のアルキル基、
  置換もしくは無置換の環形成炭素数6~12のアリール基、または
  置換もしくは無置換の環形成原子数5~18のヘテロアリール基である。)
 本実施形態において、蛍光発光性の化合物M1は、下記一般式(20)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000139
 前記一般式(20)において、
 Xは、窒素原子、又はYと結合する炭素原子であり、
 Yは、水素原子又は置換基であり、
 R21~R26は、それぞれ独立に、水素原子もしくは置換基であるか、又はR21及びR22の組、R22及びR23の組、R24及びR25の組、並びにR25及びR26の組のいずれか1つ以上の組が互いに結合して環を形成し、
 置換基としてのY、及びR21~R26は、それぞれ独立に、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~30のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、
  置換もしくは無置換の炭素数1~30のアルキルチオ基、
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、
  置換もしくは無置換の環形成炭素数6~30のアリールチオ基、
  置換もしくは無置換の炭素数2~30のアルケニル基、
  置換もしくは無置換の炭素数7~30のアラルキル基、
  置換もしくは無置換の環形成原子数5~30のヘテロアリール基、
  ハロゲン原子、
  カルボキシ基、
  置換もしくは無置換のエステル基、
  置換もしくは無置換のカルバモイル基、
  置換もしくは無置換のアミノ基、
  ニトロ基、
  シアノ基、
  置換もしくは無置換のシリル基、及び
  置換もしくは無置換のシロキサニル基からなる群から選択され、
 Z21及びZ22は、それぞれ独立に、置換基であるか、又はZ21及びZ22が互いに結合して環を形成し、
 置換基としてのZ21及びZ22は、それぞれ独立に、
  ハロゲン原子、
  置換もしくは無置換の炭素数1~30のアルキル基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数6~30のアリール基、
  置換もしくは無置換の炭素数1~30のアルコキシ基、
  置換もしくは無置換の炭素数1~30のハロゲン化アルコキシ基、及び
  置換もしくは無置換の環形成炭素数6~30のアリールオキシ基からなる群から選択される。
・化合物M1の製造方法
 化合物M1は、公知の方法により製造することができる。
 化合物M1の具体例を以下に示す。ただし、本発明は、これら化合物の具体例に限定されない。
 なお、ピロメテン骨格中におけるホウ素原子と窒素原子との配位結合は、実線、破線、矢印、もしくは省略するなど、種々の表記方法がある。本明細書においては、実線で表すか、破線で表すか、又は記載を省略する。
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141

 
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
 化合物M1が蛍光発光性の化合物である場合、化合物M1は、最大ピーク波長が、400nm以上700nm以下の発光を示すことが好ましい。
 本明細書において、最大ピーク波長とは、測定対象化合物が10-6モル/リットル以上10-5モル/リットル以下の濃度で溶解しているトルエン溶液について、測定した蛍光スペクトルにおける発光強度が最大となる蛍光スペクトルのピーク波長をいう。測定装置は、分光蛍光光度計(日立ハイテクサイエンス社製、F-7000)を用いる。
 化合物M1は、赤色の発光又は緑色の発光を示すことが好ましい。
 本明細書において、赤色の発光とは、蛍光スペクトルの最大ピーク波長が600nm以上660nm以下の範囲内である発光をいう。
 化合物M1が赤色の蛍光発光性の化合物である場合、化合物M1の最大ピーク波長は、好ましくは600nm以上660nm以下、より好ましくは600nm以上640nm以下、さらに好ましくは610nm以上630nm以下である。
 本明細書において、緑色の発光とは、蛍光スペクトルの最大ピーク波長が500nm以上560nm以下の範囲内である発光をいう。
 化合物M1が緑色の蛍光発光性の化合物である場合、化合物M1の最大ピーク波長は、好ましくは500nm以上560nm以下、より好ましくは500nm以上540nm以下、さらに好ましくは510nm以上540nm以下である。
 本明細書において、青色の発光とは、蛍光スペクトルの最大ピーク波長が430nm以上480nm以下の範囲内である発光をいう。
 化合物M1が青色の蛍光発光性の化合物である場合、化合物M1の最大ピーク波長は、好ましくは430nm以上480nm以下、より好ましくは440nm以上480nm以下である。
 有機EL素子からから発光する光の最大ピーク波長の測定は、以下のようにして行う。
 電流密度が10mA/cmとなるように有機EL素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ社製)で計測する。
 得られた分光放射輝度スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を測定し、これを最大ピーク波長(単位:nm)とする。
<発光層における化合物M1及び化合物M2の関係>
 本実施形態の有機EL素子において、遅延蛍光性の化合物としての化合物M2の一重項エネルギーS(Mat2)と、蛍光発光性の化合物M1の一重項エネルギーS(Mat1)とが、下記数式(数3)の関係を満たすことが好ましい。
   S(Mat2)>S(Mat1)   …(数3)
 化合物M2の77[K]におけるエネルギーギャップT77K(Mat2)と、化合物M1の77[K]におけるエネルギーギャップT77K(Mat1)とが、下記数式(数3A)の関係を満たすことが好ましい。
   T77K(Mat2)>T77K(Mat1)   …(数3A)
 本実施形態の有機EL素子を発光させたときに、発光層において、主に蛍光発光性の化合物M1が発光していることが好ましい。
・三重項エネルギーと77[K]におけるエネルギーギャップとの関係
 ここで、三重項エネルギーと77[K]におけるエネルギーギャップとの関係について説明する。本実施形態では、77[K]におけるエネルギーギャップは、通常定義される三重項エネルギーとは異なる点がある。
 三重項エネルギーの測定は、次のようにして行われる。まず、測定対象となる化合物を適切な溶媒中に溶解した溶液を石英ガラス管内に封入した試料を作製する。この試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から三重項エネルギーを算出する。
 ここで、本実施形態に係る化合物の内、熱活性化遅延蛍光性の化合物は、ΔSTが小さい化合物であることが好ましい。ΔSTが小さいと、低温(77[K])状態でも、項間交差、及び逆項間交差が起こりやすく、励起一重項状態と励起三重項状態とが混在する。その結果、上記と同様にして測定されるスペクトルは、励起一重項状態、及び励起三重項状態の両者からの発光を含んでおり、いずれの状態から発光したのかについて峻別することは困難であるが、基本的には三重項エネルギーの値が支配的と考えられる。
 そのため、本実施形態では、通常の三重項エネルギーTと測定手法は同じであるが、その厳密な意味において異なることを区別するため、次のようにして測定される値をエネルギーギャップT77Kと称する。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、濃度が10μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を77[K]におけるエネルギーギャップT77Kとする。
  換算式(F1):T77K[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いることができる。なお、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
・一重項エネルギーS
 溶液を用いた一重項エネルギーSの測定方法(溶液法と称する場合がある。)としては、下記の方法が挙げられる。
 測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出する。
  換算式(F2):S[eV]=1239.85/λedge
 吸収スペクトル測定装置としては、例えば、日立社製の分光光度計(装置名:U3310)が挙げられるが、これに限定されない。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
 本実施形態では、一重項エネルギーSと、77[K]におけるエネルギーギャップT77Kとの差(S-T77K)をΔSTとして定義する。
 本実施形態において、化合物M2の一重項エネルギーS(Mat2)と、化合物M2の77[K]におけるエネルギーギャップT77K(Mat2)との差ΔST(Mat2)は、好ましくは0.3eV未満、より好ましくは0.2eV未満、さらに好ましくは0.1eV未満、さらに好ましくは0.01eV未満である。すなわち、ΔST(Mat2)は、下記数式(数1A)~(数1D)のいずれかの関係を満たすことが好ましい。
ΔST(Mat2)=S(Mat2)-T77K(Mat2)<0.3eV(数1A)
ΔST(Mat2)=S(Mat2)-T77K(Mat2)<0.2eV(数1B)
ΔST(Mat2)=S(Mat2)-T77K(Mat2)<0.1eV(数1C)
ΔST(Mat2)=S(Mat2)-T77K(Mat2)<0.01eV(数1D)
 本実施形態の有機EL素子は、赤色発光または緑色発光することが好ましい。
 本実施形態の有機EL素子が緑色発光する場合、有機EL素子から発光する光の最大ピーク波長は、500nm以上560nm以下であることが好ましい。
 本実施形態の有機EL素子が赤色発光する場合、有機EL素子から発光する光の最大ピーク波長は、600nm以上660nm以下であることが好ましい。
 本実施形態の有機EL素子が青色発光する場合、有機EL素子から発光する光の最大ピーク波長は、430nm以上480nm以下であることが好ましい。
 有機EL素子から発光する光の最大ピーク波長の測定は、以下のようにして行う。
 電流密度が10mA/cmとなるように有機EL素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ社製)で計測する。
 得られた分光放射輝度スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を測定し、これを最大ピーク波長(単位:nm)とする。
・発光層の膜厚
 本実施形態の有機EL素子における発光層の膜厚は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、最も好ましくは10nm以上50nm以下である。5nm以上であると、発光層形成及び色度の調整が容易になりやすく、50nm以下であると、駆動電圧の上昇が抑制されやすい。
・発光層における化合物の含有率
 発光層に含まれている化合物M2及び化合物M1の含有率は、例えば、以下の範囲であることが好ましい。
 化合物M2の含有率は、10質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、20質量%以上60質量%以下であることがさらに好ましい。
 化合物M1の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
 なお、本実施形態は、発光層に、化合物M2及び化合物M1以外の材料が含まれることを除外しない。
 発光層は、化合物M2を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、化合物M1を1種のみ含んでもよいし、2種以上含んでもよい。
・TADF機構(メカニズム)
 図4は、発光層における化合物M2及び化合物M1のエネルギー準位の関係の一例を示す図である。図4において、S0は、基底状態を表す。S1(Mat2)は、化合物M2の最低励起一重項状態を表す。T1(Mat2)は、化合物M2の最低励起三重項状態を表す。S1(Mat1)は、化合物M1の最低励起一重項状態を表す。T1(Mat1)は、化合物M1の最低励起三重項状態を表す。
 図4中のS1(Mat2)からS1(Mat1)へ向かう破線の矢印は、化合物M2の最低励起一重項状態から化合物M1へのフェルスター型エネルギー移動を表す。
 図4に示すように、化合物M2としてΔST(Mat2)の小さな化合物を用いると、最低励起三重項状態T1(Mat2)は、熱エネルギーにより、最低励起一重項状態S1(Mat2)に逆項間交差が可能である。そして、化合物M2の最低励起一重項状態S1(Mat2)から化合物M1へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(Mat1)が生成する。この結果、化合物M1の最低励起一重項状態S1(Mat1)からの蛍光発光を観測することができる。このTADF機構による遅延蛍光を利用することによっても、理論的に内部量子効率を100%まで高めることができると考えられている。
 第一実施形態によれば、高性能化、特に低電圧、高効率及び長寿命の少なくともいずれかを実現できる有機EL素子を提供できる。
 第一実施形態に係る有機EL素子は、有機エレクトロルミネッセンス表示装置(以下、有機EL表示装置と称することがある。)に使用できる。
 また、第一実施形態に係る有機EL素子は、表示装置及び発光装置等の電子機器に使用できる。
<有機EL素子の構成>
 有機EL素子1の構成についてさらに説明する。以下、符号の記載は省略することがある。
(基板)
 基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、及びプラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、及びポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、および酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)及びセシウム(Cs)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)及びストロンチウム(Sr)等のアルカリ土類金属、並びにこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)及びイッテルビウム(Yb)等の希土類金属並びにこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)及びセシウム(Cs)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)及びストロンチウム(Sr)等のアルカリ土類金属、並びにこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)及びイッテルビウム(Yb)等の希土類金属並びにこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
(正孔注入層)
 正孔注入層は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。
 また、正孔注入性の高い物質としては、低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等やジピラジノ[2,3-f:20,30-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)も挙げられる。
 また、正孔注入性の高い物質としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い物質を含む層である。正孔輸送層には、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。具体的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の正孔移動度を有する物質である。
 正孔輸送層には、CBP、9-[4-(N-カルバゾリル)]フェニル-10-フェニルアントラセン(CzPA)、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(PCzPA)のようなカルバゾール誘導体や、t-BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良い。ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
 正孔輸送層を二層以上配置する場合、エネルギーギャップのより大きい材料を発光層に近い側に配置することが好ましい。
(電子輸送層)
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、ZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。本実施態様においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層で構成されていてもよいし、上記物質からなる層が二層以上積層されて構成されていてもよい。
 また、電子輸送層には、高分子化合物を用いることもできる。例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)などを用いることができる。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
 本実施形態の有機EL素子1は、陽極3と発光層5との間に、1以上の有機層を有する正孔輸送帯域を含む。図1の場合、正孔輸送帯域は、第一の層61及び陽極側有機層63で構成される。正孔輸送帯域は、複数の有機層を含むことが好ましい。
(層形成方法)
 本実施形態の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法などの湿式成膜法などの公知の方法を採用することができる。
(膜厚)
 本実施形態の有機EL素子の各有機層の膜厚は、上記で特に言及した以外には制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
〔第二実施形態〕
 第二実施形態に係る有機EL素子の構成について説明する。第二実施形態の説明において第一実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化する。また、第二実施形態では、特に言及されない材料や化合物については、第一実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
 第二実施形態の有機EL素子は、発光層が、遅延蛍光性の化合物M2と、蛍光発光性の化合物M1と、さらに化合物M3とを含む点で、第一実施形態の有機EL素子と異なる。その他の点については第一実施形態と同様である。
 すなわち、第二実施形態の有機EL素子は、発光層が、遅延蛍光性の化合物M2と、蛍光発光性の化合物M1と、さらに化合物M3とを含み、第一の層が第一化合物(前記一般式(3)で表される化合物)を含み、第一化合物のイオン化ポテンシャルIp(HT1)が前記数式(数1)を満たし、第一化合物の正孔移動度μh(HT1)が前記数式(数2)を満たす。
 第二実施形態の場合、発光層に含まれる化合物M2は、ホスト材料であることが好ましく、化合物M1は、ドーパント材料であることが好ましく、化合物M3は、ホスト材料であることが好ましい。化合物M2及び化合物M3の一方を第一のホスト材料と称し、他方を第二のホスト材料と称する場合がある。
 化合物M2としては、第一実施形態で説明した化合物M2を用いることができる。
 化合物M1としては、第一実施形態で説明した化合物M1を用いることができる。
 第一化合物としては、第一実施形態で説明した第一化合物を用いることができる。
(化合物M3)
 化合物M3は、熱活性化遅延蛍光性の化合物でもよいし、熱活性化遅延蛍光性を示さない化合物でもよいが、熱活性遅延化蛍光性を示さない化合物であることが好ましい。
 本実施形態において、化合物M3は、下記一般式(3X)又は(3Y)で表される化合物であることが好ましい。
・一般式(3X)で表される化合物
Figure JPOXMLDOC01-appb-C000162
(前記一般式(3X)において、
 Aは、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 Lは、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、
  置換もしくは無置換の環形成原子数5~50の2価の複素環基、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、及び置換もしくは無置換の環形成原子数5~50の2価の複素環基からなる群から選択される2つの基が結合して形成される2価の基、又は
 置換もしくは無置換の環形成炭素数6~30のアリーレン基及び置換もしくは無置換の環形成原子数5~30の2価の複素環基からなる群から選択される3つの基が結合して形成される2価の基であり、
 R31~R38のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  下記一般式(3A)で表される基である。)
Figure JPOXMLDOC01-appb-C000163
(前記一般式(3A)において、
 Rは、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 Rが複数存在するとき、複数のRは、互いに同一であるか又は異なり、
 L31は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、当該アリーレン基から誘導される3価の基、4価の基、5価の基もしくは6価の基、
  置換もしくは無置換の環形成原子数5~50の2価の複素環基、当該複素環基から誘導される、3価の基、4価の基、5価の基もしくは6価の基、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、及び置換もしくは無置換の環形成原子数5~50の2価の複素環基からなる群から選択される2つの基が結合して形成される2価の基、当該2価の基から誘導される3価の基、4価の基、5価の基もしくは6価の基であり、
 L32は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 nは、1、2、3、4又は5であり、
 L31が単結合の場合、nは1であり、L32が前記一般式(3X)中における六員環の炭素原子と結合し、
 L32が複数存在するとき、複数のL32は、互いに同一であるか又は異なり、
 *は、前記一般式(3X)中における六員環の炭素原子との結合部位である。)
(前記化合物M3において、R901、R902、R903、R904、R905、R906、R907、R908、R909、R931、R932、R933、R934、R935、R936及びR937は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R908が複数存在する場合、複数のR908は、互いに同一であるか又は異なり、
 R909が複数存在する場合、複数のR909は、互いに同一であるか又は異なり、
 R931が複数存在する場合、複数のR931は、互いに同一であるか又は異なり、
 R932が複数存在する場合、複数のR932は、互いに同一であるか又は異なり、
 R933が複数存在する場合、複数のR933は、互いに同一であるか又は異なり、
 R934が複数存在する場合、複数のR934は、互いに同一であるか又は異なり、
 R935が複数存在する場合、複数のR935は、互いに同一であるか又は異なり、
 R936が複数存在する場合、複数のR936は、互いに同一であるか又は異なり、
 R937が複数存在する場合、複数のR937は、互いに同一であるか又は異なる。)
 化合物M3は、下記一般式(31)~(36)のいずれかで表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
(前記一般式(31)~(36)において、
 A及びLは、それぞれ、前記一般式(3X)におけるA及びLと同義であり、
 R341~R350のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 X31は、硫黄原子、酸素原子、NR352又はCR353354であり、
 R353及びR354からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR341~R350と、R352と、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR353及びR354とは、それぞれ独立に、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38と同義である。)
 化合物M3において、R352は、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 化合物M3において、R353及びR354からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 置換もしくは無置換の単環を形成せず、かつ、置換もしくは無置換の縮合環を形成しないR353及びR354は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 化合物M3において、X31は、硫黄原子又は酸素原子であることが好ましい。
 化合物M3において、Aは、下記一般式(A31)~(A37)のいずれかで表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
(前記一般式(A31)~(A37)において、
 複数のR300のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR300、並びにR333は、それぞれ独立に、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38と同義であり、
 前記一般式(A31)~(A37)中の*は、それぞれ、前記化合物M3のLとの結合位置を示す。)
 化合物M3において、Aは、前記一般式(A34)、(A35)又は(A37)で表される基であることも好ましい。
 化合物M3は、下記一般式(311)~(316)のいずれかで表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
(前記一般式(311)~(316)において、
 Lは、前記一般式(3X)におけるLと同義であり、
 複数のR300のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R341~R350のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR300、並びに、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR341~R350は、それぞれ独立に、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38と同義である。)
 化合物M3は、下記一般式(321)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000175
(前記一般式(321)において、
 Lは、前記一般式(3X)におけるLと同義であり、
 R31~R38、並びにR301~R308は、それぞれ独立に、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38と同義である。)
 化合物M3において、Lは、単結合又は置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましい。
 化合物M3において、Lは、
  単結合、
  置換もしくは無置換のフェニレン基、
  置換もしくは無置換のビフェニレン基、又は
  置換もしくは無置換のターフェニレン基であることが好ましい。
 化合物M3において、Lは、下記一般式(317)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000176
(前記一般式(317)において、
 R310は、それぞれ独立に、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38と同義であり、*は、それぞれ独立に、結合位置を示す。)
 化合物M3において、Lは、下記一般式(318)又は一般式(319)で表される2価の基を含むことも好ましい。
 化合物M3において、Lは、下記一般式(318)又は一般式(319)で表される2価の基であることも好ましい。
 化合物M3は、下記一般式(322)又は一般式(323)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
(前記一般式(322)及び一般式(323)において、
 L31は、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、
  置換もしくは無置換の環形成原子数5~50の2価の複素環基、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、及び置換もしくは無置換の環形成原子数5~50の2価の複素環基からなる群から選択される2つの基が結合して形成される2価の基であり、
 但し、L31は、下記一般式(318)又は一般式(319)で表される2価の基を含み、
 R31~R38、R300、並びにR321~R328は、それぞれ独立に、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38と同義である。)
Figure JPOXMLDOC01-appb-C000179
(前記一般式(319)において、
 複数のR304のうちの隣接する2つからなる組が、互いに結合して、前記一般式(320)で表される環を形成し、
 前記一般式(320)において、1*及び2*は、それぞれ独立に、R304が結合している環との結合位置を示し、
 前記一般式(318)におけるR302、前記一般式(318)におけるR303、前記一般式(319)におけるR303、前記一般式(320)で表される環を形成しないR304、並びに前記一般式(320)におけるR305は、それぞれ独立に、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38と同義であり、
 前記一般式(318)~(320)における*は、それぞれ、結合位置を示す。)
 化合物M3において、L又はL31としての前記一般式(319)で表される基は、例えば、下記一般式(319A)で表される基である。
Figure JPOXMLDOC01-appb-C000180
(前記一般式(319A)において、R303、R304及びR305は、それぞれ独立に、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38と同義であり、前記一般式(319A)における*は、それぞれ、結合位置を示す。)
 化合物M3は、前記一般式(322)で表される化合物であり、L31は、前記一般式(318)で表される基であることも好ましい。
 化合物M3は、下記一般式(324)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000181
(前記一般式(324)において、R31~R38、R300、並びにR302は、それぞれ独立に、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38と同義である。)
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(3A)で表される基であり、
 前記一般式(3A)におけるRは、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  前記一般式(3A)で表される基であり、
 前記一般式(3A)におけるRは、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR31~R38は、それぞれ独立に、
  水素原子、
  置換もしくは無置換のフェニル基、又は
  前記一般式(3A)で表される基であり、
 前記一般式(3A)におけるRは、置換もしくは無置換のフェニル基であることが好ましい。
 化合物M3は、ピリジン環、ピリミジン環、及びトリアジン環を有さない化合物であることも好ましい。
・一般式(3Y)で表される化合物
Figure JPOXMLDOC01-appb-C000182
(前記一般式(3Y)において、
 Y31~Y36は、それぞれ独立に、CR又は窒素原子であり、
 但し、Y31~Y36のうち2つ以上が窒素原子であり、
 Rが複数存在する場合、複数のRのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないRは、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  下記一般式(3B)で表される基である。)
Figure JPOXMLDOC01-appb-C000183
(前記一般式(3B)において、R、L31、L32及びnは、それぞれ独立に、前記一般式(3A)におけるR、L31、L32及びnと同義であり、
 Rが複数存在するとき、複数のRは、互いに同一であるか又は異なり、
 L31が単結合の場合、nは1であり、L32が前記一般式(3Y)中における六員環の炭素原子と結合し、
 L32が複数存在するとき、複数のL32は、互いに同一であるか又は異なり、
 *は、前記一般式(3Y)中における六員環の炭素原子との結合部位である。)
 化合物M3は、分子中にピリジン環を含まないことが好ましい。
 化合物M3は、下記一般式(31a)又は一般式(32a)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000184
(前記一般式(32a)において、
 R35~R37のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記一般式(31a)におけるR31~R33、並びに前記一般式(32a)におけるR34及び前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR35~R37は、それぞれ独立に、前記一般式(3Y)におけるRと同義である。)
 化合物M3は、前記一般式(31a)で表される化合物であることも好ましい。
 前記一般式(3Y)におけるRは、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(3B)で表される基であることが好ましい。
 前記一般式(3Y)におけるRは、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  前記一般式(3B)で表される基であることが好ましい。
 前記一般式(3Y)で表される化合物M3は、分子中に、下記一般式(B31)~(B44)で表される基からなる群から選択される少なくとも1つの基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
(前記一般式(B31)~(B38)において、
 複数のR300のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R331及びR332からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR300、R331及びR332、並びにR333は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(B31)~(B38)中の*は、それぞれ、前記化合物M3の分子中における他の原子との結合位置を示す。)
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
(前記一般式(B39)~(B44)において、
 R341~R350のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 ただし、R341~R351のうちの少なくとも1つが、前記化合物M3の分子中における他の原子との結合位置を示し、
 X31は、硫黄原子、酸素原子、NR352又はCR353354であり、
 R353及びR354からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記化合物M3の分子中における他の原子との結合位置ではなく、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR341~R351と、R352と、前記置換もしくは無置換の単環を形成せず、かつ、前記置換もしくは無置換の縮合環を形成しないR353及びR354とは、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 前記一般式(3Y)で表される化合物M3は、分子中に、前記一般式(B38)~(B44)で表される基からなる群から選択される少なくとも1つの基を有することが好ましい。
 前記一般式(3Y)において、Y31~Y36のうち少なくとも1つがCRであり、
 少なくとも1つのRが前記一般式(3B)で表される基であり、Rが前記一般式(B31)~(B44)で表される基のいずれかであることが好ましい。
 前記一般式(3Y)において、Y31~Y36のうち少なくとも1つがCRであり、
 少なくとも1つのRが前記一般式(3B)で表される基であり、Rが前記一般式(B38)~(B44)で表される基のいずれかであることが好ましい。
 前記一般式(3A)及び(3B)において、L31は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、当該アリーレン基から誘導される3価の基、4価の基、5価の基もしくは6価の基、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基からなる群から選択される2つの基が結合して形成される2価の基、当該2価の基から誘導される3価の基、4価の基、5価の基もしくは6価の基であり、
 L32は、それぞれ独立に、
  単結合、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましい。
 前記一般式(3A)及び(3B)において、L31は、
  単結合、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基であり、
 nは、1であり、
 L32は、
  単結合、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましい。
 前記一般式(3A)及び(3B)において、L31は、
  単結合、
  置換もしくは無置換のフェニレン基、
  置換もしくは無置換のビフェニレン基、又は
  置換もしくは無置換のフェニレン基及び置換もしくは無置換のビフェニレン基からなる群から選択される2つの基が結合して形成される2価の基、当該2価の基から誘導される3価の基、4価の基、5価の基もしくは6価の基であり、
 nは、1であり、
 L32は、
  単結合、
  置換もしくは無置換のフェニレン基、又は
  置換もしくは無置換のビフェニレン基であることが好ましい。
 前記一般式(3X)及び(3Y)で表される化合物において、R352は、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記一般式(3X)及び(3Y)で表される化合物において、R353及びR354からなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 置換もしくは無置換の単環を形成せず、かつ、置換もしくは無置換の縮合環を形成しないR353及びR354は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記一般式(3X)及び(3Y)で表される化合物において、「置換もしくは無置換の」という場合における置換基が、
  無置換の炭素数1~25のアルキル基、
  無置換の炭素数2~25のアルケニル基、
  無置換の炭素数2~25のアルキニル基、
  無置換の環形成炭素数3~25のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  -S(=O)938で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  無置換の環形成炭素数6~25のアリール基、又は
  無置換の環形成原子数5~25の複素環基であり、
 R901~R909、並びにR931~R938は、それぞれ独立に、
  水素原子、
  無置換の炭素数1~25のアルキル基、
  無置換の環形成炭素数6~25のアリール基、又は
  無置換の環形成原子数5~25の複素環基であることが好ましい。
 前記一般式(3X)及び(3Y)で表される化合物において、「置換もしくは無置換の」という場合における置換基が、
  ハロゲン原子、
  無置換の炭素数1~25のアルキル基、
  無置換の環形成炭素数6~25のアリール基、又は
  無置換の環形成原子数5~25の複素環基であることが好ましい。
 前記一般式(3X)及び(3Y)で表される化合物において、「置換もしくは無置換の」という場合における置換基が、
  無置換の炭素数1~10のアルキル基、
  無置換の環形成炭素数6~12のアリール基、又は
  無置換の環形成原子数5~12の複素環基であることが好ましい。
 前記一般式(3X)及び(3Y)で表される化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることも好ましい。
・化合物M3の製造方法
 本実施形態に係る化合物M3は、公知の方法により製造することができる。
・化合物M3の具体例
 本実施形態の化合物M3の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら化合物の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000230
<発光層における化合物M1、化合物M2、及び化合物M3の関係>
 本実施形態の有機EL素子において、化合物M2の一重項エネルギーS(Mat2)と、化合物M3の一重項エネルギーS(Mat3)とが、下記数式(数4)の関係を満たすことが好ましい。
   S(Mat3)>S(Mat2)   (数4)
 化合物M3の77[K]におけるエネルギーギャップT77K(Mat3)は、化合物M2の77[K]におけるエネルギーギャップT77K(Mat2)よりも大きいことが好ましい。
 化合物M3の77[K]におけるエネルギーギャップT77K(Mat3)は、化合物M1の77[K]におけるエネルギーギャップT77K(Mat1)よりも大きいことが好ましい。
 本実施形態の有機EL素子において、化合物M2の一重項エネルギーS(Mat2)と、化合物M1の一重項エネルギーS(Mat1)と、化合物M3の一重項エネルギーS(Mat3)とが、下記数式(数5)の関係を満たすことが好ましい。
   S(Mat3)>S(Mat2)>S(Mat1)   …(数5)
 本実施形態の有機EL素子において、化合物M2の77[K]におけるエネルギーギャップT77K(Mat2)と、化合物M1の77[K]におけるエネルギーギャップT77K(Mat1)と、化合物M3の77[K]におけるエネルギーギャップT77K(Mat3)とが、下記数式(数5A)の関係を満たすことが好ましい。
   T77K(Mat3)>T77K(Mat2)>T77K(Mat1) …(数5A)
 本実施形態の有機EL素子を発光させたときに、発光層において、主に蛍光発光性の化合物M1が発光していることが好ましい。
 本実施形態の有機EL素子は、赤色発光または緑色発光することが好ましい。
 有機EL素子から発光する光の最大ピーク波長は、第一実施形態の有機EL素子と同様の方法で測定することができる。
・発光層における化合物の含有率
 発光層に含まれている化合物M1、化合物M2、及び化合物M3の含有率は、例えば、以下の範囲であることが好ましい。
 化合物M1の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
 化合物M2の含有率は、10質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、20質量%以上60質量%以下であることがさらに好ましい。
 化合物M3の含有率は、10質量%以上80質量%以下であることが好ましい。
 発光層における化合物M1、化合物M2、及び化合物M3の合計含有率の上限は、100質量%である。なお、本実施形態は、発光層に、化合物M1、化合物M2、及び化合物M3以外の材料が含まれることを除外しない。
 発光層は、化合物M1を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、化合物M2を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、化合物M3を1種のみ含んでもよいし、2種以上含んでもよい。
 図5は、発光層における化合物M1、化合物M2、及び化合物M3のエネルギー準位の関係の一例を示す図である。図5において、S0は、基底状態を表す。S1(Mat1)は、化合物M1の最低励起一重項状態を表し、T1(Mat1)は、化合物M1の最低励起三重項状態を表す。S1(Mat2)は、化合物M2の最低励起一重項状態を表し、T1(Mat2)は、化合物M2の最低励起三重項状態を表す。S1(Mat3)は、化合物M3の最低励起一重項状態を表し、T1(Mat3)は、化合物M3の最低励起三重項状態を表す。図5中のS1(Mat2)からS1(Mat1)へ向かう破線の矢印は、化合物M2の最低励起一重項状態から化合物M1の最低励起一重項状態へのフェルスター型エネルギー移動を表す。
 図5に示すように、化合物M2してΔST(Mat2)の小さな化合物を用いると、最低励起三重項状態T1(Mat2)は、熱エネルギーにより、最低励起一重項状態S1(Mat2)に逆項間交差が可能である。そして、化合物M2の最低励起一重項状態S1(Mat2)から化合物M1へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(Mat1)が生成する。この結果、化合物M1の最低励起一重項状態S1(Mat2)からの蛍光発光を観測することができる。このTADFメカニズムによる遅延蛍光を利用することによっても、理論的に内部量子効率を100%まで高めることができると考えられている。
 第二実施形態によれば、高性能化、特に低電圧、高効率及び長寿命の少なくともいずれかを実現できる有機EL素子を提供できる。
 第二実施形態に係る有機EL素子は、有機EL表示装置に使用できる。
 また、第二実施形態に係る有機EL素子は、表示装置及び発光装置等の電子機器に使用できる。
〔第三実施形態〕
 第三実施形態に係る有機EL素子の構成について説明する。第三実施形態の説明において第一実施形態及び第二実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化する。また、第三実施形態では、特に言及されない材料や化合物については、第一実施形態及び第二実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
 第三実施形態の有機EL素子は、発光層が、遅延蛍光性の化合物M2と、化合物M4とを含む点で、第一実施形態の有機EL素子と異なる。その他の点については第一実施形態と同様である。
 すなわち、第三実施形態の有機EL素子は、発光層が、遅延蛍光性の化合物M2と、化合物M4とを含み、第一の層が第一化合物(前記一般式(3)で表される化合物)を含み、第一化合物のイオン化ポテンシャルIp(HT1)が前記数式(数1)を満たし、第一化合物の正孔移動度μh(HT1)が前記数式(数2)を満たす。
 第三実施形態の場合、発光層に含まれる化合物M2は、ドーパント材料であることが好ましく、化合物M4は、ホスト材料であることが好ましい。化合物M4は、遅延蛍光性の化合物でもよいし、遅延蛍光性を示さない化合物でもよい。
 化合物M4としては特に限定されないが、例えば、第二実施形態で説明した化合物M3を用いることができる。
 第一化合物としては、第一実施形態で説明した第一化合物を用いることができる。
 化合物M2としては、第一実施形態で説明した化合物M2を用いることができる。
<発光層における化合物M2及び化合物M4の関係>
 本実施形態の有機EL素子において、化合物M2の一重項エネルギーS(Mat2)と、化合物M4の一重項エネルギーS(Mat4)とが、下記数式(数6)の関係を満たすことが好ましい。
   S(Mat4)>S(Mat2)   (数6)
 化合物M4の77[K]におけるエネルギーギャップT77K(Mat4)は、化合物M2の77[K]におけるエネルギーギャップT77K(Mat2)よりも大きいことが好ましい。
 本実施形態の有機EL素子を発光させたときに、発光層において、主に化合物M2が発光していることが好ましい。
・発光層における化合物の含有率
 発光層に含まれている化合物M2及び化合物M4の含有率は、例えば、以下の範囲であることが好ましい。
 化合物M2の含有率は、10質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、20質量%以上60質量%以下であることがさらに好ましい。
 化合物M4の含有率は、20質量%以上90質量%以下であることが好ましく、40質量%以上90質量%以下であることがより好ましく、40質量%以上80質量%以下であることがさらに好ましい。
 なお、本実施形態は、発光層に、化合物M2及び化合物M4以外の材料が含まれることを除外しない。
 発光層は、化合物M2を1種のみ含んでもよいし、2種以上含んでもよい。発光層は、第四の化合物を1種のみ含んでもよいし、2種以上含んでもよい。
 図6は、発光層における化合物M2および化合物M4のエネルギー準位の関係の一例を示す図である。図6において、S0は、基底状態を表す。S1(Mat2)は、化合物M2の最低励起一重項状態を表し、T1(Mat2)は、化合物M2の最低励起三重項状態を表す。S1(Mat4)は、化合物M4の最低励起一重項状態を表し、T1(Mat4)は、化合物M4の最低励起三重項状態を表す。図6に示すように、化合物M2としてΔST(Mat2)の小さな材料を用いると、化合物M2の最低励起三重項状態T1は熱エネルギーによって最低励起一重項状態S1に逆項間交差することが可能である。
 この化合物M2で生じる逆項間交差を利用することで、発光層が、化合物M2の最低励起一重項状態S1(Mat2)よりも小さい最低励起一重項状態S1の蛍光ドーパントを含まない場合は、化合物M2の最低励起一重項状態S1(Mat2)からの発光を観測することができる。このTADF機構による遅延蛍光を利用することによっても、理論的に内部量子効率を100%まで高めることができると考えられている。
 第三実施形態によれば、高性能化、特に低電圧、高効率及び長寿命の少なくともいずれかを実現できる有機EL素子を提供できる。
 第三実施形態に係る有機EL素子は、有機EL表示装置に使用できる。
 また、第三実施形態に係る有機EL素子は、表示装置及び発光装置等の電子機器に使用できる。
〔第四実施形態〕
 第四実施形態に係る有機EL素子の構成について説明する。第四実施形態の説明において第一実施形態から第三実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化する。また、第四実施形態では、特に言及されない材料や化合物については、第一実施形態から第三実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
 第四実施形態に係る有機EL素子は、陽極と第一の層との間に、さらに第二の層が配置されている点で、前記実施形態に係る有機EL素子と異なる。第二の層は、第二化合物を含む。第一化合物と第二化合物とは異なる化合物である。その他の点については前記実施形態と同様である。
 すなわち、第四実施形態の有機EL素子には、例えば、以下の態様の有機EL素子が含まれる。
・第一実施形態における陽極と第一の層との間に、さらに第二の層を配置した有機EL素子。発光層は、第一実施形態の発光層と同義。
・第二実施形態における陽極と第一の層との間に、さらに第二の層を配置した有機EL素子。発光層は、第二実施形態の発光層と同義。
・第三実施形態における陽極と第一の層との間に、さらに第二の層を配置した有機EL素子。発光層は、第三実施形態の発光層と同義。
 図7に、第四実施形態に係る有機EL素子の一例の概略構成を示す。
 図7では、発光層として、第一実施形態の発光層5を適用した場合について説明する。
 有機EL素子1Aは、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10Aと、を含む。有機層10Aは、陽極3側から順に、陽極側有機層63、第二の層62、第一の層61、発光層5、電子輸送層8、および電子注入層9が、この順番で積層されて構成される。図1中、D1は、第一の層61の膜厚を表し、D2は、第二の層62の膜厚を表す。
 第四実施形態によれば、高性能化、特に低電圧、高効率及び長寿命の少なくともいずれかを実現できる有機EL素子を提供できる。
 第四実施形態に係る有機EL素子は、有機EL表示装置に使用できる。
 また、第四実施形態に係る有機EL素子は、表示装置及び発光装置等の電子機器に使用できる。
<第二の層>
 第四実施形態において、第二の層は、正孔輸送層であることが好ましい。
 第四実施形態において、第二の層は、第一の層と隣接することが好ましい。
 図7の場合、第二の層は、陽極側有機層と隣接することが好ましい。
 第四実施形態の一態様において、第二の層の膜厚は、20nm以上200nm以下である。
(第二化合物)
 第二の層は、第二化合物を含む。第二化合物としては特に限定されないが、例えば、前述の<有機EL素子の構成>で記載した、正孔輸送層に使用する事ができる材料(芳香族アミン化合物、カルバゾール誘導体、及びアントラセン誘導体等)を用いることができる。
(第二化合物のイオン化ポテンシャルIp(HT2))
 第二化合物のイオン化ポテンシャルIp(HT2)は、下記数式(数11)を満たすことが好ましい。
  Ip(HT2)≧5.0eV        …(数11)
(第二化合物の正孔移動度μh(HT2))
 第二化合物の正孔移動度μh(HT2)は、下記数式(数12)を満たすことが好ましい。
  μh(HT2)≧1.0×10-5cm/Vs …(数12)
 第四実施形態において、第二化合物のイオン化ポテンシャルIp(HT2)が前記数式(数11)を満たし、かつ第二化合物の正孔移動度μh(HT2)が前記数式(数12)を満たすことが好ましい。
〔第五実施形態〕
 第五実施形態に係る有機EL素子の構成について説明する。第五実施形態の説明において第一実施形態から第四実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化する。また、第五実施形態では、特に言及されない材料や化合物については、第一実施形態から第四実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
 第五実施形態に係る有機EL素子は、第一の層に含まれる化合物が下記一般式(30)で表される第一化合物である点で、前記実施形態の有機EL素子と異なる。その他の点については前記実施形態と同様である。
 すなわち、第五実施形態の有機EL素子は、陽極と、陰極と、前記陽極と前記陰極との間に含まれる発光層と、前記陽極と前記発光層の間に含まれる第一の層と、を有し、前記発光層は、遅延蛍光性の化合物を含み、前記第一の層は下記一般式(30)で表される第一化合物を含む。
 第五実施形態において、第一の層に含まれる第一化合物は、下記一般式(30)で表される構造を有する限り特に限定されない。
 第五実施形態において、第一の層に含まれる第一化合物(下記一般式(30)で表される第一化合物)のイオン化ポテンシャルIp30(HT1)は、第一実施形態における第一化合物(前記一般式(3)で表される第一化合物)のイオン化ポテンシャルIp(HT1)と同様の範囲であることが好ましい。
 また、第一の層に含まれる第一化合物(下記一般式(30)で表される第一化合物)の正孔移動度μh30(HT1)は、第一実施形態における第一化合物(前記一般式(3)で表される第一化合物)の正孔移動度μh(HT1)と同様の範囲であることが好ましい。
 第一実施形態で記載した通り、TADFメカニズムを利用した有機EL素子においては、使用態様に応じて、正孔輸送帯域の総膜厚を厚くしたいという要請がある。
 本発明者らは、TADFメカニズムで発光する有機EL素子において、発光層及び陽極の間に含まれる第一の層(例えば電子障壁層)に、1-フルオレニル基を有する特定構造のアミン化合物(一般式(30)で表される化合物)を含ませることで、イオン化ポテンシャルIpの絶対値が大きい遅延蛍光発光層へのホール注入性を向上できることを見出した。その結果、第一の層を厚膜化した場合でも、素子性能の低下を抑制できると考えられる。
 よって、第五実施形態に係る有機EL素子を、RGB画素の少なくともいずれかがTADFメカニズムで発光する有機EL表示装置に搭載した場合には、第一の層の膜厚を単に厚膜化することで、キャビティ調整を容易に行うことができる。また、有機EL表示装置の量産性を向上させることができる。
 また、第五実施形態に係る有機EL素子は、表示装置及び発光装置等の電子機器に使用できる。
 第五実施形態の有機EL素子には、例えば、以下の態様の有機EL素子が含まれる。
・第一実施形態において、第一の層に含まれる第一化合物(前記一般式(3)で表される第一化合物)を下記一般式(30)で表される第一化合物に置き換えた有機EL素子。発光層は、第一実施形態の発光層と同義である。
・第一実施形態において、第一の層に含まれる第一化合物(前記一般式(3)で表される第一化合物)を下記一般式(30)で表される第一化合物に置き換え、かつ第一実施形態における陽極と第一の層との間に、さらに第二の層を配置した有機EL素子。発光層は、第一実施形態の発光層と同義である。
・第二実施形態において、第一の層に含まれる第一化合物(前記一般式(3)で表される第一化合物)を下記一般式(30)で表される第一化合物に置き換えた有機EL素子。発光層は、第二実施形態の発光層と同義である。
・第二実施形態において、第一の層に含まれる第一化合物(前記一般式(3)で表される第一化合物)を下記一般式(30)で表される第一化合物に置き換え、かつ第二実施形態における陽極と第一の層との間に、さらに第二の層を配置した有機EL素子。発光層は、第二実施形態の発光層と同義である。
・第三実施形態において、第一の層に含まれる第一化合物(前記一般式(3)で表される第一化合物)を下記一般式(30)で表される第一化合物に置き換えた有機EL素子。発光層は、第三実施形態の発光層と同義である。
・第三実施形態において、第一の層に含まれる第一化合物(前記一般式(3)で表される第一化合物)を下記一般式(30)で表される第一化合物に置き換え、かつ第三実施形態における陽極と第一の層との間に、さらに第二の層を配置した有機EL素子。発光層は、第三実施形態の発光層と同義である。
(一般式(30)で表される第一化合物)
Figure JPOXMLDOC01-appb-C000231
(前記一般式(30)において、
 Ar及びArは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 nは、0、1、2又は3であり、
 Lは、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基であり、
 Lが複数存在する場合、複数のLは、互いに同一であるか、又は異なり、
 A及びAからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないA及びAは、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R32~R34及びR35~R38のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR32~R38は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R908で表される基、
  -COOR909で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  -P(=O)(R931)(R932)で表される基、
  -Ge(R933)(R934)(R935)で表される基、
  -B(R936)(R937)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(前記一般式(30)において、R901、R902、R903、R904、R905、R906、R907、R908、R909、R931、R932、R933、R934、R935、R936及びR937は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R908が複数存在する場合、複数のR908は、互いに同一であるか又は異なり、
 R909が複数存在する場合、複数のR909は、互いに同一であるか又は異なり、
 R931が複数存在する場合、複数のR931は、互いに同一であるか又は異なり、
 R932が複数存在する場合、複数のR932は、互いに同一であるか又は異なり、
 R933が複数存在する場合、複数のR933は、互いに同一であるか又は異なり、
 R934が複数存在する場合、複数のR934は、互いに同一であるか又は異なり、
 R935が複数存在する場合、複数のR935は、互いに同一であるか又は異なり、
 R936が複数存在する場合、複数のR936は、互いに同一であるか又は異なり、
 R937が複数存在する場合、複数のR937は、互いに同一であるか又は異なる。)
 前記一般式(30)において、nは、1又は2であることが好ましく、nは、1であることがより好ましい。
 前記一般式(30)において、Ar及びArは、それぞれ独立に、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基、置換もしくは無置換のジベンゾフラニル基、置換もしくは無置換のジベンゾチエニル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のカルバゾリル基、置換もしくは無置換のナフチル基、又は置換もしくは無置換のフェナントレニル基であることが好ましい。
 前記一般式(30)において、Ar及びArは、それぞれ独立に、無置換のフェニル基、無置換のビフェニル基、無置換のターフェニル基、無置換のジベンゾフラニル基、無置換のジベンゾチエニル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のカルバゾリル基、無置換のナフチル基、又は無置換のフェナントレニル基であることがより好ましい。
 前記一般式(30)で表される第一化合物は、前記一般式(31A)で表される化合物であることが好ましい。
 前記一般式(30)及び(31A)において、-(L)n-で表される基におけるLは、前記一般式(L1)~(L9)のいずれかで表される基であることが好ましい。
 前記一般式(30)及び(31A)において、Ra及びR311~R320は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記一般式(30)及び(31A)において、Raは、それぞれ独立に、水素原子、無置換の炭素数1~50のアルキル基、無置換の環形成炭素数6~50のアリール基、又は無置換の環形成原子数5~50の複素環基であることが好ましく、水素原子であることがより好ましい。
 前記一般式(31A)において、R311~R315のうちの隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
 前記一般式(31A)において、R316~R320のうちの隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成することも好ましい。
 前記一般式(31A)において、「置換もしくは無置換の」という場合の置換基は、それぞれ独立に、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基、置換もしくは無置換のジベンゾフラニル基、置換もしくは無置換のジベンゾチエニル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のカルバゾリル基、置換もしくは無置換のナフチル基、又は置換もしくは無置換のフェナントレニル基であることが好ましい。
 前記一般式(31A)において、「置換もしくは無置換の」という場合の置換基は、それぞれ独立に、無置換のフェニル基、無置換のビフェニル基、無置換のジベンゾフラニル基、無置換のジベンゾチエニル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のカルバゾリル基、無置換のナフチル基、又は無置換のフェナントレニル基であることがより好ましい。
 前記一般式(30)及び(31A)において、A及びAからなる組が互いに結合しない場合、A及びAは、それぞれ独立に、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記一般式(30)及び(31A)において、A及びAからなる組が互いに結合しない場合、A及びAは、それぞれ独立に、メチル基、又は置換もしくは無置換のフェニル基であることがより好ましい。
 前記一般式(30)及び(31A)において、A及びAからなる組が互いに結合する場合、互いに結合して形成される環は、置換もしくは無置換の縮合環であることが好ましい。
 前記一般式(30)及び(31A)において、A及びAからなる組が互いに結合する場合、互いに結合して形成される環は、置換もしくは無置換のスピロフルオレン環であることがより好ましい。
 前記一般式(30)及び(31A)において、A及びAは、メチル基であることも好ましい。
 前記一般式(30)及び(31A)において、R32~R38は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記一般式(30)及び(31A)において、R32~R38は、それぞれ独立に、水素原子、又は置換もしくは無置換のフェニル基であることがより好ましい。
 前記一般式(30)及び(31A)において、R32~R38は水素原子であることがさらに好ましい。
 第五実施形態において、前記一般式(30)で表される第一化合物は、第一実施形態で説明した前記一般式(3)で表される第一化合物の一態様に係る化合物に相当する。そのため、前記一般式(30)で表される第一化合物の具体例は、第一実施形態中に示されている。
〔第六実施形態〕
(有機エレクトロルミネッセンス表示装置)
 第六実施形態の有機EL表示装置は、互いに対向して配置された陽極及び陰極を有し、青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、前記緑色画素は、第一実施形態から第五実施形態のいずれかに係る有機EL素子を前記緑色有機EL素子として含み、前記緑色有機EL素子は、前記発光層としての緑色発光層と、前記緑色発光層と前記陽極との間に配置された前記第一の層と、を含み、前記青色有機EL素子は、前記陽極と前記陰極との間に配置された青色発光層と、前記青色発光層と前記陽極との間に配置された青色有機層と、を有し、前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光層と、前記赤色発光層と前記陽極との間に配置された赤色有機層と、を有する。
 第六実施形態の有機EL表示装置においては、緑色画素に含まれる緑色有機EL素子がTADFメカニズムで発光する有機EL素子であって、当該緑色有機EL素子が、第一実施形態から第五実施形態のいずれかに係る有機EL素子である。
 すなわち、第六実施形態の有機EL表示装置は、緑色発光層及び陽極の間に含まれる第一の層が、
  特定のパラメータ(数式(数1)及び数式(数2))を満たす特定構造のアミン化合物(一般式(3)で表される第一化合物)を含むか、又は
  1-フルオレニル基を有する特定構造のアミン化合物(一般式(30)で表される化合物)を含む。
 よって、第六実施形態の有機EL表示装置は、例えば、緑色有機EL素子の第一の層の膜厚を単に厚膜化することで、キャビティ調整を容易に行うことができる。
 第六実施形態の有機EL表示装置によれば、低電圧、高効率及び長寿命の少なくともいずれかを実現できる緑色有機EL素子を搭載するため、高性能化が実現される。
 本明細書において、「画素」、「発光層」、「有機層」又は「材料」に付された「青色」、「緑色」又は「赤色」は、それぞれ、「画素」、「発光層」、「有機層」又は「材料」の各要素を他の要素と区別するために付されており、「青色」、「緑色」又は「赤色」は、「画素」、「発光層」、「有機層」又は「材料」が発する光の色を示す場合があるが、各要素の外観を「青色」、「緑色」又は「赤色」に特定するために付されているものではない。
 第六実施形態に係る有機EL表示装置の一例の構成について図8を参照して説明する。
 図8には、一実施形態に係る有機EL表示装置100Aが記載されている。
 有機EL表示装置100Aは、基板2Aによって支持された電極及び有機層を有する。
 有機EL表示装置100Aは、互いに対向して配置された陽極3及び陰極4を有する。
 有機EL表示装置100Aは、青色画素としての青色有機EL素子10B、緑色画素としての緑色有機EL素子10G及び赤色画素としての赤色有機EL素子10Rを有する。
 なお、図8は、有機EL表示装置100Aの概略図であって、有機EL表示装置100Aのサイズや各層の厚み等を限定するものではない。例えば、図8において青色発光層53、緑色発光層50及び赤色発光層54は、それぞれ同じ厚みで表現されているが、実際の有機EL表示装置においてこれらの層の厚みが同じであることを限定するものではない。図9に示す有機EL表示装置ついても同様である。
 青色有機EL素子10Bは、青色発光層53と陽極側有機層63との間に、非共通層としての青色有機層531を有する。青色有機層531は、青色発光層53と直接接している。青色有機層531は、電子障壁層であることが好ましい。
 緑色有機EL素子10Gは、緑色発光層50と陽極側有機層63との間に、非共通層としての第一の層61を有する。緑色発光層50は、第一実施形態、第二実施形態、第三実施形態及び第五実施形態のいずれかの発光層と対応する層である。第一の層61は第一実施形態、第二実施形態、第三実施形態及び第五実施形態のいずれかの第一の層と対応する層である。
 第一の層61は、緑色発光層50と直接接している。第一の層61は電子障壁層であることが好ましい。
 赤色有機EL素子10Rは、赤色発光層54と陽極側有機層63との間に、非共通層としての赤色有機層541を有する。赤色有機層541は、赤色発光層54と直接接している。赤色有機層541は電子障壁層であることが好ましい。
 有機EL表示装置100Aの青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rにおいては、青色発光層53、緑色発光層50、及び赤色発光層54と、陽極3との間に、共通層としての陽極側有機層63が配置されている。
 また、青色発光層53、緑色発光層50、及び赤色発光層54と、陰極4との間に、共通層としての電子輸送層8、及び電子注入層9が、陽極3側から、この順番で積層されている。
 陽極3は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれに独立して設けられている。そのため、有機EL表示装置100Aは、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rを個別に駆動させることが可能である。有機EL素子10B,10G,10Rのそれぞれの陽極は、図示されない絶縁材などで互いに絶縁されている。陰極4は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに共通して設けられている。
 一実施形態においては、画素としての青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rが基板2Aの上に並列に配置されている。
 第六実施形態に係る有機EL表示装置は、前記青色有機層、前記第一の層及び前記赤色有機層のそれぞれと、前記陽極との間において、前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子に亘って共通して配置された共通層を有することが好ましい。
 図9に、第六実施形態に係る有機EL表示装置の別の一例の概略構成を示す。
 図9に示す有機EL表示装置100Bは、青色有機層531、第一の層61及び赤色有機層541のそれぞれと、陽極3(図9の場合は、陽極側有機層63)との間において、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して配置された第二の層62(共通層)を有する。その他の点については、図8に示す有機EL表示装置100Aと同様の構成である。
 共通層としての第二の層62は、第四実施形態及び第五実施形態のいずれかの第二の層62と対応する層である。
 青色有機層531、第一の層61、及び赤色有機層541のそれぞれと、前記共通層(第二の層62)とは、互いに隣接することが好ましい。また、第二の層62は、陽極側有機層63と直接接していることが好ましい。
 本発明は、図8~図9に示す有機EL表示装置の構成に限定されない。
 例えば、本実施形態の有機EL表示装置の一態様において、青色有機EL素子、緑色有機EL素子及び赤色有機EL素子は、それぞれ独立に、図8~図9に示す層とは異なる層をさらに有していてもよい。例えば、発光層と電子輸送層との間に共通層としての正孔障壁層が配置されていてもよい。
 例えば、本実施形態の有機EL表示装置の一態様において、青色有機EL素子及び赤色有機EL素子は、それぞれ独立に、蛍光発光する素子であっても、燐光発光する素子であってもよい。緑色有機EL素子は、蛍光発光する素子であることが好ましい。
 本実施形態の有機EL表示装置の一態様において、青色発光層は、ホスト材料を含有する。青色発光層は、例えば、ホスト材料を青色発光層の全質量の50質量%以上、含有する。
 本実施形態の有機EL表示装置の一態様において、青色有機EL素子の青色発光層は、最大ピーク波長が430nm以上、500nm以下の発光を示す青色発光性化合物を含む。青色発光性化合物は、例えば、最大ピーク波長が430nm以上、500nm以下の蛍光発光を示す蛍光発光性化合物である。また、青色発光性化合物は、例えば、最大ピーク波長が430nm以上、500nm以下の燐光発光を示す燐光発光性化合物である。本明細書において、青色の発光とは、発光スペクトルの最大ピーク波長が430nm以上、500nm以下の範囲内である発光をいう。
 蛍光性化合物は、一重項励起状態から発光可能な化合物であり、燐光発光性の化合物は、三重項励起状態から発光可能な化合物である。
 青色発光層に用いることができる青色で蛍光発光する化合物として、例えば、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。具体的には、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)などが挙げられる。
 青色発光層に用いることができる青色で燐光発光する化合物として、例えば、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。具体的には、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2-(3’,5’ビストリフルオロメチルフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:Ir(CF3ppy)2(pic))、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)などが挙げられる。
(燐光発光最大ピーク波長(PH-peak))
 燐光発光性化合物の最大ピーク波長(燐光発光最大ピーク波長)は、次の方法により測定することができる。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、10-5mol/L以上10-4mol/L以下となるように溶解し、このEPA溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの極大値のうち、最も短波長側の極大値を燐光発光最大ピーク波長とする。燐光の測定には、分光蛍光光度計F-7000(株式会社日立ハイテクサイエンス製)を用いることができる。なお、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。なお、本明細書において、燐光発光の最大ピーク波長を燐光発光最大ピーク波長(PH-peak)と称する場合がある。
 本実施形態の有機EL表示装置の一態様において、青色有機EL素子は、青色発光層と、陽極側有機層との間に、青色有機層を備えることが好ましい。青色有機層は、陽極側有機層と、直接、接していてもよい。また、青色有機層は、青色発光層と、直接、接していてもよい。
 本実施形態の有機EL表示装置の別の一態様において、青色有機EL素子は、青色発光層と、第二の層との間に、青色有機層を備える。青色有機層は、第二の層と、直接、接していてもよい。また、青色有機層は、青色発光層と、直接、接していてもよい。
 青色有機EL素子が青色有機層を有することにより、青色有機EL素子における発光位置を調整し易い。
 青色有機層は、青色有機材料を含有する。青色有機材料としては、例えば、前述の<有機EL素子の構成>で記載した、正孔輸送層に使用する事ができる材料(芳香族アミン化合物、カルバゾール誘導体、及びアントラセン誘導体等)を用いることができる。
 本実施形態の有機EL表示装置が第二の層を有する場合、青色有機材料は、第二の層が含有する第二化合物と同じ化合物であってもよいし、異なる化合物でもよいが、青色有機材料と第二化合物とは、互いに異なることが好ましい。
 青色有機材料は、青色発光層が含有するホスト材料及び青色発光性化合物とは異なる化合物である。
 本実施形態の有機EL表示装置の一態様において、赤色発光層は、ホスト材料を含有する。赤色発光層は、例えば、ホスト材料を赤色発光層の全質量の50質量%以上、含有する。
 本実施形態の有機EL表示装置の一態様において、赤色有機EL素子の赤色発光層は、最大ピーク波長が600nm以上、640nm以下の発光を示す赤色発光性化合物を含む。赤色発光性化合物は、例えば、最大ピーク波長が600nm以上、640nm以下の蛍光発光を示す蛍光発光性化合物である。また、赤色発光性化合物は、例えば、最大ピーク波長が600nm以上、640nm以下の燐光発光を示す燐光発光性化合物である。本明細書において、赤色の発光とは、発光スペクトルの最大ピーク波長が600nm以上、640nm以下の範囲内である発光をいう。
 赤色発光層に用いることができる赤色で蛍光発光する化合物として、例えば、テトラセン誘導体及びジアミン誘導体等を使用できる。赤色発光層に用いることができる赤色で燐光発光する化合物として、例えば、イリジウム錯体、白金錯体、テルビウム錯体及びユーロピウム錯体等の金属錯体を使用できる。
 本実施形態の有機EL表示装置の一態様において、赤色有機EL素子は、赤色発光層と、陽極側有機層との間に、赤色有機層を備えることが好ましい。赤色有機層は、陽極側有機層と、直接、接していてもよい。また、赤色有機層は、赤色発光層と、直接、接していてもよい。
 本実施形態の有機EL表示装置の別の一態様において、赤色有機EL素子は、赤色発光層と、第二の層との間に、赤色有機層を備える。赤色有機層は、第二の層と、直接、接していてもよい。また、赤色有機層は、赤色発光層と、直接、接していてもよい。
 赤色有機EL素子が赤色有機層を有することにより、赤色有機EL素子における発光位置を調整し易い。
 赤色有機層は、赤色有機材料を含有する。赤色有機材料としては、例えば、前述の<有機EL素子の構成>で記載した、正孔輸送層に使用する事ができる材料(芳香族アミン化合物、カルバゾール誘導体、及びアントラセン誘導体等)を用いることができる。
 本実施形態の有機EL表示装置が第二の層を有する場合、赤色有機材料は、第二の層が含有する第二化合物と同じ化合物であってもよいし、異なる化合物でもよいが、赤色有機材料と第二化合物とは、互いに異なることが好ましい。
 赤色有機材料は、赤色発光層が含有するホスト材料及び赤色発光性化合物とは異なる化合物である。
 赤色有機EL素子の赤色有機層が含有する赤色有機材料と、青色有機EL素子の青色発光層が含有する青色有機材料とが、同じ化合物であってもよいし、異なる化合物でもよいが、赤色有機材料と青色有機材料とが、互いに異なることが好ましい。
 本実施形態の有機EL表示装置の一態様において、青色発光層が含有するホスト材料及び赤色発光層が含有するホスト材料は、例えば、発光性の高い物質(ドーパント材料)を発光層中に分散させさせるための化合物である。青色発光層が含有するホスト材料及び赤色発光層が含有するホスト材料としては、例えば、発光性の高い物質よりも最低空軌道準位(LUMO準位)が高く、最高被占有軌道準位(HOMO準位)が低い物質を用いることができる。
 青色発光層が含有するホスト材料及び赤色発光層が含有するホスト材料としては、例えば、それぞれ独立に、下記(1)~(4)の化合物を使用できる。
 (1)アルミニウム錯体、ベリリウム錯体、若しくは亜鉛錯体等の金属錯体、
 (2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、
 (3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、
 (4)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物
 本実施形態の有機EL表示装置について、図8を参照してさらに説明する。第一実施形態に係る有機EL素子と共通する構成については記載を簡略化又は省略する。
(陽極)
 一実施形態において、陽極3は、陰極4に対して対向して配置されている。
 一実施形態において、陽極3は、通常、非共通層である。一実施形態において、例えば、陽極3が非共通層である場合、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれにおける陽極は、互いに物理的に切り分けられた状態であり、例えば、図示されない絶縁材などで互いに絶縁されている。
(陰極)
 一実施形態において、陰極4は、陽極3に対して対向して配置されている。
 一実施形態において、陰極4は、共通層であっても、非共通層であってもよい。
 一実施形態において、陰極4は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して設けられた共通層であることが好ましい。
 一実施形態において、陰極4は、電子注入層9と直接接している。
 一実施形態において、陰極4が共通層である場合、陰極4の膜厚は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って同じである。陰極4が共通層である場合、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれの陰極4を、マスク等を入れ替えずに作製できる。その結果、有機EL表示装置100Aの生産性が向上する。
(電子輸送層)
 一実施形態において、電子輸送層8は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して設けられた、共通層である。
 一実施形態において、電子輸送層8は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの各発光層と、電子注入層9との間に配置されている。
 一実施形態において、電子輸送層8は、その陽極3側で、青色発光層53、緑色発光層50及び赤色発光層54と、直接、接している。
 電子輸送層8は、その陰極4側で、電子注入層9と直接接している。
 一実施形態において、電子輸送層8は、共通層であり、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って同じ膜厚である。電子輸送層8が共通層であるため、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれの電子輸送層8を、マスク等を入れ替えずに作製できる。その結果、有機EL表示装置100Aの生産性が向上する。
(電子注入層)
 一実施形態において、電子注入層9は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して設けられた共通層である。
 一実施形態において、電子注入層9は、電子輸送層8と陰極4との間に配置されている。
 一実施形態において、電子注入層9は、電子輸送層8に直接接している。
 一実施形態において、電子注入層9は、共通層であり、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って同じ膜厚である。電子注入層9が共通層であるため、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれの電子注入層9を、マスク等を入れ替えずに作製できる。その結果、有機EL表示装置100Aの生産性が向上する。
 一実施形態において、青色発光層53、緑色発光層50、赤色発光層54、青色有機層531、第一の層61、及び赤色有機層541以外の層は、青色有機EL素子、緑色有機EL素子及び赤色有機EL素子に亘って共通して設けられていることが好ましい。有機EL表示装置における非共通層の数を少なくすることで、製造効率が向上する。
<有機EL表示装置の製造方法>
 本実施形態の有機EL表示装置について、図8に示す有機EL表示装置100Aの製造方法を例に挙げて説明する。
 まず、基板2A上に陽極3を成膜する。
 次に、共通層としての陽極側有機層63を陽極3の上に亘って成膜する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rにおける陽極側有機層63は、それぞれ、同じ膜厚で成膜される。
 次に、陽極側有機層63の上であって、青色有機EL素子10Bの陽極3に対応する領域に、所定の成膜用マスク(青色有機EL素子用マスク)を用いて青色有機層531を成膜する。青色有機層531の成膜に続けて、青色有機層531の上に青色発光層53を成膜する。
 次に、陽極側有機層63の上であって、緑色有機EL素子10Gの陽極3に対応する領域に、所定の成膜用マスク(緑色有機EL素子用マスク)を用いて、第一の層61を成膜する。第一の層61の成膜に続けて、第一の層61の上に緑色発光層50を成膜する。
 次に、陽極側有機層63の上であって、赤色有機EL素子10Rの陽極3に対応する領域に、所定の成膜用マスク(赤色有機EL素子用マスク)を用いて、赤色有機層541を成膜する。赤色有機層541の成膜に続けて、赤色有機層541の上に赤色発光層54を成膜する。
 青色発光層53、緑色発光層50及び赤色発光層54は、互いに異なる材料で成膜される。
 なお、陽極側有機層63の成膜の次に、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの非共通層を成膜する順番は、特に限定されない。
 例えば、陽極側有機層63を成膜した後、緑色有機EL素子10Gの第一の層61及び緑色発光層50を成膜し、その後、赤色有機EL素子10Rの赤色有機層541及び赤色発光層54を成膜し、その後、青色有機EL素子10Bの青色有機層531及び青色発光層53を成膜する、という順番でもよい。
 また、例えば、陽極側有機層63を成膜した後、赤色有機EL素子10Rの赤色有機層541及び赤色発光層54を成膜し、その後、緑色有機EL素子10Gの第一の層61及び緑色発光層50を成膜し、その後、青色有機EL素子10Bの青色有機層531及び青色発光層53を成膜する、という順番でもよい。
 次に、共通層としての電子輸送層8を、青色発光層53、緑色発光層50及び赤色発光層54の上に亘って成膜する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの電子輸送層8は、同じ材料、かつ、同じ膜厚で成膜する。
 次に、共通層としての電子注入層9を電子輸送層8の上に成膜する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの電子注入層9は、同じ材料、かつ、同じ膜厚で成膜する。
 次に、電子注入層9の上に共通層としての陰極4を成膜する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの陰極4は、同じ材料、かつ、同じ膜厚で成膜する。
 以上のようにして、図8に示す有機EL表示装置100Aを製造する。
 図9に示す有機EL表示装置100Bは、第二の層62を有する点で、図8に示す有機EL表示装置100Aと異なる。図9に示す有機EL表示装置100Bの製造においては、陽極側有機層63の上であって、青色有機EL素子、緑色有機EL素子、及び赤色有機EL素子の陽極3に対応する領域に、第二の層62を成膜する。
 次いで、任意の順番で、青色有機EL素子10Bの陽極3に対応する領域に、所定の成膜用マスク(青色有機EL素子用マスク)を用いて、青色有機層531及び青色発光層53を成膜する。緑色有機EL素子10Gの陽極3に対応する領域に、所定の成膜用マスク(緑色有機EL素子用マスク)を用いて、第一の層61及び緑色発光層50を成膜する。赤色有機EL素子10Rの陽極3に対応する領域に、所定の成膜用マスク(赤色有機EL素子用マスク)を用いて、赤色有機層541及び赤色発光層54を成膜する。有機EL表示装置100Bのその他の製造工程は、有機EL表示装置100Aと同様である。
〔第七実施形態〕
(電子機器)
 本実施形態に係る電子機器は、上述の実施形態のいずれかの有機EL素子又は上述の実施形態のいずれかの有機EL表示装置を搭載している。電子機器としては、例えば、表示装置及び発光装置等が挙げられる。表示装置としては、例えば、表示部品(例えば、有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明及び車両用灯具等が挙げられる。
〔実施形態の変形〕
 なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
 例えば、発光層は、1層に限られず、2層又は2を超える複数の発光層が積層されていてもよい。例えば、その他の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに直接接していてもよいし、中間層(電荷発生層等と称する場合もある。)を介して複数の発光ユニットが積層された、いわゆるタンデム型の有機EL素子であってもよい。
 また、例えば、発光層の陰極側に障壁層を隣接させて設けてもよい。発光層の陰極側で直接接して配置された障壁層は、正孔、及び励起子の少なくともいずれかを阻止することが好ましい。
 例えば、発光層の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、かつ正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、発光層と電子輸送層との間に当該障壁層を含むこともできる。
 また、励起エネルギーが発光層からその周辺層に漏れ出さないように、障壁層を発光層に隣接させて設けてもよい。障壁層は、発光層で生成した励起子が当該障壁層よりも電極側の層(例えば、電子輸送層等)に移動することを阻止する。発光層と障壁層とが直接接していることが好ましい。
 その他、本発明の実施における具体的な構造、及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
 以下、本発明に係る実施例を説明する。本発明はこれらの実施例によって何ら限定されない。
<化合物>
 実施例に係る有機EL素子の製造に用いた第一化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000233
 比較例に係る有機EL素子の製造に用いた比較化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000234
 実施例及び比較例に係る有機EL素子の製造に用いた、他の化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000237
<有機EL素子の作製>
 有機EL素子を以下のように作製し、評価した。
(実施例1-1)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック株式会社製)を、イソプロピルアルコール中で5分間超音波洗浄を行った後、UVオゾン洗浄を1分間行った。ITOの膜厚は、130nmとした。
 洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HT-1と化合物HAとを共蒸着し、膜厚10nmの正孔注入層を形成した。正孔注入層における化合物HT-1の濃度を97質量%とし、化合物HAの濃度を3質量%とした。
 次に、この正孔注入層上に、第二化合物としての化合物HT-1を蒸着し、膜厚90nmの第二の層(第1正孔輸送層(HT)と称する場合もある。)を形成した。
 次に、この第二の層上に、第一化合物としての化合物EBL-1を蒸着し、膜厚30nmの第一の層(第2正孔輸送層(HT)又は電子障壁層(EBL)と称する場合もある。)を形成した。
 次に、この第一の層上に、化合物M3としての化合物M3-1と、化合物M2としての化合物TADF-1と、化合物M1としての化合物FD-1と、を共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物M3-1の濃度を74質量%とし、化合物TADF-1の濃度を25質量%とし、化合物FD-1の濃度を1質量%とした。
 次に、この発光層上に、化合物HBL-1を蒸着し、膜厚5nmの正孔障壁層を形成した。
 次に、この正孔障壁層上に、化合物ET-1と化合物Liqとを共蒸着し、膜厚50nmの電子輸送層を形成した。電子輸送層における化合物ET-1の濃度を50質量%とし、化合物Liqの濃度を50質量%とした。
 次に、この電子輸送層上に、Ybを蒸着し、膜厚1nmの電子注入層を形成した。
 そして、この電子注入層上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
 実施例1-1に係る有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-1:HA(10,97%:3%)/HT-1(90)/EBL-1(30)/M3-1:TADF-1:FD-1(25,74%:25%:1%)/HBL-1(5)/ET-1:Liq(50,50%:50%)/Yb(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
 同じく括弧内において、パーセント表示された数字(97%:3%)は、正孔注入層における化合物HT-1及び化合物HAの割合(質量%)を示し、パーセント表示された数字(74%:25%:1%)は、発光層における化合物M3-1、化合物TADF-1及び化合物FD-1の割合(質量%)を示し、パーセント表示された数字(50%:50%)は、電子輸送層における化合物ET-1及び化合物Liqの割合(質量%)を示す。
(実施例1-2~1-3及び比較例1-1~1-4)
 実施例1-2~1-3及び比較例1-1~1-4に係る有機EL素子は、それぞれ、実施例1-1で用いた第一化合物を表1に記載の化合物に変更したこと以外、実施例1-1と同様にして作製した。
(実施例2-1)
 実施例2-1に係る有機EL素子は、実施例1-1で用いた化合物M1、化合物M2及び化合物M3を表2に記載の化合物に変更したこと以外、実施例1-1と同様にして作製した。
(実施例2-2及び比較例2-1~2-3)
 実施例2-2及び比較例2-1~2-3に係る有機EL素子は、それぞれ、実施例2-1で用いた第一化合物を表2に記載の化合物に変更したこと以外、実施例2-1と同様にして作製した。
(実施例3-1)
 実施例3-1に係る有機EL素子は、実施例1-1で用いた化合物M1、化合物M2及び化合物M3を表2に記載の化合物に変更したこと以外、実施例1-1と同様にして作製した。
(実施例3-2及び比較例3-1~3-3)
 実施例3-2及び比較例3-1~3-3に係る有機EL素子は、それぞれ、実施例3-1で用いた第一化合物を表2に記載の化合物に変更したこと以外、実施例3-1と同様にして作製した。
<有機EL素子の評価>
 作製した有機EL素子について、以下の評価を行った。評価結果を表1、2に示す。
(最大ピーク波長λp)
 電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、最大ピーク波長λp(単位:nm)を求めた。
(駆動電圧)
 電流密度が10mA/cmとなるように陽極と陰極との間に通電したときの電圧(単位:V)を計測した。
(外部量子効率EQE)
 電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、ランバシアン放射を行ったと仮定し外部量子効率EQE(単位:%)を算出した。
(寿命LT95)
 作製した有機EL素子に、電流密度が50mA/cmとなるように電圧を印加し、初期輝度に対して輝度が95%となるまでの時間(LT95(単位:時間))を寿命として測定した。輝度は、分光放射輝度計CS-2000(コニカミノルタ株式会社製)を用いて測定した。
Figure JPOXMLDOC01-appb-T000238

 
 実施例1-1~1-3の有機EL素子は、数式(数1)及び数式(数2)を満たし、かつ前記一般式(3)で表される第一化合物を第一の層に含む。
 実施例1-1~1-3の有機EL素子は、前記第一化合物を、数式(数2)を満たさない化合物に置き換えた比較例1-1の有機EL素子に比べて、低電圧、長寿命かつ高いEQEで発光した。
 実施例1-1~1-3の有機EL素子は、前記第一化合物を、それぞれ数式(数1)を満たさない化合物に置き換えた比較例1-2~1-4の有機EL素子に比べて、高いEQEで発光した。
 実施例1-1~1-3で用いた第一化合物は、前記一般式(30)を満たす化合物でもある。
Figure JPOXMLDOC01-appb-T000239
 実施例2-1~2-2及び実施例3-1~3-2の有機EL素子は、数式(数1)及び数式(数2)を満たし、かつ前記一般式(3)で表される第一化合物を第一の層に含む。
 実施例2-1~2-2の有機EL素子は、前記第一化合物を、それぞれ数式(数1)を満たさない化合物に置き換えた比較例2-1~2-3の有機EL素子に比べて、高いEQEで発光した。
 実施例3-1~3-2の有機EL素子は、前記第一化合物を、それぞれ数式(数1)を満たさない化合物に置き換えた比較例3-1~3-3の有機EL素子に比べて、高いEQEで発光した。
 実施例2-1~2-2及び3-1~3-2で用いた第一化合物は、前記一般式(30)を満たす化合物でもある。
<化合物の評価>
(熱活性化遅延蛍光性)
・化合物TADF-1の遅延蛍光性
 遅延蛍光性は図2に示す装置を利用して過渡PLを測定することにより確認した。前記化合物TADF-1をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製した。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とした。
 上記試料溶液の蛍光スペクトルを分光蛍光光度計FP-8600(日本分光社製)で測定し、また同条件で9,10-ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定した。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出した。
 前記化合物TADF-1が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施例における遅延蛍光発光とは、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上を意味する。具体的には、Prompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることを意味する。
 Prompt発光とDelay発光の量とその比は、“Nature 492, 234-238, 2012”(参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、または図2に記載の装置に限定されない。
 化合物TADF-2及びTADF-3についても、化合物TADF-1と同様に測定した。化合物TADF-1、TADF-2及びTADF-3について、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上であることが確認された。具体的には、化合物TADF-1、TADF-2及びTADF-3について、X/Xの値が0.05以上であった。
(一重項エネルギーS
 測定対象化合物の一重項エネルギーSを、前述の溶液法により測定した。
 化合物M3-1の一重項エネルギーSは、3.41eVであった。
 化合物M3-2の一重項エネルギーSは、3.43eVであった。
 化合物TADF-1の一重項エネルギーSは、2.66eVであった。
 化合物TADF-2の一重項エネルギーSは、2.66eVであった。
 化合物TADF-3の一重項エネルギーSは、2.65eVであった。
 化合物FD-1の一重項エネルギーSは、2.45eVであった。
 化合物FD-2の一重項エネルギーSは、2.41eVであった。
(エネルギーギャップT77K
 測定対象化合物のT77Kを測定した。T77Kは、前述の「三重項エネルギーと77[K]におけるエネルギーギャップとの関係」で記載したエネルギーギャップT77Kの測定方法により測定した。
(ΔST)
 測定した最低励起一重項エネルギーSと77[K]におけるエネルギーギャップT77Kとに基づいて、ΔSTを算出した。
 化合物M3-1のΔSTは、0.69eVであった。
 化合物M3-2のΔSTは、0.59eVであった。
 化合物TADF-1のΔSTは、0.01eV未満であった。
 化合物TADF-2のΔSTは、0.01eV未満であった。
 化合物TADF-3のΔSTは、0.01eV未満であった。
 化合物FD-1のΔSTは、0.27eVであった。
 化合物FD-2のΔSTは、0.41eVであった。
(化合物の最大ピーク波長λ)
 測定対象となる化合物の5μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の蛍光スペクトル(縦軸:蛍光発光強度、横軸:波長とする。)を測定した。本実施例では、蛍光スペクトルを株式会社日立ハイテクサイエンス製の分光蛍光光度計(装置名:F-7000)で測定した。なお、蛍光スペクトル測定装置は、ここで用いた装置に限定されない。蛍光スペクトルにおいて、発光強度が最大となる蛍光スペクトルのピーク波長を化合物の最大ピーク波長λとした。
 化合物FD-1について、化合物の最大ピーク波長は、500nmであった。
 化合物FD-2について、化合物の最大ピーク波長は、511nmであった。
(イオン化ポテンシャルIp)
 化合物のイオン化ポテンシャルIpは、大気下で、光電子分光装置(理研計器株式会社製、「AC-3」)を用いて測定した。具体的には、材料に光を照射し、その際に電荷分離によって生じる電子量を測定することにより、化合物のイオン化ポテンシャルを測定した。イオン化ポテンシャルをIpと表記する場合がある。
(正孔移動度μh)
 正孔移動度μhは、下記の手順で作成された移動度評価用素子を用いて測定される。
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
 洗浄後の前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HA-2を蒸着し、膜厚5nmの正孔注入層を形成した。
 この正孔注入層の成膜の上に、化合物HT-Aを蒸着し、膜厚10nmの正孔輸送層を形成した。
 続けて、正孔移動度μhの測定対象となる化合物Targetを蒸着し、膜厚200nmの測定対象層を形成した。
 そして、この測定対象層の上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属陰極を形成した。
 以上の移動度評価用素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HA-2(5)/HT-A(10)/Target(200)/Al(80)
 なお、括弧内の数字は、膜厚(nm)を示す。
Figure JPOXMLDOC01-appb-C000240
 続いて、正孔移動度は、上記の手順で作成された移動度評価用素子を用いて、下記の手順により測定される。
 上記の移動度評価用素子を、インピーダンス測定装置に設置し、インピーダンス測定を行った。
 インピーダンス測定は、測定周波数を1Hzから1MHzまで掃引して行った。その際、素子には交流振幅0.1Vと同時に、直流電圧Vを印加した。
 測定されたインピーダンスZから、下記計算式(C1)の関係を用いて、モジュラスMを計算した。
  計算式(C1):M=jωZ
 上記計算式(C1)において、jは、その平方が-1になる虚数単位、ωは、角周波数[rad/s]である。
 モジュラスMの虚部を縦軸、周波数[Hz]を横軸にしたボーデプロットにおいて、ピークを示す周波数fmaxから移動度評価用素子の電気的な時定数τを下記計算式(C2)から求めた。
  計算式(C2):τ=1/(2πfmax)
 上記計算式(C2)のπは、円周率を表す記号である。
 上記τを用いて、下記計算式(C3)の関係から正孔移動度μhを算出した。
 計算式(C3):μh=d/(Vτ)
 上記計算式(C3)のdは、素子を構成する有機薄膜の総膜厚であり、上記の移動度評価用素子構成にあるように、d=215[nm]である。
 本明細書における移動度は、電界強度の平方根E1/2=500[V1/2/cm1/2]の際の値である。電界強度の平方根E1/2は、下記計算式(C4)の関係から算出することができる。
  計算式(C4):E1/2=V1/2/d1/2
 本実施例では、インピーダンス測定にはインピーダンス測定装置としてソーラトロン社の1260型を用い、高精度化のため、ソーラトロン社の1296型誘電率測定インターフェイスを併せて用いた。
<化合物の合成>
(合成実施例1)化合物TADF-1の合成
 化合物TADF-1の合成方法を以下に説明する。
Figure JPOXMLDOC01-appb-C000241
 窒素雰囲気下、1000mLの三ツ口フラスコに、1,5-ジブロモ-2,4-ジフルオロベンゼン(50g,184mmol)、クロロトリメチルシラン(60g,552mmol)、及びTHF(200mL)を入れた。ドライアイス/アセトンバスで、三ツ口フラスコ内の材料を-78℃まで冷却してから、リチウムジイソプロピルアミドを230ml(2M,THF溶液)滴下した。-78℃で2時間撹拌し、その後、室温(25℃)に戻し、更に2時間撹拌した。撹拌後、三ツ口フラスコに水(200mL)を加えてから、酢酸エチルで有機層を抽出し、抽出した有機層を水および食塩水で洗浄、硫酸マグネシウムで乾燥した後、溶媒をロータリーエバポレーターで減圧除去した。得られた中間体M11(73g,175mmol、収率95%)は、精製せずに次の反応に使用した。クロロトリメチルシランは、TMS-Clと略記する場合がある。中間体M11の化学式中、TMSは、トリメチルシリル基である。LDAは、リチウムジイソプロピルアミド(Lithium Diisopropyl Amide)の略称である。
 窒素雰囲気下、1000mLのナスフラスコに、中間体M11(73g,175mmol)とジクロロメタン(200mL)を入れた。一塩化ヨウ素(85g,525mmol)をジクロロメタン(200mL)に溶解し、0℃で滴下した後、40℃で4時間撹拌した。攪拌後、室温に戻し、飽和亜硫酸水素ナトリウム水溶液(100mL)を加え、ジクロロメタンにより有機層を抽出し、抽出した有機層を水及び食塩水で洗浄し、洗浄後の有機層を硫酸マグネシウムで乾燥し、乾燥させた有機層をロータリーエバポレーターで濃縮した。濃縮後に得られた化合物をシリカゲルカラムクロマトグラフィーによって精製して、中間体M12(65g,124mmol、収率71%)を得た。
 窒素雰囲気下で、500mLの三ツ口フラスコに、中間体M12(22g,42mmol)、フェニルボロン酸(12.8g,105mmol)、酢酸パラジウム(0.47g,2.1mmol)、炭酸ナトリウム(22g,210mmol)、及びメタノール(150mL)を入れて、80℃で4時間攪拌した。攪拌後、反応溶液を室温まで放冷してから、酢酸エチルで有機層を抽出し、抽出した有機層を水及び食塩水で洗浄して、洗浄後の有機層をロータリーエバポレーターで濃縮した。濃縮後に得られた化合物をシリカゲルカラムクロマトグラフィーで精製して、中間体M13(10g,24mmol、収率56%)を得た。なお、精製後の化合物の構造をASAP/MSにより同定した。ASAP/MSは、Atmospheric Pressure Solid Analysis Probe Mass Spectrometryの略称である。
 窒素雰囲気下で、200mLの三ツ口フラスコに、中間体M13(10g,24mmol)、シアン化銅(10.6g,118mmol)、及びDMF(15mL)を入れて、150℃で8時間加熱攪拌した。攪拌後、室温まで冷却した後、反応溶液を10mLのアンモニア水に注いだ。次に、塩化メチレンにより有機層を抽出し、抽出した有機層を水と食塩水で洗浄し、洗浄した有機層を硫酸マグネシウムで乾燥した。乾燥後、ロータリーエバポレーターで溶媒を減圧除去し、減圧除去後に得られた化合物をシリカゲルカラムクロマトグラフィーで精製して、中間体M14(5.8g,18.34mmol、収率78%)を得た。DMFは、N,N-ジメチルホルムアミドの略称である。
 窒素雰囲気下、100mLの三ツ口フラスコに、中間体M14(1.0g、3.2mmol)、12H-[1]Benzothieno[2,3-a]carbazole(1.9g、7mmol)、炭酸カリウム(1.3g、9.50mmol)及びDMF30mLを入れて、120℃で6時間撹拌した。攪拌後、析出した固体をろ取し、シリカゲルカラムクロマトグラフィーで精製し、化合物TADF-1(1.8g,2.2mmol、収率69%)を得た。得られた化合物は、ASAP-MSの分析により化合物TADF-1と同定した。
(合成実施例2)化合物TADF-2の合成
 化合物TADF-2の合成方法を以下に説明する。
Figure JPOXMLDOC01-appb-C000242
 窒素雰囲気下、500mLの三ツ口フラスコに、3-ブロモジベンゾチオフェン(26.3g,100mmol)、クロロトリメチルシラン(33g,300mmol)、及びTHF(150mL)を入れた。ドライアイス/アセトンバスで、三ツ口フラスコ内の材料を-78℃まで冷却してから、リチウムジイソプロピルアミドを125mL(2M,THF溶液)滴下した。-78℃で2時間撹拌し、その後、室温に戻し、更に2時間撹拌した。撹拌後、三ツ口フラスコに水(100mL)を加えてから、酢酸エチルで有機層を抽出し、抽出した有機層を水及び食塩水で洗浄、硫酸マグネシウムで乾燥した後、溶媒をロータリーエバポレーターで減圧除去した。得られた液体にジクロロメタン200mL加え、続いて一塩化ヨウ素(49g,300mmol)を、0℃で滴下した後、40℃で6時間撹拌した。室温に戻し、飽和亜硫酸水素ナトリウム水溶液(100mL)を加え、ジクロロメタンにより有機層を抽出し、抽出した有機層を水及び食塩水で洗浄し、洗浄後の有機層を硫酸マグネシウムで乾燥し、乾燥させた有機層をロータリーエバポレーターで濃縮した。濃縮後に得られた化合物をシリカゲルカラムクロマトグラフィーによって精製し、中間体M-c(28g,72mmol、収率72%)を得た。
 窒素雰囲気下、500mLの三ツ口フラスコに中間体M-c(24.5g,63.0mmol)、Dibenzo[b,d]thiophen-4-amine(12.55g,63.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.865g,0.945mmol)、Xantphos(キサントホス)(1.385g,1.889mmol)、ナトリウムtert-ブトキシド(9.08g,94mmol)及びトルエン210mLを加えて、60℃で8時間加熱撹拌後に室温(25℃)まで冷却した。析出した固体をろ取し、トルエン200mLで洗浄し、25gの白色固体を得た。得られた白色固体をGC-MSの分析により中間体M-dと同定した(収率86%)。
 窒素雰囲気下、200mLの三ツ口フラスコに、中間体M-d(9.5g,20.7mmol)、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロリド(IPrHCl)(0.36g、0.82mmol)、酢酸パラジウム(II)(0.093g、0.41mmol)、炭酸カリウム(5.8g、42mmol)及びN,N-ジメチルアセトアミド(DMAc)60mLを加えて、160℃で10時間撹拌後に室温(25℃)まで冷却した。析出した固体をろ取し、アセトンで洗浄して、6.9gの白色固体を得た。得られた白色固体をASAP-MSの分析により中間体M-eと同定した(収率86%)。
Figure JPOXMLDOC01-appb-C000243
 窒素雰囲気下、200mLの三ツ口フラスコに、中間体M-14(3.0g、9.48mmol)、中間体M-e(3.6g、9.5mmol)、炭酸カリウム(2.6g、19mmol)及びDMF50mLを入れ、100℃で4時間撹拌した。反応溶液にイオン交換水100mLを入れ、析出した固体をろ取した。ろ取した固体をシリカゲルカラムクロマトグラフィーで精製し、4.1gの黄色固体を得た。得られた黄色固体をASAP-MSの分析により中間体M-fと同定した(収率64%)。
 窒素雰囲気下、100mLの三ツ口フラスコに、2-phenyl-9h-carbazole(1.1g,4.44mmol)、水素化ナトリウム(40質量%オイル含有)(0.18g,4.44mmol)、及びDMF(37mL)を入れ、0℃で1時間撹拌した。次に0℃で中間体M-f(2.5g,3.70mmol)を入れ、ゆっくりと室温まで昇温し、更に1時間室温で撹拌した。反応混合物にイオン交換水を30mL加え、析出した固体をろ過した。得られた固体をシリカゲルカラムクロマトグラフィーで精製し、黄色固体を得た。得られた黄色固体をASAP-MSの分析により化合物TADF-2と同定した(収率63%)。
(合成実施例3)化合物TADF-3の合成
 化合物TADF-3の合成方法を以下に説明する。
Figure JPOXMLDOC01-appb-C000244
 窒素雰囲気下、100mLの三ツ口フラスコに、9H-carbazole(2.313g,13.84mmol)、水素化ナトリウム(40質量%オイル含有)(0.488g,12.21mmol)、及びDMF(40.7mL)を入れ、0℃で30分撹拌した。次に反応混合物に中間体M-f(5.5g,8.14mmol)を入れ、室温で2時間撹拌した。反応混合物にメタノール20mLを加え、析出した固体をシリカゲルカラムクロマトグラフィーで精製し、6.3gの黄色固体を得た。得られた黄色固体をASAP-MSの分析により化合物TADF-3と同定した(収率94%)。
 1,1A…有機EL素子、100A,100B…有機EL表示装置、10B,20B…青色有機EL素子、10G,20G…緑色有機EL素子、10R,20R…赤色有機EL素子、2,2A…基板、3…陽極、4…陰極、50…緑色有機層、53…青色発光層、54…赤色発光層、531…青色有機層、541…赤色有機層、61…第一の層、62…第二の層、63…陽極側有機層、8…電子輸送層、9…電子注入層。

Claims (38)

  1.  陽極と、
     陰極と、
     前記陽極と前記陰極との間に含まれる発光層と、
     前記陽極と前記発光層の間に含まれる第一の層と、を有し、
     前記発光層は、遅延蛍光性の化合物を含み、
     前記第一の層は、下記一般式(3)で表される第一化合物を含み、
     前記第一化合物のイオン化ポテンシャルIp(HT1)が下記数式(数1)を満たし、
     前記第一化合物の正孔移動度μh(HT1)が下記数式(数2)を満たす、
     有機エレクトロルミネッセンス素子。
      Ip(HT1)≧5.70eV     …(数1)
      μh(HT1)≧1.0×10-5cm/Vs …(数2)
    Figure JPOXMLDOC01-appb-C000001

    (前記一般式(3)において、
     Ar及びArは、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     nは、0、1、2又は3であり、
     Lは、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基であり、
     Lが複数存在する場合、複数のLは、互いに同一であるか、又は異なり、
     A及びAからなる組が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないA及びAは、それぞれ独立に、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、
      置換もしくは無置換の環形成原子数5~50の複素環基、
      Lと結合する単結合、又は
      前記一般式(3)中の窒素原子と結合する単結合であり、
     R31~R34及びR35~R38のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR31~R38は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の炭素数1~50のハロアルキル基、
      置換もしくは無置換の炭素数2~50のアルケニル基、
      置換もしくは無置換の炭素数2~50のアルキニル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      -Si(R901)(R902)(R903)で表される基、
      -O-(R904)で表される基、
      -S-(R905)で表される基、
      -N(R906)(R907)で表される基、
      置換もしくは無置換の炭素数7~50のアラルキル基、
      -C(=O)R908で表される基、
      -COOR909で表される基、
      ハロゲン原子、
      シアノ基、
      ニトロ基、
      -P(=O)(R931)(R932)で表される基、
      -Ge(R933)(R934)(R935)で表される基、
      -B(R936)(R937)で表される基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、
      置換もしくは無置換の環形成原子数5~50の複素環基、又は
      Lと結合する単結合もしくは前記一般式(3)中の窒素原子と結合する単結合であり、
     ただし、A及びA並びにR31~R38の内、いずれか1つが、Lと結合する単結合もしくは前記一般式(3)中の窒素原子と結合する単結合であり、
     前記一般式(3)中、*は、A~Aが結合する五員環の炭素原子及びR31~R38が結合する六員環の炭素原子のいずれか1つとの結合位置を表す。)
    (前記一般式(3)において、R901、R902、R903、R904、R905、R906、R907、R908、R909、R931、R932、R933、R934、R935、R936及びR937は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
     R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
     R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
     R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
     R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
     R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
     R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
     R908が複数存在する場合、複数のR908は、互いに同一であるか又は異なり、
     R909が複数存在する場合、複数のR909は、互いに同一であるか又は異なり、
     R931が複数存在する場合、複数のR931は、互いに同一であるか又は異なり、
     R932が複数存在する場合、複数のR932は、互いに同一であるか又は異なり、
     R933が複数存在する場合、複数のR933は、互いに同一であるか又は異なり、
     R934が複数存在する場合、複数のR934は、互いに同一であるか又は異なり、
     R935が複数存在する場合、複数のR935は、互いに同一であるか又は異なり、
     R936が複数存在する場合、複数のR936は、互いに同一であるか又は異なり、
     R937が複数存在する場合、複数のR937は、互いに同一であるか又は異なる。)
  2.  請求項1に記載の有機エレクトロルミネッセンス素子において、
     前記第一の層は、前記発光層に隣接する、
     有機エレクトロルミネッセンス素子。
  3.  請求項1または請求項2に記載の有機エレクトロルミネッセンス素子において、
     前記発光層は、前記遅延蛍光性の化合物としての化合物M2と、蛍光発光性の化合物M1とを含み、
     前記化合物M2の一重項エネルギーS(Mat2)と、前記化合物M1の一重項エネルギーS(Mat1)とが、下記数式(数3)の関係を満たす、
     有機エレクトロルミネッセンス素子。
       S(Mat2)>S(Mat1)   …(数3)
  4.  請求項1から請求項3のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記発光層は、前記遅延蛍光性の化合物としての化合物M2と、化合物M3とを含み、
     前記化合物M2の一重項エネルギーS(Mat2)と、前記化合物M3の一重項エネルギーS(Mat3)とが、下記数式(数4)の関係を満たす、
     有機エレクトロルミネッセンス素子。
     S(Mat3)>S(Mat2) …(数4)
  5.  請求項1から請求項4のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の層の膜厚は、5nm以上である、
     有機エレクトロルミネッセンス素子。
  6.  請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の層の膜厚は、10nm以上である、
     有機エレクトロルミネッセンス素子。
  7.  請求項1から請求項6のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の層の膜厚は、15nm以上である、
     有機エレクトロルミネッセンス素子。
  8.  請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の層の膜厚は、20nm以上である、
     有機エレクトロルミネッセンス素子。
  9.  請求項1から請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の層の膜厚は、25nm以上である、
     有機エレクトロルミネッセンス素子。
  10.  請求項1から請求項9のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の層の膜厚は、30nm以上である、
     有機エレクトロルミネッセンス素子。
  11.  請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一化合物のイオン化ポテンシャルIp(HT1)が、下記数式(数1A)を満たす、
     有機エレクトロルミネッセンス素子。
      Ip(HT1)≧5.73eV        …(数1A)
  12.  請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一化合物の正孔移動度μh(HT1)が、下記数式(数2A)を満たす、
     有機エレクトロルミネッセンス素子。
      μh(HT1)≧5.0×10-5cm/Vs …(数2A)
  13.  請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一化合物のイオン化ポテンシャルIp(HT1)が、下記数式(数1A)を満たし、
     前記第一化合物の正孔移動度μh(HT1)が、下記数式(数2A)を満たす、
     有機エレクトロルミネッセンス素子。
      Ip(HT1)≧5.73eV        …(数1A)
      μh(HT1)≧5.0×10-5cm/Vs …(数2A)
  14.  請求項1から請求項13のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記陽極と前記第一の層との間に、第二の層を有する、
     有機エレクトロルミネッセンス素子。
  15.  請求項14に記載の有機エレクトロルミネッセンス素子において、
     前記第二の層は、前記第一の層と隣接する、
     有機エレクトロルミネッセンス素子。
  16.  請求項14または請求項15に記載の有機エレクトロルミネッセンス素子において、
     前記第二の層は、第二化合物を含み、
     前記第二化合物のイオン化ポテンシャルIp(HT2)が、下記数式(数11)を満たし、
     前記第二化合物の正孔移動度μh(HT2)が、下記数式(数12)を満たす、
     有機エレクトロルミネッセンス素子。
      Ip(HT2)≧5.0eV        …(数11)
      μh(HT2)≧1.0×10-5cm/Vs …(数12)
     有機エレクトロルミネッセンス素子。
  17.  請求項14から請求項16のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第二の層の膜厚は、20nm以上200nm以下である、
     有機エレクトロルミネッセンス素子。
  18.  請求項1から請求項17のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     Ar及びArは、それぞれ独立に、
      置換もしくは無置換のフェニル基、
      置換もしくは無置換のビフェニル基、
      置換もしくは無置換のターフェニル基、
      置換もしくは無置換のジベンゾフラニル基、
      置換もしくは無置換のジベンゾチエニル基、
      置換もしくは無置換のフルオレニル基、
      置換もしくは無置換のカルバゾリル基、
      置換もしくは無置換のナフチル基、又は
      置換もしくは無置換のフェナントレニル基である、
     有機エレクトロルミネッセンス素子。
  19.  請求項1から請求項18のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     nは、1又は2である、
     有機エレクトロルミネッセンス素子。
  20.  請求項19に記載の有機エレクトロルミネッセンス素子において、
     -(L)n-で表される基におけるLは、下記一般式(L1)~(L9)のいずれかで表される基である、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002

     
    Figure JPOXMLDOC01-appb-C000003

    (前記一般式(L1)~(L9)において、
     Raのうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRaは、それぞれ独立に、前記一般式(3)におけるR31~R38と同義であり、複数存在するRaは、互いに同一であるか、又は異なる。
     -(L)n-におけるnが1の場合、前記一般式(L1)~(L9)中、2つの*のうち、一方の*は、R31~R38が結合する六員環の炭素原子、及びA~Aが結合する五員環の炭素原子のいずれか1つと結合し、他方の*は、窒素原子と結合する。
     -(L)n-におけるnが2又は3の場合、前記一般式(L1)~(L9)中、2つの*のうち、一方の*は、R31~R38が結合する六員環の炭素原子、及びA~Aが結合する五員環の炭素原子のいずれか1つと結合するか、もしくは他のLと結合し、他方の*は、窒素原子もしくは他のLと結合する。)
  21.  請求項19または請求項20に記載の有機エレクトロルミネッセンス素子において、
     前記第一化合物は、下記一般式(31A)、(32A)、(33A)又は(34A)で表される化合物である、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004

    (前記一般式(31A)~(34A)において、A、A及びR31~R38は、それぞれ独立に、前記一般式(3)におけるA、A及びR31~R38と同義であり、
     Raのうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R311~R315のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R316~R320のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRa及びR311~R320は、それぞれ独立に、前記一般式(3)におけるR31~R38と同義であり、
     複数存在するRaは、互いに同一であるか、又は異なり、
     *は、Raを有する六員環の炭素原子との結合位置を表す。)
  22.  請求項21に記載の有機エレクトロルミネッセンス素子において、
     Ra及びR311~R320は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基である、
     有機エレクトロルミネッセンス素子。
  23.  請求項1から請求項18のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     nは、0である、
     有機エレクトロルミネッセンス素子。
  24.  請求項23に記載の有機エレクトロルミネッセンス素子において、
     前記第一化合物は、下記一般式(3-1)、(3-2)、(3-3)又は(3-4)で表される化合物である、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005

    (前記一般式(3-1)~(3-4)において、A、A及びR31~R38は、それぞれ独立に、前記一般式(3)におけるA、A及びR31~R38と同義であり、
     R311~R315のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     R316~R320のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR311~R320は、それぞれ独立に、前記一般式(3)におけるR31~R38と同義である。)
     有機エレクトロルミネッセンス素子。
  25.  請求項24に記載の有機エレクトロルミネッセンス素子において、
     R311~R320は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基である、
     有機エレクトロルミネッセンス素子。
  26.  請求項1から請求項25のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     A及びAからなる組が互いに結合しない場合、A及びAは、それぞれ独立に、
      置換もしくは無置換の炭素数1~50のアルキル基、又は
      置換もしくは無置換の環形成炭素数6~50のアリール基であり、
     A及びAからなる組が互いに結合する場合、互いに結合して形成される環は、置換もしくは無置換の縮合環である、
     有機エレクトロルミネッセンス素子。
  27.  請求項1から請求項26のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     A及びAからなる組が互いに結合しない場合、A及びAは、それぞれ独立に、
      メチル基、又は
      置換もしくは無置換のフェニル基であり、
     A及びAからなる組が互いに結合する場合、互いに結合して形成される環は、置換もしくは無置換のスピロフルオレン環である、
     有機エレクトロルミネッセンス素子。
  28.  請求項1から請求項27のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     A及びAは、メチル基である、
     有機エレクトロルミネッセンス素子。
  29.  請求項1から請求項28のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     R31~R38は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基である、
     有機エレクトロルミネッセンス素子。
  30.  請求項1から請求項29のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     R31~R38は、それぞれ独立に、
      水素原子、又は
      置換もしくは無置換のフェニル基である、
     有機エレクトロルミネッセンス素子。
  31.  請求項1から請求項30のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     R31~R38は水素原子である、
     有機エレクトロルミネッセンス素子。
  32.  陽極と、
     陰極と、
     前記陽極と前記陰極との間に含まれる発光層と、
     前記陽極と前記発光層の間に含まれる第一の層と、を有し、
     前記発光層は、遅延蛍光性の化合物を含み、
     前記第一の層は下記一般式(30)で表される第一化合物を含む、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006

    (前記一般式(30)において、
     Ar及びArは、それぞれ独立に、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     nは、0、1、2又は3であり、
     Lは、
      置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
      置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基であり、
     Lが複数存在する場合、複数のLは、互いに同一であるか、又は異なり、
     A及びAからなる組が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないA及びAは、それぞれ独立に、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     R32~R34及びR35~R38のうちの隣接する2つ以上からなる組の1組以上が、
      互いに結合して、置換もしくは無置換の単環を形成するか、
      互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
      互いに結合せず、
     前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR32~R38は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の炭素数1~50のハロアルキル基、
      置換もしくは無置換の炭素数2~50のアルケニル基、
      置換もしくは無置換の炭素数2~50のアルキニル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      -Si(R901)(R902)(R903)で表される基、
      -O-(R904)で表される基、
      -S-(R905)で表される基、
      -N(R906)(R907)で表される基、
      置換もしくは無置換の炭素数7~50のアラルキル基、
      -C(=O)R908で表される基、
      -COOR909で表される基、
      ハロゲン原子、
      シアノ基、
      ニトロ基、
      -P(=O)(R931)(R932)で表される基、
      -Ge(R933)(R934)(R935)で表される基、
      -B(R936)(R937)で表される基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基である。)
    (前記一般式(30)において、R901、R902、R903、R904、R905、R906、R907、R908、R909、R931、R932、R933、R934、R935、R936及びR937は、それぞれ独立に、
      水素原子、
      置換もしくは無置換の炭素数1~50のアルキル基、
      置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
      置換もしくは無置換の環形成炭素数6~50のアリール基、又は
      置換もしくは無置換の環形成原子数5~50の複素環基であり、
     R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
     R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
     R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
     R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
     R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
     R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
     R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
     R908が複数存在する場合、複数のR908は、互いに同一であるか又は異なり、
     R909が複数存在する場合、複数のR909は、互いに同一であるか又は異なり、
     R931が複数存在する場合、複数のR931は、互いに同一であるか又は異なり、
     R932が複数存在する場合、複数のR932は、互いに同一であるか又は異なり、
     R933が複数存在する場合、複数のR933は、互いに同一であるか又は異なり、
     R934が複数存在する場合、複数のR934は、互いに同一であるか又は異なり、
     R935が複数存在する場合、複数のR935は、互いに同一であるか又は異なり、
     R936が複数存在する場合、複数のR936は、互いに同一であるか又は異なり、
     R937が複数存在する場合、複数のR937は、互いに同一であるか又は異なる。)
  33.  請求項1から請求項32のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記発光層は、金属錯体を含まない、
     有機エレクトロルミネッセンス素子。
  34.  請求項1から請求項33のいずれか一項に記載の有機エレクトロルミネッセンス素子を搭載した電子機器。
  35.  有機エレクトロルミネッセンス表示装置であって、
     互いに対向して配置された陽極及び陰極を有し、
     青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、
     前記緑色画素は、請求項1から請求項32のいずれか一項に記載の有機エレクトロルミネッセンス素子を前記緑色有機EL素子として含み、
     前記緑色有機EL素子は、
      前記発光層としての緑色発光層と、
      前記緑色発光層と前記陽極との間に配置された前記第一の層と、を含み、
     前記青色有機EL素子は、前記陽極と前記陰極との間に配置された青色発光層と、前記青色発光層と前記陽極との間に配置された青色有機層と、を有し、
     前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光層と、前記赤色発光層と前記陽極との間に配置された赤色有機層と、を有する、
     有機エレクトロルミネッセンス表示装置。
  36.  請求項35に記載の有機エレクトロルミネッセンス表示装置において、
     前記青色有機層、前記第一の層及び前記赤色有機層のそれぞれと、前記陽極との間において、
     前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子に亘って共通して配置された共通層を有する、
     有機エレクトロルミネッセンス表示装置。
  37.  請求項36に記載の有機エレクトロルミネッセンス表示装置において、
     前記青色有機層、前記第一の層及び前記赤色有機層のそれぞれと、前記共通層とは、互いに隣接する、
     有機エレクトロルミネッセンス表示装置。
  38.  請求項35から請求項37のいずれか一項に記載の有機エレクトロルミネッセンス表示装置を搭載した電子機器。
PCT/JP2022/023245 2021-06-10 2022-06-09 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器 WO2022260117A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280035963.8A CN117337624A (zh) 2021-06-10 2022-06-09 有机电致发光元件、有机电致发光显示装置及电子设备
KR1020247000575A KR20240021855A (ko) 2021-06-10 2022-06-09 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스 표시 장치 및 전자 기기

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-097472 2021-06-10
JP2021097472 2021-06-10
JP2021106075 2021-06-25
JP2021-106075 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022260117A1 true WO2022260117A1 (ja) 2022-12-15

Family

ID=84425243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023245 WO2022260117A1 (ja) 2021-06-10 2022-06-09 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器

Country Status (2)

Country Link
KR (1) KR20240021855A (ja)
WO (1) WO2022260117A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199998A1 (ja) * 2022-04-15 2023-10-19 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2024210061A1 (ja) * 2023-04-03 2024-10-10 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123178A1 (ja) * 2007-03-23 2008-10-16 Idemitsu Kosan Co., Ltd. 有機el素子
US20170186978A1 (en) * 2015-12-23 2017-06-29 Samsung Display Co., Ltd. Organic light-emitting device
KR20180043726A (ko) * 2016-10-20 2018-04-30 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기 발광 소자
KR20180063707A (ko) * 2016-12-02 2018-06-12 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2019159919A1 (ja) * 2018-02-15 2019-08-22 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
CN110317139A (zh) * 2019-05-09 2019-10-11 北京鼎材科技有限公司 一种化合物及其应用以及包含该化合物的有机电致发光器件
WO2019230708A1 (ja) * 2018-05-28 2019-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子、表示装置及び電子機器
WO2020004235A1 (ja) * 2018-06-25 2020-01-02 保土谷化学工業株式会社 トリアリールアミン構造を有する化合物および有機エレクトロルミネッセンス素子
CN110931649A (zh) * 2019-11-29 2020-03-27 昆山国显光电有限公司 一种有机电致发光器件及显示装置
WO2020162594A1 (ja) * 2019-02-07 2020-08-13 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2021006523A (ja) * 2019-06-27 2021-01-21 関東化学株式会社 スピロアクリダン系化合物、該化合物を含有する正孔輸送材料および該化合物を正孔輸送層に含む有機電子デバイス
JP2021061305A (ja) * 2019-10-04 2021-04-15 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019013063A (ja) 2017-06-29 2019-01-24 国立大学法人東北大学 赤外光による遠方物体への無線電力伝送方式

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123178A1 (ja) * 2007-03-23 2008-10-16 Idemitsu Kosan Co., Ltd. 有機el素子
US20170186978A1 (en) * 2015-12-23 2017-06-29 Samsung Display Co., Ltd. Organic light-emitting device
KR20180043726A (ko) * 2016-10-20 2018-04-30 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기 발광 소자
KR20180063707A (ko) * 2016-12-02 2018-06-12 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2019159919A1 (ja) * 2018-02-15 2019-08-22 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2019230708A1 (ja) * 2018-05-28 2019-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子、表示装置及び電子機器
WO2020004235A1 (ja) * 2018-06-25 2020-01-02 保土谷化学工業株式会社 トリアリールアミン構造を有する化合物および有機エレクトロルミネッセンス素子
WO2020162594A1 (ja) * 2019-02-07 2020-08-13 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
CN110317139A (zh) * 2019-05-09 2019-10-11 北京鼎材科技有限公司 一种化合物及其应用以及包含该化合物的有机电致发光器件
JP2021006523A (ja) * 2019-06-27 2021-01-21 関東化学株式会社 スピロアクリダン系化合物、該化合物を含有する正孔輸送材料および該化合物を正孔輸送層に含む有機電子デバイス
JP2021061305A (ja) * 2019-10-04 2021-04-15 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
CN110931649A (zh) * 2019-11-29 2020-03-27 昆山国显光电有限公司 一种有机电致发光器件及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199998A1 (ja) * 2022-04-15 2023-10-19 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2024210061A1 (ja) * 2023-04-03 2024-10-10 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Also Published As

Publication number Publication date
KR20240021855A (ko) 2024-02-19

Similar Documents

Publication Publication Date Title
JP5905916B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP6742236B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2022131344A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2017146191A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2022196749A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器
WO2022260117A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2017115788A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022260119A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2015198987A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用材料、および電子機器
WO2021215446A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021090931A1 (ja) 有機el表示装置及び電子機器
WO2022260118A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
JP2021172603A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022196634A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022230844A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022186390A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2022137315A (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2023004428A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
JP6433935B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP2022123150A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
JP2022123149A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2023171688A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023238769A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器
WO2022230843A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2023017704A1 (ja) 有機エレクトロルミネッセンス素子、電子機器及び化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280035963.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247000575

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000575

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22820296

Country of ref document: EP

Kind code of ref document: A1