WO2022230844A1 - 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器 - Google Patents

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器 Download PDF

Info

Publication number
WO2022230844A1
WO2022230844A1 PCT/JP2022/018804 JP2022018804W WO2022230844A1 WO 2022230844 A1 WO2022230844 A1 WO 2022230844A1 JP 2022018804 W JP2022018804 W JP 2022018804W WO 2022230844 A1 WO2022230844 A1 WO 2022230844A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light
organic
substituted
unsubstituted
Prior art date
Application number
PCT/JP2022/018804
Other languages
English (en)
French (fr)
Inventor
哲也 増田
聡美 田崎
弘明 豊島
雅人 中村
和樹 西村
裕亮 糸井
匡 羽毛田
江美子 神戸
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2022230844A1 publication Critical patent/WO2022230844A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to an organic electroluminescence element, an organic electroluminescence display device, and an electronic device.
  • Organic electroluminescence devices (hereinafter sometimes referred to as “organic EL devices”) are applied to full-color displays such as mobile phones and televisions.
  • organic EL devices When a voltage is applied to the organic EL element, holes are injected into the light-emitting layer from the anode, and electrons are injected into the light-emitting layer from the cathode. Then, in the light-emitting layer, the injected holes and electrons recombine to form excitons. At this time, singlet excitons are generated at a rate of 25% and triplet excitons are generated at a rate of 75% according to the electron spin statistical law.
  • Patent Documents 1 and 2 discuss stacking a plurality of light-emitting layers.
  • Performance of an organic EL element includes, for example, luminance, emission wavelength, chromaticity, luminous efficiency, driving voltage, and life.
  • the organic electroluminescence element described in Patent Document 1 is an organic electroluminescence element formed with a plurality of light-emitting layers between an anode and a cathode, and is formed of a mixture of a plurality of materials and has different main components.
  • the value obtained by dividing the electron mobility of the light-emitting layer located on the anode side by the hole mobility is the electron mobility of the light-emitting layer located on the cathode side by the hole mobility.
  • the electron mobility of the light-emitting layer positioned on the anode side is higher than that of the light-emitting layer positioned on the cathode side.
  • Patent Document 1 when the number of organic layers constituting the hole transport zone arranged between the anode and the light-emitting layer is reduced (layer saving), the light-emitting layer There is a possibility that the supply amount of holes in the LED will decrease, and the luminous efficiency will decrease. However, Patent Document 1 does not recognize the decrease in hole supply amount.
  • An object of the present invention is to provide an organic electroluminescence device capable of emitting light with high efficiency even if the number of organic layers constituting a hole transport zone is reduced, an electronic device equipped with the organic electroluminescence device, and an organic electroluminescence display.
  • An object of the present invention is to provide a device and an electronic device equipped with the organic electroluminescence display device.
  • an organic electroluminescence device comprising an anode, a cathode, a light-emitting region disposed between the anode and the cathode, and a light-emitting region disposed between the anode and the light-emitting region.
  • the light-emitting region comprises a first light-emitting layer and a second light-emitting layer, wherein one of the first light-emitting layer and the second light-emitting layer is in the light-emitting region Disposed on the anode side
  • the hole-transporting zone is in direct contact with the anode and the light-emitting region
  • the hole-transporting zone comprises one or more organic layers
  • at least One organic layer is a first organic layer in direct contact with the light-emitting region
  • the first organic layer comprises a hole-transporting band material
  • the first light-emitting layer comprises a first host material.
  • the second light-emitting layer includes a second host material and a second light-emitting compound that emits light with a maximum peak wavelength of 500 nm or less.
  • the triplet energy T 1 (H1) of the first host material and the triplet energy T 1 (H2) of the second host material satisfy the relationship of the following formula (Equation 1)
  • the first The ionization potential Ip (HT) of the hole-transporting zone material contained in one organic layer and the ionization potential Ip (D1) of the first light-emitting compound contained in the first light-emitting layer are expressed by the following formula: Provided is an organic electroluminescence device that satisfies the relationship of (1X). T 1 (H1)>T 1 (H2) (Equation 1) Ip (D1) - Ip (HT) ⁇ -0.05eV ... (number 1X)
  • an electronic device equipped with the above-described organic electroluminescence element according to one aspect of the present invention.
  • the organic electroluminescence display device has an anode and a cathode arranged to face each other, and comprises a blue organic EL element as a blue pixel, a green organic EL element as a green pixel, and It has a red organic EL element as a red pixel, and the blue organic EL element has a blue light emitting region having a first light emitting layer and a second light emitting layer arranged between the anode and the cathode.
  • one of the first light-emitting layer and the second light-emitting layer is disposed on the anode side in the blue light-emitting region
  • the green organic EL element is a green light-emitting layer disposed between the anode and the cathode; a light-emitting layer, the red organic EL element having a red light-emitting layer disposed between the anode and the cathode, the blue organic EL element, the green organic EL element and the red organic EL element , between each of the blue light-emitting region of the blue organic EL element, the green light-emitting layer of the green organic EL element, and the red light-emitting layer of the red organic EL element, and the anode, the blue organic EL element, A hole-transporting zone provided in common over the green organic EL element and the red organic EL element, wherein the hole-transporting zone is located in the first blue-emitting region of the blue organic EL element.
  • the hole-transporting zone comprises one or more organic layers, at least one of the organic layers in the hole-transporting zone contains a hole-transporting band material, the first light-emitting layer contains a first host material and a first light-emitting compound that emits light having a maximum peak wavelength of 500 nm or less, and the second The light-emitting layer contains a second host material and a second light-emitting compound that emits light having a maximum peak wavelength of 500 nm or less, wherein the first host material and the second host material are different from each other, The first light-emitting compound and the second light-emitting compound are the same or different, and the triplet energy T 1 (H1) of the first host material and the triplet energy T 1 (H1) of the second host material
  • the triplet energy T 1 (H2) satisfies the relationship of the following formula (Formula 1), and in the blue light emitting region of the blue organic EL element, the ionization potential Ip
  • an electronic device equipped with the above-described organic electroluminescence display device according to one aspect of the present invention.
  • an organic electroluminescence element capable of emitting light with high efficiency even if the number of organic layers constituting a hole transport zone is reduced, an electronic device equipped with the organic electroluminescence element, an organic It is possible to provide an electroluminescence display device and an electronic device equipped with the organic electroluminescence display device.
  • FIG. 4 is a diagram showing a schematic configuration of another example of the organic electroluminescence device according to the first embodiment;
  • FIG. 4 is a diagram showing a schematic configuration of another example of the organic electroluminescence device according to the first embodiment;
  • FIG. 4 is a diagram showing a schematic configuration of another example of the organic electroluminescence display device according to the second embodiment;
  • 1 is a schematic diagram of an apparatus for measuring transient PL;
  • FIG. FIG. 4 is a diagram showing an example of a decay curve of transient PL;
  • a hydrogen atom includes isotopes with different neutron numbers, ie, protium, deuterium, and tritium.
  • a hydrogen atom that is, a hydrogen atom, a deuterium atom, or Assume that the tritium atoms are bonded.
  • the number of ring-forming carbon atoms refers to the ring itself of a compound having a structure in which atoms are bonded in a ring (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compounds, and heterocyclic compounds). represents the number of carbon atoms among the atoms that When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the number of ring-forming carbon atoms. The same applies to the "number of ring-forming carbon atoms" described below unless otherwise specified.
  • a benzene ring has 6 ring carbon atoms
  • a naphthalene ring has 10 ring carbon atoms
  • a pyridine ring has 5 ring carbon atoms
  • a furan ring has 4 ring carbon atoms.
  • the 9,9-diphenylfluorenyl group has 13 ring-forming carbon atoms
  • the 9,9′-spirobifluorenyl group has 25 ring-forming carbon atoms.
  • the number of ring-forming carbon atoms in the benzene ring substituted with the alkyl group is 6.
  • the naphthalene ring substituted with an alkyl group has 10 ring-forming carbon atoms.
  • the number of ring-forming atoms refers to compounds (e.g., monocyclic compounds, condensed ring compounds, bridged compounds, carbocyclic compound, and heterocyclic compound) represents the number of atoms constituting the ring itself. Atoms that do not constitute a ring (e.g., a hydrogen atom that terminates the bond of an atom that constitutes a ring) and atoms contained in substituents when the ring is substituted by substituents are not included in the number of ring-forming atoms. The same applies to the "number of ring-forming atoms" described below unless otherwise specified.
  • the pyridine ring has 6 ring-forming atoms
  • the quinazoline ring has 10 ring-forming atoms
  • the furan ring has 5 ring-forming atoms.
  • hydrogen atoms bonded to the pyridine ring or atoms constituting substituents are not included in the number of atoms forming the pyridine ring. Therefore, the number of ring-forming atoms of the pyridine ring to which hydrogen atoms or substituents are bonded is 6.
  • the expression "substituted or unsubstituted XX to YY carbon number ZZ group” represents the number of carbon atoms when the ZZ group is unsubstituted, and is substituted. Do not include the number of carbon atoms in the substituents.
  • "YY” is larger than “XX”, “XX” means an integer of 1 or more, and “YY” means an integer of 2 or more.
  • "YY" is larger than “XX”, “XX” means an integer of 1 or more, and "YY” means an integer of 2 or more.
  • an unsubstituted ZZ group represents a case where a "substituted or unsubstituted ZZ group" is an "unsubstituted ZZ group", and a substituted ZZ group is a "substituted or unsubstituted ZZ group”. is a "substituted ZZ group”.
  • "unsubstituted” in the case of "substituted or unsubstituted ZZ group” means that a hydrogen atom in the ZZ group is not replaced with a substituent.
  • a hydrogen atom in the "unsubstituted ZZ group” is a protium atom, a deuterium atom, or a tritium atom.
  • substituted in the case of “substituted or unsubstituted ZZ group” means that one or more hydrogen atoms in the ZZ group are replaced with a substituent.
  • substituted in the case of "a BB group substituted with an AA group” similarly means that one or more hydrogen atoms in the BB group are replaced with an AA group.
  • the number of ring-forming carbon atoms in the "unsubstituted aryl group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
  • the number of ring-forming atoms of the "unsubstituted heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5 to 18, unless otherwise specified. be.
  • the number of carbon atoms in the "unsubstituted alkyl group” described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
  • the number of carbon atoms in the "unsubstituted alkenyl group” described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
  • the number of carbon atoms in the "unsubstituted alkynyl group” described herein is 2-50, preferably 2-20, more preferably 2-6, unless otherwise specified in the specification.
  • the number of ring-forming carbon atoms in the "unsubstituted cycloalkyl group” described herein is 3 to 50, preferably 3 to 20, more preferably 3 to 6, unless otherwise specified. be.
  • the number of ring-forming carbon atoms of the "unsubstituted arylene group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise specified. .
  • the number of ring-forming atoms of the "unsubstituted divalent heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5, unless otherwise specified herein. ⁇ 18.
  • the number of carbon atoms in the "unsubstituted alkylene group” described herein is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified.
  • unsubstituted aryl group refers to the case where "substituted or unsubstituted aryl group” is “unsubstituted aryl group", and substituted aryl group is “substituted or unsubstituted aryl group” It refers to a "substituted aryl group”.
  • aryl group includes both "unsubstituted aryl group” and “substituted aryl group”.
  • a "substituted aryl group” means a group in which one or more hydrogen atoms of an "unsubstituted aryl group” are replaced with a substituent.
  • substituted aryl group examples include, for example, a group in which one or more hydrogen atoms of the "unsubstituted aryl group” of Specific Example Group G1A below is replaced with a substituent, and a substituted aryl group of Specific Example Group G1B below.
  • Examples include:
  • the examples of the "unsubstituted aryl group” and the examples of the “substituted aryl group” listed here are only examples, and the “substituted aryl group” described herein includes the following specific examples A group in which the hydrogen atom bonded to the carbon atom of the aryl group itself in the "substituted aryl group” of Group G1B is further replaced with a substituent, and the hydrogen atom of the substituent in the "substituted aryl group” of Specific Example Group G1B below Furthermore, groups substituted with substituents are also included.
  • aryl group (specific example group G1A): phenyl group, a p-biphenyl group, m-biphenyl group, an o-biphenyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, benzoanthryl group, a phenanthryl group, a benzophenanthryl group, a phenalenyl group, a pyrenyl group, a chryseny
  • Substituted aryl group (specific example group G1B): an o-tolyl group, m-tolyl group, p-tolyl group, para-xylyl group, meta-xylyl group, an ortho-xylyl group, para-isopropylphenyl group, meta-isopropylphenyl group, an ortho-isopropylphenyl group, para-t-butylphenyl group, meta-t-butylphenyl group, ortho-t-butylphenyl group, 3,4,5-trimethylphenyl group, 9,9-dimethylfluorenyl group, 9,9-diphenylfluorenyl group, 9,9-bis(4-methylphenyl)fluorenyl group, 9,9-bis(4-isopropylphenyl)fluorenyl group, 9,9-bis(4-t-butylphenyl) fluorenyl group, a cyanophenyl group,
  • heterocyclic group is a cyclic group containing at least one heteroatom as a ring-forming atom. Specific examples of heteroatoms include nitrogen, oxygen, sulfur, silicon, phosphorus, and boron atoms.
  • a “heterocyclic group” as described herein is a monocyclic group or a condensed ring group.
  • a “heterocyclic group” as described herein is either an aromatic heterocyclic group or a non-aromatic heterocyclic group.
  • specific examples of the "substituted or unsubstituted heterocyclic group" described herein include the following unsubstituted heterocyclic groups (specific example group G2A), and substituted heterocyclic groups ( Specific example group G2B) and the like can be mentioned.
  • unsubstituted heterocyclic group refers to the case where “substituted or unsubstituted heterocyclic group” is “unsubstituted heterocyclic group”, and substituted heterocyclic group refers to “substituted or unsubstituted "Heterocyclic group” refers to a "substituted heterocyclic group”.
  • heterocyclic group refers to a "substituted heterocyclic group”.
  • a “substituted heterocyclic group” means a group in which one or more hydrogen atoms of an "unsubstituted heterocyclic group” are replaced with a substituent.
  • Specific examples of the "substituted heterocyclic group” include groups in which the hydrogen atoms of the "unsubstituted heterocyclic group” of the following specific example group G2A are replaced, and examples of the substituted heterocyclic groups of the following specific example group G2B. mentioned.
  • the examples of the "unsubstituted heterocyclic group” and the examples of the “substituted heterocyclic group” listed here are only examples, and the "substituted heterocyclic group” described herein specifically includes A group in which the hydrogen atom bonded to the ring-forming atom of the heterocyclic group itself in the "substituted heterocyclic group" of Example Group G2B is further replaced with a substituent, and a substituent in the "substituted heterocyclic group" of Specific Example Group G2B A group in which the hydrogen atom of is further replaced with a substituent is also included.
  • Specific example group G2A includes, for example, the following nitrogen atom-containing unsubstituted heterocyclic groups (specific example group G2A1), oxygen atom-containing unsubstituted heterocyclic groups (specific example group G2A2), sulfur atom-containing unsubstituted (specific example group G2A3), and a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4).
  • nitrogen atom-containing unsubstituted heterocyclic groups specifically example group G2A1
  • oxygen atom-containing unsubstituted heterocyclic groups specifically example group G2A2
  • sulfur atom-containing unsubstituted specifically example group G2A3
  • a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structures represented by the following general formulas (TEMP-16) to (TEMP-33) (specific example group G2A4).
  • Specific example group G2B includes, for example, the following substituted heterocyclic group containing a nitrogen atom (specific example group G2B1), substituted heterocyclic group containing an oxygen atom (specific example group G2B2), substituted heterocyclic ring containing a sulfur atom group (specific example group G2B3), and one or more hydrogen atoms of a monovalent heterocyclic group derived from a ring structure represented by the following general formulas (TEMP-16) to (TEMP-33) as a substituent Including substituted groups (example group G2B4).
  • an unsubstituted heterocyclic group containing a nitrogen atom (specific example group G2A1): pyrrolyl group, an imidazolyl group, a pyrazolyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, a thiazolyl group, an isothiazolyl group, a thiadiazolyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, pyrazinyl group, a triazinyl group, an indolyl group, an isoindolyl group, an indolizinyl group, a quinolidinyl group, quinolyl group, an isoquinolyl group, cinnolyl group, a phthalazinyl group, a quinazolinyl
  • an unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2): a furyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, xanthenyl group, benzofuranyl group, an isobenzofuranyl group, a dibenzofuranyl group, a naphthobenzofuranyl group, a benzoxazolyl group, a benzisoxazolyl group, a phenoxazinyl group, a morpholino group, a dinaphthofuranyl group, an azadibenzofuranyl group, a diazadibenzofuranyl group, azanaphthobenzofuranyl group and diazanaphthobenzofuranyl group;
  • thienyl group an unsubstituted heterocyclic group containing a sulfur atom
  • thienyl group a thiazolyl group, an isothiazolyl group, a thiadiazolyl group, benzothiophenyl group (benzothienyl group), isobenzothiophenyl group (isobenzothienyl group), dibenzothiophenyl group (dibenzothienyl group), naphthobenzothiophenyl group (naphthobenzothienyl group), a benzothiazolyl group, a benzoisothiazolyl group, a phenothiazinyl group, a dinaphthothiophenyl group (dinaphthothienyl group), azadibenzothiophenyl group (azadibenzothienyl group), diazadibenzothiophenyl group (diazadibenzothiopheny
  • X A and Y A are each independently an oxygen atom, a sulfur atom, NH, or CH 2 . However, at least one of X A and Y A is an oxygen atom, a sulfur atom, or NH.
  • the monovalent heterocyclic groups derived from the represented ring structures include monovalent groups obtained by removing one hydrogen atom from these NH or CH2 .
  • a substituted heterocyclic group containing a nitrogen atom (specific example group G2B1): (9-phenyl)carbazolyl group, (9-biphenylyl)carbazolyl group, (9-phenyl) phenylcarbazolyl group, (9-naphthyl)carbazolyl group, diphenylcarbazol-9-yl group, a phenylcarbazol-9-yl group, a methylbenzimidazolyl group, ethylbenzimidazolyl group, a phenyltriazinyl group, a biphenylyltriazinyl group, a diphenyltriazinyl group, a phenylquinazolinyl group and a biphenylquinazolinyl group;
  • a substituted heterocyclic group containing an oxygen atom (specific example group G2B2): phenyldibenzofuranyl group, methyldibenzofuranyl group, A t-butyldibenzofuranyl group and a monovalent residue of spiro[9H-xanthene-9,9′-[9H]fluorene].
  • a substituted heterocyclic group containing a sulfur atom (specific example group G2B3): a phenyldibenzothiophenyl group, a methyldibenzothiophenyl group, A t-butyldibenzothiophenyl group and a monovalent residue of spiro[9H-thioxanthene-9,9′-[9H]fluorene].
  • the "one or more hydrogen atoms of the monovalent heterocyclic group” means a hydrogen atom bonded to the ring-forming carbon atom of the monovalent heterocyclic group, and at least one of X A and Y A is NH and one or more hydrogen atoms of a methylene group when one of X A and Y A is CH 2 .
  • unsubstituted alkyl group refers to the case where "substituted or unsubstituted alkyl group” is “unsubstituted alkyl group”
  • substituted alkyl group refers to the case where "substituted or unsubstituted alkyl group” is It refers to a "substituted alkyl group”.
  • alkyl group includes both an "unsubstituted alkyl group” and a "substituted alkyl group”.
  • a “substituted alkyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkyl group” (specific example group G3A) are replaced with substituents, and substituted alkyl groups (specific examples Examples of group G3B) and the like can be mentioned.
  • the alkyl group in the "unsubstituted alkyl group” means a chain alkyl group.
  • the "unsubstituted alkyl group” includes a linear “unsubstituted alkyl group” and a branched “unsubstituted alkyl group”.
  • the examples of the "unsubstituted alkyl group” and the examples of the “substituted alkyl group” listed here are only examples, and the "substituted alkyl group” described herein includes specific example group G3B A group in which the hydrogen atom of the alkyl group itself in the "substituted alkyl group” of Specific Example Group G3B is further replaced with a substituent, and a group in which the hydrogen atom of the substituent in the "substituted alkyl group” of Specific Example Group G3B is further replaced by a substituent included.
  • Unsubstituted alkyl group (specific example group G3A): methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, and t-butyl group.
  • Substituted alkyl group (specific example group G3B): a heptafluoropropyl group (including isomers), pentafluoroethyl group, 2,2,2-trifluoroethyl group and trifluoromethyl group;
  • Substituted or unsubstituted alkenyl group Specific examples of the "substituted or unsubstituted alkenyl group" described in the specification (specific example group G4) include the following unsubstituted alkenyl groups (specific example group G4A) and substituted alkenyl groups (specific example group G4B) and the like.
  • unsubstituted alkenyl group refers to the case where "substituted or unsubstituted alkenyl group” is “unsubstituted alkenyl group", "substituted alkenyl group” means "substituted or unsubstituted alkenyl group ” is a “substituted alkenyl group”.
  • alkenyl group simply referring to an “alkenyl group” includes both an “unsubstituted alkenyl group” and a “substituted alkenyl group”.
  • a “substituted alkenyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkenyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkenyl group” include groups in which the following "unsubstituted alkenyl group” (specific example group G4A) has a substituent, and substituted alkenyl groups (specific example group G4B). be done.
  • Unsubstituted alkenyl group (specific example group G4A): a vinyl group, allyl group, 1-butenyl group, 2-butenyl group, and 3-butenyl group.
  • - substituted alkenyl group (specific example group G4B): 1,3-butandienyl group, 1-methylvinyl group, 1-methylallyl group, 1,1-dimethylallyl group, a 2-methylallyl group and a 1,2-dimethylallyl group;
  • Substituted or unsubstituted alkynyl group Specific examples of the "substituted or unsubstituted alkynyl group" described in the specification (specific example group G5) include the following unsubstituted alkynyl groups (specific example group G5A).
  • unsubstituted alkynyl group refers to the case where "substituted or unsubstituted alkynyl group” is "unsubstituted alkynyl group”.
  • alkynyl group means "unsubstituted includes both "alkynyl group” and "substituted alkynyl group”.
  • a “substituted alkynyl group” means a group in which one or more hydrogen atoms in an "unsubstituted alkynyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkynyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted alkynyl group” (specific example group G5A) are replaced with substituents.
  • Substituted or unsubstituted cycloalkyl group Specific examples of the "substituted or unsubstituted cycloalkyl group” described in the specification (specific example group G6) include the following unsubstituted cycloalkyl groups (specific example group G6A), and substituted cycloalkyl groups ( Specific example group G6B) and the like can be mentioned.
  • unsubstituted cycloalkyl group refers to the case where "substituted or unsubstituted cycloalkyl group” is “unsubstituted cycloalkyl group", and substituted cycloalkyl group refers to "substituted or unsubstituted "Cycloalkyl group” refers to a "substituted cycloalkyl group”.
  • cycloalkyl group means an "unsubstituted cycloalkyl group” and a “substituted cycloalkyl group.” including both.
  • a “substituted cycloalkyl group” means a group in which one or more hydrogen atoms in an "unsubstituted cycloalkyl group” are replaced with a substituent.
  • Specific examples of the "substituted cycloalkyl group” include groups in which one or more hydrogen atoms in the following "unsubstituted cycloalkyl group” (specific example group G6A) are replaced with substituents, and substituted cycloalkyl groups (Specific example group G6B) and the like.
  • the examples of the "unsubstituted cycloalkyl group” and the examples of the “substituted cycloalkyl group” listed here are only examples, and the "substituted cycloalkyl group” described herein specifically includes A group in which one or more hydrogen atoms bonded to a carbon atom of the cycloalkyl group itself in the “substituted cycloalkyl group” of Example Group G6B is replaced with a substituent, and in the “substituted cycloalkyl group” of Specific Example Group G6B A group in which a hydrogen atom of a substituent is further replaced with a substituent is also included.
  • cycloalkyl group (specific example group G6A): a cyclopropyl group, cyclobutyl group, a cyclopentyl group, a cyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group and 2-norbornyl group.
  • G7 A group represented by -Si (R 901 ) (R 902 ) (R 903 )
  • Specific examples of the group represented by —Si(R 901 )(R 902 )(R 903 ) described in the specification include: -Si(G1)(G1)(G1), - Si (G1) (G2) (G2), - Si (G1) (G1) (G2), -Si(G2)(G2)(G2), -Si(G3)(G3)(G3) and -Si(G6)(G6)(G6) is mentioned.
  • G1 is a "substituted or unsubstituted aryl group" described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G1's in -Si(G1)(G1)(G1) are the same or different from each other.
  • a plurality of G2 in -Si (G1) (G2) (G2) are the same or different from each other.
  • a plurality of G1's in -Si(G1)(G1)(G2) are the same or different from each other.
  • a plurality of G2 in -Si(G2)(G2)(G2) are the same or different from each other.
  • a plurality of G3 in -Si(G3)(G3)(G3) are the same or different from each other.
  • a plurality of G6 in -Si(G6)(G6)(G6) are the same or different from each other.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G9 A group represented by -S- (R 905 )
  • Specific examples of the group represented by -S-(R 905 ) described in the specification include: -S(G1), -S(G2), -S (G3) and -S (G6) is mentioned.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • G2 is a "substituted or unsubstituted heterocyclic group” described in Specific Example Group G2.
  • G3 is a "substituted or unsubstituted alkyl group” described in specific example group G3.
  • G6 is a "substituted or unsubstituted cycloalkyl group” described in specific example group G6.
  • a plurality of G1's in -N(G1)(G1) are the same or different from each other.
  • a plurality of G2 in -N(G2)(G2) are the same or different from each other.
  • a plurality of G3s in -N(G3)(G3) are the same or different from each other.
  • a plurality of G6 in -N(G6)(G6) are the same or different from each other.
  • halogen atom described in this specification (specific example group G11) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • Substituted or unsubstituted fluoroalkyl group means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group” is replaced with a fluorine atom. Also includes a group (perfluoro group) in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group" are replaced with fluorine atoms.
  • the carbon number of the “unsubstituted fluoroalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • a "substituted fluoroalkyl group” means a group in which one or more hydrogen atoms of a “fluoroalkyl group” are replaced with a substituent.
  • substituted fluoroalkyl group described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted fluoroalkyl group” are further replaced with a substituent, and A group in which one or more hydrogen atoms of a substituent in a "substituted fluoroalkyl group” is further replaced with a substituent is also included.
  • Specific examples of the "unsubstituted fluoroalkyl group” include groups in which one or more hydrogen atoms in the above “alkyl group” (specific example group G3) are replaced with fluorine atoms.
  • Substituted or unsubstituted haloalkyl group "Substituted or unsubstituted haloalkyl group” described herein means that at least one hydrogen atom bonded to a carbon atom constituting the alkyl group in the "substituted or unsubstituted alkyl group" is replaced with a halogen atom Also includes a group in which all hydrogen atoms bonded to carbon atoms constituting the alkyl group in the "substituted or unsubstituted alkyl group” are replaced with halogen atoms.
  • the carbon number of the “unsubstituted haloalkyl group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • a "substituted haloalkyl group” means a group in which one or more hydrogen atoms of a “haloalkyl group” are replaced with a substituent.
  • the "substituted haloalkyl group" described in this specification includes a group in which one or more hydrogen atoms bonded to the carbon atoms of the alkyl chain in the "substituted haloalkyl group” are further replaced with a substituent group, and a “substituted A group in which one or more hydrogen atoms of the substituent in the "haloalkyl group of" is further replaced with a substituent is also included.
  • Specific examples of the "unsubstituted haloalkyl group” include groups in which one or more hydrogen atoms in the above “alkyl group” (specific example group G3) are replaced with halogen atoms.
  • a haloalkyl group may be referred to as a halogenated alkyl group.
  • Substituted or unsubstituted alkoxy group A specific example of the "substituted or unsubstituted alkoxy group" described in this specification is a group represented by -O(G3), where G3 is the "substituted or unsubstituted alkyl group".
  • the carbon number of the "unsubstituted alkoxy group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • Substituted or unsubstituted alkylthio group A specific example of the "substituted or unsubstituted alkylthio group” described in this specification is a group represented by -S(G3), wherein G3 is the "substituted or unsubstituted alkyl group".
  • the carbon number of the “unsubstituted alkylthio group” is 1-50, preferably 1-30, more preferably 1-18, unless otherwise specified in the specification.
  • Substituted or unsubstituted aryloxy group Specific examples of the “substituted or unsubstituted aryloxy group” described in this specification are groups represented by —O(G1), where G1 is the “substituted or an unsubstituted aryl group”.
  • the number of ring-forming carbon atoms in the "unsubstituted aryloxy group” is 6-50, preferably 6-30, more preferably 6-18, unless otherwise specified in the specification.
  • a specific example of the "substituted or unsubstituted arylthio group” described in this specification is a group represented by -S(G1), wherein G1 is the "substituted or unsubstituted unsubstituted aryl group".
  • the number of ring-forming carbon atoms in the "unsubstituted arylthio group” is 6-50, preferably 6-30, more preferably 6-18, unless otherwise specified in the specification.
  • ⁇ "Substituted or unsubstituted trialkylsilyl group” Specific examples of the "trialkylsilyl group” described in this specification are groups represented by -Si(G3)(G3)(G3), where G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group”. A plurality of G3s in -Si(G3)(G3)(G3) are the same or different from each other. The number of carbon atoms in each alkyl group of the "trialkylsilyl group” is 1-50, preferably 1-20, more preferably 1-6, unless otherwise specified in the specification.
  • a specific example of the "substituted or unsubstituted aralkyl group” described in this specification is a group represented by -(G3)-(G1), wherein G3 is the group described in Specific Example Group G3. It is a "substituted or unsubstituted alkyl group", and G1 is a "substituted or unsubstituted aryl group” described in specific example group G1.
  • an "aralkyl group” is a group in which a hydrogen atom of an "alkyl group” is replaced with an "aryl group” as a substituent, and is one aspect of a “substituted alkyl group”.
  • An “unsubstituted aralkyl group” is an "unsubstituted alkyl group” substituted with an "unsubstituted aryl group", and the number of carbon atoms in the "unsubstituted aralkyl group” is unless otherwise specified herein. , 7-50, preferably 7-30, more preferably 7-18.
  • substituted or unsubstituted aralkyl group include a benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group , 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, and 2- ⁇ -naphthylisopropyl group.
  • a substituted or unsubstituted aryl group described herein is preferably a phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl- 4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl- 2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, anthryl group, phenanthryl group , pyrenyl group, chrysenyl group, triphenylenyl group, fluorenyl group, 9,9′-spirobifluorenyl group,
  • substituted or unsubstituted heterocyclic groups described herein are preferably pyridyl, pyrimidinyl, triazinyl, quinolyl, isoquinolyl, quinazolinyl, benzimidazolyl, phenyl, unless otherwise stated herein.
  • nantholinyl group carbazolyl group (1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, or 9-carbazolyl group), benzocarbazolyl group, azacarbazolyl group, diazacarbazolyl group , dibenzofuranyl group, naphthobenzofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, dibenzothiophenyl group, naphthobenzothiophenyl group, azadibenzothiophenyl group, diazadibenzothiophenyl group, ( 9-phenyl)carbazolyl group ((9-phenyl)carbazol-1-yl group, (9-phenyl)carbazol-2-yl group, (9-phenyl)carbazol-3-yl group, or (9-phenyl)carbazole -4-yl group), (9-
  • a carbazolyl group is specifically any one of the following groups unless otherwise specified in the specification.
  • the (9-phenyl)carbazolyl group is specifically any one of the following groups, unless otherwise stated in the specification.
  • a dibenzofuranyl group and a dibenzothiophenyl group are specifically any of the following groups, unless otherwise specified.
  • substituted or unsubstituted alkyl groups described herein are preferably methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, and t- butyl group and the like.
  • the "substituted or unsubstituted arylene group” described herein is derived from the above "substituted or unsubstituted aryl group” by removing one hydrogen atom on the aryl ring. is the base of the valence.
  • Specific examples of the “substituted or unsubstituted arylene group” include the “substituted or unsubstituted aryl group” described in specific example group G1 by removing one hydrogen atom on the aryl ring. Induced divalent groups and the like can be mentioned.
  • Substituted or unsubstituted divalent heterocyclic group Unless otherwise specified, the "substituted or unsubstituted divalent heterocyclic group” described herein is the above “substituted or unsubstituted heterocyclic group” except that one hydrogen atom on the heterocyclic ring is removed. is a divalent group derived from Specific examples of the "substituted or unsubstituted divalent heterocyclic group" (specific example group G13) include one hydrogen on the heterocyclic ring from the "substituted or unsubstituted heterocyclic group” described in specific example group G2. Examples include divalent groups derived by removing atoms.
  • Substituted or unsubstituted alkylene group Unless otherwise specified, the "substituted or unsubstituted alkylene group” described herein is derived from the above “substituted or unsubstituted alkyl group” by removing one hydrogen atom on the alkyl chain. is the base of the valence. Specific examples of the “substituted or unsubstituted alkylene group” (specific example group G14) include the “substituted or unsubstituted alkyl group” described in specific example group G3 by removing one hydrogen atom on the alkyl chain. Induced divalent groups and the like can be mentioned.
  • the substituted or unsubstituted arylene group described in this specification is preferably any group of the following general formulas (TEMP-42) to (TEMP-68), unless otherwise specified in this specification.
  • Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
  • * represents a binding position.
  • Q 1 to Q 10 each independently represent a hydrogen atom or a substituent.
  • Formulas Q9 and Q10 may be linked together through a single bond to form a ring.
  • * represents a binding position.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • * represents a binding position.
  • the substituted or unsubstituted divalent heterocyclic group described herein is preferably any group of the following general formulas (TEMP-69) to (TEMP-102), unless otherwise specified herein is.
  • Q 1 to Q 9 are each independently a hydrogen atom or a substituent.
  • Q 1 to Q 8 are each independently a hydrogen atom or a substituent.
  • R 921 and R 922 when “one or more pairs of two or more adjacent pairs of R 921 to R 930 are combined to form a ring", is a pair of R 921 and R 922 , a pair of R 922 and R 923 , a pair of R 923 and R 924 , a pair of R 924 and R 930 , a pair of R 930 and R 925 , R 925 and R 926 , R 926 and R 927 , R 927 and R 928 , R 928 and R 929 , and R 929 and R 921 .
  • one or more pairs means that two or more of the groups consisting of two or more adjacent groups may form a ring at the same time.
  • R 921 and R 922 are bonded together to form ring Q A
  • R 925 and R 926 are bonded together to form ring Q B
  • the general formula (TEMP-103) The represented anthracene compound is represented by the following general formula (TEMP-104).
  • a group consisting of two or more adjacent pairs forms a ring is not limited to the case where a group consisting of two adjacent "two” bonds as in the above example, but It also includes the case where a pair is combined.
  • R 921 and R 922 are bonded together to form ring Q A
  • R 922 and R 923 are bonded together to form ring Q C
  • the adjacent three R 921 , R 922 and R 923
  • the anthracene compound represented by the above general formula (TEMP-103) has It is represented by the general formula (TEMP-105).
  • ring Q A and ring Q C share R 922 .
  • the "monocyclic ring” or “condensed ring” to be formed may be a saturated ring or an unsaturated ring as the structure of only the formed ring. Even when “one pair of adjacent pairs" forms a “single ring” or a “fused ring", the “single ring” or “fused ring” is a saturated ring, or Unsaturated rings can be formed.
  • ring Q A and ring Q B formed in the general formula (TEMP-104) are each a “monocyclic ring” or a "fused ring”.
  • the ring Q A and the ring Q C formed in the general formula (TEMP-105) are “fused rings”.
  • the ring Q A and the ring Q C in the general formula (TEMP-105) form a condensed ring by condensing the ring Q A and the ring Q C. If the ring Q A of the general formula (TMEP-104) is a benzene ring, the ring Q A is monocyclic. When the ring Q A of the general formula (TMEP-104) is a naphthalene ring, the ring Q A is a condensed ring.
  • Unsaturated ring means an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • a “saturated ring” means an aliphatic hydrocarbon ring or a non-aromatic heterocyclic ring.
  • Specific examples of the aromatic hydrocarbon ring include structures in which the groups listed as specific examples in the specific example group G1 are terminated with a hydrogen atom.
  • Specific examples of the aromatic heterocyclic ring include structures in which the aromatic heterocyclic groups listed as specific examples in the specific example group G2 are terminated with a hydrogen atom.
  • Specific examples of the aliphatic hydrocarbon ring include structures in which the groups listed as specific examples in the specific example group G6 are terminated with a hydrogen atom.
  • Forming a ring means forming a ring only with a plurality of atoms of the mother skeleton, or with a plurality of atoms of the mother skeleton and one or more arbitrary elements.
  • the ring Q A formed by combining R 921 and R 922 shown in the general formula (TEMP-104) has the carbon atom of the anthracene skeleton to which R 921 is bonded and the anthracene skeleton to which R 922 is bonded. It means a ring formed by a skeleton carbon atom and one or more arbitrary elements.
  • R 921 and R 922 form a ring Q A , the carbon atom of the anthracene skeleton to which R 921 is bound, the carbon atom of the anthracene skeleton to which R 922 is bound, and four carbon atoms and form a monocyclic unsaturated ring, the ring formed by R 921 and R 922 is a benzene ring.
  • the "arbitrary element” is preferably at least one element selected from the group consisting of carbon element, nitrogen element, oxygen element, and sulfur element, unless otherwise specified in this specification.
  • a bond that does not form a ring may be terminated with a hydrogen atom or the like, or may be substituted with an “optional substituent” described later.
  • the ring formed is a heterocycle.
  • One or more arbitrary elements constituting a monocyclic or condensed ring are preferably 2 or more and 15 or less, more preferably 3 or more and 12 or less, unless otherwise specified in the present specification. , more preferably 3 or more and 5 or less.
  • “monocyclic ring” and “condensed ring” “monocyclic ring” is preferred, unless otherwise stated in the present specification.
  • the “saturated ring” and the “unsaturated ring” the “unsaturated ring” is preferred, unless otherwise specified in the present specification.
  • “monocyclic” is preferably a benzene ring.
  • the “unsaturated ring” is preferably a benzene ring.
  • the substituent is, for example, the “optional substituent” described later.
  • substituents in the case where the above “monocyclic ring” or “condensed ring” has a substituent are the substituents described in the section “Substituents described herein” above.
  • the substituent is, for example, the “optional substituent” described later.
  • substituents in the case where the above "monocyclic ring” or “condensed ring” has a substituent are the substituents described in the section "Substituents described herein" above. The above is the case where “one or more pairs of two or more adjacent pairs are bonded to each other to form a substituted or unsubstituted monocyclic ring", and “one or more pairs of two or more adjacent pairs are combined with each other to form a substituted or unsubstituted condensed ring"("combine to form a ring").
  • the substituent in the case of “substituted or unsubstituted” is, for example, an unsubstituted alkyl group having 1 to 50 carbon atoms, an unsubstituted alkenyl group having 2 to 50 carbon atoms, an unsubstituted alkynyl group having 2 to 50 carbon atoms, an unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901 ) (R 902 ) (R 903 ), —O—(R 904 ), -S-(R 905 ), -N(R 906 )(R 907 ), halogen atom, cyano group, nitro group, a group selected from the group consisting of an unsubstituted aryl group
  • the two or more R 901 are the same or different from each other, when two or more R 902 are present, the two or more R 902 are the same or different from each other; when two or more R 903 are present, the two or more R 903 are the same or different from each other, when two or more R 904 are present, the two or more R 904 are the same or different from each other; when two or more R 905 are present, the two or more R 905 are the same or different from each other, when two or more R 906 are present, the two or more R 906 are the same or different from each other; When two or more R 907 are present, the two or more R 907 are the same or different from each other.
  • the substituents referred to above as "substituted or unsubstituted” are an alkyl group having 1 to 50 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 50 ring carbon atoms and a heterocyclic group having 5 to 50 ring atoms.
  • the substituents referred to above as "substituted or unsubstituted” are an alkyl group having 1 to 18 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 18 ring carbon atoms and a heterocyclic group having 5 to 18 ring atoms.
  • any adjacent substituents may form a “saturated ring” or an “unsaturated ring”, preferably a substituted or unsubstituted saturated 5 forming a membered ring, a substituted or unsubstituted saturated 6-membered ring, a substituted or unsubstituted unsaturated 5-membered ring, or a substituted or unsubstituted unsaturated 6-membered ring, more preferably a benzene ring do.
  • any substituent may have further substituents. Substituents further possessed by the optional substituents are the same as the above optional substituents.
  • the numerical range represented using “AA to BB” has the numerical value AA described before “AA to BB” as the lower limit, and the numerical value BB described after “AA to BB” as the upper limit.
  • An organic electroluminescence device includes an anode, a cathode, a light-emitting region arranged between the anode and the cathode, a hole transport zone arranged between the anode and the light-emitting region, wherein the light-emitting region includes a first light-emitting layer and a second light-emitting layer, and one of the first light-emitting layer and the second light-emitting layer is arranged on the anode side in the light-emitting region , the hole-transporting zone is in direct contact with the anode and the light-emitting region, the hole-transporting zone comprising one or more organic layers, at least one organic layer in the hole-transporting zone comprising: a first organic layer in direct contact with the light-emitting region, the first organic layer comprising a hole-transporting band material, the first light-emitting layer comprising a first host material and
  • the first host material and the second host material are different from each other, the first light-emitting compound and the second light-emitting compound are the same as or different from each other, and the first The triplet energy T 1 (H1) of the host material and the triplet energy T 1 (H2) of the second host material satisfy the following formula (Equation 1), and the first organic layer contains
  • the relationship between the ionization potential Ip (HT) of the hole-transporting zone material and the ionization potential Ip (D1) of the first light-emitting compound contained in the first light-emitting layer is represented by the following formula (1X): meet.
  • TTA Triplet-Triplet-Annhilation
  • TTA is a mechanism in which triplet excitons collide with each other to generate singlet excitons. Note that the TTA mechanism may also be referred to as the TTF mechanism as described in Patent Document 3.
  • triplet excitons (hereinafter referred to as 3 A * ) increases, the triplet excitons collide with each other and a reaction occurs as shown in the following formula.
  • 1 A represents the ground state and 1 A * represents the lowest excited singlet exciton.
  • the TTF-derived emission ratio (TTF ratio) in the total emission intensity is 15/40, that is, 37.5%.
  • TTF ratio the TTF-derived emission ratio in the total emission intensity.
  • the initially generated triplet excitons collide with each other to generate singlet excitons (one singlet exciton is generated from two triplet excitons)
  • triplet excitons generated by recombination of holes and electrons in the first light-emitting layer are directly in contact with the first light-emitting layer. It is considered that triplet excitons present at the interface between the first light-emitting layer and the organic layer are less likely to be quenched even if carriers are excessively present at the interface. Quenching by excess electrons is possible, for example, if a recombination zone exists locally at the interface between the first light-emitting layer and the hole-transporting or electron-blocking layer.
  • the organic electroluminescence device includes at least two light-emitting layers (that is, a first light-emitting layer and a second light-emitting layer) that satisfy a predetermined relationship, and the first light-emitting layer in the first light-emitting layer
  • the triplet energy T 1 (H1) of the host material and the triplet energy T 1 (H2) of the second host material in the second light-emitting layer satisfy the relationship of the above formula (Formula 1).
  • the triplet excitons generated in the first light-emitting layer are not quenched by excess carriers. It is possible to suppress migration to the second light-emitting layer and reverse migration from the second light-emitting layer to the first light-emitting layer. As a result, the TTF mechanism is exhibited in the second light-emitting layer, singlet excitons are efficiently generated, and the light-emitting efficiency is improved.
  • the organic electroluminescence device mainly expresses the TTF mechanism by utilizing the first light-emitting layer that mainly generates triplet excitons and the triplet excitons that have moved from the first light-emitting layer. and a second light-emitting layer as different regions, and a compound having a lower triplet energy than the first host material in the first light-emitting layer is used as the second host material in the second light-emitting layer. Therefore, by providing a difference in triplet energy, the luminous efficiency is improved.
  • the organic EL element according to the present embodiment has the first light emitting layer and the second light emitting layer that satisfy the relationship of the formula (Equation 1), the light emitting efficiency of the element can be improved.
  • the organic EL device according to this embodiment has a layer structure (layer-saving structure) in which the number of organic layers constituting the hole transport zone is reduced between the light emitting region and the anode. In such a layer-saving organic EL element, the amount of holes supplied to the light-emitting region tends to be insufficient, and thus the light-emitting efficiency may decrease.
  • the ionization potential Ip(HT) of the hole-transporting band material contained in the first organic layer and the ionization of the first light-emitting compound contained in the first light-emitting layer The energy barrier between the hole-transporting zone material and the first light-emitting compound can be reduced by satisfying the relationship of the above formula (1X) with the potential Ip(D1).
  • the number of organic layers constituting the hole-transporting zone is reduced (for example, even if the hole-transporting zone is made up of two layers), hole injection into the light-emitting region can be promoted, and the efficiency of the organic EL element can be improved.
  • the organic EL device can be connected to Further, according to the organic EL device according to the present embodiment, by selecting the hole-transporting band material and the first light-emitting compound that satisfy the relationship of the formula (1X), the efficiency of the organic EL device can be improved. Since it can be guaranteed, for example, it is possible to expand the range of options for the first host material used as a constituent material of the first light-emitting layer together with the first light-emitting compound.
  • the first organic layer is The ionization potential Ip(HT) of the hole-transporting zone material contained and the ionization potential Ip(D1) of the first light-emitting compound contained in the first light-emitting layer satisfy the relationship of the following formula (Equation 1Y): is more preferable, and it is even more preferable to satisfy the relationship of the following formula (Equation 1Z).
  • Ip(D1)-Ip(HT) ⁇ -0.07eV (Equation 1Y) Ip(D1)-Ip(HT) ⁇ -0.10 eV (equation 1Z)
  • the ionization potential Ip(HT) of the hole-transporting band material contained in the first organic layer is preferably higher than 5.4 eV.
  • the ionization potential Ip(HTX) of the common hole-transporting band material is 5. It is preferably 4 eV or more and 5.6 eV or less.
  • the ionization potential Ip(D1) of the first light-emitting compound contained in the first light-emitting layer is preferably smaller than 5.45 eV.
  • the triplet energy T 1 (D1) of the first light-emitting compound contained in the first light-emitting layer is preferably 2.1 eV or more, and is 2.2 eV or more. is more preferable.
  • the upper limit of the triplet energy T 1 (D1) of the first light-emitting compound is preferably 2.8 eV or less from the viewpoint of compound stability.
  • the triplet energy T 1 (D1) of the first light-emitting compound contained in the first light-emitting layer is 2.1 eV or more, and the triplet energy T 1 (H1) of the first host material and the first
  • T 1 (D1) of the light-emitting compound satisfies the relationship of the following formula (Equation 20A) (T 1 (D1)>T 1 (H1))
  • T 1 (D1) Triplet energy T 1 (D1) can be transferred to the second host material more efficiently.
  • the first light-emitting layer is arranged between the hole transport zone and the cathode, and the second light-emitting layer is arranged between the first light-emitting layer and the cathode. preferably.
  • the hole-transporting zone and the first light-emitting layer are in direct contact.
  • the organic EL element according to this embodiment may have the first light-emitting layer and the second light-emitting layer in this order from the anode side, or the second light-emitting layer and the first light-emitting layer from the anode side. and a light-emitting layer in this order.
  • the number of layers disposed between the anode and the light emitting region is one layer. In one embodiment, the number of layers disposed between the anode and the light emitting region is two layers. In one embodiment, the number of layers disposed between the anode and the light emitting region is 3 or more.
  • the hole-transporting zone located between the anode and the light-emitting region comprises an organic layer of at least one of a hole-injecting layer, a hole-transporting layer and an electron-blocking layer.
  • An electron blocking layer is, for example, a layer that transports holes and prevents electrons from reaching a layer closer to the anode than the blocking layer (eg, a hole transport layer or a hole injection layer).
  • the electron blocking layer may be a layer that prevents excitation energy from leaking out of the light emitting region to its surrounding layers. In this case, the electron blocking layer prevents excitons generated in the light emitting region from moving to a layer closer to the anode than the blocking layer (for example, a hole transport layer or a hole injection layer).
  • the hole-transporting zone may not contain a material different from the hole-transporting zone material.
  • the hole-transporting zone may consist of only the first organic layer.
  • the first organic layer may not contain a material different from the hole-transporting band material.
  • the organic EL device it is preferable that all of the organic layers in the hole-transporting zone contain the hole-transporting zone material as a common hole-transporting zone material. In the organic EL device according to this embodiment, it is preferable that all the organic layers in the hole transport zone contain the hole transport zone material in common.
  • the hole-transporting zone material commonly contained in the plurality of organic layers is referred to as " It is sometimes described as a "common hole-transporting zone material".
  • the hole-transport zone consists of one organic layer, one organic layer (the first organic layer) contains the hole-transport zone material.
  • the two organic layers preferably contain the same compound as the common hole-transport zone material.
  • the hole-transport zone is composed of three organic layers, at least two organic layers preferably contain the same compound as common hole-transport zone material, and the three organic layers contain the same compound. It is more preferable to contain it as a common hole-transporting zone material.
  • the hole-transporting zone material contained in the organic layer in the hole-transporting zone may be a single compound or a mixture containing two or more compounds.
  • the common hole-transport zone material may be a single compound or a mixture containing two or more compounds. good.
  • the ionization potential Ip (HTX) of the common hole-transporting band material and the ionization potential Ip (D1) of the first light-emitting compound contained in the first light-emitting layer preferably satisfies the relationship of the following formula (2X), more preferably satisfies the relationship of the following formula (2Y), and further preferably satisfies the relationship of the following formula (2Z).
  • the hole-transporting zone also preferably includes a first organic layer and a second organic layer disposed between the first organic layer and the anode.
  • the second organic layer may be in direct contact with the anode.
  • the first organic layer and the second organic layer may be in contact with each other.
  • the first organic layer also preferably contains a hole-transporting band material and a first hole-transporting band material different from the hole-transporting band material.
  • the first hole-transporting band material is a compound with a different molecular structure than the hole-transporting band material.
  • the second organic layer when the hole-transporting zone includes a first organic layer and a second organic layer, the second organic layer comprises a hole-transporting zone material and a hole-transporting zone material. It is also preferred to include a second hole-transporting zone material that is different from the In the organic EL device according to this embodiment, when the hole-transporting zone includes a first organic layer and a second organic layer, the first organic layer is a hole-transporting zone material, and the hole-transporting zone material is a different first hole-transporting band material, and the second organic layer contains a hole-transporting band material and a second hole-transporting band material different from the hole-transporting band material. preferable.
  • the second hole-transporting band material is also preferably a dope compound (a compound having a different molecular structure from that of the hole-transporting band material).
  • the thickness of the first organic layer is greater than the thickness of the second organic layer. It can be thick.
  • the film thickness of the second organic layer is preferably 5 nm or more and 15 nm or less.
  • the content of the common hole-transporting zone material in each organic layer is 40% by mass or more. is preferably 45% by mass or more, and even more preferably 50% by mass or more.
  • the upper limit of the content of the common hole-transporting zone material in each organic layer is 100% by weight.
  • the upper limit of the content of the common hole-transporting zone material (mixture) in each organic layer is 100% by mass.
  • the hole-transporting zone includes a first organic layer and a second organic layer
  • the second organic layer comprises a common hole-transporting zone material and a second hole-transporting zone material.
  • the content of the dope compound in the second organic layer is preferably 0.5% by mass or more and 5% by mass or less, and is preferably 1.0% by mass or more and 3% by mass. The following are more preferable.
  • the content of the common hole-transporting zone material in the second organic layer is preferably 40% by mass or more, more preferably 45% by mass or more, and even more preferably 50% by mass or more.
  • the content of the common hole-transporting zone material in the second organic layer is preferably 99.5 mass % or less.
  • the total content of the common hole-transporting zone material and the doping compound in the second organic layer is 100% by weight or less.
  • the hole-transporting zone comprises a first organic layer, a second organic layer, and a third organic layer disposed between the second organic layer and the anode.
  • may contain A third organic layer may be in direct contact with the anode.
  • the first organic layer, the second organic layer and the third organic layer may be in contact with each other.
  • the third organic layer comprises the hole-transporting zone material and Furthermore, it is also preferable to contain a third hole-transporting zone material different from the hole-transporting zone material.
  • the second organic layer contains a hole-transporting zone material and also a second hole-transporting zone material different from the hole-transporting zone material.
  • the first organic layer contains a hole-transporting band material and also a first hole-transporting band material different from the hole-transporting band material.
  • the first hole-transport zone material, the second hole-transport zone material and the third hole-transport zone material are the same or different from each other.
  • the hole-transporting zone comprises a first organic layer, a second organic layer and a third organic layer
  • the third organic layer comprises a third hole-transporting zone material.
  • the third hole-transporting zone material is a doped compound if it contains
  • the first organic layer comprises a hole-transporting zone material and a positive electrode.
  • a first hole-transporting band material different from the hole-transporting band material, and a third organic layer comprising a hole-transporting band material and a third hole-transporting band material different from the hole-transporting band material. Containing is also preferable.
  • the first hole-transporting zone material and the third hole-transporting zone material are the same or different from each other.
  • the film thickness of the first organic layer is It is also preferred that the thickness of the layer is greater than the thickness of the third organic layer. Further, in the organic EL device according to the present embodiment, when the hole transport zone includes the first organic layer, the second organic layer and the third organic layer, the film thickness of the second organic layer is It is also preferably thicker than the film thickness of the first organic layer and the film thickness of the third organic layer.
  • the thickness of the third organic layer is It is also preferably thinner than the film thickness of the first organic layer and the film thickness of the second organic layer.
  • the film thickness of the third organic layer is preferably 5 nm or more and 15 nm or less.
  • the hole-transporting zone comprises a first organic layer, a second organic layer and a third organic layer
  • the third organic layer comprises a common hole-transporting zone material and , when a dope compound is contained as the third hole-transporting band material, the content of the doping compound in the third organic layer and the content of the common hole-transporting band material in the third organic layer are It is preferably in the same range as the content of the doping compound in the second organic layer and the content of the common hole-transporting zone material in the second organic layer.
  • the first organic layer comprises a hole-transporting zone material and a hole-transporting zone A layer containing a first hole-transporting zone material different from the material (hereinafter also referred to as a co-deposited layer) is also preferred. Since the first organic layer is a co-evaporation layer, both high hole-transporting property and hole-injecting property to the light-emitting layer can be achieved, so that light-emitting efficiency can be further improved while saving layers.
  • the first organic layer is a co-deposited layer.
  • the first organic layer is a co-evaporated layer, it is possible to achieve both high hole-transporting property and hole-injecting property to the light-emitting layer, so that the luminous efficiency can be improved.
  • the hole transporting zone of the blue organic EL element has a hole injection layer as a common layer, a first hole In some cases, it has a four-layer structure including a transport layer, a second hole transport layer, and an electron blocking layer for a blue organic EL device as a non-common layer.
  • the organic layer in the hole-transporting zone is an organic layer containing multiple types of compounds
  • the organic layer can be formed by, for example, co-evaporation of multiple types of compounds.
  • a film can be formed by a vapor deposition method using a premixed mixture, or a coating method can be used to form a film using a premixed mixture of a plurality of types of compounds.
  • the second organic layer includes, for example, a first ring structure represented by the following general formula (P11) and a second ring structure represented by the following general formula (P12)
  • a dope compound an embodiment of the second hole-transporting zone material
  • a compound containing at least one of It is also preferred to include it as a second hole transport zone material.
  • the third organic layer includes, for example, a first ring structure represented by the following general formula (P11) and a second ring structure represented by the following general formula (P12)
  • a dope compound an embodiment of the third hole-transporting zone material
  • a compound containing at least one of It is also preferred to include at least one of the compounds as the third hole-transporting zone material.
  • the second organic layer when the hole-transporting zone includes the first organic layer and the second organic layer, and the second organic layer is in direct contact with the anode, the second The organic layer preferably contains a doping compound.
  • the hole-transporting zone includes a first organic layer, a second organic layer and a third organic layer, and the third organic layer is in direct contact with the anode.
  • the third organic layer preferably contains a doping compound.
  • the second organic layer may not contain the second hole-transporting zone material, and the second A compound different from the dope compound (for example, at least one of the compound represented by the general formula (21) and the compound represented by the general formula (22) described below) is contained as the hole-transporting zone material. good too.
  • R 11 to R 14 and R 1101 to R 1110 each independently hydrogen atom, halogen atom, hydroxy group, cyano group, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted halogenated alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a group represented by —N(R 906 )(R 907 ); It is a substituted or unsubsti
  • Z 1 to Z 5 are each independently nitrogen atom, a carbon atom bonded to R 15 or a carbon atom bonded to another atom in the molecule of the dope compound; at least one of Z 1 to Z 5 is a carbon atom bonded to another atom in the molecule of the dope compound;
  • R15 is hydrogen atom, halogen atom, cyano group, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted halogenated alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, - a group represented by Si(R 901 ) (R 902 )
  • R 901 to R 907 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the plurality of R 901 are the same or different from each other
  • the multiple R 902 are the same or different from each other
  • the multiple R 903 are the same or different from each other
  • the multiple R 904 are the same or different from each other
  • the multiple R 905 the multiple R 905 are the same or different from each other
  • the ester group herein is at least one group selected from the group consisting of alkyl ester groups and aryl ester groups.
  • R E is, for example, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms (preferably 1 to 10 carbon atoms).
  • R Ar is, for example, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • a siloxanyl group in the present specification is a silicon compound group via an ether bond, for example, a trimethylsiloxanyl group.
  • a carbamoyl group herein is represented by -CONH2 .
  • a substituted carbamoyl group herein is represented by -CONH-Ar C or -CONH-R C , for example.
  • Ar C is, for example, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms (preferably 6 to 10 ring carbon atoms) and 5 to 50 ring atoms (preferably 5 to 14 ring atoms). ) is at least one group selected from the group consisting of heterocyclic groups.
  • Ar 1 C may be a group in which a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms are bonded.
  • R 1 C is, for example, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms (preferably 1 to 6 carbon atoms).
  • all groups described as "substituted or unsubstituted” are preferably "unsubstituted" groups.
  • dope compound an embodiment of the second hole-transporting zone material or the third hole-transporting zone material
  • dope compound include the following compounds.
  • present invention is not limited to these specific examples of dope compounds.
  • the hole-transporting band material is A monoamine compound having one substituted or unsubstituted amino group in the molecule, A diamine compound having two substituted or unsubstituted amino groups in the molecule, or a triamine compound having three substituted or unsubstituted amino groups in the molecule, More preferred are monoamine compounds having one substituted or unsubstituted amino group in the molecule, or diamine compounds having two substituted or unsubstituted amino groups in the molecule.
  • the hole-transporting zone material is preferably a compound represented by the following general formula (21) or (22).
  • L A1 , L B1 , L C1 , L A2 , L B2 , L C2 and L D2 are each independently single bond, a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms,
  • L A1 and L B1 are single bonds
  • a 1 and B 1 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • L A1 and L C1 are single bonds
  • a 1 and C 1 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • a 1 and B 1 may be combined to form a substituted or unsubstituted monocyclic ring, or may be combined to form a substituted or unsubstituted condensed ring. They may or may not be connected to each other.
  • L A1 and L C1 are single bonds, A 1 and C 1 may be bonded to each other to form a substituted or unsubstituted monocyclic ring, or may be bonded to each other to form a substituted or unsubstituted condensed ring. They may or may not be connected to each other.
  • B 1 and C 1 may be bonded to each other to form a substituted or unsubstituted monocyclic ring, or may be bonded to each other to form a substituted or unsubstituted condensed ring. They may or may not be connected to each other.
  • A2 and B2 may be bonded to each other to form a substituted or unsubstituted monocyclic ring, or may be bonded to each other to form a substituted or unsubstituted condensed ring. They may or may not be connected to each other.
  • C 2 and D 2 may be bonded to each other to form a substituted or unsubstituted monocyclic ring, or may be bonded to each other to form a substituted or unsubstituted condensed ring. may or may not be connected to each other.
  • the compound represented by the general formula (21) is also preferably a compound represented by the following general formula (212).
  • L C1 , A 1 , B 1 and C 1 are each as defined in the general formula (21), n1 and n2 are each independently 0, 1, 2, 3 or 4;
  • R that does not form a substituted or unsubstituted monocyclic ring and does not form a substituted or unsubstituted condensed ring is cyano group, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R)
  • At least one of A 1 , B 1 and C 1 is represented by the following general formula (21a), general formula (21b), general formula (21c), general formula It is preferably a group selected from the group consisting of groups represented by (21d) and general formula (21e).
  • X 21 is NR 21 , CR 22 R 23 , an oxygen atom or a sulfur atom;
  • the multiple X 21 are the same or different from each other
  • X 21 is CR 22 R 23
  • the pair consisting of R 22 and R 23 is combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • R 21 , and R 22 and R 23 that do not form a substituted or unsubstituted monocyclic ring and do not form a substituted or unsubstituted condensed ring are each independently hydrogen atom, cyano group, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstit
  • a 1 and B that are not groups selected from the group consisting of groups represented by the general formula (21a), general formula (21b), general formula (21c), general formula (21d) and general formula (21e) 1 and C 1 are each independently preferably a substituted or unsubstituted aryl group having 6 to 30 ring-forming carbon atoms.
  • the compound represented by the general formula (22) is also preferably a compound represented by the following general formula (A221).
  • L A2 , L B2 , L C2 , L D2 and L E2 are each independently single bond, a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms, n2 is 1, 2, 3 or 4; When n2 is 2, 3 or 4, the plurality of L E2 are the same or different from each other, One or more sets of two or more adjacent R 2211 to R 2230 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or or R 2211 to R 2230 which are not bonded to each other, do not form a substituted or unsubstituted monocyclic ring, and do not form a substituted or unsubstituted condensed ring, are each independently single bond, a substituted or
  • R 901 , R 902 , R 903 , R 904 , R 905 , R 906 and R 907 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the multiple R 901 are present, the multiple R 901 are the same or different from each other,
  • the multiple R 902 are present, the multiple R 902 are the same or different from each other,
  • multiple R 903 are present, the multiple R 903 are the same or different from each other,
  • the multiple R 904 are present, the multiple R 904 are the same or different from each other,
  • the hole-transporting zone material may be a compound containing a substituted or unsubstituted 3-carbazolyl group in the molecule. Further, in the organic EL device according to this embodiment, the hole-transporting zone material may be a compound containing no substituted or unsubstituted 3-carbazolyl group in the molecule.
  • the hole-transporting layer contains the compound represented by the above general formula (21) or general formula (22) can be used.
  • aromatic amine derivatives, carbazole derivatives, anthracene derivatives and the like can also be used.
  • an aromatic amine derivative such as 4-phenyl-4′-(9-phenylfluoren-9-yl)triphenylamine (abbreviation: BAFLP) can be used.
  • a substance having a high hole-transporting property used for the hole-transporting layer is, for example, a substance having a hole mobility of 10 ⁇ 6 cm 2 /(V ⁇ s) or more.
  • the layer containing a substance with a high hole-transport property may be a single layer, or may have a stacked structure in which two or more layers containing the above substances are stacked.
  • a barrier layer may be provided adjacent to at least one of the anode side and the cathode side of the light emitting region.
  • a blocking layer is disposed in contact with the light emitting region and preferably blocks holes, electrons and/or excitons.
  • the barrier layer transports electrons and the holes reach a layer closer to the cathode than the barrier layer (e.g., electron transport layer). prevent you from doing
  • the organic EL device includes an electron-transporting layer, it preferably includes the barrier layer between the light-emitting region and the electron-transporting layer.
  • Hole-transporting zone materials can be manufactured by known methods.
  • the hole-transporting zone material can also be produced by following known methods and using known alternative reactions and raw materials tailored to the objectives.
  • Specific examples of the hole-transporting zone material include the following compounds. However, the present invention is not limited to these specific examples of hole transport zone materials.
  • the triplet energy T 1 (H1) of the first host material and the triplet energy T 1 (H2) of the second host material are in the following formula (Equation 5): is preferably satisfied.
  • a "host material” is, for example, a material contained in "50% by mass or more of the layer". Accordingly, the first light-emitting layer contains, for example, the first host material in an amount of 50% by weight or more of the total weight of the first light-emitting layer. The second light-emitting layer contains, for example, the second host material in an amount of 50% by weight or more of the total weight of the second light-emitting layer.
  • the organic electroluminescence device according to the present embodiment emit light having a maximum peak wavelength of 500 nm or less when the device is driven. More preferably, the organic electroluminescence device according to the present embodiment emits light having a maximum peak wavelength of 430 nm or more and 480 nm or less when the device is driven.
  • the measurement of the maximum peak wavelength of the light emitted by the organic EL element when the element is driven is performed as follows.
  • a spectral radiance spectrum is measured by a spectral radiance meter CS-2000 (manufactured by Konica Minolta Co., Ltd.) when a voltage is applied to the organic EL element so that the current density is 10 mA/cm 2 .
  • the peak wavelength of the emission spectrum at which the emission intensity is maximum is measured, and this is defined as the maximum peak wavelength (unit: nm).
  • the first light-emitting layer contains a first host material and a first light-emitting compound that emits light with a maximum peak wavelength of 500 nm or less.
  • the ionization potential Ip(D1) of the first light-emitting compound satisfies the relationship of the above formula (Formula 1X).
  • the first host material is a compound different from the second host material contained in the second light-emitting layer.
  • the first light-emitting compound preferably emits light having a maximum peak wavelength of 480 nm or less.
  • the first light-emitting compound preferably emits light having a maximum peak wavelength of 430 nm or more.
  • the first light-emitting compound contained in the first light-emitting layer is preferably a fluorescence-emitting compound that emits fluorescence with a maximum peak wavelength of 500 nm or less.
  • the first light-emitting compound preferably exhibits fluorescence emission with a maximum peak wavelength of 480 nm or less.
  • the first light-emitting compound preferably exhibits fluorescence emission with a maximum peak wavelength of 430 nm or more.
  • the first light-emitting compound is preferably a compound that does not contain an azine ring structure in its molecule.
  • the first luminescent compound is preferably not a boron-containing complex, and more preferably the first luminescent compound is not a complex.
  • the first light-emitting layer does not contain a metal complex. Moreover, in the organic EL device according to this embodiment, it is also preferable that the first light-emitting layer does not contain a boron-containing complex.
  • the first light-emitting layer preferably does not contain a phosphorescent material (dopant material). Moreover, the first light-emitting layer preferably does not contain a heavy metal complex and a phosphorescent rare earth metal complex. Examples of heavy metal complexes include iridium complexes, osmium complexes, and platinum complexes.
  • a method for measuring the maximum peak wavelength of a compound is as follows. A 5 ⁇ mol/L toluene solution of the compound to be measured is prepared and placed in a quartz cell, and the emission spectrum (vertical axis: emission intensity, horizontal axis: wavelength) of this sample is measured at room temperature (300K). The emission spectrum can be measured with a spectrofluorophotometer (device name: F-7000) manufactured by Hitachi High-Tech Science Co., Ltd. Note that the emission spectrum measuring device is not limited to the device used here. In the emission spectrum, the peak wavelength of the emission spectrum at which the emission intensity is maximum is defined as the maximum peak wavelength. In this specification, the maximum peak wavelength of fluorescence emission may be referred to as fluorescence emission maximum peak wavelength (FL-peak).
  • the peak at which the emission intensity is maximum is defined as the maximum peak, and when the height of the maximum peak is 1, the height of other peaks appearing in the emission spectrum is It is preferably less than 0.6.
  • the peak in an emission spectrum be a maximum value.
  • the number of peaks in the emission spectrum of the first light-emitting compound is preferably less than three.
  • the first light-emitting layer preferably emits light having a maximum peak wavelength of 500 nm or less when the device is driven.
  • the maximum peak wavelength of light emitted from the light-emitting layer when the device is driven can be measured by the method described below.
  • ⁇ Maximum peak wavelength ⁇ p of light emitted from the light-emitting layer when the device is driven is obtained by fabricating an organic EL device using the same material as the first light-emitting layer for the second light-emitting layer, and measuring the current of the organic EL device.
  • a spectral radiance spectrum is measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta, Inc.) when a voltage is applied to the element so that the density becomes 10 mA/cm 2 .
  • the maximum peak wavelength ⁇ p 1 (unit: nm) is calculated from the obtained spectral radiance spectrum.
  • the maximum peak wavelength ⁇ p2 of light emitted from the second light-emitting layer when the device is driven is obtained by fabricating an organic EL device using the same material as the second light-emitting layer for the first light-emitting layer, and measuring the current of the organic EL device.
  • a spectral radiance spectrum is measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta, Inc.) when a voltage is applied to the element so that the density becomes 10 mA/cm 2 .
  • the maximum peak wavelength ⁇ p 2 (unit: nm) is calculated from the obtained spectral radiance spectrum.
  • the singlet energy S 1 (H1) of the first host material and the singlet energy S 1 (D1) of the first light-emitting compound are represented by the following formula (Equation 20): It is preferable to satisfy the relationship.
  • Singlet energy S1 means the energy difference between the lowest excited singlet state and the ground state.
  • a singlet exciton generated on the first host material by the first host material and the first light-emitting compound satisfying the relationship of the formula (Equation 20) is generated from the first host material to the first Energy is easily transferred to one light-emitting compound, and contributes to light emission (preferably fluorescent light emission) of the first light-emitting compound.
  • the triplet energy T 1 (H1) of the first host material and the triplet energy T 1 (D1) of the first light-emitting compound are represented by the following formula (20A): It is preferable to satisfy the relationship. T 1 (D1)>T 1 (H1) (numerical 20A)
  • the first host material and the first light-emitting compound satisfy the relationship of the formula (20A), so that the triplet excitons generated in the first light-emitting layer have higher triplet energy. Since it migrates on the first host material and not on one light-emitting compound, it easily migrates to the second light-emitting layer.
  • the organic EL element according to this embodiment preferably satisfies the relationship of the following formula (Equation 20B).
  • T 1 Triplet energy T 1
  • Methods for measuring the triplet energy T1 include the following methods.
  • the phosphorescence spectrum vertical axis: phosphorescent emission intensity, horizontal axis: wavelength
  • a tangent line is drawn to the rise on the short wavelength side of this phosphorescent spectrum.
  • the energy amount calculated from the following conversion formula (F1) based on the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis is defined as the triplet energy T1.
  • Conversion formula (F1): T 1 [eV] 1239.85/ ⁇ edge
  • a tangent line to the rise on the short wavelength side of the phosphorescence spectrum is drawn as follows.
  • This tangent line increases in slope as the curve rises (ie as the vertical axis increases).
  • the tangent line drawn at the point where the value of this slope takes the maximum value is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
  • the maximum point with a peak intensity of 15% or less of the maximum peak intensity of the spectrum is not included in the maximum value on the shortest wavelength side described above, and is closest to the maximum value on the short wavelength side.
  • the tangent line drawn at the point where the value is taken is taken as the tangent line to the rise on the short wavelength side of the phosphorescence spectrum.
  • F-4500 type spectrofluorophotometer body manufactured by Hitachi High Technology Co., Ltd. can be used for measurement of phosphorescence.
  • the measuring device is not limited to this, and measurement may be performed by combining a cooling device, a cryogenic container, an excitation light source, and a light receiving device.
  • a tangent to the fall on the long wavelength side of the absorption spectrum is drawn as follows. Among the maximum values of the absorption spectrum, consider the tangent line at each point on the curve when moving from the maximum value on the longest wavelength side to the long wavelength direction on the spectrum curve. This tangent line repeats the slope decreasing and then increasing as the curve falls (that is, as the value on the vertical axis decreases). The tangent line drawn at the point where the slope value takes the minimum value on the long wavelength side (except when the absorbance is 0.1 or less) is taken as the tangent line to the fall on the long wavelength side of the absorption spectrum. The maximum absorbance value of 0.2 or less is not included in the maximum value on the longest wavelength side.
  • the first light-emitting compound is preferably contained in the first light-emitting layer in an amount of 1.0% by mass or more. That is, the first light-emitting layer preferably contains the first light-emitting compound in an amount of 1.0% by mass or more of the total weight of the first light-emitting layer, and more than 1.1% by mass. It is more preferably contained in an amount of 1.2 mass % or more based on the total mass of the first light-emitting layer, and even more preferably 1.5 mass % or more of the total mass of the first light-emitting layer.
  • the first light-emitting layer preferably contains the first light-emitting compound in an amount of 10% by weight or less of the total weight of the first light-emitting layer, and 7% by weight or less of the total weight of the first light-emitting layer. It is more preferable to contain 5% by mass or less of the total mass of the first light-emitting layer.
  • the first light-emitting layer preferably contains the first compound as the first host material in an amount of 60% by mass or more of the total mass of the first light-emitting layer, It is more preferably contained in an amount of 70% by mass or more of the total mass of the first light-emitting layer, more preferably 80% by mass or more of the total mass of the first light-emitting layer, and the total mass of the first light-emitting layer more preferably 90% by mass or more of the total mass of the first light-emitting layer.
  • the first light-emitting layer preferably contains the first host material in an amount of 99% by mass or less based on the total mass of the first light-emitting layer. However, when the first light-emitting layer contains the first host material and the first light-emitting compound, the upper limit of the total content of the first host material and the first light-emitting compound is 100% by mass. be.
  • the first light-emitting layer contains materials other than the first host material and the first light-emitting compound.
  • the first light-emitting layer may contain only one kind of the first host material, or may contain two or more kinds.
  • the first light-emitting layer may contain only one kind of the first light-emitting compound, or may contain two or more kinds thereof.
  • the film thickness of the first light-emitting layer is preferably 3 nm or more, more preferably 5 nm or more. If the film thickness of the first light-emitting layer is 3 nm or more, the film thickness is sufficient to cause recombination of holes and electrons in the first light-emitting layer. In the organic EL device according to this embodiment, the film thickness of the first light-emitting layer is preferably 15 nm or less, more preferably 10 nm or less. If the film thickness of the first light-emitting layer is 15 nm or less, the film thickness is sufficiently thin for triplet excitons to move to the second light-emitting layer. In the organic EL device according to this embodiment, the film thickness of the first light-emitting layer is more preferably 3 nm or more and 15 nm or less.
  • the first light-emitting layer may contain a compound represented by the following formula (HT100).
  • the first light-emitting layer may contain the hole-transporting zone material according to this embodiment.
  • the second light-emitting layer contains a second host material and a second light-emitting compound that emits light with a maximum peak wavelength of 500 nm or less.
  • the second host material is a compound different from the first host material contained in the first light-emitting layer.
  • the second light-emitting compound preferably emits light having a maximum peak wavelength of 480 nm or less.
  • the second light-emitting compound preferably emits light having a maximum peak wavelength of 430 nm or more.
  • the second light-emitting compound contained in the second light-emitting layer is preferably a fluorescence-emitting compound that emits fluorescence with a maximum peak wavelength of 500 nm or less.
  • the second light-emitting compound preferably exhibits fluorescence emission with a maximum peak wavelength of 480 nm or less.
  • the second light-emitting compound preferably exhibits fluorescence emission with a maximum peak wavelength of 430 nm or more.
  • the method for measuring the maximum peak wavelength of the compound is as described above.
  • the second light-emitting layer preferably emits light with a maximum peak wavelength of 500 nm or less when the device is driven.
  • the maximum peak half width of the second light-emitting compound is 1 nm or more and 20 nm or less.
  • the Stokes shift of the second light-emitting compound preferably exceeds 7 nm. If the Stokes shift of the second light-emitting compound exceeds 7 nm, it becomes easier to prevent a decrease in light-emitting efficiency due to self-absorption. Self-absorption is a phenomenon in which emitted light is absorbed by the same compound, and is a phenomenon that causes a decrease in luminous efficiency. Self-absorption is conspicuously observed in compounds with a small Stokes shift (i.e., a large overlap between the absorption spectrum and the fluorescence spectrum). is small) is preferably used. The Stokes shift can be measured by the method described below.
  • a compound to be measured is dissolved in toluene at a concentration of 2.0 ⁇ 10 ⁇ 5 mol/L to prepare a sample for measurement.
  • a measurement sample placed in a quartz cell is irradiated with continuous light in the ultraviolet-visible region at room temperature (300K), and an absorption spectrum (vertical axis: absorbance, horizontal axis: wavelength) is measured.
  • a spectrophotometer can be used for the absorption spectrum measurement, for example, spectrophotometer U-3900/3900H manufactured by Hitachi High-Tech Science Co., Ltd. can be used.
  • a compound to be measured is dissolved in toluene at a concentration of 4.9 ⁇ 10 ⁇ 6 mol/L to prepare a sample for measurement.
  • a measurement sample placed in a quartz cell was irradiated with excitation light at room temperature (300 K), and fluorescence spectra (vertical axis: fluorescence intensity, horizontal axis: wavelength) were measured.
  • a spectrophotometer can be used for fluorescence spectrum measurement, for example, spectrofluorophotometer F-7000 manufactured by Hitachi High-Tech Science Co., Ltd. can be used. From these absorption spectra and fluorescence spectra, the difference between the maximum absorption wavelength and the maximum fluorescence wavelength is calculated to determine the Stokes shift (SS).
  • the unit of Stokes shift SS is nm.
  • the triplet energy T 1 (D2) of the second light-emitting compound and the triplet energy T 1 (H2) of the second host material are represented by the following formula (Equation 3A): It is preferable to satisfy the relationship. T 1 (D2)>T 1 (H2) (Equation 3A)
  • the triplet excitation generated in the first light-emitting layer by satisfying the relationship of the second light-emitting compound and the second host material (Equation 3A)
  • the electrons migrate to the second emissive layer, they energy transfer to molecules of the second host material rather than to the second emissive compound, which has a higher triplet energy.
  • triplet excitons generated by recombination of holes and electrons on the second host material do not move to the second light-emitting compound having higher triplet energy.
  • the triplet excitons generated by recombination on the molecules of the second light-emitting compound rapidly transfer energy to the molecules of the second host material.
  • Triplet excitons of the second host material do not move to the second light-emitting compound, and triplet excitons on the second host material collide efficiently due to the TTF phenomenon, resulting in singlet excitation. A child is generated.
  • the singlet energy S 1 (H2) of the second host material and the singlet energy S 1 (D2) of the second light-emitting compound are represented by the following formula (Equation 4): It is preferable to satisfy the relationship. S 1 (H2)>S 1 (D2) (Equation 4)
  • the singlet energy of the second light-emitting compound is , is smaller than the singlet energy of the second host material, so the singlet excitons generated by the TTF phenomenon transfer energy from the second host material to the second light-emitting compound, and the second light-emitting compound It contributes to luminescence (preferably fluorescent luminescence).
  • the second light-emitting compound is preferably a compound that does not contain an azine ring structure in its molecule.
  • the second light-emitting compound is preferably not a boron-containing complex, and more preferably, the second light-emitting compound is not a complex.
  • the second light-emitting layer preferably does not contain a metal complex. Moreover, in the organic EL device according to this embodiment, the second light-emitting layer preferably does not contain a boron-containing complex.
  • the second emitting layer preferably does not contain a phosphorescent material (dopant material). Moreover, it is preferable that the second light-emitting layer does not contain a heavy metal complex and a phosphorescent rare earth metal complex. Examples of heavy metal complexes include iridium complexes, osmium complexes, and platinum complexes.
  • the second light-emitting compound is preferably contained in the second light-emitting layer in an amount of 1.0% by mass or more. That is, the second light-emitting layer preferably contains the second light-emitting compound in an amount of 1.0% by mass or more of the total weight of the second light-emitting layer, and more than 1.1% by mass. It is more preferably contained in an amount of 1.2 mass % or more based on the total mass of the second light-emitting layer, and even more preferably 1.5 mass % or more of the total mass of the second light-emitting layer.
  • the second light-emitting layer preferably contains the second light-emitting compound in an amount of 10% by weight or less of the total weight of the second light-emitting layer, and 7% by weight or less of the total weight of the second light-emitting layer. It is more preferable to contain 5% by mass or less of the total mass of the second light-emitting layer.
  • the second light-emitting layer preferably contains the second compound as the second host material in an amount of 60% by weight or more of the total weight of the second light-emitting layer, and 70% by weight of the total weight of the second light-emitting layer. It is more preferable to contain 80% by mass or more of the total mass of the second light-emitting layer, and it is more preferable to contain 90% by mass or more of the total mass of the second light-emitting layer. Even more preferably, it is even more preferable to contain 95% by mass or more of the total mass of the second light-emitting layer.
  • the second light-emitting layer preferably contains the second host material in an amount of 99% by mass or less based on the total mass of the second light-emitting layer. When the second light-emitting layer contains the second host material and the second light-emitting compound, the upper limit of the total content of the second host material and the second light-emitting compound is 100% by mass.
  • the second light-emitting layer contains materials other than the second host material and the second light-emitting compound.
  • the second light-emitting layer may contain only one type of the second host material, or may contain two or more types.
  • the second light-emitting layer may contain only one type of the second light-emitting compound, or may contain two or more types.
  • the film thickness of the second light-emitting layer is preferably 5 nm or more, more preferably 15 nm or more. If the film thickness of the second light-emitting layer is 5 nm or more, triplet excitons that have moved from the first light-emitting layer to the second light-emitting layer are likely to be prevented from returning to the first light-emitting layer. Moreover, if the film thickness of the second light-emitting layer is 5 nm or more, the triplet excitons can be sufficiently separated from the recombination portion in the first light-emitting layer.
  • the film thickness of the second light-emitting layer is preferably 20 nm or less. If the film thickness of the second light-emitting layer is 20 nm or less, the density of triplet excitons in the second light-emitting layer can be improved, and the TTF phenomenon can occur more easily. In the organic EL device according to this embodiment, the film thickness of the second light-emitting layer is preferably 5 nm or more and 20 nm or less.
  • the triplet energy T 1 (H1) of the first host material preferably satisfies the relationship of the following formula (12).
  • the triplet energy T 1 (H1) of the first host material preferably satisfies the relationship of the following formula (12AX), and satisfies the relationship of the following formula (12A). is also preferable, and it is also preferable to satisfy the relationship of the following formula (Equation 12B).
  • the triplet energy T 1 (H1) of the first host material satisfies the relationship of the above formula (Formula 12AX), (Formula 12A) or the formula (Formula 12B).
  • the triplet excitons generated in the first light-emitting layer are more likely to move to the second light-emitting layer, and the reverse migration from the second light-emitting layer to the first light-emitting layer is more likely to be suppressed. .
  • singlet excitons are efficiently generated in the second light-emitting layer, and light emission efficiency is improved.
  • the triplet energy T 1 (H1) of the first host material preferably satisfies the relationship of the following formula (Equation 12C), and also satisfies the relationship of the following equation (Equation 12D). is also preferred. 2.08 eV>T 1 (H1)>1.87 eV (Equation 12C) 2.05 eV>T 1 (H1)>1.90 eV (Equation 12D)
  • the triplet energy T 1 (H1) of the first host material satisfies the relationship of the formula (12C) or the formula (12D), whereby the first light emission
  • the energy of triplet excitons generated in the layer is reduced, and a longer life of the organic EL device can be expected.
  • the triplet energy T 1 (D1) of the first light-emitting compound preferably satisfies the relationship of the following formula (14A), and the relationship of the following formula (14B). It is also preferable to fill 2.60 eV>T 1 (D1) (Equation 14A) 2.50 eV>T 1 (D1) (Equation 14B)
  • the first light-emitting layer contains the first light-emitting compound that satisfies the relationship of the formula (Formula 14A) or (Formula 14B)
  • the triplet energy T 1 (D2) of the second light-emitting compound preferably satisfies the relationship of the following formula (Equation 14C), and the relationship of the following equation (Equation 14D) It is also preferable to fill 2.60 eV>T 1 (D2) (Equation 14C) 2.50 eV>T 1 (D2) (Equation 14D)
  • the second light-emitting layer contains a compound that satisfies the relationship of the above formula (Equation 14C) or (Equation 14D)
  • the life of the organic EL element is extended.
  • the triplet energy T 1 (H2) of the second host material preferably satisfies the relationship of the following formula (13X), and satisfies the relationship of the following formula (13) is also preferred.
  • the organic EL device may have one or more organic layers in addition to the hole-transporting zone, the first light-emitting layer, and the second light-emitting layer.
  • the organic layer include at least one layer selected from the group consisting of an electron injection layer, an electron transport layer, a hole blocking layer and an electron blocking layer.
  • the organic EL device according to this embodiment may be composed only of the hole transport zone, the first light emitting layer and the second light emitting layer. It may further have at least one layer selected from the group consisting of layers and the like.
  • FIG. 1 shows a schematic configuration of an example of the organic EL element according to this embodiment.
  • the organic EL element 1 includes a substrate 2 , an anode 3 , a cathode 4 and an organic layer 10 arranged between the anode 3 and the cathode 4 .
  • the organic layer 10 is composed of a hole-transporting zone 6, a first light-emitting layer 51, a second light-emitting layer 52, an electron-transporting layer 8, and an electron-injecting layer 9, which are stacked in this order from the anode 3 side. be done.
  • the light-emitting region 5 is composed of a first light-emitting layer 51 and a second light-emitting layer 52 .
  • FIG. 2 shows a schematic configuration of another example of the organic EL element according to this embodiment.
  • the organic EL element 1 B includes a substrate 2 , an anode 3 , a cathode 4 and an organic layer 12 arranged between the anode 3 and the cathode 4 .
  • the organic layer 12 includes, in order from the anode 3 side, a second organic layer 62, a first organic layer 61, a first light emitting layer 51, a second light emitting layer 52, an electron transport layer 8, and an electron injection layer 9. , are laminated in this order.
  • the hole transport zone 6A is composed of the first organic layer 61 and the second organic layer 62. As shown in FIG.
  • FIG. 3 shows a schematic configuration of another example of the organic EL element according to this embodiment.
  • the organic EL element 1C includes a substrate 2, an anode 3, a cathode 4, and an organic layer 13 arranged between the anode 3 and the cathode 4.
  • FIG. The organic layer 13 includes, in order from the anode 3 side, a third organic layer 63, a second organic layer 62, a first organic layer 61, a first light emitting layer 51, a second light emitting layer 52, and an electron transport layer 8. , and an electron injection layer 9 are laminated in this order.
  • the hole transport zone 6B is composed of the first organic layer 61, the second organic layer 62 and the third organic layer 63. As shown in FIG.
  • the hole-transporting band material and the first light-emitting compound that satisfy the relationship of the formula (1X)
  • the hole-transporting band material and the first emission can reduce the energy barrier with the chemical compound.
  • the number of organic layers constituting the hole-transporting zone is reduced (reduced layers)
  • hole injection into the light-emitting region can be promoted, and high efficiency can be easily achieved.
  • the present invention is not limited to the configurations of the organic EL elements shown in FIGS. 1 to 3.
  • the first light-emitting layer and the second light-emitting layer may be in direct contact with each other.
  • the layer structure in which "the first light-emitting layer and the second light-emitting layer are in direct contact” is, for example, any of the following aspects (LS1), (LS2) and (LS3) Aspects can also be included.
  • (LS1) A region in which both the first host material and the second host material are mixed in the process of vapor-depositing the compound for the first light-emitting layer and the step for vapor-depositing the compound for the second light-emitting layer occurs and the region is present at the interface between the first and second light-emitting layers.
  • LS2 When the first light-emitting layer and the second light-emitting layer contain a light-emitting compound, a step of vapor-depositing the compound for the first light-emitting layer and a step of vapor-depositing the compound for the second light-emitting layer A mode in which a region in which the first host material, the second host material, and the light-emitting compound are mixed occurs in the process, and the region exists at the interface between the first light-emitting layer and the second light-emitting layer.
  • the step of vapor-depositing the compound for the first light-emitting layer and the step of vapor-depositing the compound for the second light-emitting layer In the process, a region composed of the luminescent compound, a region composed of the first host material, or a region composed of the second host material is generated, and the region is the interface between the first light-emitting layer and the second light-emitting layer.
  • the substrate is used as a support for organic EL elements.
  • the substrate for example, glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • a flexible substrate is a (flexible) substrate that can be bent, and examples thereof include a plastic substrate.
  • Materials for forming the plastic substrate include, for example, polycarbonate, polyarylate, polyethersulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyimide, and polyethylene naphthalate. Inorganic deposition films can also be used.
  • anode For the anode formed on the substrate, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • ITO Indium Tin Oxide
  • indium oxide-tin oxide containing silicon or silicon oxide indium oxide-zinc oxide, tungsten oxide, and indium oxide containing zinc oxide , graphene and the like.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • nitrides of metal materials eg, titanium nitride
  • indium oxide-zinc oxide can be formed by a sputtering method using a target in which 1% by mass or more and 10% by mass or less of zinc oxide is added to indium oxide.
  • indium oxide containing tungsten oxide and zinc oxide contains 0.5% by mass or more and 5% by mass or less of tungsten oxide and 0.1% by mass or more and 1% by mass or less of zinc oxide relative to indium oxide.
  • a target it can be formed by a sputtering method.
  • it may be produced by a vacuum vapor deposition method, a coating method, an inkjet method, a spin coating method, or the like.
  • the hole injection layer formed in contact with the anode is formed using a composite material that facilitates hole injection regardless of the work function of the anode.
  • materials that can be used as electrode materials such as metals, alloys, electrically conductive compounds, and mixtures thereof, as well as elements belonging to Groups 1 and 2 of the Periodic Table of the Elements.
  • Elements belonging to group 1 or 2 of the periodic table which are materials with a small work function, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca), and strontium Alkaline earth metals such as (Sr), alloys containing these (e.g., MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these can also be used.
  • alkali metals such as lithium (Li) and cesium (Cs)
  • alloys containing these e.g., MgAg, AlLi
  • rare earth metals such as europium (Eu) and ytterbium (Yb)
  • Yb ytterbium
  • alloys containing these can also be used.
  • cathode For the cathode, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a small work function (specifically, 3.8 eV or less).
  • cathode materials include elements belonging to Group 1 or Group 2 of the periodic table, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), calcium (Ca ), alkaline earth metals such as strontium (Sr), and alloys containing these (e.g., MgAg, AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), and alloys containing these.
  • alkali metals such as lithium (Li) and cesium (Cs)
  • alkaline earth metals such as strontium (Sr)
  • alloys containing these e.g., MgAg, AlLi
  • a vacuum deposition method or a sputtering method can be used.
  • a coating method, an inkjet method, or the like can be used.
  • a cathode is formed using various conductive materials such as Al, Ag, ITO, graphene, silicon, or indium oxide-tin oxide containing silicon oxide, regardless of the magnitude of the work function. can do.
  • These conductive materials can be deposited using a sputtering method, an inkjet method, a spin coating method, or the like.
  • the organic EL device preferably includes an electron transport layer between the light emitting layer and the cathode.
  • the electron transport layer is a layer containing a substance having a high electron transport property.
  • the electron transport layer contains 1) metal complexes such as aluminum complexes, beryllium complexes and zinc complexes, 2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives and phenanthroline derivatives, and 3) polymer compounds. can be used.
  • low-molecular-weight organic compounds include Alq, tris(4-methyl-8-quinolinolato)aluminum (abbreviation: Almq 3 ), bis(10-hydroxybenzo[h]quinolinato)beryllium (abbreviation: BeBq 2 ), Metal complexes such as BAlq, Znq, ZnPBO, and ZnBTZ can be used.
  • 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole abbreviation: PBD
  • 1,3-bis[5- (ptert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene abbreviation: OXD-7
  • 3-(4-tert-butylphenyl)-4-phenyl-5-(4- biphenylyl)-1,2,4-triazole abbreviation: TAZ
  • Complex compounds such as triazole (abbreviation: p-EtTAZ), bathophenanthroline (abbreviation: BPhen), bathocuproine (abbreviation: BCP), 4,4'-bis(5-methylbenzoxa
  • Benzimidazole compounds can be preferably used in this embodiment.
  • the substances described here are mainly substances having an electron mobility of 10 ⁇ 6 cm 2 /(V ⁇ s) or more. Note that a substance other than the above substances may be used for the electron-transporting layer as long as the substance has higher electron-transporting property than hole-transporting property. Further, the electron transport layer may be composed of a single layer, or may be composed of two or more layers of the above substances laminated.
  • a polymer compound can also be used for the electron transport layer.
  • poly[(9,9-dihexylfluorene-2,7-diyl)-co-(pyridine-3,5-diyl)] (abbreviation: PF-Py)
  • poly[(9,9-dioctylfluorene-2 ,7-diyl)-co-(2,2′-bipyridine-6,6′-diyl)] abbreviation: PF-BPy
  • PF-BPy poly[(9,9-dioctylfluorene-2 ,7-diyl)-co-(2,2′-bipyridine-6,6′-diyl)]
  • the electron injection layer is a layer containing a substance with high electron injection properties.
  • the electron injection layer includes lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiOx), and the like.
  • Alkali metals such as, alkaline earth metals, or compounds thereof can be used.
  • a substance having an electron-transporting property containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a substance containing magnesium (Mg) in Alq, or the like may be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • a composite material has excellent electron-injecting and electron-transporting properties because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material that is excellent in transporting the generated electrons.
  • a substance (metal complex, heteroaromatic compound, etc.) constituting the electron transport layer described above is used. be able to.
  • the electron donor any substance can be used as long as it exhibits an electron donating property with respect to an organic compound.
  • alkali metals, alkaline earth metals, and rare earth metals are preferred, and examples include lithium, cesium, magnesium, calcium, erbium, and ytterbium.
  • alkali metal oxides and alkaline earth metal oxides are preferred, and examples thereof include lithium oxide, calcium oxide and barium oxide.
  • Lewis bases such as magnesium oxide can also be used.
  • An organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • the method for forming each layer of the organic EL element of the present embodiment is not limited to those specifically mentioned above, but dry film formation methods such as a vacuum deposition method, a sputtering method, a plasma method, and an ion plating method, and spin coating methods.
  • a known method such as a coating method, a dipping method, a flow coating method, or a wet film forming method such as an inkjet method can be employed.
  • each organic layer of the organic EL element of the present embodiment is not limited except for the cases mentioned above. In general, if the film thickness is too thin, defects such as pinholes are likely to occur. A range of nm to 1 ⁇ m is preferred.
  • the first host material and the second host material include, for example, the following general formula (1), general formula (1X), general formula (12X), and general formula (13X) , a first compound represented by general formula (14X), general formula (15X) and general formula (16X), and a second compound represented by general formula (2) below.
  • the first compound can also be used as the first host material and the second host material.
  • the following general formula (1), the following general formula (1X), and the general A compound represented by formula (12X), general formula (13X), general formula (14X), general formula (15X) or general formula (16X) may be referred to as a second compound for convenience.
  • R 901 , R 902 , R 903 , R 904 , R 905 , R 906 , R 907 , R 801 and R 802 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the multiple R 901 are present, the multiple R 901 are the same or different from each other,
  • the multiple R 902 are present, the multiple R 902 are the same or different from each other,
  • multiple R 903 are present, the multiple R 903 are the same or different from each other,
  • the multiple R 904 are present, the multiple R 904 are the same or different from each
  • the group represented by the general formula (11) is preferably a group represented by the following general formula (111).
  • X 1 is CR 123 R 124 , an oxygen atom, a sulfur atom, or NR 125 ;
  • L 111 and L 112 are each independently single bond, a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms, ma is 0, 1, 2, 3 or 4; mb is 0, 1, 2, 3 or 4; ma+mb is 0, 1, 2, 3 or 4;
  • Ar 101 has the same definition as Ar 101 in the general formula (11),
  • R 121 , R 122 , R 123 , R 124 and R 125 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having
  • L 111 is bound, R 121 is bound to the remaining three positions of *1 to *4, L 112 is bound to any one position of *5 to *8, and the remaining positions of *5 to *8 are R122 is attached at three positions.
  • L 111 is bonded to the *2 carbon atom position in the ring structure represented by the general formula (111a), and L 112 is the general formula ( When it is bonded to the *7 carbon atom position in the ring structure represented by 111a), the group represented by the general formula (111) is represented by the following general formula (111b).
  • X 1 , L 111 , L 112 , ma, mb, Ar 101 , R 121 , R 122 , R 123 , R 124 and R 125 each independently represent X 1 , L 111 , L in the general formula (111) 112 , ma, mb, Ar 101 , R 121 , R 122 , R 123 , R 124 and R 125 ; the plurality of R 121 are the same or different from each other, A plurality of R 122 are the same or different from each other. )
  • the group represented by general formula (111) is preferably a group represented by general formula (111b).
  • ma is preferably 0, 1 or 2
  • mb is preferably 0, 1 or 2.
  • ma is preferably 0 or 1
  • mb is preferably 0 or 1.
  • Ar 101 is preferably a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms.
  • Ar 101 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted pyrenyl group, A substituted or unsubstituted phenanthryl group or a substituted or unsubstituted fluorenyl group is preferred.
  • Ar 101 is also preferably a group represented by the following general formula (12), general formula (13) or general formula (14).
  • R 111 to R 120 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a group represented by —N(R 906 )(R 907 ); a substituted or unsubstituted aralkyl group having
  • the first compound is preferably represented by the following general formula (101).
  • L 101 is preferably a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms.
  • the first compound is preferably represented by the following general formula (102).
  • R 101 to R 120 each independently have the same meaning as R 101 to R 120 in the general formula (101); provided that one of R 101 to R 110 represents the binding position to L 111 , one of R 111 to R 120 represents the binding position to L 112 , X 1 is CR 123 R 124 , an oxygen atom, a sulfur atom, or NR 125 ; L 111 and L 112 are each independently single bond, a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms, ma is 0, 1, 2, 3 or 4; mb is 0, 1, 2, 3 or 4; ma+mb is 0, 1, 2, 3 or 4; R 121 , R 122 , R 123 , R 124 and R 125 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms
  • ma is preferably 0, 1 or 2
  • mb is preferably 0, 1 or 2.
  • ma is preferably 0 or 1
  • mb is preferably 0 or 1.
  • R 101 to R 110 are preferably groups represented by the general formula (11).
  • R 101 to R 110 are groups represented by the general formula (11), and Ar 101 is a substituted or unsubstituted ring-forming carbon An aryl group of number 6 to 50 is preferred.
  • Ar 101 is not a substituted or unsubstituted pyrenyl group
  • L 101 is not a substituted or unsubstituted pyrenylene group
  • the substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms as R 101 to R 110 that is not a group represented by the general formula (11) is preferably not a substituted or unsubstituted pyrenyl group.
  • R 101 to R 110 which are not groups represented by the general formula (11) are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • R 101 to R 110 which are not groups represented by the general formula (11) are each independently hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms is preferred.
  • R 101 to R 110 which are not groups represented by formula (11) are preferably hydrogen atoms.
  • the first compound is also preferably a compound represented by the following general formula (1X).
  • the group represented by the general formula (11X) is preferably a group represented by the following general formula (111X).
  • X 1 is CR 143 R 144 , an oxygen atom, a sulfur atom, or NR 145 ;
  • L 111 and L 112 are each independently single bond, a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring-forming atoms, ma is 1, 2, 3 or 4;
  • mb is 1, 2, 3 or 4; ma+mb is 2, 3 or 4;
  • Ar 101 has the same definition as Ar 101 in the general formula (11X)
  • R 141 , R 142 , R 143 , R 144 and R 145 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to
  • L 111 is bonded to the *2 carbon atom position in the ring structure represented by the general formula (111aX)
  • L 112 is the general formula ( 111aX)
  • the group represented by the general formula (111X) is represented by the following general formula (111bX) when it is bonded to the *7 carbon atom position in the ring structure represented by the formula (111aX).
  • X 1 , L 111 , L 112 , ma, mb, Ar 101 , R 141 , R 142 , R 143 , R 144 and R 145 each independently represent X 1 , L 111 , L in general formula (111X) 112 , ma, mb, Ar 101 , R 141 , R 142 , R 143 , R 144 and R 145 ; the plurality of R 141 are the same or different from each other, The plurality of R 142 are the same or different from each other. )
  • the group represented by general formula (111X) is preferably a group represented by general formula (111bX).
  • ma is preferably 1 or 2
  • mb is preferably 1 or 2.
  • ma is preferably 1 and mb is preferably 1.
  • Ar 101 is preferably a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms.
  • Ar 101 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, a substituted or unsubstituted benz[a]anthryl group, a substituted or unsubstituted pyrenyl group, A substituted or unsubstituted phenanthryl group or a substituted or unsubstituted fluorenyl group is preferred.
  • the compound represented by the general formula (1X) is also preferably represented by the following general formula (101X).
  • R 111 and R 112 represents the binding position to L 101
  • one of R 133 and R 134 represents the binding position to L 101
  • R 133 or R 134 not at the bonding position with L 101 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R
  • L 101 is preferably a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms.
  • the compound represented by the general formula (1X) is also preferably represented by the following general formula (102X).
  • R 111 and R 112 represents the binding position to L 111
  • one of R 133 and R 134 represents the binding position to L 112
  • R 101 to R 110 , R 121 to R 130 , R 111 or R 112 which is not in the bonding position with L 111 and R 133 or R 134 which is not in the bonding position with L 112 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R
  • ma in the general formula (102X) is preferably 1 or 2
  • mb is preferably 1 or 2.
  • ma is preferably 1 and mb is preferably 1 in the general formula (102X).
  • the group represented by the general formula (11X) is a group represented by the following general formula (11AX), or a group represented by the following general formula (11BX) It is also preferable that
  • R 121 to R 131 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a group represented by -C(
  • the compound represented by the general formula (1X) is also preferably represented by the following general formula (103X).
  • R 101 to R 110 and R 112 are respectively synonymous with R 101 to R 110 and R 112 in the general formula (1X);
  • R 121 to R 131 , L 131 and L 132 have the same definitions as R 121 to R 131 , L 131 and L 132 in general formula (11BX) above.
  • L 131 is also preferably a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms.
  • L 132 is also preferably a substituted or unsubstituted arylene group having 6 to 50 ring-forming carbon atoms.
  • R 101 to R 112 are preferably groups represented by the general formula (11).
  • R 101 to R 112 are groups represented by the general formula (11X), and Ar 101 in the general formula (11X) is , a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • Ar 101 is not a substituted or unsubstituted benz[a]anthryl group
  • L 101 is not a substituted or unsubstituted benz[a]anthrylene group
  • the substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms as R 101 to R 110 that is not a group represented by the general formula (11X) is not a substituted or unsubstituted benz[a]anthryl group. is also preferred.
  • R 101 to R 112 that are not groups represented by the general formula (11X) are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms is preferred.
  • R 101 to R 112 that are not groups represented by the general formula (11X) are hydrogen atom, A substituted or unsubstituted alkyl group having 1 to 50 carbon atoms or a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms is preferred.
  • R 101 to R 112 that are not groups represented by general formula (11X) are preferably hydrogen atoms.
  • the first compound is also preferably a compound represented by the following general formula (12X).
  • R 1201 to R 1210 which do not form a substituted or unsubstituted monocyclic ring and which do not form a substituted or unsubstituted condensed ring are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon
  • the group consisting of two adjacent R 1201 to R 1210 is a group of R 1201 and R 1202 , a group of R 1202 and R 1203 , a group of R 1203 and R 1204 and , the pair of R 1204 and R 1205 , the pair of R 1205 and R 1206 , the pair of R 1207 and R 1208 , the pair of R 1208 and R 1209 , and the pair of R 1209 and R 1210 .
  • the first compound is also preferably a compound represented by the following general formula (13X).
  • any group consisting of two or more adjacent groups among R 1301 to R 1310 that are not represented by the general formula (131) are not bonded to each other.
  • the group consisting of two adjacent in the general formula (13X) is a group of R 1301 and R 1302 , a group of R 1302 and R 1303 , a group of R 1303 and R 1304 , R 1304 and R 1305 and , the pair of R 1305 and R 1306 , the pair of R 1307 and R 1308 , the pair of R 1308 and R 1309 , and the pair of R 1309 and R 1310 .
  • the first compound is also preferably a compound represented by the following general formula (14X).
  • the first compound is also preferably a compound represented by the following general formula (15X).
  • the first compound is also preferably a compound represented by the following general formula (16X).
  • the first host material has a linking structure including a benzene ring and a naphthalene ring linked by a single bond in the molecule, and the benzene ring and naphthalene ring in the linking structure Each ring is independently condensed with or not condensed with a monocyclic ring or condensed ring, and the benzene ring and naphthalene ring in the connecting structure are crosslinked at at least one portion other than the single bond. It is also preferred that they are further linked by Since the first host material has such a linking structure including cross-linking, it can be expected that deterioration of the chromaticity of the organic EL device can be suppressed.
  • the first host material has a linked structure (benzene- may be referred to as a naphthalene linked structure.) as a minimum unit, and the benzene ring may be further condensed with a monocyclic or condensed ring, or the naphthalene ring may be further monocyclic or condensed. may be condensed.
  • a linked structure benzene- may be referred to as a naphthalene linked structure.
  • the first host material contains, in the molecule, a naphthalene ring and a naphthalene ring linked by a single bond, as represented by the following formula (X3), formula (X4), or formula (X5)
  • a naphthalene ring contains a benzene ring, so it includes a benzene-naphthalene linked structure.
  • the crosslink includes a double bond. That is, it is also preferable to have a structure in which the benzene ring and the naphthalene ring are further linked by a crosslinked structure containing a double bond at a portion other than the single bond.
  • the first host material has a biphenyl structure in the molecule in which a first benzene ring and a second benzene ring are linked by a single bond, and It is also preferable that the first benzene ring and the second benzene ring of are further linked by a bridge in at least one portion other than the single bond.
  • the first benzene ring and the second benzene ring in the biphenyl structure are further linked by the bridge at one portion other than the single bond. Since the first host material has such a crosslinked biphenyl structure, it can be expected that deterioration of the chromaticity of the organic EL device can be suppressed.
  • the crosslink includes a double bond. In the organic EL device according to this embodiment, it is also preferable that the crosslink does not contain a double bond.
  • first benzene ring and the second benzene ring in the biphenyl structure are further linked by the bridge at two portions other than the single bond.
  • the first benzene ring and the second benzene ring in the biphenyl structure are further connected by the bridge at two portions other than the single bond, and the bridge is double It is also preferred to be free of bonds. Since the first host material has such a crosslinked biphenyl structure, it can be expected that deterioration of the chromaticity of the organic EL device can be suppressed.
  • the biphenyl structure is Linked structures (condensed rings) such as the following formulas (BP11) to (BP15) are formed.
  • the formula (BP11) is a structure linked by a bridge that does not contain a double bond in one portion other than the single bond.
  • the formula (BP12) is a structure linked by a bridge containing a double bond in one portion other than the single bond.
  • the formula (BP13) is a structure in which two moieties other than the single bond are linked by a bridge that does not contain a double bond.
  • one of the two moieties other than the single bond is linked by a bridge containing no double bond, and the other of the two moieties other than the single bond is linked by a bridge containing a double bond. is.
  • the formula (BP15) is a structure in which two moieties other than the single bond are linked by a bridge containing a double bond.
  • the group described as "substituted or unsubstituted" is Both are preferably “unsubstituted” groups.
  • the first compound can be produced by a known method.
  • the first compound can also be produced by imitating a known method and using known alternative reactions and raw materials suitable for the desired product.
  • first compound examples include the following compounds. However, the present invention is not limited to these specific examples of the first compound.
  • D represents a deuterium atom
  • Me represents a methyl group
  • tBu represents a tert-butyl group.
  • the second compound is a compound represented by the following general formula (2).
  • R 201 to R 208 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a group represented by —N(R 906 )(R 907 ); a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms,
  • R 901 , R 902 , R 903 , R 904 , R 905 , R 906 , R 907 , R 801 and R 802 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms,
  • the multiple R 901 are present, the multiple R 901 are the same or different from each other,
  • the multiple R 902 are present, the multiple R 902 are the same or different from each other,
  • multiple R 903 are present, the multiple R 903 are the same or different from each other,
  • the multiple R 904 are present, the multiple R 904 are the same or different from each
  • R 201 to R 208 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a group represented by —N(R 906 )(R 907 ); a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsub
  • L 201 and L 202 are each independently a single bond, or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms
  • Ar 201 and Ar 202 are each independently preferably a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms.
  • Ar 201 and Ar 202 are each independently phenyl group, naphthyl group, a phenanthryl group, biphenyl group, a terphenyl group, a diphenylfluorenyl group, dimethylfluorenyl group, a benzodiphenyl fluorenyl group, benzodimethylfluorenyl group, a dibenzofuranyl group, a dibenzothienyl group, A naphthobenzofuranyl group or a naphthobenzothienyl group is preferred.
  • the second compound represented by the general formula (2) is represented by the following general formula (201), general formula (202), general formula (203), general formula (204) , general formula (205), general formula (206), general formula (207), general formula (208) or general formula (209).
  • L 201 and Ar 201 are synonymous with L 201 and Ar 201 in the general formula (2)
  • R 201 to R 208 are each independently synonymous with R 201 to R 208 in the general formula (2).
  • the second compound represented by the general formula (2) has the following general formula (221), general formula (222), general formula (223), general formula (224), general formula (225), general formula ( 226), general formula (227), general formula (228) or general formula (229).
  • R 201 and R 203 to R 208 are each independently synonymous with R 201 and R 203 to R 208 in the general formula (2);
  • L 201 and Ar 201 are respectively synonymous with L 201 and Ar 201 in the general formula (2),
  • L 203 has the same definition as L 201 in the general formula (2),
  • L 203 and L 201 are the same or different from each other,
  • Ar 203 has the same definition as Ar 201 in the general formula (2), Ar 203 and Ar 201 are the same or different from each other.
  • the second compound represented by the general formula (2) has the following general formula (241), general formula (242), general formula (243), general formula (244), general formula (245), general formula ( 246), general formula (247), general formula (248) or general formula (249).
  • R 201 , R 202 and R 204 to R 208 are each independently synonymous with R 201 , R 202 and R 204 to R 208 in the general formula (2);
  • L 201 and Ar 201 are respectively synonymous with L 201 and Ar 201 in the general formula (2),
  • L 203 has the same definition as L 201 in the general formula (2),
  • L 203 and L 201 are the same or different from each other,
  • Ar 203 has the same definition as Ar 201 in the general formula (2), Ar 203 and Ar 201 are the same or different from each other.
  • R 201 to R 208 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms or a group represented by —Si(R 901 ) (R 902 ) (R 903 ) is preferred.
  • L201 is a single bond or an unsubstituted arylene group having 6 to 22 ring carbon atoms
  • Ar 201 is preferably a substituted or unsubstituted aryl group having 6 to 22 ring carbon atoms.
  • the substituents R 201 to R 208 of the anthracene skeleton in the second compound represented by the general formula (2) suppress intermolecular interactions.
  • R 201 to R 208 are bulky substituents such as alkyl groups and cycloalkyl groups, intermolecular interactions may be suppressed.
  • R 201 to R 208 which are substituents of the anthracene skeleton are preferably not bulky substituents, and are not alkyl groups or cycloalkyl groups.
  • R 201 to R 208 are each independently a hydrogen atom or substituted or unsubstituted C 1 to 50 , a substituted or unsubstituted cycloalkyl group having 3 to 50 ring-forming carbon atoms, or a group represented by -Si(R 901 ) (R 902 ) (R 903 ).
  • R 201 to R 208 in the second compound represented by general formula (2) are preferably hydrogen atoms.
  • the substituents in the case of “substituted or unsubstituted” for R 201 to R 208 are the aforementioned substituents that may be bulky, particularly substituted or unsubstituted alkyl groups, and substituted or unsubstituted It is also preferred not to contain substituted cycloalkyl groups.
  • the substituent in the case of "substituted or unsubstituted" in R 201 to R 208 does not include a substituted or unsubstituted alkyl group and a substituted or unsubstituted cycloalkyl group, so that an alkyl group, a cycloalkyl group, etc.
  • R 201 to R 208 as substituents of the anthracene skeleton are not bulky substituents, and R 201 to R 208 are unsubstituted. Further, in the case where R 201 to R 208 which are substituents of the anthracene skeleton are not bulky substituents, when a substituent is bonded to R 201 to R 208 as a non-bulky substituent, the substituent is also bulky.
  • the second compound can be produced by known methods.
  • the second compound can also be produced by imitating a known method and using known alternative reactions and starting materials according to the desired product.
  • Specific examples of the second compound include the following compounds. However, the present invention is not limited to specific examples of these second compounds.
  • the first light-emitting compound is not particularly limited as long as it is a compound whose ionization potential Ip(D1) satisfies the relationship of the above formula (1X).
  • the first light-emitting compound for example, among the third compound and the fourth compound below, a compound whose ionization potential Ip (D1) satisfies the relationship of the above formula (1X) can be selected and used. can.
  • examples of the second light-emitting compound include the following third compound and fourth compound.
  • the third compound and the fourth compound are each independently a compound represented by the following general formula (4), a compound represented by the following general formula (5), and a compound represented by the following general formula (6) One or more compounds selected from the group consisting of compounds.
  • each Z is independently CRa or a nitrogen atom;
  • A1 ring and A2 ring are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms,
  • n21 and n22 are each independently 0, 1, 2, 3 or 4;
  • Rb's one or more sets of two or more adjacent Rb's among the plurality of Rb's are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted
  • the "aromatic hydrocarbon ring" of the A1 ring and A2 ring has the same structure as the compound in which a hydrogen atom is introduced into the above-mentioned "aryl group”.
  • the "aromatic hydrocarbon ring" of the A1 ring and A2 ring contains two carbon atoms on the central condensed two-ring structure of the general formula (4) as ring-forming atoms.
  • Specific examples of the "substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms” include compounds in which a hydrogen atom is introduced into the "aryl group” described in Specific Example Group G1.
  • the “heterocyclic ring” of the A1 ring and A2 ring has the same structure as the compound in which a hydrogen atom is introduced into the “heterocyclic group” described above.
  • the “heterocyclic ring” of the A1 ring and A2 ring contains two carbon atoms on the central condensed two-ring structure of the general formula (4) as ring-forming atoms.
  • Specific examples of the "substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms” include compounds in which a hydrogen atom is introduced into the "heterocyclic group” described in Specific Example Group G2.
  • Rb is bonded to any of the carbon atoms forming the aromatic hydrocarbon ring as the A1 ring or any of the atoms forming the heterocyclic ring as the A1 ring.
  • Rc is bonded to any of the carbon atoms forming the aromatic hydrocarbon ring as the A2 ring or any of the atoms forming the heterocyclic ring as the A2 ring.
  • At least one of Ra, Rb and Rc is preferably a group represented by the following general formula (4a), and at least two are more preferably groups represented by the following general formula (4a). .
  • L 401 is single bond, a substituted or unsubstituted arylene group having 6 to 30 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms
  • Ar 401 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms
  • a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms or a group represented by the following general formula (4b).
  • L 402 and L 403 are each independently single bond, a substituted or unsubstituted arylene group having 6 to 30 ring-forming carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring-forming atoms
  • the set consisting of Ar 402 and Ar 403 is combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • Ar 402 and Ar 403 that do not form a single ring and do not form a condensed ring are each independently A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • the compound represented by the general formula (4) is represented by the following general formula (42).
  • R 401 to R 411 that do not form a single ring and do not form a condensed ring are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904
  • At least one of R 401 to R 411 is preferably a group represented by the general formula (4a), more preferably at least two groups represented by the general formula (4a).
  • R 404 and R 411 are preferably groups represented by the general formula (4a).
  • the compound represented by the general formula (4) is a compound in which a structure represented by the following general formula (4-1) or general formula (4-2) is bound to the A1 ring.
  • the compound represented by the general formula (42) is represented by the following general formula (4-1) or general formula (4-2) in the ring to which R 404 to R 407 are bonded. It is a compound in which structures are combined.
  • the two * are each independently bonded to the ring-forming carbon atom of the aromatic hydrocarbon ring or the ring-forming atom of the heterocyclic ring as the A1 ring in the general formula (4). or combined with any one of R 404 to R 407 in the general formula (42),
  • the three * in the general formula (4-2) are each independently bonded to the ring-forming carbon atom of the aromatic hydrocarbon ring or the ring-forming atom of the heterocyclic ring as the A1 ring in the general formula (4) , or combined with any one of R 404 to R 407 in the general formula (42), one or more sets of adjacent two or more of R 421 to R 427 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, one or more sets of two or more adjacent ones of R 431 to R 438 are combined with each other to
  • the compound represented by the general formula (4) is a compound represented by the following general formula (41-3), general formula (41-4) or general formula (41-5) .
  • A1 ring is as defined in the general formula (4), R 421 to R 427 each independently have the same meaning as R 421 to R 427 in the general formula (4-1); R 440 to R 448 are each independently synonymous with R 401 to R 411 in the general formula (42). )
  • the substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms as the A1 ring of the general formula (41-5) is It is a substituted or unsubstituted naphthalene ring, or a substituted or unsubstituted fluorene ring.
  • the substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms as the A1 ring of the general formula (41-5) is a substituted or unsubstituted dibenzofuran ring, It is a substituted or unsubstituted carbazole ring or a substituted or unsubstituted dibenzothiophene ring.
  • the compound represented by the general formula (4) or the general formula (42) is selected from the group consisting of compounds represented by the following general formulas (461) to (467) .
  • R 421 to R 427 each independently have the same meaning as R 421 to R 427 in the general formula (4-1);
  • R 431 to R 438 each independently have the same meaning as R 431 to R 438 in the general formula (4-2);
  • R 440 to R 448 and R 451 to R 454 are each independently synonymous with R 401 to R 411 in the general formula (42);
  • X 4 is an oxygen atom, NR 801 , or C(R 802 )(R 803 );
  • R 801 , R 802 and R 803 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon
  • one or more sets of two or more adjacent groups of R 401 to R 411 are bonded to each other to form a substituted or unsubstituted They form a single ring or combine with each other to form a substituted or unsubstituted condensed ring, and this embodiment will be described in detail below as a compound represented by general formula (45).
  • the set consisting of R 461 and R 462 , the set consisting of R 462 and R 463 , the set consisting of R 464 and R 465 , the set consisting of R 465 and R 466 , the set consisting of R 466 and R 467 , two or more of the pairs selected from the group consisting of the pair consisting of R 468 and R 469 , the pair consisting of R 469 and R 470 , and the pair consisting of R 470 and R 471 are bound together, forming a substituted or unsubstituted monocyclic ring or a substituted or unsubstituted condensed ring, however, the set consisting of R 461 and R 462 and the set consisting of R 462 and R 463 ; the set consisting of R 464 and R 465 and the set consisting of R 465 and R 466 ; the set consisting of R 465 and R 466 and the set consisting of R 467 ;
  • R n and R n+1 (n represents an integer selected from 461, 462, 464 to 466, and 468 to 470) are bonded to each other, and R n and R n+1 are bonded 2 Together with two ring-forming carbon atoms, it forms a substituted or unsubstituted monocyclic ring or a substituted or unsubstituted fused ring.
  • the ring preferably consists of atoms selected from the group consisting of carbon atoms, oxygen atoms, sulfur atoms and nitrogen atoms, and the number of atoms in the ring is preferably 3 to 7, more preferably 5 or is 6.
  • the number of ring structures in the compound represented by the general formula (45) is, for example, two, three, or four. Two or more ring structures may exist on the same benzene ring on the mother skeleton of general formula (45), or may exist on different benzene rings. For example, when there are three ring structures, one ring structure may exist for each of the three benzene rings of the general formula (45).
  • Examples of the ring structure in the compound represented by the general formula (45) include structures represented by the following general formulas (451) to (460).
  • R n and R n+1 represents the two ring-forming carbon atoms to which The ring-forming carbon atoms to which R n is bound are *1 and *2, *3 and *4, *5 and *6, *7 and *8, *9 and *10, *11 and *12 and *13.
  • R 4501 to R 4506 and R 4512 to R 4513 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other,
  • R 4501 to R 4514 which do not form a single ring and which do not form a condensed ring are each independently synonymous with R 461 to R 471 in the general formula (45).
  • *1 and *2 and *3 and *4 each represent the two ring-forming carbon atoms to which R n and R n+1 are bonded;
  • the ring-forming carbon atoms to which R n is bound may be either two ring-forming carbon atoms represented by *1 and *2 or *3 and *4,
  • X 45 is C(R 4512 )(R 4513 ), NR 4514 , an oxygen atom or a sulfur atom; one or more sets of adjacent two or more of R 4512 to R 4513 and R 4515 to R 4525 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other, R 4512 to R 4513 , R 4515 to R 4521 and R 4522 to R 4525 which do not form a single ring and do not form a condensed ring, and R 4514 are each
  • At least one of R 462 , R 464 , R 465 , R 470 and R 471 is , is preferably a group that does not form a ring structure.
  • R 461 to R 471 that do not form a ring structure in general formula (45)
  • R 4501 to R 4514 and R 4515 to R 4525 in formulas (451) to (460) are preferably , independently of each other, hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a group represented by —N(R 906 )(R 907 ); a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms
  • R d are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a group represented by —N(R 906 )(R 907 ); halogen atom, cyano group, nitro group, preferably a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or un
  • the compound represented by the general formula (45) is represented by any one of the following general formulas (45-1) to (45-6).
  • Rings d to i are each independently a substituted or unsubstituted monocyclic ring or a substituted or unsubstituted condensed ring
  • R 461 to R 471 are each independently synonymous with R 461 to R 471 in the general formula (45).
  • the compound represented by the general formula (45) is represented by any one of the following general formulas (45-7) to (45-12).
  • Rings d to f, k, and j are each independently a substituted or unsubstituted monocyclic ring or a substituted or unsubstituted condensed ring, R 461 to R 471 are each independently synonymous with R 461 to R 471 in the general formula (45). )
  • R 501 to R 507 and R 511 to R 517 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R
  • R 521 and R 522 are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, - a group represented by Si(R 901 ) (R 902 ) (R 903 ); a group represented by —O—(R 904 ), a group represented by -S-(R 905 ), a group represented by —N(R 906 )(R 907 ); halogen atom, cyano group, nitro group, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5
  • a set of adjacent two or more of R 501 to R 507 and R 511 to R 517 is, for example, a set of R 501 and R 502 , a set of R 502 and R 503 , R 503 and R 504 , R 505 and R 506 , R 506 and R 507 , R 501 , R 502 and R 503 , and so on.
  • At least one, preferably two of R 501 to R 507 and R 511 to R 517 are groups represented by —N(R 906 )(R 907 ).
  • R 501 -R 507 and R 511 -R 517 are each independently hydrogen atom, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • the compound represented by the general formula (5) is a compound represented by the following general formula (52).
  • R 531 to R 534 and R 541 to R 544 are combined with each other to form a substituted or unsubstituted monocyclic ring, or combined with each other to form a substituted or unsubstituted fused ring, or not combined with each other
  • R 531 to R 534 , R 541 to R 544 , and R 551 and R 552 that do not form a single ring and do not form a condensed ring are each independently hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms
  • R 561 to R 564 are each independently A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring
  • the compound represented by the general formula (5) is a compound represented by the following general formula (53).
  • R 551 , R 552 and R 561 to R 564 are each independently synonymous with R 551 , R 552 and R 561 to R 564 in general formula (52).
  • R 561 to R 564 in the general formulas (52) and (53) are each independently a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms (preferably a phenyl group ).
  • R 521 and R 522 in the general formula (5) and R 551 and R 552 in the general formulas (52) and (53) are hydrogen atoms.
  • the substituents in the case of "substituted or unsubstituted” in the general formulas (5), (52) and (53) are a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • a ring, b ring and c ring are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms
  • R 601 and R 602 each independently combine with the a ring, b ring or c ring to form a substituted or unsubstituted heterocyclic ring, or do not form a substituted or unsubstituted heterocyclic ring
  • R 601 and R 602 that do not form a substituted or unsubstituted heterocyclic ring are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms,
  • Rings a, b and c are rings (substituted or unsubstituted ring-forming carbon atoms of 6 to 50 or a substituted or unsubstituted heterocyclic ring having 5 to 50 ring atoms).
  • the "aromatic hydrocarbon ring" of the a ring, b ring and c ring has the same structure as the compound in which a hydrogen atom is introduced into the above "aryl group”.
  • the "aromatic hydrocarbon ring" of ring a includes three carbon atoms on the central condensed two-ring structure of the general formula (6) as ring-forming atoms.
  • the "aromatic hydrocarbon rings” of rings b and c contain two carbon atoms on the central condensed two-ring structure of the general formula (6) as ring-forming atoms.
  • substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms include compounds in which a hydrogen atom is introduced into the "aryl group” described in Specific Example Group G1.
  • the “heterocyclic ring” of rings a, b and c has the same structure as the compound in which a hydrogen atom is introduced into the “heterocyclic group” described above.
  • the “heterocyclic ring” of the a ring contains three carbon atoms on the central condensed two-ring structure of the general formula (6) as ring-forming atoms.
  • heterocyclic rings of rings b and c contain two carbon atoms on the central condensed two-ring structure of the general formula (6) as ring-forming atoms.
  • Specific examples of the "substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms” include compounds in which a hydrogen atom is introduced into the "heterocyclic group" described in Specific Example Group G2.
  • R 601 and R 602 may each independently combine with ring a, ring b or ring c to form a substituted or unsubstituted heterocyclic ring.
  • the heterocyclic ring in this case contains a nitrogen atom on the central condensed two-ring structure of the general formula (6).
  • the heterocyclic ring in this case may contain heteroatoms other than the nitrogen atom.
  • the fact that R 601 and R 602 are bonded to the a ring, b ring, or c ring specifically means that the atoms constituting the a ring, b ring, or c ring are bonded to the atoms constituting R 601 and R 602 .
  • R 601 may combine with the a ring to form a two-ring (or three or more) condensed nitrogen-containing heterocyclic ring in which the ring containing R 601 and the a ring are fused.
  • Specific examples of the nitrogen-containing heterocyclic ring include compounds corresponding to nitrogen-containing heterocyclic groups having two or more condensed rings among the specific example group G2. The same applies when R 601 is bonded to the b ring, when R 602 is bonded to the a ring, and when R 602 is bonded to the c ring.
  • the a-ring, b-ring and c-ring in the general formula (6) are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 ring-forming carbon atoms. In one embodiment, the a-ring, b-ring and c-ring in the general formula (6) are each independently a substituted or unsubstituted benzene ring or naphthalene ring.
  • R 601 and R 602 in the general formula (6) are each independently a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, Preferred is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the compound represented by the general formula (6) is a compound represented by the following general formula (62).
  • R 601A is combined with one or more selected from the group consisting of R 611 and R 621 to form a substituted or unsubstituted heterocyclic ring, or does not form a substituted or unsubstituted heterocyclic ring;
  • R 602A combines with one or more selected from the group consisting of R 613 and R 614 to form a substituted or unsubstituted heterocyclic ring, or does not form a substituted or unsubstituted heterocyclic ring;
  • R 601A and R 602A that do not form a substituted or unsubstituted heterocyclic ring are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted
  • R 601A and R 602A in general formula (62) are groups corresponding to R 601 and R 602 in general formula (6), respectively.
  • R 601A and R 611 may combine to form a two-ring (or three or more) condensed nitrogen-containing heterocyclic ring in which a ring containing them and a benzene ring corresponding to ring a are fused.
  • Specific examples of the nitrogen-containing heterocyclic ring include compounds corresponding to nitrogen-containing heterocyclic groups having two or more condensed rings among the specific example group G2. The same applies to the case where R 601A and R 621 are combined, the case where R 602A and R 613 are combined, and the case where R 602A and R 614 are combined.
  • R 611 to R 621 may be joined together to form a substituted or unsubstituted single ring, or may be joined together to form a substituted or unsubstituted fused ring.
  • R 611 and R 612 may combine to form a structure in which a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring, a benzothiophene ring, or the like is condensed with respect to the 6-membered ring to which they are bonded,
  • the formed condensed ring is a naphthalene ring, carbazole ring, indole ring, dibenzofuran ring or dibenzothiophene ring.
  • R 611 to R 621 that do not contribute to ring formation are each independently hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • R 611 to R 621 that do not contribute to ring formation are each independently hydrogen atom, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • R 611 to R 621 that do not contribute to ring formation are each independently It is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • R 611 to R 621 that do not contribute to ring formation are each independently a hydrogen atom, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, At least one of R 611 to R 621 is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the compound represented by the general formula (6) is a compound represented by the following general formula (42-2).
  • R 441 and R 442 are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • R 443 to R 446 are each independently a hydrogen atom or a substituent R
  • the substituents R are each independently a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901 ) (R 902 ) (R 903 ), —O—(R 904 ), -S-(R 905 ), -N(R 906 )(R 907 ), halogen atom, cyano group, nitro group, a substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to
  • the plurality of R 903 are the same or different from each other
  • the plurality of R 904 are the same or different from each other
  • the plurality of R 905 are the same or different
  • the plurality of R 905 are , are the same or different from each other
  • when there is a plurality of R 906 the plurality of R 906 are the same or different from each other, and when there are a plurality of R 907 , are the plurality of R 907 the same or different.
  • the substituent in the case of "substituted or unsubstituted" in the general formula (42-2) is an unsubstituted alkyl group having 1 to 50 carbon atoms, an unsubstituted haloalkyl group having 1 to 50 carbon atoms, an unsubstituted alkenyl group having 2 to 50 carbon atoms, an unsubstituted alkynyl group having 2 to 50 carbon atoms, an unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, an unsubstituted alkoxy group having 1 to 50 carbon atoms, an unsubstituted alkylthio group having 1 to 50 carbon atoms, an unsubstituted aryloxy group having 6 to 50 ring carbon atoms, an unsubstituted arylthio group having 6 to 50 ring carbon atoms, an unsubstituted aralkyl group having 7 to 50 carbon atoms,
  • R 41 When there are two or more R 41 , two or more R 41 are the same or different, and when two or more R 42 are present, two or more R 42 are the same or different from each other, and when 2 or more R 43 are present, 2 or more R 43 are the same or different from each other, and when 2 or more R 44 are present, 2 or more R 44 are the same or different from each other, and when there are 2 or more R 45 , 2 or more R 45 are the same or different from each other, and when 2 or more R 46 are present, 2 or more R 46 are the same or different from each other, and when there are two or more R 47 , two or more R 47 are the same or different from each other, and when two or more R 48 are present, two or more R 48 are the same or different from each other, and when there are 2 or more R 49 , 2 or more R 49 are the same or different from each other, and when 2 or more R 50 are present, 2 or more R 50 are the same or different from each other, and when 2 or more R 51 are present, 2 or
  • the compound represented by the general formula (4) is a compound represented by the general formula (41-3), general formula (41-4) or general formula (41-5).
  • the A1 ring in the general formula (41-5) is a substituted or unsubstituted condensed aromatic hydrocarbon ring having 10 to 50 ring-forming carbon atoms, or a substituted or unsubstituted condensed ring having 8 to 50 ring-forming atoms It is a heterocycle.
  • the substituted or unsubstituted fused aromatic having 10 to 50 ring-forming carbon atoms in the general formula (41-3), general formula (41-4), and general formula (41-5) the hydrocarbon ring a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted anthracene ring, or a substituted or unsubstituted fluorene ring,
  • the substituted or unsubstituted condensed aromatic carbonization having 10 to 50 ring-forming carbon atoms in the general formula (41-3), general formula (41-4) or general formula (41-5) the hydrogen ring a substituted or unsubstituted naphthalene ring, or a substituted or unsubstituted fluorene ring,
  • the compound represented by the general formula (4) is a compound represented by the following general formula (461), a compound represented by the following general formula (462), a compound represented by the following general formula (463), a compound represented by the following general formula (464), a compound represented by the following general formula (465), It is selected from the group consisting of a compound represented by the following general formula (466) and a compound represented by the following general formula (467).
  • R 421 -R 427 and R 440 -R 448 are each independently hydrogen atom, A substituted or unsubstituted aryl group having 6 to 50 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms.
  • R 421 -R 427 and R 440 -R 447 are each independently hydrogen atom, It is selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 18 ring-forming carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 18 ring-forming atoms.
  • the compound represented by the general formula (41-3) is a compound represented by the following general formula (41-3-1).
  • R 423 , R 425 , R 426 , R 442 , R 444 and R 445 are each independently R 423 and R 425 in general formula (41-3). , R 426 , R 442 , R 444 and R 445. )
  • the compound represented by the general formula (41-3) is a compound represented by the following general formula (41-3-2).
  • R 421 to R 427 and R 440 to R 448 are each independently R 421 to R 427 and R 440 to R 448 in general formula (41-3). is synonymous with At least one of R 421 to R 427 and R 440 to R 446 is a group represented by —N(R 906 )(R 907 ). )
  • any two of R 421 to R 427 and R 440 to R 446 in formula (41-3-2) are groups represented by —N(R 906 )(R 907 ) be.
  • the compound represented by the formula (41-3-2) is a compound represented by the following formula (41-3-3).
  • R 421 to R 424 , R 440 to R 443 , R 447 and R 448 are each independently R 421 to R 424 in general formula (41-3) , R 440 to R 443 , R 447 and R 448 , and R A , R B , R C and R D each independently A substituted or unsubstituted aryl group having 6 to 18 ring-forming carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 18 ring-forming atoms.
  • the compound represented by the formula (41-3-3) is a compound represented by the following formula (41-3-4).
  • R 447 , R 448 , R A , R B , R C and R D are each independently R 447 , R 448 , RA , RB , RC and RD .
  • R A , R B , R C and R D are each independently a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms.
  • R A , R B , R C and R D are each independently a substituted or unsubstituted phenyl group.
  • R 447 and R 448 are hydrogen atoms.
  • the substituents in the case of "substituted or unsubstituted" in each of the above formulas are an unsubstituted alkyl group having 1 to 50 carbon atoms, an unsubstituted alkenyl group having 2 to 50 carbon atoms, an unsubstituted alkynyl group having 2 to 50 carbon atoms, an unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, —Si(R 901a ) (R 902a ) (R 903a ), —O—(R 904a ), -S-(R 905a ), -N(R 906a ) (R 907a ), halogen atom, cyano group, nitro group, an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms or an unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, R 901a to R 90
  • the substituents in the case of "substituted or unsubstituted" in each of the above formulas are an unsubstituted alkyl group having 1 to 50 carbon atoms, It is an unsubstituted aryl group having 6 to 50 ring carbon atoms or an unsubstituted heterocyclic group having 5 to 50 ring atoms.
  • the substituents in the case of "substituted or unsubstituted" in each of the above formulas are an unsubstituted alkyl group having 1 to 18 carbon atoms, It is an unsubstituted aryl group having 6 to 18 ring carbon atoms or an unsubstituted heterocyclic group having 5 to 18 ring atoms.
  • Specific examples of the third compound and fourth compound include the following compounds. However, the present invention is not limited to specific examples of these third and fourth compounds.
  • an organic electroluminescent display device (hereinafter also referred to as an organic EL display device) according to the second embodiment will be described.
  • the same components as in the first embodiment are given the same reference numerals and names, and their descriptions are omitted or simplified.
  • materials and compounds that are not particularly mentioned can be the same materials and compounds as the materials and compounds described in the first embodiment.
  • the organic EL display device has an anode and a cathode that are arranged to face each other, and includes a blue organic EL element as a blue pixel, a green organic EL element as a green pixel, and a red organic EL element as a red pixel.
  • the blue organic EL device has a blue light emitting region having a first light emitting layer and a second light emitting layer disposed between the anode and the cathode, the first light emitting layer and one of the second light emitting layers is arranged on the anode side in the blue light emitting region,
  • the green organic EL element has a green light-emitting layer arranged between the anode and the cathode, and the red organic EL element has a red light-emitting layer arranged between the anode and the cathode.
  • the green organic EL element, and the red organic EL element are composed of the blue light-emitting region of the blue organic EL element, the green light-emitting layer of the green organic EL element, and the red organic EL element.
  • a hole-transporting zone provided in common across the blue organic EL element, the green organic EL element, and the red organic EL element;
  • a hole-transporting zone is in direct contact with the first light-emitting layer or the second light-emitting layer in the blue light-emitting region of the blue organic EL device, and the hole-transporting zone comprises one or more organic layers.
  • the organic layers in the hole transport zone comprises a hole transport zone material
  • the first light emitting layer comprises a first host material and a maximum peak wavelength of 500 nm. and a first light-emitting compound that emits the following light
  • the second light-emitting layer includes a second host material and a second light-emitting compound that emits light with a maximum peak wavelength of 500 nm or less.
  • the first host material and the second host material are different from each other, the first light-emitting compound and the second light-emitting compound are the same as or different from each other, and the first The triplet energy T 1 (H1) of the host material and the triplet energy T 1 (H2) of the second host material satisfy the relationship of the following formula (Equation 1), and the blue of the blue organic EL element
  • the ionization potential Ip(HT) with respect to the hole-transporting zone material and the ionization potential Ip(D1) of the first light-emitting compound contained in the first light-emitting layer are expressed by the following formula (number 1X).
  • a layer commonly provided over a plurality of elements may be referred to as a common layer.
  • a layer that is not commonly provided over a plurality of elements may be referred to as a non-common layer.
  • a band provided in common over a plurality of elements may be referred to as a common band.
  • a blue organic EL element, a green organic EL element, and a red organic EL element are provided between the anode and the blue light-emitting region of the blue organic EL element, the green light-emitting layer of the green organic EL element, and the red light-emitting layer of the red organic EL element, respectively.
  • the hole-transporting zone that is common throughout is the common zone.
  • the blue organic EL element has a first light-emitting layer and a second light-emitting layer that satisfy the relationship of the formula (Equation 1). Therefore, for the same reason as in the first embodiment, the luminous efficiency of the blue organic EL element can be improved. Furthermore, the organic EL display device according to the present embodiment has a layer structure (layer-saving structure) in which the number of organic layers constituting the hole transport zone is reduced between the blue light emitting region and the anode.
  • a non-common layer for example, an electron barrier layer
  • the hole transport band (common band) common to the blue organic EL element, the green organic EL element and the red organic EL element is the first light emitting region in the blue light emitting region. It is configured to be in direct contact with the layer or the second light-emitting layer.
  • the organic EL display device does not have a non-common layer on the anode side of the light-emitting layer of the blue organic EL element. has been made.
  • the amount of holes injected into the blue light-emitting region is likely to be insufficient, so there is a risk that the luminous efficiency will decrease.
  • the ionization potential Ip(HT) of the hole-transporting band material contained in at least one or more organic layers and the first light-emitting compound contained in the first light-emitting layer are and the ionization potential Ip(D1) satisfy the relationship of the above formula (1X), the energy barrier between the hole-transporting zone material and the first light-emitting compound can be reduced.
  • the energy barrier between the hole-transporting zone material and the first light-emitting compound can be reduced.
  • the organic EL display device by selecting the hole-transporting band material and the first light-emitting compound that satisfy the relationship of the formula (1X), the efficiency of the organic EL element can be improved. can be guaranteed, for example, the range of options for the first host material and the second host material can be expanded.
  • each organic layer in the hole-transporting zone is the first organic layer in direct contact with the first emitting layer, and the first organic layer is , preferably contains a hole-transporting zone material.
  • each organic layer in the hole-transporting zone may or may not contain the common hole-transporting zone material described in the first embodiment. Therefore, the same configuration as that of the organic EL device of the first embodiment can be applied to the blue organic EL device of this embodiment.
  • the first light-emitting layer and second light-emitting layer contained in the blue light-emitting region can be used.
  • the one or more organic layers contained in the hole transport zone according to the present embodiment include one or more organic layers contained in the hole transport zone according to the first embodiment (for example, the first organic layer , second organic layer and third organic layer, etc.) can be used.
  • FIG. 4 shows an organic EL display device 100A according to one embodiment.
  • the organic EL display device 100A has electrodes and organic layers supported by a substrate 2A.
  • the organic EL display device 100A has an anode 3 and a cathode 4 arranged to face each other.
  • the organic EL display device 100A has a blue organic EL element 10B as a blue pixel, a green organic EL element 10G as a green pixel, and a red organic EL element 10R as a red pixel. Note that FIG.
  • FIG. 4 is a schematic diagram of the organic EL display device 100A, and does not limit the size of the organic EL display device 100A, the thickness of each layer, and the like.
  • the first light-emitting layer 51 and the second light-emitting layer 52, and the green light-emitting layer 53 and the red light-emitting layer 54 are expressed with the same thickness.
  • the layers have the same thickness.
  • a hole transport zone 7, a blue light emitting region 5, an electron transport layer 8, and an electron injection layer 9 are laminated in this order from the anode 3 side between the anode 3 and the cathode 4.
  • the blue light emitting region 5 has a first light emitting layer 51 and a second light emitting layer 52 .
  • the first light-emitting layer 51 is in direct contact with the hole-transporting zone 7 .
  • a hole transport zone 7, a green light emitting layer 53, an electron transport layer 8, and an electron injection layer 9 are laminated in this order from the anode 3 side between the anode 3 and the cathode 4.
  • the hole transport zone 7 is a common zone composed of a total of n layers of organic layers from the organic layer L1 to the organic layer Ln. n can also be 1, 2 or 3 or more.
  • the organic layer L1 is a layer in direct contact with the blue light emitting region 5, and the first organic layer corresponds to the organic layer L1.
  • the hole-transporting zone consists of only one organic layer (first organic layer), n is 1, organic layer L1 is the first organic layer, and organic layer L1 is the anode. While being in direct contact, it is in direct contact with the first light-emitting layer of the blue organic EL device.
  • the hole-transporting zone consists of only two organic layers (the first organic layer and the second organic layer)
  • n is 2
  • the organic layer L1 is the first organic layer
  • the organic The layer L2 is the second organic layer
  • the organic layer L1 is in direct contact with the first light-emitting layer of the blue organic EL device
  • the organic layer L2 is in direct contact with the anode.
  • the anode 3 is provided independently for each of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. Therefore, the organic EL display device 100A can individually drive the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. Anodes of the organic EL elements 10B, 10G, and 10R are insulated from each other by an insulating material (not shown) or the like.
  • the cathode 4 is commonly provided for the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R.
  • a blue organic EL element 10B, a green organic EL element 10G, and a red organic EL element 10R as pixels are arranged in parallel on the substrate 2A.
  • FIG. 5 shows a schematic configuration of another example of the organic EL display device according to the second embodiment.
  • the organic EL display device 200 has the same configuration as the organic EL display device 100A shown in FIG. 4 except for the green organic EL element 20G as the green pixel and the red organic EL element 20R as the red pixel. Differences from the organic EL display device 100A will be described.
  • the green organic EL element 20G has a hole transport zone 7, a green organic layer 531, a green light emitting layer 53, an electron transport layer 8, and an electron injection layer 9 in this order from the anode 3 side. , are stacked in this order.
  • green organic layer 531 is in direct contact with hole-transporting zone 7 .
  • Green organic layer 531 is preferably an electron blocking layer.
  • the red organic EL element 20R has a hole transport zone 7, a red organic layer 541, a red light emitting layer 54, an electron transport layer 8, and an electron injection layer 9 in order from the anode 3 side between the anode 3 and the cathode 4. , are stacked in this order.
  • the red organic layer 541 is in direct contact with the hole-transporting zone 7 .
  • Red organic layer 541 is preferably an electron blocking layer. Also in the organic EL display device shown in FIG. can reduce the energy barrier with As a result, even if the number of organic layers constituting the hole-transporting zone is reduced (reduced layers), hole injection into the light-emitting region can be promoted, and high efficiency can be easily achieved.
  • the present invention is not limited to the configurations of the organic EL display devices shown in FIGS.
  • the green organic EL element and the red organic EL element may be elements emitting fluorescent light or elements emitting phosphorescent light.
  • the green light emitting layer 53 may be a light emitting layer containing a delayed fluorescent compound
  • the red light emitting layer 54 may be a delayed fluorescent compound. It may be a light-emitting layer containing a compound of
  • the hole-transporting zone 7 is formed between each of the blue light-emitting region 5 of the blue organic EL element 10B, the green light-emitting layer 53 of the green organic EL element 10G, and the red light-emitting layer 54 of the red organic EL element 10R, and the anode 3, It is a common band provided in common over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R.
  • the hole transport zone 7 is composed of a plurality of layers, the plurality of layers are all the blue light emitting region 5 of the blue organic EL device 10B, the green light emitting layer 53 of the green organic EL device 10G, and the red organic EL device. It is a common layer provided between each of the red light emitting layers 54 of 10R and the anode 3 in common over the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R. .
  • At least one of the organic layers (organic layer L1 to organic layer Ln) in the hole-transport zone 7 comprises a hole-transport zone material, and the holes of the hole-transport zone material
  • the mobility is preferably 1.0 ⁇ 10 ⁇ 5 cm 2 /Vs or more, more preferably 5.0 ⁇ 10 ⁇ 5 cm 2 /Vs or more, and 1.0 ⁇ 10 ⁇ 4 cm 2 /Vs or more is more preferable.
  • the hole mobility of the hole-transporting zone material contained in the hole-transporting zone is 1.0 ⁇ 10 ⁇ 5 cm 2 /Vs or more, holes from the hole-transporting zone, which is the common zone, to the blue light-emitting region Therefore, it becomes easier to achieve high efficiency even in a layer-saving configuration of the hole transport zone, in which the amount of holes supplied to the blue light emitting region tends to be insufficient. It is also preferred that at least two of the organic layers in the hole-transport zone 7 contain the hole-transport zone material.
  • the hole-transporting zone material include the dope compound described in the first embodiment, the compound represented by the general formula (21), the compound represented by the general formula (22), and the hole-transporting layer. Any usable compound or the like can be used.
  • the n-layer organic layer contained in the hole transport zone 7 includes, for example, the first organic layer, the second organic layer, the third organic layer, the hole injection layer, and the hole injection layer described in the first embodiment.
  • One or more layers selected from the group consisting of transport layers can be used in combination.
  • the hole mobility can be measured by performing impedance measurement using a mobility evaluation element manufactured by the following procedure.
  • the mobility evaluation element is produced, for example, by the following procedure.
  • the following compound HT-A is vapor-deposited on the film of the hole injection layer to form the hole transport layer.
  • a compound Target whose hole mobility is to be measured, is vapor-deposited to form a layer to be measured.
  • Metal aluminum (Al) is deposited on the layer to be measured to form a metal cathode.
  • the configuration of the above mobility evaluation element is schematically shown as follows. ITO(130)/HA-2(5)/HT-A(10)/Target(200)/Al(80)
  • the numbers in parentheses indicate the film thickness (nm).
  • the electric time constant ⁇ of the mobility evaluation element is obtained from the above calculation formula (C2) from the frequency fmax showing the peak.
  • Calculation formula (C2): ⁇ 1/(2 ⁇ fmax) ⁇ in the above formula (C2) is a symbol representing the circumference ratio.
  • the hole mobility is calculated from the relationship of the following calculation formula (C3) using ⁇ obtained from the calculation formula (C2).
  • the square root E 1/2 of the electric field strength can be calculated from the relationship of the following formula (C4).
  • Calculation formula (C4): E 1/2 V 1/2 /d 1/2
  • Model 1260 of Solartron Co., Ltd. is used as an impedance measuring device, and for higher accuracy, Model 1296 permittivity measurement interface of Solartron Co., Ltd. can also be used.
  • the blue organic EL device 10B has an anode 3, a hole transport zone 7, a blue light emitting region 5, an electron transport layer 8, an electron injection layer 9 and a cathode 4 in this order. Note that the blue organic EL element 10B may include other layers different from the layers shown in FIG.
  • Blue light-emitting region 5 includes a first light-emitting layer 51 and a second light-emitting layer 52 .
  • the blue light emitting region 5 has the same configuration as the light emitting region according to the first embodiment. A preferable range is also the same.
  • the triplet energy T 1 (D1) of the first light-emitting compound contained in the first light-emitting layer 51 is preferably 2.1 eV or more for the same reason as in the first embodiment, and is preferably 2.2 eV or more. is more preferable.
  • the upper limit of the triplet energy T 1 (D1) of the first light-emitting compound is preferably 2.8 eV or less from the viewpoint of compound stability.
  • green organic EL device 10G comprises anode 3, hole transport zone 7, green light emitting layer 53, electron transport layer 8, electron injection layer 9 and cathode 4 in this order. Note that the green organic EL element 10G may include other layers different from the layers shown in FIG.
  • green light-emitting layer 53 is disposed between hole-transporting zone 7 and electron-transporting layer 8, with green light-emitting layer 53 and electron-transporting layer 8 being in direct contact.
  • the green light-emitting layer preferably contains a host material.
  • the green light-emitting layer contains 50% by weight or more of the host material based on the total weight of the green light-emitting layer.
  • the green light-emitting layer of the green organic EL element preferably contains at least a green light-emitting compound that emits light having a maximum peak wavelength of 500 nm or more and 550 nm or less.
  • the green-emitting compound is also preferably a fluorescence-emitting compound that emits fluorescence with a maximum peak wavelength of 500 nm or more and 550 nm or less.
  • the green-emitting compound is also preferably a phosphorescent compound that emits phosphorescence with a maximum peak wavelength of 500 nm or more and 550 nm or less.
  • green light emission refers to light emission having a maximum peak wavelength of an emission spectrum in the range of 500 nm or more and 550 nm or less.
  • a fluorescent compound is a compound capable of emitting light from a singlet excited state
  • a phosphorescent compound is a compound capable of emitting light from a triplet excited state.
  • an aromatic amine derivative or the like can be used as a green fluorescent compound that can be used in the green light-emitting layer.
  • a green phosphorescent compound that can be used in the green light-emitting layer for example, an iridium complex or the like is used.
  • the green light-emitting layer may contain a delayed fluorescence compound, as described later.
  • the maximum peak wavelength (phosphorescence emission maximum peak wavelength) of a phosphorescent compound can be measured by the following method.
  • An EPA solution is placed in a quartz cell and used as a measurement sample.
  • the phosphorescence spectrum (vertical axis: phosphorescent emission intensity, horizontal axis: wavelength) is measured at a low temperature (77 [K]), and among the maximum values of this phosphorescence spectrum, the maximum on the shortest wavelength side The value is defined as the maximum peak wavelength of phosphorescent emission.
  • a spectrofluorophotometer F-7000 (manufactured by Hitachi High-Tech Science Co., Ltd.) can be used to measure phosphorescence. Note that the measuring device is not limited to this, and measurement may be performed by combining a cooling device, a cryogenic container, an excitation light source, and a light receiving device.
  • the maximum peak wavelength of phosphorescence emission may be referred to as the maximum peak wavelength of phosphorescence emission (PH-peak).
  • the green organic EL element preferably has a green organic layer between the green light emitting layer and the hole transport zone.
  • the green organic layer may be in direct contact with the hole transport zone.
  • the green organic layer may be in direct contact with the green light-emitting layer.
  • the green organic layer contains a green organic material.
  • the hole transport material according to this embodiment or the hole transport zone material according to the first embodiment can be used.
  • the green organic material may be the same compound as the hole-transporting zone material contained in the hole-transporting zone, or may be a different compound, but the green organic material and the hole-transporting zone material are preferably different from each other. .
  • the hole mobility of the green organic material is greater than the hole mobility of the hole transport zone material that the hole transport zone contains.
  • the green organic material is a compound different from the host material and green light-emitting compound contained in the green light-emitting layer.
  • the green organic EL element since the green organic EL element has the green organic layer, it is easy to adjust the light emitting position in the green organic EL element.
  • the red organic EL device 10R comprises an anode 3, a hole transport zone 7, a red light emitting layer 54, an electron transport layer 8, an electron injection layer 9 and a cathode 4 in this order.
  • the red organic EL element 10R may include other layers different from the layers shown in FIG.
  • red light-emitting layer 54 is disposed between hole-transporting zone 7 and electron-transporting layer 8, with red-light-emitting layer 54 and electron-transporting layer 8 being in direct contact.
  • the red light-emitting layer preferably contains a host material. Therefore, for example, the red light-emitting layer 54 contains 50% by weight or more of the total weight of the red light-emitting layer 54 of the host material.
  • the red light-emitting layer of the red organic EL element preferably contains at least a red light-emitting compound that emits light with a maximum peak wavelength of 600 nm or more and 640 nm or less.
  • the red-light-emitting compound is also preferably a fluorescence-emitting compound that emits fluorescence with a maximum peak wavelength of 600 nm or more and 640 nm or less.
  • the red light-emitting compound is also preferably a phosphorescent compound that emits phosphorescence with a maximum peak wavelength of 600 nm or more and 640 nm or less.
  • red light emission refers to light emission having a maximum peak wavelength of an emission spectrum in the range of 600 nm or more and 640 nm or less.
  • red light-emitting layer As a compound that can be used in the red light-emitting layer and emits fluorescence in red, for example, a tetracene derivative, a diamine derivative, and the like can be used.
  • red phosphorescent compound that can be used in the red light-emitting layer for example, metal complexes such as iridium complexes, platinum complexes, terbium complexes and europium complexes can be used.
  • the red light-emitting layer may contain a delayed fluorescence compound, as described later.
  • the red organic EL element preferably has a red organic layer between the red light emitting layer and the hole transport zone.
  • the red organic layer may be in direct contact with the hole transport zone.
  • the red organic layer may be in direct contact with the red light-emitting layer.
  • the red organic layer contains a red organic material.
  • the red organic material the hole transport material according to this embodiment or the hole transport zone material according to the first embodiment can be used.
  • the red organic material may be the same compound as the hole-transporting zone material contained in the hole-transporting zone, or may be a different compound, but the red organic material and the hole-transporting zone material are preferably different from each other. .
  • the hole mobility of the red organic material is preferably greater than the hole mobility of the hole transport zone material that the hole transport zone contains.
  • the red organic material is a compound different from the host material and the red light emitting compound contained in the red light emitting layer.
  • the red organic material contained in the red organic layer of the red organic EL element and the green organic material contained in the green light-emitting layer of the green organic EL element may be the same compound or different compounds. Preferably, the material and the green organic material are different from each other.
  • the hole mobility of the red organic material is preferably greater than that of the green organic material.
  • the film thickness of the red organic layer is preferably thicker than the film thickness of the green organic layer.
  • the red organic EL element since the red organic EL element has the red organic layer, it is easy to adjust the light emitting position of the red organic EL element.
  • the host material contained in the green light-emitting layer and the host material contained in the red light-emitting layer are preferably, for example, compounds for dispersing a highly light-emitting substance (dopant material) in the light-emitting layer.
  • the lowest unoccupied molecular orbital level (LUMO level) is higher than the substance with high light-emitting property, and the highest occupied molecular orbital level (HOMO level ) is preferably used.
  • the host material contained in the green light-emitting layer and the host material contained in the red light-emitting layer for example, the following compounds (1) to (4) can be used independently.
  • metal complexes such as aluminum complexes, beryllium complexes, or zinc complexes
  • heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, or phenanthroline derivatives
  • condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, or chrysene derivatives
  • Aromatic amine compounds such as triarylamine derivatives or condensed polycyclic aromatic amine derivatives
  • At least one of the green organic EL element and the red organic EL element may contain a delayed fluorescent compound.
  • the delayed fluorescence compound is preferably not a metal complex. Organic compounds containing no metal atoms are preferred.
  • the green light emitting layer and the red light emitting layer of the green organic EL element when at least one of the green organic EL element and the red organic EL element contains a delayed fluorescent compound, the green light emitting layer and the red light emitting layer of the green organic EL element at least one of the red light emitting layers of the organic EL device preferably contains a delayed fluorescent compound.
  • a light-emitting layer containing a delayed fluorescence compound may be referred to as a delayed fluorescence-emitting layer.
  • the delayed fluorescence-emitting layer preferably contains a delayed fluorescence compound as a host material.
  • the delayed fluorescence-emitting layer preferably contains a delayed fluorescence compound as a host material and a fluorescence-emitting compound.
  • the singlet energy of the delayed fluorescent compound as the host material is preferably higher than the singlet energy of the fluorescent compound.
  • the delayed fluorescence emission layer preferably does not contain a heavy metal complex and a phosphorescent rare earth metal complex. Examples of heavy metal complexes include iridium complexes, osmium complexes, and platinum complexes. It is also preferable that the delayed fluorescence-emitting layer does not contain a metal complex.
  • the light-emitting layer containing the delayed fluorescent compound may contain a first organic material having an affinity lower than the affinity of the delayed fluorescent compound. That is, the delayed fluorescence emitting layer contains a delayed fluorescence compound and a first organic material, and the affinity Af (M2) of the delayed fluorescence compound and the affinity Af (M1) of the first organic material are , preferably satisfies the following formula (Formula 6A). Af(M2)-Af(M1)>0eV (Equation 6A)
  • the value of the affinity Af of the object (compound or material) to be measured is a value calculated by the following formula (Formula 6).
  • the unit of affinity Af is eV.
  • Af ⁇ 1.19 ⁇ (Ere ⁇ Efc) ⁇ 4.78 eV (Equation 6)
  • Ere and Efc are as follows.
  • Ere First reduction potential of the object to be measured (DPV, Negative scan)
  • Efc first oxidation potential of ferrocene (DPV, positive scan), (ca. +0.55 V vs Ag/AgCl)
  • the oxidation-reduction potential is measured by differential pulse voltammetry (DPV) using an electrochemical analyzer (manufactured by ALS: CHI630B).
  • the sample solution used for measurement uses N,N-dimethylformamide (DMF) as a solvent, and dissolves the object to be measured so that its concentration becomes 1.0 mmol/L.
  • TBHP tetrabutylammonium hexafluorophosphate
  • a glassy carbon electrode is used as the working electrode.
  • a platinum (Pt) electrode is used as the counter electrode.
  • the singlet energy of the first organic material is preferably higher than the singlet energy of the delayed fluorescent compound.
  • the delayed fluorescence emission layer preferably contains a first organic material, a delayed fluorescence compound as a host material, and a fluorescence emission compound.
  • the singlet energy of the first organic material is higher than the singlet energy of the delayed fluorescent compound, and the singlet energy of the delayed fluorescent compound is higher than the singlet energy of the fluorescent compound. is preferred.
  • the light-emitting layer that does not contain a delayed fluorescent compound preferably contains a phosphorescent compound.
  • the green emitting layer contains a delayed fluorescent compound and the red emitting layer does not contain a delayed fluorescent compound
  • the red emitting layer contains a phosphorescent compound.
  • the delayed fluorescent compound (delayed fluorescent luminescent material) in the present embodiment is preferably a compound that exhibits thermally activated delayed fluorescence generated by such a mechanism.
  • delayed fluorescence emission can be confirmed by transient PL (Photo Luminescence) measurement.
  • Transient PL measurement is a method of irradiating a sample with a pulse laser to excite it, and measuring the attenuation behavior (transient characteristics) of PL emission after stopping the irradiation.
  • PL emission in the TADF material is classified into an emission component from singlet excitons generated by the first PL excitation and an emission component from singlet excitons generated via triplet excitons.
  • the lifetime of singlet excitons generated by the first PL excitation is on the order of nanoseconds and is very short. Therefore, the light emission from the singlet excitons is rapidly attenuated after irradiation with the pulse laser.
  • delayed fluorescence is emitted from singlet excitons generated via long-lived triplet excitons, so it gradually decays.
  • the emission intensity derived from delayed fluorescence can be obtained.
  • FIG. 6 A schematic diagram of an exemplary apparatus for measuring transient PL is shown in FIG. An example of a transient PL measurement method and delayed fluorescence behavior analysis using FIG. 6 will be described.
  • a transient PL measurement apparatus 100 in FIG. A streak camera 104 for forming a dimensional image and a personal computer 105 for taking in and analyzing a two-dimensional image are provided. Note that the transient PL measurement is not limited to the apparatus shown in FIG.
  • the sample housed in the sample chamber 102 is obtained by forming a thin film on a quartz substrate, which is doped with a doping material at a concentration of 12% by mass with respect to the matrix material.
  • a thin film sample housed in the sample chamber 102 is irradiated with a pulse laser from the pulse laser unit 101 to excite the doping material. Emission is extracted in a direction 90 degrees to the irradiation direction of the excitation light, the extracted light is spectroscopically separated by the spectroscope 103 , and a two-dimensional image is formed in the streak camera 104 .
  • a two-dimensional image can be obtained in which the vertical axis corresponds to time, the horizontal axis corresponds to wavelength, and the bright spots correspond to emission intensity.
  • an emission spectrum can be obtained in which the vertical axis is the emission intensity and the horizontal axis is the wavelength.
  • an attenuation curve (transient PL) in which the vertical axis is the logarithm of the emission intensity and the horizontal axis is time.
  • the following reference compound H1 was used as the matrix material, and the following reference compound D1 was used as the doping material to prepare the thin film sample A as described above, and the transient PL measurement was performed.
  • the attenuation curves were analyzed using the thin film sample A and thin film sample B described above.
  • a thin film sample B was prepared as described above using the following reference compound H2 as a matrix material and the aforementioned reference compound D1 as a doping material.
  • FIG. 7 shows attenuation curves obtained from transient PL measured for thin film sample A and thin film sample B.
  • the vertical axis is the luminous intensity and the horizontal axis is the time. Based on this emission decay curve, the fluorescence intensity of the fluorescence emitted from the singlet excited state generated by photoexcitation and the delayed fluorescence emitted from the singlet excited state generated by reverse energy transfer via the triplet excited state ratio can be estimated.
  • the ratio of the intensity of delayed fluorescence that decays slowly to the intensity of fluorescence that decays quickly is relatively large.
  • Prompt luminescence is luminescence immediately observed from the excited state after excitation with pulsed light (light emitted from a pulse laser) having a wavelength that the delayed fluorescent material absorbs.
  • Delayed luminescence is luminescence that is not observed immediately after excitation by the pulsed light, but is observed thereafter.
  • a sample prepared by the following method is used for measuring the delayed fluorescence of the delayed fluorescent light-emitting material.
  • the delayed fluorescence light-emitting material is dissolved in toluene to prepare a dilute solution having an absorbance of 0.05 or less at the excitation wavelength in order to remove the contribution of self-absorption.
  • the sample solution is freeze-degassed and sealed in a cell with a lid under an argon atmosphere to obtain an oxygen-free sample solution saturated with argon.
  • the fluorescence spectrum of the above sample solution is measured with a spectrofluorophotometer FP-8600 (manufactured by JASCO Corporation), and the fluorescence spectrum of the ethanol solution of 9,10-diphenylanthracene is also measured under the same conditions. Using the fluorescence area intensity of both spectra, Morris et al. J. Phys. Chem. 80 (1976) 969, to calculate the total fluorescence quantum yield.
  • the amount and ratio of prompt luminescence and delay luminescence can be determined by a method similar to that described in “Nature 492, 234-238, 2012” (reference document 1). Note that the device used to calculate the amount of prompt emission and delay emission is not limited to the device described in Reference Document 1 or the device described in FIG. In the present embodiment, when the amount of prompt luminescence (immediate luminescence) of the compound to be measured (delayed fluorescent luminescence material) is X P and the amount of delay luminescence (delayed luminescence) is X D , X D /X It is preferable that the value of P is 0.05 or more. The amount and ratio of prompt luminescence and delayed luminescence of a compound other than the delayed fluorescent luminescent material in this specification are measured in the same manner as the measurement of the amount and ratio of prompt luminescence and delayed luminescence of the delayed fluorescent luminescent material.
  • the organic EL display device of this embodiment will be further described with reference to FIG.
  • the description of the configuration common to the organic EL device according to the first embodiment is simplified or omitted.
  • anode 3 In one embodiment, the anode 3 is arranged opposite the cathode 4 . In one embodiment, anode 3 is typically a non-common layer. In one embodiment, for example, when anode 3 is a non-common layer, the anodes in each of blue organic EL element 10B, green organic EL element 10G, and red organic EL element 10R are physically separated from each other. , for example, are insulated from each other by an insulating material (not shown) or the like.
  • the cathode 4 is arranged opposite the anode 3 .
  • cathode 4 may be a common layer or a non-common layer.
  • the cathode 4 is preferably a common layer commonly provided over the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R.
  • cathode 4 is in direct contact with electron injection layer 9 .
  • cathode 4 is of the same thickness across blue organic EL element 10B, green organic EL element 10G and red organic EL element 10R if it is a common layer.
  • the cathode 4 When the cathode 4 is a common layer, the cathodes 4 of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R can be manufactured without exchanging masks or the like. As a result, the productivity of the organic EL display device 100A is improved.
  • the electron transport layer 8 is a common layer that is commonly provided over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. In one embodiment, the electron-transporting layer 8 is arranged between the light-emitting layers of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R and the electron-injecting layer 9 . In one embodiment, the electron-transporting layer 8 is in direct contact with the second light-emitting layer 52 , the green light-emitting layer 53 and the red light-emitting layer 54 on its anode 3 side.
  • the electron transport layer 8 is in direct contact with the electron injection layer 9 on its cathode 4 side.
  • the electron transport layer 8 is a common layer and has the same thickness across the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R. Since the electron transport layer 8 is a common layer, the electron transport layers 8 of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R can be produced without exchanging masks or the like. As a result, the productivity of the organic EL display device 100A is improved.
  • the electron injection layer 9 is a common layer commonly provided over the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R. In one embodiment, electron injection layer 9 is positioned between electron transport layer 8 and cathode 4 . In one embodiment, electron injection layer 9 is directly in contact with electron transport layer 8 . In one embodiment, the electron injection layer 9 is a common layer and has the same thickness across the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R.
  • the electron injection layer 9 is a common layer, the electron injection layers 9 of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R can be produced without exchanging masks or the like. As a result, the productivity of the organic EL display device 100A is improved.
  • the layers other than the first light-emitting layer 51, the second light-emitting layer 52, the green light-emitting layer 53, the red light-emitting layer 54, the green organic layer 531, and the red organic layer 541 are the blue organic EL device 10B, the green It is preferable that it is provided in common over the organic EL element 10G and the red organic EL element 10R. Manufacturing efficiency is improved by reducing the number of non-common layers in the organic EL display device 100A.
  • a method for manufacturing the organic EL display device 100A (FIG. 4) according to one embodiment will be described.
  • the anode 3 is deposited on the substrate 2A.
  • organic layers (organic layer L1 to organic layer Ln) as common layers are sequentially formed over the anode 3 to form a hole transport zone 7 as a common zone.
  • Each organic layer in the hole transport zone 7 of the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R is formed with the same material and the same film thickness.
  • a predetermined film-forming mask blue organic EL device mask
  • a layer 51 is deposited.
  • the second light-emitting layer 52 is deposited on the first light-emitting layer 51 .
  • a predetermined film-forming mask green organic EL device mask
  • a green light emitting layer 53 is deposited.
  • a predetermined film-forming mask red organic EL element mask
  • a predetermined film thickness is applied to a region above the hole transport zone 7 and corresponding to the anode 3 of the red organic EL element 10R.
  • a red light emitting layer 54 is deposited.
  • the first light-emitting layer 51, the second light-emitting layer 52, the green light-emitting layer 53, and the red light-emitting layer 54 are formed of different materials.
  • the order of forming non-common layers of the blue organic EL element 10B, the green organic EL element 10G, and the red organic EL element 10R after the formation of the hole transport zone 7 is not particularly limited.
  • the green light emitting layer 53 of the green organic EL element 10G is formed, then the red light emitting layer 54 of the red organic EL element 10R is formed, and then the blue organic EL element 10R is formed.
  • the order of forming the first light-emitting layer 51 and the second light-emitting layer 52 of the element 10B may be used.
  • the red light emitting layer 54 of the red organic EL device 10R is formed, and then the green light emitting layer 53 of the green organic EL device 10G is formed.
  • the order of forming the first light-emitting layer 51 and the second light-emitting layer 52 of the organic EL element 10B may be used.
  • an electron transport layer 8 as a common layer is deposited over the second light emitting layer 52, the green light emitting layer 53 and the red light emitting layer .
  • the electron transport layers 8 of the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R are formed with the same material and the same film thickness.
  • an electron injection layer 9 as a common layer is formed on the electron transport layer 8 .
  • the electron injection layers 9 of the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R are formed with the same material and the same film thickness.
  • a cathode 4 is formed as a common layer on the electron injection layer 9 .
  • the cathodes 4 of the blue organic EL element 10B, the green organic EL element 10G and the red organic EL element 10R are formed of the same material and with the same film thickness. As described above, the organic EL display device 100A shown in FIG. 5 is manufactured.
  • the organic EL display device 200 (FIG. 5) according to one embodiment will be described.
  • the anode 3 is deposited on the substrate 2A.
  • organic layers organic layer L1 to organic layer Ln
  • hole transport zone 7 As a common zone.
  • Each organic layer in the hole transport zone 7 of the blue organic EL element 10B, the green organic EL element 20G and the red organic EL element 20R is formed with the same material and the same film thickness.
  • a predetermined film-forming mask blue organic EL device mask
  • a predetermined film-forming mask blue organic EL device mask
  • a layer 51 is deposited.
  • the second light-emitting layer 52 is deposited on the first light-emitting layer 51 .
  • a predetermined film formation mask green organic EL element mask
  • a predetermined film thickness is applied to a region corresponding to the anode 3 of the green organic EL element 20G above the hole transport zone 7.
  • a green organic layer 531 is deposited.
  • the green light emitting layer 53 is deposited on the green organic layer 531 .
  • a predetermined film-forming mask (red organic EL element mask) is applied to a region corresponding to the anode 3 of the red organic EL element 20R above the hole-transporting zone 7 with a predetermined film thickness.
  • a red organic layer 541 is deposited.
  • the red light-emitting layer 54 is deposited on the red organic layer 541 .
  • the first light-emitting layer 51, the second light-emitting layer 52, the green light-emitting layer 53, and the red light-emitting layer 54 are formed of different materials.
  • the order of forming the non-common layers of the blue organic EL element 10B, the green organic EL element 20G, and the red organic EL element 20R after the formation of the hole transport zone 7 is not particularly limited.
  • the green organic layer 531 and the green light emitting layer 53 of the green organic EL device 20G are formed, and then the red organic layer 541 and the red light emitting layer 54 of the red organic EL device 20R are formed.
  • the red organic layer 541 and the red light emitting layer 54 of the red organic EL element 20R are formed, and then the green organic layer 531 and the green light emitting layer 531 of the green organic EL element 20G are formed.
  • the order of forming the layer 53 and then forming the first light-emitting layer 51 and the second light-emitting layer 52 of the blue organic EL device 10B may be employed.
  • the electron transport layer 8 as a common layer, the electron injection layer 9 as a common layer, and the cathode 4 as a common layer are formed by the same method as the manufacturing method of the organic EL display device 100A shown in FIG. film. As described above, the organic EL display device 200 shown in FIG. 5 is manufactured.
  • an organic EL display device that can be manufactured using an existing manufacturing line, and that includes organic EL elements in which a plurality of light-emitting layers are laminated as pixels.
  • An electronic device is equipped with the organic EL element of any one of the above embodiments or the organic EL display device of any one of the above embodiments.
  • Examples of electronic devices include display devices and light-emitting devices.
  • Examples of display devices include display components (eg, organic EL panel modules, etc.), televisions, mobile phones, tablets, and personal computers.
  • Light-emitting devices include, for example, illumination and vehicle lamps.
  • the light-emitting layer is not limited to two layers, and a plurality of light-emitting layers exceeding two may be laminated.
  • the organic EL element has more than two light-emitting layers, at least two light-emitting layers should satisfy the conditions described in the above embodiments.
  • the other light-emitting layer may be a fluorescent light-emitting layer or a phosphorescent light-emitting layer that utilizes light emission due to electronic transition from the triplet excited state directly to the ground state.
  • the organic EL element has a plurality of light-emitting layers
  • these light-emitting layers may be provided adjacent to each other, or a so-called tandem-type organic EL device in which a plurality of light-emitting units are stacked via an intermediate layer. It may be an EL element.
  • a barrier layer may be provided adjacent to the cathode side of the light-emitting layer.
  • a blocking layer disposed directly on the cathode side of the light-emitting layer preferably blocks holes and/or excitons.
  • the barrier layer transports electrons, and holes reach a layer closer to the cathode than the barrier layer (e.g., electron transport layer). prevent you from doing
  • the organic EL device includes an electron-transporting layer, it preferably includes the barrier layer between the light-emitting layer and the electron-transporting layer.
  • a barrier layer may be provided adjacent to the light-emitting layer to prevent excitation energy from leaking from the light-emitting layer to its surrounding layers. Excitons generated in the light-emitting layer are prevented from moving to a layer closer to the electrode than the barrier layer (for example, an electron-transporting layer and a hole-transporting layer). It is preferable that the light-emitting layer and the barrier layer are bonded.

Abstract

発光領域(5)は第一のホスト材料及び第一の発光性化合物を含む第一の発光層(51)と、第二のホスト材料及び第二の発光性化合物を含む第二の発光層(52)とを含み、正孔輸送帯域(6)は1又は複数の有機層を含み、正孔輸送帯域(6)中の少なくとも1つの有機層は発光領域(5)と直接接する第一の有機層(51)であり、第一の有機層51は正孔輸送帯域材料を含み、正孔輸送帯域(6)は陽極(3)及び発光領域(5)と直接接し、第一のホスト材料の三重項エネルギーT1(H1)と第二のホスト材料のT1(H2)とが(数1)を満たし、正孔輸送帯域材料のイオン化ポテンシャルIp(HT)と第一の発光性化合物のIp(D1)とが(数1X)を満たす有機EL素子(1)。 T1(H1)>T1(H2)…(数1) Ip(D1)-Ip(HT)<-0.05eV…(数1X)

Description

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
 本発明は、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)は、携帯電話及びテレビ等のフルカラーディスプレイへ応用されている。有機EL素子に電圧を印加すると、陽極から正孔が発光層に注入され、また陰極から電子が発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子が25%の割合で生成し、及び三重項励起子が75%の割合で生成する。
 有機EL素子の性能向上を図るため、例えば、特許文献1及び2においては、複数の発光層を積層させることについて検討がなされている。また、特許文献3には、有機EL素子の性能向上を図るため、2つの三重項励起子の衝突融合により一重項励起子が生成する現象(以下、Triplet-Triplet Fusion=TTF現象と称する場合がある。)が記載されている。
 有機EL素子の性能としては、例えば、輝度、発光波長、色度、発光効率、駆動電圧、及び寿命が挙げられる。
特開2007-294261号公報 米国特許出願公開2019/280209号明細書 国際公開第2010/134350号
 特許文献1に記載の有機エレクトロルミネッセンス素子は、陽極と陰極の間に複数層の発光層を備えて形成される有機エレクトロルミネッセンス素子において、複数の材料の混合物で形成され、且つ主成分が異なる隣り合う発光層を備え、この隣り合う発光層は、陽極側に位置する発光層の電子移動度をホール移動度で除した値が、陰極側に位置する発光層の電子移動度をホール移動度で除した値より大きい組み合わせからなり、上記の隣り合う発光層において、陽極側に位置する発光層の電子移動度が、陰極側に位置する発光層の電子移動度より大きいことを特徴とする。
 しかしながら、特許文献1に記載の有機エレクトロルミネッセンス素子のように陽極と発光層との間に配置される正孔輸送帯域を構成する有機層の数を減らすと(省層化すると)、発光層へのホール供給量が低下し、発光効率が低下するおそれがある。しかしながら、特許文献1においては、ホール供給量の低下について認識されていない。
 本発明の目的は、正孔輸送帯域を構成する有機層の数を減らしても、高効率で発光させることができる有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を搭載した電子機器、有機エレクトロルミネッセンス表示装置、及び当該有機エレクトロルミネッセンス表示装置を搭載した電子機器を提供することである。
 本発明の一態様によれば、有機エレクトロルミネッセンス素子であって、陽極と、陰極と、前記陽極及び前記陰極の間に配置された発光領域と、前記陽極及び前記発光領域の間に配置された正孔輸送帯域と、を有し、前記発光領域は、第一の発光層及び第二の発光層を含み、前記第一の発光層及び前記第二の発光層の一方が、前記発光領域において前記陽極側に配置され、前記正孔輸送帯域は、前記陽極及び前記発光領域と、直接、接し、前記正孔輸送帯域は、1又は複数の有機層を含み、前記正孔輸送帯域中の少なくとも1つの有機層は、前記発光領域と直接接する第一の有機層であり、前記第一の有機層は、正孔輸送帯域材料を含み、前記第一の発光層は、第一のホスト材料と、最大ピーク波長が500nm以下の発光を示す第一の発光性化合物と、を含み、前記第二の発光層は、第二のホスト材料と、最大ピーク波長が500nm以下の発光を示す第二の発光性化合物と、を含み、前記第一のホスト材料と前記第二のホスト材料とは互いに異なり、前記第一の発光性化合物と前記第二の発光性化合物とが、互いに同一であるか、又は異なり、前記第一のホスト材料の三重項エネルギーT(H1)と前記第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数1)の関係を満たし、前記第一の有機層が含有する前記正孔輸送帯域材料のイオン化ポテンシャルIp(HT)と、前記第一の発光層が含有する前記第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、下記数式(数1X)の関係を満たす、有機エレクトロルミネッセンス素子が提供される。
  T(H1)>T(H2)       …(数1)
  Ip(D1)-Ip(HT)<-0.05eV …(数1X)
 本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を搭載した電子機器が提供される。
 本発明の一態様によれば、有機エレクトロルミネッセンス表示装置であって、互いに対向して配置された陽極及び陰極を有し、青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、前記青色有機EL素子は、前記陽極と前記陰極との間に配置された第一の発光層及び第二の発光層を有する青色発光領域を有し、前記第一の発光層及び前記第二の発光層の一方が、前記青色発光領域において前記陽極側に配置され、前記緑色有機EL素子は、前記陽極と前記陰極との間に配置された緑色発光層を有し、前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光層を有し、前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子は、前記青色有機EL素子の前記青色発光領域、前記緑色有機EL素子の前記緑色発光層及び前記赤色有機EL素子の前記赤色発光層のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられた正孔輸送帯域を有し、前記正孔輸送帯域は、前記青色有機EL素子の前記青色発光領域中の前記第一の発光層又は前記第二の発光層と、直接、接し、前記正孔輸送帯域は、1又は複数の有機層を含み、前記正孔輸送帯域における前記有機層の内、少なくとも1以上の有機層が、正孔輸送帯域材料を含み、前記第一の発光層は、第一のホスト材料と、最大ピーク波長が500nm以下の発光を示す第一の発光性化合物と、を含み、前記第二の発光層は、第二のホスト材料と、最大ピーク波長が500nm以下の発光を示す第二の発光性化合物と、を含み、前記第一のホスト材料と前記第二のホスト材料とは互いに異なり、前記第一の発光性化合物と前記第二の発光性化合物とが、互いに同一であるか、又は異なり、前記第一のホスト材料の三重項エネルギーT(H1)と前記第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数1)の関係を満たし、前記青色有機EL素子の前記青色発光領域において、前記正孔輸送帯域材料とのイオン化ポテンシャルIp(HT)と、前記第一の発光層が含有する前記第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、下記数式(数1X)の関係を満たす、有機エレクトロルミネッセンス表示装置が提供される。
  T(H1)>T(H2) …(数1)
  Ip(D1)-Ip(HT)<-0.05eV …(数1X)
 本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス表示装置を搭載した電子機器が提供される。
 本発明の一態様によれば、正孔輸送帯域を構成する有機層の数を減らしても、高効率で発光させることができる有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を搭載した電子機器、有機エレクトロルミネッセンス表示装置、及び当該有機エレクトロルミネッセンス表示装置を搭載した電子機器を提供できる。
第一実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。 第一実施形態に係る有機エレクトロルミネッセンス素子の別の一例の概略構成を示す図である。 第一実施形態に係る有機エレクトロルミネッセンス素子の別の一例の概略構成を示す図である。 第二実施形態に係る有機エレクトロルミネッセンス表示装置の一例の概略構成を示す図である。 第二実施形態に係る有機エレクトロルミネッセンス表示装置の別の一例の概略構成を示す図である。 過渡PLを測定する装置の概略図である。 過渡PLの減衰曲線の一例を示す図である。
[定義]
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、及び三重水素(tritium)を包含する。
 本明細書において、化学構造式中、「R」等の記号や重水素原子を表す「D」が明示されていない結合可能位置には、水素原子、即ち、軽水素原子、重水素原子、又は三重水素原子が結合しているものとする。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、別途記載のない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジン環は環形成炭素数5であり、フラン環は環形成炭素数4である。また、例えば、9,9-ジフェニルフルオレニル基の環形成炭素数は13であり、9,9’-スピロビフルオレニル基の環形成炭素数は25である。
 また、ベンゼン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ベンゼン環の環形成炭素数に含めない。そのため、アルキル基が置換しているベンゼン環の環形成炭素数は、6である。また、ナフタレン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ナフタレン環の環形成炭素数に含めない。そのため、アルキル基が置換しているナフタレン環の環形成炭素数は、10である。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば、単環、縮合環、及び環集合)の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば、環を構成する原子の結合を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、別途記載のない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。例えば、ピリジン環に結合している水素原子、又は置換基を構成する原子の数は、ピリジン環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているピリジン環の環形成原子数は、6である。また、例えば、キナゾリン環の炭素原子に結合している水素原子、又は置換基を構成する原子については、キナゾリン環の環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているキナゾリン環の環形成原子数は10である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、無置換のZZ基とは「置換もしくは無置換のZZ基」が「無置換のZZ基」である場合を表し、置換のZZ基とは「置換もしくは無置換のZZ基」が「置換のZZ基」である場合を表す。
 本明細書において、「置換もしくは無置換のZZ基」という場合における「無置換」とは、ZZ基における水素原子が置換基と置き換わっていないことを意味する。「無置換のZZ基」における水素原子は、軽水素原子、重水素原子、又は三重水素原子である。
 また、本明細書において、「置換もしくは無置換のZZ基」という場合における「置換」とは、ZZ基における1つ以上の水素原子が、置換基と置き換わっていることを意味する。「AA基で置換されたBB基」という場合における「置換」も同様に、BB基における1つ以上の水素原子が、AA基と置き換わっていることを意味する。
「本明細書に記載の置換基」
 以下、本明細書に記載の置換基について説明する。
 本明細書に記載の「無置換のアリール基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
 本明細書に記載の「無置換のアルケニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のアルキニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のシクロアルキル基」の環形成炭素数は、本明細書に別途記載のない限り、3~50であり、好ましくは3~20、より好ましくは3~6である。
 本明細書に記載の「無置換のアリーレン基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の2価の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキレン基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
・「置換もしくは無置換のアリール基」
 本明細書に記載の「置換もしくは無置換のアリール基」の具体例(具体例群G1)としては、以下の無置換のアリール基(具体例群G1A)及び置換のアリール基(具体例群G1B)等が挙げられる。(ここで、無置換のアリール基とは「置換もしくは無置換のアリール基」が「無置換のアリール基」である場合を指し、置換のアリール基とは「置換もしくは無置換のアリール基」が「置換のアリール基」である場合を指す。)本明細書において、単に「アリール基」という場合は、「無置換のアリール基」と「置換のアリール基」の両方を含む。
 「置換のアリール基」は、「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアリール基」としては、例えば、下記具体例群G1Aの「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基、及び下記具体例群G1Bの置換のアリール基の例等が挙げられる。尚、ここに列挙した「無置換のアリール基」の例、及び「置換のアリール基」の例は、一例に過ぎず、本明細書に記載の「置換のアリール基」には、下記具体例群G1Bの「置換のアリール基」におけるアリール基自体の炭素原子に結合する水素原子がさらに置換基と置き換わった基、及び下記具体例群G1Bの「置換のアリール基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアリール基(具体例群G1A):
フェニル基、
p-ビフェニル基、
m-ビフェニル基、
o-ビフェニル基、
p-ターフェニル-4-イル基、
p-ターフェニル-3-イル基、
p-ターフェニル-2-イル基、
m-ターフェニル-4-イル基、
m-ターフェニル-3-イル基、
m-ターフェニル-2-イル基、
o-ターフェニル-4-イル基、
o-ターフェニル-3-イル基、
o-ターフェニル-2-イル基、
1-ナフチル基、
2-ナフチル基、
アントリル基、
ベンゾアントリル基、
フェナントリル基、
ベンゾフェナントリル基、
フェナレニル基、
ピレニル基、
クリセニル基、
ベンゾクリセニル基、
トリフェニレニル基、
ベンゾトリフェニレニル基、
テトラセニル基、
ペンタセニル基、
フルオレニル基、
9,9’-スピロビフルオレニル基、
ベンゾフルオレニル基、
ジベンゾフルオレニル基、
フルオランテニル基、
ベンゾフルオランテニル基、
ペリレニル基、及び下記一般式(TEMP-1)~(TEMP-15)で表される環構造から1つの水素原子を除くことにより誘導される1価のアリール基。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
・置換のアリール基(具体例群G1B):
o-トリル基、
m-トリル基、
p-トリル基、
パラ-キシリル基、
メタ-キシリル基、
オルト-キシリル基、
パラ-イソプロピルフェニル基、
メタ-イソプロピルフェニル基、
オルト-イソプロピルフェニル基、
パラ-t-ブチルフェニル基、
メタ-t-ブチルフェニル基、
オルト-t-ブチルフェニル基、
3,4,5-トリメチルフェニル基、
9,9-ジメチルフルオレニル基、
9,9-ジフェニルフルオレニル基、
9,9-ビス(4-メチルフェニル)フルオレニル基、
9,9-ビス(4-イソプロピルフェニル)フルオレニル基、
9,9-ビス(4-t-ブチルフェニル)フルオレニル基、
シアノフェニル基、
トリフェニルシリルフェニル基、
トリメチルシリルフェニル基、
フェニルナフチル基、
ナフチルフェニル基、及び前記一般式(TEMP-1)~(TEMP-15)で表される環構造から誘導される1価の基の1つ以上の水素原子が置換基と置き換わった基。
・「置換もしくは無置換の複素環基」
 本明細書に記載の「複素環基」は、環形成原子にヘテロ原子を少なくとも1つ含む環状の基である。ヘテロ原子の具体例としては、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子、及びホウ素原子が挙げられる。
 本明細書に記載の「複素環基」は、単環の基であるか、又は縮合環の基である。
 本明細書に記載の「複素環基」は、芳香族複素環基であるか、又は非芳香族複素環基である。
 本明細書に記載の「置換もしくは無置換の複素環基」の具体例(具体例群G2)としては、以下の無置換の複素環基(具体例群G2A)、及び置換の複素環基(具体例群G2B)等が挙げられる。(ここで、無置換の複素環基とは「置換もしくは無置換の複素環基」が「無置換の複素環基」である場合を指し、置換の複素環基とは「置換もしくは無置換の複素環基」が「置換の複素環基」である場合を指す。)本明細書において、単に「複素環基」という場合は、「無置換の複素環基」と「置換の複素環基」の両方を含む。
 「置換の複素環基」は、「無置換の複素環基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換の複素環基」の具体例は、下記具体例群G2Aの「無置換の複素環基」の水素原子が置き換わった基、及び下記具体例群G2Bの置換の複素環基の例等が挙げられる。尚、ここに列挙した「無置換の複素環基」の例や「置換の複素環基」の例は、一例に過ぎず、本明細書に記載の「置換の複素環基」には、具体例群G2Bの「置換の複素環基」における複素環基自体の環形成原子に結合する水素原子がさらに置換基と置き換わった基、及び具体例群G2Bの「置換の複素環基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
 具体例群G2Aは、例えば、以下の窒素原子を含む無置換の複素環基(具体例群G2A1)、酸素原子を含む無置換の複素環基(具体例群G2A2)、硫黄原子を含む無置換の複素環基(具体例群G2A3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4)を含む。
 具体例群G2Bは、例えば、以下の窒素原子を含む置換の複素環基(具体例群G2B1)、酸素原子を含む置換の複素環基(具体例群G2B2)、硫黄原子を含む置換の複素環基(具体例群G2B3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4)を含む。
・窒素原子を含む無置換の複素環基(具体例群G2A1):
ピロリル基、
イミダゾリル基、
ピラゾリル基、
トリアゾリル基、
テトラゾリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ピリジル基、
ピリダジニル基、
ピリミジニル基、
ピラジニル基、
トリアジニル基、
インドリル基、
イソインドリル基、
インドリジニル基、
キノリジニル基、
キノリル基、
イソキノリル基、
シンノリル基、
フタラジニル基、
キナゾリニル基、
キノキサリニル基、
ベンゾイミダゾリル基、
インダゾリル基、
フェナントロリニル基、
フェナントリジニル基、
アクリジニル基、
フェナジニル基、
カルバゾリル基、
ベンゾカルバゾリル基、
モルホリノ基、
フェノキサジニル基、
フェノチアジニル基、
アザカルバゾリル基、及びジアザカルバゾリル基。
・酸素原子を含む無置換の複素環基(具体例群G2A2):フリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
キサンテニル基、
ベンゾフラニル基、
イソベンゾフラニル基、
ジベンゾフラニル基、
ナフトベンゾフラニル基、
ベンゾオキサゾリル基、
ベンゾイソキサゾリル基、
フェノキサジニル基、
モルホリノ基、
ジナフトフラニル基、
アザジベンゾフラニル基、
ジアザジベンゾフラニル基、
アザナフトベンゾフラニル基、及びジアザナフトベンゾフラニル基。
・硫黄原子を含む無置換の複素環基(具体例群G2A3):
チエニル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ベンゾチオフェニル基(ベンゾチエニル基)、
イソベンゾチオフェニル基(イソベンゾチエニル基)、
ジベンゾチオフェニル基(ジベンゾチエニル基)、
ナフトベンゾチオフェニル基(ナフトベンゾチエニル基)、
ベンゾチアゾリル基、
ベンゾイソチアゾリル基、
フェノチアジニル基、
ジナフトチオフェニル基(ジナフトチエニル基)、
アザジベンゾチオフェニル基(アザジベンゾチエニル基)、
ジアザジベンゾチオフェニル基(ジアザジベンゾチエニル基)、
アザナフトベンゾチオフェニル基(アザナフトベンゾチエニル基)、及びジアザナフトベンゾチオフェニル基(ジアザナフトベンゾチエニル基)。
・下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYは、それぞれ独立に、酸素原子、硫黄原子、NH、又はCHである。ただし、X及びYのうち少なくとも1つは、酸素原子、硫黄原子、又はNHである。
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYの少なくともいずれかがNH、又はCHである場合、前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基には、これらNH、又はCHから1つの水素原子を除いて得られる1価の基が含まれる。
・窒素原子を含む置換の複素環基(具体例群G2B1):
(9-フェニル)カルバゾリル基、
(9-ビフェニリル)カルバゾリル基、
(9-フェニル)フェニルカルバゾリル基、
(9-ナフチル)カルバゾリル基、
ジフェニルカルバゾール-9-イル基、
フェニルカルバゾール-9-イル基、
メチルベンゾイミダゾリル基、
エチルベンゾイミダゾリル基、
フェニルトリアジニル基、
ビフェニリルトリアジニル基、
ジフェニルトリアジニル基、
フェニルキナゾリニル基、及びビフェニリルキナゾリニル基。
・酸素原子を含む置換の複素環基(具体例群G2B2):
フェニルジベンゾフラニル基、
メチルジベンゾフラニル基、
t-ブチルジベンゾフラニル基、及びスピロ[9H-キサンテン-9,9’-[9H]フルオレン]の1価の残基。
・硫黄原子を含む置換の複素環基(具体例群G2B3):
フェニルジベンゾチオフェニル基、
メチルジベンゾチオフェニル基、
t-ブチルジベンゾチオフェニル基、及びスピロ[9H-チオキサンテン-9,9’-[9H]フルオレン]の1価の残基。
・前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4):
 前記「1価の複素環基の1つ以上の水素原子」とは、該1価の複素環基の環形成炭素原子に結合している水素原子、X及びYの少なくともいずれかがNHである場合の窒素原子に結合している水素原子、及びX及びYの一方がCHである場合のメチレン基の水素原子から選ばれる1つ以上の水素原子を意味する。
・「置換もしくは無置換のアルキル基」
 本明細書に記載の「置換もしくは無置換のアルキル基」の具体例(具体例群G3)としては、以下の無置換のアルキル基(具体例群G3A)及び置換のアルキル基(具体例群G3B)が挙げられる。(ここで、無置換のアルキル基とは「置換もしくは無置換のアルキル基」が「無置換のアルキル基」である場合を指し、置換のアルキル基とは「置換もしくは無置換のアルキル基」が「置換のアルキル基」である場合を指す。)以下、単に「アルキル基」という場合は、「無置換のアルキル基」と「置換のアルキル基」の両方を含む。
 「置換のアルキル基」は、「無置換のアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキル基」の具体例としては、下記の「無置換のアルキル基」(具体例群G3A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のアルキル基(具体例群G3B)の例等が挙げられる。本明細書において、「無置換のアルキル基」におけるアルキル基は、鎖状のアルキル基を意味する。そのため、「無置換のアルキル基」は、直鎖である「無置換のアルキル基」、及び分岐状である「無置換のアルキル基」が含まれる。尚、ここに列挙した「無置換のアルキル基」の例や「置換のアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルキル基」には、具体例群G3Bの「置換のアルキル基」におけるアルキル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G3Bの「置換のアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルキル基(具体例群G3A):
メチル基、
エチル基、
n-プロピル基、
イソプロピル基、
n-ブチル基、
イソブチル基、
s-ブチル基、及びt-ブチル基。
・置換のアルキル基(具体例群G3B):
ヘプタフルオロプロピル基(異性体を含む)、
ペンタフルオロエチル基、
2,2,2-トリフルオロエチル基、及びトリフルオロメチル基。
・「置換もしくは無置換のアルケニル基」
 本明細書に記載の「置換もしくは無置換のアルケニル基」の具体例(具体例群G4)としては、以下の無置換のアルケニル基(具体例群G4A)、及び置換のアルケニル基(具体例群G4B)等が挙げられる。(ここで、無置換のアルケニル基とは「置換もしくは無置換のアルケニル基」が「無置換のアルケニル基」である場合を指し、「置換のアルケニル基」とは「置換もしくは無置換のアルケニル基」が「置換のアルケニル基」である場合を指す。)本明細書において、単に「アルケニル基」という場合は、「無置換のアルケニル基」と「置換のアルケニル基」の両方を含む。
 「置換のアルケニル基」は、「無置換のアルケニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルケニル基」の具体例としては、下記の「無置換のアルケニル基」(具体例群G4A)が置換基を有する基、及び置換のアルケニル基(具体例群G4B)の例等が挙げられる。尚、ここに列挙した「無置換のアルケニル基」の例や「置換のアルケニル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルケニル基」には、具体例群G4Bの「置換のアルケニル基」におけるアルケニル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G4Bの「置換のアルケニル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルケニル基(具体例群G4A):
ビニル基、
アリル基、
1-ブテニル基、
2-ブテニル基、及び3-ブテニル基。
・置換のアルケニル基(具体例群G4B):1,3-ブタンジエニル基、
1-メチルビニル基、
1-メチルアリル基、
1,1-ジメチルアリル基、
2-メチルアリル基、及び1,2-ジメチルアリル基。
・「置換もしくは無置換のアルキニル基」
 本明細書に記載の「置換もしくは無置換のアルキニル基」の具体例(具体例群G5)としては、以下の無置換のアルキニル基(具体例群G5A)等が挙げられる。(ここで、無置換のアルキニル基とは、「置換もしくは無置換のアルキニル基」が「無置換のアルキニル基」である場合を指す。)以下、単に「アルキニル基」という場合は、「無置換のアルキニル基」と「置換のアルキニル基」の両方を含む。
 「置換のアルキニル基」は、「無置換のアルキニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキニル基」の具体例としては、下記の「無置換のアルキニル基」(具体例群G5A)における1つ以上の水素原子が置換基と置き換わった基等が挙げられる。
・無置換のアルキニル基(具体例群G5A):エチニル基。
・「置換もしくは無置換のシクロアルキル基」
 本明細書に記載の「置換もしくは無置換のシクロアルキル基」の具体例(具体例群G6)としては、以下の無置換のシクロアルキル基(具体例群G6A)、及び置換のシクロアルキル基(具体例群G6B)等が挙げられる。(ここで、無置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「無置換のシクロアルキル基」である場合を指し、置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「置換のシクロアルキル基」である場合を指す。)本明細書において、単に「シクロアルキル基」という場合は、「無置換のシクロアルキル基」と「置換のシクロアルキル基」の両方を含む。
 「置換のシクロアルキル基」は、「無置換のシクロアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のシクロアルキル基」の具体例としては、下記の「無置換のシクロアルキル基」(具体例群G6A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のシクロアルキル基(具体例群G6B)の例等が挙げられる。尚、ここに列挙した「無置換のシクロアルキル基」の例や「置換のシクロアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のシクロアルキル基」には、具体例群G6Bの「置換のシクロアルキル基」におけるシクロアルキル基自体の炭素原子に結合する1つ以上の水素原子が置換基と置き換わった基、及び具体例群G6Bの「置換のシクロアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のシクロアルキル基(具体例群G6A):
シクロプロピル基、
シクロブチル基、
シクロペンチル基、
シクロヘキシル基、
1-アダマンチル基、
2-アダマンチル基、
1-ノルボルニル基、及び2-ノルボルニル基。
・置換のシクロアルキル基(具体例群G6B):4-メチルシクロヘキシル基。
・「-Si(R901)(R902)(R903)で表される基」
 本明細書に記載の-Si(R901)(R902)(R903)で表される基の具体例(具体例群G7)としては、
-Si(G1)(G1)(G1)、
-Si(G1)(G2)(G2)、
-Si(G1)(G1)(G2)、
-Si(G2)(G2)(G2)、
-Si(G3)(G3)(G3)、及び-Si(G6)(G6)(G6)
が挙げられる。ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -Si(G1)(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G1)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G1)(G1)(G2)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G2)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -Si(G6)(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「-O-(R904)で表される基」
 本明細書に記載の-O-(R904)で表される基の具体例(具体例群G8)としては、
-O(G1)、
-O(G2)、
-O(G3)、及び-O(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-S-(R905)で表される基」
 本明細書に記載の-S-(R905)で表される基の具体例(具体例群G9)としては、
-S(G1)、
-S(G2)、
-S(G3)、及び-S(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-N(R906)(R907)で表される基」
 本明細書に記載の-N(R906)(R907)で表される基の具体例(具体例群G10)としては、
-N(G1)(G1)、
-N(G2)(G2)、
-N(G1)(G2)、
-N(G3)(G3)、及び-N(G6)(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -N(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -N(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -N(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -N(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「ハロゲン原子」
 本明細書に記載の「ハロゲン原子」の具体例(具体例群G11)としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
・「置換もしくは無置換のフルオロアルキル基」
 本明細書に記載の「置換もしくは無置換のフルオロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がフッ素原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がフッ素原子で置き換わった基(パーフルオロ基)も含む。「無置換のフルオロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のフルオロアルキル基」は、「フルオロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のフルオロアルキル基」には、「置換のフルオロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のフルオロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のフルオロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がフッ素原子と置き換わった基の例等が挙げられる。
・「置換もしくは無置換のハロアルキル基」
 本明細書に記載の「置換もしくは無置換のハロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がハロゲン原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がハロゲン原子で置き換わった基も含む。「無置換のハロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のハロアルキル基」は、「ハロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のハロアルキル基」には、「置換のハロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のハロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のハロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がハロゲン原子と置き換わった基の例等が挙げられる。ハロアルキル基をハロゲン化アルキル基と称する場合がある。
・「置換もしくは無置換のアルコキシ基」
 本明細書に記載の「置換もしくは無置換のアルコキシ基」の具体例としては、-O(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルコキシ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアルキルチオ基」
 本明細書に記載の「置換もしくは無置換のアルキルチオ基」の具体例としては、-S(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルキルチオ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアリールオキシ基」
 本明細書に記載の「置換もしくは無置換のアリールオキシ基」の具体例としては、-O(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールオキシ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のアリールチオ基」
 本明細書に記載の「置換もしくは無置換のアリールチオ基」の具体例としては、-S(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールチオ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のトリアルキルシリル基」
 本明細書に記載の「トリアルキルシリル基」の具体例としては、-Si(G3)(G3)(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。-Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。「トリアルキルシリル基」の各アルキル基の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20であり、より好ましくは1~6である。
・「置換もしくは無置換のアラルキル基」
 本明細書に記載の「置換もしくは無置換のアラルキル基」の具体例としては、-(G3)-(G1)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」であり、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。従って、「アラルキル基」は、「アルキル基」の水素原子が置換基としての「アリール基」と置き換わった基であり、「置換のアルキル基」の一態様である。「無置換のアラルキル基」は、「無置換のアリール基」が置換した「無置換のアルキル基」であり、「無置換のアラルキル基」の炭素数は、本明細書に別途記載のない限り、7~50であり、好ましくは7~30であり、より好ましくは7~18である。
 「置換もしくは無置換のアラルキル基」の具体例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリール基は、本明細書に別途記載のない限り、好ましくはフェニル基、p-ビフェニル基、m-ビフェニル基、o-ビフェニル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-ターフェニル-4-イル基、o-ターフェニル-3-イル基、o-ターフェニル-2-イル基、1-ナフチル基、2-ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジメチルフルオレニル基、及び9,9-ジフェニルフルオレニル基等である。
 本明細書に記載の置換もしくは無置換の複素環基は、本明細書に別途記載のない限り、好ましくはピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、又は9-カルバゾリル基)、ベンゾカルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、アザジベンゾフラニル基、ジアザジベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、アザジベンゾチオフェニル基、ジアザジベンゾチオフェニル基、(9-フェニル)カルバゾリル基((9-フェニル)カルバゾール-1-イル基、(9-フェニル)カルバゾール-2-イル基、(9-フェニル)カルバゾール-3-イル基、又は(9-フェニル)カルバゾール-4-イル基)、(9-ビフェニリル)カルバゾリル基、(9-フェニル)フェニルカルバゾリル基、ジフェニルカルバゾール-9-イル基、フェニルカルバゾール-9-イル基、フェニルトリアジニル基、ビフェニリルトリアジニル基、ジフェニルトリアジニル基、フェニルジベンゾフラニル基、及びフェニルジベンゾチオフェニル基等である。
 本明細書において、カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000005
 本明細書において、(9-フェニル)カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000006
 前記一般式(TEMP-Cz1)~(TEMP-Cz9)中、*は、結合位置を表す。
 本明細書において、ジベンゾフラニル基、及びジベンゾチオフェニル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000007
 前記一般式(TEMP-34)~(TEMP-41)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換のアルキル基は、本明細書に別途記載のない限り、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基等である。
・「置換もしくは無置換のアリーレン基」
 本明細書に記載の「置換もしくは無置換のアリーレン基」は、別途記載のない限り、上記「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアリーレン基」の具体例(具体例群G12)としては、具体例群G1に記載の「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換の2価の複素環基」
 本明細書に記載の「置換もしくは無置換の2価の複素環基」は、別途記載のない限り、上記「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換の2価の複素環基」の具体例(具体例群G13)としては、具体例群G2に記載の「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換のアルキレン基」
 本明細書に記載の「置換もしくは無置換のアルキレン基」は、別途記載のない限り、上記「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアルキレン基」の具体例(具体例群G14)としては、具体例群G3に記載の「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリーレン基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-42)~(TEMP-68)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 前記一般式(TEMP-42)~(TEMP-52)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-42)~(TEMP-52)中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000010
 前記一般式(TEMP-53)~(TEMP-62)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 式Q及びQ10は、単結合を介して互いに結合して環を形成してもよい。
 前記一般式(TEMP-53)~(TEMP-62)中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000011
 前記一般式(TEMP-63)~(TEMP-68)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-63)~(TEMP-68)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換の2価の複素環基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-69)~(TEMP-102)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 前記一般式(TEMP-69)~(TEMP-82)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 前記一般式(TEMP-83)~(TEMP-102)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 以上が、「本明細書に記載の置換基」についての説明である。
・「結合して環を形成する場合」
 本明細書において、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、互いに結合して、置換もしくは無置換の縮合環を形成するか、又は互いに結合せず」という場合は、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合しない」場合と、を意味する。
 本明細書における、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(以下、これらの場合をまとめて「結合して環を形成する場合」と称する場合がある。)について、以下、説明する。母骨格がアントラセン環である下記一般式(TEMP-103)で表されるアントラセン化合物の場合を例として説明する。
Figure JPOXMLDOC01-appb-C000019
 例えば、R921~R930のうちの「隣接する2つ以上からなる組の1組以上が、互いに結合して、環を形成する」場合において、1組となる隣接する2つからなる組とは、R921とR922との組、R922とR923との組、R923とR924との組、R924とR930との組、R930とR925との組、R925とR926との組、R926とR927との組、R927とR928との組、R928とR929との組、並びにR929とR921との組である。
 上記「1組以上」とは、上記隣接する2つ以上からなる組の2組以上が同時に環を形成してもよいことを意味する。例えば、R921とR922とが互いに結合して環Qを形成し、同時にR925とR926とが互いに結合して環Qを形成した場合は、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-104)で表される。
Figure JPOXMLDOC01-appb-C000020
 「隣接する2つ以上からなる組」が環を形成する場合とは、前述の例のように隣接する「2つ」からなる組が結合する場合だけではなく、隣接する「3つ以上」からなる組が結合する場合も含む。例えば、R921とR922とが互いに結合して環Qを形成し、かつ、R922とR923とが互いに結合して環Qを形成し、互いに隣接する3つ(R921、R922及びR923)からなる組が互いに結合して環を形成して、アントラセン母骨格に縮合する場合を意味し、この場合、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-105)で表される。下記一般式(TEMP-105)において、環Q及び環Qは、R922を共有する。
Figure JPOXMLDOC01-appb-C000021
 形成される「単環」、又は「縮合環」は、形成された環のみの構造として、飽和の環であっても不飽和の環であってもよい。「隣接する2つからなる組の1組」が「単環」、又は「縮合環」を形成する場合であっても、当該「単環」、又は「縮合環」は、飽和の環、又は不飽和の環を形成することができる。例えば、前記一般式(TEMP-104)において形成された環Q及び環Qは、それぞれ、「単環」又は「縮合環」である。また、前記一般式(TEMP-105)において形成された環Q、及び環Qは、「縮合環」である。前記一般式(TEMP-105)の環Qと環Qとは、環Qと環Qとが縮合することによって縮合環となっている。前記一般式(TMEP-104)の環Qがベンゼン環であれば、環Qは、単環である。前記一般式(TMEP-104)の環Qがナフタレン環であれば、環Qは、縮合環である。
 「不飽和の環」とは、芳香族炭化水素環、又は芳香族複素環を意味する。「飽和の環」とは、脂肪族炭化水素環、又は非芳香族複素環を意味する。
 芳香族炭化水素環の具体例としては、具体例群G1において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 芳香族複素環の具体例としては、具体例群G2において具体例として挙げられた芳香族複素環基が水素原子によって終端された構造が挙げられる。
 脂肪族炭化水素環の具体例としては、具体例群G6において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 「環を形成する」とは、母骨格の複数の原子のみ、あるいは母骨格の複数の原子とさらに1以上の任意の元素で環を形成することを意味する。例えば、前記一般式(TEMP-104)に示す、R921とR922とが互いに結合して形成された環Qは、R921が結合するアントラセン骨格の炭素原子と、R922が結合するアントラセン骨格の炭素原子と、1以上の任意の元素とで形成する環を意味する。具体例としては、R921とR922とで環Qを形成する場合において、R921が結合するアントラセン骨格の炭素原子と、R922とが結合するアントラセン骨格の炭素原子と、4つの炭素原子とで単環の不飽和の環を形成する場合、R921とR922とで形成する環は、ベンゼン環である。
 ここで、「任意の元素」は、本明細書に別途記載のない限り、好ましくは、炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素である。任意の元素において(例えば、炭素元素、又は窒素元素の場合)、環を形成しない結合は、水素原子等で終端されてもよいし、後述する「任意の置換基」で置換されてもよい。炭素元素以外の任意の元素を含む場合、形成される環は複素環である。
 単環または縮合環を構成する「1以上の任意の元素」は、本明細書に別途記載のない限り、好ましくは2個以上15個以下であり、より好ましくは3個以上12個以下であり、さらに好ましくは3個以上5個以下である。
 本明細書に別途記載のない限り、「単環」、及び「縮合環」のうち、好ましくは「単環」である。
 本明細書に別途記載のない限り、「飽和の環」、及び「不飽和の環」のうち、好ましくは「不飽和の環」である。
 本明細書に別途記載のない限り、「単環」は、好ましくはベンゼン環である。
 本明細書に別途記載のない限り、「不飽和の環」は、好ましくはベンゼン環である。
 「隣接する2つ以上からなる組の1組以上」が、「互いに結合して、置換もしくは無置換の単環を形成する」場合、又は「互いに結合して、置換もしくは無置換の縮合環を形成する」場合、本明細書に別途記載のない限り、好ましくは、隣接する2つ以上からなる組の1組以上が、互いに結合して、母骨格の複数の原子と、1個以上15個以下の炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素とからなる置換もしくは無置換の「不飽和の環」を形成する。
 上記の「単環」、又は「縮合環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 上記の「飽和の環」、又は「不飽和の環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 以上が、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(「結合して環を形成する場合」)についての説明である。
・「置換もしくは無置換の」という場合の置換基
 本明細書における一実施形態においては、前記「置換もしくは無置換の」という場合の置換基(本明細書において、「任意の置換基」と呼ぶことがある。)は、例えば、
無置換の炭素数1~50のアルキル基、
無置換の炭素数2~50のアルケニル基、
無置換の炭素数2~50のアルキニル基、
無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
無置換の環形成炭素数6~50のアリール基、及び無置換の環形成原子数5~50の複素環基からなる群から選択される基等であり、
 ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。
 R901が2個以上存在する場合、2個以上のR901は、互いに同一であるか、又は異なり、
 R902が2個以上存在する場合、2個以上のR902は、互いに同一であるか、又は異なり、
 R903が2個以上存在する場合、2個以上のR903は、互いに同一であるか、又は異なり、
 R904が2個以上存在する場合、2個以上のR904は、互いに同一であるか、又は異なり、
 R905が2個以上存在する場合、2個以上のR905は、互いに同一であるか、又は異なり、
 R906が2個以上存在する場合、2個以上のR906は、互いに同一であるか、又は異なり、
 R907が2個以上存在する場合、2個以上のR907は、互いに同一であるか又は異なる。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び環形成原子数5~50の複素環基からなる群から選択される基である。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び環形成原子数5~18の複素環基からなる群から選択される基である。
 上記任意の置換基の各基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基の具体例である。
 本明細書において別途記載のない限り、隣接する任意の置換基同士で、「飽和の環」、又は「不飽和の環」を形成してもよく、好ましくは、置換もしくは無置換の飽和の5員環、置換もしくは無置換の飽和の6員環、置換もしくは無置換の不飽和の5員環、又は置換もしくは無置換の不飽和の6員環を形成し、より好ましくは、ベンゼン環を形成する。
 本明細書において別途記載のない限り、任意の置換基は、さらに置換基を有してもよい。任意の置換基がさらに有する置換基としては、上記任意の置換基と同様である。
 本明細書において、「AA~BB」を用いて表される数値範囲は、「AA~BB」の前に記載される数値AAを下限値とし、「AA~BB」の後に記載される数値BBを上限値として含む範囲を意味する。
〔第一実施形態〕
(有機エレクトロルミネッセンス素子)
 本実施形態に係る有機エレクトロルミネッセンス素子は、陽極と、陰極と、前記陽極及び前記陰極の間に配置された発光領域と、前記陽極及び前記発光領域の間に配置された正孔輸送帯域と、を有し、前記発光領域は、第一の発光層及び第二の発光層を含み、前記第一の発光層及び前記第二の発光層の一方が、前記発光領域において前記陽極側に配置され、前記正孔輸送帯域は、前記陽極及び前記発光領域と、直接、接し、前記正孔輸送帯域は、1又は複数の有機層を含み、前記正孔輸送帯域中の少なくとも1つの有機層は、前記発光領域と直接接する第一の有機層であり、前記第一の有機層は、正孔輸送帯域材料を含み、前記第一の発光層は、第一のホスト材料と、最大ピーク波長が500nm以下の発光を示す第一の発光性化合物と、を含み、前記第二の発光層は、第二のホスト材料と、最大ピーク波長が500nm以下の発光を示す第二の発光性化合物と、を含み、前記第一のホスト材料と前記第二のホスト材料とは互いに異なり、前記第一の発光性化合物と前記第二の発光性化合物とが、互いに同一であるか、又は異なり、前記第一のホスト材料の三重項エネルギーT(H1)と前記第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数1)の関係を満たし、前記第一の有機層が含有する前記正孔輸送帯域材料のイオン化ポテンシャルIp(HT)と、前記第一の発光層が含有する前記第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、下記数式(数1X)の関係を満たす。
  T(H1)>T(H2)      …(数1)
  Ip(D1)-Ip(HT)<-0.05eV …(数1X)
 従来、有機エレクトロルミネッセンス素子の発光効率を向上させるための技術として、Triplet-Triplet-Annhilation(TTAと称する場合がある。)が知られている。TTAは、三重項励起子と三重項励起子とが衝突して、一重項励起子を生成するという機構(メカニズム)である。なお、TTAメカニズムは、特許文献3に記載のようにTTFメカニズムと称する場合もある。
 TTF現象を説明する。陽極から注入された正孔と、陰極から注入された電子とは、発光層内で再結合し励起子を生成する。そのスピン状態は、従来から知られているように、一重項励起子が25%、三重項励起子が75%の比率である。従来知られている蛍光素子においては、25%の一重項励起子が基底状態に緩和するときに光を発するが、残りの75%の三重項励起子については光を発することなく熱的失活過程を経て基底状態に戻る。従って、従来の蛍光素子の内部量子効率の理論限界値は25%といわれていた。
 一方、有機物内部で生成した三重項励起子の挙動が理論的に調べられている。S.M.Bachiloらによれば(J.Phys.Chem.A,104,7711(2000))、五重項等の高次の励起子がすぐに三重項に戻ると仮定すると、三重項励起子(以下、と記載する)の密度が上がってきたとき、三重項励起子同士が衝突し下記式のような反応が起きる。ここで、Aは、基底状態を表し、は、最低励起一重項励起子を表す。
   →(4/9)A+(1/9)+(13/9)
 即ち、5→4A+1Aとなり、当初生成した75%の三重項励起子のうち、1/5即ち20%が一重項励起子に変化することが予測されている。従って、光として寄与する一重項励起子は、当初生成する25%分に75%×(1/5)=15%を加えた40%ということになる。このとき、全発光強度中に占めるTTF由来の発光比率(TTF比率)は、15/40、すなわち37.5%となる。また、当初生成した75%の三重項励起子のお互いが衝突して一重項励起子が生成した(2つの三重項励起子から1つの一重項励起子が生成した)とすると、当初生成する一重項励起子25%分に75%×(1/2)=37.5%を加えた62.5%という非常に高い内部量子効率が得られる。このとき、TTF比率は、37.5/62.5=60%である。
 本実施形態に係る有機エレクトロルミネッセンス素子によれば、第一の発光層で正孔と電子との再結合によって生成した三重項励起子は、当該第一の発光層と直接に接する有機層との界面にキャリアが過剰に存在していても、第一の発光層と当該有機層との界面に存在する三重項励起子がクエンチされ難くなると考えられる。例えば、再結合領域が、第一の発光層と正孔輸送層又は電子障壁層との界面に局所的に存在する場合には、過剰な電子によるクエンチが考えられる。一方、再結合領域が、第一の発光層と電子輸送層又は正孔障壁層との界面に局所的に存在する場合には、過剰な正孔によるクエンチが考えられる。
 本実施形態に係る有機エレクトロルミネッセンス素子は、所定の関係を満たす、少なくとも2つの発光層(すなわち、第一の発光層及び第二の発光層)を備え、第一の発光層中の第一のホスト材料の三重項エネルギーT(H1)と、第二の発光層中の第二のホスト材料の三重項エネルギーT(H2)とが、前記数式(数1)の関係を満たす。
 前記数式(数1)の関係を満たすように第一の発光層及び第二の発光層を備えることで、第一の発光層で生成した三重項励起子は、過剰キャリアによってクエンチされずに第二の発光層へと移動し、また、第二の発光層から第一の発光層へ逆移動することを抑制できる。その結果、第二の発光層において、TTFメカニズムが発現して、一重項励起子が効率良く生成され、発光効率が向上する。
 このように、有機エレクトロルミネッセンス素子が、三重項励起子を主に生成させる第一の発光層と、第一の発光層から移動してきた三重項励起子を活用してTTFメカニズムを主に発現させる第二の発光層と、を異なる領域として備え、第二の発光層中の第二のホスト材料として、第一の発光層中の第一のホスト材料よりも小さな三重項エネルギーを有する化合物を用いて、三重項エネルギーの差を設けることで、発光効率が向上する。
 本実施形態に係る有機EL素子は、数式(数1)の関係を満たす第一の発光層及び第二の発光層を有するため、素子の発光効率を向上させることができる。
 本実施形態に係る有機EL素子は、発光領域と陽極との間において、正孔輸送帯域を構成する有機層の数を低減した層構成(省層化構成)となっている。このような省層化構成の有機EL素子は、発光領域へのホールの供給量が不足しやすくなるため、発光効率が低下するおそれがある。
 本実施形態に係る有機EL素子によれば、第一の有機層が含有する正孔輸送帯域材料のイオン化ポテンシャルIp(HT)と、第一の発光層が含有する第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、前記数式(数1X)の関係を満たすことで、正孔輸送帯域材料と第一の発光性化合物とのエネルギー障壁を小さくすることができる。その結果、正孔輸送帯域を構成する有機層の数を減らしても(例えば、正孔輸送帯域を2層にしても)、発光領域へのホール注入を促進でき、有機EL素子の高効率化につなげる事が出来る。
 また、本実施形態に係る有機EL素子によれば、前記数式(数1X)の関係を満たす正孔輸送帯域材料及び第一の発光性化合物を選択することで、有機EL素子の高効率化を担保できるので、例えば、第一の発光性化合物と共に第一の発光層の構成材料として用いる第一のホスト材料の選択肢の幅を広げることができる。
 本実施形態に係る有機EL素子において、正孔輸送帯域材料と第一の発光性化合物とのエネルギー障壁をより小さくし、発光領域へのホール注入をより促進する観点から、第一の有機層が含有する正孔輸送帯域材料のイオン化ポテンシャルIp(HT)と、第一の発光層が含有する第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、下記数式(数1Y)の関係を満たすことがより好ましく、下記数式(数1Z)の関係を満たすことがさらに好ましい。
  Ip(D1)-Ip(HT)<-0.07eV …(数1Y)
  Ip(D1)-Ip(HT)<-0.10eV …(数1Z)
 本実施形態に係る有機EL素子において、第一の有機層が含有する正孔輸送帯域材料のイオン化ポテンシャルIp(HT)は、5.4eVよりも大きいことが好ましい。
 本実施形態に係る有機EL素子において、第一の有機層が含有する正孔輸送帯域材料が共通正孔輸送帯域材料の場合、共通正孔輸送帯域材料のイオン化ポテンシャルIp(HTX)は、5.4eV以上5.6eV以下であることが好ましい。
 本実施形態に係る有機EL素子において、第一の発光層が含有する第一の発光性化合物のイオン化ポテンシャルIp(D1)は、5.45eVよりも小さいことが好ましい。
 本実施形態に係る有機EL素子において、第一の発光層が含有する第一の発光性化合物の三重項エネルギーT(D1)が2.1eV以上であることが好ましく、2.2eV以上であることがより好ましい。第一の発光性化合物の三重項エネルギーT(D1)の上限値は、化合物安定性の観点から、2.8eV以下であることが好ましい。
 第一の発光層が含有する第一の発光性化合物の三重項エネルギーT(D1)が2.1eV以上であると、第一のホスト材料で励起された三重項エネルギーT(D1)を効率良く、第二のホスト材料へ移動させることができる。
 第一の発光層が含有する第一の発光性化合物の三重項エネルギーT(D1)が2.1eV以上であり、かつ第一のホスト材料の三重項エネルギーT(H1)と、第一の発光性化合物の三重項エネルギーT(D1)とが後述の数式(数20A)(T(D1)>T(H1))の関係を満たすと、第一のホスト材料で励起された三重項エネルギーT(D1)をより効率良く、第二のホスト材料へ移動させることができる。
 本実施形態に係る有機EL素子において、第一の発光層は、正孔輸送帯域と陰極との間に配置され、第二の発光層は、第一の発光層と陰極との間に配置されていることが好ましい。この態様の場合、正孔輸送帯域と第一の発光層とが、直接、接する。
 本実施形態に係る有機EL素子は、陽極側から、第一の発光層と第二の発光層とをこの順序に有していてもよいし、陽極側から、第二の発光層と第一の発光層とをこの順序に有していてもよい。第一の発光層と第二の発光層の順序がいずれの場合も、前記数式(数1)の関係を満たす材料の組合せを選択することにより、発光層が積層構成であることによる効果が期待できる。
 一実施形態において、陽極と発光領域との間に配置される層の数は、1層である。
 一実施形態において、陽極と発光領域との間に配置される層の数は、2層である。
 一実施形態において、陽極と発光領域との間に配置される層の数は、3層以上である。
 一実施形態において、陽極と発光領域との間に配置される正孔輸送帯域は、正孔注入層、正孔輸送層及び電子障壁層の少なくともいずれかの有機層を含んでいる。
 電子障壁層は、例えば、正孔を輸送し、かつ電子が当該障壁層よりも陽極側の層(例えば、正孔輸送層又は正孔注入層)に到達することを阻止する層である。また、電子障壁層は、励起エネルギーが発光領域からその周辺層に漏れ出すのを阻止する層であってもよい。この場合、電子障壁層は、発光領域で生成した励起子が、当該障壁層よりも陽極側の層(例えば、正孔輸送層又は正孔注入層)に移動することを阻止する。
 本実施形態に係る有機EL素子において、前記正孔輸送帯域が、前記正孔輸送帯域材料とは異なる材料を含有しないこともできる。
 本実施形態に係る有機EL素子において、前記正孔輸送帯域が、前記第一の有機層のみからなることもできる。
 本実施形態に係る有機EL素子において、前記第一の有機層が、前記正孔輸送帯域材料とは異なる材料を含有しないこともできる。
 本実施形態に係る有機EL素子において、前記正孔輸送帯域中の前記有機層は、共通の正孔輸送帯域材料として、いずれも、前記正孔輸送帯域材料を含むことが好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域中の有機層は、いずれも、正孔輸送帯域材料を共通して含有することが好ましい。
 本明細書において、正孔輸送帯域中の複数の有機層が、いずれも、正孔輸送帯域材料を共通して含有する場合、複数の有機層が共通して含有する正孔輸送帯域材料を「共通正孔輸送帯域材料」と称して説明することがある。
 正孔輸送帯域が1つの有機層で構成されている場合、1つの有機層(第一の有機層)は、正孔輸送帯域材料を含有する。正孔輸送帯域が2つの有機層で構成されている場合、2つの有機層は、互いに同じ化合物を共通正孔輸送帯域材料として含有することが好ましい。正孔輸送帯域が3つの有機層で構成されている場合、少なくとも2つの有機層が、互いに同じ化合物を共通正孔輸送帯域材料として含有することが好ましく、3つの有機層が、互いに同じ化合物を共通正孔輸送帯域材料として含有することがより好ましい。
 正孔輸送帯域における有機層が含有する正孔輸送帯域材料は、1種の化合物でもよいし、2種以上の化合物を含有する混合物でもよい。
 正孔輸送帯域中の有機層が、いずれも、共通正孔輸送帯域材料を含有する場合、共通正孔輸送帯域材料は、1種の化合物でもよいし、2種以上の化合物を含有する混合物でもよい。
 本実施形態に係る有機EL素子において、前記共通の正孔輸送帯域材料のイオン化ポテンシャルIp(HTX)と、前記第一の発光層が含有する前記第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、下記数式(数2X)の関係を満たすことが好ましく、下記数式(数2Y)の関係を満たすことがより好ましく、下記数式(数2Z)の関係を満たすことがさらに好ましい。
  Ip(D1)-Ip(HTX)<-0.05eV …(数2X)
  Ip(D1)-Ip(HTX)<-0.07eV …(数2Y)
  Ip(D1)-Ip(HTX)<-0.10eV …(数2Z)
 本実施形態に係る有機EL素子において、正孔輸送帯域は、第一の有機層と、第一の有機層と陽極との間に配置された第二の有機層とを含むことも好ましい。第二の有機層は、陽極と直接接していてもよい。第一の有機層と第二の有機層とは互いに接していてもよい。
 本実施形態に係る有機EL素子において、第一の有機層は、正孔輸送帯域材料と、さらに正孔輸送帯域材料とは異なる第一の正孔輸送帯域材料と、を含有することも好ましい。第一の正孔輸送帯域材料は、正孔輸送帯域材料とは異なる分子構造の化合物である。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層及び第二の有機層を含む場合、第二の有機層は、正孔輸送帯域材料と、さらに正孔輸送帯域材料とは異なる第二の正孔輸送帯域材料を含有することも好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層及び第二の有機層を含む場合、第一の有機層が正孔輸送帯域材料と、正孔輸送帯域材料とは異なる第一の正孔輸送帯域材料とを含有し、かつ第二の有機層が正孔輸送帯域材料と、正孔輸送帯域材料とは異なる第二の正孔輸送帯域材料とを含有することも好ましい。
 本実施形態に係る有機EL素子において、第二の正孔輸送帯域材料は、ドープ化合物(正孔輸送帯域材料とは異なる分子構造の化合物)であることも好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層及び第二の有機層を含む場合、第一の有機層の膜厚は、第二の有機層の膜厚よりも厚くてもよい。
 第二の有機層の膜厚は、5nm以上、15nm以下であることが好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域中の有機層が共通正孔輸送帯域材料を含有する場合、各有機層中における共通正孔輸送帯域材料の含有量は、40質量%以上であることが好ましく、45質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。各有機層中における共通正孔輸送帯域材料の含有量の上限値は、100質量%である。
 各有機層中に含まれる共通正孔輸送帯域材料が2種以上の混合物である場合、各有機層中の共通正孔輸送帯域材料(混合物)の含有量の上限値は100質量%である。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層及び第二の有機層を含み、かつ第二の有機層が、共通正孔輸送帯域材料と、第二の正孔輸送帯域材料としてドープ化合物を含有する場合、第二の有機層中のドープ化合物の含有量は、0.5質量%以上5質量%以下であることが好ましく、1.0質量%以上3質量%以下であることがより好ましい。
 第二の有機層中の共通正孔輸送帯域材料の含有量は、40質量%以上であることが好ましく、45質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。第二の有機層中の共通正孔輸送帯域材料の含有量は、99.5質量%以下であることが好ましい。第二の有機層中の共通正孔輸送帯域材料及びドープ化合物の含有量の合計は、100質量%以下である。
 本実施形態に係る有機EL素子において、正孔輸送帯域は、第一の有機層と、第二の有機層と、第二の有機層と陽極との間に配置された第三の有機層とを含んでいてもよい。第三の有機層は、陽極と直接接していてもよい。第一の有機層と第二の有機層と第三の有機層とが互いに接していてもよい。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層、第二の有機層及び第三の有機層を含む場合、第三の有機層は、前記正孔輸送帯域材料と、さらに前記正孔輸送帯域材料とは異なる第三の正孔輸送帯域材料を含有することも好ましい。第二の有機層は、正孔輸送帯域材料と、さらに正孔輸送帯域材料とは異なる第二の正孔輸送帯域材料を含有することも好ましい。第一の有機層は、正孔輸送帯域材料と、さらに正孔輸送帯域材料とは異なる第一の正孔輸送帯域材料を含有することも好ましい。
 第一の正孔輸送帯域材料と第二の正孔輸送帯域材料と第三の正孔輸送帯域材料とは、互いに同一であるか又は異なる。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層、第二の有機層及び第三の有機層を含み、第三の有機層が、第三の正孔輸送帯域材料を含有する場合、第三の正孔輸送帯域材料は、ドープ化合物であることも好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層、第二の有機層及び第三の有機層を含む場合、第一の有機層が正孔輸送帯域材料と、正孔輸送帯域材料とは異なる第一の正孔輸送帯域材料を含有し、かつ第三の有機層が正孔輸送帯域材料と、正孔輸送帯域材料とは異なる第三の正孔輸送帯域材料を含有することも好ましい。この態様の場合、第一の正孔輸送帯域材料と第三の正孔輸送帯域材料とは、互いに同一であるか又は異なる。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層、第二の有機層及び第三の有機層を含む場合、第一の有機層の膜厚は、第二の有機層の膜厚及び第三の有機層の膜厚よりも厚いことも好ましい。
 また、本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層、第二の有機層及び第三の有機層を含む場合、第二の有機層の膜厚は、第一の有機層の膜厚及び第三の有機層の膜厚よりも厚いことも好ましい。
 また、本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層、第二の有機層及び第三の有機層を含む場合、第三の有機層の膜厚は、第一の有機層の膜厚及び第二の有機層の膜厚よりも薄いことも好ましい。
 第三の有機層の膜厚は、5nm以上、15nm以下であることが好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層、第二の有機層及び第三の有機層を含み、かつ第三の有機層が、共通正孔輸送帯域材料と、第三の正孔輸送帯域材料としてドープ化合物を含有する場合、第三の有機層中のドープ化合物の含有量及び第三の有機層中の共通正孔輸送帯域材料の含有量は、前述の第二の有機層中のドープ化合物の含有量及び第二の有機層中の共通正孔輸送帯域材料の含有量と同様の範囲であることが好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層と、第二の有機層とを含む場合、第一の有機層は、正孔輸送帯域材料と、正孔輸送帯域材料とは異なる第一の正孔輸送帯域材料とを含有する層(以下、共蒸着層とも称する)であることも好ましい。第一の有機層が共蒸着層であることにより、高い正孔輸送性と発光層へのホール注入性を両立できるため、省層化しつつ、発光効率をより向上させることができる。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層と、第二の有機層と、第三の有機層とを含む場合、第一の有機層は共蒸着層であることも好ましい。第一の有機層が共蒸着層であることにより、高い正孔輸送性と発光層へのホール注入性を両立できるため、発光効率を向上させることができる。
 また、青色有機EL素子、緑色有機EL素子及び赤色有機EL素子を備える有機EL表示装置においては、青色有機EL素子の正孔輸送帯域が、共通層としての正孔注入層、第一の正孔輸送層及び第二の正孔輸送層と、非共通層としての青色有機EL素子用の電子障壁層との4層構成となっている場合がある。このような有機EL表示装置に本実施形態の有機EL素子を適用することにより、前記4層構成の内、青色有機EL素子用の電子障壁層を省層化できる。
 正孔輸送帯域における有機層が、複数種類の化合物を含有する有機層である場合、当該有機層は、例えば、複数種類の化合物を共蒸着法により成膜することもでき、複数種類の化合物を予め混合した混合物を用いて蒸着法により成膜することもでき、又は複数種類の化合物を予め混合した混合物を用いて塗布法により成膜することもできる。
 本実施形態に係る有機EL素子において、第二の有機層は、例えば、下記一般式(P11)で表される第一の環構造及び下記一般式(P12)で表される第二の環構造の少なくともいずれかを含む化合物をドープ化合物(第二の正孔輸送帯域材料の一態様)として含むことも好ましく、後述する一般式(21)又は下記一般式(22)で表される化合物を第二の正孔輸送帯域材料として含むことも好ましい。
 本実施形態に係る有機EL素子において、第三の有機層は、例えば、下記一般式(P11)で表される第一の環構造及び下記一般式(P12)で表される第二の環構造の少なくともいずれかを含む化合物をドープ化合物(第三の正孔輸送帯域材料の一態様)として含むことも好ましく、後述する一般式(21)で表される化合物及び一般式(22)で表される化合物の少なくともいずれかの化合物を第三の正孔輸送帯域材料として含むことも好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層及び第二の有機層を含み、かつ第二の有機層が陽極と、直接、接している場合に、第二の有機層は、ドープ化合物を含有していることが好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域が第一の有機層、第二の有機層及び第三の有機層を含み、かつ第三の有機層が陽極と、直接、接している場合に、第三の有機層は、ドープ化合物を含有していることが好ましい。第三の有機層が、第三の正孔輸送帯域材料としてドープ化合物を含有する場合、第二の有機層は、第二の正孔輸送帯域材料を含有していなくてもよく、第二の正孔輸送帯域材料としてドープ化合物とは異なる化合物(例えば、後述する一般式(21)で表される化合物及び一般式(22)で表される化合物の少なくともいずれかの化合物)を含有していてもよい。
Figure JPOXMLDOC01-appb-C000022
(前記一般式(P11)で表される第一の環構造は、前記ドープ化合物の分子中で、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環及び置換もしくは無置換の環形成原子数5~50の複素環の少なくともいずれかの環構造と縮合し、
 =Z10で表される構造は、下記一般式(11a)、(11b)、(11c)、(11d)、(11e)、(11f)、(11g)、(11h)、(11i)、(11j)、(11k)又は(11m)で表される。)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(前記一般式(11a)、(11b)、(11c)、(11d)、(11e)、(11f)、(11g)、(11h)、(11i)、(11j)、(11k)又は(11m)中、R11~R14並びにR1101~R1110は、それぞれ独立に、
  水素原子、
  ハロゲン原子、
  ヒドロキシ基、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)(前記一般式(P12)において、Z~Zは、それぞれ独立に、
  窒素原子、
  R15と結合する炭素原子、又は
  前記ドープ化合物の分子中の他の原子と結合する炭素原子であり、
 Z~Zの内、少なくとも1つは、前記ドープ化合物の分子中の他の原子と結合する炭素原子であり、
 R15は、
  水素原子、
  ハロゲン原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  カルボキシ基、
  置換もしくは無置換のエステル基、
  置換もしくは無置換のカルバモイル基、
  ニトロ基、及び
  置換もしくは無置換のシロキサニル基からなる群から選択され、
 R15が複数存在する場合、複数のR15は互いに同一であるか、又は異なる。)
(前記ドープ化合物中、R901~R907は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数ある場合、複数のR901は、互いに同一であるか、又は異なり、
 R902が複数ある場合、複数のR902は、互いに同一であるか、又は異なり、
 R903が複数ある場合、複数のR903は、互いに同一であるか、又は異なり、
 R904が複数ある場合、複数のR904は、互いに同一であるか、又は異なり、
 R905が複数ある場合、複数のR905は、互いに同一であるか、又は異なり、
 R906が複数ある場合、複数のR906は、互いに同一であるか、又は異なり、
 R907が複数ある場合、複数のR907は、互いに同一であるか、又は異なる。)
 本明細書におけるエステル基は、アルキルエステル基及びアリールエステル基からなる群から選択される少なくともいずれかの基である。
 本明細書におけるアルキルエステル基は、例えば、-C(=O)ORで表される。Rは、例えば、置換もしくは無置換の炭素数1~50(好ましくは炭素数1~10)のアルキル基である。
 本明細書におけるアリールエステル基は、例えば、-C(=O)ORArで表される。RArは、例えば、置換もしくは無置換の環形成炭素数6~30のアリール基である。
 本明細書におけるシロキサニル基は、エーテル結合を介したケイ素化合物基であり、例えば、トリメチルシロキサニル基である。
 本明細書におけるカルバモイル基は、-CONHで表される。
 本明細書における置換のカルバモイル基は、例えば、-CONH-Ar、又は-CONH-Rで表される。Arは、例えば、置換もしくは無置換の環形成炭素数6~50(好ましくは環形成炭素数6~10)のアリール基及び環形成原子数5~50(好ましくは環形成原子数5~14)の複素環基からなる群から選択される少なくともいずれかの基である。Arは、置換もしくは無置換の環形成炭素数6~50のアリール基と置換もしくは無置換の環形成原子数5~50複素環基とが結合した基であってもよい。
 Rは、例えば、置換もしくは無置換の炭素数1~50(好ましくは炭素数1~6)のアルキル基である。
 前記ドープ化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
 ドープ化合物(第二の正孔輸送帯域材料もしくは第三の正孔輸送帯域材料の一態様)の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これらドープ化合物の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
 本実施形態に係る有機EL素子において、正孔輸送帯域材料は、
 置換もしくは無置換のアミノ基を分子中に1つ有するモノアミン化合物、
 置換もしくは無置換のアミノ基を分子中に2つ有するジアミン化合物、又は
 置換もしくは無置換のアミノ基を分子中に3つ有するトリアミン化合物であることが好ましく、
 置換もしくは無置換のアミノ基を分子中に1つ有するモノアミン化合物、又は
 置換もしくは無置換のアミノ基を分子中に2つ有するジアミン化合物であることがより好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域材料は、下記一般式(21)又は下記一般式(22)で表される化合物であることが好ましい。
・一般式(21)又は一般式(22)で表される化合物
Figure JPOXMLDOC01-appb-C000071
(前記一般式(21)及び一般式(22)において、
 LA1、LB1、LC1、LA2、LB2、LC2及びLD2は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 LA1及びLB1が単結合の場合、A及びBが、
  互いに結合して置換もしくは無置換の単環を形成するか、
  互いに結合して置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 LA1及びLC1が単結合の場合、A及びCが、
  互いに結合して置換もしくは無置換の単環を形成するか、
  互いに結合して置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 LB1及びLC1が単結合の場合、B及びCが、
  互いに結合して置換もしくは無置換の単環を形成するか、
  互いに結合して置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 n2は、1、2、3又は4であり、
 n2が1の場合、LE2は、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 n2が2、3又は4の場合、複数のLE2は、互いに同一であるか、又は異なり、
 n2が2、3又は4の場合、複数のLE2は、
  互いに結合して置換もしくは無置換の単環を形成するか、
  互いに結合して置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記単環を形成せず、かつ前記縮合環を形成しないLE2は、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 A、B、C、A、B、C及びDは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、
  -Si(R921)(R922)(R923)で表される基、又は
  -N(R906)(R907)で表される基であり、
 R921、R922及びR923は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 R906及びR907は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  置換もしくは無置換の炭素数1~30のアルキル基であり、
 R921が複数存在する場合、複数のR921は、互いに同一であるか、又は異なり、
 R922が複数存在する場合、複数のR922は、互いに同一であるか、又は異なり、
 R923が複数存在する場合、複数のR923は、互いに同一であるか、又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか、又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか、又は異なる。)
 前記一般式(21)において、
 LA1及びLB1が単結合の場合、A及びBが、互いに結合して置換もしくは無置換の単環を形成するか、互いに結合して置換もしくは無置換の縮合環を形成してもよいし、互いに結合しなくてもよい。
 LA1及びLC1が単結合の場合、A及びCが、互いに結合して置換もしくは無置換の単環を形成するか、互いに結合して置換もしくは無置換の縮合環を形成してもよいし、互いに結合しなくてもよい。
 LB1及びLC1が単結合の場合、B及びCが、互いに結合して置換もしくは無置換の単環を形成するか、互いに結合して置換もしくは無置換の縮合環を形成してもよいし、互いに結合しなくてもよい。
 前記一般式(22)において、
 LA2及びLB2が単結合の場合、A及びBが、互いに結合して置換もしくは無置換の単環を形成するか、互いに結合して置換もしくは無置換の縮合環を形成してもよいし、互いに結合しなくてもよい。
 LC2及びLD2が単結合の場合、C及びDが、互いに結合して置換もしくは無置換の単環を形成するか、互いに結合して置換もしくは無置換の縮合環を形成してもよいし、又は互いに結合しなくてもよい。
 前記一般式(21)で表される化合物は、下記一般式(212)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000072
(前記一般式(212)において、
 LC1、A、B及びCは、それぞれ、前記一般式(21)で定義したとおりであり、
 n1及びn2は、それぞれ独立に、0、1、2、3又は4であり、
 Rが複数存在する場合、複数のRは、互いに同一であるか、又は異なり、
 Rが複数存在する場合、複数のRのうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないRは、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 前記一般式(21)で表される化合物において、A、B及びCの内、少なくとも1つは、下記一般式(21a)、一般式(21b)、一般式(21c)、一般式(21d)及び一般式(21e)で表される基からなる群から選択される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000073
(前記一般式(21a)、一般式(21b)、一般式(21c)、一般式(21d)及び一般式(21e)において、
 X21は、NR21、CR2223、酸素原子又は硫黄原子であり、
 X21が複数ある場合、複数のX21は、互いに同一であるか、又は異なり、
 X21がCR2223である場合、R22とR23とからなる組が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R21、並びに前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR22及びR23は、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R211~R218のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、
  又は互いに結合せず
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR211~R218は、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(21a)、一般式(21b)、一般式(21c)一般式(21d)及び一般式(21e)における*は、それぞれ独立に、LA1、LB1、又はLC1との結合位置である。)
 前記一般式(21a)、一般式(21b)、一般式(21c)、一般式(21d)及び一般式(21e)で表される基からなる群から選択される基ではない、A、B、及びCは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基であることが好ましい。
 前記一般式(22)で表される化合物は、下記一般式(A221)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000074
(前記一般式(A221)において、
 LA2、LB2、LC2、LD2及びLE2は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 n2は、1、2、3又は4であり、
 n2が2、3又は4の場合、複数のLE2は、互いに同一であるか、又は異なり、
 R2211~R2230のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、
  又は互いに結合せず
 前記置換もしくは無置換の単環を形成せず、かつ前記置換もしくは無置換の縮合環を形成しないR2211~R2230は、それぞれ独立に、
  水素原子、
  シアノ基、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロゲン化アルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 本実施形態に係る有機EL素子の正孔輸送帯域材料において、R901、R902、R903、R904、R905、R906及びR907は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なる。
 本実施形態に係る正孔輸送帯域材料において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
 本実施形態に係る有機EL素子において、正孔輸送帯域材料は、分子中に置換もしくは無置換の3-カルバゾリル基を含んでいる化合物でもよい。また、本実施形態に係る有機EL素子において、正孔輸送帯域材料は、分子中に置換もしくは無置換の3-カルバゾリル基を含まない化合物でもよい。
 本実施形態に係る有機EL素子において、正孔輸送帯域が正孔輸送層を含んでいる場合、正孔輸送層には、前述の一般式(21)又は一般式(22)で表される化合物を用いることができる。例えば、芳香族アミン誘導体、カルバゾール誘導体、アントラセン誘導体等を使用することもできる。具体的には、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)などの芳香族アミン誘導体等を用いることができる。
 正孔輸送層に用いられる正孔輸送性の高い物質としては、例えば、10-6cm/(V・s)以上の正孔移動度を有する物質である。但し、正孔輸送層に用いる物質としては、電子輸送性よりも正孔輸送性が高い物質であれば、これら以外の物質を用いてもよい。
なお、正孔輸送性の高い物質を含む層は、単層でもよいし、上記物質を含む層が二層以上積層された積層構造でもよい。
 また、例えば、発光領域の陽極側、及び陰極側の少なくとも一方に障壁層を隣接させて設けてもよい。障壁層は、発光領域に接して配置され、正孔、電子、及び励起子の少なくともいずれかを阻止することが好ましい。
 例えば、発光領域の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、かつ正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、発光領域と電子輸送層との間に当該障壁層を含むことが好ましい。
(正孔輸送帯域材料の製造方法)
 正孔輸送帯域材料は、公知の方法により製造できる。また、正孔輸送帯域材料は、公知の方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることによっても、製造できる。
(正孔輸送帯域材料の具体例)
 正孔輸送帯域材料の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら正孔輸送帯域材料の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086

 
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)と第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数5)の関係を満たすことが好ましい。
   T(H1)-T(H2)>0.03eV   …(数5)
 本明細書において、「ホスト材料」とは、例えば「層の50質量%以上」含まれる材料である。したがって、第一の発光層は、例えば、第一のホスト材料を、第一の発光層の全質量の50質量%以上、含有する。第二の発光層は、例えば、第二のホスト材料を、第二の発光層の全質量の50質量%以上、含有する。
(有機EL素子の発光波長)
 本実施形態に係る有機エレクトロルミネッセンス素子は、素子駆動時に最大のピーク波長が500nm以下の光を放射することが好ましい。
 本実施形態に係る有機エレクトロルミネッセンス素子は、素子駆動時に最大のピーク波長が、430nm以上480nm以下の光を放射することがより好ましい。
 素子駆動時に有機EL素子が放射する光の最大のピーク波長の測定は、以下のようにして行う。電流密度が10mA/cmとなるように有機EL素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ社製)で計測する。得られた分光放射輝度スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を測定し、これを最大のピーク波長(単位:nm)とする。
(第一の発光層)
 第一の発光層は、第一のホスト材料と、最大のピーク波長が500nm以下の発光を示す第一の発光性化合物とを含む。第一の発光性化合物のイオン化ポテンシャルIp(D1)は、前記数式(数1X)の関係を満たす。
 第一のホスト材料は、第二の発光層が含有する第二のホスト材料とは、異なる化合物である。
 第一の発光性化合物は、最大のピーク波長が480nm以下の発光を示すことが好ましい。第一の発光性化合物は、最大のピーク波長が430nm以上の発光を示すことが好ましい。
 第一の発光層が含有する第一の発光性化合物は、最大のピーク波長が500nm以下の蛍光発光を示す蛍光発光性化合物であることが好ましい。第一の発光性化合物は、最大のピーク波長が480nm以下の蛍光発光を示すことが好ましい。第一の発光性化合物は、最大のピーク波長が430nm以上の蛍光発光を示すことが好ましい。
 本実施形態に係る有機EL素子において、第一の発光性化合物は、分子中にアジン環構造を含まない化合物であることが好ましい。
 本実施形態に係る有機EL素子において、第一の発光性化合物は、ホウ素含有錯体ではないことが好ましく、第一の発光性化合物は、錯体ではないことがより好ましい。
 本実施形態に係る有機EL素子において、第一の発光層は、金属錯体を含有しないことが好ましい。また、本実施形態に係る有機EL素子において、第一の発光層は、ホウ素含有錯体を含有しないことも好ましい。
 本実施形態に係る有機EL素子において、第一の発光層は、燐光発光性材料(ドーパント材料)を含まないことが好ましい。
 また、第一の発光層は、重金属錯体及び燐光発光性の希土類金属錯体を含まないことが好ましい。ここで、重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。
 化合物の最大のピーク波長の測定方法は、次の通りである。測定対象となる化合物の5μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の発光スペクトル(縦軸:発光強度、横軸:波長とする。)を測定する。発光スペクトルは、株式会社日立ハイテクサイエンス製の分光蛍光光度計(装置名:F-7000)により測定できる。なお、発光スペクトル測定装置は、ここで用いた装置に限定されない。
 発光スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を最大ピーク波長とする。なお、本明細書において、蛍光発光の最大ピーク波長を蛍光発光最大ピーク波長(FL-peak)と称する場合がある。
 第一の発光性化合物の発光スペクトルにおいて、発光強度が最大となるピークを最大のピークとし、当該最大のピークの高さを1としたとき、当該発光スペクトルに現れる他のピークの高さは、0.6未満であることが好ましい。なお、発光スペクトルにおけるピークは、極大値とする。
 また、第一の発光性化合物の発光スペクトルにおいて、ピークの数が3つ未満であることが好ましい。
 本実施形態に係る有機EL素子において、第一の発光層は、素子駆動時に最大のピーク波長が500nm以下の光を放射することが好ましい。
 素子駆動時に発光層が放射する光の最大ピーク波長の測定は、次に記載の方法で行うことができる。
・素子駆動時に発光層から放射される光の最大ピーク波長λp
 素子駆動時に第一の発光層から放射される光の最大ピーク波長λpは、第二の発光層を第一の発光層と同じ材料を用いて有機EL素子を作製し、有機EL素子の電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測する。得られた分光放射輝度スペクトルから、最大ピーク波長λp(単位:nm)を算出する。
 素子駆動時に第二の発光層から放射される光の最大ピーク波長λpは、第一の発光層を第二の発光層と同じ材料を用いて有機EL素子を作製し、有機EL素子の電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測する。得られた分光放射輝度スペクトルから、最大ピーク波長λp(単位:nm)を算出する。
 本実施形態に係る有機EL素子において、第一のホスト材料の一重項エネルギーS(H1)と、第一の発光性化合物の一重項エネルギーS(D1)とが下記数式(数20)の関係を満たすことが好ましい。
   S(H1)>S(D1)   …(数20)
 一重項エネルギーSとは、最低励起一重項状態と基底状態とのエネルギー差を意味する。
 第一のホスト材料と第一の発光性化合物とが、数式(数20)の関係を満たすことにより、第一のホスト材料上で生成された一重項励起子は、第一のホスト材料から第一の発光性化合物へエネルギー移動し易くなり、第一の発光性化合物の発光(好ましくは蛍光性発光)に寄与する。
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)と、第一の発光性化合物の三重項エネルギーT(D1)とが下記数式(数20A)の関係を満たすことが好ましい。
   T(D1)>T(H1)   …(数20A)
 第一のホスト材料と第一の発光性化合物とが、数式(数20A)の関係を満たす事により、第一の発光層内で生成した三重項励起子は、より高い三重項エネルギーを有する第一の発光性化合物ではなく、第一のホスト材料上を移動するため、第二の発光層へ移動し易くなる。
 本実施形態に係る有機EL素子は、下記数式(数20B)の関係を満たすことが好ましい。
  T(D1)>T(H1)>T(H2) …(数20B)
(三重項エネルギーT
 三重項エネルギーTの測定方法としては、下記の方法が挙げられる。
 測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、10-5mol/L以上10-4mol/L以下となるように溶解し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を三重項エネルギーTとする。
  換算式(F1):T[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いることができる。なお、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
(一重項エネルギーS
 溶液を用いた一重項エネルギーSの測定方法(溶液法と称する場合がある。)としては、下記の方法が挙げられる。
 測定対象となる化合物の10-5mol/L以上10-4mol/L以下のトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出する。
  換算式(F2):S[eV]=1239.85/λedge
 吸収スペクトル測定装置としては、例えば、日立社製の分光光度計(装置名:U3310)が挙げられるが、これに限定されない。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
 本実施形態に係る有機EL素子において、第一の発光性化合物は、第一の発光層中に、1.0質量%以上、含有されることが好ましい。すなわち、第一の発光層は、第一の発光性化合物を、第一の発光層の全質量の1.0質量%以上、含有することが好ましく、1.1質量%超、含有することがより好ましく、第一の発光層の全質量の1.2質量%以上、含有することがさらに好ましく、第一の発光層の全質量の1.5質量%以上、含有することがさらに好ましい。
 第一の発光層は、第一の発光性化合物を、第一の発光層の全質量の10質量%以下、含有することが好ましく、第一の発光層の全質量の7質量%以下、含有することがより好ましく、第一の発光層の全質量の5質量%以下、含有することがさらに好ましい。
 本実施形態に係る有機EL素子において、第一の発光層は、第一のホスト材料としての第一の化合物を、第一の発光層の全質量の60質量%以上、含有することが好ましく、第一の発光層の全質量の70質量%以上、含有することがより好ましく、第一の発光層の全質量の80質量%以上、含有することがさらに好ましく、第一の発光層の全質量の90質量%以上、含有することがよりさらに好ましく、第一の発光層の全質量の95質量%以上、含有することがさらになお好ましい。
 第一の発光層は、第一のホスト材料を、第一の発光層の全質量の99質量%以下、含有することが好ましい。
 ただし、第一の発光層が第一のホスト材料と第一の発光性化合物とを含有する場合、第一のホスト材料及び第一の発光性化合物の合計含有率の上限は、100質量%である。
 なお、本実施形態は、第一の発光層に、第一のホスト材料と第一の発光性化合物以外の材料が含まれることを除外しない。
 第一の発光層は、第一のホスト材料を1種のみ含んでもよいし、2種以上含んでもよい。第一の発光層は、第一の発光性化合物を1種のみ含んでもよいし、2種以上含んでもよい。
 本実施形態に係る有機EL素子において、第一の発光層の膜厚は、3nm以上であることが好ましく、5nm以上であることがより好ましい。第一の発光層の膜厚が3nm以上であれば、第一の発光層において、正孔と電子との再結合を起こすのに充分な膜厚である。
 本実施形態に係る有機EL素子において、第一の発光層の膜厚は、15nm以下であることが好ましく、10nm以下であることがより好ましい。第一の発光層の膜厚が15nm以下であれば、第二の発光層へ三重項励起子が移動するのに充分に薄い膜厚である。
 本実施形態に係る有機EL素子において、第一の発光層の膜厚は、3nm以上、15nm以下であることがより好ましい。
 本実施形態に係る有機EL素子において、第一の発光層は、下記式(HT100)で表される化合物を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000161
 本実施形態に係る有機EL素子において、第一の発光層は、本実施形態に係る正孔輸送帯域材料を含んでいてもよい。
(第二の発光層)
 第二の発光層は、第二のホスト材料と、最大のピーク波長が500nm以下の発光を示す第二の発光性化合物とを含む。第二のホスト材料は、第一の発光層が含有する第一のホスト材料とは、異なる化合物である。第二の発光性化合物は、最大のピーク波長が480nm以下の発光を示すことが好ましい。第二の発光性化合物は、最大のピーク波長が430nm以上の発光を示すことが好ましい。
 第二の発光層が含有する第二の発光性化合物は、最大のピーク波長が500nm以下の蛍光発光を示す蛍光発光性化合物であることが好ましい。第二の発光性化合物は、最大のピーク波長が480nm以下の蛍光発光を示すことが好ましい。第二の発光性化合物は、最大のピーク波長が430nm以上の蛍光発光を示すことが好ましい。
 化合物の最大のピーク波長の測定方法は、前述の通りである。
 本実施形態に係る有機EL素子において、第二の発光層は、素子駆動時に最大のピーク波長が500nm以下の光を放射することが好ましい。
 本実施形態に係る有機EL素子において、第二の発光性化合物の最大のピークの半値幅が、1nm以上、20nm以下であることが好ましい。
 本実施形態に係る有機EL素子において、第二の発光性化合物のストークスシフトは、7nmを超えることが好ましい。
 第二の発光性化合物のストークスシフトが7nmを越えていれば、自己吸収による発光効率の低下を防止し易くなる。
 自己吸収とは、放出した光を同一化合物が吸収する現象であり、発光効率の低下を引き起こす現象である。自己吸収は、ストークスシフトの小さい(すなわち、吸収スペクトルと蛍光スペクトルの重なりが大きい)化合物で顕著に観測されるため、自己吸収を抑制するには、ストークスシフトの大きい(吸収スペクトルと蛍光スペクトルの重なりが小さい)化合物を用いることが好ましい。ストークスシフトは、次に記載する方法で測定できる。
 測定対象となる化合物を2.0×10-5mol/Lの濃度でトルエンに溶解し、測定用試料を調製する。石英セルへ入れた測定用試料に室温(300K)で紫外-可視領域の連続光を照射し、吸収スペクトル(縦軸:吸光度、横軸:波長)を測定する。吸収スペクトル測定には、分光光度計を用いることができ、例えば、日立ハイテクサイエンス社の分光光度計U-3900/3900H形を用いることができる。また、測定対象となる化合物を4.9×10-6mol/Lの濃度でトルエンに溶解し、測定用試料を調製する。石英セルへ入れた測定用試料に室温(300K)で励起光を照射し、蛍光スペクトル(縦軸:蛍光強度、横軸:波長)を測定した。蛍光スペクトル測定には、分光光度計を用いることができ、例えば、日立ハイテクサイエンス社の分光蛍光光度計F-7000形を用いることができる。
 これらの吸収スペクトルと蛍光スペクトルから、吸収極大波長と蛍光極大波長の差を算出し、ストークスシフト(SS)を求める。ストークスシフトSSの単位は、nmである。
 本実施形態に係る有機EL素子において、第二の発光性化合物の三重項エネルギーT(D2)と、第二のホスト材料の三重項エネルギーT(H2)とが下記数式(数3A)の関係を満たすことが好ましい。
   T(D2)>T(H2)   …(数3A)
 本実施形態に係る有機EL素子において、第二の発光性化合物と、第二のホスト材料とが、前記数式(数3A)の関係を満たすことにより、第一の発光層で生成した三重項励起子は、第二の発光層に移動する際、より高い三重項エネルギーを有する第二の発光性化合物ではなく、第二のホスト材料の分子にエネルギー移動する。また、第二のホスト材料上で正孔及び電子が再結合して発生した三重項励起子は、より高い三重項エネルギーを持つ第二の発光性化合物には移動しない。第二の発光性化合物の分子上で再結合し発生した三重項励起子は、速やかに第二のホスト材料の分子にエネルギー移動する。
 第二のホスト材料の三重項励起子が第二の発光性化合物に移動することなく、TTF現象によって第二のホスト材料上で三重項励起子同士が効率的に衝突することで、一重項励起子が生成される。
 本実施形態に係る有機EL素子において、第二のホスト材料の一重項エネルギーS(H2)と第二の発光性化合物の一重項エネルギーS(D2)とが、下記数式(数4)の関係を満たすことが好ましい。
   S(H2)>S(D2)   …(数4)
 本実施形態に係る有機EL素子において、第二の発光性化合物と、第二のホスト材料とが、前記数式(数4)の関係を満たすことにより、第二の発光性化合物の一重項エネルギーは、第二のホスト材料の一重項エネルギーより小さいため、TTF現象によって生成された一重項励起子は、第二のホスト材料から第二の発光性化合物へエネルギー移動し、第二の発光性化合物の発光(好ましくは蛍光性発光)に寄与する。
 本実施形態に係る有機EL素子において、第二の発光性化合物は、分子中にアジン環構造を含まない化合物であることが好ましい。
 本実施形態に係る有機EL素子において、第二の発光性化合物は、ホウ素含有錯体ではないことが好ましく、第二の発光性化合物は、錯体ではないことがより好ましい。
 本実施形態に係る有機EL素子において、第二の発光層は、金属錯体を含有しないことが好ましい。また、本実施形態に係る有機EL素子において、第二の発光層は、ホウ素含有錯体を含有しないことも好ましい。
 本実施形態に係る有機EL素子において、第二の発光層は、燐光発光性材料(ドーパント材料)を含まないことが好ましい。
 また、第二の発光層は、重金属錯体及び燐光発光性の希土類金属錯体を含まないことが好ましい。ここで、重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。
 本実施形態に係る有機EL素子において、第二の発光性化合物は、第二の発光層中に、1.0質量%以上、含有されることが好ましい。すなわち、第二の発光層は、第二の発光性化合物を、第二の発光層の全質量の1.0質量%以上、含有することが好ましく、1.1質量%超、含有することがより好ましく、第二の発光層の全質量の1.2質量%以上、含有することがさらに好ましく、第二の発光層の全質量の1.5質量%以上、含有することがさらに好ましい。
 第二の発光層は、第二の発光性化合物を、第二の発光層の全質量の10質量%以下、含有することが好ましく、第二の発光層の全質量の7質量%以下、含有することがより好ましく、第二の発光層の全質量の5質量%以下、含有することがさらに好ましい。
 第二の発光層は、第二のホスト材料としての第二の化合物を、第二の発光層の全質量の60質量%以上、含有することが好ましく、第二の発光層の全質量の70質量%以上、含有することがより好ましく、第二の発光層の全質量の80質量%以上、含有することがさらに好ましく、第二の発光層の全質量の90質量%以上、含有することがよりさらに好ましく、第二の発光層の全質量の95質量%以上、含有することがさらになお好ましい。
 第二の発光層は、第二のホスト材料を、第二の発光層の全質量の99質量%以下、含有することが好ましい。
 第二の発光層が第二のホスト材料と第二の発光性化合物とを含有する場合、第二のホスト材料及び第二の発光性化合物の合計含有率の上限は、100質量%である。
 なお、本実施形態は、第二の発光層に、第二のホスト材料と第二の発光性化合物以外の材料が含まれることを除外しない。
 第二の発光層は、第二のホスト材料を1種のみ含んでもよいし、2種以上含んでもよい。第二の発光層は、第二の発光性化合物を1種のみ含んでもよいし、2種以上含んでもよい。
 本実施形態に係る有機EL素子において、第二の発光層の膜厚は、5nm以上であることが好ましく、15nm以上であることがより好ましい。第二の発光層の膜厚が5nm以上であれば、第一の発光層から第二の発光層へ移動してきた三重項励起子が、再び第一の発光層に戻ることを抑制し易い。また、第二の発光層の膜厚が5nm以上であれば、第一の発光層における再結合部分から三重項励起子を充分離すことができる。
 本実施形態に係る有機EL素子において、第二の発光層の膜厚は、20nm以下であることが好ましい。第二の発光層の膜厚が20nm以下であれば、第二の発光層中の三重項励起子の密度を向上させて、TTF現象をさらに起こり易くすることができる。
 本実施形態に係る有機EL素子において、第二の発光層の膜厚は、5nm以上、20nm以下であることが好ましい。
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)が、下記数式(数12)の関係を満たすことが好ましい。
  T(H1)>2.0eV …(数12)
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)が、下記数式(数12AX)の関係を満たすことも好ましく、下記数式(数12A)の関係を満たすことも好ましく、下記数式(数12B)の関係を満たすことも好ましい。
  T(H1)>2.09eV …(数12AX)
  T(H1)>2.10eV …(数12A)
  T(H1)>2.15eV …(数12B)
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)が、前記数式(数12AX)、(数12A)又は前記数式(数12B)の関係を満たすことにより、第一の発光層で生成した三重項励起子は、第二の発光層へと移動し易くなり、また、第二の発光層から第一の発光層へ逆移動することを抑制し易くなる。その結果、第二の発光層において、一重項励起子が効率良く生成され、発光効率が向上する。
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)が、下記数式(数12C)の関係を満たすことも好ましく、下記数式(数12D)の関係を満たすことも好ましい。
  2.08eV>T(H1)>1.87eV …(数12C)
  2.05eV>T(H1)>1.90eV …(数12D)
 本実施形態に係る有機EL素子において、第一のホスト材料の三重項エネルギーT(H1)が、前記数式(数12C)又は前記数式(数12D)の関係を満たすことにより、第一の発光層で生成した三重項励起子のエネルギーが小さくなり、有機EL素子の長寿命化が期待できる。
 本実施形態に係る有機EL素子において、第一の発光性化合物の三重項エネルギーT(D1)が、下記数式(数14A)の関係を満たすことも好ましく、下記数式(数14B)の関係を満たすことも好ましい。
  2.60eV>T(D1) …(数14A)
  2.50eV>T(D1) …(数14B)
 第一の発光層が、前記数式(数14A)又は(数14B)の関係を満たす第一の発光性化合物を含有することにより、有機EL素子が長寿命化する。
 本実施形態に係る有機EL素子において、第二の発光性化合物の三重項エネルギーT(D2)が、下記数式(数14C)の関係を満たすことも好ましく、下記数式(数14D)の関係を満たすことも好ましい。
  2.60eV>T(D2) …(数14C)
  2.50eV>T(D2) …(数14D)
 第二の発光層が、前記数式(数14C)又は(数14D)の関係を満たす化合物を含有することにより、有機EL素子が長寿命化する。
 本実施形態に係る有機EL素子において、第二のホスト材料の三重項エネルギーT(H2)が、下記数式(数13X)の関係を満たすことが好ましく、下記数式(数13)の関係を満たすことも好ましい。
  T(H2)≧1.8eV …(数13X)
  T(H2)≧1.9eV …(数13)
(有機EL素子のその他の層)
 本実施形態に係る有機EL素子は、正孔輸送帯域、第一の発光層及び第二の発光層以外に、1以上の有機層を有していてもよい。有機層としては、例えば、電子注入層、電子輸送層、正孔障壁層及び電子障壁層からなる群から選択される少なくともいずれかの層が挙げられる。
 本実施形態に係る有機EL素子において、正孔輸送帯域、第一の発光層及び第二の発光層だけで構成されていてもよいが、例えば、電子注入層、電子輸送層、及び正孔障壁層等からなる群から選択される少なくともいずれかの層をさらに有していてもよい。
 図1に、本実施形態に係る有機EL素子の一例の概略構成を示す。
 有機EL素子1は、基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を含む。有機層10は、陽極3側から順に、正孔輸送帯域6、第一の発光層51、第二の発光層52、電子輸送層8、及び電子注入層9が、この順番で積層されて構成される。発光領域5は、第一の発光層51及び第二の発光層52で構成される。
 図2に、本実施形態に係る有機EL素子の別の一例の概略構成を示す。
 有機EL素子1Bは、基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層12と、を含む。有機層12は、陽極3側から順に、第二の有機層62、第一の有機層61、第一の発光層51、第二の発光層52、電子輸送層8、及び電子注入層9が、この順番で積層されて構成される。有機EL素子1Bにおいて、正孔輸送帯域6Aは、第一の有機層61及び第二の有機層62で構成される。
 図3に、本実施形態に係る有機EL素子の別の一例の概略構成を示す。
 有機EL素子1Cは、基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層13と、を含む。有機層13は、陽極3側から順に、第三の有機層63、第二の有機層62、第一の有機層61、第一の発光層51、第二の発光層52、電子輸送層8、及び電子注入層9が、この順番で積層されて構成される。有機EL素子1Cにおいて、正孔輸送帯域6Bは、第一の有機層61、第二の有機層62及び第三の有機層63で構成される。
 図2~図3に示す有機EL素子においても、前記数式(数1X)の関係を満たす正孔輸送帯域材料及び第一の発光性化合物を用いることで、正孔輸送帯域材料と第一の発光性化合物とのエネルギー障壁を小さくすることができる。その結果、正孔輸送帯域を構成する有機層の数を減らしても(省層化しても)、発光領域へのホール注入を促進でき、高効率を達成しやすくなる。
 本発明は、図1~図3に示す有機EL素子の構成に限定されない。
 本実施形態に係る有機EL素子において、第一の発光層と第二の発光層とが、直接、接していてもよい。
 本明細書において、「第一の発光層と第二の発光層とが、直接、接している」層構造は、例えば、以下の態様(LS1)、(LS2)及び(LS3)のいずれかの態様も含み得る。
 (LS1)第一の発光層に係る化合物の蒸着の工程と第二の発光層に係る化合物の蒸着の工程を経る過程で第一のホスト材料及び第二のホスト材料の両方が混在する領域が生じ、当該領域が第一の発光層と第二の発光層との界面に存在する態様。
 (LS2)第一の発光層及び第二の発光層が発光性の化合物を含む場合に、第一の発光層に係る化合物の蒸着の工程と第二の発光層に係る化合物の蒸着の工程を経る過程で第一のホスト材料、第二のホスト材料及び発光性の化合物が混在する領域が生じ、当該領域が第一の発光層と第二の発光層との界面に存在する態様。
 (LS3)第一の発光層及び第二の発光層が発光性の化合物を含む場合に、第一の発光層に係る化合物の蒸着の工程と第二の発光層に係る化合物の蒸着の工程を経る過程で当該発光性の化合物からなる領域、第一のホスト材料からなる領域、又は第二のホスト材料からなる領域が生じ、当該領域が第一の発光層と第二の発光層との界面に存在する態様。
 有機EL素子の構成についてさらに説明する。以下、符号の記載は省略することがある。
(基板)
 基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、及びプラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、及びポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、および酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極上に形成されるEL層のうち、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成されるため、電極材料として可能な材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
(電子輸送層)
 本実施形態に係る有機EL素子において、発光層と陰極との間に電子輸送層を含むことが好ましい。
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送層には、1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、ZnBTZなどの金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物も用いることができる。本実施態様においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層で構成されていてもよいし、上記物質からなる層が二層以上積層されて構成されていてもよい。
 また、電子輸送層には、高分子化合物を用いることもできる。例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)などを用いることができる。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiOx)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(層形成方法)
 本実施形態の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法などの湿式成膜法などの公知の方法を採用することができる。
(膜厚)
 本実施形態の有機EL素子の各有機層の膜厚は、上記で特に言及した場合を除いて限定されない。一般に、膜厚が薄すぎるとピンホール等の欠陥が生じやすく、膜厚が厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常、有機EL素子の各有機層の膜厚は、数nmから1μmの範囲が好ましい。
(第一のホスト材料及び第二のホスト材料)
 本実施形態に係る有機EL素子において、第一のホスト材料及び第二のホスト材料としては、例えば、下記一般式(1)、一般式(1X)、一般式(12X)、一般式(13X)、一般式(14X)、一般式(15X)及び一般式(16X)で表される第一の化合物、並びに下記一般式(2)で表される第二の化合物等が挙げられる。また、第一の化合物を第一のホスト材料及び第二のホスト材料として用いることもでき、この場合、第二のホスト材料として用いた下記一般式(1)、下記一般式(1X)、一般式(12X)、一般式(13X)、一般式(14X)、一般式(15X)又は一般式(16X)で表される化合物を、便宜的に第二の化合物と称する場合がある。
(第一の化合物)
・一般式(1)で表される化合物
Figure JPOXMLDOC01-appb-C000162
(前記一般式(1)において、
 R101~R110は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(11)で表される基であり、
 ただし、R101~R110の少なくとも1つは、前記一般式(11)で表される基であり、
 前記一般式(11)で表される基が複数存在する場合、複数の前記一般式(11)で表される基は、互いに同一であるか又は異なり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar101は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mxは、0、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なり、
 Ar101が2以上存在する場合、2以上のAr101は、互いに同一であるか、又は異なり、
 前記一般式(11)中の*は、前記一般式(1)中のピレン環との結合位置を示す。)
(本実施形態に係る第一の化合物中、R901、R902、R903、R904、R905、R906、R907、R801及びR802は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
 R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なる。)
 本実施形態に係る有機EL素子において、前記一般式(11)で表される基は、下記一般式(111)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000163
(前記一般式(111)において、
 Xは、CR123124、酸素原子、硫黄原子、又はNR125であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、0、1、2、3又は4であり、
 mbは、0、1、2、3又は4であり、
 ma+mbは、0、1、2、3又は4であり、
 Ar101は、前記一般式(11)におけるAr101と同義であり、
 R121、R122、R123、R124及びR125は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR121は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR122は、互いに同一であるか、又は異なる。)
 前記一般式(111)で表される基における下記一般式(111a)で表される環構造中の炭素原子*1~*8の位置のうち、*1~*4のいずれか1つの位置にL111が結合し、*1~*4の残りの3つの位置にR121が結合し、*5~*8のいずれか1つの位置にL112が結合し、*5~*8の残りの3つの位置にR122が結合する。
Figure JPOXMLDOC01-appb-C000164
 例えば、前記一般式(111)で表される基において、L111が前記一般式(111a)で表される環構造中の*2の炭素原子の位置に結合し、L112が前記一般式(111a)で表される環構造中の*7の炭素原子の位置に結合する場合、前記一般式(111)で表される基は、下記一般式(111b)で表される。
Figure JPOXMLDOC01-appb-C000165
(前記一般式(111b)において、
 X、L111、L112、ma、mb、Ar101、R121、R122、R123、R124及びR125は、それぞれ独立に、前記一般式(111)におけるX、L111、L112、ma、mb、Ar101、R121、R122、R123、R124及びR125と同義であり、
 複数のR121は、互いに同一であるか、又は異なり、
 複数のR122は、互いに同一であるか、又は異なる。)
 本実施形態に係る有機EL素子において、前記一般式(111)で表される基は、前記一般式(111b)で表される基であることが好ましい。
 本実施形態に係る有機EL素子において、maは、0、1又は2であり、mbは、0、1又は2である、ことが好ましい。
 本実施形態に係る有機EL素子において、maは、0又は1であり、mbは、0又は1であることが好ましい。
 本実施形態に係る有機EL素子において、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 本実施形態に係る有機EL素子において、
 Ar101は、
  置換もしくは無置換のフェニル基、
  置換もしくは無置換のナフチル基、
  置換もしくは無置換のビフェニル基、
  置換もしくは無置換のターフェニル基、
  置換もしくは無置換のピレニル基、
  置換もしくは無置換のフェナントリル基、又は
  置換もしくは無置換のフルオレニル基であることが好ましい。
 本実施形態に係る有機EL素子において、Ar101は、下記一般式(12)、一般式(13)又は一般式(14)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000166
(前記一般式(12)、一般式(13)及び一般式(14)において、
 R111~R120は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R124で表される基、
  -COOR125で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(12)、一般式(13)及び一般式(14)中の*は、前記一般式(11)中のL101との結合位置、又は前記一般式(111)もしくは一般式(111b)中のL112との結合位置を示す。)
 本実施形態に係る有機EL素子において、前記第一の化合物は、下記一般式(101)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000167
(前記一般式(101)において、
 R101~R120は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 ただし、R101~R110のうち1つがL101との結合位置を示し、R111~R120のうち1つがL101との結合位置を示し、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 mxは、0、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なる。)
 本実施形態に係る有機EL素子において、L101は、単結合、又は置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましい。
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(102)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000168
(前記一般式(102)において、
 R101~R120は、それぞれ独立に、前記一般式(101)におけるR101~R120と同義であり、
 ただし、R101~R110のうち1つがL111との結合位置を示し、R111~R120のうち1つがL112との結合位置を示し、
 Xは、CR123124、酸素原子、硫黄原子、又はNR125であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、0、1、2、3又は4であり、
 mbは、0、1、2、3又は4であり、
 ma+mbは、0、1、2、3又は4であり、
 R121、R122、R123、R124及びR125は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR121は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR122は、互いに同一であるか、又は異なる。)
 前記一般式(102)で表される化合物において、maは、0、1又は2であり、mbは、0、1又は2であることが好ましい。
 前記一般式(102)で表される化合物において、maは、0又は1であり、mbは、0又は1であることが好ましい。
 本実施形態に係る有機EL素子において、R101~R110のうち2つ以上が、前記一般式(11)で表される基であることが好ましい。
 本実施形態に係る有機EL素子において、R101~R110のうち2つ以上が、前記一般式(11)で表される基であり、かつ、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 本実施形態に係る有機EL素子において、
 Ar101は、置換もしくは無置換のピレニル基ではなく、
 L101は、置換もしくは無置換のピレニレン基ではなく、
 前記一般式(11)で表される基ではないR101~R110としての置換もしくは無置換の環形成炭素数6~50のアリール基は、置換もしくは無置換のピレニル基ではないことが好ましい。
 本実施形態に係る有機EL素子において、
 前記一般式(11)で表される基ではないR101~R110は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 本実施形態に係る有機EL素子において、
 前記一般式(11)で表される基ではないR101~R110は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基であることが好ましい。
 本実施形態に係る有機EL素子において、前記一般式(11)で表される基ではないR101~R110は、水素原子であることが好ましい。
・一般式(1X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(1X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000169
(前記一般式(1X)において、
 R101~R112は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(11X)で表される基であり、
 ただし、R101~R112の少なくとも1つは、前記一般式(11X)で表される基であり、
 前記一般式(11X)で表される基が複数存在する場合、複数の前記一般式(11X)で表される基は、互いに同一であるか又は異なり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar101は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mxは、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なり、
 Ar101が2以上存在する場合、2以上のAr101は、互いに同一であるか、又は異なり、
 前記一般式(11X)中の*は、前記一般式(1X)中のベンズ[a]アントラセン環との結合位置を示す。)
 本実施形態に係る有機EL素子において、前記一般式(11X)で表される基は、下記一般式(111X)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000170
(前記一般式(111X)において、
 Xは、CR143144、酸素原子、硫黄原子、又はNR145であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、1、2、3又は4であり、
 mbは、1、2、3又は4であり、
 ma+mbは、2、3又は4であり、
 Ar101は、前記一般式(11X)におけるAr101と同義であり、
 R141、R142、R143、R144及びR145は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR141は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR142は、互いに同一であるか、又は異なる。)
 前記一般式(111X)で表される基における下記一般式(111aX)で表される環構造中の炭素原子*1~*8の位置のうち、*1~*4のいずれか1つの位置にL111が結合し、*1~*4の残りの3つの位置にR141が結合し、*5~*8のいずれか1つの位置にL112が結合し、*5~*8の残りの3つの位置にR142が結合する。
Figure JPOXMLDOC01-appb-C000171
 例えば、前記一般式(111X)で表される基において、L111が前記一般式(111aX)で表される環構造中の*2の炭素原子の位置に結合し、L112が前記一般式(111aX)で表される環構造中の*7の炭素原子の位置に結合する場合、前記一般式(111X)で表される基は、下記一般式(111bX)で表される。
Figure JPOXMLDOC01-appb-C000172
(前記一般式(111bX)において、
 X、L111、L112、ma、mb、Ar101、R141、R142、R143、R144及びR145は、それぞれ独立に、前記一般式(111X)におけるX、L111、L112、ma、mb、Ar101、R141、R142、R143、R144及びR145と同義であり、
 複数のR141は、互いに同一であるか、又は異なり、
 複数のR142は、互いに同一であるか、又は異なる。)
 本実施形態に係る有機EL素子において、前記一般式(111X)で表される基は、前記一般式(111bX)で表される基であることが好ましい。
 前記一般式(1X)で表される化合物において、maは、1又は2であり、mbは、1又は2であることが好ましい。
 前記一般式(1X)で表される化合物において、maは、1であり、mbは、1であることが好ましい。
 前記一般式(1X)で表される化合物において、Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記一般式(1X)で表される化合物において、Ar101は、
  置換もしくは無置換のフェニル基、
  置換もしくは無置換のナフチル基、
  置換もしくは無置換のビフェニル基、
  置換もしくは無置換のターフェニル基、
  置換もしくは無置換のベンズ[a]アントリル基、
  置換もしくは無置換のピレニル基、
  置換もしくは無置換のフェナントリル基、又は
  置換もしくは無置換のフルオレニル基であることが好ましい。
 前記一般式(1X)で表される化合物は、下記一般式(101X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000173
(前記一般式(101X)において、
 R111及びR112のうち1つがL101との結合位置を示し、R133及びR134のうち1つがL101との結合位置を示し、
 R101~R110、R121~R130、L101との結合位置ではないR111又はR112、並びにL101との結合位置ではないR133又はR134は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 L101は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 mxは、1、2、3、4又は5であり、
 L101が2以上存在する場合、2以上のL101は、互いに同一であるか、又は異なる。)
 前記一般式(1X)で表される化合物において、L101は、単結合、又は置換もしくは無置換の環形成炭素数6~50のアリーレン基であることが好ましい。
 前記一般式(1X)で表される化合物は、下記一般式(102X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000174
(前記一般式(102X)において、
 R111及びR112のうち1つがL111との結合位置を示し、R133及びR134のうち1つがL112との結合位置を示し、
 R101~R110、R121~R130、L111との結合位置ではないR111又はR112並びにL112との結合位置ではないR133又はR134は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 Xは、CR143144、酸素原子、硫黄原子、又はNR145であり、
 L111及びL112は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 maは、1、2、3又は4であり、
 mbは、1、2、3又は4であり、
 ma+mbは、2、3、4又は5であり、
 R141、R142、R143、R144及びR145は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mcは、3であり、
 3つのR141は、互いに同一であるか、又は異なり、
 mdは、3であり、
 3つのR142は、互いに同一であるか、又は異なる。)
 前記一般式(1X)で表される化合物において、前記一般式(102X)中のmaは、1又は2であり、mbは、1又は2であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(102X)中のmaは、1であり、mbは、1であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基は、下記一般式(11AX)で表される基、又は下記一般式(11BX)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000175
(前記一般式(11AX)及び前記一般式(11BX)において、
 R121~R131は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 前記一般式(11AX)で表される基が複数存在する場合、複数の前記一般式(11AX)で表される基は、互いに同一であるか又は異なり、
 前記一般式(11BX)で表される基が複数存在する場合、複数の前記一般式(11BX)で表される基は、互いに同一であるか又は異なり、
 L131及びL132は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 前記一般式(11AX)及び前記一般式(11BX)中の*は、それぞれ、前記一般式(1X)中のベンズ[a]アントラセン環との結合位置を示す。)
 前記一般式(1X)で表される化合物は、下記一般式(103X)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000176
(前記一般式(103X)において、
 R101~R110並びにR112は、それぞれ、前記一般式(1X)におけるR101~R110並びにR112と同義であり、
 R121~R131、L131及びL132は、それぞれ、前記一般式(11BX)におけるR121~R131、L131及びL132と同義である。)
 前記一般式(1X)で表される化合物において、L131は、置換もしくは無置換の環形成炭素数6~50のアリーレン基であることも好ましい。
 前記一般式(1X)で表される化合物において、L132は、置換もしくは無置換の環形成炭素数6~50のアリーレン基であることも好ましい。
 前記一般式(1X)で表される化合物において、R101~R112のうち2つ以上が、前記一般式(11)で表される基であることも好ましい。
 本前記一般式(1X)で表される化合物において、R101~R112のうち2つ以上が、前記一般式(11X)で表される基であり、一般式(11X)中のAr101は、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 前記一般式(1X)で表される化合物において、
 Ar101は、置換もしくは無置換のベンズ[a]アントリル基ではなく、
 L101は、置換もしくは無置換のベンズ[a]アントリレン基ではなく、
 前記一般式(11X)で表される基ではないR101~R110としての置換もしくは無置換の環形成炭素数6~50のアリール基は、置換もしくは無置換のベンズ[a]アントリル基ではないことも好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基であることが好ましい。
 前記一般式(1X)で表される化合物において、前記一般式(11X)で表される基ではないR101~R112は、水素原子であることが好ましい。
・一般式(12X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(12X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000177
(前記一般式(12X)において、
 R1201~R1210のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成し、
 前記置換もしくは無置換の単環を形成せず、かつ及び前記置換もしくは無置換の縮合環を形成しないR1201~R1210は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(121)で表される基であり、
 ただし、前記置換もしくは無置換の単環が置換基を有する場合の当該置換基、前記置換もしくは無置換の縮合環が置換基を有する場合の当該置換基、並びにR1201~R1210の少なくとも1つが、前記一般式(121)で表される基であり、
 前記一般式(121)で表される基が複数存在する場合、複数の前記一般式(121)で表される基は、互いに同一であるか又は異なり、
 L1201は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1201は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx2は、0、1、2、3、4又は5であり、
 L1201が2以上存在する場合、2以上のL1201は、互いに同一であるか、又は異なり、
 Ar1201が2以上存在する場合、2以上のAr1201は、互いに同一であるか、又は異なり、
 前記一般式(121)中の*は、前記一般式(12X)で表される環との結合位置を示す。)
 前記一般式(12X)において、R1201~R1210のうちの隣接する2つからなる組とは、R1201とR1202との組、R1202とR1203との組、R1203とR1204との組、R1204とR1205との組、R1205とR1206との組、R1207とR1208との組、R1208とR1209との組、並びにR1209とR1210との組である。
・一般式(13X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(13X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000178
(前記一般式(13X)において、
 R1301~R1310は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(131)で表される基であり、
 ただし、R1301~R1310の少なくとも1つは、前記一般式(131)で表される基であり、
 前記一般式(131)で表される基が複数存在する場合、複数の前記一般式(131)で表される基は、互いに同一であるか又は異なり、
 L1301は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1301は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx3は、0、1、2、3、4又は5であり、
 L1301が2以上存在する場合、2以上のL1301は、互いに同一であるか、又は異なり、
 Ar1301が2以上存在する場合、2以上のAr1301は、互いに同一であるか、又は異なり、
 前記一般式(131)中の*は、前記一般式(13X)中のフルオランテン環との結合位置を示す。)
 本実施形態に係る有機EL素子において、前記一般式(131)で表される基ではないR1301~R1310のうち隣接する2つ以上からなる組は、いずれも、互いに結合しない。前記一般式(13X)において隣接する2つからなる組とは、R1301とR1302との組、R1302とR1303との組、R1303とR1304との組、R1304とR1305との組、R1305とR1306との組、R1307とR1308との組、R1308とR1309との組、並びにR1309とR1310との組である。
・一般式(14X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(14X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000179
(前記一般式(14X)において、
 R1401~R1410は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(141)で表される基であり、
 ただし、R1401~R1410の少なくとも1つは、前記一般式(141)で表される基であり、
 前記一般式(141)で表される基が複数存在する場合、複数の前記一般式(141)で表される基は、互いに同一であるか又は異なり、
 L1401は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1401は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx4は、0、1、2、3、4又は5であり、
 L1401が2以上存在する場合、2以上のL1401は、互いに同一であるか、又は異なり、
 Ar1401が2以上存在する場合、2以上のAr1401は、互いに同一であるか、又は異なり、
 前記一般式(141)中の*は、前記一般式(14X)で表される環との結合位置を示す。)
・一般式(15X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(15X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000180
(前記一般式(15X)において、
 R1501~R1514は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(151)で表される基であり、
 ただし、R1501~R1514の少なくとも1つは、前記一般式(151)で表される基であり、
 前記一般式(151)で表される基が複数存在する場合、複数の前記一般式(151)で表される基は、互いに同一であるか又は異なり、
 L1501は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1501は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx5は、0、1、2、3、4又は5であり、
 L1501が2以上存在する場合、2以上のL1501は、互いに同一であるか、又は異なり、
 Ar1501が2以上存在する場合、2以上のAr1501は、互いに同一であるか、又は異なり、
 前記一般式(151)中の*は、前記一般式(15X)で表される環との結合位置を示す。)
・一般式(16X)で表される化合物
 本実施形態に係る有機EL素子において、第一の化合物は、下記一般式(16X)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000181
(前記一般式(16X)において、
 R1601~R1614は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  前記一般式(161)で表される基であり、
 ただし、R1601~R1614の少なくとも1つは、前記一般式(161)で表される基であり、
 前記一般式(161)で表される基が複数存在する場合、複数の前記一般式(161)で表される基は、互いに同一であるか又は異なり、
 L1601は、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar1601は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 mx6は、0、1、2、3、4又は5であり、
 L1601が2以上存在する場合、2以上のL1601は、互いに同一であるか、又は異なり、
 Ar1601が2以上存在する場合、2以上のAr1601は、互いに同一であるか、又は異なり、
 前記一般式(161)中の*は、前記一般式(16X)で表される環との結合位置を示す。)
 本実施形態に係る有機EL素子において、第一のホスト材料は、分子中に、単結合で連結されたベンゼン環とナフタレン環とを含む連結構造を有し、当該連結構造中のベンゼン環及びナフタレン環には、それぞれ独立に、さらに単環又は縮合環が縮合しているか又は縮合しておらず、当該連結構造中のベンゼン環とナフタレン環とが、当該単結合以外の少なくとも1つの部分において架橋によりさらに連結していることも好ましい。
 第一のホスト材料が、このような架橋を含んだ連結構造を有していることにより、有機EL素子の色度悪化の抑制が期待できる。
 この場合の第一のホスト材料は、分子中に、下記式(X1)又は式(X2)で表されるような、単結合で連結されたベンゼン環とナフタレン環とを含む連結構造(ベンゼン-ナフタレン連結構造と称する場合がある。)を最小単位として有していればよく、当該ベンゼン環にさらに単環又は縮合環が縮合していてもよいし、当該ナフタレン環にさらに単環又は縮合環が縮合していてもよい。例えば、第一のホスト材料が、分子中に、下記式(X3)、式(X4)、又は式(X5)で表されるような、単結合で連結されたナフタレン環とナフタレン環とを含む連結構造(ナフタレン-ナフタレン連結構造と称する場合がある。)においても、一方のナフタレン環は、ベンゼン環を含んでいるため、ベンゼン-ナフタレン連結構造を含んでいることになる。
Figure JPOXMLDOC01-appb-C000182
 本実施形態に係る有機EL素子において、前記架橋が二重結合を含むことも好ましい。
すなわち、前記ベンゼン環と前記ナフタレン環とが、単結合以外の部分において二重結合を含む架橋構造によりさらに連結した構造を有することも好ましい。
 ベンゼン-ナフタレン連結構造中のベンゼン環とナフタレン環とが、単結合以外の少なくとも1つの部分において架橋によりさらに連結すると、例えば、前記式(X1)の場合、下記式(X11)で表される連結構造(縮合環)になり、前記式(X3)の場合、下記式(X31)で表される連結構造(縮合環)になる。
 ベンゼン-ナフタレン連結構造中のベンゼン環とナフタレン環とが、単結合以外の部分において二重結合を含む架橋によりさらに連結すると、例えば、前記式(X1)の場合、下記式(X12)で表される連結構造(縮合環)になり、前記式(X2)の場合、下記式(X21)又は式(X22)で表される連結構造(縮合環)になり、前記式(X4)の場合、下記式(X41)で表される連結構造(縮合環)になり、前記式(X5)の場合、下記式(X51)で表される連結構造(縮合環)になる。
 ベンゼン-ナフタレン連結構造中のベンゼン環とナフタレン環とが、単結合以外の少なくとも1つの部分においてヘテロ原子(例えば、酸素原子)を含む架橋によりさらに連結すると、例えば、前記式(X1)の場合、下記式(X13)で表される連結構造(縮合環)になる。
Figure JPOXMLDOC01-appb-C000183
 本実施形態に係る有機EL素子において、第一のホスト材料は、分子中に、第一のベンゼン環と第二のベンゼン環とが単結合で連結されたビフェニル構造を有し、当該ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、当該単結合以外の少なくとも1つの部分において架橋によりさらに連結していることも好ましい。
 本実施形態に係る有機EL素子において、前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、前記単結合以外の1つの部分において前記架橋によりさらに連結していることも好ましい。第一のホスト材料が、このような架橋を含んだビフェニル構造を有していることにより、有機EL素子の色度悪化の抑制が期待できる。
 本実施形態に係る有機EL素子において、前記架橋が二重結合を含むことも好ましい。
 本実施形態に係る有機EL素子において、前記架橋が二重結合を含まないことも好ましい。
 前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、前記単結合以外の2つの部分において前記架橋によりさらに連結していることも好ましい。
 本実施形態に係る有機EL素子において、前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、前記単結合以外の2つの部分において前記架橋によりさらに連結し、前記架橋が二重結合を含まないことも好ましい。第一のホスト材料が、このような架橋を含んだビフェニル構造を有していることにより、有機EL素子の色度悪化の抑制が期待できる。
 例えば、下記式(BP1)で表される前記ビフェニル構造中の第一のベンゼン環と第二のベンゼン環とが、単結合以外の少なくとも1つの部分において架橋によりさらに連結すると、当該ビフェニル構造は、下記式(BP11)~(BP15)等の連結構造(縮合環)になる。
Figure JPOXMLDOC01-appb-C000184
 前記式(BP11)は、前記単結合以外の1つの部分において二重結合を含まない架橋によって連結した構造である。
 前記式(BP12)は、前記単結合以外の1つの部分において二重結合を含む架橋によって連結した構造である。
 前記式(BP13)は、前記単結合以外の2つの部分において二重結合を含まない架橋によって連結した構造である。
 前記式(BP14)は、前記単結合以外の2つの部分の一方において二重結合を含まない架橋によって連結し、前記単結合以外の2つの部分の他方において二重結合を含む架橋によって連結した構造である。
 前記式(BP15)は、前記単結合以外の2つの部分において二重結合を含む架橋によって連結した構造である。
 第一の化合物及び第二の化合物において、「置換もしくは無置換」と記載された基は、
いずれも「無置換」の基であることが好ましい。
(第一の化合物の製造方法)
 第一の化合物は、公知の方法により製造できる。また、第一の化合物は、公知の方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることによっても、製造できる。
(第一の化合物の具体例)
 第一の化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら第一の化合物の具体例に限定されない。
 本明細書において、化合物の具体例中、Dは、重水素原子を示し、Meは、メチル基を示し、tBuは、tert-ブチル基を示す。
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000237
Figure JPOXMLDOC01-appb-C000238
Figure JPOXMLDOC01-appb-C000239
Figure JPOXMLDOC01-appb-C000240
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000242
Figure JPOXMLDOC01-appb-C000243
Figure JPOXMLDOC01-appb-C000244
Figure JPOXMLDOC01-appb-C000245
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000247
Figure JPOXMLDOC01-appb-C000248
Figure JPOXMLDOC01-appb-C000249
Figure JPOXMLDOC01-appb-C000250
Figure JPOXMLDOC01-appb-C000251
Figure JPOXMLDOC01-appb-C000252
Figure JPOXMLDOC01-appb-C000253
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000257
Figure JPOXMLDOC01-appb-C000258
Figure JPOXMLDOC01-appb-C000259
Figure JPOXMLDOC01-appb-C000260
Figure JPOXMLDOC01-appb-C000261
Figure JPOXMLDOC01-appb-C000262
Figure JPOXMLDOC01-appb-C000263
Figure JPOXMLDOC01-appb-C000264
Figure JPOXMLDOC01-appb-C000265
Figure JPOXMLDOC01-appb-C000266
Figure JPOXMLDOC01-appb-C000267
Figure JPOXMLDOC01-appb-C000268
Figure JPOXMLDOC01-appb-C000269
Figure JPOXMLDOC01-appb-C000270
Figure JPOXMLDOC01-appb-C000271
Figure JPOXMLDOC01-appb-C000272
Figure JPOXMLDOC01-appb-C000273
Figure JPOXMLDOC01-appb-C000274
(第二の化合物)
 本実施形態に係る有機EL素子において、第二の化合物は、下記一般式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000275
(前記一般式(2)において、
 R201~R208は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 L201及びL202は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar201及びAr202は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
(本実施形態に係る第二の化合物中、R901、R902、R903、R904、R905、R906、R907、R801及びR802は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、
 R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、
 R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、
 R904が複数存在する場合、複数のR904は、互いに同一であるか又は異なり、
 R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、
 R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、
 R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なり、
 R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
 R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なる。)
 本実施形態に係る有機EL素子において、
 R201~R208は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数1~50のハロアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の炭素数7~50のアラルキル基、
  -C(=O)R801で表される基、
  -COOR802で表される基、
  ハロゲン原子、
  シアノ基、又は
  ニトロ基であり、
 L201及びL202は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~50の2価の複素環基であり、
 Ar201及びAr202は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であることが好ましい。
 本実施形態に係る有機EL素子において、
 L201及びL202は、それぞれ独立に、
  単結合、又は
  置換もしくは無置換の環形成炭素数6~50のアリーレン基であり、
 Ar201及びAr202は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基であることが好ましい。
 本実施形態に係る有機EL素子において、
 Ar201及びAr202は、それぞれ独立に、
  フェニル基、
  ナフチル基、
  フェナントリル基、
  ビフェニル基、
  ターフェニル基、
  ジフェニルフルオレニル基、
  ジメチルフルオレニル基、
  ベンゾジフェニルフルオレニル基、
  ベンゾジメチルフルオレニル基、
  ジベンゾフラニル基、
  ジベンゾチエニル基、
  ナフトベンゾフラニル基、又は
  ナフトベンゾチエニル基であることが好ましい。
 本実施形態に係る有機EL素子において、前記一般式(2)で表される第二の化合物は、下記一般式(201)、一般式(202)、一般式(203)、一般式(204)、一般式(205)、一般式(206)、一般式(207)、一般式(208)又は一般式(209)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000276
Figure JPOXMLDOC01-appb-C000277
Figure JPOXMLDOC01-appb-C000278
Figure JPOXMLDOC01-appb-C000279
Figure JPOXMLDOC01-appb-C000280
Figure JPOXMLDOC01-appb-C000281
Figure JPOXMLDOC01-appb-C000282
Figure JPOXMLDOC01-appb-C000283
Figure JPOXMLDOC01-appb-C000284
(前記一般式(201)~(209)中、
 L201及びAr201は、前記一般式(2)におけるL201及びAr201と同義であり、
 R201~R208は、それぞれ独立に、前記一般式(2)におけるR201~R208と同義である。)
 前記一般式(2)で表される第二の化合物は、下記一般式(221)、一般式(222)、一般式(223)、一般式(224)、一般式(225)、一般式(226)、一般式(227)、一般式(228)又は一般式(229)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000285
Figure JPOXMLDOC01-appb-C000286
Figure JPOXMLDOC01-appb-C000287
Figure JPOXMLDOC01-appb-C000288
Figure JPOXMLDOC01-appb-C000289
Figure JPOXMLDOC01-appb-C000290
Figure JPOXMLDOC01-appb-C000291
Figure JPOXMLDOC01-appb-C000292
Figure JPOXMLDOC01-appb-C000293
(前記一般式(221)、一般式(222)、一般式(223)、一般式(224)、一般式(225)、一般式(226)、一般式(227)、一般式(228)及び一般式(229)において、
 R201並びにR203~R208は、それぞれ独立に、前記一般式(2)におけるR201並びにR203~R208と同義であり、
 L201及びAr201は、それぞれ、前記一般式(2)におけるL201及びAr201と同義であり、
 L203は、前記一般式(2)におけるL201と同義であり、
 L203とL201は、互いに同一であるか、又は異なり、
 Ar203は、前記一般式(2)におけるAr201と同義であり、
 Ar203とAr201は、互いに同一であるか、又は異なる。)
 前記一般式(2)で表される第二の化合物は、下記一般式(241)、一般式(242)、一般式(243)、一般式(244)、一般式(245)、一般式(246)、一般式(247)、一般式(248)又は一般式(249)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000294
Figure JPOXMLDOC01-appb-C000295
Figure JPOXMLDOC01-appb-C000296
Figure JPOXMLDOC01-appb-C000297
Figure JPOXMLDOC01-appb-C000298
Figure JPOXMLDOC01-appb-C000299
Figure JPOXMLDOC01-appb-C000300
Figure JPOXMLDOC01-appb-C000301
Figure JPOXMLDOC01-appb-C000302
(前記一般式(241)、一般式(242)、一般式(243)、一般式(244)、一般式(245)、一般式(246)、一般式(247)、一般式(248)及び一般式(249)において、
 R201、R202並びにR204~R208は、それぞれ独立に、前記一般式(2)におけるR201、R202並びにR204~R208と同義であり、
 L201及びAr201は、それぞれ、前記一般式(2)におけるL201及びAr201と同義であり、
 L203は、前記一般式(2)におけるL201と同義であり、
 L203とL201は、互いに同一であるか、又は異なり、
 Ar203は、前記一般式(2)におけるAr201と同義であり、
 Ar203とAr201は、互いに同一であるか、又は異なる。)
 前記一般式(2)で表される第二の化合物中、R201~R208は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は
  -Si(R901)(R902)(R903)で表される基であることが好ましい。
 L201は、
  単結合、又は
  無置換の環形成炭素数6~22のアリーレン基であり、
 Ar201は、置換もしくは無置換の環形成炭素数6~22のアリール基であることが好ましい。
 本実施形態に係る有機EL素子において、前記一般式(2)で表される第二の化合物中、アントラセン骨格の置換基であるR201~R208は、分子間の相互作用が抑制されることを防ぎ、電子移動度の低下を抑制する点から、水素原子であることが好ましいが、R201~R208は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基でもよい。
 R201~R208がアルキル基及びシクロアルキル基等のかさ高い置換基となった場合、分子間の相互作用が抑制されるおそれがある。なお、置換基としては、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基がかさ高くなるおそれがあり、アルキル基、及びシクロアルキル基がさらにかさ高くなるおそれがある。
 前記一般式(2)で表される第二の化合物中、アントラセン骨格の置換基であるR201~R208は、かさ高い置換基ではないことが好ましく、アルキル基及びシクロアルキル基ではないことが好ましく、アルキル基、シクロアルキル基、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基ではないことがより好ましい。
 本実施形態に係る有機EL素子において、前記一般式(2)で表される第二の化合物中、R201~R208は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、又は-Si(R901)(R902)(R903)で表される基であることも好ましい。
 本実施形態に係る有機EL素子において、前記一般式(2)で表される第二の化合物中、R201~R208は、水素原子であることが好ましい。
 第二の化合物中、R201~R208における「置換もしくは無置換の」という場合における置換基は、前述のかさ高くなるおそれのある置換基、特に置換もしくは無置換のアルキル基、及び置換もしくは無置換のシクロアルキル基を含まないことも好ましい。R201~R208における「置換もしくは無置換の」という場合における置換基が、置換もしくは無置換のアルキル基、及び置換もしくは無置換のシクロアルキル基を含まないことにより、アルキル基及びシクロアルキル基等のかさ高い置換基が存在する事による分子間の相互作用が抑制されるのを防ぎ、電子移動度の低下を防ぐことができ、また、このような第二の化合物を第二の発光層に用いた場合には、第一の発光層でのホールと電子との再結合能の低下、及び発光効率の低下を抑制できる。
 アントラセン骨格の置換基であるR201~R208がかさ高い置換基ではなく、置換基としてのR201~R208は、無置換であることがさらに好ましい。また、アントラセン骨格の置換基であるR201~R208がかさ高い置換基ではない場合において、かさ高くない置換基としてのR201~R208に置換基が結合する場合、当該置換基もかさ高い置換基ではないことが好ましく、置換基としてのR201~R208に結合する当該置換基は、アルキル基及びシクロアルキル基ではないことが好ましく、アルキル基、シクロアルキル基、ハロアルキル基、アルケニル基、アルキニル基、-Si(R901)(R902)(R903)で表される基、-O-(R904)で表される基、-S-(R905)で表される基、-N(R906)(R907)で表される基、アラルキル基、-C(=O)R801で表される基、-COOR802で表される基、ハロゲン原子、シアノ基、及びニトロ基ではないことがより好ましい。
 第二の化合物において、「置換もしくは無置換」と記載された基は、いずれも「無置換」の基であることが好ましい。
(第二の化合物の製造方法)
 第二の化合物は、公知の方法により製造できる。また、第二の化合物は、公知の方法に倣い、目的物に合わせた既知の代替反応及び原料を用いることによっても、製造できる。
(第二の化合物の具体例)
 第二の化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら第二の化合物の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000303
Figure JPOXMLDOC01-appb-C000304
Figure JPOXMLDOC01-appb-C000305
Figure JPOXMLDOC01-appb-C000306
Figure JPOXMLDOC01-appb-C000307
Figure JPOXMLDOC01-appb-C000308
Figure JPOXMLDOC01-appb-C000309
Figure JPOXMLDOC01-appb-C000310
Figure JPOXMLDOC01-appb-C000311
Figure JPOXMLDOC01-appb-C000312
Figure JPOXMLDOC01-appb-C000313
Figure JPOXMLDOC01-appb-C000314
Figure JPOXMLDOC01-appb-C000315
Figure JPOXMLDOC01-appb-C000316
Figure JPOXMLDOC01-appb-C000317
Figure JPOXMLDOC01-appb-C000318
Figure JPOXMLDOC01-appb-C000319
Figure JPOXMLDOC01-appb-C000320
Figure JPOXMLDOC01-appb-C000321
Figure JPOXMLDOC01-appb-C000322
Figure JPOXMLDOC01-appb-C000323
Figure JPOXMLDOC01-appb-C000324
Figure JPOXMLDOC01-appb-C000325
Figure JPOXMLDOC01-appb-C000326
Figure JPOXMLDOC01-appb-C000327
(第一の発光性化合物及び第二の発光性化合物)
 本実施形態に係る有機EL素子において、第一の発光性化合物としては、イオン化ポテンシャルIp(D1)が前記数式(数1X)の関係を満たす化合物であれば特に限定されない。第一の発光性化合物としては、例えば、下記第三の化合物及び下記第四の化合物の内、イオン化ポテンシャルIp(D1)が前記数式(数1X)の関係を満たす化合物を選択して用いることができる。
 本実施形態に係る有機EL素子において、第二の発光性化合物としては、例えば、下記第三の化合物及び下記第四の化合物等が挙げられる。
 第三の化合物及び第四の化合物は、それぞれ独立に、下記一般式(4)で表される化合物、下記一般式(5)で表される化合物、及び下記一般式(6)で表される化合物からなる群から選択される1以上の化合物である。
(一般式(4)で表される化合物)
 一般式(4)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000328
(前記一般式(4)において、
 Zは、それぞれ独立に、CRa又は窒素原子であり、
 A1環及びA2環は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は
  置換もしくは無置換の環形成原子数5~50の複素環であり、
 Raが複数存在する場合、複数のRaのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 n21及びn22は、それぞれ独立に、0、1、2、3又は4であり、
 Rbが複数存在する場合、複数のRbのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 Rcが複数存在する場合、複数のRcのうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記単環を形成せず、かつ前記縮合環を形成しないRa、Rb及びRcは、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 A1環及びA2環の「芳香族炭化水素環」は、上述した「アリール基」に水素原子を導入した化合物と同じ構造である。
 A1環及びA2環の「芳香族炭化水素環」は、前記一般式(4)中央の縮合2環構造上の炭素原子2つを環形成原子として含む。
 「置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環」の具体例としては、具体例群G1に記載の「アリール基」に水素原子を導入した化合物等が挙げられる。
 A1環及びA2環の「複素環」は、上述した「複素環基」に水素原子を導入した化合物と同じ構造である。
 A1環及びA2環の「複素環」は、前記一般式(4)中央の縮合2環構造上の炭素原子2つを環形成原子として含む。
 「置換もしくは無置換の環形成原子数5~50の複素環」の具体例としては、具体例群G2に記載の「複素環基」に水素原子を導入した化合物等が挙げられる。
 Rbは、A1環としての芳香族炭化水素環を形成する炭素原子のいずれか、又は、A1環としての複素環を形成する原子のいずれかに結合する。
 Rcは、A2環としての芳香族炭化水素環を形成する炭素原子のいずれか、又は、A2環としての複素環を形成する原子のいずれかに結合する。
 Ra、Rb及びRcのうち、少なくとも1つが、下記一般式(4a)で表される基であることが好ましく、少なくとも2つが、下記一般式(4a)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000329
(前記一般式(4a)において、
 L401は、
  単結合、
  置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~30の2価の複素環基であり、
 Ar401は、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  下記一般式(4b)で表される基である。)
Figure JPOXMLDOC01-appb-C000330
(前記一般式(4b)において、
 L402及びL403は、それぞれ独立に、
  単結合、
  置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は
  置換もしくは無置換の環形成原子数5~30の2価の複素環基であり、
 Ar402及びAr403からなる組は、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記単環を形成せず、かつ前記縮合環を形成しないAr402及びAr403は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 一実施形態において、前記一般式(4)で表される化合物は下記一般式(42)で表される。
Figure JPOXMLDOC01-appb-C000331
(前記一般式(42)において、
 R401~R411のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記単環を形成せず、かつ前記縮合環を形成しないR401~R411は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 R401~R411のうち、少なくとも1つが、前記一般式(4a)で表される基であることが好ましく、少なくとも2つ前記一般式(4a)で表される基であることがより好ましい。
 R404及びR411が前記一般式(4a)で表される基であることが好ましい。
 一実施形態において、前記一般式(4)で表される化合物は、A1環に下記一般式(4-1)又は一般式(4-2)で表される構造が結合した化合物である。
 また、一実施形態において、前記一般式(42)で表される化合物は、R404~R407が結合する環に下記一般式(4-1)又は一般式(4-2)で表される構造が結合した化合物である。
Figure JPOXMLDOC01-appb-C000332
(前記一般式(4-1)において、2つの*は、それぞれ独立に、前記一般式(4)のA1環としての芳香族炭化水素環の環形成炭素原子もしくは複素環の環形成原子と結合するか、又は前記一般式(42)のR404~R407のいずれかと結合し、
 前記一般式(4-2)の3つの*は、それぞれ独立に、前記一般式(4)のA1環としての芳香族炭化水素環の環形成炭素原子もしくは複素環の環形成原子と結合するか、又は前記一般式(42)のR404~R407のいずれかと結合し、
 R421~R427のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R431~R438のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記単環を形成せず、かつ前記縮合環を形成しないR421~R427並びにR431~R438は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 一実施形態においては、前記一般式(4)で表される化合物は、下記一般式(41-3)、一般式(41-4)又は一般式(41-5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000333
Figure JPOXMLDOC01-appb-C000334
Figure JPOXMLDOC01-appb-C000335
(前記一般式(41-3)、式(41-4)及び式(41-5)中、
 A1環は、前記一般式(4)で定義した通りであり、
 R421~R427は、それぞれ独立に、前記一般式(4-1)におけるR421~R427と同義であり、
 R440~R448は、それぞれ独立に、前記一般式(42)におけるR401~R411と同義である。)
 一実施形態においては、前記一般式(41-5)のA1環としての置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環は、
  置換もしくは無置換のナフタレン環、又は
  置換もしくは無置換のフルオレン環である。
 一実施形態においては、前記一般式(41-5)のA1環としての置換もしくは無置換の環形成原子数5~50の複素環は、
  置換もしくは無置換のジベンゾフラン環、
  置換もしくは無置換のカルバゾール環、又は
  置換もしくは無置換のジベンゾチオフェン環である。
 一実施形態においては、前記一般式(4)又は前記一般式(42)で表される化合物は、下記一般式(461)~一般式(467)で表される化合物からなる群から選択される。
Figure JPOXMLDOC01-appb-C000336
Figure JPOXMLDOC01-appb-C000337
Figure JPOXMLDOC01-appb-C000338
Figure JPOXMLDOC01-appb-C000339
Figure JPOXMLDOC01-appb-C000340
(前記一般式(461)、一般式(462)、一般式(463)、一般式(464)、一般式(465)、一般式(466)及び一般式(467)中、
 R421~R427は、それぞれ独立に、前記一般式(4-1)におけるR421~R427と同義であり、
 R431~R438は、それぞれ独立に、前記一般式(4-2)におけるR431~R438と同義であり、
 R440~R448並びにR451~R454は、それぞれ独立に、前記一般式(42)におけるR401~R411と同義であり、
 Xは、酸素原子、NR801、又はC(R802)(R803)であり、
 R801、R802及びR803は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
  好ましくは、置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
 R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なり、
 R803が複数存在する場合、複数のR803は、互いに同一であるか又は異なる。)
 一実施形態において、前記一般式(42)で表される化合物は、R401~R411のうちの隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、又は互いに結合して、置換もしくは無置換の縮合環を形成し、当該実施形態について、以下一般式(45)で表される化合物として詳述する。
(一般式(45)で表される化合物)
 一般式(45)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000341
(前記一般式(45)において、
 R461とR462とからなる組、R462とR463とからなる組、R464とR465とからなる組、R465とR466とからなる組、R466とR467とからなる組、R468とR469とからなる組、R469とR470とからなる組、及び、R470とR471とからなる組からなる群から選択される組のうち2以上は、互いに結合して、置換もしくは無置換の単環又は置換もしくは無置換の縮合環を形成し、
 ただし、
  R461とR462とからなる組及びR462とR463とからなる組;
  R464とR465とからなる組及びR465とR466とからなる組;
  R465とR466とからなる組及びR466とR467とからなる組;
  R468とR469とからなる組及びR469とR470とからなる組;並びに
  R469とR470とからなる組及びR470とR471とからなる組が、同時に環を形成することはなく、
 R461~R471が形成する2つ以上の環は、互いに同一であるか、又は異なり、
 前記単環を形成せず、かつ前記縮合環を形成しないR461~R471は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)、-N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 前記一般式(45)において、RとRn+1(nは461、462、464~466、及び468~470から選ばれる整数を表す)は互いに結合して、RとRn+1が結合する2つの環形成炭素原子と共に、置換もしくは無置換の単環又は置換もしくは無置換の縮合環を形成する。当該環は、好ましくは、炭素原子、酸素原子、硫黄原子及び窒素原子からなる群から選択される原子で構成され、当該環の原子数は、好ましくは3~7であり、より好ましくは5又は6である。
 前記一般式(45)で表される化合物における上記の環構造の数は、例えば、2つ、3つ、又は4つである。2つ以上の環構造は、それぞれ前記一般式(45)の母骨格上の同一のベンゼン環上に存在してもよいし、異なるベンゼン環上に存在してもよい。例えば、環構造を3つ有する場合、前記一般式(45)の3つのベンゼン環のそれぞれに1つずつ環構造が存在してもよい。
 前記一般式(45)で表される化合物における上記の環構造としては、例えば、下記一般式(451)~(460)で表される構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000342
(前記一般式(451)~(457)において、
 *1と*2、*3と*4、*5と*6、*7と*8、*9と*10、*11と*12及び*13と*14のそれぞれは、RとRn+1が結合する前記2つの環形成炭素原子を表し、
 Rが結合する環形成炭素原子は、*1と*2、*3と*4、*5と*6、*7と*8、*9と*10、*11と*12及び*13と*14が表す2つの環形成炭素原子のどちらであってもよく、
 X45は、C(R4512)(R4513)、NR4514、酸素原子又は硫黄原子であり、
 R4501~R4506及びR4512~R4513のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記単環を形成せず、かつ前記縮合環を形成しないR4501~R4514は、それぞれ独立に、前記一般式(45)におけるR461~R471と同義である。)
Figure JPOXMLDOC01-appb-C000343
(前記一般式(458)~(460)において、
 *1と*2、及び*3と*4のそれぞれは、RとRn+1が結合する前記2つの環形成炭素原子を表し、
 Rが結合する環形成炭素原子は、*1と*2、又は*3と*4が表す2つの環形成炭素原子のどちらであってもよく、
 X45は、C(R4512)(R4513)、NR4514、酸素原子又は硫黄原子であり、
 R4512~R4513及びR4515~R4525のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記単環を形成せず、かつ前記縮合環を形成しないR4512~R4513、R4515~R4521及びR4522~R4525、並びにR4514は、それぞれ独立に、前記一般式(45)におけるR461~R471と同義である。)
 前記一般式(45)において、R462、R464、R465、R470及びR471の少なくとも1つ(好ましくは、R462、R465及びR470の少なくとも1つ、さらに好ましくはR462)が、環構造を形成しない基であると好ましい。
 (i)前記一般式(45)において、RとRn+1により形成される環構造が置換基を有する場合の置換基、
 (ii)前記一般式(45)において、環構造を形成しないR461~R471、及び
 (iii)式(451)~(460)におけるR4501~R4514、R4515~R4525は、好ましくは、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -N(R906)(R907)で表される基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、
  置換もしくは無置換の環形成原子数5~50の複素環基、又は
  下記一般式(461)~一般式(464)で表される基からなる群から選択される基のいずれかである。
Figure JPOXMLDOC01-appb-C000344
(前記一般式(461)~(464)中、
 Rは、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  好ましくは、置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 X46は、C(R801)(R802)、NR803、酸素原子又は硫黄原子であり、
 R801、R802及びR803は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
  置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
 R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なり、
 R803が複数存在する場合、複数のR803は、互いに同一であるか又は異なり、
 p1は、5であり、
 p2は、4であり、
 p3は、3であり、
 p4は、7であり、
 前記一般式(461)~(464)中の*は、それぞれ独立に、環構造との結合位置を示す。)
 第三の化合物及び第四の化合物において、R901~R907は、前述のように定義した通りである。
 一実施形態において、前記一般式(45)で表される化合物は、下記一般式(45-1)~(45-6)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000345
Figure JPOXMLDOC01-appb-C000346
(前記一般式(45-1)~(45-6)において、
 環d~iは、それぞれ独立に、置換もしくは無置換の単環又は置換もしくは無置換の縮合環であり、
 R461~R471は、それぞれ独立に、前記一般式(45)におけるR461~R471と同義である。)
 一実施形態において、前記一般式(45)で表される化合物は、下記一般式(45-7)~(45-12)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000347
Figure JPOXMLDOC01-appb-C000348
(前記一般式(45-7)~(45-12)において、
 環d~f、k、jは、それぞれ独立に、置換もしくは無置換の単環又は置換もしくは無置換の縮合環であり、
 R461~R471は、それぞれ独立に、前記一般式(45)におけるR461~R471と同義である。)
(一般式(5)で表される化合物)
 一般式(5)で表される化合物について説明する。一般式(5)で表される化合物は、上述した一般式(41-3)で表される化合物に対応する化合物である。
Figure JPOXMLDOC01-appb-C000349
(前記一般式(5)において、
 R501~R507及びR511~R517のうち隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記単環を形成せず、かつ前記縮合環を形成しないR501~R507及びR511~R517は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 R521及びR522は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 「R501~R507及びR511~R517のうちの隣接する2つ以上からなる組の1組」は、例えば、R501とR502からなる組、R502とR503からなる組、R503とR504からなる組、R505とR506からなる組、R506とR507からなる組、R501とR502とR503からなる組等の組合せである。
 一実施形態において、R501~R507及びR511~R517の少なくとも1つ、好ましくは2つが-N(R906)(R907)で表される基である。
 一実施形態においては、R501~R507及びR511~R517は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 一実施形態においては、前記一般式(5)で表される化合物は、下記一般式(52)で表される化合物である。
Figure JPOXMLDOC01-appb-C000350
(前記一般式(52)において、
 R531~R534及びR541~R544のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記単環を形成せず、かつ前記縮合環を形成しないR531~R534、R541~R544、並びにR551及びR552は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R561~R564は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 一実施形態においては、前記一般式(5)で表される化合物は、下記一般式(53)で表される化合物である。
Figure JPOXMLDOC01-appb-C000351
(前記一般式(53)において、R551、R552及びR561~R564は、それぞれ独立に、前記一般式(52)におけるR551、R552及びR561~R564と同義である。)
 一実施形態においては、前記一般式(52)及び一般式(53)におけるR561~R564は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基(好ましくはフェニル基)である。
 一実施形態においては、前記一般式(5)におけるR521及びR522、前記一般式(52)及び一般式(53)におけるR551及びR552は、水素原子である。
 一実施形態においては、前記一般式(5)、一般式(52)及び一般式(53)における、「置換もしくは無置換の」という場合における置換基は、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
(一般式(6)で表される化合物)
 一般式(6)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000352
(前記一般式(6)において、
 a環、b環及びc環は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は
  置換もしくは無置換の環形成原子数5~50の複素環であり、
 R601及びR602は、それぞれ独立に、前記a環、b環又はc環と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 前記置換もしくは無置換の複素環を形成しないR601及びR602は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 a環、b環及びc環は、ホウ素原子及び2つの窒素原子から構成される前記一般式(6)中央の縮合2環構造に縮合する環(置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は置換もしくは無置換の環形成原子数5~50の複素環)である。
 a環、b環及びc環の「芳香族炭化水素環」は、上述した「アリール基」に水素原子を導入した化合物と同じ構造である。
 a環の「芳香族炭化水素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子3つを環形成原子として含む。
 b環及びc環の「芳香族炭化水素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子2つを環形成原子として含む。
 「置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環」の具体例としては、具体例群G1に記載の「アリール基」に水素原子を導入した化合物等が挙げられる。
 a環、b環及びc環の「複素環」は、上述した「複素環基」に水素原子を導入した化合物と同じ構造である。
 a環の「複素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子3つを環形成原子として含む。b環及びc環の「複素環」は、前記一般式(6)中央の縮合2環構造上の炭素原子2つを環形成原子として含む。「置換もしくは無置換の環形成原子数5~50の複素環」の具体例としては、具体例群G2に記載の「複素環基」に水素原子を導入した化合物等が挙げられる。
 R601及びR602は、それぞれ独立に、a環、b環又はc環と結合して、置換もしくは無置換の複素環を形成してもよい。この場合における複素環は、前記一般式(6)中央の縮合2環構造上の窒素原子を含む。この場合における複素環は、窒素原子以外のヘテロ原子を含んでいてもよい。R601及びR602がa環、b環又はc環と結合するとは、具体的には、a環、b環又はc環を構成する原子とR601及びR602を構成する原子が結合することを意味する。例えば、R601がa環と結合して、R601を含む環とa環が縮合した2環縮合(又は3環縮合以上)の含窒素複素環を形成してもよい。当該含窒素複素環の具体例としては、具体例群G2のうち、窒素を含む2環縮合以上の複素環基に対応する化合物等が挙げられる。
 R601がb環と結合する場合、R602がa環と結合する場合、及びR602がc環と結合する場合も上記と同じである。
 一実施形態において、前記一般式(6)におけるa環、b環及びc環は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環である。
 一実施形態において、前記一般式(6)におけるa環、b環及びc環は、それぞれ独立に、置換もしくは無置換のベンゼン環又はナフタレン環である。
 一実施形態において、前記一般式(6)におけるR601及びR602は、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 好ましくは置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、前記一般式(6)で表される化合物は下記一般式(62)で表される化合物である。
Figure JPOXMLDOC01-appb-C000353
(前記一般式(62)において、
 R601Aは、R611及びR621からなる群から選択される1以上と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 R602Aは、R613及びR614からなる群から選択される1以上と結合して、置換もしくは無置換の複素環を形成するか、あるいは置換もしくは無置換の複素環を形成せず、
 前記置換もしくは無置換の複素環を形成しないR601A及びR602Aは、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R611~R621のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 前記置換もしくは無置換の複素環を形成せず、前記単環を形成せず、かつ前記縮合環を形成しないR611~R621は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。)
 前記一般式(62)のR601A及びR602Aは、それぞれ、前記一般式(6)のR601及びR602に対応する基である。
 例えば、R601AとR611が結合して、これらを含む環とa環に対応するベンゼン環が縮合した2環縮合(又は3環縮合以上)の含窒素複素環を形成してもよい。当該含窒素複素環の具体例としては、具体例群G2のうち、窒素を含む2環縮合以上の複素環基に対応する化合物等が挙げられる。R601AとR621が結合する場合、R602AとR613が結合する場合、及びR602AとR614が結合する場合も上記と同じである。
 R611~R621のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、又は
  互いに結合して、置換もしくは無置換の縮合環を形成してもよい。
 例えば、R611とR612が結合して、これらが結合する6員環に対して、ベンゼン環、インドール環、ピロール環、ベンゾフラン環又はベンゾチオフェン環等が縮合した構造を形成してもよく、形成された縮合環は、ナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環又はジベンゾチオフェン環となる。
 一実施形態において、環形成に寄与しないR611~R621は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 一実施形態において、環形成に寄与しないR611~R621は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 一実施形態において、環形成に寄与しないR611~R621は、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、環形成に寄与しないR611~R621は、それぞれ独立に、
  水素原子、又は
  置換もしくは無置換の炭素数1~50のアルキル基であり、
 R611~R621のうち少なくとも1つは、置換もしくは無置換の炭素数1~50のアルキル基である。
 一実施形態において、前記一般式(6)で表される化合物は、下記一般式(42-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000354
(前記一般式(42-2)において、
 R441及びR442は、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 R443~R446は、それぞれ独立に、水素原子又は置換基Rであり、
 当該置換基Rは、それぞれ独立に、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)、
  -O-(R904)、
  -S-(R905)、
  -N(R906)(R907)、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 XはO又はSであり、
 R901~R907は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 R901が複数存在する場合、複数のR901は、互いに同一であるか又は異なり、R902が複数存在する場合、複数のR902は、互いに同一であるか又は異なり、R903が複数存在する場合、複数のR903は、互いに同一であるか又は異なり、R904が複数存在する場合、複数のR904、互いに同一であるか又は異なり、R905が複数存在する場合、複数のR905は、互いに同一であるか又は異なり、R906が複数存在する場合、複数のR906は、互いに同一であるか又は異なり、R907が複数存在する場合、複数のR907は、互いに同一であるか又は異なる。)
 一実施形態において、前記一般式(42-2)における「置換もしくは無置換の」という場合における置換基は、
  無置換の炭素数1~50のアルキル基、
  無置換の炭素数1~50のハロアルキル基、
  無置換の炭素数2~50のアルケニル基、
  無置換の炭素数2~50のアルキニル基、
  無置換の環形成炭素数3~50のシクロアルキル基、
  無置換の炭素数1~50のアルコキシ基、
  無置換の炭素数1~50のアルキルチオ基、
  無置換の環形成炭素数6~50のアリールオキシ基、
  無置換の環形成炭素数6~50のアリールチオ基、
  無置換の炭素数7~50のアラルキル基、
  -Si(R41)(R42)(R43)、
  -C(=O)R44、-COOR45
  -S(=O)46
  -P(=O)(R47)(R48)、
  -Ge(R49)(R50)(R51)、
  -N(R52)(R53)、
(ここで、R41~R53は、それぞれ独立に、水素原子、無置換の炭素数1~50のアルキル基、無置換の環形成炭素数6~50のアリール基、又は無置換の環形成原子数5~50の複素環基である。R41が2以上存在する場合、2以上のR41は、互いに同一であるか、又は異なり、R42が2以上存在する場合、2以上のR42は、互いに同一であるか、又は異なり、R43が2以上存在する場合、2以上のR43は、互いに同一であるか、又は異なり、R44が2以上存在する場合、2以上のR44は、互いに同一であるか、又は異なり、R45が2以上存在する場合、2以上のR45は、互いに同一であるか、又は異なり、R46が2以上存在する場合、2以上のR46は、互いに同一であるか、又は異なり、R47が2以上存在する場合、2以上のR47は、互いに同一であるか、又は異なり、R48が2以上存在する場合、2以上のR48は、互いに同一であるか、又は異なり、R49が2以上存在する場合、2以上のR49は、互いに同一であるか、又は異なり、R50が2以上存在する場合、2以上のR50は、互いに同一であるか、又は異なり、R51が2以上存在する場合、2以上のR51は、互いに同一であるか、又は異なり、R52が2以上存在する場合、2以上のR52は、互いに同一であるか、又は異なり、R53が2以上存在する場合、2以上のR53は、互いに同一であるか、又は異なる。)
  ヒドロキシ基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  環形成炭素数6~50のアリール基、及び
  環形成原子数5~50の複素環基からなる群から選択される。
 一実施形態においては、前記一般式(4)で表される化合物が、前記一般式(41-3)、一般式(41-4)又は一般式(41-5)で表される化合物であり、前記一般式(41-5)中のA1環が、置換もしくは無置換の環形成炭素数10~50の縮合芳香族炭化水素環、又は置換もしくは無置換の環形成原子数8~50の縮合複素環である。
 一実施形態においては、前記一般式(41-3)、一般式(41-4)、及び一般式(41-5)における、前記置換もしくは無置換の環形成炭素数10~50の縮合芳香族炭化水素環が、
  置換もしくは無置換のナフタレン環、
  置換もしくは無置換のアントラセン環、又は
  置換もしくは無置換のフルオレン環であり、
 前記置換もしくは無置換の環形成原子数8~50の縮合複素環が、
  置換もしくは無置換のジベンゾフラン環、
  置換もしくは無置換のカルバゾール環、又は
  置換もしくは無置換のジベンゾチオフェン環である。
 一実施形態においては、前記一般式(41-3)、一般式(41-4)又は一般式(41-5)における、前記置換もしくは無置換の環形成炭素数10~50の縮合芳香族炭化水素環が、
  置換もしくは無置換のナフタレン環、又は
  置換もしくは無置換のフルオレン環であり、
 前記置換もしくは無置換の環形成原子数8~50の縮合複素環が、
  置換もしくは無置換のジベンゾフラン環、
  置換もしくは無置換のカルバゾール環、又は
  置換もしくは無置換のジベンゾチオフェン環である。
 一実施形態においては、前記一般式(4)で表される化合物が、
  下記一般式(461)で表される化合物、
  下記一般式(462)で表される化合物、
  下記一般式(463)で表される化合物、
  下記一般式(464)で表される化合物、
  下記一般式(465)で表される化合物、
  下記一般式(466)で表される化合物、及び
  下記一般式(467)で表される化合物からなる群から選択される。
Figure JPOXMLDOC01-appb-C000355
Figure JPOXMLDOC01-appb-C000356
Figure JPOXMLDOC01-appb-C000357
Figure JPOXMLDOC01-appb-C000358
Figure JPOXMLDOC01-appb-C000359
(前記一般式(461)~(467)中、
 R421~R427、R431~R436、R440~R448及びR451~R454のうちの隣接する2つ以上からなる組の1組以上が、
  互いに結合して、置換もしくは無置換の単環を形成するか、
  互いに結合して、置換もしくは無置換の縮合環を形成するか、又は
  互いに結合せず、
 R437、R438、並びに前記単環を形成せず、かつ前記縮合環を形成しないR421~R427、R431~R436、R440~R448及びR451~R454は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の炭素数2~50のアルケニル基、
  置換もしくは無置換の炭素数2~50のアルキニル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901)(R902)(R903)で表される基、
  -O-(R904)で表される基、
  -S-(R905)で表される基、
  -N(R906)(R907)で表される基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  好ましくは、置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
 Xは、酸素原子、NR801、又はC(R802)(R803)であり、
 R801、R802及びR803は、それぞれ独立に、
  水素原子、
  置換もしくは無置換の炭素数1~50のアルキル基、
  置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基であり、
  置換もしくは無置換の炭素数1~50のアルキル基、又は
  置換もしくは無置換の環形成炭素数6~50のアリール基であり、
 R801が複数存在する場合、複数のR801は、互いに同一であるか又は異なり、
 R802が複数存在する場合、複数のR802は、互いに同一であるか又は異なり、
 R803が複数存在する場合、複数のR803は、互いに同一であるか又は異なる。)
 一実施形態においては、R421~R427及びR440~R448が、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~50のアリール基、又は
  置換もしくは無置換の環形成原子数5~50の複素環基である。
 一実施形態においては、R421~R427及びR440~R447が、それぞれ独立に、
  水素原子、
  置換もしくは無置換の環形成炭素数6~18のアリール基、及び
  置換もしくは無置換の環形成原子数5~18の複素環基からなる群から選択される。
 一実施形態においては、前記一般式(41-3)で表される化合物が、下記一般式(41-3-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000360
(前記一般式(41-3-1)中、R423、R425、R426、R442、R444及びR445は、それぞれ独立に、前記一般式(41-3)におけるR423、R425、R426、R442、R444及びR445と同義である。)
 一実施形態においては、前記一般式(41-3)で表される化合物が、下記一般式(41-3-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000361
(前記一般式(41-3-2)中、R421~R427及びR440~R448は、それぞれ独立に、前記一般式(41-3)におけるR421~R427及びR440~R448と同義であり、
 但し、R421~R427及びR440~R446の少なくとも1つは、-N(R906)(R907)で表される基である。)
 一実施形態においては、前記式(41-3-2)における、R421~R427及びR440~R446のいずれか2つが、-N(R906)(R907)で表される基である。
 一実施形態においては、前記式(41-3-2)で表される化合物が、下記式(41-3-3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000362
(前記一般式(41-3-3)中、R421~R424、R440~R443、R447及びR448は、それぞれ独立に、前記一般式(41-3)におけるR421~R424、R440~R443、R447及びR448と同義であり、
 R、R、R及びRは、それぞれ独立に、
  置換もしくは無置換の環形成炭素数6~18のアリール基、又は
  置換もしくは無置換の環形成原子数5~18の複素環基である。)
 一実施形態においては、前記式(41-3-3)で表される化合物が、下記式(41-3-4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000363
(前記一般式(41-3-4)中、R447、R448、R、R、R及びRは、それぞれ独立に、前記式(41-3-3)におけるR447、R448、R、R、R及びRと同義である。)
 一実施形態においては、R、R、R及びRが、それぞれ独立に、置換もしくは無置換の環形成炭素数6~18のアリール基である。
 一実施形態においては、R、R、R及びRが、それぞれ独立に、置換もしくは無置換のフェニル基である。
 一実施形態においては、R447及びR448が、水素原子である。
 一実施形態においては、前記各式中の「置換もしくは無置換の」という場合における置換基が、
  無置換の炭素数1~50のアルキル基、
  無置換の炭素数2~50のアルケニル基、
  無置換の炭素数2~50のアルキニル基、
  無置換の環形成炭素数3~50のシクロアルキル基、
  -Si(R901a)(R902a)(R903a)、
  -O-(R904a)、
  -S-(R905a)、
  -N(R906a)(R907a)、
  ハロゲン原子、
  シアノ基、
  ニトロ基、
  無置換の環形成炭素数6~50のアリール基、又は
  無置換の環形成原子数5~50の複素環基であり、
 R901a~R907aは、それぞれ独立に、
  水素原子、
  無置換の炭素数1~50のアルキル基、
  無置換の環形成炭素数6~50のアリール基、又は
  無置換の環形成原子数5~50の複素環基であり、
 R901aが2以上存在する場合、2以上のR901aは、互いに同一であるか、又は異なり、
 R902aが2以上存在する場合、2以上のR902aは、互いに同一であるか、又は異なり、
 R903aが2以上存在する場合、2以上のR903aは、互いに同一であるか、又は異なり、
 R904aが2以上存在する場合、2以上のR904aは、互いに同一であるか、又は異なり、
 R905aが2以上存在する場合、2以上のR905aは、互いに同一であるか、又は異なり、
 R906aが2以上存在する場合、2以上のR906aは、互いに同一であるか、又は異なり、
 R907aが2以上存在する場合、2以上のR907aは、互いに同一であるか、又は異なる。
 一実施形態においては、前記各式中の「置換もしくは無置換の」という場合における置換基が、
  無置換の炭素数1~50のアルキル基、
  無置換の環形成炭素数6~50のアリール基、又は
  無置換の環形成原子数5~50の複素環基である。
 一実施形態においては、前記各式中の「置換もしくは無置換の」という場合における置換基が、
  無置換の炭素数1~18のアルキル基、
  無置換の環形成炭素数6~18のアリール基、又は
  無置換の環形成原子数5~18の複素環基である。
(第三の化合物及び第四の化合物の具体例)
 第三の化合物及び第四の化合物の具体例としては、例えば、以下の化合物が挙げられる。ただし、本発明は、これら第三の化合物及び第四の化合物の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000364
Figure JPOXMLDOC01-appb-C000365
Figure JPOXMLDOC01-appb-C000366
Figure JPOXMLDOC01-appb-C000367
Figure JPOXMLDOC01-appb-C000368
Figure JPOXMLDOC01-appb-C000369
Figure JPOXMLDOC01-appb-C000370
Figure JPOXMLDOC01-appb-C000371
Figure JPOXMLDOC01-appb-C000372
Figure JPOXMLDOC01-appb-C000373
Figure JPOXMLDOC01-appb-C000374
Figure JPOXMLDOC01-appb-C000375
Figure JPOXMLDOC01-appb-C000376
Figure JPOXMLDOC01-appb-C000377
Figure JPOXMLDOC01-appb-C000378
Figure JPOXMLDOC01-appb-C000379
Figure JPOXMLDOC01-appb-C000380

 
Figure JPOXMLDOC01-appb-C000381
〔第二実施形態〕
 第二実施形態に係る有機エレクトロルミネッセンス表示装置(以下、有機EL表示装置とも称する)について説明する。第二実施形態の説明において第一実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化する。また、第二実施形態では、特に言及されない材料や化合物については、第一実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
(有機エレクトロルミネッセンス表示装置)
 本実施形態に係る有機EL表示装置は、互いに対向して配置された陽極及び陰極を有し、青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、前記青色有機EL素子は、前記陽極と前記陰極との間に配置された第一の発光層及び第二の発光層を有する青色発光領域を有し、前記第一の発光層及び前記第二の発光層の一方が、前記青色発光領域において前記陽極側に配置され、
 前記緑色有機EL素子は、前記陽極と前記陰極との間に配置された緑色発光層を有し、前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光層を有し、前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子は、前記青色有機EL素子の前記青色発光領域、前記緑色有機EL素子の前記緑色発光層及び前記赤色有機EL素子の前記赤色発光層のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられた正孔輸送帯域を有し、前記正孔輸送帯域は、前記青色有機EL素子の前記青色発光領域中の前記第一の発光層又は前記第二の発光層と、直接、接し、前記正孔輸送帯域は、1又は複数の有機層を含み、前記正孔輸送帯域における前記有機層の内、少なくとも1以上の有機層が、正孔輸送帯域材料を含み、前記第一の発光層は、第一のホスト材料と、最大ピーク波長が500nm以下の発光を示す第一の発光性化合物と、を含み、前記第二の発光層は、第二のホスト材料と、最大ピーク波長が500nm以下の発光を示す第二の発光性化合物と、を含み、前記第一のホスト材料と前記第二のホスト材料とは互いに異なり、前記第一の発光性化合物と前記第二の発光性化合物とが、互いに同一であるか、又は異なり、前記第一のホスト材料の三重項エネルギーT(H1)と前記第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数1)の関係を満たし、前記青色有機EL素子の前記青色発光領域において、前記正孔輸送帯域材料とのイオン化ポテンシャルIp(HT)と、前記第一の発光層が含有する前記第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、下記数式(数1X)の関係を満たす。
  T(H1)>T(H2) …(数1)
  Ip(D1)-Ip(HT)<-0.05eV …(数1X)
 本明細書において、複数の素子に亘って共通して設けられている層を共通層と称する場合がある。本明細書において、複数の素子に亘って共通して設けられていない層を非共通層と称する場合がある。
 また、本明細書においては、複数の素子に亘って共通して設けられている帯域を共通帯域と称する場合がある。青色有機EL素子の青色発光領域、緑色有機EL素子の緑色発光層及び赤色有機EL素子の赤色発光層のそれぞれと、陽極との間において、青色有機EL素子、緑色有機EL素子及び赤色有機EL素子に亘って共通して設けられている正孔輸送帯域は、共通帯域である。
 なお、本明細書において、「画素」、「発光層」、「有機層」又は「材料」に付された「青色」、「緑色」又は「赤色」は、それぞれ、「画素」、「発光層」、「有機層」又は「材料」の各要素を他の要素と区別するために付されており、「青色」、「緑色」又は「赤色」は、「画素」、「発光層」、「有機層」又は「材料」が発する光の色を示す場合があるが、各要素の外観を「青色」、「緑色」又は「赤色」に特定するために付されているものではない。
 本実施形態に係る有機EL表示装置は、青色有機EL素子が、数式(数1)の関係を満たす第一の発光層及び第二の発光層を有する。そのため、第一実施形態と同様の理由により、青色有機EL素子の発光効率を向上させることができる。
 さらに本実施形態に係る有機EL表示装置は、青色発光領域と陽極との間において、正孔輸送帯域を構成する有機層の数を低減した層構成(省層化構成)となっている。
 従来の有機EL表示装置においては、青色有機EL素子の青色発光領域と陽極との間に、緑色有機EL素子及び赤色有機EL素子とは共通しない非共通層(例えば電子障壁層)を別途設けていた。
 本実施形態に係る有機EL表示装置においては、青色有機EL素子、緑色有機EL素子及び赤色有機EL素子に亘って共通する正孔輸送帯域(共通帯域)が、青色発光領域中の第一の発光層又は前記第二の発光層と、直接、接する構成となっている。すなわち、本実施形態に係る有機EL表示装置は、青色有機EL素子の発光層の陽極側に非共通層を有さず、具体的には、青色有機EL素子の正孔輸送帯域が、省層化されている。
 一方、省層化構成の有機EL表示装置は、青色発光領域へのホールの注入量が不足しやすくなるため、発光効率が低下するおそれがある。
 本実施形態に係る有機EL表示装置によれば、少なくとも1以上の有機層が含有する正孔輸送帯域材料のイオン化ポテンシャルIp(HT)と、第一の発光層が含有する第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、前記数式(数1X)の関係を満たすことで、正孔輸送帯域材料と第一の発光性化合物とのエネルギー障壁を小さくすることができる。その結果、正孔輸送帯域を構成する有機層の数を減らしても(省層化しても)、青色発光領域へのホール注入を促進でき、有機EL素子の高効率化につなげる事が出来る。
 また、本実施形態に係る有機EL表示装置によれば、前記数式(数1X)の関係を満たす正孔輸送帯域材料及び第一の発光性化合物を選択することで、有機EL素子の高効率化を担保できるので、例えば、第一のホスト材料及び第二のホスト材料の選択肢の幅を広げることができる。
 本実施形態に係る有機EL表示装置において、正孔輸送帯域(共通帯域)中の少なくとも1つの有機層は、第一の発光層と直接接する第一の有機層であり、第一の有機層は、正孔輸送帯域材料を含むことが好ましい。
 本実施形態に係る青色有機EL素子は、正孔輸送帯域(共通帯域)における各有機層が、第一実施形態で説明した共通正孔輸送帯域材料を含んでもよいが、含まなくてもよい。
 そのため、第一実施形態の有機EL素子と同様の構成については本実施形態に係る青色有機EL素子に適用することができる。
 本実施形態に係る青色発光領域が含有する第一の発光層及び第二の発光層としては、第一実施形態で説明した第一の発光層及び第二の発光層を用いることができる。
 また、本実施形態に係る正孔輸送帯域が含有する1又は複数の有機層としては、第一実施形態に係る正孔輸送帯域が含有する1又は複数の有機層(例えば、第一の有機層、第二の有機層及び第三の有機層等)を用いることができる。
 第二実施形態に係る有機EL表示装置の一例の構成について図4を参照して説明する。
 図4には、一実施形態に係る有機EL表示装置100Aが記載されている。
 有機EL表示装置100Aは、基板2Aによって支持された電極及び有機層を有する。
 有機EL表示装置100Aは、互いに対向して配置された陽極3及び陰極4を有する。
 有機EL表示装置100Aは、青色画素としての青色有機EL素子10B、緑色画素としての緑色有機EL素子10G及び赤色画素としての赤色有機EL素子10Rを有する。
 なお、図4は、有機EL表示装置100Aの概略図であって、有機EL表示装置100Aのサイズや各層の厚み等を限定するものではない。例えば、図4において第一の発光層51及び第二の発光層52、並びに緑色発光層53及び赤色発光層54は、それぞれ同じ厚みで表現されているが、実際の有機EL表示装置においてこれらの層の厚みが同じであることを限定するものではない。
 青色有機EL素子10Bは、陽極3と陰極4との間において、陽極3側から順に、正孔輸送帯域7、青色発光領域5、電子輸送層8、及び電子注入層9が、この順番で積層されている。青色発光領域5は、第一の発光層51及び第二の発光層52を有する。図4の場合、第一の発光層51が正孔輸送帯域7と直接接している。
 緑色有機EL素子10Gは、陽極3と陰極4との間において、陽極3側から順に、正孔輸送帯域7、緑色発光層53、電子輸送層8、及び電子注入層9が、この順番で積層されている。
 赤色有機EL素子10Rは、陽極3と陰極4との間において、陽極3側から順に、正孔輸送帯域7、赤色発光層54、電子輸送層8、及び電子注入層9が、この順番で積層されている。
 本実施形態に係る有機EL表示装置100Aにおいては、正孔輸送帯域7は、有機層L1から有機層Lnまで合計n層の有機層からなる共通帯域である。nは、1、2又は3以上にすることもできる。本実施形態において、有機層L1は、青色発光領域5と直接接する層であり、第一の有機層は、有機層L1に相当する。
 例えば、正孔輸送帯域が、1つの有機層(第一の有機層)のみからなる場合、nは、1であり、有機層L1が第一の有機層であり、有機層L1は、陽極と直接接すると共に、青色有機EL素子の第一の発光層と直接接する。
 例えば、正孔輸送帯域が、2つの有機層(第一の有機層及び第二の有機層)のみからなる場合、nは、2であり、有機層L1が第一の有機層であり、有機層L2が第二の有機層であり、有機層L1は、青色有機EL素子の第一の発光層と直接接し、有機層L2は、陽極と直接接する。
 陽極3は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれに独立して設けられている。そのため、有機EL表示装置100Aは、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rを個別に駆動させることが可能である。有機EL素子10B,10G,10Rのそれぞれの陽極は、図示されない絶縁材などで互いに絶縁されている。陰極4は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに共通して設けられている。
 一実施形態においては、画素としての青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rが基板2Aの上に並列に配置されている。
 図5に、第二実施形態に係る有機EL表示装置の別の一例の概略構成を示す。
 有機EL表示装置200は、緑色画素としての緑色有機EL素子20G及び赤色画素としての赤色有機EL素子20R以外、図4に示す有機EL表示装置100Aと同様の構成である。有機EL表示装置100Aと異なる点について説明する。
 緑色有機EL素子20Gは、陽極3と陰極4との間において、陽極3側から順に、正孔輸送帯域7、緑色有機層531、緑色発光層53、電子輸送層8、及び電子注入層9が、この順番で積層されている。図5の場合、緑色有機層531が正孔輸送帯域7と直接接している。緑色有機層531は電子障壁層であることが好ましい。
 赤色有機EL素子20Rは、陽極3と陰極4との間において、陽極3側から順に、正孔輸送帯域7、赤色有機層541、赤色発光層54、電子輸送層8、及び電子注入層9が、この順番で積層されている。図5の場合、赤色有機層541が正孔輸送帯域7と直接接している。赤色有機層541は電子障壁層であることが好ましい。
 図5に示す有機EL表示装置においても、前記数式(数1X)の関係を満たす正孔輸送帯域材料及び第一の発光性化合物を用いることで、正孔輸送帯域材料と第一の発光性化合物とのエネルギー障壁を小さくすることができる。その結果、正孔輸送帯域を構成する有機層の数を減らしても(省層化しても)、発光領域へのホール注入を促進でき、高効率を達成しやすくなる。
 本発明は、図4~図5に示す有機EL表示装置の構成に限定されない。
 また、図4~図5に示す有機EL表示装置において、緑色有機EL素子及び赤色有機EL素子は、蛍光発光する素子であっても、燐光発光する素子であってもよい。
 また、図4~図5に示す有機EL表示装置において、後述するように、緑色発光層53が遅延蛍光性の化合物を含有する発光層であってもよいし、赤色発光層54が遅延蛍光性の化合物を含有する発光層であってもよい。
 本実施形態の有機EL表示装置について、図4を参照してさらに説明する。
(正孔輸送帯域)
 正孔輸送帯域7は、青色有機EL素子10Bの青色発光領域5、緑色有機EL素子10Gの緑色発光層53及び赤色有機EL素子10Rの赤色発光層54のそれぞれと、陽極3との間において、当該青色有機EL素子10B、当該緑色有機EL素子10G及び当該赤色有機EL素子10Rに亘って共通して設けられた共通帯域である。
 正孔輸送帯域7が複数の層で構成される場合、当該複数の層は、いずれも、青色有機EL素子10Bの青色発光領域5、緑色有機EL素子10Gの緑色発光層53及び赤色有機EL素子10Rの赤色発光層54のそれぞれと、陽極3との間において、当該青色有機EL素子10B、当該緑色有機EL素子10G及び当該赤色有機EL素子10Rに亘って共通して設けられた共通層である。
 一実施形態において、正孔輸送帯域7における前記有機層(有機層L1から有機層Ln)の内、少なくとも1以上の有機層が、正孔輸送帯域材料を含み、正孔輸送帯域材料の正孔移動度が、1.0×10-5cm/Vs以上であることが好ましく、5.0×10-5cm/Vs以上であることがより好ましく、1.0×10-4cm/Vs以上であることがさらに好ましい。
 正孔輸送帯域が含有する正孔輸送帯域材料の正孔移動度が、1.0×10-5cm/Vs以上であると、共通帯域である正孔輸送帯域から青色発光領域へのホールの受け渡しがより容易となるため、青色発光領域へのホールの供給量が不足しがちな正孔輸送帯域の省層化構成でも、高効率をより達成しやすくなる。
 正孔輸送帯域7における前記有機層の内、少なくとも2以上の有機層が、正孔輸送帯域材料を含むことも好ましい。
 正孔輸送帯域材料としては、例えば、第一実施形態で説明したドープ化合物、前記一般式(21)で表される化合物、前記一般式(22)で表される化合物、及び正孔輸送層として用いることができる化合物等を用いることができる。
 正孔輸送帯域7が含有するn層の有機層としては、例えば、第一実施形態で説明した第一の有機層、第二の有機層、第三の有機層、正孔注入層及び正孔輸送層からなる群から選択される1以上の層を組み合わせて用いることができる。
 正孔移動度は、下記の手順で作製された移動度評価用素子を用い、インピーダンス測定を行うことで測定できる。移動度評価用素子は、例えば、下記の手順で作製される。
 ITO透明電極(陽極)付きガラス基板上に、透明電極を覆うようにして下記化合物HA-2を蒸着して正孔注入層を形成する。この正孔注入層の成膜の上に、下記化合物HT-Aを蒸着して正孔輸送層を形成する。続けて、正孔移動度の測定対象となる化合物Targetを蒸着して測定対象層を形成する。この測定対象層の上に、金属アルミニウム(Al)を蒸着して金属陰極を形成する。
 以上の移動度評価用素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HA-2(5)/HT-A(10)/Target(200)/Al(80)
 なお、括弧内の数字は、膜厚(nm)を示す。
Figure JPOXMLDOC01-appb-C000382
 正孔移動度の移動度評価用素子を、インピーダンス測定装置に設置し、インピーダンス測定を行う。インピーダンス測定は、測定周波数を1Hzから1MHzまで掃引して行う。その際、素子には交流振幅0.1Vと同時に、直流電圧Vを印加する。測定されたインピーダンスZから、下記計算式(C1)の関係を用いて、モジュラスMを計算する。
  計算式(C1):M=jωZ
 上記計算式(C1)において、jは、その平方が-1になる虚数単位、ωは、角周波数[rad/s]である。
 モジュラスMの虚部を縦軸、周波数[Hz]を横軸にしたボーデプロットにおいて、ピークを示す周波数fmaxから移動度評価用素子の電気的な時定数τを前記計算式(C2)から求める。
  計算式(C2):τ=1/(2πfmax)
 上記計算式(C2)のπは、円周率を表す記号である。
 前記計算式(C2)から求めたτを用いて、下記計算式(C3)の関係から正孔移動度を算出する。
 計算式(C3):μh=d/(Vτ)
 上記計算式(C3)のdは、素子を構成する有機薄膜の総膜厚であり、正孔移動度の移動度評価用素子構成の場合、d=215[nm]である。
 本明細書における正孔移動度は、電界強度の平方根E1/2=500[V1/2/cm1/2]の際の値である。電界強度の平方根E1/2は、下記計算式(C4)の関係から算出することができる。
  計算式(C4):E1/2=V1/2/d1/2
 前記インピーダンス測定にはインピーダンス測定装置としてソーラトロン社の1260型を用い、高精度化のため、ソーラトロン社の1296型誘電率測定インターフェイスを併せて用いることができる。
<青色有機EL素子>
 一実施形態において、青色有機EL素子10Bは、陽極3、正孔輸送帯域7、青色発光領域5、電子輸送層8、電子注入層9及び陰極4をこの順で有する。なお、青色有機EL素子10Bは、図4に示した層と異なる他の層を含んでいてもよい。
(第一の発光層及び第二の発光層)
 青色発光領域5は、第一の発光層51と第二の発光層52とを含む。青色発光領域5は、第一実施形態に係る発光領域と同様の構成である。好ましい範囲も同様である。
 第一の発光層51が含有する第一の発光性化合物の三重項エネルギーT(D1)は、第一実施形態と同様の理由により、2.1eV以上であることが好ましく、2.2eV以上であることがより好ましい。第一の発光性化合物の三重項エネルギーT(D1)の上限値は、化合物安定性の観点から、2.8eV以下であることが好ましい。
<緑色有機EL素子>
 一実施形態において、緑色有機EL素子10Gは、陽極3、正孔輸送帯域7、緑色発光層53、電子輸送層8、電子注入層9及び陰極4をこの順に備える。なお、緑色有機EL素子10Gは、図4に示した層と異なる他の層を含んでいてもよい。
(緑色発光層)
 一実施形態において、緑色発光層53は、正孔輸送帯域7と電子輸送層8との間に配置され、緑色発光層53と電子輸送層8とが、直接、接している。
 本実施形態に係る有機EL表示装置において、緑色発光層は、ホスト材料を含有していることが好ましい。したがって、例えば、緑色発光層は、ホスト材料を、緑色発光層の全質量の50質量%以上、含有する。
 本実施形態に係る有機EL表示装置において、緑色有機EL素子の緑色発光層は、最大ピーク波長が500nm以上、550nm以下の発光を示す緑色発光性化合物を少なくとも含むことが好ましい。緑色発光性化合物は、最大ピーク波長が500nm以上、550nm以下の蛍光発光を示す蛍光発光性化合物であることも好ましい。また、緑色発光性化合物は、最大ピーク波長が500nm以上、550nm以下の燐光発光を示す燐光発光性化合物であることも好ましい。本明細書において、緑色の発光とは、発光スペクトルの最大ピーク波長が500nm以上、550nm以下の範囲内である発光をいう。
 蛍光性化合物は、一重項励起状態から発光可能な化合物であり、燐光発光性の化合物は、三重項励起状態から発光可能な化合物である。
 緑色発光層に用いることができる緑色で蛍光発光する化合物として、例えば、芳香族アミン誘導体等を使用できる。緑色発光層に用いることができる緑色で燐光発光する化合物として、例えば、イリジウム錯体等が使用される。
 本実施形態に係る有機EL表示装置において、後述するように、緑色発光層は、遅延蛍光性の化合物を含有していてもよい。
(燐光発光最大ピーク波長(PH-peak))
 燐光発光性化合物の最大ピーク波長(燐光発光最大ピーク波長)は、次の方法により測定することができる。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、10-5mol/L以上10-4mol/L以下となるように溶解し、このEPA溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの極大値のうち、最も短波長側の極大値を燐光発光最大ピーク波長とする。燐光の測定には、分光蛍光光度計F-7000(株式会社日立ハイテクサイエンス製)を用いることができる。なお、測定装置はこの限りではなく、冷却装置、及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。なお、本明細書において、燐光発光の最大ピーク波長を燐光発光最大ピーク波長(PH-peak)と称する場合がある。
(緑色有機層)
 本実施形態に係る有機EL表示装置において、緑色有機EL素子は、緑色発光層と、正孔輸送帯域との間に、緑色有機層を備えることが好ましい。緑色有機層は、正孔輸送帯域と、直接、接していてもよい。また、緑色有機層は、緑色発光層と、直接、接していてもよい。
 緑色有機層は、緑色有機材料を含有する。緑色有機材料としては、本実施形態に係る正孔輸送材料又は第一実施形態に係る正孔輸送帯域材料を用いることができる。緑色有機材料は、正孔輸送帯域が含有する正孔輸送帯域材料と同じ化合物であってもよいし、異なる化合物でもよいが、緑色有機材料と正孔輸送帯域材料とは、互いに異なることが好ましい。緑色有機材料の正孔移動度は、正孔輸送帯域が含有する正孔輸送帯域材料の正孔移動度よりも大きいことが好ましい。緑色有機材料は、緑色発光層が含有するホスト材料及び緑色発光性化合物とは異なる化合物である。
 本実施形態に係る有機EL表示装置において、緑色有機EL素子が緑色有機層を有することにより、緑色有機EL素子における発光位置を調整し易い。
<赤色有機EL素子>
 一実施形態において、赤色有機EL素子10Rは、陽極3、正孔輸送帯域7、赤色発光層54、電子輸送層8、電子注入層9及び陰極4をこの順に備える。なお、赤色有機EL素子10Rは、図4に示した層と異なる他の層を含んでいてもよい。
(赤色発光層)
 一実施形態において、赤色発光層54は、正孔輸送帯域7と電子輸送層8との間に配置され、赤色発光層54と電子輸送層8とが、直接、接している。
 本実施形態に係る有機EL表示装置において、赤色発光層は、ホスト材料を含有していることが好ましい。したがって、例えば、赤色発光層54は、ホスト材料を、赤色発光層54の全質量の50質量%以上、含有する。
 本実施形態に係る有機EL表示装置において、赤色有機EL素子の赤色発光層は、最大ピーク波長が600nm以上、640nm以下の発光を示す赤色発光性化合物を少なくとも含むことが好ましい。赤色発光性化合物は、最大ピーク波長が600nm以上、640nm以下の蛍光発光を示す蛍光発光性化合物であることも好ましい。また、赤色発光性化合物は、最大ピーク波長が600nm以上、640nm以下の燐光発光を示す燐光発光性化合物であることも好ましい。本明細書において、赤色の発光とは、発光スペクトルの最大ピーク波長が600nm以上、640nm以下の範囲内である発光をいう。
 赤色発光層に用いることができる赤色で蛍光発光する化合物として、例えば、テトラセン誘導体及びジアミン誘導体等を使用できる。赤色発光層に用いることができる赤色で燐光発光する化合物として、例えば、イリジウム錯体、白金錯体、テルビウム錯体及びユーロピウム錯体等の金属錯体を使用できる。
 本実施形態に係る有機EL表示装置において、後述するように、赤色発光層は、遅延蛍光性の化合物を含有していてもよい。
(赤色有機層)
 本実施形態に係る有機EL表示装置において、赤色有機EL素子は、赤色発光層と、正孔輸送帯域との間に、赤色有機層を備えることが好ましい。赤色有機層は、正孔輸送帯域と、直接、接していてもよい。また、赤色有機層は、赤色発光層と、直接、接していてもよい。
 赤色有機層は、赤色有機材料を含有する。赤色有機材料としては、本実施形態に係る正孔輸送材料又は第一実施形態に係る正孔輸送帯域材料を用いることができる。赤色有機材料は、正孔輸送帯域が含有する正孔輸送帯域材料と同じ化合物であってもよいし、異なる化合物でもよいが、赤色有機材料と正孔輸送帯域材料とは、互いに異なることが好ましい。赤色有機材料の正孔移動度は、正孔輸送帯域が含有する正孔輸送帯域材料の正孔移動度よりも大きいことが好ましい。赤色有機材料は、赤色発光層が含有するホスト材料及び赤色発光性化合物とは異なる化合物である。
 赤色有機EL素子の赤色有機層が含有する赤色有機材料と、緑色有機EL素子の緑色発光層が含有する緑色有機材料とが、同じ化合物であってもよいし、異なる化合物でもよいが、赤色有機材料と緑色有機材料とが、互いに異なることが好ましい。赤色有機材料の正孔移動度は、緑色有機材料の正孔移動度よりも大きいことが好ましい。
 赤色有機層の膜厚は、緑色有機層の膜厚よりも厚いことが好ましい。
 本実施形態に係る有機EL表示装置において、赤色有機EL素子が赤色有機層を有することにより、赤色有機EL素子における発光位置を調整し易い。
 緑色発光層が含有するホスト材料及び赤色発光層が含有するホスト材料は、例えば、発光性の高い物質(ドーパント材料)を発光層中に分散させさせるための化合物であることが好ましい。緑色発光層が含有するホスト材料及び赤色発光層が含有するホスト材料としては、発光性の高い物質よりも最低空軌道準位(LUMO準位)が高く、最高被占有軌道準位(HOMO準位)が低い物質を用いることが好ましい。
 緑色発光層が含有するホスト材料及び赤色発光層が含有するホスト材料としては、例えば、それぞれ独立に、下記(1)~(4)の化合物を使用できる。
 (1)アルミニウム錯体、ベリリウム錯体、若しくは亜鉛錯体等の金属錯体、
 (2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、若しくはフェナントロリン誘導体等の複素環化合物、
 (3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、若しくはクリセン誘導体等の縮合芳香族化合物、
 (4)トリアリールアミン誘導体、若しくは縮合多環芳香族アミン誘導体等の芳香族アミン化合物
 本実施形態に係る有機EL表示装置において、緑色有機EL素子及び赤色有機EL素子の少なくともいずれかの有機EL素子が、遅延蛍光性の化合物を含有していてもよい。遅延蛍光性の化合物は、金属錯体ではないことが好ましい。金属原子を含まない有機化合物であることが好ましい。
 本実施形態に係る有機EL表示装置において、緑色有機EL素子及び赤色有機EL素子の少なくともいずれかの有機EL素子が、遅延蛍光性の化合物を含有する場合、緑色有機EL素子の緑色発光層及び赤色有機EL素子の赤色発光層の少なくともいずれかの発光層が、遅延蛍光性の化合物を含有することが好ましい。遅延蛍光性の化合物を含有する発光層を、遅延蛍光発光層と称する場合がある。
 遅延蛍光発光層は、遅延蛍光性の化合物をホスト材料として含有することが好ましい。遅延蛍光発光層は、ホスト材料としての遅延蛍光性の化合物と、蛍光発光性化合物とを含有することが好ましい。ホスト材料としての遅延蛍光性の化合物の一重項エネルギーは、蛍光発光性化合物の一重項エネルギーよりも大きいことが好ましい。
 遅延蛍光発光層は、重金属錯体及び燐光発光性の希土類金属錯体を含まないことが好ましい。ここで、重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、及び白金錯体等が挙げられる。遅延蛍光発光層は、金属錯体を含まないことも好ましい。
 本実施形態に係る有機EL表示装置において、遅延蛍光性の化合物を含む発光層は、当該遅延蛍光性の化合物のアフィニティよりも小さいアフィニティを有する第一の有機材料を含有していてもよい。すなわち、遅延蛍光発光層は、遅延蛍光性の化合物と第一の有機材料とを含有し、遅延蛍光性の化合物のアフィニティAf(M2)と、第一の有機材料のアフィニティAf(M1)とが、下記数式(数6A)の関係を満たすことが好ましい。
 Af(M2)-Af(M1)>0eV …(数6A)
 測定対象物(化合物又は材料)のアフィニティAfの値は、次の数式(数6)により算出される値である。アフィニティAfの単位は、eVである。
 Af=-1.19×(Ere-Efc)-4.78eV …(数6)
 数式(数6)において、Ere及びEfcは、次の通りである。
  Ere:測定対象物の第一還元電位(DPV,Negative scan)
  Efc:フェロセンの第一酸化電位(DPV,Positive scan),(ca.+0.55V vs Ag/AgCl)
 酸化還元電位は、電気化学アナライザー(ALS社製:CHI630B)を用いて微分パルスボルタンメトリー(DPV)法で測定する。
 測定に用いる試料溶液は、溶媒としてN,N-ジメチルホルムアミド(N,N-dimethylformamide(DMF))を用い、測定対象物を、その濃度が1.0mmol/Lとなるように溶解させ、支持電解質としてのテトラブチルアンモニウムヘキサフルオロホスフェート(tetrabuthylammmonium hexafluorophosphate(TBHP))を、その濃度が100mmol/Lとなるように溶解させて調製する。作用電極としては、グラッシーカーボン(glassy carbon)電極を用いる。対向電極としては、白金(Pt)電極を用いる。
 第一の有機材料の一重項エネルギーは、遅延蛍光性の化合物の一重項エネルギーよりも大きいことが好ましい。
 本実施形態に係る有機EL表示装置において、遅延蛍光発光層は、第一の有機材料と、ホスト材料としての遅延蛍光性の化合物と、蛍光発光性化合物とを含有することも好ましい。この場合、第一の有機材料の一重項エネルギーは、遅延蛍光性の化合物の一重項エネルギーよりも大きく、遅延蛍光性の化合物の一重項エネルギーは、蛍光発光性化合物の一重項エネルギーよりも大きいことが好ましい。
 本実施形態に係る有機EL表示装置において、緑色発光層及び赤色発光層のうち、遅延蛍光性の化合物を含有しない発光層は、燐光発光性の化合物を含有することも好ましい。例えば、緑色発光層が遅延蛍光性の化合物を含有し、赤色発光層が遅延蛍光性の化合物を含有しない場合、赤色発光層が燐光発光性の化合物を含有する。本実施形態に係る有機EL表示装置において、緑色発光層及び赤色発光層は、遅延蛍光性の化合物と燐光発光性の化合物とを同時に含有しないことも好ましい。
(遅延蛍光性)
 遅延蛍光については、「有機半導体のデバイス物性」(安達千波矢編、講談社発行)の261~268ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギー差ΔE13を小さくすることができれば、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(Thermally Activated delayed Fluorescence,TADF)が発現すると説明されている。さらに、当該文献中の図10.38で、遅延蛍光の発生メカニズムが説明されている。本実施形態における遅延蛍光性の化合物(遅延蛍光性発光材料)は、このようなメカニズムで発生する熱活性化遅延蛍光を示す化合物であることが好ましい。
 一般に、遅延蛍光の発光は過渡PL(Photo Luminescence)測定により確認できる。
 過渡PL測定から得た減衰曲線に基づいて遅延蛍光の挙動を解析することもできる。過渡PL測定とは、試料にパルスレーザーを照射して励起させ、照射を止めた後のPL発光の減衰挙動(過渡特性)を測定する手法である。TADF材料におけるPL発光は、最初のPL励起で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初のPL励起で生成する一重項励起子の寿命は、ナノ秒オーダーであり、非常に短い。そのため、当該一重項励起子からの発光は、パルスレーザーを照射後、速やかに減衰する。
 一方、遅延蛍光は、寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初のPL励起で生成する一重項励起子からの発光と、三重項励起子を経由して生成する一重項励起子からの発光とでは、時間的に大きな差がある。そのため、遅延蛍光由来の発光強度を求めることができる。
 図6には、過渡PLを測定するための例示的装置の概略図が示されている。図6を用いた過渡PLの測定方法、及び遅延蛍光の挙動解析の一例を説明する。
 図6の過渡PL測定装置100は、所定波長の光を照射可能なパルスレーザー部101と、測定試料を収容する試料室102と、測定試料から放射された光を分光する分光器103と、2次元像を結像するためのストリークカメラ104と、2次元像を取り込んで解析するパーソナルコンピュータ105とを備える。なお、過渡PLの測定は、図6に記載の装置に限定されない。
 試料室102に収容される試料は、マトリックス材料に対し、ドーピング材料が12質量%の濃度でドープされた薄膜を石英基板に成膜することで得られる。
 試料室102に収容された薄膜試料に対し、パルスレーザー部101からパルスレーザーを照射してドーピング材料を励起させる。励起光の照射方向に対して90度の方向へ発光を取り出し、取り出した光を分光器103で分光し、ストリークカメラ104内で2次元像を結像する。その結果、縦軸が時間に対応し、横軸が波長に対応し、輝点が発光強度に対応する2次元画像を得ることができる。この2次元画像を所定の時間軸で切り出すと、縦軸が発光強度であり、横軸が波長である発光スペクトルを得ることができる。また、当該2次元画像を波長軸で切り出すと、縦軸が発光強度の対数であり、横軸が時間である減衰曲線(過渡PL)を得ることができる。
 例えば、マトリックス材料として、下記参考化合物H1を用い、ドーピング材料として下記参考化合物D1を用いて上述のようにして薄膜試料Aを作製し、過渡PL測定を行った。
Figure JPOXMLDOC01-appb-C000383
 ここでは、前述の薄膜試料A、及び薄膜試料Bを用いて減衰曲線を解析した。薄膜試料Bは、マトリックス材料として下記参考化合物H2を用い、ドーピング材料として前記参考化合物D1を用いて、上述のようにして薄膜試料を作製した。
 図7には、薄膜試料A及び薄膜試料Bについて測定した過渡PLから得た減衰曲線が示されている。
Figure JPOXMLDOC01-appb-C000384
 上記したように過渡PL測定によって、縦軸を発光強度とし、横軸を時間とする発光減衰曲線を得ることができる。この発光減衰曲線に基づいて、光励起により生成した一重項励起状態から発光する蛍光と、三重項励起状態を経由し、逆エネルギー移動により生成する一重項励起状態から発光する遅延蛍光との、蛍光強度比を見積もることができる。遅延蛍光性の材料では、素早く減衰する蛍光の強度に対し、緩やかに減衰する遅延蛍光の強度の割合が、ある程度大きい。
 具体的には、遅延蛍光性の材料からの発光としては、Prompt発光(即時発光)と、Delay発光(遅延発光)とが存在する。Prompt発光(即時発光)とは、当該遅延蛍光性の材料が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察される発光である。Delay発光(遅延発光)とは、当該パルス光による励起後、即座には観察されず、その後観察される発光である。
 また、本明細書では、遅延蛍光性発光材料の遅延蛍光性の測定には、次に示す方法により作製した試料を用いる。例えば、遅延蛍光性発光材料をトルエンに溶解し、自己吸収の寄与を取り除くため励起波長において吸光度が0.05以下の希薄溶液を調製する。また酸素による消光を防ぐため、試料溶液を凍結脱気した後にアルゴン雰囲気下で蓋付きのセルに封入することで、アルゴンで飽和された酸素フリーの試料溶液とする。
 上記試料溶液の蛍光スペクトルを分光蛍光光度計FP-8600(日本分光社製)で測定し、また同条件で9,10-ジフェニルアントラセンのエタノール溶液の蛍光スペクトルを測定する。両スペクトルの蛍光面積強度を用いて、Morris et al. J.Phys.Chem.80(1976)969中の(1)式により全蛍光量子収率を算出する。
 Prompt発光とDelay発光の量とその比は、“Nature 492, 234-238, 2012”(参考文献1)に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記参考文献1に記載の装置、又は図6に記載の装置に限定されない。
 本実施形態においては、測定対象化合物(遅延蛍光性発光材料)のPrompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることが好ましい。
 本明細書における遅延蛍光性発光材料以外の化合物のPrompt発光とDelay発光の量とその比の測定も、遅延蛍光性発光材料のPrompt発光とDelay発光の量とその比の測定と同様である。
 本実施形態の有機EL表示装置について、図4を参照してさらに説明する。第一実施形態に係る有機EL素子と共通する構成については記載を簡略化又は省略する。
(陽極)
 一実施形態において、陽極3は、陰極4に対して対向して配置されている。
 一実施形態において、陽極3は、通常、非共通層である。一実施形態において、例えば、陽極3が非共通層である場合、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれにおける陽極は、互いに物理的に切り分けられた状態であり、例えば、図示されない絶縁材などで互いに絶縁されている。
(陰極)
 一実施形態において、陰極4は、陽極3に対して対向して配置されている。
 一実施形態において、陰極4は、共通層であっても、非共通層であってもよい。
 一実施形態において、陰極4は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して設けられた共通層であることが好ましい。
 一実施形態において、陰極4は、電子注入層9と直接接している。
 一実施形態において、陰極4は、共通層である場合、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って同じ膜厚である。陰極4が共通層である場合、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれの陰極4を、マスク等を入れ替えずに作製できる。その結果、有機EL表示装置100Aの生産性が向上する。
(電子輸送層)
 一実施形態において、電子輸送層8は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して設けられた、共通層である。
 一実施形態において、電子輸送層8は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの各発光層と、電子注入層9との間に配置されている。
 一実施形態において、電子輸送層8は、その陽極3側で、第二の発光層52、緑色発光層53及び赤色発光層54と、直接、接している。
 電子輸送層8は、その陰極4側で、電子注入層9と直接接している。
 一実施形態において、電子輸送層8は、共通層であり、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って同じ膜厚である。電子輸送層8が共通層であるため、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれの電子輸送層8を、マスク等を入れ替えずに作製できる。その結果、有機EL表示装置100Aの生産性が向上する。
(電子注入層)
 一実施形態において、電子注入層9は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して設けられた共通層である。
 一実施形態において、電子注入層9は、電子輸送層8と陰極4との間に配置されている。
 一実施形態において、電子注入層9は、電子輸送層8に直接接している。
 一実施形態において、電子注入層9は、共通層であり、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って同じ膜厚である。電子注入層9が共通層であるため、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rのそれぞれの電子注入層9を、マスク等を入れ替えずに作製できる。その結果、有機EL表示装置100Aの生産性が向上する。
 一実施形態において、第一の発光層51、第二の発光層52、緑色発光層53、赤色発光層54、緑色有機層531及び赤色有機層541以外の層は、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rに亘って共通して設けられていることが好ましい。有機EL表示装置100Aにおける非共通層の数を少なくすることで、製造効率が向上する。
<有機EL表示装置の製造方法>
 一実施形態に係る有機EL表示装置100A(図4)の製造方法について説明する。
 まず、基板2A上に陽極3を成膜する。
 次に、共通層としての有機層(有機層L1から有機層Ln)を陽極3の上に亘って順に成膜し、共通帯域としての正孔輸送帯域7を作製する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの正孔輸送帯域7中の各有機層は、それぞれ同じ材料、かつ、同じ膜厚で成膜される。
 次に、正孔輸送帯域7の上であって、青色有機EL素子10Bの陽極3に対応する領域に、所定の成膜用マスク(青色有機EL素子用マスク)を用いて、第一の発光層51を成膜する。第一の発光層51の成膜に続けて、第一の発光層51の上に第二の発光層52を成膜する。
 次に、正孔輸送帯域7の上であって、緑色有機EL素子10Gの陽極3に対応する領域に、所定の成膜用マスク(緑色有機EL素子用マスク)を用いて、所定膜厚で緑色発光層53を成膜する。
 次に、正孔輸送帯域7の上であって、赤色有機EL素子10Rの陽極3に対応する領域に、所定の成膜用マスク(赤色有機EL素子用マスク)を用いて、所定膜厚で赤色発光層54を成膜する。
 第一の発光層51、第二の発光層52、緑色発光層53及び赤色発光層54は、互いに異なる材料で成膜される。
 なお、正孔輸送帯域7の成膜の次に、青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの非共通層を成膜する順番は、特に限定されない。
 例えば、正孔輸送帯域7を成膜した後、緑色有機EL素子10Gの緑色発光層53を成膜し、その後、赤色有機EL素子10Rの赤色発光層54を成膜し、その後、青色有機EL素子10Bの第一の発光層51及び第二の発光層52を成膜する、という順番でもよい。
 また、例えば、正孔輸送帯域7を成膜した後、赤色有機EL素子10Rの赤色発光層54を成膜し、その後、緑色有機EL素子10Gの緑色発光層53を成膜し、その後、青色有機EL素子10Bの第一の発光層51及び第二の発光層52を成膜する、という順番でもよい。
 次に、共通層としての電子輸送層8を、第二の発光層52、緑色発光層53及び赤色発光層54の上に亘って成膜する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの電子輸送層8は、同じ材料、かつ、同じ膜厚で成膜する。
 次に、共通層としての電子注入層9を電子輸送層8の上に成膜する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの電子注入層9は、同じ材料、かつ、同じ膜厚で成膜する。
 次に、電子注入層9の上に共通層としての陰極4を成膜する。青色有機EL素子10B、緑色有機EL素子10G及び赤色有機EL素子10Rの陰極4は、同じ材料、かつ、同じ膜厚で成膜する。
 以上のようにして、図5に示す有機EL表示装置100Aを製造する。
 次に、一実施形態に係る有機EL表示装置200(図5)の製造方法について説明する。
 まず、基板2A上に陽極3を成膜する。
 次に、共通層としての有機層(有機層L1から有機層Ln)を陽極3の上に亘って順に成膜し、共通帯域としての正孔輸送帯域7を作製する。青色有機EL素子10B、緑色有機EL素子20G及び赤色有機EL素子20Rの正孔輸送帯域7中の各有機層は、それぞれ同じ材料、かつ、同じ膜厚で成膜される。
 次に、正孔輸送帯域7の上であって、青色有機EL素子10Bの陽極3に対応する領域に、所定の成膜用マスク(青色有機EL素子用マスク)を用いて、第一の発光層51を成膜する。第一の発光層51の成膜に続けて、第一の発光層51の上に第二の発光層52を成膜する。
 次に、正孔輸送帯域7の上であって、緑色有機EL素子20Gの陽極3に対応する領域に、所定の成膜用マスク(緑色有機EL素子用マスク)を用いて、所定膜厚で緑色有機層531を成膜する。緑色有機層531の成膜に続けて、緑色有機層531の上に緑色発光層53を成膜する。
 次に、正孔輸送帯域7の上であって、赤色有機EL素子20Rの陽極3に対応する領域に、所定の成膜用マスク(赤色有機EL素子用マスク)を用いて、所定膜厚で赤色有機層541を成膜する。赤色有機層541の成膜に続けて、赤色有機層541の上に赤色発光層54を成膜する。
 第一の発光層51、第二の発光層52、緑色発光層53及び赤色発光層54は、互いに異なる材料で成膜される。
 なお、正孔輸送帯域7の成膜の次に、青色有機EL素子10B、緑色有機EL素子20G及び赤色有機EL素子20Rの非共通層を成膜する順番は、特に限定されない。
 例えば、正孔輸送帯域7を成膜した後、緑色有機EL素子20Gの緑色有機層531及び緑色発光層53を成膜し、その後、赤色有機EL素子20Rの赤色有機層541及び赤色発光層54を成膜し、その後、青色有機EL素子10Bの第一の発光層51及び第二の発光層52を成膜する、という順番でもよい。
 また、例えば、正孔輸送帯域7を成膜した後、赤色有機EL素子20Rの赤色有機層541及び赤色発光層54を成膜し、その後、緑色有機EL素子20Gの緑色有機層531及び緑色発光層53を成膜し、その後、青色有機EL素子10Bの第一の発光層51及び第二の発光層52を成膜する、という順番でもよい。
 次に、共通層としての電子輸送層8、共通層としての電子注入層9、及び共通層としての陰極4を、前述の図4に示す有機EL表示装置100Aの製造方法と同様の方法で成膜する。
 以上のようにして、図5に示す有機EL表示装置200を製造する。
 第二実施形態によれば、既存の製造ラインを活用して製造可能であり、複数の発光層が積層された有機EL素子を画素として備える有機EL表示装置を提供できる。
〔第三実施形態〕
(電子機器)
 本実施形態に係る電子機器は、上述の実施形態のいずれかの有機EL素子又は上述の実施形態のいずれかの有機EL表示装置を搭載している。電子機器としては、例えば、表示装置及び発光装置等が挙げられる。表示装置としては、例えば、表示部品(例えば、有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明及び車両用灯具等が挙げられる。
〔実施形態の変形〕
 なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
 例えば、発光層は、2層に限られず、2を超える複数の発光層が積層されていてもよい。有機EL素子が2を超える複数の発光層を有する場合、少なくとも2つの発光層が上記実施形態で説明した条件を満たしていればよい。例えば、その他の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。
 また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよいし、中間層を介して複数の発光ユニットが積層された、いわゆるタンデム型の有機EL素子であってもよい。
 また、例えば、発光層の陰極側に障壁層を隣接させて設けてもよい。発光層の陰極側で直接接して配置された障壁層は、正孔、及び励起子の少なくともいずれかを阻止することが好ましい。
 例えば、発光層の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、かつ正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、発光層と電子輸送層との間に当該障壁層を含むことが好ましい。
 また、励起エネルギーが発光層からその周辺層に漏れ出さないように、障壁層を発光層に隣接させて設けてもよい。発光層で生成した励起子が、当該障壁層よりも電極側の層(例えば、電子輸送層及び正孔輸送層等)に移動することを阻止する。
 発光層と障壁層とは接合していることが好ましい。
 その他、本発明の実施における具体的な構造、及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。
<化合物>
 実施例に係る有機EL素子の製造に用いた、第一の発光性化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000385
 比較例に係る有機EL素子の製造に用いた、第一の発光性化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000386
 実施例及び比較例に係る有機EL素子の製造に用いた他の化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000387
Figure JPOXMLDOC01-appb-C000388
Figure JPOXMLDOC01-appb-C000389
<有機EL素子の作製1>
〔実施例1-1〕
 25mm×75mm×1.1mm厚のITO(Indium Tin Oxide)透明電極(陽極)付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITO透明電極の膜厚は、130nmとした。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして、化合物HT1及び化合物HA1を共蒸着し、膜厚10nmの第二の有機層(正孔注入層(HI)と称する場合もある。)を形成した。この第二の有機層中の化合物HT1の割合を97質量%とし、化合物HA1の割合を3質量%とした。
 第二の有機層の成膜に続けて化合物HT1を蒸着し、膜厚90nmの第一の有機層(正孔輸送層(HT)又は電子障壁層(EBL)と称する場合もある。)を成膜した。
 このようにして、共通正孔輸送帯域材料としての化合物HT1を含有する第一の有機層及び第二の有機層からなる正孔輸送帯域を成膜した。
 第一の有機層上に化合物BH1-1(第一のホスト材料(BH))及び化合物BD2(第一の発光性化合物(BD))を、化合物BD2の割合が1質量%となるように共蒸着し、膜厚5nmの第一の発光層を成膜した。
 第一の発光層上に化合物BH2-1(第二のホスト材料(BH))及び化合物BD2(第二の発光性化合物(BD))を、化合物BD2の割合が1質量%となるように共蒸着し、膜厚15nmの第二の発光層を成膜した。
 第二の発光層上に化合物HB1を蒸着し、膜厚5nmの第一の電子輸送層(正孔障壁層(HBL)と称する場合もある。)を形成した。
 第一の電子輸送層上に化合物ET1及び化合物Liqを共蒸着し、膜厚25nmの第二の電子輸送層(ET)を形成した。この第二の電子輸送層中の化合物ET1の割合を50質量%とし、化合物Liqの割合を50質量%とした。
 第二の電子輸送層上に化合物Liqを蒸着して膜厚1nmの電子注入層を形成した。
 電子注入層上に金属Alを蒸着して膜厚80nmの陰極を形成した。
 実施例1-1の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT1:HA1(10,97%:3%)/HT1(90)/BH1-1:BD2(5,99%:1%)/BH2-1:BD2(15,99%:1%)/HB1(5)/ET1:Liq(25,50%:50%)/Liq(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。
 同じく括弧内において、パーセント表示された数字(97%:3%)は、第二の有機層における化合物HT1及び化合物HA1の割合(質量%)を示し、パーセント表示された数字(99%:1%)は、第一の発光層又は第二の発光層におけるホスト材料(化合物BH1-1又はBH2-1)及び発光性化合物(化合物BD2)の割合(質量%)を示し、パーセント表示された数字(50%:50%)は、第二の電子輸送層における化合物ET1及び化合物Liqの割合(質量%)を示す。以下、同様の表記とする。
〔実施例1-2~1-7及び比較例1-1〕
 実施例1-2~1-7及び比較例1-1の有機EL素子は、それぞれ、第一の発光層における第一のホスト材料及び第一の発光性化合物を表1に示す第一のホスト材料及び第一の発光性化合物に変更し、第二の発光層における第二の発光性化合物を表1に示す第二の発光性化合物に変更したこと以外、実施例1-1と同様にして作製した。
<有機EL素子の評価>
 作製した有機EL素子について、以下の評価を行った。結果を表1に示す。
・外部量子効率EQE
 電流密度が10mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-2000(コニカミノルタ株式会社製)で計測した。得られた分光放射輝度スペクトルから、ランバシアン放射を行ったと仮定し外部量子効率EQE(単位:%)を算出した。
Figure JPOXMLDOC01-appb-T000390

 
 第一の有機層が含有する正孔輸送帯域材料及び第一の発光層が含有する第一の発光性化合物が前記数式(数1X)の関係を満たす実施例1-1~1-7の有機EL素子は、前記数式(数1X)の関係を満たさない比較例1-1の有機EL素子に比べて、高い発光効率で発光した。
<有機EL素子の作製2>
〔実施例2-1〕
 実施例2-1の有機EL素子は、実施例1-1の有機EL素子における第二の有機層及び第一の有機層を次のように変更して成膜したこと以外、実施例1-1と同様にして作製した。
 実施例2-1においては、実施例1-1の化合物HT1及びHA1の共蒸着に代えて、化合物HT2及びHA1を共蒸着し、膜厚10nmの第二の有機層を成膜し、第二の有機層中の化合物HT2の割合を97質量%とし、化合物HA1の割合を3質量%とした。
 実施例2-1においては、実施例1-1の化合物HT1に代えて、化合物HT2を蒸着し、膜厚90nmの第一の有機層を成膜した。
 このようにして、共通正孔輸送帯域材料としての化合物HT2を含有する第一の有機層及び第二の有機層からなる正孔輸送帯域を成膜した。
〔実施例2-2~2-3及び比較例2-1〕
 実施例2-2~2-3及び比較例2-1の有機EL素子は、それぞれ、第一の発光層における第一の発光性化合物を表2に示す第一の発光性化合物に変更し、第二の発光層における第二の発光性化合物を表2に示す第二の発光性化合物に変更したこと以外、実施例2-1と同様にして作製した。
 作製した有機EL素子について、実施例1-1と同様の方法で、外部量子効率EQEを測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000391
 第一の有機層が含有する正孔輸送帯域材料及び第一の発光層が含有する第一の発光性化合物が前記数式(数1X)の関係を満たす実施例2-1~2-3の有機EL素子は、前記数式(数1X)の関係を満たさない比較例2-1の有機EL素子に比べて、高い発光効率で発光した。
<有機EL素子の作製3>
〔実施例3-1〕
 実施例3-1の有機EL素子は、実施例1-1の有機EL素子における第一の有機層を次のように変更して成膜したこと以外、実施例1-1と同様にして作製した。
 実施例3-1においては、実施例1-1の化合物HT1の蒸着に代えて、化合物HT1及びHT3を共蒸着し、膜厚90nmの第一の有機層を成膜し、第一の有機層中の化合物HT1の割合を97質量%とし、化合物HT3の割合を3質量%とした。
 このようにして、共通正孔輸送帯域材料としての化合物HT1を含有する第一の有機層及び第二の有機層からなる正孔輸送帯域を成膜した。
〔実施例3-2~3-5及び比較例3-1〕
 実施例3-2~3-5及び比較例3-1の有機EL素子は、それぞれ、第一の発光層における第一のホスト材料及び第一の発光性化合物を表3に示す第一のホスト材料及び第一の発光性化合物に変更し、第二の発光層における第二の発光性化合物を表3に示す第二の発光性化合物に変更したこと以外、実施例3-1と同様にして作製した。
 作製した有機EL素子について、実施例1-1と同様の方法で、外部量子効率EQEを測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000392
 第一の有機層が含有する正孔輸送帯域材料及び第一の発光層が含有する第一の発光性化合物が前記数式(数1X)の関係を満たす実施例3-1~3-5の有機EL素子は、前記数式(数1X)の関係を満たさない比較例3-1の有機EL素子に比べて、高い発光効率で発光した。
<化合物の評価方法>
(三重項エネルギーT
 測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、濃度が10μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とした。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を三重項エネルギーTとした。なお、三重項エネルギーTは、測定条件によっては上下0.02eV程度の誤差が生じ得る。
  換算式(F1):T[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いた。
(一重項エネルギーS
 測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定した。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出した。
  換算式(F2):S[eV]=1239.85/λedge
 吸収スペクトル測定装置としては、日立社製の分光光度計(装置名:U3310)を用いた。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
(イオン化ポテンシャルIp)
 化合物のイオン化ポテンシャルIpは、大気下で、光電子分光装置(理研計器株式会社製、「AC-3」)を用いて測定した。具体的には、材料に光を照射し、その際に電荷分離によって生じる電子量を測定することにより、化合物のイオン化ポテンシャルを測定した。イオン化ポテンシャルをIpと表記する場合がある。
(蛍光発光最大ピーク波長(FL-peak)の測定)
 測定対象化合物を、4.9×10-6mol/Lの濃度でトルエンに溶解し、測定対象化合物のトルエン溶液を調製した。蛍光スペクトル測定装置(分光蛍光光度計F-7000(株式会社日立ハイテクサイエンス製))を用いて、測定対象化合物のトルエン溶液を390nmで励起した場合の蛍光発光最大ピーク波長を測定した。
 化合物BD-refの蛍光発光最大ピーク波長は、455nmであった。
 化合物BD2の蛍光発光最大ピーク波長は、450nmであった。
 化合物BD3の蛍光発光最大ピーク波長は、445nmであった。
 化合物BD4の蛍光発光最大ピーク波長は、457nmであった。
 1,1B,1C…有機エレクトロルミネッセンス素子、10,12,13…有機層、2,2A…基板、3…陽極、4…陰極、5…発光領域、6,6A,6B,7…正孔輸送帯域、8…電子輸送層、9…電子注入層、10B…青色有機EL素子、10G,20G…緑色有機EL素子、10R,20R…赤色有機EL素子、51…第一の発光層、52…第二の発光層、53…緑色発光層、54…赤色発光層、61…第一の有機層、62…第二の有機層、63…第三の有機層、100A,200…有機EL表示装置、531…緑色有機層、541…赤色有機層。

Claims (27)

  1.  有機エレクトロルミネッセンス素子であって、
     陽極と、
     陰極と、
     前記陽極及び前記陰極の間に配置された発光領域と、
     前記陽極及び前記発光領域の間に配置された正孔輸送帯域と、を有し、
     前記発光領域は、第一の発光層及び第二の発光層を含み、
     前記第一の発光層及び前記第二の発光層の一方が、前記発光領域において前記陽極側に配置され、
     前記正孔輸送帯域は、前記陽極及び前記発光領域と、直接、接し、
     前記正孔輸送帯域は、1又は複数の有機層を含み、
     前記正孔輸送帯域中の少なくとも1つの有機層は、前記発光領域と直接接する第一の有機層であり、
     前記第一の有機層は、正孔輸送帯域材料を含み、
     前記第一の発光層は、第一のホスト材料と、最大ピーク波長が500nm以下の発光を示す第一の発光性化合物と、を含み、
     前記第二の発光層は、第二のホスト材料と、最大ピーク波長が500nm以下の発光を示す第二の発光性化合物と、を含み、
     前記第一のホスト材料と前記第二のホスト材料とは互いに異なり、
     前記第一の発光性化合物と前記第二の発光性化合物とが、互いに同一であるか、又は異なり、
     前記第一のホスト材料の三重項エネルギーT(H1)と前記第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数1)の関係を満たし、
     前記第一の有機層が含有する前記正孔輸送帯域材料のイオン化ポテンシャルIp(HT)と、前記第一の発光層が含有する前記第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、下記数式(数1X)の関係を満たす、
     有機エレクトロルミネッセンス素子。
      T(H1)>T(H2)       …(数1)
      Ip(D1)-Ip(HT)<-0.05eV …(数1X)
  2.  請求項1に記載の有機エレクトロルミネッセンス素子において、
     前記第一の有機層が含有する前記正孔輸送帯域材料のイオン化ポテンシャルIp(HT)と、前記第一の発光層が含有する前記第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、下記数式(数1Y)の関係を満たす、
     有機エレクトロルミネッセンス素子。
      Ip(D1)-Ip(HT)<-0.07eV …(数1Y)
  3.  請求項1または請求項2に記載の有機エレクトロルミネッセンス素子において、
     前記正孔輸送帯域中の前記有機層は、共通の正孔輸送帯域材料として、いずれも、前記正孔輸送帯域材料を含む、
     有機エレクトロルミネッセンス素子。
  4.  請求項3に記載の有機エレクトロルミネッセンス素子において、
     前記共通の正孔輸送帯域材料のイオン化ポテンシャルIp(HTX)と、前記第一の発光層が含有する前記第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、下記数式(数2X)の関係を満たす、
     有機エレクトロルミネッセンス素子。
      Ip(D1)-Ip(HTX)<-0.05eV …(数2X)
  5.  請求項1から請求項4のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記正孔輸送帯域は、前記第一の有機層と、前記第一の有機層と前記陽極との間に配置された第二の有機層とを含み、
     前記第二の有機層は、さらに前記正孔輸送帯域材料とは異なる第二の正孔輸送帯域材料を含有する、
     有機エレクトロルミネッセンス素子。
  6.  請求項5に記載の有機エレクトロルミネッセンス素子において、
     前記第二の有機層は、前記陽極と直接接する、
     有機エレクトロルミネッセンス素子。
  7.  請求項5に記載の有機エレクトロルミネッセンス素子において、
     前記正孔輸送帯域は、前記第一の有機層と、前記第二の有機層と、前記第二の有機層と前記陽極との間に配置された第三の有機層とを含み、
     前記第三の有機層は、さらに前記正孔輸送帯域材料とは異なる第三の正孔輸送帯域材料を含有する、
     有機エレクトロルミネッセンス素子。
  8.  請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の有機層は、前記正孔輸送帯域材料と、前記正孔輸送帯域材料とは異なる第一の正孔輸送帯域材料と、を含有する、
     有機エレクトロルミネッセンス素子。
  9.  請求項1から請求項4のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記正孔輸送帯域が、前記正孔輸送帯域材料とは異なる材料を含有しない、
     有機エレクトロルミネッセンス素子。
  10.  請求項1から請求項9のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の発光層が含有する前記第一の発光性化合物の三重項エネルギーT(D1)が2.1eV以上である、
     有機エレクトロルミネッセンス素子。
  11.  請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の発光層が含有する前記第一の発光性化合物の三重項エネルギーT(D1)が2.2eV以上である、
     有機エレクトロルミネッセンス素子。
  12.  請求項1から請求項11のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一のホスト材料の一重項エネルギーS(H1)と、前記第一の発光性化合物の一重項エネルギーS(D1)とが下記数式(数20)の関係を満たす、
     有機エレクトロルミネッセンス素子。
      S(H1)>S(D1) …(数20)
  13.  請求項1から請求項12のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一のホスト材料の三重項エネルギーT(H1)と、前記第一の発光性化合物の三重項エネルギーT(D1)とが下記数式(数20A)の関係を満たす、
     有機エレクトロルミネッセンス素子。
       T(D1)>T(H1)   …(数20A)
  14.  請求項1から請求項13のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の発光層と前記第二の発光層とが、直接、接している、
     有機エレクトロルミネッセンス素子。
  15.  請求項1から請求項14のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の発光層は、前記正孔輸送帯域と前記陰極との間に配置され、
     前記第二の発光層は、前記第一の発光層と前記陰極との間に配置されている、
     有機エレクトロルミネッセンス素子。
  16.  有機エレクトロルミネッセンス表示装置であって、
     互いに対向して配置された陽極及び陰極を有し、
     青色画素としての青色有機EL素子、緑色画素としての緑色有機EL素子及び赤色画素としての赤色有機EL素子を有し、
     前記青色有機EL素子は、前記陽極と前記陰極との間に配置された第一の発光層及び第二の発光層を有する青色発光領域を有し、
     前記第一の発光層及び前記第二の発光層の一方が、前記青色発光領域において前記陽極側に配置され、
     前記緑色有機EL素子は、前記陽極と前記陰極との間に配置された緑色発光層を有し、
     前記赤色有機EL素子は、前記陽極と前記陰極との間に配置された赤色発光層を有し、
     前記青色有機EL素子、前記緑色有機EL素子及び前記赤色有機EL素子は、前記青色有機EL素子の前記青色発光領域、前記緑色有機EL素子の前記緑色発光層及び前記赤色有機EL素子の前記赤色発光層のそれぞれと、前記陽極との間において、当該青色有機EL素子、当該緑色有機EL素子及び当該赤色有機EL素子に亘って共通して設けられた正孔輸送帯域を有し、
     前記正孔輸送帯域は、前記青色有機EL素子の前記青色発光領域中の前記第一の発光層又は前記第二の発光層と、直接、接し、
     前記正孔輸送帯域は、1又は複数の有機層を含み、
     前記正孔輸送帯域における前記有機層の内、少なくとも1以上の有機層が、正孔輸送帯域材料を含み、
     前記第一の発光層は、第一のホスト材料と、最大ピーク波長が500nm以下の発光を示す第一の発光性化合物と、を含み、
     前記第二の発光層は、第二のホスト材料と、最大ピーク波長が500nm以下の発光を示す第二の発光性化合物と、を含み、
     前記第一のホスト材料と前記第二のホスト材料とは互いに異なり、
     前記第一の発光性化合物と前記第二の発光性化合物とが、互いに同一であるか、又は異なり、
     前記第一のホスト材料の三重項エネルギーT(H1)と前記第二のホスト材料の三重項エネルギーT(H2)とが、下記数式(数1)の関係を満たし、
     前記青色有機EL素子の前記青色発光領域において、
     前記正孔輸送帯域材料とのイオン化ポテンシャルIp(HT)と、前記第一の発光層が含有する前記第一の発光性化合物のイオン化ポテンシャルIp(D1)とが、下記数式(数1X)の関係を満たす、
     有機エレクトロルミネッセンス表示装置。
      T(H1)>T(H2) …(数1)
      Ip(D1)-Ip(HT)<-0.05eV …(数1X)
  17.  請求項16に記載の有機エレクトロルミネッセンス表示装置において、
     前記第一の発光層が含有する前記第一の発光性化合物の三重項エネルギーT(D1)が2.1eV以上である、
     有機エレクトロルミネッセンス表示装置。
  18.  請求項16または請求項17に記載の有機エレクトロルミネッセンス表示装置において、
     前記第一の発光層が含有する前記第一の発光性化合物の三重項エネルギーT(D1)が2.2eV以上である、
     有機エレクトロルミネッセンス表示装置。
  19.  請求項16から請求項18のいずれか一項に記載の有機エレクトロルミネッセンス表示装置において、
     前記正孔輸送帯域材料の正孔移動度が、1.0×10-5cm/Vs以上である、
     有機エレクトロルミネッセンス表示装置。
  20.  請求項16から請求項19のいずれか一項に記載の有機エレクトロルミネッセンス表示装置において、
     前記緑色発光層と前記正孔輸送帯域との間に、緑色有機層を備える、
     有機エレクトロルミネッセンス表示装置。
  21.  請求項16から請求項20のいずれか一項に記載の有機エレクトロルミネッセンス表示装置において、
     前記赤色発光層と前記正孔輸送帯域との間に、赤色有機層を備える、
     有機エレクトロルミネッセンス表示装置。
  22.  請求項16から請求項21のいずれか一項に記載の有機エレクトロルミネッセンス表示装置において、
     前記緑色有機EL素子及び前記赤色有機EL素子の少なくともいずれかの有機EL素子が、遅延蛍光性の化合物を含有する、
     有機エレクトロルミネッセンス表示装置。
  23.  請求項16から請求項22のいずれか一項に記載の有機エレクトロルミネッセンス表示装置において、
     前記緑色有機EL素子の緑色発光層及び前記赤色有機EL素子の赤色発光層の少なくともいずれかの発光層が、遅延蛍光性の化合物を含有する、
     有機エレクトロルミネッセンス表示装置。
  24.  請求項23に記載の有機エレクトロルミネッセンス表示装置において、
     前記遅延蛍光性の化合物を含む発光層は、当該遅延蛍光性の化合物のアフィニティよりも小さいアフィニティを有する第一の有機材料を含有する、
     有機エレクトロルミネッセンス表示装置。
  25.  請求項23または請求項24に記載の有機エレクトロルミネッセンス表示装置において、
     前記緑色発光層及び前記赤色発光層のうち、前記遅延蛍光性の化合物を含有しない発光層は、燐光発光性の化合物を含有する、
     有機エレクトロルミネッセンス表示装置。
  26.  請求項1から請求項15のいずれか一項に記載の有機エレクトロルミネッセンス素子を搭載した電子機器。
  27.  請求項16から請求項25のいずれか一項に記載の有機エレクトロルミネッセンス表示装置を搭載した電子機器。
PCT/JP2022/018804 2021-04-26 2022-04-26 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器 WO2022230844A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-074462 2021-04-26
JP2021074462 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022230844A1 true WO2022230844A1 (ja) 2022-11-03

Family

ID=83848166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018804 WO2022230844A1 (ja) 2021-04-26 2022-04-26 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器

Country Status (1)

Country Link
WO (1) WO2022230844A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375589A (zh) * 2023-02-10 2023-07-04 南京高光半导体材料有限公司 一种化合物及有机电致发光器件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155508A1 (ja) * 2010-06-08 2011-12-15 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2012137640A1 (ja) * 2011-04-07 2012-10-11 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置
WO2012153603A1 (ja) * 2011-05-10 2012-11-15 コニカミノルタホールディングス株式会社 燐光発光有機エレクトロルミネッセンス素子及び照明装置
WO2014050417A1 (ja) * 2012-09-25 2014-04-03 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2015053476A (ja) * 2013-07-30 2015-03-19 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
US20160365529A1 (en) * 2015-06-15 2016-12-15 Samsung Display Co., Ltd. Organic light emitting diode and organic light emitting diode display including the same
JP2020096171A (ja) * 2018-09-26 2020-06-18 株式会社半導体エネルギー研究所 発光デバイス、発光装置、電子機器および照明装置
WO2020256009A1 (ja) * 2019-06-18 2020-12-24 出光興産株式会社 有機el表示装置及び電子機器
WO2021049651A1 (ja) * 2019-09-13 2021-03-18 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021049653A1 (ja) * 2019-09-13 2021-03-18 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155508A1 (ja) * 2010-06-08 2011-12-15 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2012137640A1 (ja) * 2011-04-07 2012-10-11 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置
WO2012153603A1 (ja) * 2011-05-10 2012-11-15 コニカミノルタホールディングス株式会社 燐光発光有機エレクトロルミネッセンス素子及び照明装置
WO2014050417A1 (ja) * 2012-09-25 2014-04-03 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2015053476A (ja) * 2013-07-30 2015-03-19 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
US20160365529A1 (en) * 2015-06-15 2016-12-15 Samsung Display Co., Ltd. Organic light emitting diode and organic light emitting diode display including the same
JP2020096171A (ja) * 2018-09-26 2020-06-18 株式会社半導体エネルギー研究所 発光デバイス、発光装置、電子機器および照明装置
WO2020256009A1 (ja) * 2019-06-18 2020-12-24 出光興産株式会社 有機el表示装置及び電子機器
WO2021049651A1 (ja) * 2019-09-13 2021-03-18 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2021049653A1 (ja) * 2019-09-13 2021-03-18 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375589A (zh) * 2023-02-10 2023-07-04 南京高光半导体材料有限公司 一种化合物及有机电致发光器件

Similar Documents

Publication Publication Date Title
WO2021049653A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021090932A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021210582A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021256564A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022196749A1 (ja) 有機エレクトロルミネッセンス素子、化合物、及び電子機器
JP2023011954A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2021090931A1 (ja) 有機el表示装置及び電子機器
WO2021090930A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022230844A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022260117A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022260118A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
CN116998242A (zh) 有机电致发光元件及电子设备
WO2022230843A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022230842A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022191326A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022191234A1 (ja) 有機エレクトロルミネッセンス素子、電子機器及び有機エレクトロルミネッセンス素子の製造方法
WO2021256565A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022158578A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022186390A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022191237A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2023054679A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2023063402A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2022154029A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022191155A1 (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子パネル及び電子機器
WO2023038086A1 (ja) 有機エレクトロルミネッセンス素子、電子機器及び組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795757

Country of ref document: EP

Kind code of ref document: A1