WO2012137640A1 - 有機エレクトロルミネッセンス素子及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子及び照明装置 Download PDF

Info

Publication number
WO2012137640A1
WO2012137640A1 PCT/JP2012/058116 JP2012058116W WO2012137640A1 WO 2012137640 A1 WO2012137640 A1 WO 2012137640A1 JP 2012058116 W JP2012058116 W JP 2012058116W WO 2012137640 A1 WO2012137640 A1 WO 2012137640A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light
light emitting
emitting layer
organic
Prior art date
Application number
PCT/JP2012/058116
Other languages
English (en)
French (fr)
Inventor
隼 古川
黒木 孝彰
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to US14/110,353 priority Critical patent/US20140027751A1/en
Priority to JP2013508824A priority patent/JPWO2012137640A1/ja
Priority to EP12767838.1A priority patent/EP2696385A4/en
Publication of WO2012137640A1 publication Critical patent/WO2012137640A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a phosphorescent organic electroluminescence element having a plurality of phosphorescent dopants having different emission wavelengths, and particularly emitting white light, and an illumination device including the same.
  • ELD electroluminescence display
  • an inorganic electroluminescence element hereinafter also referred to as an inorganic EL element
  • an organic electroluminescence element hereinafter also referred to as an organic EL element
  • Inorganic EL elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • an organic electroluminescence device has a structure in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode, and excitons (exciton) are injected by injecting electrons and holes into the light emitting layer and recombining them. ) And emits light by utilizing the emission of light when the exciton is deactivated (for example, fluorescence, phosphorescence, etc.), and can emit light at a voltage of several to several tens of volts. Furthermore, since it is a self-luminous type, it has a wide viewing angle, high visibility, and since it is a thin-film type completely solid element, it has attracted attention from the viewpoints of space saving, portability and the like.
  • the organic electroluminescence element is also a major feature that it is a surface light source, unlike main light sources that have been conventionally used in practice, such as light-emitting diodes and cold-cathode tubes.
  • Applications that can effectively utilize this characteristic include illumination light sources and various display backlights.
  • it is also suitable for use as a backlight of a liquid crystal full-color display in which demand has increased significantly in recent years.
  • the organic electroluminescence element When used as a light source for illumination as described above or as a backlight of a display, it is used as a light source that exhibits white or a so-called light bulb color (hereinafter collectively referred to as white). .
  • a method in which a plurality of light emitting dopants having different light emission wavelengths are incorporated in one device and white light is emitted by additive color mixing and 2) a multicolor light emitting pixel, for example, blue A method of obtaining light by mixing three colors of green and red at the same time and mixing them to obtain white, or 3) a method of obtaining white using a color conversion dye (for example, a combination of a blue light emitting material and a color conversion fluorescent dye).
  • the method for obtaining white light by the above-described method will be described in more detail.
  • a method for obtaining white by mixing two light emitting dopants having complementary colors in the element, for example, a blue light emitting dopant and a yellow light emitting dopant, and blue -The method of obtaining white by additive color mixing using the light emission dopant of three colors of green and red is mentioned.
  • a method of obtaining a white organic electroluminescent element by doping high-efficiency phosphors of blue, green, and red as a light emitting material is disclosed (for example, see Patent Documents 1 and 2). .
  • the layers having different emission colors are not separated from each other, but two or more colors of luminescent dopants are allowed to coexist in one layer, and relative to the luminescent dopant having high emission energy.
  • Patent Document 3 discloses an organic electroluminescent device characterized in that a red light emitting layer and a blue light emitting layer are sequentially provided from an anode, and the red light emitting layer comprises at least one green light emitting dopant. Is disclosed.
  • phosphorescent light emitting dopants capable of obtaining higher-brightness organic electroluminescence elements have been vigorously developed for fluorescent materials (see, for example, Patent Document 4 and Non-Patent Documents 1 and 2).
  • the light emission from the conventional fluorescent material is light emission from the excited singlet, and the generation ratio of the singlet exciton and the triplet exciton is 1: 3. Therefore, the generation probability of the luminescent excited species is 25%.
  • the upper limit of the internal quantum efficiency is 100% due to the exciton generation ratio and the internal conversion from a singlet exciton to a triplet exciton. Therefore, in principle, the luminous efficiency is up to four times that of a fluorescent luminescent dopant.
  • a method using a material having a wider band gap than the compound used for the light emitting layer as a carrier or exciton element layer can be considered. No material with a wider band gap and sufficient durability has been found.
  • the recombination region can be moved away from the interface between the light emitting layer and the adjacent layer, and light is emitted even when the excitation energy is diffused to the other side.
  • Patent Document 5 discloses a method in which luminous efficiency and luminance half life are improved by laminating a light emitting layer exhibiting phosphorescent blue light emission.
  • Patent Document 6 proposes a method of improving luminous efficiency and luminance half-life by laminating a light emitting layer capable of obtaining phosphorescent white light emission.
  • white there is no mention of white, and it is impossible to foresee an effect such as a change in chromaticity at the drive voltage or an improvement in chromaticity change over time.
  • Patent Document 6 since the ionization potential of the phosphorescent dopant, which is a requirement of the present invention, is not defined, the carrier balance is not sufficiently adjusted, and the change in chromaticity has not been improved. In addition, there is no description or suggestion regarding the relationship between the ionization potential of the phosphorescent light emitting material and the movement of holes and the change in chromaticity.
  • the present invention has been made in view of the above problems, and its problem is to drive a highly efficient, long-lived organic electroluminescence device having a plurality of phosphorescent dopants having different emission wavelengths and emitting white light.
  • An object of the present invention is to provide a white phosphorescent organic electroluminescent element excellent in chromaticity stability against voltage fluctuation and chromaticity stability after continuous driving, and a lighting device including the same.
  • an organic electroluminescence device that has a pair of electrodes on a base material and two light emitting layers containing a host material and a phosphorescent dopant between the electrodes, and emits white light when energized
  • the two light emitting layers are Blue phosphorescent light-emitting material having different ionization potential (Ip) of 5.3 eV or less among phosphorescent light-emitting dopants comprising different host materials.
  • An organic electroluminescence device comprising a dopant and at least one of the two light-emitting layers contains a plurality of phosphorescent dopants.
  • the electron affinity of the host material contained in the first light emitting layer ( 2.
  • the first lowest triplet excitation energy of the host material emitting layer contains (T 1) than, characterized in that the higher of the lowest triplet excitation energy of the host material the second emitting layer contains (T 1)
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group
  • Rb and Rc each represent a hydrogen atom or a substituent
  • A1 forms an aromatic ring or an aromatic heterocyclic ring
  • M represents Ir or Pt
  • X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • m1 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • m1 + m2 is 2 or 3.
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group
  • Rb, Rc, Rb 1 and Rc 1 each represent a hydrogen atom or a substituent
  • a 1 represents an aromatic ring or an aromatic group. It represents a residue necessary for forming a heterocyclic ring
  • M represents Ir or Pt
  • X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • m1 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • m1 + m2 is 2 or 3.
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group
  • Rb and Rc each represent a hydrogen atom or a substituent
  • A1 forms an aromatic ring or an aromatic heterocyclic ring
  • M represents Ir or Pt
  • X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • m1 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • m1 + m2 is 2 or 3.
  • the host material contained in the first light-emitting layer and the host material contained in the second light-emitting layer each have a carbazole group or a carboline group, according to any one of Items 2 to 4, The organic electroluminescent element of description.
  • the first light-emitting layer and the second light-emitting layer are 1) a dopant having an emission maximum wavelength in a region less than 480 nm, 2) a dopant having an emission maximum wavelength in a region of 500 nm or more and less than 580 nm, and 3) Item 8.
  • the organic electroluminescence device according to any one of Items 2 to 7, which contains a dopant having a light emission maximum wavelength in a region of 580 nm or more.
  • An illumination device comprising the organic electroluminescence element according to any one of items 1 to 8.
  • the organic EL device of the present invention the details of each component of the white phosphorescent organic electroluminescence device of the present invention (hereinafter also referred to as the organic EL device of the present invention) will be described sequentially.
  • the preferred chromaticity for the white light-emitting organic EL element in the present invention is that the correlated color temperature is 2500 K to 7000 K, and in the CIE1931 color system, the y value deviation from the black body radiation at each color temperature is 0.1 or less. It is.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is near the interface of the stacked light emitting layers. It is characterized by being away from the interface between the light emitting layer and the adjacent layer.
  • the structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
  • the total thickness of the light emitting layer is not particularly limited, but it is possible to improve the uniformity of the light emitting layer to be formed, to prevent the application of unnecessary high voltage during light emission, and to improve the stability of the emission color against the driving current From the viewpoint, the total thickness of the first light emitting layer and the second light emitting layer is preferably in the range of 60 to 120 nm.
  • a light emitting dopant or a host compound described later can be used, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodget method), an ink jet method, a spray method, a printing method,
  • the film can be formed by a known thin film forming method such as a slot type coater method.
  • the organic EL element of the present invention is characterized by having two light emitting layers.
  • At least one phosphorescent dopant is a blue phosphorescent dopant having an ionization potential (Ip) of 5.3 eV or less.
  • the ionization potential of the blue phosphorescent dopant referred to in the present invention can be determined by using ultraviolet photoelectron spectroscopy (UPS) or the like.
  • UPS ultraviolet photoelectron spectroscopy
  • a single film of a compound is formed to a thickness of 5 nm or more on a silicon wafer provided with a gold vapor deposition film (10 nm) or tin-doped indium oxide (abbreviated as Indium Tin Oxide, ITO). Measurement is performed using ESCALab200R and UPS / 1 manufactured by Vacuum Generators.
  • the measurement condition is that the ultraviolet light source UPS / 1 is operated under the conditions of 600 V and 50 mA, the excitation source is HeI (21.2 eV), the sample is biased at ⁇ 10 V, and the environment is 6.7 ⁇ 10 ⁇ 6 Pa. Measure below.
  • the path energy of the spectroscope is 2 eV.
  • the spectrum width can be obtained from the obtained spectrum using the tangent method, and Ip can be obtained from the width.
  • the electron affinity (Ea) of the host material contained in the second light emitting layer is larger than the electron affinity (Ea) of the host material contained in the first light emitting layer.
  • the electron affinity (Ea) referred to in the present invention can be obtained, for example, by subtracting the band gap energy calculated from the optical band gap from the ionization potential.
  • a phosphorescent dopant is used as the luminescent dopant.
  • the phosphorescent dopant according to the present invention (hereinafter also referred to as a phosphorescent emitter) is a compound in which light emission from the lowest triplet energy level in an excited state is observed, specifically, at room temperature (25 ° C.).
  • the phosphorescence emission compound is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured, for example, by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitter according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. It only has to be done.
  • phosphorescent light emitting principles There are two types of phosphorescent light emitting principles. One type is the recombination of carriers on the host compound to which carriers are transported, generating an excited state of the host compound, and this energy is phosphorescent.
  • the energy transfer type in which light emission from the phosphorescent emitter is obtained by moving to the phosphor, and the other type is that the phosphorescent emitter becomes a carrier trap, and carrier recombination occurs on the phosphorescent emitter. In any case, the energy level in the excited state of the phosphorescent emitter is lower than the energy level in the excited state of the host compound.
  • the phosphorescent emitter can be appropriately selected from known compounds used for the light emitting layer of the organic EL device.
  • At least one of the two light emitting layers has a structure containing a plurality of phosphorescent dopants.
  • the first light emitting layer and the second light emitting layer contain the same blue phosphorescent dopant.
  • the phosphorescent emitter according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound). ), Rare earth complexes, and most preferred are iridium compounds.
  • the emission color of the organic electroluminescence device of the present invention is white, and the two emission layers have a white emission spectrum of 1) less than 480 nm, specifically 465 nm or more and less than 480 nm, 2) 500 nm or more and less than 580 nm. And 3) It is preferable to have a light emission maximum wavelength in a wavelength region of 580 nm or more, more preferably 600 nm or more and 620 nm or less. Therefore, it is preferable to contain “blue phosphorescent dopant”, “green phosphorescent dopant”, and “red phosphorescent dopant”.
  • the phosphorescent dopant constituting the light emitting layer is preferably at least one selected from the compounds represented by the general formulas (A) to (C).
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group
  • Rb and Rc each represents a hydrogen atom or a substituent
  • A1 represents an aromatic ring or an aromatic complex. It represents a residue necessary for forming a ring
  • M represents Ir or Pt
  • X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • m1 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • m1 + m2 is 2 or 3.
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group
  • Rb, Rc, Rb 1 and Rc 1 each represent a hydrogen atom or a substituent
  • A1 represents It represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring
  • M represents Ir or Pt
  • X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • m1 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • m1 + m2 is 2 or 3.
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group
  • Rb and Rc each represents a hydrogen atom or a substituent
  • A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring.
  • M represents Ir or Pt
  • X 1 and X 2 each represent a carbon atom, a nitrogen atom, or an oxygen atom
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • m1 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • m1 + m2 is 2 or 3.
  • Ra represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group
  • the aliphatic group represented by Ra includes an alkyl group (for example, a methyl group, an ethyl group, Group, propyl group, butyl group, pentyl group, isopentyl group, 2-ethyl-hexyl group, octyl group, undecyl group, dodecyl group, tetradecyl group), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group),
  • the aromatic group include a phenyl group, a tolyl group, an azulenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrycenyl group, a naphthacenyl group, an o-terphenyl group
  • heterocyclic group for example, pyrrolyl group, indolyl group, furyl group, thienyl group, imidazolyl group, pyrazolyl group, indolizinyl group, quinolinyl group, carbazolyl group, indolinyl group, thiazolyl group, pyridyl group, pyridazinyl group, thiadiazinyl group, An oxadiazolyl group, a benzoquinolinyl group, a thiadiazolyl group, a pyrrolothiazolyl group, a pyrrolopyridazinyl group, a tetrazolyl group, an oxazolyl group, a chromanyl group, and the like can be mentioned, and these groups each may have a substituent.
  • examples of the substituent represented by Rb, Rc, Rb 1 and Rc 1 include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group).
  • cycloalkyl group eg cyclopentyl group, cyclohexyl group etc.
  • alkenyl group eg vinyl group, allyl group etc.
  • alkynyl Group eg, ethynyl group, propargyl group, etc.
  • aryl group eg, phenyl group, naphthyl group, etc.
  • aromatic heterocyclic group eg, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group
  • Triazinyl group imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, phthala Nyl group, etc.
  • heterocyclic group eg, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazin
  • A1 represents a residue necessary for forming an aromatic ring or an aromatic heterocyclic ring.
  • the aromatic ring include a benzene ring, a biphenyl ring, a naphthalene ring, and an azulene ring.
  • the aromatic heterocycle includes furan ring, thiophene ring, pyridine ring, pyridazine ring , Pyrimidine ring, pyrazine ring, triazine ring, benzimidazole ring, oxadiazole ring, triazo
  • X 1 and X 2 each represent a carbon atom, a nitrogen atom or an oxygen atom.
  • L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
  • Specific examples of the bidentate ligand represented by X 1 -L 1 -X 2 include, for example, substituted or unsubstituted phenylpyridine group, phenylpyrazole group, phenylimidazole group, phenyltriazole group, phenyl Examples thereof include a tetrazole group, a pyrazaball group, a picolinic acid, and an acetylacetone group. These groups may be further substituted with the substituents shown above.
  • M1 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • m1 + m2 is 2 or 3.
  • M represents Ir or Pt, and Ir is particularly preferable.
  • the blue phosphorescent dopant according to the present invention is characterized in that a material having an ionization potential of 5.3 eV or less is used from the viewpoint of causing the carrier balance in the light emitting layer to emit light in the vicinity of the interface between the two light emitting layers. To do.
  • phosphorescent luminescent dopant compounds other than the blue phosphorescent dopant preferably used in the present invention as phosphorescent emitters are shown below, but are not limited thereto. These compounds are described, for example, in Inorg. Chem. 40, 1704 to 1711, and the like.
  • the host compound contained in the light emitting layer of the organic EL device of the present invention is preferably a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1, more preferably phosphorescence quantum yield.
  • the mass ratio in the layer is 20 mass% or more.
  • the host compound may be used alone or in combination of two or more kinds, but at least the host compounds contained in the two light emitting layers are of different types. It is characterized by that.
  • the host compound used in the present invention is not particularly limited in terms of structure, but is typically a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligo Those having a basic skeleton such as an arylene compound, or a carboline derivative or diazacarbazole derivative (herein, a diazacarbazole derivative is a nitrogen atom in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is a nitrogen atom) And the like.) And the like.
  • the host compound used in the light emitting layer according to the present invention it is preferable to use a host compound having a carbazole group or a carboline group.
  • the host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
  • a compound having a hole transporting ability and an electron transporting ability and preventing a long wavelength of light emission and having a high Tg (glass transition temperature) is preferable.
  • the host compound in the case of having a plurality of light emitting layers, may be different for each light emitting layer, but it is preferable that they are the same compound because excellent driving life characteristics can be obtained.
  • triplet excitation energy (T 1) of the host material is first emitting layer containing a high structure towards the triplet excitation energy of the host material the second emitting layer contains (T 1) It is a preferred embodiment.
  • the host compound according to the present invention preferably has a triplet excitation energy (T 1 ) higher than 2.7 eV because higher luminous efficiency can be obtained.
  • T 1 triplet excitation energy
  • the triplet excitation energy as used in the present invention refers to the peak energy of the emission band corresponding to the transition between the lowest vibrational bands of the phosphorescence emission spectrum observed at the liquid nitrogen temperature after dissolving the host compound in the solvent.
  • a compound having a glass transition point of 90 ° C. or higher is preferable, and a compound having a glass transition temperature of 130 ° C. or higher is preferable because excellent driving life characteristics can be obtained.
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the host material is responsible for carrier transport
  • a material having carrier transport capability is preferable.
  • Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance of hole and electron injection / transport, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.
  • Injection layer electron injection layer, hole injection layer
  • the injection layer can be provided as necessary, and may be present between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer.
  • An injection layer is a layer provided between an electrode and an organic layer in order to lower drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization June 30, 1998, NTS Corporation) Issue
  • Chapter 2 “ Electrode Materials ”(pages 123 to 166), which is described in detail, and has a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine Phthalocyanine buffer layer typified by (2)
  • oxide buffer layer typified by vanadium oxide
  • amorphous carbon buffer layer polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene, and the like. It is also preferable to use materials described in JP-T-2003-519432.
  • cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium
  • alkali metal compound buffer layer typified by lithium fluoride
  • alkaline earth metal compound buffer layer typified by magnesium fluoride
  • oxide buffer layer typified by aluminum oxide, etc. .
  • the buffer layer is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material used.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer as needed.
  • the hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is further preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-4-297076 JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004), JP-A-11-251067, J. MoI. Huang et. al. It is also possible to use a hole transport material that has so-called p-type semiconducting properties, as described in the literature (Applied Physics Letters 80 (2002), p. 139), JP 2003-519432 A. it can. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
  • the hole transport material may be selected from, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodget method), an ink jet method, a spray method, a printing method, a slot type coater method, etc.
  • the film can be formed by a known thin film forming method.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material
  • an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • any material selected from conventionally known compounds can be selected and used. For example, nitro-substituted fluorene derivatives, diphenylquinone Derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (hereinafter abbreviated as Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-) 8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (hereinafter abbreviated as Znq), and the like.
  • a metal complex in which the central metal of the metal complex is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as an electron transport material, and like the hole injection layer and the hole transport layer, inorganic such as n-type-Si and n-type-SiC can be used.
  • a semiconductor can also be used as an electron transport material.
  • the above-mentioned electron transport material is a known material such as a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodget method), an ink jet method, a spray method, a printing method, or a slot type coater method.
  • the film can be formed by a thin film forming method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport material that has n-type semiconductor properties doped with impurities.
  • examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport material that has such n-type semiconductor properties because an element with lower power consumption can be produced.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) applied to the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or
  • An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and the water vapor permeability measured by a method according to JIS K 7129-1992 is 0.01 g / m 2. It is preferably a barrier film of day ⁇ atm or less, and further, the oxygen permeability measured by a method according to JIS K 7126-1992 is 1 ⁇ 10 ⁇ 3 g / m 2 / day or less, water vapor It is preferably a high barrier film having a permeability of 1 ⁇ 10 ⁇ 3 g / m 2 / day or less, and both the water vapor permeability and the oxygen permeability are 1 ⁇ 10 ⁇ 5 g / m 2 / day. More preferably, it is the following.
  • the material for forming the barrier film may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is also preferable.
  • the opaque support substrate examples include metal plates / films such as aluminum and stainless steel, opaque resin substrates, ceramic substrates, and the like.
  • a sealing means applied to the sealing of the organic EL element of the present invention for example, a method of adhering a sealing member, an electrode, and a support substrate with an adhesive can be mentioned.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Moreover, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the organic EL element can be thinned
  • a polymer film or a metal film can be preferably used as the sealing member.
  • the polymer film preferably has an oxygen permeability of 1 ⁇ 10 ⁇ 3 g / m 2 / day or less and a water vapor permeability of 1 ⁇ 10 ⁇ 3 g / m 2 / day or less. Further, it is more preferable that both the water vapor permeability and the oxygen permeability are 1 ⁇ 10 ⁇ 5 g / m 2 / day or less.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylate. be able to.
  • fever and chemical curing types such as an epoxy type, can be mentioned.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate under the influence of heat treatment
  • a material that can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.
  • the electrode and the organic layer on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and form an inorganic or organic layer in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like is used. it can.
  • vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure
  • a plasma polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase and the liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.
  • perchloric acids eg, barium perchlorate
  • Magnesium perchlorate, etc. anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used.
  • the polymer film is light and thin. Is preferably used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • an electrode substance include metals such as Au and conductive transparent materials such as CuI, ITO, SnO 2 and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or translucent cathode can be prepared by forming the above metal on the cathode with a film thickness in the range of 1 to 20 nm and then forming the conductive transparent material mentioned in the description of the anode thereon.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable support substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 to 200 nm.
  • a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 to 200 nm.
  • the vapor deposition method, the wet process spin coating method, casting method, ink jet method, printing method, LB method (Langmuir-Blodgett method), spray method, printing method,
  • vacuum deposition, spin coating, ink-jet, printing, and slot-type coater methods are particularly preferred from the standpoint that a homogeneous film is easily obtained and pinholes are not easily formed. preferable. Further, different film forming methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 ⁇ 6 to 10 ⁇ 2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within a range of 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a film thickness of 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a cathode is provided.
  • a desired organic EL element can be obtained.
  • the organic EL element is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • An organic electroluminescence device emits light inside a layer having a refractive index higher than that of air (refractive index of about 1.6 to 2.1), and can extract only about 15% to 20% of light generated in the light emitting layer. It is generally said that there is no. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Pat. No. 4,774,435).
  • a method of improving the efficiency by giving the substrate a light condensing property for example, JP-A-63-314795
  • a method of forming a reflective surface on the side surface of the element for example, JP-A-1-220394) Gazette
  • a method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter for example, Japanese Patent Application Laid-Open No. 62-172691
  • a method of introducing a flat layer having a lower refractive index than that for example, Japanese Patent Application Laid-Open No. 2001-202827
  • a diffraction grating is provided between any of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside).
  • Method of forming No. 11-283751 Publication and the like.
  • these methods can be used in combination with the organic electroluminescence device of the present invention, but a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, A method of forming a diffraction grating between any layers of the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • the light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any layer or in the medium (in the transparent substrate or transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic electroluminescence device of the present invention is processed to provide, for example, a structure on a microlens array on the light extraction side of a support substrate (substrate), or in combination with a so-called condensing sheet, for example, the device Condensing light in the front direction with respect to the light emitting surface can increase the luminance in a specific direction.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, an LED backlight of a liquid crystal display device that has been put into practical use.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited may be used.
  • BEF brightness enhancement film
  • a substrate may be formed with a ⁇ -shaped stripe having an apex angle of 90 degrees and a pitch of 50 ⁇ m, or the apex angle is rounded and the pitch is changed randomly. Other shapes may also be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL device of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display device that directly recognizes a still image or a moving image. (Display) may be used.
  • the driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like when forming a film, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the light emitting dopant used in the light emitting layer is not particularly limited.
  • the platinum complex according to the present invention or the wavelength range corresponding to the CF (color filter) characteristics Any one of known light-emitting dopants may be selected and combined, or combined with light extraction means or a light collecting sheet to emit white light.
  • the organic EL element that emits white light according to the present invention is combined with a CF (color filter), and by arranging the element and the driving transistor circuit in accordance with the CF (color filter) pattern, Using the extracted white light as a backlight, blue light, green light, and red light are obtained through a blue filter, a green filter, and a red filter, so that a full-color organic electroluminescence display with a low driving voltage and a long life can be obtained. .
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • light sources include home lighting, interior lighting, backlights for watches and liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Although it is not limited to this, it can be effectively used for backlights of various display devices combined with color filters, light diffusion plates, light extraction films, etc., and as a light source for illumination.
  • the organic EL element of the present invention Utilizing the characteristics of the organic EL element of the present invention, it can be applied to lighting fixtures and light emitting displays in various fields as shown below.
  • Store merchandise displays include decorative displays, showcases, POPs and signs for the store itself.
  • high-end brand shops, precious metals, fashion, high-end restaurants, and other stores that place emphasis on the brand image have a great influence on the store image that lighting gives, so lighting has been selected with strong attention
  • organic EL the space for the light source and equipment can be omitted in the field of indirect lighting, which has created an atmosphere by devising the structure of the building so that the light source can not be seen directly, and no complicated structure is required Therefore, when creating diffused light in interiors and signs, the shape of the light source cannot be seen through, so that the space between the necessary light source and the diffuser can be omitted.
  • Frozen and refrigerated showcases are placed in supermarkets and convenience stores to make fresh foods such as vegetables, fruits, fresh fish, and meats full of beauty and freshness, making them easier to see, vivid, and easier to take.
  • Lighting equipment is another important component.
  • an organic EL light source low temperature emission has little effect on the cooling function, and since it is thin, the light source space can be greatly reduced, so the storage space can be expanded, and it is easy to select food with a smart design. It can be made easier.
  • it can appeal to consumers with colored light that makes it easy to understand the goodness of food, contributing to sales.
  • Transportation advertisements include posters and signboards in public spaces, internal posters and screens such as trains and buses, and advertisements on the car body.
  • posters and signboards are of a box type using a fluorescent lamp as a backlight, and the box itself can be made thin and light by replacing it with an organic EL element.
  • thinning the box will eliminate the accumulation of dust and debris and prevent fecal damage from birds.
  • Hierarchitectural lighting a combination of floors, walls, ceilings, etc. and lighting is called “architectural lighting”.
  • Typical examples of “architectural lighting” include cornice lighting, troffer lighting, cove lighting, light ceiling, and louver ceiling, depending on the method. These require lighting sources to be built into the ceiling, walls and floors, extinguish their presence and signs as lighting, and the building materials themselves to emit light.
  • Light sources using organic EL elements are the most suitable light sources for “architecture lighting” due to their thinness, lightness, color adjustment, and design variability, and can be applied to interiors, furniture, and fixtures. It is. Conventionally, such architectural lighting, which has been used only in stores and museums, can be extended to ordinary houses by developing organic EL light sources, and new demand can be found.
  • organic EL light sources are used in semi-underground shops, arcade ceilings, etc., and by changing the brightness and color temperature of lighting, it is possible to construct an optimal commercial space that is not affected by the weather or day and night.
  • Examples of interiors, furniture and furniture include storage of desks and chairs, cupboards, shoe boxes and lockers, vanities, altars, bedlights, footlights, handrails, doors, shojis and shojis, etc. It is not limited to that.
  • a transparent electrode for the organic EL light source it is possible to switch between transparent and opaque by using a transparent electrode for the organic EL light source and turning it off / emitting light.
  • a transparent electrode for the organic EL light source it can be used as any window, door, curtain, blind, and partition.
  • organic EL elements can be used for external lighting fixtures and light emitting display bodies, in-vehicle lighting fixtures and light emitting display bodies, and the like.
  • the former is a front (sub-classification) headlamp, auxiliary light, vehicle width light, fog lamp, direction indicator light, etc.
  • the rear is a rear combination lamp as a stop lamp, vehicle width light, back light, direction indicator light, and There are license plate lights.
  • by forming a single rear combination lamp using an organic EL element and attaching it to the rear part it is possible to reduce the space for the rear lamp and widen the trunk room.
  • the visibility of the vehicle can be increased by widening the area of the vehicle width lights and stop lamps.
  • the visibility from the side surface can be enhanced by causing the wheel to emit light with the organic EL element.
  • the entire body can be made of organic EL elements to emit light, and new ideas can be incorporated into the body color and design.
  • the latter in-vehicle lighting fixtures and light-emitting displays include room lights, map lights, boarding lights at the bottom of doors, meter displays, car navigation displays, warning lights, and the like.
  • a sunroof can be used during the daytime and light can be emitted during the nighttime to provide a room light with a gentle surface light source.
  • a lighting system consisting of organic EL elements is pasted on the back of the front seat, creating a handy lighting system that is easy for customers to use without hindering driver driving and sacrificing indoor space. Can be built.
  • the characteristics of the organic EL of the present invention can be utilized in lighting and display bodies in vehicles in public transportation such as trains, subways, buses, airplanes, and ships.
  • Fluorescent lamps and light bulbs are used for room lighting, but these are not used directly on the ceiling, but indirect lighting reflected on the sides is used to give the room a calm atmosphere and in the event of a trouble. It has been devised so that it will not break and glass fragments will not fall into the audience seats.
  • an organic EL light source makes it easy to make indirect lighting because of its thinness, and there is no danger of cracking and debris scattering even when direct lighting is used, and it is possible to create a calm atmosphere with diffuse light.
  • an organic EL light source with low power consumption and light weight is preferable. These benefits not only illuminate the customer, but are also demonstrated in the lighting inside the baggage storage, and can contribute to the reduction of leftovers.
  • Display and lighting to guide customers can also be used at facilities such as stations, bus stops, and airports attached to public transportation.
  • facilities such as stations, bus stops, and airports attached to public transportation.
  • a person waiting for the bus can be detected to brighten the lighting, thereby contributing to crime prevention.
  • Light source for OA equipment Examples of light sources for office automation equipment include facsimiles, copying machines, scanners, printers, and multi-function machines equipped with reading sensors.
  • the reading sensor is divided into a contact type sensor (CIS) combined with an equal magnification optical system and a reduction type sensor (CCD linear) combined with a reduction optical system.
  • CIS contact type sensor
  • CCD linear reduction type sensor
  • CIS contact image sensor module
  • CISM contact image sensor module
  • the existing sensor chip may be called CIS.
  • LEDs, xenon, CCFL lamps, LDs and the like are used.
  • Illumination light sources used for image sensors include fluorescent lamps, LEDs, and halogens. Among them, as a backlight for illuminating a transparent container or a lead frame from the background, uniform light is required in a planar shape.
  • the detection of the stain on the sheet requires light that illuminates the front surface in the width direction of the sheet with linearly uniform light.
  • an organic EL light source in this field, for example, in the bottling process, it is possible to illuminate all 360 degrees around the bottle and illuminate and shoot at once, enabling inspection in a short time Become. Moreover, the space taken by the light source itself in the inspection equipment can be greatly reduced. Further, since the surface light source is used, it is possible to avoid a detection error due to difficulty in determining a captured image due to light reflection.
  • the plant factory is “an annual plant production system using high technology such as environmental control and automation”.
  • LED and LD have been increasingly used as light sources for plant cultivation.
  • Light sources such as high-pressure sodium lamps that have been widely used in the past have a poor spectral balance between red light and blue light, and a large amount of heat radiation increases the air conditioning load and requires a sufficient distance from the plant. There is a drawback that the facility becomes larger.
  • the organic EL light source has no light source thickness, can be installed with many shelves, and has a low calorific value, so it is highly efficient when placed close to plants and can increase the amount of cultivation.
  • Halogen, tungsten, strobe light, fluorescent light, etc. are used as light sources used in photo studios, studios, and lighting photo boxes. Applying these light sources directly to the subject to add a strong shadow, or diffuse light to create soft light with little shadow, a combination of two types of light from various angles. Is made.
  • In order to diffuse light there are methods such as sandwiching a diffuser between a light source and a subject, or using reflected light applied to another surface (reflective plate or the like).
  • the organic EL light source is diffuse light, and light corresponding to the latter can be emitted without using a diffuser. In that case, the space between the light source and the diffuser required by the existing light source becomes unnecessary, and the light that has been adjusted with a fine angle by adjusting the direction of the light with a reflex plate etc. is flexible There is an advantage that it can be implemented by bending the type of organic EL itself.
  • Color rendering properties may be required for light sources used in photography. If the difference in the color appearance when viewed with sunlight is large, the color rendering is poor, and if the difference is small, the color rendering is evaluated as good. Fluorescent lamps used in general households are not preferable for photographing because of their wavelength characteristics, and the portions that are exposed to light tend to be green. The color of skin, makeup, hair, kimono, jewelry, etc. is often required to be reflected in its own color, and color rendering is one of the important factors for light. An organic EL light source is excellent in color rendering, and is preferable for photographing that requires color fidelity as described above. This feature is also used in places where it is desired to faithfully evaluate colors such as printing and dyeing.
  • a surface light source such as an organic EL light source
  • children and pets can freely play indoors when shooting children and pets, etc., and free and natural expressions can be moved without the hassle of moving light sources Can shoot with natural colors.
  • Household appliances are often equipped with light sources for ease of viewing details, ease of work, and design.
  • sewing machines, microwave ovens, dishwashers / dryers, refrigerators, AV equipment, etc. have traditionally been equipped with a light source, but in the new ones, the washing / dryer is a horizontal model, so the light source is attached. It came to be able to.
  • incandescent bulbs and LEDs are attached to existing ones.
  • Such home appliances are required to be light and small as a whole and have a large storage space, and the light source part is required to be able to illuminate the whole with as little space as possible.
  • the thin surface light source of organic EL can fully meet the demand.
  • Organic EL is particularly advantageous because of its low emission temperature. It is also possible to detect the position of the skater and emit light according to the movement of the skater. Combination effects with spotlights and light emission linked to the rhythm of music are also effective for show-ups.
  • illumination lighting In general, the term “illumination” generally refers to illumination of trees, but in recent years there have been many cases of transition to decoration of objects such as houses, gates, and fences from the viewpoint of environmental protection. Yes. The mainstream of this is the use of a large number of point light sources, decorated in a line shape, and is expected to be even more widespread with the advent of LEDs.
  • the prism type also has the same function, but the lens structure is different.
  • the glass bead type and the prism type feature that the glass bead type has a high reflection effect on light from an oblique direction, and the prism type reflects light from the front than the glass bead type, but from an oblique direction. The light may have a relatively low reflection effect.
  • the material and the bonding method can also be selected depending on the hardness of the place to be attached. In any case, in order to make pedestrians aware of light, it is necessary to be exposed to light. It was necessary to devise such as pasting.
  • an organic EL light source for these alternatives, it is possible to make the driver recognize the pedestrian before the headlight hits the area, thereby ensuring safety. Further, from the point of being light and thin with respect to other light sources, the effect can be obtained while maintaining the merit of the seal.
  • These can be used not only for humans but also for pet clothes.
  • the present invention can be applied to clothes for identifying a person, and can be used for early protection of a deaf person, for example. By making the wet suit for diving emit light, there is a possibility of confirming the location of the diver and protecting himself from the trap. Of course, it can also be used for stage costumes and wedding dresses at shows.
  • Luminescent bodies using organic EL elements can be effectively used in “visible light tags” that send simple messages and information using visible light. That is, by emitting a signal due to blinking for an extremely short time, a large amount of information can be sent to the receiving side.
  • the light emitter Even if the light emitter emits a signal, since it is extremely short time, it is recognized as simple illumination on human vision. Lighting installed at each location, such as roads, stores, exhibition halls, hotels, and amusement parks, can send information signals specific to each location and provide necessary information to the receiver.
  • a single light emitter provides a plurality of different information by incorporating a plurality of light emitting dopants having different wavelengths into one light emitter and generating different signals for different wavelengths. You can also. Also in this case, the organic EL having a stable emission wavelength and color tone is superior.
  • the “visible light tag” can be incorporated together as a lighting facility, so there is no need for complicated additional installation work.
  • Organic EL for endoscopes that currently use halogen lamps and illumination for abdominal surgery that operates with a wire inserted will contribute to miniaturization, weight reduction, and application expansion.
  • it can be used for endoscope capsules (drinking endoscopes) that are attracting attention in recent years and are used for in-vivo examinations and treatments.
  • a light-emitting body incorporating the organic EL element of the present invention can easily select a color tone, does not flicker like a fluorescent lamp, has a stable color tone with low power consumption, and is disclosed in JP-A-2001-269105.
  • a pest control apparatus as shown, as a mirror illumination as shown in JP-A-2001-286373, as a bathroom lighting system as shown in JP-A-2003-28895, as JP-A-2004-321074
  • a photosensitizer as shown in JP-A-2004-358063 was used as a light emitter of a water pollution measuring device as shown in JP-A-2004-354232.
  • As a treatment adherend it is useful as a medical surgical light as disclosed in JP-A-2005-322602.
  • Example 1 Transparent support with this ITO transparent electrode after patterning on a support substrate in which tin-doped indium oxide (ITO) was deposited to a thickness of 110 nm on a glass substrate having a thickness of 0.7 mm as an anode
  • the substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes, and then the transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • Each of the deposition crucibles in the vacuum deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
  • the deposition crucible containing compound HI-1 was energized and heated, and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second.
  • a hole injection layer (HIL) was provided.
  • the vapor deposition crucible containing the compound HT-1 was energized and heated, and vapor-deposited on a transparent support substrate at a vapor deposition rate of 0.1 nm / second to provide a 20 nm hole injection layer (HTL).
  • HIL hole injection layer
  • exemplary compound D-87 which is a blue phosphorescent compound (Blue Dopant)
  • exemplary compound Ir-1 which is a green phosphorescent compound
  • exemplary compound Ir-14 which is a red phosphorescent compound
  • exemplary compound 1 which is a host compound 6 to a thickness of 80 nm at a deposition rate of 0.1 nm / second such that Exemplified Compound D-87 has a concentration of 20% by mass
  • Exemplified Compound Ir-1 and Exemplified Compound Ir-14 each have a concentration of 0.3% by mass.
  • EML light emitting layer
  • Compound ET-1 was vapor-deposited at a deposition rate of 0.1 nm / second to a film thickness of 30 nm to form an electron transport layer, and KF was further formed to a thickness of 2 nm. Furthermore, aluminum 110nm was vapor-deposited and the cathode was formed.
  • FIG. 1 is a schematic view showing a configuration of an organic EL element, and the organic EL element 101 is covered with a glass cover 102.
  • the sealing operation with the glass cover was performed in a glove box (in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more) in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere.
  • FIG. 2 is a cross-sectional view showing the configuration of the organic EL element.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • organic EL elements 105 to 111 are produced in the same manner except that D-91, Ir-12, and Ir-13 were used.
  • Illustrative Compound Ir-12 which is a blue phosphorescent compound
  • Illustrative Compound Ir-1 which is a green phosphorescent compound
  • Illustrative Compound Ir-14 which is a red phosphorescent compound
  • Illustrative compounds that are host compounds The compound 1-7 was deposited at a deposition rate of 0.1 nm / second so that the concentration of Exemplified Compound Ir-12 was 20% by mass, and Exemplified Compound Ir-1 and Exemplified Compound Ir-14 were each 0.3% by mass.
  • the first light emitting layer was formed by co-evaporation to a thickness of 40 nm. Then, Exemplified Compound Ir-12, Exemplified Compound IR-1, Exemplified Compound IR-14 and Exemplified Compound 1-31 as Host Compound, Exemplified Compound Ir-12 as 20% by Mass, Exemplified Compound IR-1 and Exemplified Compound IR- No. 14 was co-deposited to a thickness of 40 nm at a deposition rate of 0.1 nm / second so as to have a concentration of 0.3% by mass to form a second light emitting layer. The total thickness of the two-layered light emitting layer formed as described above is 80 nm.
  • organic EL elements 113 to 119 In the production of the organic EL element 112, instead of the exemplified compound Ir-12 that is the blue phosphorescent compound used in the light emitting layer, as shown in Table 1, each of the exemplified compounds Ir-13, D as the blue phosphorescent compound is used. Organic EL elements 113 to 119 were produced in the same manner except that -87, D-66, D-88, D-89, D-90 and D-91 were used.
  • Organic EL Element 123 In the production of the organic EL element 122, an organic EL element 123 was produced in the same manner except that the exemplified compound D-89 was used as the blue phosphorescent compound instead of the exemplified compound D-87 which is a blue phosphorescent compound. .
  • Organic EL Element 125 In the production of the organic EL element 124, an organic EL element 125 was produced in the same manner except that the exemplified compound D-66 was used as the blue phosphorescent compound instead of the exemplified compound D-87 which is a blue phosphorescent compound. .
  • the produced organic EL element was continuously driven by applying a current that gave a front luminance of 5000 cd / m 2 .
  • the time required for the front luminance to reach the initial half value (2500 cd / m 2 ) was determined as the half life.
  • the organic EL element 104 is expressed as a relative value with the half life as 100. It represents that it is excellent in element lifetime (half life), so that a numerical value is large.
  • ⁇ E 1 ( ⁇ x 1 2 + ⁇ y 1 2 ) 1/2
  • ⁇ E 2 ( ⁇ x 2 2 + ⁇ y 2 2 ) 1/2
  • Example 2 [Production of Organic EL Element 201]
  • the organic EL element 201 was produced in the same manner except that the formation conditions of the light emitting layer were changed as follows.
  • Illustrative compound D-88 which is a blue phosphorescent compound
  • Illustrative compound Ir-1 which is a green phosphorescent compound
  • Illustrative compound Ir-14 which is a red phosphorescent compound
  • Illustrative compound 1-7 which are host compounds
  • -88 was 20% by mass
  • Exemplified Compound Ir-1 and Exemplified Compound Ir-14 were co-deposited to a thickness of 40 nm at a deposition rate of 0.1 nm / second so that each concentration was 0.3% by mass.
  • One light emitting layer was formed.
  • exemplary compound D-88 which is a blue phosphorescent compound
  • exemplary compound Ir-1 which is a green phosphorescent compound
  • exemplary compound Ir-14 which is a red phosphorescent compound
  • compound H-1 which is a host compound
  • Exemplified Compound Ir-1 and Exemplified Compound Ir-14 were each at a concentration of 0.3% by mass.
  • a second light emitting layer was formed.
  • the total thickness of the two-layered light emitting layer formed as described above is 80 nm.
  • organic EL elements 203 to 207 In the production of the organic EL element 202, the blue phosphorescent light emitting compound (Blue Dopant) of the first light emitting layer and the second light emitting layer is replaced with the exemplified compound D-88, and each of the blue phosphorescent light emitting compounds as shown in Table 2 is used.
  • Organic EL devices 203 to 207 were produced in the same manner except that the exemplified compounds D-87, D-66, D-89, D-90 and D-91 were used.
  • Example 3 [Production of organic EL elements 301 to 307]
  • the deposition ratio and the deposited film thickness were not changed, and the light emitting host material used for the first light emitting layer and the light emitting host used for the second light emitting layer were as shown in Table 3.
  • Organic EL elements 301 to 307 were produced in the same manner except for the change.
  • the organic EL element 301 has the same configuration as the organic EL element 123 described in Example 1.
  • Example 4 Preparation of organic EL elements 401 to 411
  • the vapor deposition ratio and the vapor deposition film thickness were not changed, and the blue phosphorescent light emitting material used for the first light emitting layer and the blue phosphorescent light emitting material used for the second light emitting layer are shown in Table 4.
  • Organic EL elements 401 to 411 were produced in the same manner except that the combinations were changed.
  • the organic EL element 401 has the same configuration as the organic EL element 114 described in Example 1.
  • the organic EL element 401 having a common blue phosphorescent material used for the first light emitting layer and the second light emitting layer is more stable than other organic EL elements. It can be seen that various performances including sex show more remarkable effects.
  • Example 5 Preparation of organic EL elements 501 to 512
  • the vapor deposition ratio was not changed, and the film thicknesses of the first light emitting layer and the second light emitting layer were changed in the same manner except that the conditions described in Table 5 were changed.
  • Organic EL elements 501 to 512 were produced.
  • the organic EL element 501 has the same configuration as the organic EL element 125 described in Example 1.
  • the multicolor phosphorescent organic electroluminescence element of the present invention has characteristics excellent in luminous efficiency and luminous lifetime, and can be suitably used for display devices, displays, and various lighting devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明の課題は、発光波長の異なる複数の燐光発光ドーパントを有し、白色発光を呈し、高効率、長寿命であり、かつ色度の対駆動電圧、対駆動経時での安定性に優れた白色燐光発光有機エレクトロルミネッセンス素子及び照明装置を提供することにある。本発明の有機エレクトロルミネッセンス素子は、基材上に一対の電極と、該電極の間にホスト材料と燐光発光性ドーパントを含有する発光層を2層有し、通電により白色発光する有機エレクトロルミネッセンス素子において、該2層の発光層が含有するホスト材料が異なるものからなり、該2層の発光層に含まれる燐光発光性ドーパントのうち、少なくとも一つの燐光発光性ドーパントが、イオン化ポテンシャル(Ip)が5.3eV以下の青色燐光発光性ドーパントであり、かつ、該2層の発光層の少なくとも1層は、複数の燐光発光性ドーパントを含有することを特徴とする。

Description

有機エレクトロルミネッセンス素子及び照明装置
 本発明は、発光波長の異なる複数の燐光発光性ドーパントを有し、特に白色発光を呈する燐光発光の有機エレクトロルミネッセンス素子及びそれを具備した照明装置に関するものである。
 発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(以下、ELDと略記する。)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子(以下、無機EL素子ともいう。)や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)が挙げられる。無機EL素子は、平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
 一方、有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(例えば、蛍光、燐光等。)を利用して発光する素子であり、数V~数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
 また、有機エレクトロルミネッセンス素子は、従来実用に供されてきた主要な光源、例えば、発光ダイオードや冷陰極管とは異なり、面光源であることも大きな特徴である。この特性を有効に活用できる用途として、照明用光源や様々なディスプレイのバックライトを挙げることができる。特に、近年において需要の増加が著しい液晶フルカラーディスプレイのバックライトとして用いることも好適である。
 有機エレクトロルミネッセンス素子を、上記の様な照明用光源、あるいはディスプレイのバックライトとして用いる場合には、白色もしくは、いわゆる電球色(以下、総合して白色と称す。)を呈する光源として用いることになる。有機エレクトロルミネッセンス素子で白色発光を得るには、1)1つの素子中に発光波長の異なる複数の発光ドーパントを組み入れ、加法混色により白色発光させる方法、2)多色の発光画素、例えば、青・緑・赤の3色を塗りわけ同時に発光させ、混色して白色を得る方法、あるいは、3)色変換色素を用いて白色を得る方法(例えば、青発光材料と色変換蛍光色素の組み合わせ。)などが挙げられる。
 しかしながら、低コスト、高生産性、簡便な駆動方法など、照明用光源やバックライトに求められる様々な要求から判断すると、1つの素子中に発光波長の異なる複数の発光ドーパントを組み入れ、加法混色により白色発光させる方法がこれらの用途には有効であり、近年、研究開発が意欲的に進められている。
 上述の方法により白色光を得る方法について更に詳細に述べれば、素子中に補色の関係にある2色の発光ドーパント、例えば、青色発光ドーパントと黄色発光ドーパントを用い混色して白色を得る方法、青・緑・赤の3色の発光ドーパントを用い、加法混色して白色を得る方法が挙げられる。
 例えば、効率の高い青、緑、赤の3色の蛍光体を発光材料としてドープすることによって、白色の有機エレクトロルミネッセンス素子を得る方法が開示されている(例えば、特許文献1、2参照。)。
 また、白色発光を呈する有機エレクトロルミネッセンス素子において、発光色の異なる層を各々別個の層にするのではなく、2色以上の発光ドーパントを1層中に共存させ、高発光エネルギーの発光ドーパントから相対的に効率の低い発光ドーパントへのエネルギー移動により、多色を発光させる方式がある。この方式は、発光ドーパントの使用量を減少できることから、白色発光の有機EL素子を得るにあたり、有力な方法の一つである。例えば、特許文献3には、陽極から赤色発光層及び青色発光層が順次設けられてなり、かつ赤色発光層は少なくとも一つの緑色発光ドーパントを含有する構成からなることを特徴とする有機電界発光素子が開示されている。
 一方、近年、蛍光材料に対し、より高輝度の有機エレクトロルミネッセンス素子が得られる燐光発光ドーパントの開発が精力的に進められている(例えば、特許文献4、非特許文献1及び2参照。)。従来の蛍光材料からの発光は、励起一重項からの発光であり、一重項励起子と三重項励起子の生成比が1:3であるため、発光性励起種の生成確率は25%であるのに対し、励起三重項からの発光を利用する燐光発光ドーパントの場合には、励起子生成比率と一重項励起子から三重項励起子への内部変換により、内部量子効率の上限が100%となるため、蛍光発光ドーパントの場合に比べ、原理的に発光効率が最大4倍となる。
 しかしながら、燐光発光ドーパントを用いた単一発光層の構成では、ドーパントとホスト材料のみでキャリアバランスを整えるため、発光層の中心で励起子生成をすることは困難であり、その結果、再結合領域が偏りバンドギャップが狭い隣接層にエネルギー移動が起こり、発光効率の低下や隣接層の有機材料へ負荷が懸念されている。
 発光層からのエネルギー移動を防止するためには、例えば、発光層に用いた化合物よりもさらにバンドギャップの広い材料をキャリアないし励起子素子層として用いる方法が考えられるが、最も高エネルギーの青色発光よりも広いバンドギャップを有し、かつ充分な耐久性を備えた材料は見出されていない。
 そこで、発光層を積層し、その界面で発光させることができれば、再結合領域を発光層と隣接層の界面から遠ざけることができ、励起エネルギーが他方に拡散しても発光するため、隣接層へのエネルギー移動を抑制でき、高効率で長寿命が達成できる技術が開示されている。
 例えば、特許文献5には、燐光の青色発光を呈する発光層を積層することで、発光効率や輝度半減寿命が改善する方法が開示されている。また、特許文献6には、燐光の白色発光が得られる発光層を積層することで、発光効率や輝度半減寿命が改善する方法が提示されている。しかしながら、特許文献5に記載の方法では、白色に関する言及がなされておらず、また、駆動電圧での色度変化や駆動経時での色度変化の改善と言った効果を予見することはできない。また、特許文献6では、本発明の要件である燐光ドーパントのイオン化ポテンシャルの規定がなされていないため、キャリアバランスの調整が不十分であり、色度変化が改善されるには至っていない。また、燐光発光材料のイオン化ポテンシャルと正孔の移動の関係や、色度変化に関しての記載や示唆は一切ない。
特開平6-207170号公報 特開2004-235168号公報 国際公開第2004/077886号明細書 米国特許第6,097,147号明細書 特開2010-34484号公報 特開2008-84913号公報
M.A.Baldo et al.,nature、395巻、151~154頁(1998年) M.A.Baldo et al.,nature、403巻、17号、750~753頁(2000年)
 本発明は、上記問題に鑑みなされたものであり、その課題は、発光波長の異なる複数の燐光発光ドーパントを有し、白色発光を呈する有機エレクトロルミネッセンス素子において、高効率、長寿命で、かつ駆動電圧変動に対する色度安定性及び連続駆動後の色度安定性に優れた白色燐光発光の有機エレクトロルミネッセンス素子及びそれを具備した照明装置を提供することである。
 本発明の上記課題は、以下の構成により達成される。
 1.基材上に一対の電極と、該電極の間にホスト材料と燐光発光性ドーパントを含有する発光層を2層有し、通電により白色発光する有機エレクトロルミネッセンス素子において、該2層の発光層が含有するホスト材料が異なるものからなり、該2層の発光層に含まれる燐光発光性ドーパントのうち、少なくとも一つの燐光発光性ドーパントが、イオン化ポテンシャル(Ip)が5.3eV以下の青色燐光発光性ドーパントであり、かつ、該2層の発光層の少なくとも1層は、複数の燐光発光性ドーパントを含有することを特徴とする有機エレクトロルミネッセンス素子。
 2.前記2層の発光層のうち、陽極に近い側の発光層を第一発光層、もう一方の発光層を第二発光層としたとき、該第一発光層が含有するホスト材料の電子親和力(Ea)よりも、該第二発光層が含有するホスト材料の電子親和力(Ea)の方が大きいことを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
 3.前記第一発光層が含有するホスト材料の最低三重項励起エネルギー(T)よりも、前記第二発光層が含有するホスト材料の最低三重項励起エネルギー(T)の方が高いことを特徴とする第2項に記載の有機エレクトロルミネッセンス素子。
 4.前記発光層を構成する燐光発光性ドーパントが、下記一般式(A)~(C)で表される化合物から選ばれる少なくとも1種であることを特徴とする第1項から第3項のいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000004
〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb及びRcは各々水素原子または置換基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X及びXは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
Figure JPOXMLDOC01-appb-C000005
〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rc、Rb及びRcは各々水素原子または置換基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X及びXは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
Figure JPOXMLDOC01-appb-C000006
〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb及びRcは各々水素原子または置換基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X及びXは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
 5.前記第一発光層が含有するホスト材料と、第二発光層が含有するホスト材料とが、それぞれカルバゾール基またはカルボリン基を有することを特徴とする第2項から第4項のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 6.前記第一発光層と第二発光層とが、同一の青色燐光発光性ドーパントを含有することを特徴とする第2項から第5項のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 7.前記第一発光層と第二発光層との膜厚の総和が、60~120nmの範囲内であることを特徴とする第2項から第6項のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 8.前記第一発光層と第二発光層が、発光スペクトルにおいて、1)480nm未満の領域に発光極大波長を有するドーパント、2)500nm以上、580nm未満の領域に発光極大波長を有するドーパント、及び3)580nm以上の領域に発光極大波長を有するドーパントを含有することを特徴とする第2項から第7項のいずれか一項に記載の有機エレクトロルミネッセンス素子。
 9.第1項から第8項のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする照明装置。
 本発明により、高効率、長寿命で、かつ駆動電圧変動に対する色度安定性及び連続駆動後の色度安定性に優れた白色燐光発光の有機エレクトロルミネッセンス素子及びそれを具備した照明装置が提供できる。
有機EL素子の構成の一例を示す概略図 有機EL素子の構成の一例を示す断面図
 以下、本発明の白色燐光発光の有機エレクトロルミネッセンス素子(以下、本発明の有機EL素子ともいう。)の各構成要素の詳細について、順次説明する。
 《有機エレクトロルミネッセンス素子の白色色度》
 本発明の有機EL素子や該素子に係る化合物の発光色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング社製)で測定した結果を、CIE色度座標に当てはめたときの色で決定される。
 本発明における白色発光の有機EL素子としての好ましい色度は、相関色温度が2500K~7000K、かつCIE1931表色系おいて、各色温度での黒体輻射線上からのy値乖離が0.1以下である。
 《有機EL素子の層構成》
 次に、本発明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
 (i)陽極/第一発光層/第二発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/第一発光層/第二発光層/電子輸送層/陰極
 (iii)陽極/正孔輸送層/第一発光層/第二発光層/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/第一発光層/第二発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/第一発光層/第二発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 本発明の有機EL素子においては、発光層は、本発明で規定する要件を満たす構成からなる発光層を2層有する。
 《発光層》
 本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は積層した発光層の界面近傍であり、発光層と隣接層との界面からは離れていることが特徴である。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成には特に制限はない。
 発光層の膜厚の総和は、特に制限はないが、形成する発光層の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ駆動電流に対する発光色の安定性向上の観点から、第一発光層及び第二発光層との膜厚の総和が、60~120nmの範囲内であることが好ましい。
 発光層を形成する方法としては、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア-ブロジェット法)、インクジェット法、スプレー法、印刷法、スロット型コータ法等の公知の薄膜形成法により製膜して形成することができる。
 本発明の有機EL素子においては、発光層は2層有することを特徴とする。
 本発明においては、燐光発光性ドーパントの少なくとも1種が、イオン化ポテンシャル(Ip)が5.3eV以下の青色燐光発光性ドーパントであることを特徴とする。
 本発明でいう青色燐光発光性ドーパントのイオン化ポテンシャルとは、紫外光電子分光法(UPS)等を用いることで求めることができる。本発明においては、化合物の単体膜を、金蒸着膜(10nm)を設けたシリコンウエハーあるいはスズドープ酸化インジウム(Indium Tin Oxide、ITOと略記する。)上に、5nm以上の膜厚で製膜し、ヴァキュームジェネレータズ製のESCALab200R及びUPS/1を用いて測定を行う。測定条件は、紫外光源UPS/1を、600V、50mAの条件で動作させ、励起源をHeI(21.2eV)とし、試料に-10Vのバイアスをかけ、6.7×10-6Paの環境下で測定を行う。また、分光器のパスエネルギーは2eVとする。得られたスペクトルから接線法を用いてスペクトルの幅を求め、その幅からIpを求めることができる。
 また、本発明においては、第一発光層が含有するホスト材料の電子親和力(Ea)よりも、第二発光層が含有するホスト材料の電子親和力(Ea)の方が大きいことが好ましい。
 本発明でいう電子親和力(Ea)は、例えば、光学的バンドギャップから算出したバンドギャップエネルギーをイオン化ポテンシャルから差し引いて求めることができる。
 〔発光ドーパント〕
 次いで、本発明に係る発光ドーパントについて説明する。
 本発明においては,発光ドーパントとして燐光発光性ドーパントを用いることを特徴とする。
 (燐光発光性ドーパント)
 本発明に係る燐光発光性ドーパント(以下、燐光発光体ともいう)は、励起状態の最低三重項エネルギー準位からの発光が観測される化合物であり、具体的には、室温(25℃)にて燐光発光する化合物であり、燐光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。
 上記燐光量子収率は、例えば、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明に係る燐光発光体は、任意の溶媒のいずれかにおいても、上記燐光量子収率(0.01以上)が達成されればよい。
 燐光発光体の発光の原理としては、二つのタイプが挙げられ、一つのタイプはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光体に移動させることで燐光発光体からの発光を得るというエネルギー移動型、もう一つのタイプは、燐光発光体がキャリアトラップとなり、燐光発光体上でキャリアの再結合が生じ、燐光発光体からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、燐光発光体の励起状態のエネルギー準位は、ホスト化合物の励起状態のエネルギー準位よりも低いことが条件である。
 燐光発光体は、有機EL素子の発光層に使用される公知の化合物の中から適宜選択して用いることができる。
 本発明の有機EL素子においては、2層の発光層の少なくとも1層は、複数の燐光発光性ドーパントを含有する構成であることを特徴とする。
 また、本発明の有機EL素子においては、第一発光層及び第二発光層が、同一の青色燐光性ドーパントを含有することが好ましい態様である。
 本発明に係る燐光発光体としては、好ましくは元素の周期表で8族~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
 本発明の有機エレクトロルミネッセンス素子の発光色は、白色であり、かつ前記2層の発光層はその白色発光スペクトルが、1)480nm未満、詳しくは465nm以上、480nm未満、2)500nm以上、580nm未満、及び3)580nm以上、より好ましくは600nm以上、620nm以下の波長領域内に発光極大波長を有することが好ましい。従って、そのために、「青色燐光発光性ドーパント」、「緑色燐光発光性ドーパント」、及び「赤色燐光発光性ドーパント」を含有することが好ましい。
 (一般式(A)~(C)で表される燐光発光性ドーパント)
 本発明においては、発光層を構成する燐光発光性ドーパントが、前記一般式(A)~(C)で表される化合物から選ばれる少なくとも1種であることが好ましい。
 前記一般式(A)において、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rcは各々水素原子または置環基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。
 また、前記一般式(B)において、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rc、Rb、Rcは各々水素原子または置換基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。
 Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rcは各々水素原子または置換基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X、Xは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。
 一般式(A)~(C)において、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Raで表される脂肪族基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、イソペンチル基、2-エチル-ヘキシル基、オクチル基、ウンデシル基、ドデシル基、テトラデシル基)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基)が挙げられ、芳香族基としては、例えば、フェニル基、トリル基、アズレニル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、ナフタセニル基、o-テルフェニル基、m-テルフェニル基、p-テルフェニル基、アセナフテニル基、コロネニル基、フルオレニル基、ペリレニル基等を挙げることができ、これらの基はそれぞれ置換基を有していてもよい。複素環基としては、例えば、ピロリル基、インドリル基、フリル基、チエニル基、イミダゾリル基、ピラゾリル基、インドリジニル基、キノリニル基、カルバゾリル基、インドリニル基、チアゾリル基、ピリジル基、ピリダジニル基、チアジアジニル基、オキサジアゾリル基、ベンゾキノリニル基、チアジアゾリル基、ピロロチアゾリル基、ピロロピリダジニル基、テトラゾリル基、オキサゾリル基、クロマニル基等を挙げることができ、これらの基はそれぞれ置換基を有していてもよい。
 一般式(A)~(C)において、Rb、Rc、Rb、Rcが表す置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、ナフチル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシル基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシル基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基(フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシル基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。これらの置換基は上記の置換基によって更に置換されていてもよい。
 一般式(A)~(C)において、A1は芳香族環、芳香族複素環を形成するのに必要な残基を表し、該芳香族環としてはベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられ、該芳香族複素環としては、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。
 上記一般式(A)~(C)において、X、Xは各々炭素原子、窒素原子または酸素原子を表す。LはX及びXと共に2座の配位子を形成する原子群を表す。X-L-Xで表される2座の配位子の具体例としては、例えば、それぞれ置換または無置換の、フェニルピリジン基、フェニルピラゾール基、フェニルイミダゾール基、フェニルトリアゾール基、フェニルテトラゾール基、ピラザボール基、ピコリン酸、アセチルアセトン基等が挙げられる。これらの基は、上記に示した置換基により更に置換されていてもよい。
 m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。更には、m2は0である場合が好ましい。
 一般式(A)~(C)において、MはIr、Ptを表し、特にIrが好ましい。
 以下、本発明に係る燐光発光ドーパント及び一般式(A)~(C)で表される燐光発光ドーパントの具体例を示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 また、本発明に係る青色燐光発光性ドーパントは、発光層内のキャリアバランスを該2層の発光層の界面近傍で発光させる観点から、イオン化ポテンシャルが5.3eV以下の材料を用いることを特徴とする。
 以下に、燐光発光体として、上記本発明に好ましく用いられる青色燐光発光性ドーパント以外の燐光発光性発光ドーパントの化合物の具体例を示すが、これらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704~1711に記載の方法等により合成できる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 〔ホスト化合物〕
 次に、発光層に含まれるホスト化合物について説明する。
 本発明の有機EL素子の発光層に含まれるホスト化合物とは、室温(25℃)における燐光発光の燐光量子収率が、0.1未満の化合物であることが好ましく、更に好ましくは燐光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の中で、その層中での質量比が20質量%以上であることが好ましい。
 本発明に係る発光層においては、ホスト化合物を単独で用いてもよく、または複数種併用して用いてもよいが、少なくとも、該2層の発光層が含有するホスト化合物はそれぞれ異なる種類であることを特徴とする。
 本発明に用いられるホスト化合物としては、構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、または、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。
 本発明に係る発光層に用いられるホスト化合物においては、カルバゾール基、カルボリン基を有するホスト化合物を用いることが好ましい。
 以下に、本発明に適用可能なホスト化合物の具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 また、本発明に用いるホスト化合物は、低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。
 ホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、高Tg(ガラス転移温度)である化合物が好ましい。
 上記説明した以外の従来公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が好適である。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。
 本発明においては、複数の発光層を有する場合には、ホスト化合物は発光層ごとに異なっていてもよいが、同一の化合物であることが優れた駆動寿命特性が得られることから好ましい。
 本発明においては、第一発光層が含有するホスト材料の三重項励起エネルギー(T)よりも、第二発光層が含有するホスト材料の三重項励起エネルギー(T)の方が高い構成とすることが好ましい態様である。
 加えて、本発明に係るホスト化合物は、その三重項励起エネルギー(T)が2.7eVより高いことが、より高い発光効率を得られることから好ましい。本発明でいう三重項励起エネルギーとは、ホスト化合物を溶媒に溶解し、液体窒素温度において観測した燐光発光スペクトルの最低振動バンド間遷移に対応する発光バンドのピークエネルギーをいう。
 本発明においては、ガラス転移点が90℃以上の化合物が好ましく、更には130℃以上の化合物が優れた駆動寿命特性を得られることから好ましい。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。
 本発明の有機EL素子においては、ホスト材料はキャリアの輸送を担うため、キャリア輸送能を有する材料が好ましい。キャリア輸送能を表す物性としてキャリア移動度が用いられるが、有機材料のキャリア移動度は、一般的に電界強度に依存性が見られる。電界強度依存性の高い材料は、正孔と電子注入・輸送バランスを崩しやすい為、中間層材料、ホスト材料は、移動度の電界強度依存性の少ない材料を用いることが好ましい。
 《注入層:電子注入層、正孔注入層》
 注入層は、必要に応じて設けることができ、陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設ける層のことで、例えば、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
 陽極バッファー層(正孔注入層)としては、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。また、特表2003-519432号公報に記載される材料を使用することも好ましい。
 陰極バッファー層(電子注入層)としては、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
 上記バッファー層(注入層)はごく薄い膜であることが望ましく、使用する素材にもよるが、その膜厚は0.1nm~5μmの範囲が好ましい。
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
 本発明の有機EL素子に設ける正孔阻止層は、発光層に隣接して設けられていることが好ましい。
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
 本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nm~100nmであり、更に好ましくは5nm~30nmである。
 《正孔輸送層》
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては上記のものを使用することができるが、更には、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平4-297076号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)、特表2003-519432号公報に記載されているような、いわゆるp型半導体的性質を有するとされる正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア-ブロジェット法)、インクジェット法、スプレー法、印刷法、スロット型コータ法等々の公知の薄膜形成法により製膜して形成することができる。正孔輸送層の膜厚については、特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
 《電子輸送層》
 電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
 従来、単層の電子輸送層、及び複数層とする場合は、発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(以下、Alqと略記。)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(以下、Znqと略記。)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様に、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア-ブロジェット法)、インクジェット法、スプレー法、印刷法、スロット型コータ法等の公知の薄膜形成法により製膜して形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
 また、不純物をドープしたn型半導体的性質を有するとされる電子輸送材料を用いることもできる。その例としては、特開平4-297076号公報、特開平10-270172号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)などに記載されたものが挙げられる。
 本発明においては、このようなn型半導体的性質を有するとされる電子輸送材料を用いることもより低消費電力の素子を作製することができるため好ましい。
 《支持基板》
 本発明の有機EL素子に適用する支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度が、0.01g/m・day・atm以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1992に準拠した方法で測定された酸素透過度が、1×10-3g/m/day以下、水蒸気透過度が、1×10-3g/m/day以下の高バリア性フィルムであることが好ましく、前記の水蒸気透過度、酸素透過度がいずれも1×10-5g/m/day以下であることが、更に好ましい。
 バリア膜を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものも好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板・フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 《封止》
 本発明の有機EL素子の封止に適用される封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
 本発明においては、有機EL素子を薄膜化できるということから、封止部材としてはポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、酸素透過度が1×10-3g/m/day以下、水蒸気透過度が1×10-3g/m/day以下のものであることが好ましい。また、前記の水蒸気透過度、酸素透過度がいずれも1×10-5g/m/day以下であることが、更に好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステルなどの湿気硬化型等の接着剤を挙げることができる。また、エポキシ系などの熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理の影響を受けて劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み支持基板と対向する側の電極の外側に、該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば過塩素酸バリウム、過塩素酸マグネシウム等)等があげられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜あるいは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、ITO、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式など湿式製膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm~1000nm、好ましくは10nm~200nmの範囲で選ばれる。
 《陰極》
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1~20nmの範囲内の膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 《有機EL素子の作製方法》
 本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/第一発光層/第二発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法について説明する。
 まず適当な支持基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、第一発光層、第二発光層、正孔阻止層、電子輸送層の有機化合物薄膜を形成させる。
 この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法、LB法(ラングミュア-ブロジェット法)、スプレー法、印刷法、スロット型コータ法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法、スロット型コータ法が特に好ましい。更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。これらの層を形成後、その上に陰極用物質からなる薄膜を、1μm以下好ましくは50~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
 また作製順序を逆にして、陰極、電子注入層、電子輸送層、第二発光層、第一発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると、発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
 有機エレクトロルミネッセンス素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)などが挙げられる。
 本発明においては、これらの方法を本発明の有機エレクトロルミネッセンス素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明は、これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。
 また、低屈折率媒質の厚みは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面または、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては、いずれかの層間、もしくは媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、2次元的に配列が繰り返されることが好ましい。
 本発明の有機エレクトロルミネッセンス素子は、支持基板(基板)の光取出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工する、あるいは、いわゆる集光シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
 集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとしては、例えば、住友スリーエム社製の輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製の拡散フィルム(ライトアップ)などを用いることができる。
 《照明装置》
 本発明の有機EL素子を適用した照明装置について説明する。
 本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
 本発明に用いられる白色燐光発光の有機エレクトロルミネッセンス素子においては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよい。発光層に用いる発光ドーパントとしては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルタ)特性に対応した波長範囲に適合するように、本発明に係る白金錯体、また公知の発光ドーパントの中から任意のものを選択して組み合わせて、また光取り出し手段または集光シートと組み合わせて、白色発光化すればよい。
 このように、本発明の白色発光の有機EL素子は、CF(カラーフィルタ)と組み合わせて、また、CF(カラーフィルタ)パターンに合わせ素子及び駆動トランジスタ回路を配置することで、有機エレクトロルミネッセンス素子から取り出される白色光をバックライトとして、青色フィルタ、緑色フィルタ、赤色フィルタを介して青色光、緑色光、赤色光を得ることで、低駆動電圧で長寿命のフルカラーの有機エレクトロルミネッセンスディスプレイができ、好ましい。
 《本発明の有機EL素子を適用した産業分野》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサの光源等が挙げられるがこれに限定するものではないが、特にカラーフィルタや光拡散板、光取り出しフィルムなどと組み合わせた各種表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子の特徴を活かして、以下に示すような様々な分野の照明器具や発光表示体等への適用が可能である。
 〔商品展示・ディスプレイ用〕
 商品展示・ディスプレイ用としては、店舗の商品ディスプレイ、冷凍・冷蔵ショーケース、博物館・美術館・展示会場などの展示品のライトアップ、自動販売機、遊戯台、交通広告などがある。
 店舗の商品ディスプレイは店舗自体の装飾的なディスプレイやショーケース、POPやサインなどがある。店舗の中でも高級ブランドショップや貴金属、ファッション系、高級飲食店など、そのブランドイメージを重視するような店舗では照明が与える店舗イメージへの影響は非常に大きいことから、強い拘りをもって照明が選択されている分野である。有機ELを用いることによって、今までは直接光源が見えないよう建築物の構造に工夫を凝らすことで雰囲気を作り出していた間接照明の分野で光源・機器分のスペースが省略でき複雑な構造が不要となり、インテリアやサインなどで拡散光を作り出す際に光源の形が透けて見えないために必要な光源と拡散板の間のスペースが省略できるなど、施工性があがることがあげられる。また、店舗のイメージを変える際のツールとしても、ディスプレイ棚、床、什器として組み込むなどスペースを取らず、軽量な光源であるという特徴を活かし、デザイン自由度があり、施工性がよく、手軽に採用できるという利点がある。
 冷凍・冷蔵ショーケースはスーパーやコンビニエンスストアなどに置かれ、野菜や果物、鮮魚、精肉などの鮮食品を“美しさ”や“鮮度”にあふれる商品として、より見やすく、鮮やかに、取りやすくするために照明設備も重要な部品の1つである。有機EL光源を用いることによって、低温発光のため冷却機能への影響が小さく、薄型であるので光源スペースを大幅に削減ことができることから収納スペースを拡大でき、スマートなデザインで食品を選びやすく、取りやすくすることができる。また、食品の良さが判りやすい色光で消費者に自然とアピールすることができ、売上に貢献できる。
 博物館・美術館・展示会場などでの展示品のライトアップでは、展示物への視認や日焼けなどの観点から使用条件に適した光源を選ぶ必要があり、退色防止型で紫外線比率の低いで蛍光ランプが開発されている。有機EL光源は紫外線を含まないこと、発熱量が低いことから展示物に悪影響がなく、面光源で均一に光ることによりグレアがなく、高い演色性によって展示物のありのままを忠実に鑑賞することができる。また、大きな光源器具を必要としないため、視界に余計な機材の出っ張りが入ることなく、展示物だけに注目することができる。またショーなど大規模な展示会場においては、注目を集める大型電飾装飾もその軽量・薄型という特徴から比較的簡易に組み立てることができる。
 自動販売機では、押しボタン、商品サンプル、販売機前面のポスター部に光源が使われている。機器全体の大きさに対し、取り込みたい追加機能の為のスペースと収納スペースの取り合いとなっていることから、薄く光源のスペースをとらない有機ELの利点が活かせる分野であり、特に取り出し口上のポスタースペースでニーズが高い。また、近年は販売と共に当たり/はずれなどゲーム性を持たせた機器も多く見られ、前面のポスターに部分に画素コントロール機能を持たせた光源(動画ディスプレイ)を搭載することで更にメリットを活かすことができる。
 遊戯台にはパチンコ・パチスロなどがある。これら遊戯台では、利用者にアミューズメント性(ゲーム性・ギャンブル性など)を体感し、楽しんでいただくことが最も重要。光源を薄くする事で1台の機器の厚みを低減できる薄さのメリットもあるが、自動販売機同様、画素コントロール機能を持たせた光源(動画ディスプレイ)を搭載することで更にメリットを活かすことができる。
 交通広告には公共スペースにあるポスターや看板、電車・バスなどの社内のポスターや画面、車体に張られている広告などがある。特に、ポスターや看板は、蛍光灯をバックライトとして用いたボックスタイプのものがあり、有機EL素子に置き換えることでボックス自体を薄く、軽量にすることができる。
 また、吊り下げ看板についてはボックスを薄くすることで、埃、ゴミの蓄積がなくなることや鳥による糞害の防止にもなる。
 〔インテリア・家具・建築材料用の組み込み照明〕
 建築関係では、床・壁・天井などと照明とを融合して一体化したものは「建築化照明」と呼ばれる。「建築化照明」の代表的なものとしては、その方式により、コーニス照明、トロファ照明、コーブ照明、光天井、ルーバ天井などがある。これらは照明光源が天井・壁・床に組み込まれ、照明としての存在や気配を消し、建築素材自体が光を発することを求めている。
 有機EL素子を用いた光源は、「建築化照明」に対して、その薄さ、軽さ、色調整、デザイン可変性から最も適した光源であり、さらにインテリア、家具、什器にまで適用が可能である。従来は店舗や美術館のみで用いられてきたこのような建築化照明を、有機EL光源の展開によって一般住宅にまで広げることができ、新たな需要を発掘することができる。
 商業施設においては、半地下店舗、アーケードの天井などに有機EL光源を採用し、照明の明るさや色温度を変化させることで、天候や昼夜に左右されない最適な商業空間を構築することができる。
 インテリア・什器・家具の一例としては、机や椅子、食器棚・靴箱・ロッカーなどの収納、洗面化粧台、仏壇・祭壇、ベッドライト、フットライト、手すり、ドア、障子・襖などが挙げられるが、それに限定されるものではない。
 一方で、有機EL光源に透明な電極を用い消灯/発光させることで、透明/不透明を切り替えることもできる。それによって、あらゆる窓、ドア、カーテンやブラインド、パーテーションとしての利用も可能となる。
 〔自動車用照明、発光表示体〕
 自動車用としては、外部の照明器具や発光表示体、車内の照明器具や発光表示体などに、有機EL素子が利用できる。前者は、前部に(小分類)ヘッドランプ、補助灯、車幅灯、フォッグランプ、方向指示灯など、後部にはリアコンビネーションランプとしてストップランプ、車幅灯、バック灯、方向指示灯、及びナンバープレート灯などがある。特に、有機EL素子を用いてリアコンビネーションランプを1枚で形成し、後部に貼り付けることによって、後部ランプのためのスペースを削減して、トランクルームを広くすることが可能となる。また、雨や霧で見通しが悪い時には、車幅灯やストップランプの面積を広くして、視認性を高めることもできる。一方、ホイールを有機EL素子で発光させることによって、側面からの視認性を高めることもできる。さらには、ボディ全体を有機EL素子で形成して発光させ、ボディカラーやデザインに新たな発想を盛り込むことが可能となる。
 後者の車内の照明器具や発光表示体としては、室内灯、マップライト、ドア下部の乗降ライト、メーター類表示、カーナビゲーションディスプレイ、警告灯などがある。特に、有機EL素子の透明性を活かして、昼間はサンルーフとし、夜間は発光させて面光源の穏やかな室内灯とすることもできる。またタクシーなどでは、前部座席の背面に有機EL素子からなる照明器具を貼り付けることによって、ドライバーの運転に支障なく、かつ室内空間を犠牲にすることなく、顧客が利用しやすい手元照明システムを構築できる。
 〔公共交通機関〕
 電車、地下鉄、バス、航空機、船舶などの公共交通機関における車内の照明や表示体において、本発明の有機ELは、その特徴を活かすことができる。
 航空機には多くの照明器具が搭載されているが、機体内部に搭載されている、客室照明、貨物室照明、操縦室照明などのうち特に客室の間接照明については有機EL照明のメリットが充分発揮される。
 客室照明には蛍光灯や電球が使われているが、これらは天井には直接用いられず、側面に反射した間接照明が使われており、客室に落ち着いた雰囲気を与えると共に万が一のトラブルの際にも割れてガラス破片が客席に降りかからないような工夫がされている。
 有機EL光源を用いれば、その薄さから間接照明が作りやすくなり、また直接照明にした場合でも割れて破片が飛び散る危険がなく、拡散光で落ち着いた雰囲気をつくることもできる。
 また、航空機には電力消費量や機体軽量化が重要である面から考えても、消費電力が小さく、軽量な有機EL光源は好ましい。このようなメリットは、お客様を照らすだけでなく、手荷物収納内の照明でも発揮され、荷物の取り残しの低減に貢献することもできる。
 公共交通機関に付属する駅やバス停、空港などの施設にも、顧客を誘導するための表示や照明が利用できる。また、夜間、屋外のバス停などにおいては、バス待ちの人を検出して照明を明るくし、防犯に寄与することもできる。
 〔OA機器用光源〕
 OA機器用光源としては、読み取り用センサが搭載されているファクシミリ、複写機、スキャナ、プリンタ、それらの複合機などがあげられる。
 読み取り用センサは等倍光学系と組合せる密着型センサー(CIS)と縮小光学系と組み合わせる縮小型センサー(CCDリニア)とに分かれる。
 CISについてはメーカーによっては定義が異なり、センサ・ロッドレンズアレイ・LED基盤をモジュール化したものをCISと呼ぶ場合や、モジュール化したものをCISM(コンタクトイメージセンサモジュール)と呼びモジュールの中に入っているセンサチップをCISと呼ぶ場合もある。それらの光源にはLED、キセノン、CCFLランプ、LDなどが使われている。
 OA機器としては、更なる小型化、低電圧駆動の要望があり、有機ELの厚みがなく、低発熱量・低電圧で駆動可能であるという特徴は、それらの要望にこたえることが可能である。
 〔産業用検査システム〕
 製造会社では、かつては目視による検品工程に多くの工数と人力をかけていたが、それを撮影画像を利用し欠品判定することで自動化をはかっている。CCDカメラでとらえた対象物の画像をデジタル信号に変換し、種々の演算処理を行うことで、対象物の面積、長さ、個数、位置などの特徴を抽出し、設定された基準をもとに判定結果を出力するものが、その画像撮影の為に光源が必要。このような検査システムはパッケージや形状サイズ検査、マイクロ部品の検査などでも利用される。
 画像センサ用に使用される照明光源には、蛍光灯、LED、ハロゲンなどがある。その中でも、透明容器やリードフレームなどを背景から照らすバックライトとしては面状に均一な光が必要となる。
 また、シートの汚れ検出には直線状に均一な光でシートの幅方向前面を照らせる光が必要であるなど、検査する物品により光源への要求が異なる。
 この分野に有機EL光源を採用することによって、例えば、ボトリングの工程などではボトル周囲360度全方位に照明を配置し、一度に照明し撮影することも可能となり、短時間での検品が可能となる。また検査機器内で光源自体に取られるスペースを大幅に小さくすることができる。また、面光源であることで、光反射により撮影画像が判定しにくくなることによる検知ミスを回避可能である。
 〔農産物栽培用光源〕
 植物工場とは『環境制御や自動化などハイテクを利用した植物の周年生産システム』である。植物栽培の環境をコンピューターにより制御することで、天候に左右されることなく、人手を必要とせずに作物を自動的に生産する技術。今後の世界の人口増、環境問題を考えると、農業にハイテクを導入することで、安定な食糧生産につながるいわゆる農業の工業化が必要になる。最近はLED、LDが、植物栽培の光源としての可能性が高まってきた。従来からよく使われている高圧ナトリウムランプなどの光源は赤色光と青色光のスペクトルバランスが悪く、また多量の熱放射が空調負荷を大きくし、植物との距離を十分にとる必要があるために、施設が大型化する欠点がある。
 有機EL光源は光源の厚みがなく、多くの棚を設置でき、また発熱量が少ないことから植物に近接させことで高効率であり栽培量を増やすことができる。
 また、一般家庭においても省スペースのメリットを活かし、キッチンなど室内の狭い場所に家庭菜園を作ることができ、庭やベランダ、屋上などの屋外スペースのみで可能であった家庭菜園の概念を変えて、広く人々が楽しむことを可能とする。
 〔避難用照明〕
 消防法や建築基準法で規定されている防災照明設備は、建築物火災に際して非難の為の出口や経路を示す誘導灯と、避難経路の明るさを確保し、迅速な避難を担保する非常灯とがある。
 FA・民生用に用いられるシグナルや誘導灯・非常灯などは、見やすいことが前提となるが、その為の大型化は設置場所によっては建物と不釣合いになり、建築化やデザイナーから指摘されることが多かった。その対策として、一目でわかる表示のピクトグラフ化や、光源で誘目効果を高める対処が取られている。従来誘導灯の光源には、蛍光ランプが用いられることが多いが、最近ではLEDを使用した誘導灯も出てきている。
 これらの誘導灯に有機EL光源を用いることで、輝度班、角度特性による輝度低下がなく、視認性を向上でき、低電力で、薄型であるために特別な工事の必要がなく設置が容易で、従来の蛍光灯を使うタイプに比べ交換の必要がなく、メンテナンスを容易することができる。また発熱も少ない為発光面の色焼けも少ない。したがって、避難経路の床、階段の手すり、防火扉など、多くの場所に設置して安全性を高めることができる。また現在、蛍光灯で問題視されている水銀の問題もなく、割れにくく、安全性に優れている。更に省スペース薄型設計で美観を損ねることなく、誘目効果を高めることができる光源と言える。
 〔撮影用照明〕
 写真館やスタジオ、照明写真ボックスなどで使われる光源には、ハロゲン、タングステン、ストロボ、蛍光灯などが用いられている。これらの光源を被写体に直接直線的に当て陰影を強くつける、もしくは光を拡散させ、あまり陰影のない柔らかな光をつくるという、大きくは2つの光の種類を色々な角度から組み合わせて1つの絵がつくられている。光を拡散させるためには、光源と被写体の間にディフューザーを挟むこと、または他の面(レフ板など)に当てた反射光を用いるなどの方法がある。
 有機EL光源は拡散光であり、この後者に対応する光をディフューザーを用いることなく発光することができる。その際には、既存光源で必要な光源とディフューザーの間の空間が不用になることや、レフ板などで光の向きを微妙な角度で調整し、細かな陰影を調整していたものをフレキシブルタイプの有機EL自体を曲げることで実施することができるなどのメリットがある。
 撮影で利用される光源には、演色性が求められることがある。太陽光線で見たときとの色の見え方の差が大きいと演色性が悪く、その差が少なければ演色性が良いと評価される。一般家庭で使用されている蛍光灯はその波長特性から撮影には好ましいとは言えず、光があたっている部分が緑色に偏る傾向がある。肌やメイキャップ、髪、着物、宝石などの色は、そのもの自体の色で写ることが求められる場合が多く、演色性はライトにとって重要なファクターの1つである。有機EL光源は演色性に優れ、前述のような色の忠実さが求められる撮影に好ましい。この特徴は印刷・染色関連など色を忠実に評価したい場所でも同様に活かされる。
 有機EL光源のような面光源をスタジオの天井一面に配置することによって、子供やペットの撮影などでは子供やペットを室内で自由に遊ばせておき、自由・自然な表情を光源移動のわずらわしさなく、自然な色で撮影することができる。
 〔家電製品〕
 家電製品には細部の見易さ、作業のしやすさ、デザインの為、光源がつけられている場合が多い。一例を挙げると、ミシン、電子レンジ、食器洗浄乾燥機、冷蔵庫、AV機器などは、従来、光源が付いているが、新しいものでは洗濯乾燥機は横型モデルで取り残しが増えたことから光源が付けられるようになった。既存のものには白熱電球やLEDがつけられている場合が多い。今後、掃除機の先端に照明を設置して家具などの影の部分の清掃状況を確認したり、シェーバーに特定波長光の光源を設置して、髭剃り状況を確認したりするなど、色々と展開が考えられる。
 このような家電製品は、全体を軽量・小型化し、更に収納スペースが大きいことが求められ、光源部分はできるだけスペースをとらずに全体を照明できることが求められる。有機ELの薄い面光源はその要望に充分こたえることができる。
 〔遊技施設〕
 スケートリンクの氷の下に有機ELを用いた照明を配置することによって、上からのスポットライトとは異なる演出が可能である。有機ELは発光温度が低いので特に有利である。また、スケーターの位置を検知して、その動きに合わせて発光させるようなことも可能である。スポットライトとの組み合わせ効果や、音楽のリズムに連動させた発光などもショーアップに有効である。
 プラネタリウムにおいては、従来のような下からの投影ではなく、ドーム全体に有機ELの微細ピクセルを配置して、ドームそのものが星々を発光する方式が可能であり、投影機のないプラネタリウムが実現できる。
 〔イルミネーション用照明〕
 一般的にイルミネーションというと樹木へのイルミネーションのことを指していることが大半であったが、近年環境保護の観点から家屋や門、垣根などの造形物への装飾に移行する事例も数多くなっている。これは点光源を多数利用、ライン状に装飾したものが主流であり、LEDの出現により一層広がりを見せると見られている。
 この分野に有機EL照明を用いることによって、今までは点光源をつなげることでの表現のみであったものが、同じ樹木へのイルミネーションにおいても、葉形の照明をつけることや、樹木に巻きつけ樹木全体を光らせる、また逆に定型面モジュールとして点光源同様につなぎ合わせ、様々な色に光らせるカクテルパレットとして用いて全体として文字や絵を映し出すなどのバリエーションが出せ、より一層照明による演出効果を高めることが可能となる。
 〔持ち物・衣服につける照明〕
 夜間屋外の歩行や運動で自動車・バイクなどから認識されやすくする目的で、自分の持ち物や靴、衣服に添付し、ヘッドライトの光を反射することで歩行者の安全を守る反射材製品(反射シートなど)が販売、利用されている。
 ガラスビーズタイプの場合、細かなガラスビーズが表面に存在し入ってきた光がこのレンズの役目で光源の方向に再帰反射し、車からヘッドライトの光があたるとドライバーの目の位置に光が帰っていき強く輝いて見える。プリズムタイプの場合も機能は同じだがレンズの構造がことなる。ガラスビーズタイプとプリズムタイプの特長は、ガラスビーズタイプは、斜めからの光に対して高い反射効果があり、プリズムタイプは正面からの光に対しては、ガラスビーズタイプより反射するが、斜めからの光には比較的反射効果が低いことがある。また、貼り付ける場所の硬度によって、素材と接着方法を選ぶこともできる。従来の場合はいずれにしても、歩行者を認識させるためには、光が当たることが必要であり、背設置場所なども下に向いたヘッドライトができるだけ早く当たり認識してもらうために足に貼り付けるなどの工夫が必要であった。
 これらの代替に有機EL光源を用いることで、ヘッドライトがあたる範囲になる前から、運転者に歩行者を認識させることができ、より安全を確保できる。また他の光源に対しては軽量で薄くシート状にできる点からも、シールのメリットを維持したままで効果をあげることができる。これらは人間だけでなく、ペットの衣服などにも利用できる。また、歩くことで発電して衣服などを発光させることも、低消費電力の有機ELであれば可能である。特に、人物特定用衣服に応用することもでき、例えば徘徊者の早期保護に役立てることもできる。ダイビング用のウェットスーツを発光させることによって、ダイバーの所在確認や、鮫などから身を守ることにも可能性がある。もちろん、ショーなどでの舞台衣装、ウェデイングドレスなどにも利用できる。
 〔通信用光源〕
 有機EL素子を用いた発光体は、可視光を使って簡単なメッセージや情報などを送る「可視光タグ」にも有効に活用できる。すなわち、極めて短時間の明滅による信号を発光させることによって、それを受信する側に多量の情報を送ることができる。
 発光体が信号を発光させていても、極めて短時間であることから、人間の視覚上は単なる照明として認識される。道路、店舗、展示場、ホテル、アミューズメントパークなど、場所毎に設置された照明が、それぞれ場所特有の情報信号を発信して、必要な情報を受信者に提供できる。また有機ELの場合は、1つの発光体中に波長の異なる複数の発光ドーパントを組み込んでおいて、異なる波長ごとに異なる信号を発生させることによって、1つの発光体が複数の異なる情報を提供することもできる。この場合も、発光波長や色調が安定している有機ELは優位である。
 音声、電波、赤外光などによる情報提供と異なり、「可視光タグ」は照明設備として一緒に組み込めるので、煩雑な追加設置工事なども不要である。
 〔医療用光源〕
 現在はハロゲンランプなどが使用されている内視鏡や、ワイヤーを挿入して手術する腹腔手術用の照明などに有機ELを利用することによって、小型、軽量化、用途拡大に貢献する。特に近年注目されている、体内検査や治療に用いられる内視鏡カプセル(飲む内視鏡)などにも利用が可能で、期待されている。
 〔その他〕
 さらに本発明の有機EL素子を組み込んだ発光体は、色調を容易に選択でき、蛍光灯のような明滅がなく、低消費電力で色調が安定しているので、特開2001-269105号公報に示されるような害虫防除装置として、特開2001-286373号公報に示されるような鏡用の照明として、特開2003-288995号公報に示されるような浴室照明システムとして、特開2004-321074号公報に示される植物育成用人工光源として、特開2004-354232号公報に示されるような水質汚れ測定装置の発光体として、特開2004-358063号公報に示されるような光感受性薬剤を用いた治療用被着体として、特開2005-322602号公報に示されるような医療用無影灯として、有用である。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。また、以下に実施例で使用する化合物の構造を示す。
Figure JPOXMLDOC01-appb-C000030
 実施例1
 〔有機EL素子101の作製〕
 陽極として厚さ0.7mmのガラス基板上に、スズドープ酸化インジウム(Indium Tin Oxide、ITO)を110nmの厚さで成膜した支持基板にパターニングを行った後、このITO透明電極を付けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を各々素子作製に最適の量、充填した。蒸着用るつぼはモリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。
 次いで、真空度1×10-4Paまで減圧した後、化合物HI-1の入った前記蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、20nmの正孔注入層(HIL)を設けた。次いで、化合物HT-1の入った前記蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、20nmの正孔注入層(HTL)を設けた。
 次いで、青色燐光発光化合物(Blue Dopant)である例示化合物D-87、緑色燐光発光化合物である例示化合物Ir-1、赤色燐光発光化合物である例示化合物Ir-14及びHost化合物である例示化合物1-6を、例示化合物D-87が20質量%、例示化合物Ir-1及び例示化合物Ir-14は各々0.3質量%の濃度になるように、蒸着速度0.1nm/秒で厚さ80nmになるよう共蒸着し、単層構成の発光層(EML)を形成した。
 その後、化合物ET-1を蒸着速度0.1nm/秒で膜厚30nmに蒸着して電子輸送層を形成し、更にKFを厚さ2nmで形成した。更に、アルミニウム110nmを蒸着して陰極を形成した。
 次いで、上記素子の非発光面をガラスケースで覆い、図1、図2に示す構成からなる有機EL素子101を作製した。
 図1は、有機EL素子の構成を示す概略図であり、有機EL素子101は、ガラスカバー102で覆われている。尚、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。図2は有機EL素子の構成を示す断面図であり、図2において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。尚、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 〔有機EL素子102~104の作製〕
 有機EL素子101の作製において、発光層に用いたホスト化合物である例示化合物1-6に代えて、表1に記載の化合物H-1、例示化合物1-31、例示化合物1-7をそれぞれ用いた以外は同様にして、有機EL素子102~104を作製した。
 〔有機EL素子105~111の作製〕
 有機EL素子104の作製において、発光層に用いた青色燐光発光化合物である例示化合物D-87に代えて、表1に記載の例示化合物D-66、D-88、D-89、D-90、D-91、Ir-12、Ir-13をそれぞれ用いた以外は同様にして、有機EL素子105~111を作製した。
 〔有機EL素子112の作製〕
 有機EL素子110の作製において、発光層の形成条件を下記のように変更した以外は同様にして、有機EL素子112を作製した。
 〈第一発光層及び第二発光層の形成〉
 正孔輸送層を形成した後、青色燐光発光化合物である例示化合物Ir-12、緑色燐光発光化合物である例示化合物Ir-1、赤色燐光発光化合物である例示化合物Ir-14及びホスト化合物である例示化合物1-7を、例示化合物Ir-12が20質量%、例示化合物Ir-1及び例示化合物Ir-14は各々0.3質量%の濃度になるように、蒸着速度0.1nm/秒で厚さ40nmになるよう共蒸着し、第一発光層を形成した。次いで、例示化合物Ir-12、例示化合物IR-1、例示化合物IR-14及びホスト化合物として例示化合物1-31を、例示化合物Ir-12が20質量%、例示化合物IR-1及び例示化合物IR-14は各々0.3質量%の濃度になるように、蒸着速度0.1nm/秒で厚さ40nmになるよう共蒸着して第二発光層を形成した。以上のようにして形成した2層構成の発光層の総膜厚は80nmである。
 〔有機EL素子113~119の作製〕
 上記有機EL素子112の作製において、発光層に用いた青色燐光発光化合物である例示化合物Ir-12に代えて、表1に記載のように、各々青色燐光発光化合物として例示化合物Ir-13、D-87、D-66、D-88、D-89、D-90、D-91をそれぞれ用いた以外は同様にして、有機EL素子113~119を作製した。
 〔有機EL素子120の作製〕
 上記有機EL素子114の作製において、第二発光層に用いたホスト化合物である例示化合物1-31に代えて、化合物H-1を用いた以外は同様にして、有機EL素子120を作製した。
 〔有機EL素子121の作製〕
 上記有機EL素子120の作製において、青色燐光発光化合物である例示化合物D-87に代えて、青色燐光発光化合物として例示化合物D-88を用いた以外は同様にして、有機EL素子121を作製した。
 〔有機EL素子122の作製〕
 有機EL素子114の作製において、第一発光層に用いたホスト化合物である例示化合物1-7に代えて、例示化合物1-6を用いた以外は同様にして、有機EL素子122を作製した。
 〔有機EL素子123の作製〕
 上記有機EL素子122の作製において、青色燐光発光化合物である例示化合物D-87に代えて、青色燐光発光化合物として例示化合物D-89を用いた以外は同様にして、有機EL素子123を作製した。
 〔有機EL素子124の作製〕
 上記有機EL素子122の作製において、第一発光層に用いたホスト化合物である例示化合物1-7に代えて、例示化合物1-6を用いた以外は同様にして、有機EL素子124を作製した。
 〔有機EL素子125の作製〕
 上記有機EL素子124の作製において、青色燐光発光化合物である例示化合物D-87に代えて、青色燐光発光化合物として例示化合物D-66を用いた以外は同様にして、有機EL素子125を作製した。
 《有機EL素子の評価》
 〔電力効率の測定〕
 分光放射輝度計CS-1000(コニカミノルタセンシング社製)を用いて、各有機EL素子の正面輝度及び輝度角度依存性を測定し、正面輝度1000cd/mにおける電力効率を求めた。なお、表1には、有機EL素子104の電力効率を100とした際の相対値で表示した。数値が大きいほど、電力効率に優れていることを表す。
 〔半減寿命の測定〕
 作製した有機EL素子に対し、正面輝度5000cd/mとなるような電流を与え、連続駆動した。正面輝度が初期の半減値(2500cd/m)になるまでに要する時間を半減寿命として求めた。なお、表1には、有機EL素子104の半減寿命を100とした相対値で表した。数値が大きいほど、素子寿命(半減寿命)に優れていることを表す。
 〔駆動条件変動に対する色度安定性ΔE
 駆動条件に対する色度安定性は、正面輝度の300~1500cd/mの範囲内におけるCIE1931、x、y値の変動最大距離ΔEを下式で求め、得られたΔEについて、下記の基準に従って駆動条件変動に対する色度安定性(ΔE)を評価した。
   ΔE=(Δx +Δy 1/2
 A:ΔEが、0.010未満
 B:ΔEが、0.010以上、0.015未満
 C:ΔEが、0.015以上、0.020未満
 D:ΔEが、0.020以上
 〔連続駆動後の色度安定性ΔE
 連続駆動後の色度安定性ΔEは、作製した有機EL素子に対し、正面輝度5000cd/mとなるような電流を与え、正面輝度が初期の半減値(2500cd/m)になるまで連続駆動し、駆動終了時から駆動直後の色度の差をCIE1931、x、y値の変動最大距離ΔEを下式で求め、結果をA~Dに分類した。
   ΔE=(Δx +Δy 1/2
 A:ΔEが、0.010未満
 B:ΔEが、0.010以上、0.015未満
 C:ΔEが、0.015以上、0.020未満
 D:ΔEが、0.020以上
Figure JPOXMLDOC01-appb-T000031
 表1記載の結果より明らかなように、異なる発光ホスト材料を含有する2層の発光層からなり、各々5.3eVよりも小さい青色燐光発光性ドーパントを使用することで、電力効率、半減寿命のみならず、特に、駆動条件変更及び連続駆動後の色度安定性が大きく改善していることが分かる。
 実施例2
 〔有機EL素子201の作製〕
 実施例1に記載の有機EL素子121の作製において、正孔輸送層を設けた後、発光層の形成条件を下記のように変更した以外は同様にして、有機EL素子201を作製した。
 〈第一発光層及び第二発光層の形成〉
 青色燐光発光化合物である例示化合物D-88、緑色燐光発光化合物である例示化合物Ir-1、赤色燐光発光化合物である例示化合物Ir-14及びホスト化合物である例示化合物1-7を、例示化合物D-88が20質量%、例示化合物Ir-1及び例示化合物Ir-14は各々0.3質量%の濃度になるように、蒸着速度0.1nm/秒で厚さ40nmになるよう共蒸着し第一発光層を形成した。次いで、青色燐光発光化合物である例示化合物D-88、緑色燐光発光化合物である例示化合物Ir-1、赤色燐光発光化合物である例示化合物Ir-14及びホスト化合物である化合物H-1を、例示化合物D-88が20質量%、例示化合物Ir-1及び例示化合物Ir-14は各々0.3質量%の濃度になるように、蒸着速度0.1nm/秒で厚さ40nmになるよう共蒸着し第二発光層を形成した。以上のようにして形成した2層構成の発光層の総膜厚は80nmである。
 〔有機EL素子202の作製〕
 上記有機EL素子201の作製において、第一発光層のホスト化合物を、例示化合物1-7から化合物H-1へ変更し、第二発光層のホスト化合物を、化合物H-1から例示化合物1-7へ変更した以外は同様にして、有機EL素子202を作製した。
 〔有機EL素子203~207の作製〕
 有機EL素子202の作製において、第一発光層及び第二発光層の青色燐光発光化合物(Blue Dopant)を例示化合物D-88に代えて、表2に記載のように、各々青色燐光発光化合物として例示化合物D-87、D-66、D-89、D-90、D-91をそれぞれ用いた以外は同様にして、有機EL素子203~207を作製した。
 〔有機EL素子208~211の作製〕
 有機EL素子202の作製において、蒸着比率、蒸着膜厚は変更せず、第一発光層に用いる発光ホスト材料と第二発光層に用いる発光ホストを、表2に記載の通り変更した以外は同様にして、有機EL素子208~211を作製した。
 《有機EL素子の評価》
 作製した有機EL素子について、実施例1に記載の方法と同様にして、電力効率、半減寿命、駆動条件変動及び連続駆動後の色度安定性の評価を行った。なお、電力効率と半減寿命の値は、実施例1に記載の有機EL素子104の測定値を100とした場合の相対値で示した。
Figure JPOXMLDOC01-appb-T000032
 表2に記載の結果より明らかなように、発光ホストの電子親和力(Ea)と三重項励起エネルギー(T)を比較した際に、第一発光層のEaが第二発光層のEaより小さい組み合わせ、また、第一発光層のT1が第二発光層のT1よりも小さい組み合わせた場合において、色度安定性を含む諸性能がより向上していることが分かる。
 実施例3
 〔有機EL素子301~307の作製〕
 実施例1に記載の有機EL素子123の作製において、蒸着比率、蒸着膜厚は変更せず、第一発光層に用いる発光ホスト材料と第二発光層に用いる発光ホストを表3に記載の通り変更した以外は同様にして有機EL素子301~307を作製した。なお、有機EL素子301は、実施例1に記載の有機EL素子123と同一構成とした。
 《有機EL素子の評価》
 作製した有機EL素子について、実施例1に記載の方法と同様にして、電力効率、半減寿命、駆動条件変動及び連続駆動後の色度安定性の評価を行った。なお、電力効率と半減寿命の値は、実施例1に記載の有機EL素子104の測定値を100とした場合の相対値で示した。
Figure JPOXMLDOC01-appb-T000033
 表3記載の結果より明らかなように、カルバゾール基ないしカルボリン基を含む発光ホストを用いた場合において、色度安定性を含む諸性能がより顕著な効果を示すことが分かる。
 実施例4
 〔有機EL素子401~411の作製〕
 実施例1に記載の有機EL素子114の作製において、蒸着比率、蒸着膜厚は変更せず、第一発光層に用いる青色燐光発光材料と第二発光層に用いる青色燐光発光材料を表4に記載の組み合わせに変更した以外は同様にして、有機EL素子401~411を作製した。なお、有機EL素子401は、実施例1に記載の有機EL素子114と同一構成とした。
 《有機EL素子の評価》
 作製した各有機EL素子について、実施例1に記載の方法と同様にして、電力効率、半減寿命、駆動条件変動及び連続駆動後の色度安定性の評価を行った。なお、電力効率と半減寿命の値は、実施例1に記載の有機EL素子104の測定値を100とした場合の相対値で示した。
Figure JPOXMLDOC01-appb-T000034
 表4に記載の結果より明らかなように、第一発光層と第二発光層に用いる青色燐光発光材料を共通にした有機EL素子401は、他の有機EL素子に対し、特に、色度安定性を含む諸性能がより顕著な効果を示すことが分かる。
 実施例5
 〔有機EL素子501~512の作製〕
 実施例1に記載の有機EL素子125の作製において、蒸着比率は変更せず、第一発光層と第二発光層の膜厚を、表5に記載の条件に変更した以外は同様にして、有機EL素子501~512を作製した。なお、有機EL素子501は、実施例1に記載の有機EL素子125と同一構成とした。
 《有機EL素子の評価》
 上記作製した有機EL素子について、実施例1に記載の方法と同様にして、電力効率、半減寿命、駆動条件変動及び連続駆動後の色度安定性の評価を行った。なお、電力効率と半減寿命の値は、実施例1に記載の有機EL素子104の測定値を100とした場合の相対値で示した。
Figure JPOXMLDOC01-appb-T000035
 表5に記載の結果より明らかなように、発光層の総膜厚を80~120nmにした場合、第一発光層及び第二発光層の膜厚比に係らず、特に色度安定性を含む諸性能がより顕著な効果を示すことが分かる。
 本発明の多色燐光発光有機エレクトロルミネッセンス素子は、発光効率及び発光寿命に優れた特性を有し、表示デバイス、ディスプレイ、各種照明装置に好適に利用できる。
 101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤

Claims (9)

  1.  基材上に一対の電極と、該電極の間にホスト材料と燐光発光性ドーパントを含有する発光層を2層有し、通電により白色発光する有機エレクトロルミネッセンス素子において、該2層の発光層が含有するホスト材料が異なるものからなり、該2層の発光層に含まれる燐光発光性ドーパントのうち、少なくとも一つの燐光発光性ドーパントが、イオン化ポテンシャル(Ip)が5.3eV以下の青色燐光発光性ドーパントであり、かつ、該2層の発光層の少なくとも1層は、複数の燐光発光性ドーパントを含有することを特徴とする有機エレクトロルミネッセンス素子。
  2.  前記2層の発光層のうち、陽極に近い側の発光層を第一発光層、もう一方の発光層を第二発光層としたとき、該第一発光層が含有するホスト材料の電子親和力(Ea)よりも、該第二発光層が含有するホスト材料の電子親和力(Ea)の方が大きいことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記第一発光層が含有するホスト材料の最低三重項励起エネルギー(T)よりも、前記第二発光層が含有するホスト材料の最低三重項励起エネルギー(T)の方が高いことを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。
  4.  前記発光層を構成する燐光発光性ドーパントが、下記一般式(A)~(C)で表される化合物から選ばれる少なくとも1種であることを特徴とする請求項1から3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb及びRcは各々水素原子または置環基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X及びXは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
    Figure JPOXMLDOC01-appb-C000002
    〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb、Rc、Rb及びRcは各々水素原子または置換基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X及びXは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
    Figure JPOXMLDOC01-appb-C000003
    〔式中、Raは水素原子、脂肪族基、芳香族基または複素環基を表し、Rb及びRcは各々水素原子または置換基を表し、A1は芳香族環または芳香族複素環を形成するのに必要な残基を表し、MはIrまたはPtを表す。X及びXは各々炭素原子、窒素原子または酸素原子を表し、LはX及びXと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
  5.  前記第一発光層が含有するホスト材料と、第二発光層が含有するホスト材料とが、それぞれカルバゾール基またはカルボリン基を有することを特徴とする請求項2から4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  6.  前記第一発光層と第二発光層とが、同一の青色燐光発光性ドーパントを含有することを特徴とする請求項2から5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  7.  前記第一発光層と第二発光層との膜厚の総和が、60~120nmの範囲内であることを特徴とする請求項2から6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  8.  前記第一発光層と第二発光層が、発光スペクトルにおいて、1)480nm未満の領域に発光極大波長を有するドーパント、2)500nm以上、580nm未満の領域に発光極大波長を有するドーパント、及び3)580nm以上の領域に発光極大波長を有するドーパントを含有することを特徴とする請求項2から7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  9.  請求項1から8のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備したことを特徴とする照明装置。
PCT/JP2012/058116 2011-04-07 2012-03-28 有機エレクトロルミネッセンス素子及び照明装置 WO2012137640A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/110,353 US20140027751A1 (en) 2011-04-07 2012-03-28 Organic electroluminescent element anf lighting device
JP2013508824A JPWO2012137640A1 (ja) 2011-04-07 2012-03-28 有機エレクトロルミネッセンス素子及び照明装置
EP12767838.1A EP2696385A4 (en) 2011-04-07 2012-03-28 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE THEREWITH

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011085189 2011-04-07
JP2011-085189 2011-04-07

Publications (1)

Publication Number Publication Date
WO2012137640A1 true WO2012137640A1 (ja) 2012-10-11

Family

ID=46969041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058116 WO2012137640A1 (ja) 2011-04-07 2012-03-28 有機エレクトロルミネッセンス素子及び照明装置

Country Status (4)

Country Link
US (1) US20140027751A1 (ja)
EP (1) EP2696385A4 (ja)
JP (1) JPWO2012137640A1 (ja)
WO (1) WO2012137640A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160141521A1 (en) * 2013-03-20 2016-05-19 Basf Se White organic light-emitting device
CN107851729A (zh) * 2015-08-07 2018-03-27 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
US10431760B2 (en) * 2014-06-04 2019-10-01 Sumitomo Chemical Company, Limited Light emitting device
JP2020071946A (ja) * 2018-10-30 2020-05-07 シーシーエス株式会社 Oled駆動装置
WO2022191234A1 (ja) * 2021-03-11 2022-09-15 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器及び有機エレクトロルミネッセンス素子の製造方法
WO2022191155A1 (ja) * 2021-03-12 2022-09-15 出光興産株式会社 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子パネル及び電子機器
WO2022230844A1 (ja) * 2021-04-26 2022-11-03 出光興産株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022255454A1 (ja) * 2021-06-04 2022-12-08 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706107B (zh) * 2014-04-07 2020-10-01 晶元光電股份有限公司 一種發光裝置之色溫調整方法
US10028353B2 (en) * 2015-08-29 2018-07-17 Taizhou Heystar Electronic Technology Co., Ltd LED lamp string having selectable light emitting mode
US11214587B2 (en) * 2017-11-07 2022-01-04 Universal Display Corporation Organic electroluminescent materials and devices
CN111211234B (zh) * 2018-11-21 2023-02-28 北京夏禾科技有限公司 包含掺杂剂材料和多种主体材料的有机电致发光器件
KR20200108955A (ko) * 2019-03-11 2020-09-22 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172691A (ja) 1986-01-24 1987-07-29 株式会社小松製作所 薄膜el素子
US4774435A (en) 1987-12-22 1988-09-27 Gte Laboratories Incorporated Thin film electroluminescent device
JPS63314795A (ja) 1987-06-18 1988-12-22 Komatsu Ltd 薄膜el素子
JPH01220394A (ja) 1988-02-29 1989-09-04 Hitachi Ltd 高輝度el素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207170A (ja) 1992-11-20 1994-07-26 Idemitsu Kosan Co Ltd 白色有機エレクトロルミネッセンス素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
JPH0917574A (ja) 1995-04-27 1997-01-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0945479A (ja) 1995-07-27 1997-02-14 Hewlett Packard Co <Hp> 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法
JPH09260062A (ja) 1996-03-25 1997-10-03 Tdk Corp 有機エレクトロルミネセンス素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH10270172A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11204258A (ja) 1998-01-09 1999-07-30 Sony Corp 電界発光素子及びその製造方法
JPH11204359A (ja) 1998-01-14 1999-07-30 Tokin Corp 圧粉磁芯の製造方法と製造装置
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JPH11283751A (ja) 1998-03-27 1999-10-15 Nec Corp 有機エレクトロルミネッセンス素子
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP2001202827A (ja) 1999-11-10 2001-07-27 Matsushita Electric Works Ltd 透明導電性基板、発光素子、平面発光板、平面発光板の製造方法、平面蛍光ランプ、プラズマディスプレイ
JP2001269105A (ja) 2000-03-27 2001-10-02 Earth Chem Corp Ltd 害虫防除方法及び害虫防除装置
JP2001286373A (ja) 2000-04-06 2001-10-16 Toto Ltd 照明装置付き鏡
JP2003519432A (ja) 1999-12-31 2003-06-17 エルジー・ケミカル・カンパニー・リミテッド p−型半導体性質を有する有機化合物を含む電子素子
JP2003288995A (ja) 2002-03-27 2003-10-10 Toto Ltd 浴室照明システム
JP2004068143A (ja) 2002-06-10 2004-03-04 Konica Minolta Holdings Inc 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材
JP2004235168A (ja) 2004-05-20 2004-08-19 Toyota Industries Corp 有機エレクトロルミネッセンス素子
WO2004077886A1 (ja) 2003-02-27 2004-09-10 Kabushiki Kaisha Toyota Jidoshokki 有機電界発光素子
JP2004321074A (ja) 2003-04-24 2004-11-18 Hideo Fukutani 有機elによる植物生育方法
JP2004354232A (ja) 2003-05-29 2004-12-16 Hakuto Co Ltd 汚れ測定装置及びそれを用いた水処理方法
JP2004358063A (ja) 2003-06-06 2004-12-24 Seiko Epson Corp 治療用被着体
WO2005079118A1 (ja) * 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005091684A1 (ja) * 2004-03-19 2005-09-29 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2005322602A (ja) 2004-05-11 2005-11-17 Toyota Industries Corp 無影灯
JP2007250716A (ja) * 2006-03-15 2007-09-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008035595A1 (fr) * 2006-09-19 2008-03-27 Konica Minolta Holdings, Inc. Dispositifs électroluminescents organiques
JP2008084913A (ja) 2006-09-26 2008-04-10 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2010034484A (ja) 2008-07-01 2010-02-12 Nippon Hoso Kyokai <Nhk> 有機エレクトロルミネッセンス素子
JP2010161356A (ja) * 2008-12-10 2010-07-22 Fujifilm Corp 有機電界発光素子及び発光装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949214B2 (ja) * 1997-03-18 2007-07-25 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2008075517A1 (ja) * 2006-12-18 2008-06-26 Konica Minolta Holdings, Inc. 多色燐光発光有機エレクトロルミネッセンス素子及び照明装置

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172691A (ja) 1986-01-24 1987-07-29 株式会社小松製作所 薄膜el素子
JPS63314795A (ja) 1987-06-18 1988-12-22 Komatsu Ltd 薄膜el素子
US4774435A (en) 1987-12-22 1988-09-27 Gte Laboratories Incorporated Thin film electroluminescent device
JPH01220394A (ja) 1988-02-29 1989-09-04 Hitachi Ltd 高輝度el素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06207170A (ja) 1992-11-20 1994-07-26 Idemitsu Kosan Co Ltd 白色有機エレクトロルミネッセンス素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
JPH0917574A (ja) 1995-04-27 1997-01-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0945479A (ja) 1995-07-27 1997-02-14 Hewlett Packard Co <Hp> 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法
JPH09260062A (ja) 1996-03-25 1997-10-03 Tdk Corp 有機エレクトロルミネセンス素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH10270172A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11204258A (ja) 1998-01-09 1999-07-30 Sony Corp 電界発光素子及びその製造方法
JPH11204359A (ja) 1998-01-14 1999-07-30 Tokin Corp 圧粉磁芯の製造方法と製造装置
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JPH11283751A (ja) 1998-03-27 1999-10-15 Nec Corp 有機エレクトロルミネッセンス素子
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP2001202827A (ja) 1999-11-10 2001-07-27 Matsushita Electric Works Ltd 透明導電性基板、発光素子、平面発光板、平面発光板の製造方法、平面蛍光ランプ、プラズマディスプレイ
JP2003519432A (ja) 1999-12-31 2003-06-17 エルジー・ケミカル・カンパニー・リミテッド p−型半導体性質を有する有機化合物を含む電子素子
JP2001269105A (ja) 2000-03-27 2001-10-02 Earth Chem Corp Ltd 害虫防除方法及び害虫防除装置
JP2001286373A (ja) 2000-04-06 2001-10-16 Toto Ltd 照明装置付き鏡
JP2003288995A (ja) 2002-03-27 2003-10-10 Toto Ltd 浴室照明システム
JP2004068143A (ja) 2002-06-10 2004-03-04 Konica Minolta Holdings Inc 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材
WO2004077886A1 (ja) 2003-02-27 2004-09-10 Kabushiki Kaisha Toyota Jidoshokki 有機電界発光素子
JP2004321074A (ja) 2003-04-24 2004-11-18 Hideo Fukutani 有機elによる植物生育方法
JP2004354232A (ja) 2003-05-29 2004-12-16 Hakuto Co Ltd 汚れ測定装置及びそれを用いた水処理方法
JP2004358063A (ja) 2003-06-06 2004-12-24 Seiko Epson Corp 治療用被着体
WO2005079118A1 (ja) * 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005091684A1 (ja) * 2004-03-19 2005-09-29 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2005322602A (ja) 2004-05-11 2005-11-17 Toyota Industries Corp 無影灯
JP2004235168A (ja) 2004-05-20 2004-08-19 Toyota Industries Corp 有機エレクトロルミネッセンス素子
JP2007250716A (ja) * 2006-03-15 2007-09-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008035595A1 (fr) * 2006-09-19 2008-03-27 Konica Minolta Holdings, Inc. Dispositifs électroluminescents organiques
JP2008084913A (ja) 2006-09-26 2008-04-10 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2010034484A (ja) 2008-07-01 2010-02-12 Nippon Hoso Kyokai <Nhk> 有機エレクトロルミネッセンス素子
JP2010161356A (ja) * 2008-12-10 2010-07-22 Fujifilm Corp 有機電界発光素子及び発光装置

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"fourth series of Experimental Chemistry 7, Spectroscopy II", 1992, MARUZEN CO. , LTD, pages: 398
"Handbook of Color Science", 1985, UNIVERSITY OF TOKYO PRESS, pages: 108
"Organic EL element and its frontier of industrialization", 30 November 1998, NTS CORPORATION, article "Electrode Materials", pages: 123 - 166
"The frontier of Organic EL element and its industrialization", 30 November 1998, NTS INC., pages: 237
INORG. CHEM., vol. 40, pages 1704 - 1711
J. APPL. PHYS., vol. 95, 2004, pages 5773
J. HUANG ET AL., APPLIED PHYSICS LETTERS, vol. 80, 2002, pages 139
M. A. BALDO ET AL., NATURE, vol. 395, 1998, pages 151 - 154
M. A. BALDO ET AL., NATURE, vol. 403, no. 17, 2000, pages 750 - 753
See also references of EP2696385A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519834A (ja) * 2013-03-20 2016-07-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 白色有機発光素子
US20160141521A1 (en) * 2013-03-20 2016-05-19 Basf Se White organic light-emitting device
US10431760B2 (en) * 2014-06-04 2019-10-01 Sumitomo Chemical Company, Limited Light emitting device
US11145827B2 (en) 2015-08-07 2021-10-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
CN111710788B (zh) * 2015-08-07 2023-07-21 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
CN107851729B (zh) * 2015-08-07 2020-07-28 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
CN111710788A (zh) * 2015-08-07 2020-09-25 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
CN107851729A (zh) * 2015-08-07 2018-03-27 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
KR20180039086A (ko) * 2015-08-07 2018-04-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
KR102647906B1 (ko) 2015-08-07 2024-03-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
US11770969B2 (en) 2015-08-07 2023-09-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
JP2020071946A (ja) * 2018-10-30 2020-05-07 シーシーエス株式会社 Oled駆動装置
JP7103916B2 (ja) 2018-10-30 2022-07-20 シーシーエス株式会社 Oled駆動装置
WO2022191234A1 (ja) * 2021-03-11 2022-09-15 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器及び有機エレクトロルミネッセンス素子の製造方法
WO2022191155A1 (ja) * 2021-03-12 2022-09-15 出光興産株式会社 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子パネル及び電子機器
WO2022230844A1 (ja) * 2021-04-26 2022-11-03 出光興産株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2022255454A1 (ja) * 2021-06-04 2022-12-08 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Also Published As

Publication number Publication date
EP2696385A1 (en) 2014-02-12
JPWO2012137640A1 (ja) 2014-07-28
US20140027751A1 (en) 2014-01-30
EP2696385A4 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5522230B2 (ja) 白色有機エレクトロルミネッセンス素子、及び照明装置
JP5532605B2 (ja) 多色燐光発光有機エレクトロルミネッセンス素子及び照明装置
US7745990B2 (en) White light emitting organic electroluminescent element and lighting device
WO2012137640A1 (ja) 有機エレクトロルミネッセンス素子及び照明装置
WO2012153603A1 (ja) 燐光発光有機エレクトロルミネッセンス素子及び照明装置
JP5194456B2 (ja) 有機エレクトロルミネッセンス素子の製造方法及び照明装置の製造方法
JP5381992B2 (ja) 面発光パネル
JP5261755B2 (ja) 有機エレクトロルミネッセンス素子および照明装置
JP5870782B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、照明装置及び表示装置
JP2007180148A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2007029461A1 (ja) 有機エレクトロルミネッセンス素子、その製造方法、該有機エレクトロルミネッセンス素子を有する表示装置及び照明装置
JP4962113B2 (ja) 光学部材と有機エレクトロルミネッセンス素子を用いた照明装置
JP5018211B2 (ja) 有機エレクトロルミネッセンスパネルとそれを用いた照明装置
JP5771965B2 (ja) 多色燐光発光有機エレクトロルミネッセンス素子及び照明装置
JP2008159741A (ja) 発光体
JPWO2007043321A1 (ja) 有機エレクトロルミネッセンス素子、液晶表示装置及び照明装置
JP2007059688A (ja) 有機エレクトロルミネッセンス素子、それを用いた表示装置および照明装置
JP5831459B2 (ja) 有機エレクトロルミネッセンス素子及び照明装置
JP5760415B2 (ja) 有機エレクトロルミネッセンス素子
JP5772835B2 (ja) 多色燐光発光有機エレクトロルミネッセンス素子、その製造方法及び照明装置
JP2010080473A (ja) 有機エレクトロルミネッセンス素子
JP2013008492A (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508824

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14110353

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012767838

Country of ref document: EP