JP2020096171A - 発光デバイス、発光装置、電子機器および照明装置 - Google Patents

発光デバイス、発光装置、電子機器および照明装置 Download PDF

Info

Publication number
JP2020096171A
JP2020096171A JP2019176065A JP2019176065A JP2020096171A JP 2020096171 A JP2020096171 A JP 2020096171A JP 2019176065 A JP2019176065 A JP 2019176065A JP 2019176065 A JP2019176065 A JP 2019176065A JP 2020096171 A JP2020096171 A JP 2020096171A
Authority
JP
Japan
Prior art keywords
organic compound
layer
light emitting
emitting device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019176065A
Other languages
English (en)
Other versions
JP2020096171A5 (ja
JP6870049B2 (ja
Inventor
瀬尾 哲史
Tetsushi Seo
哲史 瀬尾
恒徳 鈴木
Tsunenori Suzuki
恒徳 鈴木
拓夢 奥山
Takumu Okuyama
拓夢 奥山
悠介 滝田
Yusuke Takita
悠介 滝田
直明 橋本
Naoaki Hashimoto
直明 橋本
広美 瀬尾
Hiromi Seo
広美 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2020096171A publication Critical patent/JP2020096171A/ja
Publication of JP2020096171A5 publication Critical patent/JP2020096171A5/ja
Application granted granted Critical
Publication of JP6870049B2 publication Critical patent/JP6870049B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

【課題】新規発光デバイスを提供する。または、発光効率の良好な発光デバイスを提供する。または、寿命の良好な発光デバイスを提供する。または、駆動電圧の低い発光デバイスを提供する。
【解決手段】EL層が、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層とを有し、前記第1の層は、第1の有機化合物と、第2の有機化合物とを有し、第4の層は第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に対し電子受容性を示し、第2の有機化合物は、そのHOMO準位が−5.7eV以上−5.2eV以下であり、前記第7の有機化合物の電界強度[V/cm]の平方根が600である時の電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下である発光デバイスを提供する。
【選択図】図1

Description

本発明の一態様は、発光素子、発光デバイス、ディスプレイモジュール、照明モジュール、表示装置、発光装置、電子機器及び照明装置に関する。なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
有機化合物を用いたエレクトロルミネッセンス(EL:Electroluminescence)を利用する発光デバイス(有機EL素子)の実用化が進んでいる。これら発光デバイスの基本的な構成は、一対の電極間に発光材料を含む有機化合物層(EL層)を挟んだものである。この素子に電圧を印加して、キャリアを注入し、当該キャリアの再結合エネルギーを利用することにより、発光材料からの発光を得ることができる。
このような発光デバイスは自発光型であるためディスプレイの画素として用いると、液晶に比べて視認性が高く、バックライトが不要である等の利点があり、フラットパネルディスプレイ素子として好適である。また、このような発光デバイスを用いたディスプレイは、薄型軽量に作製できることも大きな利点である。さらに非常に応答速度が速いことも特徴の一つである。
また、これらの発光デバイスは発光層を二次元に連続して形成することが可能であるため、面状に発光を得ることができる。これは、白熱電球やLEDに代表される点光源、あるいは蛍光灯に代表される線光源では得難い特色であるため、照明等に応用できる面光源としての利用価値も高い。
このように発光デバイスを用いたディスプレイや照明装置はさまざまな電子機器に適用好適であるが、より良好な効率、寿命を有する発光デバイスを求めて研究開発が進められている。
特許文献1では正孔注入層に接する第1の正孔輸送層と、発光層との間に、第1の正孔注入層のHOMO準位とホスト材料のHOMO準位の間のHOMO準位を有する正孔輸送性材料を設ける構成が開示されている。
発光デバイスの特性は、目覚ましく向上してきたが効率や耐久性をはじめ、あらゆる特性に対する高度な要求に対応するには未だ不十分と言わざるを得ない。
国際公開第2011/065136号パンフレット
そこで、本発明の一態様では、新規発光デバイスを提供することを目的とする。または、発光効率の良好な発光デバイスを提供することを目的とする。または、寿命の良好な発光デバイスを提供することを目的とする。または、駆動電圧の低い発光デバイスを提供することを目的とする。
または、本発明の他の一態様では、信頼性の高い発光装置、電子機器及び表示装置を各々提供することを目的とする。または、本発明の他の一態様では、消費電力の小さい発光装置、電子機器及び表示装置を各々提供することを目的とする。
本発明は上述の課題のうちいずれか一を解決すればよいものとする。
本発明の一態様は、陽極と、陰極と、前記陽極と前記陰極との間に位置するEL層とを有し、前記EL層が発光層を有する発光デバイスにおいて、前記発光デバイスに一定の電流を流した際に得られる発光の輝度変化で表される劣化曲線に極大値を有する発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極との間に位置するEL層とを有する発光デバイスにおいて、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第1の層は第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、前記第7の有機化合物の電界強度[V/cm]の平方根が600である時の電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であり、前記発光デバイスに一定の電流を流した際に得られる発光の輝度変化で表される劣化曲線に極大値を有する発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第1の層は、第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、前記第7の有機化合物の電界強度[V/cm]の平方根が600である時の電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であり、前記発光デバイスに一定の電流を流した際に得られる発光の輝度変化で表される劣化曲線に極大値を有する発光デバイスである。
または、本発明の他の一態様は、上記構成を有する発光デバイスにおいて、前記劣化曲線が100%を超える部分を有する発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第1の層は、第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、前記第7の有機化合物の電界強度[V/cm]の平方根が600である時の電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第1の層は、第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、前記第6の有機化合物のLUMO準位が、前記第7の有機化合物のLUMO準位よりも浅く、前記第7の有機化合物と、前記第6の有機化合物とのLUMO準位の差が0.1eV以上0.3eV以下である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第1の層は、第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、前記第7の有機化合物がπ電子不足型複素芳香族化合物である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第1の層は、第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第2の有機化合物は、第1の正孔輸送性骨格を有し、前記第3の有機化合物は、第2の正孔輸送性骨格を有し、前記第4の有機化合物は、第3の正孔輸送性骨格を有し、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、前記第1の正孔輸送性骨格、前記第2の正孔輸送性骨格および前記第3の正孔輸送性骨格は、各々独立に、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれか一であり、前記第7の有機化合物の電界強度[V/cm]の平方根が600である時の電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第1の層は、第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第2の有機化合物は、第1の正孔輸送性骨格を有し、前記第3の有機化合物は、第2の正孔輸送性骨格を有し、前記第4の有機化合物は、第3の正孔輸送性骨格を有し、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、前記第1の正孔輸送性骨格、前記第2の正孔輸送性骨格および前記第3の正孔輸送性骨格は、各々独立に、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれか一であり、前記第6の有機化合物のLUMO準位が、前記第7の有機化合物のLUMO準位よりも浅く、前記第7の有機化合物と、前記第6の有機化合物とのLUMO準位の差が0.1eV以上0.3eV以下である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第1の層は、第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第2の有機化合物は、第1の正孔輸送性骨格を有し、前記第3の有機化合物は、第2の正孔輸送性骨格を有し、前記第4の有機化合物は、第3の正孔輸送性骨格を有し、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、前記第1の正孔輸送性骨格、前記第2の正孔輸送性骨格および前記第3の正孔輸送性骨格は、各々独立に、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれか一であり、前記第7の有機化合物がπ電子不足型複素芳香族化合物である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記π電子不足型複素芳香族化合物は、キノキサリン骨格、ベンゾイミダゾール骨格およびトリアジン骨格のいずれかである発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記第6の有機化合物が炭化水素のみで構成される有機化合物であり、前記第6の有機化合物のHOMO準位は、前記第4の有機化合物のHOMO準位よりも深く、前記第4の有機化合物と、前記第6の有機化合物のHOMO準位の差が0.2eV以上0.4eV以下である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記第6の有機化合物がアントラセン骨格と複素環骨格を有する有機化合物であり、前記第4の有機化合物と、前記第6の有機化合物のHOMO準位の差が0.2eV未満である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記第6の有機化合物がアントラセン骨格と複素環骨格を有する有機化合物であり、前記第4の有機化合物がナフタレン環に2つのカルバゾール環が結合した有機化合物である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記第6の有機化合物がアントラセン骨格と複素環骨格を有する有機化合物であり、前記第4の有機化合物が3,3’−(ナフタレン−1,4−ジイル)ビス(9−フェニル−9H−カルバゾール)である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記第6の有機化合物がアントラセン骨格と複素環骨格を有する有機化合物であり、前記第2の有機化合物のHOMO準位が−5.4eV以上−5.7eV以下であり、前記第7の有機化合物の電界強度[V/cm]の平方根が600である時の電子移動度が、前記第6の有機化合物の電界強度[V/cm]の平方根が600である時の電子移動度よりも小さい発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記第4の有機化合物のHOMO準位と、前記第3の有機化合物のHOMO準位との差が0.2eV以下である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記第4の有機化合物のHOMO準位が、前記第3の有機化合物のHOMO準位よりも深い発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記第2の有機化合物が、ジベンゾフラン骨格を有する有機化合物である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記第7の有機化合物がキノキサリン骨格を有する有機化合物である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記第2の有機化合物と前記第3の有機化合物とが同じ物質である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記第5の有機化合物が青色蛍光材料である発光デバイスである。
または、本発明の他の一態様は、上記構成において、センサ、操作ボタン、スピーカ、または、マイク
を有する電子機器である。
または、本発明の他の一態様は、上記構成において、トランジスタ、または、基板を有する発光装置である。
または、本発明の他の一態様は、上記構成において、筐体を有する照明装置である。
なお、本明細書中における発光装置とは、発光デバイスを用いた画像表示デバイスを含む。また、発光デバイスにコネクター、例えば異方導電性フィルム又はTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、又は発光デバイスにCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールは、発光装置を有する場合がある。さらに、照明器具等は、発光装置を有する場合がある。
本発明の一態様では、新規発光デバイスを提供することができる。または、寿命の良好な発光デバイスを提供することができる。または、発光効率の良好な発光デバイスを提供することができる。
または、本発明の他の一態様では、信頼性の高い発光装置、電子機器及び表示装置を各々提供することができる。または、本発明の他の一態様では、消費電力の小さい発光装置、電子機器及び表示装置を各々提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1は、発光デバイスの概略図である。 図2(A)および図2(B)は、アクティブマトリクス型発光装置の概念図である。 図3(A)および図3(B)は、アクティブマトリクス型発光装置の概念図である。 図4は、アクティブマトリクス型発光装置の概念図である。 図5(A)および図5(B)は、パッシブマトリクス型発光装置の概念図である。 図6(A)および図6(B)は、照明装置を表す図である。 図7(A)、図7(B1)、図7(B2)および図7(C)は、電子機器を表す図である。 図8(A)、図8(B)および図8(C)は、電子機器を表す図である。 図9は、照明装置を表す図である。 図10は、照明装置を表す図である。 図11は、車載表示装置及び照明装置を表す図である。 図12(A)および図12(B)は、電子機器を表す図である。 図13(A)、図13(B)および図13(C)は、電子機器を表す図である。 図14は 発光デバイス1乃至発光デバイス3、比較発光デバイス1および比較発光デバイス2の輝度−電流密度特性である。 図15は、発光デバイス1乃至発光デバイス3、比較発光デバイス1および比較発光デバイス2の電流効率−輝度特性である。 図16は、発光デバイス1乃至発光デバイス3、比較発光デバイス1および比較発光デバイス2の輝度−電圧特性である。 図17は、発光デバイス1乃至発光デバイス3、比較発光デバイス1および比較発光デバイス2の電流−電圧特性である。 図18は、発光デバイス1乃至発光デバイス3、比較発光デバイス1および比較発光デバイス2の外部量子効率−輝度特性である。 図19は、発光デバイス1乃至発光デバイス3、比較発光デバイス1および比較発光デバイス2の発光スペクトルである。 図20は、発光デバイス1乃至発光デバイス3、比較発光デバイス1および比較発光デバイス2の規格化輝度−時間変化特性である。 図21は、発光デバイス4乃至発光デバイス6および比較発光デバイス3の輝度−電流密度特性である。 図22は、発光デバイス4乃至発光デバイス6および比較発光デバイス3の電流効率−輝度特性である。 図23は、発光デバイス4乃至発光デバイス6および比較発光デバイス3の輝度−電圧特性である。 図24は、発光デバイス4乃至発光デバイス6および比較発光デバイス3の電流−電圧特性である。 図25は、発光デバイス4乃至発光デバイス6および比較発光デバイス3の外部量子効率−輝度特性である。 図26は、発光デバイス4乃至発光デバイス6および比較発光デバイス3の発光スペクトルである。 図27は、発光デバイス4乃至発光デバイス6および比較発光デバイス3の規格化輝度−時間変化特性である。 図28は、発光デバイス7および発光デバイス8の輝度−電流密度特性である。 図29は、発光デバイス7および発光デバイス8の電流効率−輝度特性である。 図30は、発光デバイス7および発光デバイス8の輝度−電圧特性である。 図31は、発光デバイス7および発光デバイス8の電流−電圧特性である。 図32は、発光デバイス7および発光デバイス8の外部量子効率−輝度特性である。 図33は、発光デバイス7および発光デバイス8の発光スペクトルである。 図34は、発光デバイス7および発光デバイス8の規格化輝度−時間変化特性である。 図35は、発光デバイス9の輝度−電流密度特性である。 図36は、発光デバイス9の電流効率−輝度特性である。 図37は、発光デバイス9の輝度−電圧特性である。 図38は、発光デバイス9の電流−電圧特性である。 図39は、発光デバイス9の外部量子効率−輝度特性である。 図40は、発光デバイス9の発光スペクトルである。 図41は、発光デバイス9の規格化輝度−時間変化特性である。 図42は、電子オンリー素子の構造を示す図である。 図43は、電子オンリー素子の電流密度−電圧特性である。 図44は、直流電圧7.0VにおけるZADN:Liq(1:1)の算出されたキャパシタンスCの周波数特性である。 図45は、直流電圧7.0VにおけるZADN:Liq(1:1)の−ΔBの周波数特性である。 図46は、各有機化合物における電子移動度の電界強度依存特性である。 図47は、発光デバイス10の輝度−電流密度特性である。 図48は、発光デバイス10の電流効率−輝度特性である。 図49は、発光デバイス10の輝度−電圧特性である。 図50は、発光デバイス10の電流−電圧特性である。 図51は、発光デバイス10の外部量子効率−輝度特性である。 図52は、発光デバイス10の発光スペクトルである。 図53は、発光デバイス10の規格化輝度−時間変化特性である。 図54は、発光デバイス11の輝度−電流密度特性である。 図55は、発光デバイス11の電流効率−輝度特性である。 図56は、発光デバイス11の輝度−電圧特性である。 図57は、発光デバイス11の電流−電圧特性である。 図58は、発光デバイス11の外部量子効率−輝度特性である。 図59は、発光デバイス11の発光スペクトルである。 図60は、発光デバイス11の規格化輝度−時間変化特性である。 図61は、発光デバイス12の輝度−電流密度特性である。 図62は、発光デバイス12の電流効率−輝度特性である。 図63は、発光デバイス12の輝度−電圧特性である。 図64は、発光デバイス12の電流−電圧特性である。 図65は、発光デバイス12の外部量子効率−輝度特性である。 図66は、発光デバイス12の発光スペクトルである。 図67は、発光デバイス12の規格化輝度−時間変化特性である。 図68は、発光デバイス13乃至発光デバイス20の輝度−電流密度特性である。 図69は、発光デバイス13乃至発光デバイス20の電流効率−輝度特性である。 図70は、発光デバイス13乃至発光デバイス20の輝度−電圧特性である。 図71は、発光デバイス13乃至発光デバイス20の電流−電圧特性である。 図72は、発光デバイス13乃至発光デバイス20の外部量子効率−輝度特性である。 図73は、発光デバイス13乃至発光デバイス20の発光スペクトルである。 図74は、発光デバイス13乃至発光デバイス20の規格化輝度−時間変化特性である。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
(実施の形態1)
図1(A)に、本発明の一態様の発光デバイスを表す図を示す。本発明の一態様の発光デバイスは、陽極101と、陰極102、EL層103を有しており、当該EL層は、正孔注入層111、正孔輸送層112、発光層113および電子輸送層114を有している。
なお、図1(A)におけるEL層103には、これらに加えて電子注入層115が図示されているが、発光デバイスの構成はこれに限られることはない。上述の構成を有していれば、他の機能を有する層が含まれていても良い。
正孔注入層111には、第1の有機化合物と第2の有機化合物とが含まれる。第1の有機化合物は第2の有機化合物に対し、電子受容性を示す物質である。また、第2の有機化合物はそのHOMO準位が−5.7eV以上−5.2eV以下の比較的深いHOMO準位を有する物質である。第2の有機化合物が比較的深いHOMO準位を有することによって、正孔輸送層112への正孔の注入が容易となる。
第1の有機化合物は、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する有機化合物等を用いることができ、そのような物質の中から、上記第2の有機化合物に対して電子受容性を示す物質を適宜選択すれば良い。このような有機化合物としては、例えば、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F4−TCNQ)、クロラニル、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略称:HAT−CN)、1,3,4,5,7,8−ヘキサフルオロテトラシアノ−ナフトキノジメタン(略称:F6−TCNNQ)、2−(7−ジシアノメチレン−1,3,4,5,6,8,9,10−オクタフルオロ−7H−ピレン−2−イリデン)マロノニトリル等を挙げることができる。特に、HAT−CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’−1,2,3−シクロプロパントリイリデントリス[4−シアノ−2,3,5,6−テトラフルオロベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,6−ジクロロ−3,5−ジフルオロ−4−(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,3,4,5,6−ペンタフルオロベンゼンアセトニトリル]などが挙げられる。
第2の有機化合物は、正孔輸送性を有する有機化合物であることが好ましく、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれかを有していることが好ましい。特に、ジベンゾフラン環またはジベンゾチオフェン環を含む置換基を有する芳香族アミン、ナフタレン環を有する芳香族モノアミン、または9−フルオレニル基がアリーレン基を介してアミンの窒素に結合する芳香族モノアミンであっても良い。なお、これら第2の有機化合物が、N,N−ビス(4−ビフェニル)アミノ基を有する物質であると、寿命の良好な発光デバイスを作製することができるため好ましい。以上のような第2の有機化合物としては、具体的には、N−(4−ビフェニル)−6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BnfABP)、N,N−ビス(4−ビフェニル)−6−フェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BBABnf)、4,4’−ビス(6−フェニルベンゾ[b]ナフト[1,2−d]フラン−8−イル)−4’’−フェニルトリフェニルアミン(略称:BnfBB1BP)、N,N−ビス(4−ビフェニル)ベンゾ[b]ナフト[1,2−d]フラン−6−アミン(略称:BBABnf(6))、N,N−ビス(4−ビフェニル)ベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BBABnf(8))、N,N−ビス(4−ビフェニル)ベンゾ[b]ナフト[2,3−d]フラン−4−アミン(略称:BBABnf(II)(4))、N,N−ビス[4−(ジベンゾフラン−4−イル)フェニル]−4−アミノ−p−ターフェニル(略称:DBfBB1TP)、N−[4−(ジベンゾチオフェン−4−イル)フェニル]−N−フェニル−4−ビフェニルアミン(略称:ThBA1BP)、4−(2−ナフチル)−4’,4’’−ジフェニルトリフェニルアミン(略称:BBAβNB)、4−[4−(2−ナフチル)フェニル]−4’,4’’−ジフェニルトリフェニルアミン(略称:BBAβNBi)、4−(2;1’−ビナフチル−6−イル)−4’,4’’−ジフェニルトリフェニルアミン(略称:BBAαNβNB)、4,4’−ジフェニル−4’’−(7;1’−ビナフチル−2−イル)トリフェニルアミン(略称:BBAαNβNB−03)、4,4’−ジフェニル−4’’−(7−フェニル)ナフチル−2−イルトリフェニルアミン(略称:BBAPβNB−03)、4−(6;2’−ビナフチル−2−イル)−4’,4’’−ジフェニルトリフェニルアミン(略称:BBA(βN2)B)、4−(2;2’−ビナフチル−7−イル)−4’,4’’−ジフェニルトリフェニルアミン(略称:BBA(βN2)B−03)、4−(1;2’−ビナフチル−4−イル)−4’,4’’−ジフェニルトリフェニルアミン(略称:BBAβNαNB)、4−(1;2’−ビナフチル−5−イル)−4’,4’’−ジフェニルトリフェニルアミン(略称:BBAβNαNB−02)、4−(4−ビフェニリル)−4’−(2−ナフチル)−4’’−フェニルトリフェニルアミン(略称:TPBiAβNB)、4−(3−ビフェニリル)−4’−[4−(2−ナフチル)フェニル]−4’’−フェニルトリフェニルアミン(略称:mTPBiAβNBi)、4−(4−ビフェニリル)−4’−[4−(2−ナフチル)フェニル]−4’’−フェニルトリフェニルアミン(略称:TPBiAβNBi)、4−(1−ナフチル)−4’−フェニルトリフェニルアミン(略称:αNBA1BP)、4,4’−ビス(1−ナフチル)トリフェニルアミン(略称:αNBB1BP)、4,4’−ジフェニル−4’’−[4’−(カルバゾール−9−イル)ビフェニル−4−イル]トリフェニルアミン(略称:YGTBi1BP)、4’−[4−(3−フェニル−9H−カルバゾール−9−イル)フェニル]トリス(1,1’−ビフェニル−4−イル)アミン(略称:YGTBi1BP−02)、4−[4’−(カルバゾール−9−イル)ビフェニル−4−イル]−4’−(2−ナフチル)−4’’−フェニルトリフェニルアミン(略称:YGTBiβNB)、N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−N−[4−(1−ナフチル)フェニル]−9,9’−スピロビ[9H−フルオレン]−2−アミン(略称:PCBNBSF)、N,N−ビス([1,1’−ビフェニル]−4−イル)−9,9’−スピロビ[9H−フルオレン]−2−アミン(略称:BBASF)、N,N−ビス([1,1’−ビフェニル]−4−イル)−9,9’−スピロビ[9H−フルオレン]−4−アミン(略称:BBASF(4))、N−(1,1’−ビフェニル−2−イル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9,9’−スピロビ[9H−フルオレン]−4−アミン(略称:oFBiSF)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)ジベンゾフラン−4−アミン(略称:FrBiF)、N−[4−(1−ナフチル)フェニル]−N−[3−(6−フェニルジベンゾフラン−4−イル)フェニル]−1−ナフチルアミン(略称:mPDBfBNBN)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、4−フェニル−4’−[4−(9−フェニルフルオレン−9−イル)フェニル]トリフェニルアミン(略称:BPAFLBi)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9’−スピロビ[9H−フルオレン]−2−アミン(略称:PCBASF)、N−(1,1’−ビフェニル−4−イル)−9,9−ジメチル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9H−フルオレン−2−アミン(略称:PCBBiF)等を挙げることができる。
正孔輸送層112は、第1の正孔輸送層112−1と第2の正孔輸送層112−2を有する。第1の正孔輸送層112−1は第2の正孔輸送層112−2よりも陽極101側に位置するものとする。なお、第2の正孔輸送層112−2は電子ブロック層の機能を同時に担う場合もある。
第1の正孔輸送層112−1は第3の有機化合物を、第2の正孔輸送層112−2は第4の有機化合物を有している。
第3の有機化合物および第4の有機化合物は正孔輸送性を有する有機化合物であることが好ましい。第3の有機化合物および第4の有機化合物は上記第2の有機化合物として用いることが可能な有機化合物を同様に用いることができる。
第2の有機化合物のHOMO準位と第3の有機化合物のHOMO準位では、第3の有機化合物のHOMO準位の方が深く、その差が0.2eV以下になるように各々材料を選択することが好ましい。なお、第2の有機化合物と第3の有機化合物は同じ物質であることがさらに好ましい。また、第3の有機化合物のHOMO準位と、第4の有機化合物のHOMO準位では、第4の有機化合物のHOMO準位の方が深いほうが好ましい。さらに、その差が0.2eV以下になるように各々材料を選択するとよい。第2の有機化合物乃至第4の有機化合物のHOMO準位が以上のような関係であることによって、各層にスムーズに正孔が注入され、駆動電圧の上昇や発光層における正孔の過少状態を防ぐことができる。
なお、第2の有機化合物乃至第4の有機化合物は、各々正孔輸送性骨格を有することが好ましい。当該正孔輸送性骨格としては、これら有機化合物のHOMO準位が浅くなりすぎないカルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格が好ましい。また、これら正孔輸送性骨格が隣り合う層同士の材料(例えば第2の有機化合物と第3の有機化合物または第3の有機化合物と第4の有機化合物)で共通していると、正孔の注入がスムーズになるため好ましい。特にこれらの正孔輸送性骨格としては、ジベンゾフラン骨格が好ましい。
また、隣り合う層に含まれる材料(例えば第2の有機化合物と第3の有機化合物または第3の有機化合物と第4の有機化合物)が同じ材料であるとより正孔の注入がスムーズとなるため好ましい構成である。特に第2の有機化合物と第3の有機化合物が同じ材料である構成が好ましい。
発光層113は第5の有機化合物と第6の有機化合物を有している。第5の有機化合物は発光中心物質であり、第6の有機化合物は、第5の有機化合物を分散するためのホスト材料である。
発光中心材料は蛍光発光物質であっても、りん光発光物質であっても、熱活性化遅延蛍光(TADF)を示す物質であっても、その他の発光材料であっても構わない。また、単層であっても、異なる発光材料が含まれる複数の層からなっていても良い。なお、本発明の一態様は、発光層113が蛍光発光を呈する層、特に、青色の蛍光発光を呈する層である場合により好適に適用することができる。
発光層113において、蛍光発光物質として用いることが可能な材料としては、例えば以下のようなものが挙げられる。また、これ以外の蛍光発光物質も用いることができる。
5,6−ビス[4−(10−フェニル−9−アントリル)フェニル]−2,2’−ビピリジン(略称:PAP2BPy)、5,6−ビス[4’−(10−フェニル−9−アントリル)ビフェニル−4−イル]−2,2’−ビピリジン(略称:PAPP2BPy)、N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6FLPAPrn)、N,N’−ビス(3−メチルフェニル)−N,N’−ビス[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPA)、N,N’’−(2−tert−ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPPA)、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、クマリン30、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCABPhA)、N−(9,10−ジフェニル−2−アントリル)−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPABPhA)、9,10−ビス(1,1’−ビフェニル−2−イル)−N−[4−(9H−カルバゾール−9−イル)フェニル]−N−フェニルアントラセン−2−アミン(略称:2YGABPhA)、N,N,9−トリフェニルアントラセン−9−アミン(略称:DPhAPhA)、クマリン545T、N,N’−ジフェニルキナクリドン、(略称:DPQd)、ルブレン、5,12−ビス(1,1’−ビフェニル−4−イル)−6,11−ジフェニルテトラセン(略称:BPT)、2−(2−{2−[4−(ジメチルアミノ)フェニル]エテニル}−6−メチル−4H−ピラン−4−イリデン)プロパンジニトリル(略称:DCM1)、2−{2−メチル−6−[2−(2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCM2)、N,N,N’,N’−テトラキス(4−メチルフェニル)テトラセン−5,11−ジアミン(略称:p−mPhTD)、7,14−ジフェニル−N,N,N’,N’−テトラキス(4−メチルフェニル)アセナフト[1,2−a]フルオランテン−3,10−ジアミン(略称:p−mPhAFD)、2−{2−イソプロピル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTI)、2−{2−tert−ブチル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTB)、2−(2,6−ビス{2−[4−(ジメチルアミノ)フェニル]エテニル}−4H−ピラン−4−イリデン)プロパンジニトリル(略称:BisDCM)、2−{2,6−ビス[2−(8−メトキシ−1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:BisDCJTM)、N,N’−(ピレン−1,6−ジイル)ビス[(6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)、3,10−ビス[N−(9−フェニル−9H−カルバゾール−2−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)−02)、3,10−ビス[N−(ジベンゾフラン−3−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10FrA2Nbf(IV)−02)などが挙げられる。特に、1,6FLPAPrnや1,6mMemFLPAPrn、1,6BnfAPrn−03のようなピレンジアミン化合物に代表される縮合芳香族ジアミン化合物は、ホールトラップ性が高く、発光効率や信頼性に優れているため好ましい。
発光層113において、発光中心材料としてりん光発光物質を用いる場合、用いることが可能な材料としては、例えば以下のようなものが挙げられる。
トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN2]フェニル−κC}イリジウム(III)(略称:Ir(mpptz−dmp))、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:Ir(Mptz))、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:Ir(iPrptz−3b))のような4H−トリアゾール骨格を有する有機金属イリジウム錯体や、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:Ir(Mptz1−mp))、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:Ir(Prptz1−Me))のような1H−トリアゾール骨格を有する有機金属イリジウム錯体や、fac−トリス[1−(2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:Ir(iPrpmi))、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:Ir(dmpimpt−Me))のようなイミダゾール骨格を有する有機金属イリジウム錯体や、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:Ir(CFppy)(pic))、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のような電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙げられる。これらは青色のりん光発光を示す化合物であり、440nmから520nmに発光のピークを有する化合物である。
また、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:Ir(mppm))、トリス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:Ir(tBuppm))、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:Ir(mppm)(acac))、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:Ir(tBuppm)(acac))、(アセチルアセトナト)ビス[6−(2−ノルボルニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:Ir(mpmppm)(acac))、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:Ir(dppm)(acac))のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:Ir(mppr−Me)(acac))、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:Ir(mppr−iPr)(acac))のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:Ir(ppy))、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)acac)、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)(acac))、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:Ir(bzq))、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:Ir(pq))、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(pq)(acac))のようなピリジン骨格を有する有機金属イリジウム錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)(Phen))のような希土類金属錯体が挙げられる。これらは主に緑色のりん光発光を示す化合物であり、500nm〜600nmに発光のピークを有する。なお、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい。
また、(ジイソブチリルメタナト)ビス[4,6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:Ir(5mdppm)(dibm))、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:Ir(5mdppm)(dpm))、ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:Ir(d1npm)(dpm))のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:Ir(tppr)(acac))、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:Ir(tppr)(dpm))、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)(acac))のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:Ir(piq))、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)acac)のようなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:PtOEP)のような白金錯体や、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)(Phen))、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)(Phen))のような希土類金属錯体が挙げられる。これらは、赤色のりん光発光を示す化合物であり、600nmから700nmに発光のピークを有する。また、ピラジン骨格を有する有機金属イリジウム錯体は、色度の良い赤色発光が得られる。
また、以上で述べたりん光性化合物の他、公知のりん光性発光材料を選択し、用いてもよい。
TADF材料としてはフラーレン及びその誘導体、アクリジン及びその誘導体、エオシン誘導体等を用いることができる。またマグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。該金属含有ポルフィリンとしては、例えば、以下の構造式に示されるプロトポルフィリン−フッ化スズ錯体(SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(PtClOEP)等も挙げられる。
また、以下の構造式に示される2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)や、9−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−9’−フェニル−9H,9’H−3,3’−ビカルバゾール(略称:PCCzTzn)、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)、等のπ電子過剰型複素芳香環とπ電子不足型複素芳香環の一方または両方を有する複素環化合物も用いることができる。該複素環化合物は、π電子過剰型複素芳香環及びπ電子不足型複素芳香環を有するため、電子輸送性及び正孔輸送性が共に高く、好ましい。中でも、π電子不足型複素芳香環を有する骨格のうち、ピリジン骨格、ジアジン骨格(ピリミジン骨格、ピラジン骨格、ピリダジン骨格)、およびトリアジン骨格は、安定で信頼性が良好なため好ましい。特に、ベンゾフロピリミジン骨格、ベンゾチエノピリミジン骨格、ベンゾフロピラジン骨格、ベンゾチエノピラジン骨格は電子受容性が高く、信頼性が良好なため好ましい。また、π電子過剰型複素芳香環を有する骨格の中でも、アクリジン骨格、フェノキサジン骨格、フェノチアジン骨格、フラン骨格、チオフェン骨格、及びピロール骨格は、安定で信頼性が良好なため、当該骨格の少なくとも一を有することが好ましい。なお、フラン骨格としてはジベンゾフラン骨格が、チオフェン骨格としてはジベンゾチオフェン骨格が、それぞれ好ましい。また、ピロール骨格としては、インドール骨格、カルバゾール骨格、インドロカルバゾール骨格、ビカルバゾール骨格、3−(9−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール骨格が特に好ましい。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環の電子供与性とπ電子不足型複素芳香環の電子受容性が共に強くなり、S準位とT準位のエネルギー差が小さくなるため、熱活性化遅延蛍光を効率よく得られることから特に好ましい。なお、π電子不足型複素芳香環の代わりに、シアノ基のような電子吸引基が結合した芳香環を用いても良い。また、π電子過剰型骨格として、芳香族アミン骨格、フェナジン骨格等を用いることができる。また、π電子不足型骨格として、キサンテン骨格、チオキサンテンジオキサイド骨格、オキサジアゾール骨格、トリアゾール骨格、イミダゾール骨格、アントラキノン骨格、フェニルボランやボラントレン等の含ホウ素骨格、ベンゾニトリルまたはシアノベンゼン等のニトリル基またはシアノ基を有する芳香環や複素芳香環、ベンゾフェノン等のカルボニル骨格、ホスフィンオキシド骨格、スルホン骨格等を用いることができる。このように、π電子不足型複素芳香環およびπ電子過剰型複素芳香環の少なくとも一方の代わりにπ電子不足型骨格およびπ電子過剰型骨格を用いることができる。
なお、TADF材料とは、S1準位とT1準位との差が小さく、逆項間交差によって三重項励起エネルギーから一重項励起エネルギーへエネルギーを変換することができる機能を有する材料である。そのため、三重項励起エネルギーをわずかな熱エネルギーによって一重項励起エネルギーにアップコンバート(逆項間交差)が可能で、一重項励起状態を効率よく生成することができる。また、三重項励起エネルギーを発光に変換することができる。
また、2種類の物質で励起状態を形成する励起錯体(エキサイプレックス、エキシプレックスまたはExciplexともいう)は、S1準位とT1準位との差が極めて小さく、三重項励起エネルギーを一重項励起エネルギーに変換することが可能なTADF材料としての機能を有する。
なお、T1準位の指標としては、低温(例えば77Kから10K)で観測される燐光スペクトルを用いればよい。TADF材料としては、その蛍光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをS1準位とし、燐光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをT1準位とした際に、そのS1とT1の差が0.3eV以下であることが好ましく、0.2eV以下であることがさらに好ましい。
また、TADF材料を発光中心材料として用いる場合、ホスト材料のS1準位はTADF材料のS1準位より高い方が好ましい。また、ホスト材料のT1準位はTADF材料のT1準位より高いことが好ましい。
発光層のホスト材料としては、電子輸送性を有する材料や正孔輸送性を有する材料、TADF材料など様々なキャリア輸送材料を用いることができる。
正孔輸送性を有する材料としては、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4、4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9’−スピロビ[9H−フルオレン]−2−アミン(略称:PCBASF)などの芳香族アミン骨格を有する化合物や、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)などのフラン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。また、上記第2の有機化合物の例として挙げた有機化合物も用いることができる。
電子輸送性を有する材料としては、例えば、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体や、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)などのポリアゾール骨格を有する複素環化合物や、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)などのジアジン骨格を有する複素環化合物や、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)−フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物が挙げられる。上述した中でも、ジアジン骨格を有する複素環化合物やピリジン骨格を有する複素環化合物は、信頼性が良好であり好ましい。特に、ジアジン(ピリミジンやピラジン)骨格を有する複素環化合物は、電子輸送性が高く、駆動電圧低減にも寄与する。
ホスト材料として用いることが可能なTADF材料としては、先に挙げたものを同様に用いることができる。TADF材料をホスト材料として用いると、TADF材料で生成した三重項励起エネルギーが、逆項間交差によって一重項励起エネルギーに変換され、さらに発光中心物質へエネルギー移動することで、発光素子の発光効率を高めることができる。このとき、TADF材料がエネルギードナーとして機能し、発光中心物質がエネルギーアクセプターとして機能する。
これは、上記発光中心物質が蛍光発光物質である場合に、非常に有効である。また、このとき、高い発光効率を得るためには、TADF材料のS1準位は、蛍光発光物質のS1準位より高いことが好ましい。また、TADF材料のT1準位は、蛍光発光物質のS1準位より高いことが好ましい。したがって、TADF材料のT1準位は、蛍光発光物質のT1準位より高いことが好ましい。
また、蛍光発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈するTADF材料を用いることが好ましい。そうすることで、TADF材料から蛍光発光物質への励起エネルギーの移動がスムーズとなり、効率よく発光が得られるため、好ましい。
また、効率よく三重項励起エネルギーから逆項間交差によって一重項励起エネルギーが生成されるためには、TADF材料でキャリア再結合が生じることが好ましい。また、TADF材料で生成した三重項励起エネルギーが蛍光発光物質の三重項励起エネルギーに移動しないことが好ましい。そのためには、蛍光発光物質は、蛍光発光物質が有する発光団(発光の原因となる骨格)の周囲に保護基を有すると好ましい。該保護基としては、π結合を有さない置換基が好ましく、飽和炭化水素が好ましく、具体的には炭素数3以上10以下のアルキル基、置換もしくは無置換の炭素数3以上10以下のシクロアルキル基、炭素数3以上10以下のトリアルキルシリル基が挙げられ、保護基が複数あるとさらに好ましい。π結合を有さない置換基は、キャリアを輸送する機能に乏しいため、キャリア輸送やキャリア再結合に影響をほとんど与えずに、TADF材料と蛍光発光物質の発光団との距離を遠ざけることができる。ここで、発光団とは、蛍光発光物質において発光の原因となる原子団(骨格)を指す。発光団は、π結合を有する骨格が好ましく、芳香環を含むことが好ましく、縮合芳香環または縮合複素芳香環を有すると好ましい。縮合芳香環または縮合複素芳香環としては、フェナントレン骨格、スチルベン骨格、アクリドン骨格、フェノキサジン骨格、フェノチアジン骨格等が挙げられる。特にナフタレン骨格、アントラセン骨格、フルオレン骨格、クリセン骨格、トリフェニレン骨格、テトラセン骨格、ピレン骨格、ペリレン骨格、クマリン骨格、キナクリドン骨格、ナフトビスベンゾフラン骨格を有する蛍光発光物質は蛍光量子収率が高いため好ましい。
蛍光発光物質を発光中心物質として用いる場合、ホスト材料としては、アントラセン骨格を有する材料が好適である。アントラセン骨格を有する物質を蛍光発光物質のホスト材料として用いると、発光効率、耐久性共に良好な発光層を実現することが可能である。ホスト材料として用いるアントラセン骨格を有する物質としては、ジフェニルアントラセン骨格、特に9,10−ジフェニルアントラセン骨格を有する物質が化学的に安定であるため好ましい。また、ホスト材料がカルバゾール骨格を有する場合、正孔の注入・輸送性が高まるため好ましいが、カルバゾールにベンゼン環がさらに縮合したベンゾカルバゾール骨格を含む場合、カルバゾールよりもHOMOが0.1eV程度浅くなり、正孔が入りやすくなるためより好ましい。特に、ホスト材料がジベンゾカルバゾール骨格を含む場合、カルバゾールよりもHOMOが0.1eV程度浅くなり、正孔が入りやすくなる上に、正孔輸送性にも優れ、耐熱性も高くなるため好適である。したがって、さらにホスト材料として好ましいのは、9,10−ジフェニルアントラセン骨格およびカルバゾール骨格(あるいはベンゾカルバゾール骨格やジベンゾカルバゾール骨格)を同時に有する物質である。なお、上記の正孔注入・輸送性の観点から、カルバゾール骨格に換えて、ベンゾフルオレン骨格やジベンゾフルオレン骨格を用いてもよい。このような物質の例としては、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6−[3−(9,10−ジフェニル−2−アントリル)フェニル]−ベンゾ[b]ナフト[1,2−d]フラン(略称:2mBnfPPA)、9−フェニル−10−{4−(9−フェニル−9H−フルオレン−9−イル)ビフェニル−4’−イル}アントラセン(略称:FLPPA)、9−(1−ナフチル)−10−[4−(2−ナフチル)フェニル]アントラセン(略称:αN−βNPAnth)等が挙げられる。特に、CzPA、cgDBCzPA、2mBnfPPA、PCzPAは非常に良好な特性を示すため、好ましい選択である。
なお、ホスト材料は複数種の物質を混合した材料であっても良く、混合したホスト材料を用いる場合は、電子輸送性を有する材料と、正孔輸送性を有する材料とを混合することが好ましい。電子輸送性を有する材料と、正孔輸送性を有する材料を混合することによって、発光層113の輸送性を容易に調整することができ、再結合領域の制御も簡便に行うことができる。正孔輸送性を有する材料と電子輸送性を有する材料の含有量の重量比は、正孔輸送性を有する材料:電子輸送性を有する材料=1:19〜19:1とすればよい。
なお、上記混合された材料の一部として、りん光発光物質を用いることができる。りん光発光物質は、発光中心材料として蛍光発光物質を用いる際に蛍光発光物質へ励起エネルギーを供与するエネルギードナーとして用いることができる。
また、これら混合された材料同士で励起錯体を形成しても良い。当該励起錯体は発光材料の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光が得られるため好ましい。また、当該構成を用いることで駆動電圧も低下するため好ましい。
なお、励起錯体を形成する材料の少なくとも一方は、りん光発光物質であってもよい。そうすることで、三重項励起エネルギーを逆項間交差によって効率よく一重項励起エネルギーへ変換することができる。
効率よく励起錯体を形成する材料の組み合わせとしては、正孔輸送性を有する材料のHOMO準位が電子輸送性を有する材料のHOMO準位以上であると好ましい。また、正孔輸送性を有する材料のLUMO準位が電子輸送性を有する材料のLUMO準位以上であると好ましい。なお、材料のLUMO準位およびHOMO準位は、サイクリックボルタンメトリ(CV)測定によって測定される材料の電気化学特性(還元電位および酸化電位)から導出することができる。
なお、励起錯体の形成は、例えば正孔輸送性を有する材料の発光スペクトル、電子輸送性を有する材料の発光スペクトル、およびこれら材料を混合した混合膜の発光スペクトルを比較し、混合膜の発光スペクトルが、各材料の発光スペクトルよりも長波長シフトする(あるいは長波長側に新たなピークを持つ)現象を観測することにより確認することができる。あるいは、正孔輸送性を有する材料の過渡フォトルミネッセンス(PL)、電子輸送性を有する材料の過渡PL、及びこれら材料を混合した混合膜の過渡PLを比較し、混合膜の過渡PL寿命が、各材料の過渡PL寿命よりも長寿命成分を有する、あるいは遅延成分の割合が大きくなるなどの過渡応答の違いを観測することにより、確認することができる。また、上述の過渡PLは過渡エレクトロルミネッセンス(EL)と読み替えても構わない。すなわち、正孔輸送性を有する材料の過渡EL、電子輸送性を有する材料の過渡EL及びこれらの混合膜の過渡ELを比較し、過渡応答の違いを観測することによっても、励起錯体の形成を確認することができる。
ここで、第6の有機化合物が上記αN−βNPAnthのような炭化水素のみで構成される有機化合物である場合、第4の有機化合物のHOMO準位と第6の有機化合物のHOMO準位では第6の有機化合物の方がHOMO準位が深く、その差が0.2eV以上0.4eV以下であることが正孔の輸送性が障壁により適度に妨げられるため好ましい。
また、第6の有機化合物が上記cgDBCzPAやCzPAのようなアントラセン骨格と複素環骨格とを有する有機化合物である場合、第4の有機化合物と第6の有機化合物とのHOMO準位の差が0.2eV未満であることが正孔が注入障壁により妨げられることなく注入されるため好ましい。この場合、特に第4の有機化合物がナフタレン環に2つのカルバゾール環が結合した有機化合物であることが好ましく、代表的には3,3’−(ナフタレン−1,4−ジイル)ビス(9−フェニル−9H−カルバゾール)を挙げることができる。
また、第6の有機化合物が上記cgDBCzPAやCzPAのようなアントラセン骨格と複素環骨格とを有する有機化合物である場合、第2の有機化合物のHOMO準位が−5.4eV以上−5.7eV以下であることがより劣化が抑制されることから好ましい。
電子輸送層114は、第7の有機化合物を有している。第7の有機化合物は電子輸送性を有する有機化合物であり、π電子不足型複素芳香族化合物であることが好ましい。なお、特に、キノキサリン骨格、ベンゾイミダゾール骨格およびトリアジン骨格のいずれかの骨格を有することが好ましい。電子輸送性を有する有機化合物としては、上記ホスト材料に用いることが可能な電子輸送性を有する有機化合物、または上記蛍光発光物質のホスト材料として用いることが可能な有機化合物として挙げたものを用いることができる。
また、第7の有機化合物はその電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であることが好ましい。また、第6の有機化合物のLUMO準位と、第7の有機化合物のLUMO準位を比較すると、第6の有機化合物のLUMO準位の方が浅い方が好ましく、その差が0.1eV以上0.3eV以下であることがさらに好ましい。さらに、第7の有機化合物の電界強度[V/cm]の平方根が600である時の電子移動度が第6の有機化合物の電界強度[V/cm]の平方根が600である時の電子移動度よりも小さいことが好ましい。前者では電子輸送層における電子の輸送性を落とすことにより、後者ではLUMO準位の差によって発光層への電子の注入量を制御することにより、発光層が電子過多の状態になることを防ぐことができる。
発光層が電子過多の状態になると、発光領域が一部に限定されることにより当該部分の負担が大きくなり、劣化が促進されてしまう。また、再結合できずに発光層を電子が通過してしまうことで発光効率も低下する。本発明の一態様では、このような状態になることを防ぎ、寿命が長く発光効率の良好な発光デバイスを提供することができる。
なお、このような構成を有する発光デバイスでは、電流密度一定の条件における駆動試験によって得られた輝度の劣化曲線において、初期にわずかに100%から劣化した後、「少し上がってからまた劣化する」という劣化挙動を示す。そのような挙動を示す本発明の一態様の発光デバイス、すなわち、劣化曲線に極大値を有するような発光デバイスは非常に寿命の良好な発光デバイスとなる。なおこのような劣化曲線の微分を取ると、その値が0である部分が存在するため、換言すると、劣化曲線の微分に0となる部分が存在する本発明の一態様の発光デバイスは非常に寿命が良好な発光デバイスとすることができる
以上のような構成を有する本発明の一態様の発光デバイスは、寿命の良好な発光デバイスとすることが可能である。
(実施の形態2)
続いて、上述の発光デバイスの詳細な構造や材料の例について説明する。本発明の一態様の発光デバイスは、上述のように陽極101と陰極102の一対の電極間に複数の層からなるEL層103を有し、当該EL層103は陽極101側より、正孔注入層111、第1の正孔輸送層112−1、第2の正孔輸送層112−2、発光層113および電子輸送層114を含む。
EL層103に含まれるそれ以外の層については特に限定はなく、正孔注入層、正孔輸送層、電子輸送層、電子注入層、キャリアブロック層、励起子ブロック層、電荷発生層など、様々な層構造を適用することができる。
陽極101は、仕事関数の大きい(具体的には4.0eV以上)金属、合金、導電性化合物、およびこれらの混合物などを用いて形成することが好ましい。具体的には、例えば、酸化インジウム−酸化スズ(ITO:Indium Tin Oxide)、ケイ素若しくは酸化ケイ素を含有した酸化インジウム−酸化スズ、酸化インジウム−酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)等が挙げられる。これらの導電性金属酸化物膜は、通常スパッタリング法により成膜されるが、ゾル−ゲル法などを応用して作製しても構わない。作製方法の例としては、酸化インジウム−酸化亜鉛は、酸化インジウムに対し1〜20wt%の酸化亜鉛を加えたターゲットを用いてスパッタリング法により形成する方法などがある。また、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)は、酸化インジウムに対し酸化タングステンを0.5〜5wt%、酸化亜鉛を0.1〜1wt%含有したターゲットを用いてスパッタリング法により形成することもできる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。グラフェンも用いることができる。なお、ここでは仕事関数が大きく、陽極を形成する材料として代表的な物質を列挙したが、本発明の一態様では、正孔注入層111に、正孔輸送性を有する有機化合物と、当該有機化合物に対し電子受容性を示す物質とを含む複合材料を用いるため、仕事関数に関わらず電極材料を選択することができる。
EL層103の積層構造については、本実施の形態では、図1(A)に示すように、正孔注入層111、第1の正孔輸送層112−1、第2の正孔輸送層112−2、発光層113、電子輸送層114に加えて電子注入層115を有する構成、及び図1(B)に示すように、正孔注入層111、第1の正孔輸送層112−1、第2の正孔輸送層112−2、発光層113、電子輸送層114に加えて電荷発生層116を有する構成の2種類の構成について説明する。各層を構成する材料について以下に具体的に示す。
正孔注入層111、正孔輸送層112(正孔輸送層112−1、正孔輸送層112−2)、発光層113および電子輸送層114に関しては、実施の形態1で詳述したため、繰り返しとなる記載を省略する。実施の形態1の記載を参照されたい。
電子輸送層114と陰極102との間に、電子注入層115として、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)等のようなアルカリ金属又はアルカリ土類金属又はそれらの化合物を含む層を設けても良い。電子注入層115は、電子輸送性を有する物質からなる層中にアルカリ金属又はアルカリ土類金属又はそれらの化合物を含有させたものや、エレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。
また、電子注入層115の代わりに電子輸送層114と陰極102との間に電荷発生層116を設けても良い(図1(B))。電荷発生層116は、電位をかけることによって当該層の陰極側に接する層に正孔を、陽極側に接する層に電子を注入することができる層のことである。電荷発生層116には、少なくともP型層117が含まれる。P型層117は、上述の正孔注入層111を構成することができる材料として挙げた複合材料を用いて形成することが好ましい。またP型層117は、複合材料を構成する材料として上述した電子受容性を示す物質を含む膜と正孔輸送材料を含む膜とを積層して構成しても良い。P型層117に電位をかけることによって、電子輸送層114に電子が、陰極である陰極102に正孔が注入され、発光デバイスが動作する。
なお、電荷発生層116はP型層117の他に電子リレー層118及び電子注入バッファ層119のいずれか一又は両方がもうけられていることが好ましい。
電子リレー層118は少なくとも電子輸送性を有する物質を含み、電子注入バッファ層119とP型層117との相互作用を防いで電子をスムーズに受け渡す機能を有する。電子リレー層118に含まれる電子輸送性を有する物質のLUMO準位は、P型層117における電子受容性物質のLUMO準位と、電子輸送層114における電荷発生層116に接する層に含まれる物質のLUMO準位との間であることが好ましい。電子リレー層118に用いられる電子輸送性を有する物質におけるLUMO準位の具体的なエネルギー準位は−5.0eV以上、好ましくは−5.0eV以上−3.0eV以下とするとよい。なお、電子リレー層118に用いられる電子輸送性を有する物質としてはフタロシアニン系の材料又は金属−酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
電子注入バッファ層119には、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))等の電子注入性の高い物質を用いることが可能である。
また、電子注入バッファ層119が、電子輸送性を有する物質と電子供与性物質を含んで形成される場合には、電子供与性物質として、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))の他、テトラチアナフタセン(略称:TTN)、ニッケロセン、デカメチルニッケロセン等の有機化合物を用いることもできる。なお、電子輸送性を有する物質としては、先に説明した電子輸送層114を構成する材料と同様の材料を用いて形成することができる。
陰極102を形成する物質としては、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる。このような陰極材料の具体例としては、リチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等の元素周期表の第1族または第2族に属する元素、およびこれらを含む合金(MgAg、AlLi)、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。しかしながら、陰極102と電子輸送層との間に、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、ケイ素若しくは酸化ケイ素を含有した酸化インジウム−酸化スズ等様々な導電性材料を陰極102として用いることができる。
これら導電性材料は、真空蒸着法やスパッタリング法などの乾式法、インクジェット法、スピンコート法等を用いて成膜することが可能である。また、ゾル−ゲル法を用いて湿式法で形成しても良いし、金属材料のペーストを用いて湿式法で形成してもよい。
また、EL層103の形成方法としては、乾式法、湿式法を問わず、種々の方法を用いることができる。例えば、真空蒸着法、グラビア印刷法、オフセット印刷法、スクリーン印刷法、インクジェット法またはスピンコート法など用いても構わない。
また上述した各電極または各層を異なる成膜方法を用いて形成しても構わない。
なお、陽極101と陰極102との間に設けられる層の構成は、上記のものには限定されない。しかし、発光領域と電極やキャリア注入層に用いられる金属とが近接することによって生じる消光が抑制されるように、陽極101および陰極102から離れた部位に正孔と電子とが再結合する発光領域を設けた構成が好ましい。
また、発光層113に接する正孔輸送層や電子輸送層、特に発光層113における再結合領域に近いキャリア輸送層は、発光層で生成した励起子からのエネルギー移動を抑制するため、そのバンドギャップが発光層を構成する発光材料もしくは、発光層に含まれる発光材料が有するバンドギャップより大きいバンドギャップを有する物質で構成することが好ましい。
続いて、複数の発光ユニットを積層した構成の発光デバイス(積層型素子、タンデム型素子ともいう)の態様について、図1(C)を参照して説明する。この発光デバイスは、陽極と陰極との間に、複数の発光ユニットを有する発光デバイスである。一つの発光ユニットは、図1(A)で示したEL層103とほぼ同様な構成を有する。つまり、図1(C)で示す発光デバイスは複数の発光ユニットを有する発光デバイスであり、図1(A)又は図1(B)で示した発光デバイスは、1つの発光ユニットを有する発光デバイスであるということができる。
図1(C)において、陽極501と陰極502との間には、第1の発光ユニット511と第2の発光ユニット512が積層されており、第1の発光ユニット511と第2の発光ユニット512との間には電荷発生層513が設けられている。陽極501と陰極502はそれぞれ図1(A)における陽極101と陰極102に相当し、図1(A)の説明で述べたものと同じものを適用することができる。また、第1の発光ユニット511と第2の発光ユニット512は同じ構成であっても異なる構成であってもよい。
電荷発生層513は、陽極501と陰極502に電圧を印加したときに、一方の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入する機能を有する。すなわち、図1(C)において、陽極の電位の方が陰極の電位よりも高くなるように電圧を印加した場合、電荷発生層513は、第1の発光ユニット511に電子を注入し、第2の発光ユニット512に正孔を注入するものであればよい。
電荷発生層513は、図1(B)にて説明した電荷発生層116と同様の構成で形成することが好ましい。有機化合物と金属酸化物の複合材料は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動、低電流駆動を実現することができる。なお、発光ユニットの陽極側の面が電荷発生層513に接している場合は、電荷発生層513が発光ユニットの正孔注入層の役割も担うことができるため、発光ユニットは正孔注入層を設けなくとも良い。
また、電荷発生層513に電子注入バッファ層119を設ける場合、当該電子注入バッファ層119が陽極側の発光ユニットにおける電子注入層の役割を担うため、陽極側の発光ユニットには必ずしも電子注入層を形成する必要はない。
図1(C)では、2つの発光ユニットを有する発光デバイスについて説明したが、3つ以上の発光ユニットを積層した発光デバイスについても、同様に適用することが可能である。本実施の形態に係る発光デバイスのように、一対の電極間に複数の発光ユニットを電荷発生層513で仕切って配置することで、電流密度を低く保ったまま、高輝度発光を可能とし、さらに長寿命な素子を実現できる。また、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。
また、それぞれの発光ユニットの発光色を異なるものにすることで、発光デバイス全体として、所望の色の発光を得ることができる。例えば、2つの発光ユニットを有する発光デバイスにおいて、第1の発光ユニットで赤と緑の発光色、第2の発光ユニットで青の発光色を得ることで、発光デバイス全体として白色発光する発光デバイスを得ることも可能である。また、3つの発光ユニットを有する発光デバイスにおいて、第1の発光ユニットで青の発光色、第2の発光ユニットで緑から赤の範囲にスペクトルを有する発光色、第3の発光ユニットで青の発光色を得ることで、青の発光ユニットにかかる負荷を分散し、より寿命の良好な発光デバイスを得ることが可能となる。
また、上述のEL層103や第1の発光ユニット511、第2の発光ユニット512及び電荷発生層などの各層や電極は、例えば、蒸着法(真空蒸着法を含む)、液滴吐出法(インクジェット法ともいう)、塗布法、グラビア印刷法等の方法を用いて形成することができる。また、それらは低分子材料、中分子材料(オリゴマー、デンドリマーを含む)、または高分子材料を含んでも良い。
(実施の形態3)
本実施の形態では、実施の形態1および実施の形態2に記載の発光デバイスを用いた発光装置について説明する。
本実施の形態では、実施の形態1および実施の形態2に記載の発光デバイスを用いて作製された発光装置について図2を用いて説明する。なお、図2(A)は、発光装置を示す上面図、図2(B)は図2(A)をA−BおよびC−Dで切断した断面図である。この発光装置は、発光デバイスの発光を制御するものとして、点線で示された駆動回路部(ソース線駆動回路)601、画素部602、駆動回路部(ゲート線駆動回路)603を含んでいる。また、604は封止基板、605はシール材であり、シール材605で囲まれた内側は、空間607になっている。
なお、引き回し配線608はソース線駆動回路601及びゲート線駆動回路603に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。
次に、断面構造について図2(B)を用いて説明する。素子基板610上には駆動回路部及び画素部が形成されているが、ここでは、駆動回路部であるソース線駆動回路601と、画素部602中の一つの画素が示されている。
素子基板610はガラス、石英、有機樹脂、金属、合金、半導体などからなる基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル等からなるプラスチック基板を用いて作製すればよい。
画素や駆動回路に用いられるトランジスタの構造は特に限定されない。例えば、逆スタガ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよい。また、トップゲート型のトランジスタでもボトムゲート型トランジスタでもよい。トランジスタに用いる半導体材料は特に限定されず、例えば、シリコン、ゲルマニウム、炭化シリコン、窒化ガリウム等を用いることができる。または、In−Ga−Zn系金属酸化物などの、インジウム、ガリウム、亜鉛のうち少なくとも一つを含む酸化物半導体を用いてもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
ここで、上記画素や駆動回路に設けられるトランジスタの他、後述するタッチセンサ等に用いられるトランジスタなどの半導体装置には、酸化物半導体を適用することが好ましい。特にシリコンよりもバンドギャップの広い酸化物半導体を適用することが好ましい。シリコンよりもバンドギャップの広い酸化物半導体を用いることで、トランジスタのオフ状態における電流を低減できる。
上記酸化物半導体は、少なくともインジウム(In)又は亜鉛(Zn)を含むことが好ましい。また、In−M−Zn系酸化物(MはAl、Ti、Ga、Ge、Y、Zr、Sn、La、CeまたはHf等の金属)で表記される酸化物を含む酸化物半導体であることがより好ましい。
特に、半導体層として、複数の結晶部を有し、当該結晶部はc軸が半導体層の被形成面、または半導体層の上面に対し垂直に配向し、且つ隣接する結晶部間には粒界を有さない酸化物半導体膜を用いることが好ましい。
半導体層としてこのような材料を用いることで、電気特性の変動が抑制され、信頼性の高いトランジスタを実現できる。
また、上述の半導体層を有するトランジスタはその低いオフ電流により、トランジスタを介して容量に蓄積した電荷を長期間に亘って保持することが可能である。このようなトランジスタを画素に適用することで、各表示領域に表示した画像の階調を維持しつつ、駆動回路を停止することも可能となる。その結果、極めて消費電力の低減された電子機器を実現できる。
トランジスタの特性安定化等のため、下地膜を設けることが好ましい。下地膜としては、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜などの無機絶縁膜を用い、単層で又は積層して作製することができる。下地膜はスパッタリング法、CVD(Chemical Vapor Deposition)法(プラズマCVD法、熱CVD法、MOCVD(Metal Organic CVD)法など)、ALD(Atomic Layer Deposition)法、塗布法、印刷法等を用いて形成できる。なお、下地膜は、必要で無ければ設けなくてもよい。
なお、FET623は駆動回路部601に形成されるトランジスタの一つを示すものである。また、駆動回路は、種々のCMOS回路、PMOS回路もしくはNMOS回路で形成すれば良い。また、本実施の形態では、基板上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を基板上ではなく外部に形成することもできる。
また、画素部602はスイッチング用FET611と、電流制御用FET612とそのドレインに電気的に接続された陽極613とを含む複数の画素により形成されているが、これに限定されず、3つ以上のFETと、容量素子とを組み合わせた画素部としてもよい。
なお、陽極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ型の感光性アクリル樹脂膜を用いることにより形成することができる。
また、後に形成するEL層等の被覆性を良好なものとするため、絶縁物614の上端部または下端部に曲率を有する曲面が形成されるようにする。例えば、絶縁物614の材料としてポジ型の感光性アクリルを用いた場合、絶縁物614の上端部のみに曲率半径(0.2μm〜3μm)を有する曲面を持たせることが好ましい。また、絶縁物614として、ネガ型の感光性樹脂、或いはポジ型の感光性樹脂のいずれも使用することができる。
陽極613上には、EL層616、および陰極617がそれぞれ形成されている。ここで、陽極613に用いる材料としては、仕事関数の大きい材料を用いることが望ましい。例えば、ITO膜、またはケイ素を含有したインジウム錫酸化物膜、2〜20wt%の酸化亜鉛を含む酸化インジウム膜、窒化チタン膜、クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタン膜とアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との3層構造等を用いることができる。なお、積層構造とすると、配線としての抵抗も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることができる。
また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート法等の種々の方法によって形成される。EL層616は、実施の形態1および実施の形態2で説明したような構成を含んでいる。また、EL層616を構成する他の材料としては、低分子化合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い。
さらに、EL層616上に形成された陰極617に用いる材料としては、仕事関数の小さい材料(Al、Mg、Li、Ca、またはこれらの合金や化合物(MgAg、MgIn、AlLi等)等)を用いることが好ましい。なお、EL層616で生じた光が陰極617を透過させる場合には、陰極617として、膜厚を薄くした金属薄膜と、透明導電膜(ITO、2〜20wt%の酸化亜鉛を含む酸化インジウム、ケイ素を含有したインジウム錫酸化物、酸化亜鉛(ZnO)等)との積層を用いるのが良い。
なお、陽極613、EL層616、陰極617でもって、発光デバイスが形成されている。当該発光デバイスは実施の形態1および実施の形態2に記載の発光デバイスである。なお、画素部は複数の発光デバイスが形成されてなっているが、本実施の形態における発光装置では、実施の形態1および実施の形態2に記載の発光デバイスと、それ以外の構成を有する発光デバイスの両方が含まれていても良い。
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光デバイス618が備えられた構造になっている。なお、空間607には、充填材が充填されており、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材で充填される場合もある。封止基板には凹部を形成し、そこに乾燥材を設けることで水分の影響による劣化を抑制することができ、好ましい構成である。
なお、シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。
図2には示されていないが、陰極上に保護膜を設けても良い。保護膜は有機樹脂膜や無機絶縁膜で形成すればよい。また、シール材605の露出した部分を覆うように、保護膜が形成されていても良い。また、保護膜は、一対の基板の表面及び側面、封止層、絶縁層、等の露出した側面を覆って設けることができる。
保護膜には、水などの不純物を透過しにくい材料を用いることができる。したがって、水などの不純物が外部から内部に拡散することを効果的に抑制することができる。
保護膜を構成する材料としては、酸化物、窒化物、フッ化物、硫化物、三元化合物、金属またはポリマー等を用いることができ、例えば、酸化アルミニウム、酸化ハフニウム、ハフニウムシリケート、酸化ランタン、酸化珪素、チタン酸ストロンチウム、酸化タンタル、酸化チタン、酸化亜鉛、酸化ニオブ、酸化ジルコニウム、酸化スズ、酸化イットリウム、酸化セリウム、酸化スカンジウム、酸化エルビウム、酸化バナジウムまたは酸化インジウム等を含む材料や、窒化アルミニウム、窒化ハフニウム、窒化珪素、窒化タンタル、窒化チタン、窒化ニオブ、窒化モリブデン、窒化ジルコニウムまたは窒化ガリウム等を含む材料、チタンおよびアルミニウムを含む窒化物、チタンおよびアルミニウムを含む酸化物、アルミニウムおよび亜鉛を含む酸化物、マンガンおよび亜鉛を含む硫化物、セリウムおよびストロンチウムを含む硫化物、エルビウムおよびアルミニウムを含む酸化物、イットリウムおよびジルコニウムを含む酸化物等を含む材料を用いることができる。
保護膜は、段差被覆性(ステップカバレッジ)の良好な成膜方法を用いて形成することが好ましい。このような手法の一つに、原子層堆積(ALD:Atomic Layer Deposition)法がある。ALD法を用いて形成することができる材料を、保護膜に用いることが好ましい。ALD法を用いることで緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える保護膜を形成することができる。また、保護膜を形成する際に加工部材に与える損傷を、低減することができる。
例えばALD法を用いて保護膜を形成することで、複雑な凹凸形状を有する表面や、タッチパネルの上面、側面及び裏面にまで均一で欠陥の少ない保護膜を形成することができる。
以上のようにして、実施の形態1および実施の形態2に記載の発光デバイスを用いて作製された発光装置を得ることができる。
本実施の形態における発光装置は、実施の形態1および実施の形態2に記載の発光デバイスを用いているため、良好な特性を備えた発光装置を得ることができる。具体的には、実施の形態1および実施の形態2に記載の発光デバイスは寿命の長い発光デバイスであるため、信頼性の良好な発光装置とすることができる。また、実施の形態1および実施の形態2に記載の発光デバイスを用いた発光装置は発光効率が良好なため、消費電力の小さい発光装置とすることが可能である。
図3には白色発光を呈する発光デバイスを形成し、着色層(カラーフィルタ)等を設けることによってフルカラー化した発光装置の例を示す。図3(A)には基板1001、下地絶縁膜1002、ゲート絶縁膜1003、ゲート電極1006、1007、1008、第1の層間絶縁膜1020、第2の層間絶縁膜1021、周辺部1042、画素部1040、駆動回路部1041、発光デバイスの陽極1024W、1024R、1024G、1024B、隔壁1025、EL層1028、発光デバイスの陰極1029、封止基板1031、シール材1032などが図示されている。
また、図3(A)では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)は透明な基材1033に設けている。また、ブラックマトリクス1035をさらに設けても良い。着色層及びブラックマトリクスが設けられた透明な基材1033は、位置合わせし、基板1001に固定する。なお、着色層、及びブラックマトリクス1035は、オーバーコート層1036で覆われている。また、図3(A)においては、光が着色層を透過せずに外部へと出る発光層と、各色の着色層を透過して外部に光が出る発光層とがあり、着色層を透過しない光は白、着色層を透過する光は赤、緑、青となることから、4色の画素で映像を表現することができる。
図3(B)では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)をゲート絶縁膜1003と第1の層間絶縁膜1020との間に形成する例を示した。このように、着色層は基板1001と封止基板1031の間に設けられていても良い。
また、以上に説明した発光装置では、FETが形成されている基板1001側に光を取り出す構造(ボトムエミッション型)の発光装置としたが、封止基板1031側に発光を取り出す構造(トップエミッション型)の発光装置としても良い。トップエミッション型の発光装置の断面図を図4に示す。この場合、基板1001は光を通さない基板を用いることができる。FETと発光デバイスの陽極とを接続する接続電極を作製するまでは、ボトムエミッション型の発光装置と同様に形成する。その後、第3の層間絶縁膜1037を電極1022を覆って形成する。この絶縁膜は平坦化の役割を担っていても良い。第3の層間絶縁膜1037は第2の層間絶縁膜と同様の材料の他、他の公知の材料を用いて形成することができる。
発光デバイスの陽極1024W、1024R、1024G、1024Bはここでは陽極であるが、陰極として形成しても構わない。また、図4のようなトップエミッション型の発光装置である場合、陽極を反射電極とすることが好ましい。EL層1028の構成は、実施の形態1および実施の形態2においてEL層103として説明したような構成とし、且つ、白色の発光が得られるような素子構造とする。
図4のようなトップエミッションの構造では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)を設けた封止基板1031で封止を行うことができる。封止基板1031には画素と画素との間に位置するようにブラックマトリクス1035を設けても良い。着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)やブラックマトリックスはオーバーコート層1036によって覆われていても良い。なお封止基板1031は透光性を有する基板を用いることとする。また、ここでは赤、緑、青、白の4色でフルカラー表示を行う例を示したが特に限定されず、赤、黄、緑、青の4色や赤、緑、青の3色でフルカラー表示を行ってもよい。
トップエミッション型の発光装置では、マイクロキャビティ構造の適用が好適に行える。マイクロキャビティ構造を有する発光デバイスは、陽極を反射電極、陰極を半透過・半反射電極とすることにより得られる。反射電極と半透過・半反射電極との間には少なくともEL層を有し、少なくとも発光領域となる発光層を有している。
なお、反射電極は、可視光の反射率が40%乃至100%、好ましくは70%乃至100%であり、かつその抵抗率が1×10−2Ωcm以下の膜であるとする。また、半透過・半反射電極は、可視光の反射率が20%乃至80%、好ましくは40%乃至70%であり、かつその抵抗率が1×10−2Ωcm以下の膜であるとする。
EL層に含まれる発光層から射出される発光は、反射電極と半透過・半反射電極とによって反射され、共振する。
当該発光デバイスは、透明導電膜や上述の複合材料、キャリア輸送材料などの厚みを変えることで反射電極と半透過・半反射電極の間の光学的距離を変えることができる。これにより、反射電極と半透過・半反射電極との間において、共振する波長の光を強め、共振しない波長の光を減衰させることができる。
なお、反射電極によって反射されて戻ってきた光(第1の反射光)は、発光層から半透過・半反射電極に直接入射する光(第1の入射光)と大きな干渉を起こすため、反射電極と発光層の光学的距離を(2n−1)λ/4(ただし、nは1以上の自然数、λは増幅したい発光の波長)に調節することが好ましい。当該光学的距離を調節することにより、第1の反射光と第1の入射光との位相を合わせ発光層からの発光をより増幅させることができる。
なお、上記構成においては、EL層に複数の発光層を有する構造であっても、単一の発光層を有する構造であっても良く、例えば、上述のタンデム型発光デバイスの構成と組み合わせて、一つの発光デバイスに電荷発生層を挟んで複数のEL層を設け、それぞれのEL層に単数もしくは複数の発光層を形成する構成に適用してもよい。
マイクロキャビティ構造を有することで、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。なお、赤、黄、緑、青の4色の副画素で映像を表示する発光装置の場合、黄色発光による輝度向上効果のうえ、全副画素において各色の波長に合わせたマイクロキャビティ構造を適用できるため良好な特性の発光装置とすることができる。
本実施の形態における発光装置は、実施の形態1および実施の形態2に記載の発光デバイスを用いているため、良好な特性を備えた発光装置を得ることができる。具体的には、実施の形態1および実施の形態2に記載の発光デバイスは寿命の長い発光デバイスであるため、信頼性の良好な発光装置とすることができる。また、実施の形態1および実施の形態2に記載の発光デバイスを用いた発光装置は発光効率が良好なため、消費電力の小さい発光装置とすることが可能である。
ここまでは、アクティブマトリクス型の発光装置について説明したが、以下からはパッシブマトリクス型の発光装置について説明する。図5には本発明を適用して作製したパッシブマトリクス型の発光装置を示す。なお、図5(A)は、発光装置を示す斜視図、図5(B)は図5(A)をX−Yで切断した断面図である。図5において、基板951上には、電極952と電極956との間にはEL層955が設けられている。電極952の端部は絶縁層953で覆われている。そして、絶縁層953上には隔壁層954が設けられている。隔壁層954の側壁は、基板面に近くなるに伴って、一方の側壁と他方の側壁との間隔が狭くなっていくような傾斜を有する。つまり、隔壁層954の短辺方向の断面は、台形状であり、底辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接する辺)の方が上辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接しない辺)よりも短い。このように、隔壁層954を設けることで、静電気等に起因した発光デバイスの不良を防ぐことが出来る。また、パッシブマトリクス型の発光装置においても、実施の形態1および実施の形態2に記載の発光デバイスを用いており、信頼性の良好な発光装置、又は消費電力の小さい発光装置とすることができる。
以上、説明した発光装置は、マトリクス状に配置された多数の微小な発光デバイスをそれぞれ制御することが可能であるため、画像の表現を行う表示装置として好適に利用できる発光装置である。
また、本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態4)
本実施の形態では、実施の形態1および実施の形態2に記載の発光デバイスを照明装置として用いる例を図6を参照しながら説明する。図6(B)は照明装置の上面図、図6(A)は図6(B)におけるe−f断面図である。
本実施の形態における照明装置は、支持体である透光性を有する基板400上に、陽極401が形成されている。陽極401は実施の形態2における陽極101に相当する。陽極401側から発光を取り出す場合、陽極401は透光性を有する材料により形成する。
陰極404に電圧を供給するためのパッド412が基板400上に形成される。
陽極401上にはEL層403が形成されている。EL層403は実施の形態1および実施の形態2におけるEL層103の構成、又は発光ユニット511、512及び電荷発生層513を合わせた構成などに相当する。なお、これらの構成については当該記載を参照されたい。
EL層403を覆って陰極404を形成する。陰極404は実施の形態2における陰極102に相当する。発光を陽極401側から取り出す場合、陰極404は反射率の高い材料によって形成される。陰極404はパッド412と接続することによって、電圧が供給される。
以上、陽極401、EL層403、及び陰極404を有する発光デバイスを本実施の形態で示す照明装置は有している。当該発光デバイスは発光効率の高い発光デバイスであるため、本実施の形態における照明装置は消費電力の小さい照明装置とすることができる。
以上の構成を有する発光デバイスが形成された基板400と、封止基板407とをシール材405、406を用いて固着し、封止することによって照明装置が完成する。シール材405、406はどちらか一方でもかまわない。また、内側のシール材406(図6(B)では図示せず)には乾燥剤を混ぜることもでき、これにより、水分を吸着することができ、信頼性の向上につながる。
また、パッド412と陽極401の一部をシール材405、406の外に伸張して設けることによって、外部入力端子とすることができる。また、その上にコンバーターなどを搭載したICチップ420などを設けても良い。
以上、本実施の形態に記載の照明装置は、EL素子に実施の形態1および実施の形態2に記載の発光デバイスを用いており、信頼性の良好な発光装置とすることができる。また、消費電力の小さい発光装置とすることができる。
(実施の形態5)
本実施の形態では、実施の形態1および実施の形態2に記載の発光デバイスをその一部に含む電子機器の例について説明する。実施の形態1および実施の形態2に記載の発光デバイスは寿命が良好であり、信頼性の良好な発光デバイスである。その結果、本実施の形態に記載の電子機器は、信頼性の良好な発光部を有する電子機器とすることが可能である。
上記発光デバイスを適用した電子機器として、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。これらの電子機器の具体例を以下に示す。
図7(A)は、テレビジョン装置の一例を示している。テレビジョン装置は、筐体7101に表示部7103が組み込まれている。また、ここでは、スタンド7105により筐体7101を支持した構成を示している。表示部7103により、映像を表示することが可能であり、表示部7103は、実施の形態1および実施の形態2に記載の発光デバイスをマトリクス状に配列して構成されている。
テレビジョン装置の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7110により行うことができる。リモコン操作機7110が備える操作キー7109により、チャンネルや音量の操作を行うことができ、表示部7103に表示される映像を操作することができる。また、リモコン操作機7110に、当該リモコン操作機7110から出力する情報を表示する表示部7107を設ける構成としてもよい。
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図7(B1)はコンピュータであり、本体7201、筐体7202、表示部7203、キーボード7204、外部接続ポート7205、ポインティングデバイス7206等を含む。なお、このコンピュータは、実施の形態1および実施の形態2に記載の発光デバイスをマトリクス状に配列して表示部7203に用いることにより作製される。図7(B1)のコンピュータは、図7(B2)のような形態であっても良い。図7(B2)のコンピュータは、キーボード7204、ポインティングデバイス7206の代わりに第2の表示部7210が設けられている。第2の表示部7210はタッチパネル式となっており、第2の表示部7210に表示された入力用の表示を指や専用のペンで操作することによって入力を行うことができる。また、第2の表示部7210は入力用表示だけでなく、その他の画像を表示することも可能である。また表示部7203もタッチパネルであっても良い。二つの画面がヒンジで接続されていることによって、収納や運搬をする際に画面を傷つける、破損するなどのトラブルの発生も防止することができる。
図7(C)は、携帯端末の一例を示している。携帯電話機は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機は、実施の形態1および実施の形態2に記載の発光デバイスをマトリクス状に配列して作製された表示部7402を有している。
図7(C)に示す携帯端末は、表示部7402を指などで触れることで、情報を入力することができる構成とすることもできる。この場合、電話を掛ける、或いはメールを作成するなどの操作は、表示部7402を指などで触れることにより行うことができる。
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力を主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合、表示部7402の画面のほとんどにキーボードまたは番号ボタンを表示させることが好ましい。
また、携帯端末内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検出装置を設けることで、携帯端末の向き(縦か横か)を判断して、表示部7402の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操作ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表示部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モードから表示モードに切り替えるように制御してもよい。
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部7402に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
なお、本実施の形態に示す構成は、実施の形態1乃至実施の形態4に示した構成を適宜組み合わせて用いることができる。
以上の様に実施の形態1および実施の形態2に記載の発光デバイスを備えた発光装置の適用範囲は極めて広く、この発光装置をあらゆる分野の電子機器に適用することが可能である。実施の形態1および実施の形態2に記載の発光デバイスを用いることにより信頼性の高い電子機器を得ることができる。
図8(A)は、掃除ロボットの一例を示す模式図である。
掃除ロボット5100は、上面に配置されたディスプレイ5101、側面に配置された複数のカメラ5102、ブラシ5103、操作ボタン5104を有する。また図示されていないが、掃除ロボット5100の下面には、タイヤ、吸い込み口等が備えられている。掃除ロボット5100は、その他に赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなどの各種センサを備えている。また、掃除ロボット5100は、無線による通信手段を備えている。
掃除ロボット5100は自走し、ゴミ5120を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
また、掃除ロボット5100はカメラ5102が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ5103に絡まりそうな物体を検知した場合は、ブラシ5103の回転を止めることができる。
ディスプレイ5101には、バッテリーの残量や、吸引したゴミの量などを表示することができる。掃除ロボット5100が走行した経路をディスプレイ5101に表示させてもよい。また、ディスプレイ5101をタッチパネルとし、操作ボタン5104をディスプレイ5101に設けてもよい。
掃除ロボット5100は、スマートフォンなどの携帯電子機器5140と通信することができる。カメラ5102が撮影した画像は、携帯電子機器5140に表示させることができる。そのため、掃除ロボット5100の持ち主は、外出先からでも、部屋の様子を知ることができる。また、ディスプレイ5101の表示をスマートフォンなどの携帯電子機器5140で確認することもできる。
本発明の一態様の発光装置はディスプレイ5101に用いることができる。
図8(B)に示すロボット2100は、演算装置2110、照度センサ2101、マイクロフォン2102、上部カメラ2103、スピーカ2104、ディスプレイ2105、下部カメラ2106、障害物センサ2107および移動機構2108を備える。
マイクロフォン2102は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ2104は、音声を発する機能を有する。ロボット2100は、マイクロフォン2102およびスピーカ2104を用いて、使用者とコミュニケーションをとることが可能である。
ディスプレイ2105は、種々の情報の表示を行う機能を有する。ロボット2100は、使用者の望みの情報をディスプレイ2105に表示することが可能である。ディスプレイ2105は、タッチパネルを搭載していてもよい。また、ディスプレイ2105は取り外しのできる情報端末であっても良く、ロボット2100の定位置に設置することで、充電およびデータの受け渡しを可能とする。
上部カメラ2103および下部カメラ2106は、ロボット2100の周囲を撮像する機能を有する。また、障害物センサ2107は、移動機構2108を用いてロボット2100が前進する際の進行方向における障害物の有無を察知することができる。ロボット2100は、上部カメラ2103、下部カメラ2106および障害物センサ2107を用いて、周囲の環境を認識し、安全に移動することが可能である。本発明の一態様の発光装置はディスプレイ2105に用いることができる。
図8(C)はゴーグル型ディスプレイの一例を表す図である。ゴーグル型ディスプレイは、例えば、筐体5000、表示部5001、スピーカ5003、LEDランプ5004、接続端子5006、センサ5007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン5008、第2の表示部5002、支持部5012、イヤホン5013等を有する。
本発明の一態様の発光装置は表示部5001および第2の表示部5002に用いることができる。
図9は、実施の形態1および実施の形態2に記載の発光デバイスを、照明装置である電気スタンドに用いた例である。図9に示す電気スタンドは、筐体2001と、光源2002を有し、光源2002としては、実施の形態3に記載の照明装置を用いても良い。
図10は、実施の形態1および実施の形態2に記載の発光デバイスを、室内の照明装置3001として用いた例である。実施の形態1および実施の形態2に記載の発光デバイスは信頼性の高い発光デバイスであるため、信頼性の良い照明装置とすることができる。また、実施の形態1および実施の形態2に記載の発光デバイスは大面積化が可能であるため、大面積の照明装置として用いることができる。また、実施の形態1および実施の形態2に記載の発光デバイスは、薄型であるため、薄型化した照明装置として用いることが可能となる。
実施の形態1および実施の形態2に記載の発光デバイスは、自動車のフロントガラスやダッシュボードにも搭載することができる。図11に実施の形態1および実施の形態2に記載の発光デバイスを自動車のフロントガラスやダッシュボードに用いる一態様を示す。表示領域5200乃至表示領域5203は実施の形態1および実施の形態2に記載の発光デバイスを用いて設けられた表示領域である。
表示領域5200と表示領域5201は自動車のフロントガラスに設けられた実施の形態1および実施の形態2に記載の発光デバイスを搭載した表示装置である。実施の形態1および実施の形態2に記載の発光デバイスは、陽極と陰極を透光性を有する電極で作製することによって、反対側が透けて見える、いわゆるシースルー状態の表示装置とすることができる。シースルー状態の表示であれば、自動車のフロントガラスに設置したとしても、視界の妨げになることなく設置することができる。なお、駆動のためのトランジスタなどを設ける場合には、有機半導体材料による有機トランジスタや、酸化物半導体を用いたトランジスタなど、透光性を有するトランジスタを用いると良い。
表示領域5202はピラー部分に設けられた実施の形態1および実施の形態2に記載の発光デバイスを搭載した表示装置である。表示領域5202には、車体に設けられた撮像手段からの映像を映し出すことによって、ピラーで遮られた視界を補完することができる。また、同様に、ダッシュボード部分に設けられた表示領域5203は車体によって遮られた視界を、自動車の外側に設けられた撮像手段からの映像を映し出すことによって、死角を補い、安全性を高めることができる。見えない部分を補完するように映像を映すことによって、より自然に違和感なく安全確認を行うことができる。
表示領域5203はまたナビゲーション情報、速度計や回転計、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで様々な情報を提供することができる。表示は使用者の好みに合わせて適宜その表示項目やレイアウトを変更することができる。なお、これら情報は表示領域5200乃至表示領域5203にも設けることができる。また、表示領域5200乃至表示領域5203は照明装置として用いることも可能である。
また、図12(A)、(B)に、折りたたみ可能な携帯情報端末5150を示す。折りたたみ可能な携帯情報端末5150は筐体5151、表示領域5152および屈曲部5153を有している。図12(A)に展開した状態の携帯情報端末5150を示す。図12(B)に折りたたんだ状態の携帯情報端末5150を示す。携帯情報端末5150は、大きな表示領域5152を有するにも関わらず、折りたためばコンパクトで可搬性に優れる。
表示領域5152は屈曲部5153により半分に折りたたむことができる。屈曲部5153は伸縮可能な部材と複数の支持部材とで構成されており、折りたたむ場合は、伸縮可能な部材が伸び、屈曲部5153は2mm以上、好ましくは3mm以上の曲率半径を有して折りたたまれる。
なお、表示領域5152は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。本発明の一態様の発光装置を表示領域5152に用いることができる。
また、図13(A)〜(C)に、折りたたみ可能な携帯情報端末9310を示す。図13(A)に展開した状態の携帯情報端末9310を示す。図13(B)に展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。図13(C)に折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。
表示パネル9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示パネル9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示パネル9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。本発明の一態様の発光装置を表示パネル9311に用いることができる。
本実施例では、本発明の一態様の発光デバイス1乃至発光デバイス3と、比較例の発光デバイスである比較発光デバイス1および比較発光デバイス2について説明する。発光デバイス1乃至発光デバイス3、比較発光デバイス1および比較発光デバイス2で用いた有機化合物の構造式を以下に示す。
(発光デバイス1の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は2mm×2mmとした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(i)で表されるN−(1,1’−ビフェニル−4−イル)−9,9−ジメチル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9H−フルオレン−2−アミン(略称:PCBBiF)と、ALD−MP001Q(分析工房株式会社、材料シリアル番号:1S20170124)とを、重量比で1:0.1(=PCBBiF:ALD−MP001Q)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、第1の正孔輸送層112−1として、PCBBiFを20nmとなるように蒸着した後、第2の正孔輸送層112−2として、上記構造式(ii)で表されるN,N−ビス[4−(ジベンゾフラン−4−イル)フェニル]−4−アミノ−p−ターフェニル(略称:DBfBB1TP)を10nmとなるように蒸着して正孔輸送層112を形成した。なお、第2の正孔輸送層112−2は電子ブロック層としても機能する。
続いて、上記構造式(iii)で表される7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)と、上記構造式(iv)で表されるN,N’−(ピレン−1,6−ジイル)ビス[(6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)とを、重量比1:0.03(=cgDBCzPA:1,6BnfAPrn−03)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、上記構造式(v)で表される2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)を膜厚15nmとなるように蒸着した後、上記構造式(vi)で表される2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、フッ化リチウム(LiF)を膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを200nmの膜厚となるように蒸着することで陰極102を形成して本実施例の発光デバイス1を作製した。
(発光デバイス2の作製方法)
発光デバイス2は、発光デバイス1におけるPCBBiFを上記構造式(vii)で表されるN,N−ビス(4−ビフェニル)−6−フェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BBABnf)に変えた他は発光デバイス1と同様に作製した。
(発光デバイス3の作製方法)
発光デバイス3は発光デバイス2におけるDBfBB1TPを上記構造式(viii)で表される3,3’−(ナフタレン−1,4−ジイル)ビス(9−フェニル−9H−カルバゾール)(略称:PCzN2)に変えた他は発光デバイス2と同様に作製した。
(比較発光デバイス1の作製方法)
比較発光デバイス1は発光デバイス1の2mDBTBPDBq−IIをcgDBCzPAに変えた他は発光デバイス1と同様に作製した。
(比較発光デバイス2の作製方法)
比較発光デバイス2は、比較発光デバイス1におけるDBfBB1TPをPCzN2に変えた他は比較発光デバイス1と同様に作製した。
発光デバイス1乃至発光デバイス3、比較発光デバイス1および比較発光デバイス2の素子構造を以下の表にまとめる。
また、本実施例で使用した有機化合物のHOMO準位、LUMO準位および電界強度[V/cm]の平方根が600である時の電子移動度をまとめた表を以下に示す。
これら発光デバイスを、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光デバイスの初期特性及び信頼性について測定を行った。なお、測定は室温で行った。
発光デバイス1乃至発光デバイス3、比較発光デバイス1および比較発光デバイス2の輝度−電流密度特性を図14に、電流効率−輝度特性を図15に、輝度−電圧特性を図16に、電流−電圧特性を図17に、外部量子効率−輝度特性を図18に、発光スペクトルを図19に示す。また、各発光デバイスの1000cd/m付近における主要な特性を表3に示す。
図14乃至図19及び表3より、本発明の一態様である発光デバイス1乃至発光デバイス3はいずれも、特性の良好な青色発光デバイスであることがわかった。
また、電流密度50mA/cmにおける駆動時間に対する輝度の変化を表すグラフを図20に示す。図20で示すように、本発明の一態様の発光デバイスである発光デバイス1は、300時間経過時点での輝度が初期輝度の86%以上、発光素子2および発光素子3は90%以上を保っており、駆動時間の蓄積に伴う輝度低下が小さく、寿命の良好な発光デバイスであることがわかった。
一方で、電界強度[V/cm]の平方根が600である時の電子移動度が7.7×10−5cm/Vsと高い材料であるcgDBCzPAを電子輸送層に用いた比較発光素子は300時間経過時点での輝度が比較発光素子1で初期輝度の84%以下、比較発光素子2で80%以下となっている。これら比較発光素子は、正孔注入、輸送層の正孔注入、輸送能力と比較して、電子輸送層の電子移動度が高すぎることから発光層における発光領域が狭くなってしまうために、劣化が促進されていると考えられる。
また、比較発光素子はcgDBCzPAが第6の有機化合物と第7の有機化合物に相当するため、第6の有機化合物と第7の有機化合物のLUMO準位に差が無い構成となっている。このため、より発光層113に電子が注入されやすい構成となっており、電子過多の状態が形成されやすい構成となっている。
さらに、比較発光素子2では電子輸送層の輸送性が高いことに加え、第1の正孔輸送層に用いられた有機化合物であるPCBBiFのHOMO準位と第2の正孔輸送層に用いられたPCzN2のHOMO準位との差が0.36eVと、0.2eVよりも大きい構成となっている。このため、比較発光素子2は第1の正孔輸送層から第2の正孔輸送層への正孔の注入が抑制され、さらに正孔と電子とのバランスが取り難くなることで、これら素子の中では最も劣化の大きい発光素子となっている。また、他の発光素子と比較して比較発光素子2は電流効率や外部量子効率も低くなっていることから、電子過多により再結合することなく発光層を抜けてしまう電子も増加していると考えられる。
本実施例では、本発明の一態様の発光デバイス4乃至発光デバイス6と、比較例の発光デバイスである比較発光デバイス3について説明する。発光デバイス4乃至発光デバイス6、比較発光デバイス3で用いた有機化合物の構造式を以下に示す。
(発光デバイス4の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は2mm×2mmとした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(i)で表されるN−(1,1’−ビフェニル−4−イル)−9,9−ジメチル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9H−フルオレン−2−アミン(略称:PCBBiF)と、ALD−MP001Q(分析工房株式会社、材料シリアル番号:1S20170124)とを、重量比で1:0.1(=PCBBiF:ALD−MP001Q)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、第1の正孔輸送層112−1として、PCBBiFを20nmとなるように蒸着した後、第2の正孔輸送層112−2として、上記構造式(ii)で表されるN,N−ビス[4−(ジベンゾフラン−4−イル)フェニル]−4−アミノ−p−ターフェニル(略称:DBfBB1TP)を10nmとなるように蒸着して正孔輸送層112を形成した。なお、第2の正孔輸送層112−2は電子ブロック層としても機能する。
続いて、上記構造式(ix)で表される9−(1−ナフチル)−10−[4−(2−ナフチル)フェニル]アントラセン(略称:αN−βNPAnth)と、上記構造式(iv)で表されるN,N’−(ピレン−1,6−ジイル)ビス[(6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)とを、重量比1:0.03(=αN−βNPAnth:1,6BnfAPrn−03)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、上記構造式(v)で表される2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)を膜厚15nmとなるように蒸着した後、上記構造式(vi)で表される2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、フッ化リチウム(LiF)を膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを200nmの膜厚となるように蒸着することで陰極102を形成して本実施例の発光デバイス4を作製した。
(発光デバイス5の作製方法)
発光デバイス5は、発光デバイス4におけるPCBBiFを上記構造式(vii)で表されるN,N−ビス(4−ビフェニル)−6−フェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BBABnf)に変えた他は発光デバイス4と同様に作製した。
(発光デバイス6の作製方法)
発光デバイス6は発光デバイス5におけるDBfBB1TPを上記構造式(viii)で表される3,3’−(ナフタレン−1,4−ジイル)ビス(9−フェニル−9H−カルバゾール)(略称:PCzN2)に変えた他は発光デバイス5と同様に作製した。
(比較発光デバイス3の作製方法)
比較発光デバイス3は発光デバイス4の2mDBTBPDBq−IIをαN−βNPAnthに変えた他は発光デバイス4と同様に作製した。
発光デバイス4乃至発光デバイス6、比較発光デバイス3の素子構造を以下の表にまとめる。
ここで、本実施例で使用した有機化合物のHOMO準位、LUMO準位および電界強度[V/cm]の平方根が600である時の電子移動度をまとめた表を以下に示す。
これら発光デバイスを、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光デバイスの初期特性及び信頼性について測定を行った。なお、測定は室温で行った。
発光デバイス4乃至発光デバイス6、比較発光デバイス3の輝度−電流密度特性を図21に、電流効率−輝度特性を図22に、輝度−電圧特性を図23に、電流−電圧特性を図24に、外部量子効率−輝度特性を図25に、発光スペクトルを図26に示す。また、各発光デバイスの1000cd/m付近における主要な特性を表6に示す。
図21乃至図26及び表6より、本発明の一態様である発光デバイス4乃至発光デバイス6はいずれも、特性の良好な青色発光デバイスであることがわかった。
また、電流密度50mA/cmにおける駆動時間に対する輝度の変化を表すグラフを図27に示す。図27で示すように、本発明の一態様の発光デバイスである発光デバイス4乃至発光デバイス6は、300時間経過時点でも初期輝度の94%程度を保っており、駆動時間の蓄積に伴う輝度低下が小さく、寿命の良好な発光デバイスであることがわかった。
比較発光素子3はαN−βNPAnthが第6の有機化合物と第7の有機化合物の両方に相当するため、第6の有機化合物と第7の有機化合物のLUMO準位に差が無い構成となっている。このため、より発光層113に電子が注入されやすい構成となっており、電子過多の状態が形成されやすく、劣化が促進されてしまっていると考えられる。
本実施例では、本発明の一態様の発光デバイス7および発光デバイス8について説明する。発光デバイス7および発光デバイス8で用いた有機化合物の構造式を以下に示す。
(発光デバイス7の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は2mm×2mmとした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(vii)で表されるN,N−ビス(4−ビフェニル)−6−フェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BBABnf)と、ALD−MP001Q(分析工房株式会社、材料シリアル番号:1S20170124)とを、重量比で1:0.1(=BBABnf:ALD−MP001Q)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、第1の正孔輸送層112−1として、BBABnfを20nmとなるように蒸着した後、第2の正孔輸送層112−2として、上記構造式(ii)で表されるN,N−ビス[4−(ジベンゾフラン−4−イル)フェニル]−4−アミノ−p−ターフェニル(略称:DBfBB1TP)を10nmとなるように蒸着して正孔輸送層112を形成した。なお、第2の正孔輸送層112−2は電子ブロック層としても機能する。
続いて、上記構造式(iii)で表される7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)と、上記構造式(x)で表される3,10−ビス[N−(9−フェニル−9H−カルバゾール−2−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)−02)とを、重量比1:0.015(=cgDBCzPA:3,10PCA2Nbf(IV)−02)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、上記構造式(v)で表される2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)を膜厚15nmとなるように蒸着した後、上記構造式(vi)で表される2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、フッ化リチウム(LiF)を膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを200nmの膜厚となるように蒸着することで陰極102を形成して本実施例の発光デバイス7を作製した。
(発光デバイス8の作製方法)
発光デバイス8は、発光デバイス7におけるcgDBCzPAを上記構造式(ix)で表される9−(1−ナフチル)−10−[4−(2−ナフチル)フェニル]アントラセン(略称:αN−βNPAnth)に変えた他は発光デバイス7と同様に作製した。
発光デバイス7および発光デバイス8の素子構造を以下の表にまとめる。
ここで、本実施例で使用した有機化合物のHOMO準位、LUMO準位および電界強度[V/cm]の平方根が600である時の電子移動度をまとめた表を以下に示す。
これら発光デバイスを、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光デバイスの初期特性及び信頼性について測定を行った。なお、測定は室温で行った。
発光デバイス7および発光デバイス8の輝度−電流密度特性を図28に、電流効率−輝度特性を図29に、輝度−電圧特性を図30に、電流−電圧特性を図31に、外部量子効率−輝度特性を図32に、発光スペクトルを図33に示す。また、各発光デバイスの1000cd/m付近における主要な特性を表9に示す。
図28乃至図33及び表9より、本発明の一態様である発光デバイス7および発光デバイス8はいずれも、特性の良好な青色発光デバイスであることがわかった。
また、電流密度50mA/cmにおける駆動時間に対する輝度の変化を表すグラフを図34に示す。図34で示すように、本発明の一態様の発光デバイスである発光デバイス7および発光デバイス8は、どちらも300時間経過時点でも初期輝度の90%以上の輝度を保っており、駆動時間の蓄積に伴う輝度低下が小さく、寿命の良好な発光デバイスであることがわかった。
本実施例では、本発明の一態様の発光デバイス9について説明する。発光デバイス9で用いた有機化合物の構造式を以下に示す。
(発光デバイス9の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は2mm×2mmとした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(vii)で表されるN,N−ビス(4−ビフェニル)−6−フェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BBABnf)と、ALD−MP001Q(分析工房株式会社、材料シリアル番号:1S20170124)とを、重量比で1:0.1(=BBABnf:ALD−MP001Q)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、第1の正孔輸送層112−1として、BBABnfを20nmとなるように蒸着した後、第2の正孔輸送層112−2として、上記構造式(viii)で表される3,3’−(ナフタレン−1,4−ジイル)ビス(9−フェニル−9H−カルバゾール)(略称:PCzN2)を10nmとなるように蒸着して正孔輸送層112を形成した。なお、第2の正孔輸送層112−2は電子ブロック層としても機能する。
続いて、上記構造式(ix)で表される9−(1−ナフチル)−10−[4−(2−ナフチル)フェニル]アントラセン(略称:αN−βNPAnth)と上記構造式(x)で表される3,10−ビス[N−(9−フェニル−9H−カルバゾール−2−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)−02)とを、重量比1:0.015(=αN−βNPAnth:3,10PCA2Nbf(IV)−02)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、上記構造式(xi)で表される2−{4−[9,10−ジ(ナフタレン−2−イル)−2−アントリル]フェニル}−1−フェニル−1H−ベンゾイミダゾール(略称:ZADN)と上記構造式(xx)で表される8−ヒドロキシキノリナト−リチウム(略称:Liq)とを重量比1:0.9(=ZADN:Liq)となるように25nm共蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、Liqを膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを200nmの膜厚となるように蒸着することで陰極102を形成して本実施例の発光デバイス9を作製した。
発光デバイス9の素子構造を以下の表にまとめる。
ここで、本実施例で使用した有機化合物のHOMO準位、LUMO準位および電界強度[V/cm]の平方根が600である時の電子移動度をまとめた表を以下に示す。
この発光デバイスを、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、発光デバイス9の初期特性及び信頼性について測定を行った。なお、測定は室温で行った。
発光デバイス9の輝度−電流密度特性を図35に、電流効率−輝度特性を図36に、輝度−電圧特性を図37に、電流−電圧特性を図38に、外部量子効率−輝度特性を図39に、発光スペクトルを図40に示す。また、発光デバイスの1000cd/m付近における主要な特性を表12に示す。
図35乃至図40及び表12より、本発明の一態様である発光デバイス9は、特性の良好な青色発光デバイスであることがわかった。
また、電流密度50mA/cmにおける駆動時間に対する輝度の変化を表すグラフを図41に示す。図41で示すように、本発明の一態様の発光デバイスである発光デバイス9は、600時間経過時点でも初期輝度の90%付近の輝度を保っており、駆動時間の蓄積に伴う輝度低下が特に小さく、非常に寿命の良好な発光デバイスであることがわかった。
なお、発光素子9の劣化曲線は、一度輝度低下を起こしてから輝度の上昇が起こっていることがわかる。このような劣化の挙動をしていることにより、発光素子9は非常に寿命の長い発光素子となっている。
本実施例では、本発明の一態様の発光デバイス10について説明する。発光デバイス10で用いた有機化合物の構造式を以下に示す。
(発光デバイス10の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は2mm×2mmとした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(i)で表されるN−(1,1’−ビフェニル−4−イル)−9,9−ジメチル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9H−フルオレン−2−アミン(略称:PCBBiF)と、ALD−MP001Q(分析工房株式会社、材料シリアル番号:1S20170124)とを、重量比で1:0.1(=PCBBiF:ALD−MP001Q)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、第1の正孔輸送層112−1として、PCBBiFを20nmとなるように蒸着した後、第2の正孔輸送層112−2として、上記構造式(ii)で表されるN,N−ビス[4−(ジベンゾフラン−4−イル)フェニル]−4−アミノ−p−ターフェニル(略称:DBfBB1TP)を10nmとなるように蒸着して正孔輸送層112を形成した。なお、第2の正孔輸送層112−2は電子ブロック層としても機能する。
続いて、上記構造式(ix)で表される9−(1−ナフチル)−10−[4−(2−ナフチル)フェニル]アントラセン(略称:αN−βNPAnth)と、上記構造式(x)で表される3,10−ビス[N−(9−フェニル−9H−カルバゾール−2−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)−02)とを、重量比1:0.015(=αN−βNPAnth:3,10PCA2Nbf(IV)−02)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、上記構造式(v)で表される2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)を膜厚15nmとなるように蒸着した後、上記構造式(vi)で表される2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、フッ化リチウム(LiF)を膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを200nmの膜厚となるように蒸着することで陰極102を形成して本実施例の発光デバイス10を作製した。
発光デバイス10の素子構造を以下の表にまとめる。
また、本実施例で使用した有機化合物のHOMO準位、LUMO準位および電界強度[V/cm]の平方根が600である時の電子移動度をまとめた表を以下に示す。
この発光デバイスを、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、発光デバイス10の初期特性及び信頼性について測定を行った。なお、測定は室温で行った。
発光デバイス10の輝度−電流密度特性を図47に、電流効率−輝度特性を図48に、輝度−電圧特性を図49に、電流−電圧特性を図50に、外部量子効率−輝度特性を図51に、発光スペクトルを図52に示す。また、発光デバイスの1000cd/m付近における主要な特性を表15に示す。
図47乃至図52及び表15より、本発明の一態様である発光デバイス10は特性の良好な青色発光デバイスであることがわかった。
また、電流密度50mA/cmにおける駆動時間に対する輝度の変化を表すグラフを図53に示す。図53で示すように、本発明の一態様の発光デバイスである発光デバイス10は、600時間経過時点での輝度が初期輝度の90%程度を保っており、駆動時間の蓄積に伴う輝度低下が小さく、寿命の良好な発光デバイスであることがわかった。
本実施例では、本発明の一態様の発光デバイス11について説明する。発光デバイス11で用いた有機化合物の構造式を以下に示す。
(発光デバイス11の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は2mm×2mmとした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(i)で表されるN−(1,1’−ビフェニル−4−イル)−9,9−ジメチル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9H−フルオレン−2−アミン(略称:PCBBiF)と、ALD−MP001Q(分析工房株式会社、材料シリアル番号:1S20170124)とを、重量比で1:0.1(=PCBBiF:ALD−MP001Q)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、第1の正孔輸送層112−1として、PCBBiFを20nmとなるように蒸着した後、第2の正孔輸送層112−2として、上記構造式(ii)で表されるN,N−ビス[4−(ジベンゾフラン−4−イル)フェニル]−4−アミノ−p−ターフェニル(略称:DBfBB1TP)を10nmとなるように蒸着して正孔輸送層112を形成した。なお、第2の正孔輸送層112−2は電子ブロック層としても機能する。
続いて、上記構造式(iii)で表される7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)と、上記構造式(x)で表される3,10−ビス[N−(9−フェニル−9H−カルバゾール−2−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)−02)とを、重量比1:0.015(=cgDBCzPA:3,10PCA2Nbf(IV)−02)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、上記構造式(v)で表される2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)を膜厚15nmとなるように蒸着した後、上記構造式(vi)で表される2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、フッ化リチウム(LiF)を膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを200nmの膜厚となるように蒸着することで陰極102を形成して本実施例の発光デバイス11を作製した。
発光デバイス11の素子構造を以下の表にまとめる。
また、本実施例で使用した有機化合物のHOMO準位、LUMO準位および電界強度[V/cm]の平方根が600である時の電子移動度をまとめた表を以下に示す。
この発光デバイスを、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、発光デバイス11の初期特性及び信頼性について測定を行った。なお、測定は室温で行った。
発光デバイス11の輝度−電流密度特性を図54に、電流効率−輝度特性を図55に、輝度−電圧特性を図56に、電流−電圧特性を図57に、外部量子効率−輝度特性を図58に、発光スペクトルを図59に示す。また、発光デバイスの1000cd/m付近における主要な特性を表18に示す。
図54乃至図59及び表18より、本発明の一態様である発光デバイス11は特性の良好な青色発光デバイスであることがわかった。
また、電流密度50mA/cmにおける駆動時間に対する輝度の変化を表すグラフを図60に示す。図60で示すように、本発明の一態様の発光デバイスである発光デバイス11は、600時間経過時点での輝度が初期輝度の80%以上を保っており、駆動時間の蓄積に伴う輝度低下が小さく、寿命の良好な発光デバイスであることがわかった。
本実施例では、本発明の一態様の発光デバイス12について説明する。発光デバイス12で用いた有機化合物の構造式を以下に示す。
(発光デバイス12の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は2mm×2mmとした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(vii)で表されるN,N−ビス(4−ビフェニル)−6−フェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BBABnf)と、ALD−MP001Q(分析工房株式会社、材料シリアル番号:1S20170124)とを、重量比で1:0.1(=BBABnf:ALD−MP001Q)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、第1の正孔輸送層112−1として、BBABnfを20nmとなるように蒸着した後、第2の正孔輸送層112−2として、上記構造式(viii)で表される3,3’−(ナフタレン−1,4−ジイル)ビス(9−フェニル−9H−カルバゾール)(略称:PCzN2)を10nmとなるように蒸着して正孔輸送層112を形成した。なお、第2の正孔輸送層112−2は電子ブロック層としても機能する。
続いて、上記構造式(ix)で表される9−(1−ナフチル)−10−[4−(2−ナフチル)フェニル]アントラセン(略称:αN−βNPAnth)と上記構造式(x)で表される3,10−ビス[N−(9−フェニル−9H−カルバゾール−2−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)−02)とを、重量比1:0.015(=αN−βNPAnth:3,10PCA2Nbf(IV)−02)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、上記構造式(v)で表される2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)を膜厚15nmとなるように蒸着した後、上記構造式(vi)で表される2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、LiFを膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを200nmの膜厚となるように蒸着することで陰極102を形成して本実施例の発光デバイス12を作製した。
発光デバイス12の素子構造を以下の表にまとめる。
ここで、本実施例で使用した有機化合物のHOMO準位、LUMO準位および電界強度[V/cm]の平方根が600である時の電子移動度をまとめた表を以下に示す。
この発光デバイスを、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、発光デバイス12の初期特性及び信頼性について測定を行った。なお、測定は室温で行った。
発光デバイス12の輝度−電流密度特性を図61に、電流効率−輝度特性を図62に、輝度−電圧特性を図63に、電流−電圧特性を図64に、外部量子効率−輝度特性を図65に、発光スペクトルを図66に示す。また、発光デバイスの1000cd/m付近における主要な特性を表21に示す。
図61乃至図66及び表21より、本発明の一態様である発光デバイス12は、特性の良好な青色発光デバイスであることがわかった。
また、電流密度50mA/cmにおける駆動時間に対する輝度の変化を表すグラフを図67に示す。図67で示すように、本発明の一態様の発光デバイスである発光デバイス12は、600時間経過時点でも初期輝度の90%以上の輝度を保っており、駆動時間の蓄積に伴う輝度低下が特に小さく、非常に寿命の良好な発光デバイスであることがわかった。
本実施例では、本発明の一態様の発光デバイス13乃至発光デバイス20について説明する。発光デバイス13乃至発光デバイス20で用いた有機化合物の構造式を以下に示す。
(発光デバイス13の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は2mm×2mmとした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(xii)で表される4−(6;2’−ビナフチル−2−イル)−4’,4’’−ジフェニルトリフェニルアミン(略称:BBA(βN2)B)と、ALD−MP001Q(分析工房株式会社、材料シリアル番号:1S20170124)とを、重量比で1:0.1(=BBA(βN2)B:ALD−MP001Q)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、第1の正孔輸送層112−1として、BBA(βN2)Bを20nmとなるように蒸着した後、第2の正孔輸送層112−2として、上記構造式(viii)で表される3,3’−(ナフタレン−1,4−ジイル)ビス(9−フェニル−9H−カルバゾール)(略称:PCzN2)を10nmとなるように蒸着して正孔輸送層112を形成した。なお、第2の正孔輸送層112−2は電子ブロック層としても機能する。
続いて、上記構造式(ix)で表される9−(1−ナフチル)−10−[4−(2−ナフチル)フェニル]アントラセン(略称:αN−βNPAnth)と、上記構造式(x)で表される3,10−ビス[N−(9−フェニル−9H−カルバゾール−2−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)−02)とを、重量比1:0.015(=αN−βNPAnth:3,10PCA2Nbf(IV)−02)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、上記構造式(v)で表される2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)を膜厚15nmとなるように蒸着した後、上記構造式(vi)で表される2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、フッ化リチウム(LiF)を膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを200nmの膜厚となるように蒸着することで陰極102を形成して本実施例の発光デバイス13を作製した。
(発光デバイス14の作製方法)
発光デバイス14は、発光デバイス13におけるBBA(βN2)Bを上記構造式(xiii)で表される4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−フルオレン−9−イル)トリフェニルアミン(略称:FLPAPA)に変えた他は発光デバイス13と同様に作製した。
(発光デバイス15の作製方法)
発光デバイス15は、発光デバイス13におけるBBA(βN2)Bを上記構造式(xiv)で表されるN−(4−ビフェニル)−6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BnfABP)に変えた他は発光デバイス13と同様に作製した。
(発光デバイス16の作製方法)
発光デバイス16は、発光デバイス13におけるBBA(βN2)Bを上記構造式(xv)で表される4−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]−4’,4’’−ジフェニルトリフェニルアミン(略称:mpBBAFLBi)に変えた他は発光デバイス13と同様に作製した。
(発光デバイス17の作製方法)
発光デバイス17は、発光デバイス13におけるBBA(βN2)Bを上記構造式(xvi)で表されるN−[4−(9H−カルバゾール−9−イル)フェニル]−N−(1,1’−ビフェニル−2−イル)−9,9’−スピロビ[9H−フルオレン]−2−アミン(略称:oYGBiSF)に変えた他は発光デバイス13と同様に作製した。
(発光デバイス18の作製方法)
発光デバイス18は、発光デバイス13におけるBBA(βN2)Bを上記構造式(xvii)で表される4−(4−ビフェニリル)−4’−[4−(2−ナフチル)フェニル]−4’’−フェニルトリフェニルアミン(略称:TPBiAβNBi)に変えた他は発光デバイス13と同様に作製した。
(発光デバイス19の作製方法)
発光デバイス19は、発光デバイス13におけるBBA(βN2)Bを上記構造式(xviii)で表される4,4’−ジフェニル−4’’−(7;1’−ビナフチル−2−イル)トリフェニルアミン(略称:BBAαNβNB−03)に変えた他は発光デバイス13と同様に作製した。
(発光デバイス20の作製方法)
発光デバイス20は、発光デバイス13におけるBBA(βN2)Bを上記構造式(xix)で表される4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−4’,4’’−ジフェニルトリフェニルアミン(略称:BBAFLBi)に変えた他は発光デバイス13と同様に作製した。
発光デバイス13乃至発光デバイス20の素子構造を以下の表にまとめる。
また、本実施例で使用した有機化合物のHOMO準位、LUMO準位および電界強度[V/cm]の平方根が600である時の電子移動度をまとめた表を以下に示す。
これら発光デバイスを、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光デバイスの初期特性及び信頼性について測定を行った。なお、測定は室温で行った。
発光デバイス13乃至発光デバイス20の輝度−電流密度特性を図68に、電流効率−輝度特性を図69に、輝度−電圧特性を図70に、電流−電圧特性を図71に、外部量子効率−輝度特性を図72に、発光スペクトルを図73に示す。また、各発光デバイスの1000cd/m付近における主要な特性を表24に示す。なお、グラフ中凡例の数字は、各発光デバイスの番号に対応している。
図68乃至図73及び表24より、本発明の一態様である発光デバイス13乃至発光デバイス20はいずれも、特性の良好な青色発光デバイスであることがわかった。
また、電流密度50mA/cmにおける駆動時間に対する輝度の変化を表すグラフを図74に示す。図74で示すように、本発明の一態様の発光デバイスである発光デバイス13乃至20はいずれも、300時間経過時点で初期輝度の90%以上、特に発光素子14は95%以上の輝度を保っており、駆動時間の蓄積に伴う輝度低下が小さく、寿命の良好な発光デバイスであることがわかった。
<参考例1>
本参考例では、各実施例で用いた有機化合物のHOMO準位、LUMO準位および電子移動度の算出方法について説明する。
HOMO準位およびLUMO準位はサイクリックボルタンメトリ(CV)測定を元に算出することができる。
測定装置としては電気化学アナライザー(ビー・エー・エス(株)製、型番:ALSモデル600Aまたは600C)を用いた。CV測定における溶液は、溶媒として脱水ジメチルホルムアミド(DMF)((株)アルドリッチ製、99.8%、カタログ番号;22705−6)を用い、支持電解質である過塩素酸テトラ−n−ブチルアンモニウム(n−BuNClO)((株)東京化成製、カタログ番号;T0836)を100mmol/Lの濃度となるように溶解させ、さらに測定対象を2mmol/Lの濃度となるように溶解させて調製した。また、作用電極としては白金電極(ビー・エー・エス(株)製、PTE白金電極)を、補助電極としては白金電極(ビー・エー・エス(株)製、VC−3用Ptカウンター電極(5cm))を、参照電極としてはAg/Ag電極(ビー・エー・エス(株)製、RE7非水溶媒系参照電極)をそれぞれ用いた。なお、測定は室温(20〜25℃)で行った。また、CV測定時のスキャン速度は、0.1V/secに統一し、参照電極に対する酸化電位Ea[V]および還元電位Ec[V]を測定した。Eaは酸化−還元波の中間電位とし、Ecは還元−酸化波の中間電位とした。ここで、本実施例で用いる参照電極の真空準位に対するポテンシャルエネルギーは、−4.94[eV]であることが分かっているため、HOMO準位[eV]=−4.94−Ea、LUMO準位[eV]=−4.94−Ecという式から、HOMO準位およびLUMO準位をそれぞれ求めることができる。
電子移動度はインピーダンス分光法(Impedance Spectroscopy:IS法)により測定することが可能である。
EL材料のキャリア移動度の測定は、過渡光電流法(Time−of−flight:TOF法)や空間電荷制限電流(Space−charge−limited current:SCLC)のI−V特性から求める方法(SCLC法)などが古くから知られている。TOF法は実際の有機EL素子と比較してかなり厚い膜厚の試料が必要となる。SCLC法ではキャリア移動度の電界強度依存性が得られないなどの欠点がある。IS法では、測定に必要とする有機膜の膜厚が数百nm程度と薄いため、比較的少量のEL材料でも成膜することが可能であり、実際のEL素子に近い膜厚で移動度を測定できることが特徴であり、キャリア移動度の電界強度依存性も得ることができる。
IS法では、EL素子に微小正弦波電圧信号(V=V[exp(jωt)])を与え、その応答電流信号(I=Iexp[j(ωt+φ)])の電流振幅と入力信号との位相差より、EL素子のインピーダンス(Z=V/I)を求める。高周波電圧から低周波電圧まで変化させて素子に印加させれば、インピーダンスに寄与する様々な緩和時間を有する成分を分離、測定することができる。
ここで、インピーダンスの逆数であるアドミタンスY(=1/Z)は、下記式(1)のようにコンダクタンスGとサセプタンスBで表すことができる。
さらに、単一電荷注入(single injection)モデルにより、それぞれ下記式(2)および(3)を算出することができる。ここで、g(式(4))は微分コンダクタンスである。なお、式中Cは静電容量(キャパシタンス)、θはωtであり走行角、ωは角周波数を表す。tは走行時間である。解析には電流の式、ポアソンの式、電流連続の式を用い、拡散電流およびトラップ準位の存在を無視している。
静電容量の周波数特性から移動度を算出する方法が−ΔB法である。また、コンダクタンスの周波数特性から移動度を算出する方法がωΔG法である。
実際には、まず、電子移動度を求めたい材料の電子オンリー素子を作製する。電子オンリー素子とは、キャリアとして電子のみが流れるように設計された素子である。本明細書では、静電容量の周波数特性から移動度を算出する方法(−ΔB法)を説明する。用いた電子オンリー素子の模式図を図42に示す。
今回、測定用に作製した電子オンリー素子の構造は、図42に示したように陽極201と陰極202との間に第1の層210と第2の層211と第3の層212を有する。電子移動度を求めたい材料は第2の層211の材料として用いれば良い。今回はZADNとLiqの1:1(重量比)の共蒸着膜についてその電子移動度を測定した例を挙げて説明する。具体的な構成例は以下の表にまとめた。
ZADNとLiqの共蒸着膜を第2の層211として作製した電子オンリー素子の電流密度−電圧特性を図43に示す。
インピーダンス測定は、5.0V〜9.0Vの範囲で直流電圧を印加しながら、交流電圧が70mV、周波数が1Hz〜3MHzの条件で測定を行った。ここで得られたインピーダンスの逆数であるアドミタンス(前述の(1)式)からキャパシタンスを算出する。印加電圧7.0Vにおける算出されたキャパシタンスCの周波数特性を図44に示す。
キャパシタンスCの周波数特性は、微小電圧信号により注入されたキャリアによる空間電荷が微小交流電圧に完全には追従できず、電流に位相差が生じることにより得られる。ここで、膜中のキャリアの走行時間は、注入されたキャリアが対向電極に到達する時間Tで定義され、以下の式(5)で表される。
負サセプタンス変化(−ΔB)は、静電容量変化−ΔCに角周波数ωを乗じた値(−ωΔC)に対応する。その最も低周波側のピーク周波数f’max(=ωmax/2π)と走行時間Tとの間には、式(3)より、以下の式(6)の関係があることが導出される。
上記測定から算出した(すなわち直流電圧が7.0Vの時の)−ΔBの周波数特性を図45に示す。図45より求まる最も低周波側のピーク周波数f’maxは、図中の矢印で示した。
以上の測定および解析から得られるf’maxから、走行時間Tが求まるため(上記式(6)参照)、上記式(5)より、今回で言えば直流電圧7.0Vにおける電子移動度を求めることができる。同様の測定を、直流電圧5.0V〜9.0Vの範囲で行うことで、各電圧(電界強度)での電子移動度が算出できるため、移動度の電界強度依存性も測定できる。
以上のような算出法により、各有機化合物の最終的に得られた電子移動度の電界強度依存性を図46に、図から読み取った電界強度[V/cm]の平方根が600[V/cm]1/2の時の電子移動度の値を表26にそれぞれ示す。
以上のように電子移動度を算出することが可能である。なお、詳しい測定方法に関しては、Takayuki Okachi 他 ”Japanese Journal of Applied Physics” Vol. 47, No. 12, 2008, pp. 8965−8972を参照されたい。
<参考例2>
本参考例では、実施例で用いた有機化合物の合成方法について説明する。
≪合成例1:4−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]−4’,4’’−ジフェニルトリフェニルアミン(略称:mpBBAFLBi)の合成方法≫
mpBBAFLBiの構造式を以下に示す。
200mLの3口フラスコに9−(3−ブロモフェニル)−9−フェニル−9H−フルオレン2.0g(5.0mmol)、2−{4−[ジ(4−ビフェニルイル)アミノ]フェニル}−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン2.6g(5.0mmol)、トリ(オルト−トリル)ホスフィン30mg(0.10mmol)、炭酸カリウム2.8g(20mmol)を加え、フラスコ内を窒素置換した。この混合物にトルエン15mL、エタノール10mL、水10mLを加え、減圧下で攪拌する事で脱気した。この混合物に酢酸パラジウム(II)11mg(0.050mmol)を加え、窒素気流下、80℃で2時間攪拌した。
撹拌後、この混合物を吸引濾過して固体を回収した。この固体を熱したトルエンに溶解し、セライト・アルミナ・フロリジールを通して吸引濾過した。ろ液を濃縮して得られた固体をトルエンで再結晶した所、目的物の白色固体を収量2.7g、収率74%で得た。上記合成方法の合成スキームを以下に示す。
得られた白色固体2.6gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力3.5Pa、アルゴン流量5.0mL/minの条件で、白色固体を280℃で加熱して行った。昇華精製後、淡黄色固体を2.3g、回収率88%で得た。
得られた淡黄色固体の核磁気共鳴分光法(H NMR)による分析結果を以下に示す。この結果から、mpBBAFLBiが得られたことが確認された。
H NMR(DMSO,300MHz):δ=7.06−7.49(m、29H),7.59−7.64(m,8H),7.90(d,J=7.8Hz,2H).
≪合成例2:4−(4−ビフェニリル)−4’−[4−(2−ナフチル)フェニル]−4’’−フェニルトリフェニルアミン(略称:TPBiAβNBi)の合成方法≫
TPBiAβNBiの構造式を以下に示す。
<ステップ1:N−(1,1’−ビフェニル)−4−イル−(1,1’:4’,1’’−ターフェニル)−4−4−アミンの合成>
2.4g(7.4mmol)のN−(4−ブロモフェニル)−4−ビフェニルアミンと、1.5g(7.4mmol)の4−ビフェニルボロン酸と、47mg(0.15mmol)のトリ(オルト−トリル)ホスフィンと、7mLの炭酸カリウム水溶液(2.0mol/L)と、60mLのトルエンと、20mLのエタノールを、還流管を付けた200mL三口フラスコに入れ、混合物の減圧脱気をした後、系内を窒素置換した。得られた混合物に、16mg(74μmol)の酢酸パラジウム(II)を加えて3時間還流した。撹拌後、析出した固体を吸引ろ過で回収し、得られた固体をトルエンとエタノールと水を用いて洗浄したところ、目的物の灰色固体を2.94g、収率99%以上で得た。ステップ1の合成スキームを以下に示す。
<ステップ2:2−(4−クロロ−ビフェニル−4−イル)ナフタレンの合成>
2.4g(10mmol)の1−クロロ−4−ヨードベンゼンと、2.5g(10mmol)の4−(2−ナフチル)フェニルボロン酸と、61mg(0.20mmol)のトリ(オルト−トリル)ホスフィンと、20mLの炭酸カリウム水溶液(2.0mol/L)、70mLのトルエン、30mLのエタノールを、還流管を付けた200mL三口フラスコに入れ、溶媒の減圧脱気をしたあとに内部を窒素置換した。60℃に加熱した後、酢酸パラジウム(II)22mg(0.10mmol)を加え、50℃で3時間撹拌することで反応させた。撹拌後、析出した固体を吸引ろ過で回収し、トルエン、水、エタノールを用いて洗浄したところ、褐色固体を2.7g、収率86%で得た。ステップ2の合成スキームを以下に示す。
得られた褐色固体の核磁気共鳴分光法(H NMR)による分析結果を以下に示す。これにより、上記合成ステップによって2−(4−クロロ−ビフェニル−4−イル)ナフタレンが得られたことがわかった。
H NMR(ジクロロメタン−d,500MHz):δ=8.13(s,1H),7.96(d,J=9.5Hz,1H),7.94(d,J=9.5Hz,1H),7.89(d,J=7.0Hz,1H),7.85−7.81(m,3H),7.72(d,J=8.0Hz,2H),7.64(d,J=8.5Hz,2H),7.55−7.49(m,2H),7.46(d,J=8.0Hz,2H).
<ステップ3:4−(4−ビフェニリル)−4’−[4−(2−ナフチル)フェニル]−4’’−フェニルトリフェニルアミン(略称:TPBiAβNBi)の合成>
ステップ1で得られた2.94g(7.4mmol)のN−(1,1’−ビフェニル)−4−イル−(1,1’:4’,1’’−ターフェニル)−4−4−アミンと、ステップ2で得られた2.32g(7.4mmol)の2−(4−クロロ−ビフェニル−4−イル)ナフタレンと、52mg(0.15mmol)のジ−tert−ブチル(1−メチル−2,2−ジフェニルシクロプロピル)ホスフィン(商品名:cBRIDP(登録商標))と、1.4g(15mmol)ナトリウム−tert−ブトキシドと、140mLのキシレンを、還流管を付けた200mL三口フラスコに入れ、混合物の減圧脱気をした後、系内を窒素置換した。得られた混合物に、43mg(74μmol)のビス(ジベンジリデンアセトン)パラジウム(0)を加え、5時間還流した。撹拌後、析出した固体を吸引ろ過で回収し、トルエン、水、エタノールを用いて洗浄したところ、灰色固体を3.8g得た。ステップ3の合成スキームを以下に示す。
得られた3.8gの固体をトレインサブリメーション法により昇華精製した。昇華精製は、アルゴンを15mL/minで流しながら、圧力3.8Pa、335℃で固体を15時間加熱して行った。昇華精製後に目的物の淡黄色固体を2.8g、回収率74%で得た。
得られた固体の核磁気共鳴分光法(H NMR)による分析結果を以下に示す。これにより、本合成例において、TPBiAβNBiが得られたことがわかった。
H NMR(クロロホルム−d,500MHz):δ=8.10(d,J=1.5Hz,1H),7.94(d,J=9.0Hz,1H),7.92(d,J=7.5Hz,1H),7.88(d,J=7.5Hz,1H),7.82−7.80(m,3H),7.73(d,J=8.5Hz,2H),7.68(s,4H),7.66(d,J=7.0Hz,2H),7.62−7.58(m,6H),7.55(d,J=8.5Hz,2H),7.52−7.43(m,6H),7.36(t,J=7.0Hz,1H),7.33(t,J=7.0Hz,1H),7.29−7.27(m,6H).
≪合成例3:4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−4’,4’’−ジフェニルトリフェニルアミン(略称:BBAFLBi)の合成方法≫
BBAFLBiの構造式を以下に示す。
<ステップ1:4−(9−フェニル−9H−フルオレン−9−イル)フェニルボロン酸の合成>
容量500mLの三口フラスコに、15.89g(40mmol)の9−(4−ブロモフェニル)−9−フェニル−9H−フルオレンを入れたあと、減圧することで脱気し、フラスコ内を窒素置換した。この容器内に脱水テトラヒドロフラン(略称:THF)を200mL加えた。この混合物を攪拌しながら約−78℃まで冷却したのち、1.59mol/Lのn−ブチルリチウムヘキサン溶液30mL(48mmol)を滴下し、−40℃まで昇温したのち1時間撹拌した。その後、脱水THFを50mL加えたあとで再び約−78℃まで冷却したのち、トリメチルボラートを6.4mL(57mmol)滴下した。この混合物を室温まで昇温したのち、16時間攪拌した。この溶液に水25mLと1規定の希塩酸30mLを加えて攪拌した後で水層と有機層を分離し、得られた有機層を飽和重曹水100mLで一回、飽和食塩水100mLで一回洗浄した。洗浄後、この溶液を硫酸マグネシウムにて乾燥し、濃縮したのちにトルエンで再結晶を行い、白色固体を10.1g、収率70%で得た。ステップ1の合成スキームを以下に示す。
<ステップ2:BBAFLBiの合成>
容量200mLの三口フラスコに、2.53g(7mmol)の4−(9−フェニル−9H−フルオレン−9−イル)フェニルボロン酸と、3.34g(7mmol)の4−ブロモ−4’,4’’−ジフェニルトリフェニルアミンと、2.90g(7mmol)の炭酸カリウムと70mLのトルエンと12.5mLのエタノールと10.5mLの水を入れた。この混合物を減圧しながら攪拌することで脱気し、フラスコ内を窒素置換した。この混合物に15.7mg(0.07mmol)の酢酸パラジウム(II)と42.2mg(0.07mmol)のトリス(o−トリル)ホスフィンを加え、窒素気流下、85℃で6時間攪拌した。この混合物を室温まで放冷後、析出した固体をろ別したあと、得られた溶液(ろ液)を水100mLで二回、飽和食塩水50mLで一回洗浄したのち、硫酸マグネシウムにて水分を取り除いた。これと先程反応後に濾別した固体とあわせ、トルエンを300mL加えた上で加熱をして固体を溶解させたあと、セライト/アルミナ/フロリジール/セライトで精製を行った。得られたろ液を濃縮したあと、エタノールを加えて再結晶を行い、白色固体を4.54g、収率89%で得た。ステップ2の合成スキームを以下に示す。
得られた白色固体4.39gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力3.5Pa、アルゴン流量15mL/minの条件において、320℃で加熱して行った。昇華精製後、BBAFLPの白色固体を2.73g、62%の回収率で得た。
得られた白色固体の核磁気共鳴分光法(H NMR)による分析結果を以下に示す。この結果から、本合成例において、BBAFLPが得られたことがわかった。H NMR(CDCl,500MHz):δ=7.17−7.28(m,13H),δ=7.31(dd,J=12.6Hz,7.4Hz,4H),δ=7.37(dd,J=7.5Hz,1.1Hz,4H),δ=7.40−7.47(m,10H),δ=7.51(d,J=8.6Hz,4H)δ=7.58(d,J=8.1Hz,4H)δ=7.78(d,J=7.4Hz,2H).
≪合成例4:N−[4−(9H−カルバゾール−9−イル)フェニル]−N−(1,1’−ビフェニル−2−イル)−9,9’−スピロビ[9H−フルオレン]−2−アミン(略称:oYGBiSF)の合成方法≫
oYGBiSFの構造式を以下に示す。
<ステップ1:N−(1,1’−ビフェニル−2−イル)−9,9’−スピロビ[9H−フルオレン]−2−アミンの合成>
1.8g(10mmol)の2−アミノビフェニルと、4.1g(10mmol)の2−ブロモ−9,9’−スピロビ[9H−フルオレン]と、0.34g(0.80mmol)の2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル(略称:S−Phos)と、2.0g(20mmol)のt−ブトキシナトリウムを、冷却管と3方コックと擦り栓を取り付けた200mL3つ口フラスコへ入れ、系内を窒素置換し、52mLのトルエンを加えた。この混合物を減圧脱気した後系内を窒素気流下とし、この混合物を60℃に加熱撹拌した。系内が60℃になってから0.24g(0.40mmol)のビス(ジベンジリデンアセトン)パラジウム(0)を加え、その後この混合物を80℃で2時間半加熱撹拌した。加熱撹拌後、析出した固体を吸引ろ過により除去し、得られたろ液を水で3回、次いで飽和食塩水で洗浄し、有機層を硫酸マグネシウムで乾燥した。乾燥後自然ろ過し、ろ液を濃縮したところ褐色固体を3.4g得た。得られた褐色固体をシリカゲルカラムクロマトグラフィー(移動相はヘキサン:トルエン=10:1から2:1までグラジエントをかけた)により精製したところ、目的物の白色固体を得た。得られた固体をトルエン\ヘキサンで再結晶したところ、目的物の白色固体を3.7g、収率74%で得た。ステップ1の合成スキームを以下に示す。
<ステップ2:N−[4−(9H−カルバゾール−9−イル)フェニル]−N−(1,1’−ビフェニル−2−イル)−9,9’−スピロビ[9H−フルオレン]−2−アミン(略称:oYGBiSF)の合成>
ステップ1で得た2.7g(5.5mmol)のN−(1,1’−ビフェニル−2−イル)−9,9’−スピロビ[9H−フルオレン]−2−アミンと、1.8g(5.5mmol)の9−(4−ブロモフェニル)−9H−カルバゾールと、0.18g(0.40mmol)の2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル(略称:S−Phos)と、1.1g(11mmol)のt−ブトキシナトリウムを、冷却管と3方コックと擦り栓を取り付けた200mL3つ口フラスコへ入れ、系内を窒素置換し、52mLのトルエンを加えた。この混合物を減圧脱気した後系内を窒素気流下とし、この混合物へ0.13g(0.22mmol)のビス(ジベンジリデンアセトン)パラジウム(0)を加え、その後この混合物を80℃で加熱撹拌した。加熱撹拌後、析出した固体を吸引ろ過により除去し、得られたろ液を水で3回、次いで飽和食塩水で洗浄し、有機層を硫酸マグネシウムで乾燥した。乾燥後自然ろ過し、ろ液を濃縮したところ褐色固体を得た。得られた褐色固体をシリカゲルカラムクロマトグラフィー(移動相はヘキサン:トルエン=10:1から2:1までグラジエントをかけた)により精製したところ、目的物の白色固体を得た。得られた固体をトルエン\ヘキサンで再結晶したところ、目的物の白色固体を3.2g、収率79%で得た。
得られた白色固体をトレインサブリメーション法により昇華精製した。昇華精製は、圧力2.9Pa、アルゴンを15mL/minで流しながら、白色固体3.2gを310℃で15時間加熱して行った。昇華精製後、目的物の無色透明立方晶を2.9g、回収率91%で得た。ステップ2の合成スキームを以下に示す。
得られた固体のH−NMR測定を行った。以下に測定結果を示す。これにより、本合成例においてoYGBiSFが得られたことがわかった。
H NMR(ジクロロメタン−d,500MHz):δ=6.29(sd、J2=2.0Hz、1H)、6.56(d、J=7.5Hz、1H)、6.67(d、J=7.5Hz、2H)、6.86(dt、J1=9.0Hz、J2=2.0Hz、2H)、6.93(dd、J1=8.3Hz、J2=2.0Hz、1H)、7.00(td、J1=7.5Hz、J2=1.0Hz、1H)、7.04−7.08(m、5H)、7.08−7.11(m、2H)、7.14(td、J1=7.5Hz、J2=1.0Hz、2H)、7.21−7.31(m、9H)、7.34(td、J1=7.0Hz、J2=1.5Hz、2H)、7.38(td、J1=7.5Hz、J2=1.0Hz、2H)、7.59(d、J=8.0Hz、1H)、7.70(d、J=8.0Hz、1H)、7.79(d、J=8.0Hz、2H)、8.09(d、J=8.0Hz、2H)。
101 陽極
102 陰極
103 EL層
111 正孔注入層
112 正孔輸送層
112−1 第1の正孔輸送層
112−2 第2の正孔輸送層
113 発光層
114 電子輸送層
115 電子注入層
116 電荷発生層
117 P型層
118 電子リレー層
119 電子注入バッファ層
201 陽極
202 陰極
210 第1の層
211 第2の層
212 第3の層
400 基板
401 陽極
403 EL層
404 陰極
405 シール材
406 シール材
407 封止基板
412 パッド
420 ICチップ
501 陽極
502 陰極
511 第1の発光ユニット
512 第2の発光ユニット
513 電荷発生層
601 駆動回路部(ソース線駆動回路)
602 画素部
603 駆動回路部(ゲート線駆動回路)
604 封止基板
605 シール材
607 空間
608 配線
609 FPC(フレキシブルプリントサーキット)
610 素子基板
611 スイッチング用FET
612 電流制御用FET
613 陽極
614 絶縁物
616 EL層
617 陰極
618 発光デバイス
951 基板
952 電極
953 絶縁層
954 隔壁層
955 EL層
956 電極
1001 基板
1002 下地絶縁膜
1003 ゲート絶縁膜
1006 ゲート電極
1007 ゲート電極
1008 ゲート電極
1020 第1の層間絶縁膜
1021 第2の層間絶縁膜
1022 電極
1024W 陽極
1024R 陽極
1024G 陽極
1024B 陽極
1025 隔壁
1028 EL層
1029 陰極
1031 封止基板
1032 シール材
1033 透明な基材
1034R 赤色の着色層
1034G 緑色の着色層
1034B 青色の着色層
1035 ブラックマトリクス
1036 オーバーコート層
1037 第3の層間絶縁膜
1040 画素部
1041 駆動回路部
1042 周辺部
2001 筐体
2002 光源
2100 ロボット
2110 演算装置
2101 照度センサ
2102 マイクロフォン
2103 上部カメラ
2104 スピーカ
2105 ディスプレイ
2106 下部カメラ
2107 障害物センサ
2108 移動機構
3001 照明装置
5000 筐体
5001 表示部
5002 第2の表示部
5003 スピーカ
5004 LEDランプ
5006 接続端子
5007 センサ
5008 マイクロフォン
5012 支持部
5013 イヤホン
5100 掃除ロボット
5101 ディスプレイ
5102 カメラ
5103 ブラシ
5104 操作ボタン
5150 携帯情報端末
5151 筐体
5152 表示領域
5153 屈曲部
5120 ゴミ
5200 表示領域
5201 表示領域
5202 表示領域
5203 表示領域
7101 筐体
7103 表示部
7105 スタンド
7107 表示部
7109 操作キー
7110 リモコン操作機
7201 本体
7202 筐体
7203 表示部
7204 キーボード
7205 外部接続ポート
7206 ポインティングデバイス
7210 第2の表示部
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
9310 携帯情報端末
9311 表示パネル
9313 ヒンジ
9315 筐体

Claims (26)

  1. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層とを有し、
    前記EL層が発光層を有する発光デバイスにおいて、
    前記発光デバイスに一定の電流を流した際に得られる発光の輝度変化で表される劣化曲線が極大値を有する発光デバイス。
  2. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層とを有する発光デバイスにおいて、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第1の層は第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、
    前記第7の有機化合物は、電界強度[V/cm]の平方根が600である時の電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であり、
    前記発光デバイスに一定の電流を流した際に得られる発光の輝度変化で表される劣化曲線が極大値を有する発光デバイス。
  3. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第1の層は、第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、
    前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、
    前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、
    前記第7の有機化合物は、電界強度[V/cm]の平方根が600である時の電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であり、
    前記発光デバイスに一定の電流を流した際に得られる発光の輝度変化で表される劣化曲線が極大値を有する発光デバイス。
  4. 請求項1乃至請求項3のいずれか一項において、
    前記劣化曲線が100%を超える部分を有する発光デバイス。
  5. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第1の層は、第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、
    前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、
    前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、
    前記第7の有機化合物は、電界強度[V/cm]の平方根が600である時の電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下である発光デバイス。
  6. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第1の層は、第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、
    前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、
    前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、
    前記第6の有機化合物のLUMO準位が、前記第7の有機化合物のLUMO準位よりも浅く、
    前記第7の有機化合物と、前記第6の有機化合物とのLUMO準位の差が0.1eV以上0.3eV以下である発光デバイス。
  7. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第1の層は、第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、
    前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、
    前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、
    前記第7の有機化合物がπ電子不足型複素芳香族化合物である発光デバイス。
  8. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第1の層は、第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第2の有機化合物は、第1の正孔輸送性骨格を有し、
    前記第3の有機化合物は、第2の正孔輸送性骨格を有し、
    前記第4の有機化合物は、第3の正孔輸送性骨格を有し、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、
    前記第1の正孔輸送性骨格、前記第2の正孔輸送性骨格および前記第3の正孔輸送性骨格は、各々独立に、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれか一であり、
    前記第7の有機化合物は、電界強度[V/cm]の平方根が600である時の電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下である発光デバイス。
  9. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第1の層は、第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第2の有機化合物は、第1の正孔輸送性骨格を有し、
    前記第3の有機化合物は、第2の正孔輸送性骨格を有し、
    前記第4の有機化合物は、第3の正孔輸送性骨格を有し、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、
    前記第1の正孔輸送性骨格、前記第2の正孔輸送性骨格および前記第3の正孔輸送性骨格は、各々独立に、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれか一であり、
    前記第6の有機化合物のLUMO準位が、前記第7の有機化合物のLUMO準位よりも浅く、
    前記第7の有機化合物と、前記第6の有機化合物とのLUMO準位の差が0.1eV以上0.3eV以下である発光デバイス。
  10. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第1の層は、第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第2の有機化合物は、第1の正孔輸送性骨格を有し、
    前記第3の有機化合物は、第2の正孔輸送性骨格を有し、
    前記第4の有機化合物は、第3の正孔輸送性骨格を有し、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.2eV以下であり、
    前記第1の正孔輸送性骨格、前記第2の正孔輸送性骨格および前記第3の正孔輸送性骨格は、各々独立に、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれか一であり、
    前記第7の有機化合物がπ電子不足型複素芳香族化合物である発光デバイス。
  11. 請求項7または請求項10において、
    前記π電子不足型複素芳香族化合物は、キノキサリン骨格、ベンゾイミダゾール骨格およびトリアジン骨格のいずれかである発光デバイス。
  12. 請求項2乃至請求項11のいずれか一項において、
    前記第6の有機化合物が炭化水素のみで構成される有機化合物であり、
    前記第6の有機化合物のHOMO準位は、前記第4の有機化合物のHOMO準位よりも深く、
    前記第4の有機化合物と、前記第6の有機化合物のHOMO準位の差が0.2eV以上0.4eV以下である発光デバイス。
  13. 請求項2乃至請求項11のいずれか一項において、
    前記第6の有機化合物がアントラセン骨格と複素環骨格を有する有機化合物であり、
    前記第4の有機化合物と、前記第6の有機化合物のHOMO準位の差が0.2eV未満である発光デバイス。
  14. 請求項2乃至請求項11のいずれか一項において、
    前記第6の有機化合物がアントラセン骨格と複素環骨格を有する有機化合物であり、
    前記第4の有機化合物がナフタレン環に2つのカルバゾール環が結合した有機化合物である発光デバイス。
  15. 請求項14において、前記第4の有機化合物が3,3’−(ナフタレン−1,4−ジイル)ビス(9−フェニル−9H−カルバゾール)である発光デバイス。
  16. 請求項2乃至請求項15のいずれか一項において、
    前記第6の有機化合物がアントラセン骨格と複素環骨格を有する有機化合物であり、
    前記第2の有機化合物のHOMO準位が−5.4eV以上−5.7eV以下である発光デバイス。
  17. 請求項2乃至請求項16のいずれか一項において、
    前記第7の有機化合物の電子移動度が、前記第6の有機化合物の電子移動度よりも小さい発光デバイス。
  18. 請求項2乃至請求項17のいずれか一項において、
    前記第4の有機化合物のHOMO準位と、前記第3の有機化合物のHOMO準位との差が0.2eV以下である発光デバイス。
  19. 請求項2乃至請求項18のいずれか一項において、
    前記第4の有機化合物のHOMO準位が、前記第3の有機化合物のHOMO準位よりも深い発光デバイス。
  20. 請求項2乃至請求項19のいずれか一項において、
    前記第2の有機化合物が、ジベンゾフラン骨格を有する有機化合物である発光デバイス。
  21. 請求項2乃至請求項20のいずれか一項において、
    前記第7の有機化合物がキノキサリン骨格を有する有機化合物である発光デバイス。
  22. 請求項2乃至請求項21のいずれか一項において、
    前記第2の有機化合物と前記第3の有機化合物とが同じ物質である発光デバイス。
  23. 請求項2乃至請求項22のいずれか一項において、
    前記第5の有機化合物が青色蛍光材料である発光デバイス。
  24. 請求項1乃至請求項23に記載の発光デバイスと、センサ、操作ボタン、スピーカ、または、マイクと、
    を有する電子機器。
  25. 請求項1乃至請求項23に記載の発光デバイスと、トランジスタ、または、基板と、を有する発光装置。
  26. 請求項1乃至請求項23に記載の発光デバイスと、筐体と、を有する照明装置。
JP2019176065A 2018-09-26 2019-09-26 発光デバイス、発光装置、電子機器および照明装置 Active JP6870049B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018180795 2018-09-26
JP2018180795 2018-09-26
JP2018191552 2018-10-10
JP2018191552 2018-10-10
JP2018224074 2018-11-29
JP2018224074 2018-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021068275A Division JP7035249B2 (ja) 2018-09-26 2021-04-14 発光デバイス、発光装置、電子機器および照明装置

Publications (3)

Publication Number Publication Date
JP2020096171A true JP2020096171A (ja) 2020-06-18
JP2020096171A5 JP2020096171A5 (ja) 2021-03-25
JP6870049B2 JP6870049B2 (ja) 2021-05-12

Family

ID=69950372

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2019176065A Active JP6870049B2 (ja) 2018-09-26 2019-09-26 発光デバイス、発光装置、電子機器および照明装置
JP2021068275A Active JP7035249B2 (ja) 2018-09-26 2021-04-14 発光デバイス、発光装置、電子機器および照明装置
JP2022031649A Active JP7412468B2 (ja) 2018-09-26 2022-03-02 発光デバイス、電子機器、発光装置及び照明装置
JP2023219153A Pending JP2024023913A (ja) 2018-09-26 2023-12-26 発光デバイス

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2021068275A Active JP7035249B2 (ja) 2018-09-26 2021-04-14 発光デバイス、発光装置、電子機器および照明装置
JP2022031649A Active JP7412468B2 (ja) 2018-09-26 2022-03-02 発光デバイス、電子機器、発光装置及び照明装置
JP2023219153A Pending JP2024023913A (ja) 2018-09-26 2023-12-26 発光デバイス

Country Status (7)

Country Link
US (1) US20210367177A1 (ja)
JP (4) JP6870049B2 (ja)
KR (3) KR102330776B1 (ja)
CN (2) CN111819708A (ja)
DE (1) DE112019004819B4 (ja)
TW (2) TWI798674B (ja)
WO (1) WO2020065471A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260488A1 (ja) * 2020-06-26 2021-12-30 株式会社半導体エネルギー研究所 発光デバイス、機能パネル、発光装置、表示装置、電子機器、照明装置
WO2022178702A1 (zh) * 2021-02-24 2022-09-01 京东方科技集团股份有限公司 发光器件及其制造方法、显示装置
WO2022230844A1 (ja) * 2021-04-26 2022-11-03 出光興産株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
WO2023209494A1 (ja) * 2022-04-29 2023-11-02 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器
KR20240007914A (ko) 2021-05-13 2024-01-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 디바이스, 발광 장치, 표시 장치, 전자 기기, 조명 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227083A (zh) 2018-11-30 2021-08-06 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
US20220246857A1 (en) 2019-05-31 2022-08-04 Idemitsu Kosan Co.,Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
TW202110778A (zh) 2019-06-14 2021-03-16 日商半導體能源研究所股份有限公司 發光器件、發光裝置、電子裝置及照明設備
KR20210084744A (ko) * 2019-12-27 2021-07-08 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함한 장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151269A (ja) * 2000-08-28 2002-05-24 Semiconductor Energy Lab Co Ltd 発光装置
US20130032785A1 (en) * 2011-08-01 2013-02-07 Universal Display Corporation Materials for organic light emitting diode
JP2010225975A (ja) 2009-03-25 2010-10-07 Nippon Seiki Co Ltd 有機el素子
CN102668157B (zh) 2009-11-27 2014-11-26 夏普株式会社 有机电致发光元件及其制造方法、以及有机电致发光显示装置
JP2011139044A (ja) * 2009-12-01 2011-07-14 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、および照明装置
KR102137376B1 (ko) * 2012-08-03 2020-07-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
KR102230139B1 (ko) * 2013-05-17 2021-03-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 조명 장치, 발광 장치, 및 전자 기기
CN105679945B (zh) * 2014-11-18 2017-12-26 上海和辉光电有限公司 蓝光有机电致发光器件及包含该器件的显示器
KR102543330B1 (ko) * 2015-02-25 2023-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 소자, 표시 장치, 전자 기기, 및 조명 장치
JP6749892B2 (ja) * 2015-04-10 2020-09-02 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
KR20160140393A (ko) * 2015-05-29 2016-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치
US10270041B2 (en) * 2015-08-28 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
KR20180095872A (ko) * 2015-12-17 2018-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 조명 장치, 조명 시스템, 및 유도 시스템
CN113517409A (zh) * 2016-01-29 2021-10-19 株式会社半导体能源研究所 发光元件、发光装置、电子设备及照明装置
US20170271610A1 (en) * 2016-03-18 2017-09-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR102044057B1 (ko) * 2016-04-28 2019-11-12 주식회사 엘지화학 유기 발광 소자
JP7039188B2 (ja) * 2016-06-24 2022-03-22 株式会社半導体エネルギー研究所 燐光発光層用ホスト材料、有機化合物、発光素子、発光装置、電子機器および照明装置
US10388900B2 (en) * 2016-07-28 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP7175259B2 (ja) * 2017-03-03 2022-11-18 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置
CN109216565B (zh) * 2017-06-30 2021-05-18 昆山国显光电有限公司 有机电致发光器件及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260488A1 (ja) * 2020-06-26 2021-12-30 株式会社半導体エネルギー研究所 発光デバイス、機能パネル、発光装置、表示装置、電子機器、照明装置
WO2022178702A1 (zh) * 2021-02-24 2022-09-01 京东方科技集团股份有限公司 发光器件及其制造方法、显示装置
WO2022230844A1 (ja) * 2021-04-26 2022-11-03 出光興産株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置及び電子機器
KR20240007914A (ko) 2021-05-13 2024-01-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 디바이스, 발광 장치, 표시 장치, 전자 기기, 조명 장치
WO2023209494A1 (ja) * 2022-04-29 2023-11-02 株式会社半導体エネルギー研究所 表示装置、表示モジュール、電子機器

Also Published As

Publication number Publication date
KR20230025940A (ko) 2023-02-23
JP7035249B2 (ja) 2022-03-14
KR102499281B1 (ko) 2023-02-13
KR102330776B1 (ko) 2021-12-01
TW202030903A (zh) 2020-08-16
KR20210043482A (ko) 2021-04-21
DE112019004819T5 (de) 2021-06-02
TWI827686B (zh) 2024-01-01
US20210367177A1 (en) 2021-11-25
CN113299841A (zh) 2021-08-24
JP7412468B2 (ja) 2024-01-12
JP2021103799A (ja) 2021-07-15
TWI798674B (zh) 2023-04-11
DE112019004819B4 (de) 2022-06-30
WO2020065471A1 (en) 2020-04-02
CN113299841B (zh) 2022-08-30
JP2024023913A (ja) 2024-02-21
CN111819708A (zh) 2020-10-23
KR20210143341A (ko) 2021-11-26
JP2022066351A (ja) 2022-04-28
JP6870049B2 (ja) 2021-05-12
TW202131537A (zh) 2021-08-16

Similar Documents

Publication Publication Date Title
JP6870049B2 (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2017076780A (ja) 発光素子、発光装置、電子機器及び照明装置
JP2017139457A (ja) 発光素子、発光装置、電子機器及び照明装置
JP7438934B2 (ja) 発光素子、発光装置、電子機器および照明装置
JP2023179700A (ja) 発光デバイス、発光装置および照明装置
JP2023078222A (ja) 化合物
JP7456777B2 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2020217162A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2022104835A (ja) 有機半導体デバイス、有機elデバイス、フォトダイオードセンサ、表示装置、発光装置、電子機器および照明装置
WO2020165694A1 (ja) ホスト材料用アントラセン化合物、発光デバイス、発光装置、電子機器および照明装置
JP2022044036A (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2021122042A (ja) 発光デバイス、発光装置、電子機器、照明装置および化合物
JP2020167411A (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2020205421A (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2018206981A (ja) 発光素子、発光装置、電子機器及び照明装置
WO2021186306A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2020217128A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
JP7282737B2 (ja) 正孔輸送層用材料、発光素子、発光装置、電子機器および照明装置
WO2020136507A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2020184613A (ja) 発光デバイス、発光装置、電子機器および照明装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210209

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210414

R150 Certificate of patent or registration of utility model

Ref document number: 6870049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250