WO2011062232A1 - 電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池 - Google Patents

電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池 Download PDF

Info

Publication number
WO2011062232A1
WO2011062232A1 PCT/JP2010/070586 JP2010070586W WO2011062232A1 WO 2011062232 A1 WO2011062232 A1 WO 2011062232A1 JP 2010070586 W JP2010070586 W JP 2010070586W WO 2011062232 A1 WO2011062232 A1 WO 2011062232A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
electrode plate
copolymer
aqueous
aqueous paste
Prior art date
Application number
PCT/JP2010/070586
Other languages
English (en)
French (fr)
Inventor
玄 宮田
彰紀 江藤
見立 武仁
西村 直人
貴洋 松山
俊平 西中
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201080052000.6A priority Critical patent/CN102668198B/zh
Priority to KR1020157002216A priority patent/KR20150029722A/ko
Priority to JP2011541952A priority patent/JP5480911B2/ja
Priority to KR1020167013737A priority patent/KR20160065214A/ko
Priority to KR1020147013582A priority patent/KR20150035475A/ko
Priority to US13/510,623 priority patent/US20120231337A1/en
Publication of WO2011062232A1 publication Critical patent/WO2011062232A1/ja
Priority to US15/241,732 priority patent/US20160359169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aqueous dispersion for an electrochemical cell containing a specific olefin copolymer (a), an aqueous paste for an electrochemical cell containing an active material and a conductive additive, and an electrochemical cell formed by applying the aqueous paste.
  • the present invention relates to an electrode plate and a battery including the electrode plate.
  • the present invention also provides a secondary battery, for example, an alkaline secondary battery (Ni-MH battery) obtained using a hydrogen storage alloy, a non-aqueous electrolyte secondary battery (lithium ion battery) obtained using a lithium compound.
  • a secondary battery for example, an alkaline secondary battery (Ni-MH battery) obtained using a hydrogen storage alloy, a non-aqueous electrolyte secondary battery (lithium ion battery) obtained using a lithium compound.
  • the present invention relates to an aqueous dispersion for electrochemical cells (A) constituting an electricity storage device such as an electric double layer capacitor.
  • the present invention relates to an aqueous dispersion for electrochemical cells (A) in which a specific olefin copolymer (a) is dispersed in water.
  • each active material for positive electrode and negative electrode is bound to each current collector with a binder to create each electrode.
  • the positive electrode binder is required to have oxidation resistance, and a solution obtained by dissolving polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) or a fluorine-containing water dispersion of polytetrafluoroethylene (PTFE). Liquid is used.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • PTFE polytetrafluoroethylene
  • Patent Documents 1 and 2 Such binders are excellent in redox resistance, have a small swelling with respect to the electrolytic solution, and are difficult to cover the active material.
  • Patent Document 3 discloses an aqueous dispersion containing an acid-modified polyolefin resin and a secondary battery electrode obtained using the aqueous dispersion.
  • the present invention is intended to solve the problems associated with the prior art as described above, and has sufficient adhesion to a metal current collector, a positive electrode active material, and a negative electrode active material and is electrochemical.
  • the aqueous dispersion for electrochemical cells (A) which can improve the cycle characteristics of the secondary battery in particular, while maintaining the conventional electrostatic capacity and internal resistance, and the electrochemical cell is less likely to swell, and for the electrochemical cell It is to provide an aqueous paste.
  • the specific olefin copolymer (a) is sometimes referred to as an electrochemical cell binder.
  • the modification (body) means, for example, the main structure by using a polymerization reaction, graft reaction, addition reaction or substitution reaction on the olefin copolymer (a), polyoxyethylene, or polyvinyl alcohol. It means to give a different structure.
  • the aqueous paste for electrochemical cells of the present invention contains an aqueous dispersion for electrochemical cells (A) containing an olefin copolymer (a), an active material (B) and a conductive additive (C), and the olefin-based paste.
  • the copolymer (a) has a weight average molecular weight of 50,000 or more (in terms of polystyrene) determined by gel permeation chromatography (GPC), and a content of structural units derived from propylene of 50% by weight or more.
  • the solid content of the aqueous dispersion (A) is 0.5 to 30 parts by weight with respect to 100 parts by weight of the active material (B), and the conductive assistant (C) is 0.1 to 20 parts by weight. Part.
  • the random propylene copolymer (a-1) is preferably at least one selected from a random propylene-butene copolymer, a random ethylene-propylene-butene copolymer and a random ethylene-propylene copolymer. .
  • the aqueous dispersion preferably further contains an acid-modified olefin (co) polymer (a-4) having a weight average molecular weight of less than 50,000 (polystyrene conversion) determined by gel permeation chromatography (GPC). .
  • a-4 acid-modified olefin (co) polymer having a weight average molecular weight of less than 50,000 (polystyrene conversion) determined by gel permeation chromatography (GPC).
  • the acid-modified olefin (co) polymer (a-4) is used in a total of 100 parts by weight of the random propylene-based copolymer (a-1) and the acid-modified random propylene-based copolymer (a-2). On the other hand, it is preferably contained in an amount of 5 to 50 parts by weight.
  • the acid modification is preferably maleic acid modification.
  • the aqueous dispersion (A) preferably contains at least one selected from a surfactant (x) and a viscosity modifier (y).
  • the solid content of the surfactant (x) is 0 to 100 parts by weight relative to 100 parts by weight of the solid content of the olefin copolymer (a), and the solid content of the viscosity modifier (y) is The amount is preferably 10 to 100 parts by weight.
  • the viscosity modifier (y) is preferably at least one selected from carboxymethylcellulose, polyethylene oxide, modified polyethylene oxide, polyvinyl alcohol, and modified polyvinyl alcohol.
  • the active material (B) preferably contains olivine type LiFePO 4 .
  • the olivine-type LiFePO 4 preferably has a median diameter (D50) measured by a laser diffraction scattering method of 0.5 to 9 ⁇ m and a specific surface area of 5 to 30 m 2 / g.
  • the active material (B) preferably contains spheroidized natural graphite.
  • the spheroidized natural graphite preferably has a median diameter (D50) measured by a laser diffraction scattering method of 15 to 20 ⁇ m and a specific surface area of 2 to 5 m 2 / g.
  • the conductive auxiliary agent (C) is preferably at least one selected from acetylene black and artificial graphite, and the specific surface area of the conductive auxiliary agent (C) is preferably 2 to 80 m 2 / g.
  • the acetylene black preferably has a median diameter (D50) measured by a laser diffraction scattering method of 0.02 to 5 ⁇ m.
  • the artificial graphite preferably has a median diameter (D50) measured by a laser diffraction scattering method of 2 to 80 ⁇ m.
  • the electrode plate for an electrochemical cell has an electric capacity of 0.5 to 18 mAh / cm 2 obtained by applying the aqueous paste for an electrochemical cell of the present invention. Is preferred.
  • an electrochemical cell positive electrode plate (1) is an electrode plate obtained by applying the electrochemical aqueous paste of the present invention containing olivine-type LiFePO 4 as a plate active material (B).
  • the amount of active material contained in the coating is preferably 4 to 90 mg / cm 2
  • the packing density of the active material contained in the coating is preferably 1.0 to 2.0 g / cm 3 .
  • an anode plate for an electrochemical cell (1) is an electrode plate obtained by applying the electrochemical aqueous paste of the present invention containing spheroidized natural graphite as a plate active material (B).
  • the amount of active material contained in the coating is preferably 2 to 50 mg / cm 2
  • the packing density of the active material contained in the coating is preferably 1.0 to 1.7 g / cm 3 .
  • the nonaqueous electrolyte secondary battery is preferably obtained using the positive electrode plate (1) and the negative electrode plate (1).
  • the non-aqueous electrolyte secondary battery as a household storage battery.
  • the aqueous dispersion for electrochemical cells (A) of the present invention has a weight average molecular weight of 50,000 or more (in terms of polystyrene) determined by gel permeation chromatography (GPC), and contains a structural unit derived from propylene.
  • the aqueous dispersion (A) preferably contains at least one selected from a surfactant (x) and a viscosity modifier (y).
  • the aqueous dispersion (A) for electrochemical cells and the aqueous paste for electrochemical cells of the present invention have sufficient adhesion to a metal current collector, a positive electrode active material, and a negative electrode active material, and were applied to batteries.
  • the electrochemical cell is stable and the electrochemical cell is less likely to expand, and in particular, the cycle characteristics of the secondary battery can be improved.
  • a battery including an electrode plate obtained using the aqueous paste for electrochemical cells has a high cycle life due to charge and discharge.
  • FIG. 1 is a schematic cross-sectional view of the nonaqueous electrolyte secondary battery of the present embodiment.
  • FIG. 2 is a perspective view in an electrode plate bending test.
  • FIG. 3 is a side view of the electrode plate bending test.
  • the paste for electrochemical cells of the present invention contains a specific aqueous dispersion for electrochemical cells (A), an active material (B), and a conductive additive (C).
  • the aqueous dispersion for electrochemical cells (A) of the present invention is an emulsion dispersed in water.
  • aqueous dispersion (A) contains a surfactant (x), a viscosity modifier (y) and the like as required in addition to the olefin copolymer (a) according to the present invention.
  • the solid content of the aqueous dispersion (A) (that is, the total amount of the solid content of the copolymer (a) and the surfactant (x) and the solid content of the viscosity modifier (y)) is 100 parts by weight of the active material.
  • the amount is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight. If it is this range, since favorable electrode_plate_adhesion is obtained, it is preferable.
  • the amount is less than 0.5 parts by weight, the composite material layer may be peeled off from the current collector of the electrode plate, and if it exceeds 30 parts by weight, the lithium ion transportability may be deteriorated.
  • the volume average particle diameter of the aqueous dispersion (A) according to the present invention is not particularly limited, but is 10 to 1,000 nm, preferably 10 to 800 nm, more preferably 10 to 500 nm (Microtrac® HRA: used by Honneywell) Resin particles composed of the olefin copolymer (a). If the particle diameter is in the above range, it is preferable because of excellent water dispersion stability. Moreover, if it is less than 10 nm, there exists a possibility that an electrode plate adhesiveness may fall, and when it exceeds 1,000 nm, there exists a possibility that a dispersion stability may be impaired.
  • the aqueous paste according to the present invention is applied to a current collector and dried, and within this range, an olefin copolymer is produced along with the evaporation of moisture. It can be prevented that (a) moves in the opposite direction to the current collector, so-called migration, and the adhesiveness with the current collector is deteriorated. If this range is exceeded, excessive migration may occur or the adhesion area may decrease, resulting in a decrease in adhesion.
  • the method for controlling the particle size is not particularly limited, and can be appropriately adjusted depending on, for example, the melting temperature during production, the amount of resin neutralization, the amount of emulsification aid, and the like.
  • Olesion copolymer (a) By using the olefin copolymer (a) according to the present invention for the aqueous dispersion (A), good adhesion and battery cycle performance can be obtained.
  • the olefin copolymer (a) is contained in the aqueous dispersion (A) in an amount of 5 to 80% by weight, preferably 10 to 70% by weight in terms of solid content. Within this range, good electrode plate adhesion can be obtained.
  • the copolymer (a) has a melting point [Tm] measured by a differential scanning calorimeter (DSC) of usually 120 ° C. or lower, preferably 110 ° C. or lower, and preferably not higher than 110 ° C.
  • Tm melting point measured by a differential scanning calorimeter
  • DSC differential scanning calorimeter
  • a melting point within the above range is preferable because of excellent electrode plate flexibility.
  • the olefin copolymer (a) may or may not have crystallinity, but from the viewpoint of cycle characteristics of the secondary battery and adhesion to various base materials, crystallization by X-ray diffraction method.
  • the degree is preferably 30% or less.
  • the olefin copolymer (a) includes at least one selected from the copolymer (a-1) to the copolymer (a-3) described below.
  • the following (co) polymer (a-4) is included, more preferably (co) polymer (a-4) and / or copolymer (a-5).
  • a polymer can be used arbitrarily.
  • the random propylene-based copolymer (a-1) is mainly composed of structural units derived from propylene, and in addition, ethylene, 1-butene, 4-methylpentene-1, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-nonadecene, 1-eicosene, 9-methyldecene-1, This is a copolymer of ⁇ -olefins such as 11-methyldodecene-1 and 12-ethyltetradecene-1. Only one kind of these copolymers may be used, or a plurality of kinds may be used in combination.
  • a random propylene-butene copolymer, a random ethylene-propylene-butene copolymer, and a random ethylene-propylene copolymer are preferable in terms of electrode plate flexibility.
  • the weight average molecular weight determined by gel permeation chromatography (GPC) of the copolymer (a-1) is 50,000 or more in terms of polystyrene, and the upper limit is not particularly limited, but is preferably 50,000 to 500,000. Preferably, it is 50,000 to 300,000 from the viewpoint of controlling the dispersed particle size when the aqueous dispersion is formed.
  • GPC gel permeation chromatography
  • the content of the copolymer component is propylene per 100% by weight of copolymer (a-1) from the viewpoint of impact resistance, flexibility and adhesion strength of the electrode plate for electrochemical cells, particularly from the viewpoint of cycle characteristics of the electrode.
  • the content of the structural unit derived from is from 50% by weight to less than 85% by weight, preferably from 50 to 80% by weight, more preferably from 55 to 80% by weight.
  • the acid-modified random propylene copolymer (a-2) is a copolymer obtained by modifying the random propylene copolymer (a-1) with an acid. For adhesion to the metal current collector, it is preferable to use an acid-modified copolymer.
  • the weight average molecular weight of the copolymer (a-2) is the same as that of the copolymer (a-1).
  • the type of acid is not particularly limited as long as it is a compound that can modify the random propylene copolymer (a-1), and examples thereof include carboxylic acid and sulfonic acid.
  • carboxylic acid is preferable from the viewpoint of adhesion.
  • maleic acid having an unsaturated bond, benzoic acid and derivatives thereof may be mentioned, and maleated modified random polypropylene modified with maleic acid is particularly preferable from the viewpoint of the number of acid functional groups. More preferable are a maleated modified random propylene-butene copolymer, a maleated modified random ethylene-propylene-butene copolymer and a maleated modified random ethylene-propylene copolymer from the viewpoint of electrode plate flexibility.
  • the degree of acid modification is usually in the range of 0.1 to 5.0% by weight in terms of acid.
  • the degree of modification is preferably 0.5 to 4.0% by weight in terms of maleic anhydride (maleinization modification degree 0.5 to 4.0), more preferably 0.5. 5 to 2.0% by weight (degree of maleation modification 0.5 to 2.0).
  • the modification method with maleic acid is not particularly limited.
  • the random propylene copolymer (a-1) is dissolved or dispersed in a hydrocarbon solvent at a high temperature, and maleic anhydride and an organic peroxide are added to make anhydrous.
  • the content of structural units derived from (meth) acrylic acid is 5 wt% or more and 25 wt% or less, preferably 6 to 20 wt%, more preferably Is 10 to 20% by weight in terms of electrode plate adhesion.
  • the content of the structural unit is less than 5% by weight, the stability of the aqueous dispersion is lowered and the adhesion as a binder is lowered.
  • it exceeds 25% by weight it becomes a water-soluble polymer, not an aqueous dispersion, and the binding property in the low addition region is lowered.
  • the weight average molecular weight of the copolymer (a-3) is the same as that of the copolymer (a-1).
  • the (meth) acrylic acid is neutralized with an alkali.
  • species Alkali metals, such as ammonia, organic amine, potassium hydroxide, sodium hydroxide, lithium hydroxide, are mentioned.
  • ammonia, sodium hydroxide, and lithium hydroxide are suitable for forming an aqueous dispersion.
  • the neutralization rate of the carboxylic acid possessed by the (meth) acrylic acid is not particularly limited, but is preferably 25 mol% or more and 85 mol% or less. If the amount is less than 25 mol%, the stability of the aqueous dispersion may decrease, and if it exceeds 85 mol%, the unneutralized carboxylic acid may be insufficient, and the adhesion as a binder may decrease. Preferably, they are 30 mol% or more and 80 mol% or less, More preferably, they are 35 mol% or more and 75 mol% or less.
  • the copolymer (a-3) in the olefin copolymer (a) may be 100% by weight with respect to the olefin copolymer (a).
  • the total amount of the copolymer (a-1) and the copolymer (a-2) is 100 parts by weight.
  • the amount is preferably 0 to 200 parts by weight, more preferably 0.5 to 150 parts by weight.
  • the acid-modified olefin (co) polymer (a-4) is an acid-modified (co) polymer.
  • the olefinic (co) polymer include homopolymers having 2 to 6 carbon atoms such as polyethylene and polypropylene, and those obtained by copolymerizing olefins having 2 to 6 carbon atoms.
  • the kind of acid and the modification method are the same as those of the copolymer (a-2).
  • As the acid maleic acid is preferable from the viewpoint of the number of acid functional groups.
  • the weight average molecular weight determined by GPC of the (co) polymer (a-4) is less than 50,000, preferably 5,000 to less than 50,000, more preferably 5,000 to 40,000 in terms of polystyrene.
  • the low molecular weight copolymer (a-4) serves as a dispersion aid when dispersing the olefin copolymer (a), and the aqueous dispersion (A) is kneaded with the electrode active material. When mixed, it has a role of improving the compatibility with the thickening agent (viscosity adjusting agent), particularly carboxymethyl cellulose, and the electrode plate (mixture layer) adhesion.
  • a low molecular weight maleated modified olefin (co) polymer having a weight average molecular weight of less than 50,000 is preferably a random propylene copolymer (a-1) or an acid modified random propylene copolymer (a- From the viewpoint of compatibility in the aqueous dispersion step with 2), maleated polypropylene is preferable.
  • the degree of modification is usually 0.1 to 10% by weight, preferably 0.5 to 8% by weight, from the viewpoint of the stability of water dispersibility and electrode plate adhesion. If it exceeds this range, the emulsifying properties at the time of dispersing the emulsion may decrease, the mixing stability of the paste may decrease, and the viscosity may increase.
  • the (co) polymer (a-4) is an olefinic polymer with respect to a total of 100 parts by weight of the random propylene copolymer (a-1) and the acid-modified random propylene copolymer (a-2).
  • the amount of the copolymer (a) is preferably 5 to 50 parts by weight, more preferably, from the viewpoint of adhesion of the copolymer (a) and swelling property with respect to the electrolyte, and further from the viewpoint of emulsifiability during dispersion of the emulsion and mixing stability of the paste.
  • the amount is 10 to 40 parts by weight, more preferably 10 to 30 parts by weight.
  • the olefin copolymer (a) according to the present invention may contain other copolymer (a-5) as long as the effects of the present invention are not impaired.
  • copolymers (a-5) are different from the copolymers (a-1) to (a-4), and are styrene, ethylene, propylene, 1-butene, 1,3-butadiene, 3-methyl.
  • Copolymerizable monomers such as 1-butene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, 1-hexene, 1-octene, 1-decene and 1-dodecene; A single or a combination of two or more types, Examples thereof include styrene-ethylene-butylene copolymers and hydrogenated products thereof.
  • polymers containing alicyclic structures such as norbornene polymers, monocyclic cyclic polyolefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrogenated products thereof are also used. be able to.
  • the copolymer (a-5) includes acid-modified products of these copolymers, and maleated modified products are particularly preferable.
  • styrene-ethylene-butylene copolymer is preferable in terms of electrode plate flexibility.
  • the content of the copolymer (a-5) is 0 to 50 parts by weight, preferably 100 parts by weight with respect to 100 parts by weight of the olefin copolymer (a), from the viewpoint of improving adhesiveness and electrode flexibility. 0 to 30 parts by weight. In addition, 0 to 50 parts by weight, preferably 0 to 30 parts by weight with respect to a total of 100 parts by weight of the copolymers (a-1) and (a-2) from the viewpoint of improving adhesiveness and electrode flexibility. Parts by weight.
  • the maleation modification degree is not particularly limited, but is preferably 0.1 to 10% by weight, more preferably 0.1 to 8% by weight. Exceeding this range may cause a decrease in emulsification during dispersion of the emulsion, a decrease in the mixing stability of the paste, and a thickening.
  • the weight average molecular weight of the copolymer (a-5) is not particularly limited, but is preferably 5,000 to 300,000.
  • surfactant (x) In the present invention, if necessary, surfactant (x) may be added as an emulsifier.
  • the surfactant is preferably contained in the aqueous dispersion (A).
  • Surfactant is a substance that modifies the surface of the substance or the parent or hydrophobic state of the interface.
  • the surfactant functions as a dispersant, a wetting agent, and an antifoaming agent. When this is contained, it is preferable at the point of the aqueous dispersion of an active material and a conductive support agent.
  • the surfactant is preferably an anion, nonion, or silicon, but is not particularly limited.
  • the addition amount of the surfactant is 0 to 100 parts by weight, preferably 3 to 80 parts by weight in terms of solids with respect to 100 parts by weight of the solids of the olefin copolymer (a) in the aqueous dispersion (A). Parts by weight. If this range is exceeded, the compatibility of the resin particles with the electrolyte will increase, and the strength will be significantly reduced, and the resin will easily swell.
  • anionic surfactant examples include sulfonates having a saturated or unsaturated alkyl chain of C10 to C20 such as sodium dodecylbenzenesulfonate and sodium lauryl sulfate, sodium alkyldiphenyl ether disulfonate, alkylnaphthalenesulfonic acid.
  • nonionic surfactant examples include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether, polyoxyalkylene alkyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, polyoxyethylene Ethylene styrenated phenyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene oleyl phenyl ether, polyoxyethylene nonyl phenyl ether, oxyethylene / oxypropylene block copolymer, t-octylphenoxyethyl poly Polyethoxylated ethoxyethanol, nonylphenoxyethyl polyethoxyethanol, acetylenic glycol derivatives Carboxymethyl ethylene ether.
  • polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether
  • silicon surfactant examples include polydimethylsiloxane, polyether-modified polydimethylsiloxane, polymethylalkylsiloxane, and silicon-modified polyoxyethylene ether.
  • potassium oleate and potassium stearate are preferable in that the active material and the conductive auxiliary agent are dispersed in water.
  • acetylenic glycol derivative polyoxyethylene ether and silicon-modified polyoxyethylene ether are preferable from the viewpoint of reducing the surface tension of water.
  • the surfactant when at least one selected from potassium oleate, polyoxyethylene ether of an acetylenic glycol derivative and silicon-modified polyoxyethylene ether is used, the resulting aqueous dispersion is a good active material, conductive It is more preferable because a dispersion state of the auxiliary agent can be obtained.
  • the aqueous dispersion (A) has a surface activity from the viewpoint of improving the dispersibility of the active material and the conductive additive. It is preferable that an agent is included.
  • Such surfactants are not particularly limited, but are preferably potassium oleate, potassium stearate, polyoxyethylene ethers of acetylenic glycol derivatives, silicon-modified polyoxyethylene ethers, more preferably potassium oleate, acetylene. These are polyoxyethylene ethers of renic glycol derivatives and silicon-modified polyoxyethylene ethers.
  • the surfactant is not particularly limited, but is 0 to 100 parts by weight in terms of solid content with respect to 100 parts by weight of the solid content of the copolymer (a-3), preferably 3 to 80 in terms of cycle characteristics. Parts by weight. This range is preferred because a good capacity retention based on electrode plate adhesion can be obtained.
  • Viscosity modifier (y) In this invention, you may add a viscosity modifier (y) as needed.
  • the viscosity modifier is preferably included in the aqueous dispersion (A).
  • the aqueous paste for electrochemical cells of the present invention (ink for applying a positive electrode and a negative electrode active material to a current collector) preferably contains a viscosity modifier. Since the olefin copolymer (a) according to the present invention is a water dispersion type, when a viscosity modifier is used, an optimum viscosity can be imparted to the electrode paste, and the electrode paste can be easily applied to the electrode.
  • the volume average particle diameter of the olefin copolymer (a) according to the present invention is larger than 200 nm, it is preferable that separation and floating with time can be improved.
  • the addition amount of the viscosity modifier is 10 to 100 parts by weight, preferably 10 parts by weight in terms of solids, based on 100 parts by weight of the solids of the olefin copolymer (a), from the viewpoint of coating properties and workability. ⁇ 95 parts by weight.
  • the viscosity modifier is not particularly limited, but the weight average molecular weight determined by GPC is preferably 50,000 to 4,000,000 (polystyrene conversion), more preferably 60,000 to 3,500,000, still more preferably. Is 65,000 to 3,000,000. If the weight average molecular weight is less than 50,000, the active material may be precipitated, and if it exceeds 4,000,000, the paste may have remarkable thixotropic characteristics. Moreover, it is preferable that it is in the above-mentioned range since good electrode plate coatability can be obtained.
  • the viscosity modifier is not particularly limited, and examples thereof include cellulose derivatives such as carboxymethyl cellulose (CMC), carboxyethyl cellulose, and hydroxyethyl cellulose, polyoxyethylene or a modified product thereof, polyvinyl alcohol or a modified product thereof, and polysaccharides.
  • CMC carboxymethyl cellulose
  • carboxyethyl cellulose carboxyethyl cellulose
  • hydroxyethyl cellulose polyoxyethylene or a modified product thereof
  • polyvinyl alcohol or a modified product thereof polysaccharides.
  • CMC viscosity modifiers
  • polyoxyethylene or a modified product thereof polyvinyl alcohol or a modified product thereof is more preferable from the viewpoint of sedimentation stability.
  • a heat stabilizer In the aqueous dispersion (A) according to the present invention, a heat stabilizer, anti-slip agent, foaming agent, crystallization aid, nucleating agent, pigment, dye, consists various additives such as plasticizers, anti-aging agents, antioxidants, impact modifiers, fillers, cross-linking agents, co-cross-linking agents, cross-linking aids, adhesives, softeners, flame retardants, processing aids, etc. May be.
  • the active material (B) are not limited to, natural graphite as a negative electrode, artificial graphite, as the positive electrode and the like LiCoO 2, LiMn 2 O 4, LiFePO 4. Moreover, you may use the carbon material of a conductive support agent suitably.
  • the negative electrode active material for a lithium ion secondary battery is not particularly limited as long as it can be doped / undoped with lithium ions.
  • Metal lithium, lithium alloy, tin oxide, niobium oxide, vanadium oxide, titanium oxide, silicon Carbon materials such as transition metal nitrides and natural graphite, and composites thereof can be used.
  • the positive electrode active material for lithium ion secondary batteries Li 2 S, sulfur compounds such as S, LiCoO 2, LiMnO 2, LiMn 2 O 4, LiNiO 2, LiNi X Co (1-X) O 2, LiNi x Mn y Co (1-xy) , LiNi x Co y Al (1-xy), Li 2 MnO 3, a composite oxide consisting of lithium, such as a transition metal, LiFePO 4, phosphate compounds such LiMnPO 4, polyaniline, Examples thereof include conductive polymer materials such as polythiophene, polypyrrole, polyacetylene, polyacene, and dimercaptothiadiazole / polyaniline complex.
  • composite oxides composed of lithium and a transition metal and phosphoric acid compounds such as LiFePO 4 and LiMnPO 4 are particularly preferable.
  • the negative electrode is lithium metal or a lithium alloy
  • a carbon material can also be used as the positive electrode.
  • the positive electrode a mixture of lithium and transition metal composite oxide and a carbon material can be used.
  • nickel hydroxide a composite of nickel hydroxide, cobalt, or zinc can be used as the positive electrode active material.
  • examples of the negative electrode active material include hydrogen storage alloys made of manganese, nickel, cobalt, aluminum, misch metal, and the like.
  • the conductive assistant (C) is not particularly limited, but carbon materials such as carbon black, amorphous whisker carbon, graphite, acetylene black and artificial graphite, conductive polymers such as polythiophene and polypyrrole and derivatives thereof, and metal fine particles such as cobalt. Etc. These may be used singly or in combination of two or more. You may use the carbon material of an active material suitably.
  • the conductive assistant is preferably 0.1 to 20 parts by weight, more preferably 0.2 to 15 parts by weight, based on 100 parts by weight of the active material. Within this range, good lithium ion transportability and electrical conductivity can be obtained without impairing the charge capacity. Moreover, there exists a possibility that the electrical resistance of a compound material layer may be increased as it is less than 0.1 weight part, and when it exceeds 20 weight part, there exists a possibility that Li ion transport property may be reduced.
  • the method for dispersing the olefin copolymer (a) in water is not particularly limited and is not particularly limited. In order to minimize the amount of emulsification aid and emulsifier, a small amount of alkaline water is added to the melt-kneaded resin. The method is preferred (Japanese Patent Publication No. 7-008933).
  • alkali metals such as ammonia, organic amines, potassium hydroxide, sodium hydroxide, and lithium hydroxide. It is done.
  • an electrode for an electrochemical cell comprises an aqueous dispersion (A) for an electrochemical cell containing the olefin copolymer (a) of the present invention, a positive electrode active material for the positive electrode, and a negative electrode Then, it is obtained using a negative electrode active material and a conductive material, preferably a carbon material such as carbon black, amorphous whisker carbon, or graphite.
  • the secondary battery is a cylinder, coin, square, or film type in which the positive electrode and the negative electrode are stacked with a separator as a center.
  • it is formed in any shape and encapsulating a non-aqueous electrolyte.
  • the electric double layer capacitor is formed by forming the above electrode on the center of the separator into an arbitrary shape such as a cylindrical shape or a coin shape and enclosing the electrolytic solution.
  • a porous membrane or a polymer electrolyte is used in the secondary battery.
  • the porous membrane include polyolefin, polyimide, polyvinylidene fluoride, and polyester.
  • a porous polyolefin film is preferable, and specifically, a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and polypropylene can be exemplified.
  • other resin excellent in thermal stability may be coated.
  • electrolytic capacitor paper in addition to the separator similar to the secondary battery, electrolytic capacitor paper, a porous film containing inorganic ceramic powder, or the like can be used.
  • the non-aqueous electrolyte solution such as lithium ion
  • an electrolyte such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , CF 3 SO 3 Li, (CF 3 SO 2 ) N / Li is used alone. Or a combination of two or more of them dissolved in an organic solvent can be used.
  • alkaline electrolyte such as nickel hydride
  • an aqueous solution obtained by combining electrolytes such as potassium hydroxide and sodium hydroxide alone or in combination can be used.
  • any electrolyte can be used.
  • the non-aqueous electrolyte is an organic electrolyte formed by combining tetraethylammonium tetrafluoroborate, triethylmonomethylammonium tetrafluoroborate, etc. singly or in combination of two or more kinds as electrolytes. What was melt
  • dissolved in the solvent can be used.
  • examples of the organic solvent in the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, ⁇ -butyrolactone, dimethyl sulfoxide, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, 1,2 -Dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran and the like can be mentioned, any of which can be used alone or in admixture of two or more.
  • FIG. 1 is a schematic cross-sectional view of a nonaqueous electrolyte secondary battery which is one of the embodiments.
  • the non-aqueous electrolyte secondary battery is obtained by rolling an aqueous paste for an electrochemical cell in which an aqueous dispersion for an electrochemical cell, an active material, a conductive additive, a thickener (viscosity modifier) and the like (not shown) are mixed.
  • the positive electrode plate 3a and the negative electrode plate 3b applied to a three-dimensional metal porous body such as a metal foil, a porous metal plate, and a sponge shape, and the positive electrode plate 3a and the negative electrode plate 3b are not in direct contact with each other so as to be short-circuited.
  • a separator 4 provided therebetween, an exterior material 5 covering the electrode plates 3a, 3b and the separator 4, and a non-aqueous electrolyte 6 in which an electrolyte salt (not shown) such as lithium hexafluorophosphate (LiPF 6 ) is dissolved And comprising.
  • an electrolyte salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved And comprising.
  • lithium ions escape from the positive electrode during charging and move to the negative electrode, and on the contrary, lithium ions escape from the negative electrode and return to the positive electrode during discharging. That is, the charge / discharge operation is performed by the movement of lithium ions between the positive electrode and the negative electrode.
  • non-aqueous electrolyte secondary battery when such a non-aqueous electrolyte secondary battery is used in a system that requires a large capacity, such as a home-use distributed power source and a power storage system of a photovoltaic power generation system, an assembled battery is used to obtain a large capacity. There is a need.
  • a small non-aqueous electrolyte secondary battery having a small charge / discharge capacity is used as a single battery, several hundred to several thousand single cells are required, and maintenance of the power storage system becomes very complicated. For this reason, the non-aqueous electrolyte secondary battery has a large charge / discharge capacity, medium and large size, and preferably the charge / discharge capacity as a single battery is 5 Ah or more.
  • the electric capacity per 1 cm 2 when the electric capacity per 1 cm 2 is less than 0.5 mAh, the number of stacked layers per unit cell becomes ten to several tens, and the unit cell manufacturing work is complicated. become. For this reason, the electric capacity per 1 cm ⁇ 2 > of the positive electrode plate 3a and the negative electrode plate 3b shall be 0.5 mAh or more. Furthermore, in the positive electrode plate 3a and the negative electrode plate 3b, when the electric capacity per 1 cm 2 is larger than 18 mAh, the resistance value due to the thickness of the electrode plate becomes too high, and the input / output characteristics of the battery are deteriorated. The configuration of the nonaqueous electrolyte secondary battery having such a charge / discharge capacity value will be described below.
  • the thickness of the positive electrode plate and the negative electrode plate depends on the density of the active material, the water dispersion to be mixed, the active material, the conductive additive, the type of the thickener, the press pressure of the electrode, and the like. Although it depends, it shall be 0.1 mm or more and less than 5 mm.
  • the thickness of the positive electrode plate and the negative electrode plate used in the present embodiment it is preferable to increase the thickness of the positive electrode when either one of the electrodes is a thick electrode. This is because in a non-aqueous electrolyte secondary battery, the negative electrode is charged and discharged at a potential close to that of lithium metal, so that lithium may be deposited when the polarization of the negative electrode increases.
  • LiCoO 2 so-called ternary system Li (Ni—Mn—Co) O 2 , NCA system Li (Ni—Co—Al) O 2 , LiMn 2 O 4 , olivine type LiFePO 4 and the like are preferable.
  • LiCoO 2 As the temperature rises, oxygen is released, and the electrolyte solution burns to generate intense heat. Further, LiCoO 2 containing cobalt (Co) has a problem that Co is less in reserve than iron (Fe) or Mn (manganese). Therefore, in recent years, olivine-type LiFePO 4 containing iron as a main component has attracted attention as a low environmental load / ultra-low cost positive electrode material. This LiFePO 4 not only achieves both high potential / high energy density and high safety / stability, but also contains iron as a main component and has a low environmental load.
  • LiFePO 4 since LiFePO 4 has all oxygen bonded to phosphorus by a strong covalent bond, it does not generate heat like other positive electrode materials such as LiCoO 2 described above, and oxygen release due to temperature rise is very difficult to occur. It is preferable from the viewpoint of safety. However, LiFePO 4 has a lower electron conductivity than other positive electrode active material materials and is a fine particle to compensate for it, so it is difficult to prepare a slurry to be applied to the electrode plate with a conventional aqueous dispersion. It was difficult to adjust the thick electrode.
  • the LiFePO 4 particles and the conductive auxiliary agent are uniformly dispersed with the olefin copolymer (a), and good adhesion to the electrode can be obtained.
  • a filmed electrode can be easily obtained. Therefore, in the present invention, even if LiFePO 4 is used as the active material, an unprecedented small size and high capacity secondary battery can be obtained at a lower cost.
  • the particle size distribution of the positive electrode active material is preferably such that the median diameter (D50) measured by the laser diffraction scattering method is 0.5 to 9 ⁇ m.
  • D50 the median diameter measured by the laser diffraction scattering method
  • D50 is less than 0.5 ⁇ m, it is not preferable because reaggregation of particles easily occurs in the production of the aqueous paste for electrochemical cells, and the production of the electrode plate becomes difficult.
  • D50 is larger than 9 ⁇ m, it is difficult to obtain the electron conductivity of the particles themselves, and the input / output performance of the nonaqueous electrolyte secondary battery is deteriorated, which is not preferable.
  • the BET specific surface area of the positive electrode active material is preferably 5 to 30 m 2 / g.
  • the BET specific surface area is less than 5 m 2 / g, the effective contact area with the conductive additive and the current collector is small, the resistance value of the electrode plate is high, and the input / output performance of the nonaqueous electrolyte secondary battery is deteriorated. Therefore, it is not preferable.
  • the BET specific surface area is larger than 30 m 2 / g, in the preparation of aqueous paste for electrochemical cells, the amount of solvent adsorbed on the particles is large, the solid content concentration of the paste becomes low, and the cause of cracks on the electrode plate surface after drying This is not preferable.
  • the positive electrode active material used in the present embodiment may be coated with an electron conductive material such as a carbon material on the particle surface in order to increase the electron conductivity of the particle itself.
  • graphite material powder such as spheroidized natural graphite and artificial graphite, non-graphitizable carbon material powder, hard carbon and the like are suitable.
  • a graphite material powder capable of obtaining a high voltage can be suitably used.
  • spheroidized natural graphite powder which is advantageous in terms of cost is preferable.
  • Spherical natural graphite can be identified by shape observation using a scanning electron microscope (SEM) or the like.
  • SEM scanning electron microscope
  • the particle size distribution of the negative electrode active material is preferably such that the median diameter (D50) measured by a laser diffraction scattering method is 15 to 20 ⁇ m. It is not preferable that D50 is less than 15 ⁇ m because reaggregation of particles is likely to occur in production of an aqueous paste for electrochemical cells, and production of an electrode plate becomes difficult. When D50 is larger than 20 ⁇ m, it is difficult to apply a shearing force in kneading for producing an electrochemical cell paste, and dispersion of particles becomes difficult.
  • the specific surface area (BET) of the negative electrode active material is preferably 2 to 5 m 2 / g. If the specific surface area is less than 2 m 2 / g, the effective contact area with the conductive additive and the current collector is small, the resistance value of the electrode plate is high, and the input / output performance of the nonaqueous electrolyte secondary battery is deteriorated. Is not preferable. When the specific surface area is larger than 5 m 2 / g, the contact area between the active material and the non-aqueous electrolyte increases, and the decomposition reaction of the non-aqueous electrolyte during charging increases, which is not preferable.
  • high electron conductive materials such as acetylene black, ketjen black, VGCF, artificial graphite, natural graphite, metal powder, metal fiber, and conductive polymer are suitable.
  • artificial graphite material powder having a high bulk density is suitable, and acetylene black is advantageous in terms of cost.
  • these materials may be used alone or in combination.
  • the particle size distribution of the conductive aid is such that the median diameter (D50) measured by the laser diffraction scattering method is preferably 0.02 to 80 ⁇ m, more preferably 0.4 to 20 ⁇ m. If the D50 is less than 0.02 ⁇ m, the re-aggregation of particles tends to occur in the production of the aqueous paste for electrochemical cells, and the production of the electrode plate may be difficult. When D50 is larger than 80 ⁇ m, it is difficult to apply a shearing force in kneading for producing the paste for an electrochemical cell, and it may be difficult to disperse the particles.
  • D50 median diameter measured by the laser diffraction scattering method
  • a conductive additive for example, a high electron conductive material such as artificial graphite in which crystals of primary particles including a graphite structure are developed is preferable.
  • a positive electrode acetylene black is suitable.
  • the median diameter (D50) is preferably 2 to 80 ⁇ m, more preferably 4 to 20 ⁇ m from the viewpoint of balance with the median diameter of the negative electrode active material.
  • acetylene black is used as the positive electrode, it is preferably 0.02 to 5 ⁇ m, more preferably 0.4 to 3 ⁇ m from the viewpoint of the balance with the median diameter of the positive electrode active material.
  • the specific surface area (BET) of the conductive assistant is preferably 2 to 80 m 2 / g. If the specific surface area is less than 2 m 2 / g, the effective contact area with the conductive additive and the current collector is small, the resistance value of the electrode plate is high, and the input / output performance of the nonaqueous electrolyte secondary battery is deteriorated. Is not preferable. When the specific surface area is larger than 80 m 2 / g, the contact area between the active material and the non-aqueous electrolyte increases, and the decomposition reaction of the non-aqueous electrolyte during charging increases, which is not preferable.
  • olefin copolymer (a) used in the aqueous paste for electrochemical cells of the present embodiment a low temperature of 120 ° C. or less capable of relieving shrinkage stress when dried after applying the fine particle active material. It is preferable to use an olefin copolymer (a) having a melting point in combination with a surfactant for well dispersing the fine particle active material in water.
  • the olefin copolymer (a) is preferably an aqueous dispersion containing the described olefin polymer, and the surfactant is potassium oleate, an acetylenic glycol derivative polyoxyethylene ether and a silicon-modified polyoxyethylene. At least one surfactant selected from ethers is preferred.
  • Cellulose derivatives such as carboxymethylcellulose (CMC), carboxyethylcellulose, and hydroxyethylcellulose, polyoxyethylene or its modified body, polyvinyl Alcohol or its modified
  • CMC CMC
  • polyoxyethylene or a modified product thereof polyvinyl alcohol or a modified product thereof are preferable from the viewpoint of sedimentation stability.
  • a rolled metal foil, a porous metal plate, a lath shape, a punching metal, a three-dimensionally connected metal porous body such as a net shape or a sponge shape, or the like can be used.
  • a material having high oxidation resistance such as Al and Ti is preferable for the positive electrode plate, and a material which is difficult to be alloyed with lithium such as Cu, Ni and SUS is preferable for the negative electrode plate.
  • the positive electrode plate and the negative electrode plate in the present embodiment can be obtained by applying the aqueous paste for electrochemical cells onto the current collector.
  • an applicator, bar coater, comma coater, die coater or the like can be used.
  • the positive electrode plate and the negative electrode plate can be used after being pressed.
  • the packing density of the active material contained in the coating is in the range of 1.0 to 2.0 g / cm 2
  • the amount of the active material contained in the coating is in the range of 4 to 90 mg / cm 2. It is preferable to press it.
  • the negative electrode plate is preferably pressed so that the packing density of the active material is in the range of 1.0 to 1.7 g / cm 2 and the amount of the active material contained in the coating is in the range of 2 to 50 mg / cm 2. .
  • the active material packing density of the positive electrode plate and the negative electrode plate is less than 1.0 cm 2 because the energy density of the battery is lowered.
  • the packing density of the active material of the positive electrode plate is higher than 2.0 g / cm 2 , the permeability of the electrolytic solution to the positive electrode plate is lowered, and the battery performance is deteriorated.
  • the packing density of the active material of the negative electrode plate is higher than 1.7 g / cm 2 , lithium is liable to deposit on the negative electrode plate during charging, and the battery performance is deteriorated.
  • Electrode bending test of electrode plate In general, the process of applying the electrode material paste onto the metal foil is industrially performed by roll-to-roll using a continuous coating machine, and therefore needs to go through a support bar that supports the electrode plate. Therefore, in the present invention, an electrode bending test was performed by the following evaluation method, and peeling and cracking of the electrode plate were visually confirmed.
  • each side of the positive electrode plate (1), the positive electrode plate (3), the negative electrode plate (2), and the negative electrode plate (4) is wound around a SUS tube having a diameter of 50 mm. Then, the electrode material was peeled off and cracked on the surface of the electrode plate, and the surface was wound in the same manner.
  • Nonaqueous electrolyte As a solvent that can be used in the nonaqueous electrolyte used in the present embodiment, propylene carbonate (PC), ethylene carbonate (EC), cyclic carbonates such as butylene carbonate, Chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, dipropyl carbonate, Lactones such as ⁇ -butyrolactone and ⁇ -valerolactone, Furans such as tetrahydrofuran and 2-methyltetrahydrofuran Ethers such as diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, dioxane, Examples thereof include dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, and methyl acetate. One or more of these may be used in combination. In particular
  • lithium borofluoride LiBF 4
  • lithium hexafluorophosphate LiPF 6
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium salts such as lithium trifluoroacetate (LiCF 3 COO) and lithium bis (trifluoromethanesulfone) imide (LiN (CF 3 SO 2 ) 2 ), and one or more of these may be used in combination.
  • the salt concentration of the non-aqueous electrolyte is 0.5 mol / l or less, the carrier concentration in the electrolytic solution is reduced, and the resistance of the non-aqueous electrolyte is increased.
  • the salt concentration of the nonaqueous electrolyte is higher than 3 mol / l, the dissociation degree of the salt itself is lowered, and the carrier concentration in the nonaqueous electrolyte 6 is not increased. For this reason, the salt concentration of the nonaqueous electrolyte in the present embodiment is set to 0.5 to 3 mol / l.
  • the separator used in this embodiment can be selected from non-woven fabrics and microporous membranes made of polyethylene, polypropylene, polyester, and the like.
  • the porosity of a separator when the porosity is lower than 30%, the content of the nonaqueous electrolyte is reduced and the internal resistance of the nonaqueous electrolyte secondary battery is increased.
  • the porosity is higher than 90%, the positive electrode plate and the negative electrode plate are physically separated. Contact occurs, causing an internal short circuit of the nonaqueous electrolyte secondary battery.
  • the thickness of the separator when the thickness of the separator is less than 5 ⁇ m, the mechanical strength of the separator is insufficient, which causes an internal short circuit of the nonaqueous electrolyte secondary battery.
  • the thickness when the thickness is more than 100 ⁇ m, the distance between the positive electrode and the negative electrode becomes long, and the nonaqueous electrolyte 2
  • the porosity of a separator shall be 30% or more and 90% or less, and the thickness of a separator shall be 5 micrometers or more and 100 micrometers or less.
  • the outer packaging material of the nonaqueous electrolyte secondary battery used in the present embodiment is preferably a metal can such as a can made of iron, stainless steel, aluminum or the like. Moreover, you may use the film-form bag which laminated the ultra-thin aluminum with resin.
  • the shape of the exterior material may be any of a cylindrical shape, a rectangular shape, a thin shape, and the like, but since a large-sized lithium ion secondary battery has many opportunities to be used as an assembled battery, it is preferably a rectangular shape or a thin shape.
  • a-4 maleated polypropylene
  • a-4 having a weight average molecular weight of 20,000 and a maleating modification degree of 4 were mixed.
  • 10 parts of potassium oleate was mixed, melt-kneaded at 200 ° C. with a twin screw extruder, and then kneaded while adding an aqueous potassium hydroxide solution.
  • Discharged material was dispersed in water to obtain an emulsion (aqueous dispersion A for electrochemical cells) containing an olefin copolymer (a) having a volume average particle size of 200 nm and a nonvolatile content of 45%.
  • the melting point of (a) was 85 ° C.
  • Example 2 As the olefin copolymer (a), instead of 100 parts by weight of the modified random polypropylene (a-2), 20 parts by weight of a random polypropylene (a-1) copolymerized with a weight average molecular weight of 100,000 and 30% by weight of ethylene and butene.
  • a maleated modified random polypropylene (a-2) having a maleic modification degree of 1.0 and a total of 25% by weight of butene copolymerized to 80 parts by weight was prepared in the same manner as in Example 1, An emulsion containing an olefin copolymer (a) having a volume average particle size of 200 nm and a nonvolatile content of 45% was obtained.
  • the melting point of (a) was 80 ° C.
  • Example 3 As the olefin copolymer (a), instead of the modified random polypropylene (a-2), a random polypropylene (a-1) obtained by copolymerizing 30% by weight of ethylene and butene with a weight average molecular weight of 100,000 was used. An emulsion containing an olefin copolymer (a) having a volume average particle diameter of 350 nm and a nonvolatile content of 45% was prepared in the same manner as in Example 1. The melting point of (a) was not detected.
  • Example 4 The same as in Example 3, except that the random olefin copolymer (a) was random propylene (a-1) copolymerized with 30% by weight of butene instead of the random polypropylene (a-1) in Example 3. And an emulsion containing an olefin copolymer (a) having a volume average particle diameter of 300 nm and a nonvolatile content of 45% was obtained.
  • the melting point of (a) was 80 ° C.
  • Example 5 The same as in Example 3, except that the random olefin copolymer (a) was random propylene (a-1) copolymerized with 40% by weight of ethylene instead of the random polypropylene (a-1) in Example 3. And an emulsion containing an olefin copolymer (a) having a volume average particle diameter of 350 nm and a nonvolatile content of 45% was obtained.
  • the melting point of (a) was 85 ° C.
  • Example 6 As the olefin copolymer (a), instead of the modified random polypropylene (a-2), a maleated modified random polypropylene obtained by copolymerizing 40% by weight of ethylene with a weight average molecular weight of 60,000 and a maleating modification degree of 1.0. An emulsion containing an olefin copolymer (a) having a volume average particle size of 200 nm and a non-volatile content of 45% was obtained except that (a-2) was used. The melting point of (a) was 80 ° C.
  • Example 7 As the olefin copolymer (a), instead of the modified random polypropylene (a-2), maleation modification was performed by copolymerizing 30% by weight of ethylene and butene with a weight average molecular weight of 60,000 and a maleation modification degree of 1.0. An emulsion containing an olefin copolymer (a) having a volume average particle diameter of 200 nm and a nonvolatile content of 45% was obtained except that the random polypropylene (a-2) was used. The melting point of (a) was not detected.
  • Example 8 As the olefin copolymer (a), instead of 100 parts by weight of the modified random polypropylene (a-2), a weight average molecular weight of 100,000 and a maleation modification degree of 1.0 were copolymerized with 25% by weight of butene.
  • Example 9 As the olefin copolymer (a), instead of the modified random polypropylene (a-2), a maleated modification obtained by copolymerizing 30% by weight of butene with a weight average molecular weight of 70,000 and a maleating modification degree of 1.0. An emulsion containing an olefin copolymer (a) having a volume average particle diameter of 250 nm and a nonvolatile content of 45% was obtained except that the random polypropylene (a-2) was used. The melting point of (a) was 80 ° C.
  • Example 10 An olefin having a volume average particle diameter of 250 nm and a non-volatile content of 45% was prepared in the same manner as in Example 1 except that the amount of the modified polypropylene (a-4) was 20 parts by weight and the amount of potassium oleate was 10 parts by weight. An emulsion containing the system copolymer (a) was obtained. The melting point of (a) was 80 ° C.
  • Example 11 An olefin having a volume average particle diameter of 300 nm and a non-volatile content of 45% was prepared in the same manner as in Example 1 except that the blend of the modified polypropylene (a-4) was 10 parts by weight and the blend of potassium oleate was 4 parts by weight. An emulsion containing the system copolymer (a) was obtained. The melting point of (a) was 80 ° C.
  • Example 12 An olefin having a volume average particle diameter of 260 nm and a nonvolatile content of 45% was prepared in the same manner as in Example 1 except that the blend of the modified polypropylene (a-4) was 50 parts by weight and the blend of potassium oleate was 15 parts by weight. An emulsion containing the system copolymer (a) was obtained. The melting point of (a) was 80 ° C.
  • emulsions prepared in Examples 1 to 8 and Comparative Examples 1 to 3 were 2 parts by weight in terms of solid content, Surfactant (x) selected as necessary from anionic type (Non-Sal OK-2 manufactured by NOF Corporation), nonionic type (Orphine E1010, Nissin Chemical Industry Co., Ltd.) and silicon type (Shin-Etsu Chemical Co., Ltd. KF354L) Were mixed to obtain aqueous dispersions (A) of Formulation Examples 1A to 13A and Formulation Comparative Examples 1a to 3a. Table 2 shows the composition of the aqueous dispersion (A).
  • aqueous dispersion (A) and distilled water of Examples or Formulation Comparative Examples were added to prepare a negative electrode mixture slurry (aqueous paste) having a solid content concentration of 50% by weight.
  • the obtained negative electrode mixture slurries were designated as slurries 1A to 13A and slurries 1a to 3a, respectively.
  • this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m, dried, and compression molded to prepare a negative electrode having a thickness of 70 ⁇ m.
  • negative electrode mixture slurries were applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m, dried, and compression molded to produce a negative electrode having a thickness of 70 ⁇ m.
  • ⁇ Preparation of lithium secondary battery positive electrode plate> The viscosity modifier (y) used for the production of the negative electrode plate was 1.5 parts by weight in terms of solid content, The emulsions prepared in Examples 1 to 8 or Comparative Examples 1 to 3 were 5 parts by weight in terms of solid content, Further, the surfactant used for the production of the negative electrode plate was added as necessary to obtain aqueous dispersions (A) of Formulation Examples 1B to 13B and Formulation Comparative Examples 1b to 3b. Table 3 shows the composition of the aqueous dispersion (A).
  • LiCoO 2 (B) HLC-22 manufactured by Honjo FMC Energy Systems Co., Ltd. 85.5 parts by weight, artificial graphite (conducting aid C) 8 parts by weight, acetylene black (conducting aid C) (Denka black) 3 parts by weight
  • the aqueous dispersion (A) of the obtained blending examples or blending comparative examples and distilled water were added to prepare a LiCoO 2 mixture slurry (aqueous paste) having a solid content concentration of 50% by weight.
  • the obtained mixed material slurries were designated as slurries 1B to 13B and slurries 1b to 3b, respectively.
  • This LiCoO 2 composite slurry was applied to an aluminum foil having a thickness of 20 ⁇ m, dried, and compression molded to produce a positive electrode having a thickness of 70 ⁇ m.
  • LiCoO 2 (B) HLC-22
  • 8 parts by weight of artificial graphite (C) 3 parts by weight of acetylene black (C) (Denka black) and carboxymethyl cellulose prepared to 1.2% by weight (CMC1160) 1.5 parts by weight in terms of solid content
  • 2 parts by weight of the emulsion prepared in Examples 1, 8 to 12 or Comparative Examples 4 to 6 in terms of solid content were added, and distilled water was further added.
  • a LiCoO 2 mixture slurry (aqueous paste) having a solid content concentration of 50% by weight was prepared.
  • the obtained composite slurry was designated as slurries 14B to 19B and slurries 4b to 6b, respectively.
  • This LiCoO 2 composite slurry was applied to an aluminum foil having a thickness of 20 ⁇ m, dried, and compression molded to produce a positive electrode having a thickness of 70 ⁇ m.
  • the electrode prepared above was cut and attached to a glass preparation with an instantaneous adhesive to fix the electrode, thereby preparing a sample for evaluation.
  • the sample for evaluation is cut at the horizontal speed of 2 ⁇ m / second at the horizontal speed required for cutting by cutting the interface between the composite layer and the current collector with a coating film peel strength measuring device Cycus DN20 (manufactured by Daipla Intes Co., Ltd.).
  • Cycus DN20 manufactured by Daipla Intes Co., Ltd.
  • the peel strength at the interface between the composite material layer and the current collector was measured from the direction force.
  • the average value of the peel strength for 3 times was taken to evaluate the adhesion.
  • a compound material layer refers to the coating part which apply
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • the negative electrode for a coin-type battery the negative electrode was punched into a disk shape having a diameter of 14 mm to obtain a coin-shaped negative electrode having a weight of 20 mg / 14 mm ⁇ .
  • the positive electrode for a coin-type battery the positive electrode was punched into a disk shape having a diameter of 13.5 mm to obtain a coin-shaped positive electrode having a weight of 42 mg / 13.5 mm ⁇ .
  • the negative electrode, the separator, and the positive electrode are placed in the negative electrode can of a stainless steel 2032 size battery can. Laminated. Thereafter, 0.04 ml of the non-aqueous electrolyte was injected into the separator, and then an aluminum plate (thickness 1.2 mm, diameter 16 mm) and a spring were stacked on the laminate.
  • ⁇ Production of electric double layer capacitor electrode> Formulated in 100 parts by weight of activated carbon (B) (Kuraray Co., Ltd. RP-20), 3 parts by weight of acetylene black (C) (Denka Black) and 2 parts by weight of Ketjen Black (C) (Ketjen Black International Co., Ltd. EC600JD) 5 parts by weight of the aqueous dispersion prepared in Examples 1A to 13A and Formulation Comparative Examples 1a to 3a were mixed in terms of solid content, and distilled water was further added to mix slurry with a solid content concentration of 50% by weight (aqueous paste) Was prepared.
  • activated carbon B
  • C acetylene black
  • C Ketjen Black
  • C Ketjen Black International Co., Ltd. EC600JD
  • carboxymethyl cellulose prepared to 1.2% by weight in 100 parts by weight of activated carbon (B), 3 parts by weight of acetylene black (C) and 2 parts by weight of ketjen black (C) is converted to solid content.
  • the emulsion prepared in Examples 1, 8 to 12 and Comparative Examples 4 to 6 was mixed in an amount of 5 parts by weight in terms of solid content, and distilled water was further added to obtain a solid content concentration of 50% by weight.
  • a mixture slurry (aqueous paste) was prepared.
  • these mixed material slurries were applied to a current collector made of a strip-shaped aluminum foil having a thickness of 20 ⁇ m, dried, and compression molded to produce an electrode having a thickness of 70 ⁇ m.
  • Tetraethylammonium tetrafluoroborate was dissolved in propylene carbonate to prepare an electrolytic solution so that the electrolyte concentration was 1.5 mol / liter.
  • the electrode was punched into a disk shape having a diameter of 14 mm to obtain a coin-shaped electrode having a weight of 20 mg / 14 mm ⁇ .
  • a separator made of a microporous polypropylene film having a thickness of 25 ⁇ m and a diameter of 16 mm the electrode, the separator and the electrode were laminated in this order in the negative electrode can of a stainless steel 2032 size battery can.
  • 0.04 ml of the electrolytic solution was injected into the separator, and then an aluminum plate (thickness 1.2 mm, diameter 16 mm) and a spring were stacked on the laminate.
  • the battery can is covered with a polypropylene gasket and the can lid is caulked to maintain the airtightness of the battery, and a coin-type electric double layer capacitor having a diameter of 20 mm and a height of 3.2 mm is obtained.
  • the internal resistance was calculated from the charge / discharge characteristics according to the calculation method of standard RC-2377 established by the Japan Electronics and Information Technology Industries Association.
  • the evaluation results of the capacitor using each electrode are shown in Tables 12 and 13.
  • the composite paste was applied to a nickel-plated steel plate having a thickness of 30 ⁇ m, dried, and press-molded to produce a sheet-like positive electrode plate.
  • the composite paste was applied to a nickel-plated steel plate having a thickness of 30 ⁇ m, dried, and press-molded to produce a sheet-like positive electrode plate.
  • ⁇ Preparation of negative electrode for nickel metal hydride battery 95 parts by weight of a hydrogen storage alloy (B) made of Ni, Co, Mn and Al containing misch metal and having an average particle diameter of 30 ⁇ m, 5 parts by weight of acetylene black (C) (Denka black), blending examples 1A to 13A or blending 2.5 parts by weight of the aqueous dispersions of Comparative Examples 1a to 3a in terms of solid content and distilled water were mixed to obtain a composite paste having a solid content concentration of 50% by weight.
  • B hydrogen storage alloy
  • C acetylene black
  • the composite paste was applied to a punching metal having a thickness of 30 ⁇ m, dried, and then pressure-molded to prepare a sheet-like negative electrode plate.
  • ⁇ Preparation of negative electrode for nickel metal hydride battery 95 parts by weight of a hydrogen storage alloy (B) made of Ni, Co, Mn, and Al containing misch metal and having an average particle diameter of 30 ⁇ m was prepared to 5 parts by weight of acetylene black (C) (Denka Black) and 1.2% by weight.
  • C acetylene black
  • CMC1160 carboxymethylcellulose
  • a composite paste having a solid content concentration of 50% by weight was obtained.
  • the composite paste was applied to a punching metal having a thickness of 30 ⁇ m, dried, and then pressure-molded to prepare a sheet-like negative electrode plate.
  • the negative electrode plate or the positive electrode plate was punched into a disk shape having a diameter of 14 mm to obtain a coin-shaped electrode having a weight of 20 mg / 14 mm ⁇ .
  • a negative electrode can of a stainless steel 2032 size battery is laminated in the order of a negative electrode, a separator, and a positive electrode. After injecting an aqueous potassium oxide solution (specific gravity at 20 ° C. of 1.3), an aluminum plate (thickness 1.2 mm, diameter 16 mm) and a spring were stacked on the laminate.
  • aqueous potassium oxide solution specific gravity at 20 ° C. of 1.3
  • the battery obtained using the electrochemical cell paste of the present invention is a battery that is electrochemically stable, has good adhesion, has little battery swelling, and has a particularly high cycle life due to charge and discharge. Obtainable.
  • olefin copolymer (a) an ethylene-acrylic acid copolymer (weight average molecular weight 80,000 (in terms of polystyrene), content of structural unit derived from acrylic acid: 20% by weight) (a-3 ) 250 parts, 33 parts by weight of ammonia water (33 parts) and deionized water (1008 parts), stirred at 180 ° C. for 2 hours, cooled, and olefin copolymer having a volume average particle diameter of 45 nm and a nonvolatile content of 25% (a ) (Melting point: 60 ° C.).
  • a four-necked flask equipped with a Dimroth, a nitrogen introduction tube, and a stirring blade was charged with 100 parts by weight of the obtained emulsion by nitrogen substitution.
  • 36 parts by weight of non-sar OK-2 (manufactured by NOF Corporation) diluted to 20% by weight with ion-exchanged water was gently added while stirring.
  • 36 parts by weight of Olfin E1010 (manufactured by Nissin Chemical) diluted to 5% by weight with ion-exchanged water was added in the same manner, and deionized water was added so that the final solid content was 18.3% by weight, and 30 minutes.
  • Stirring was continued to obtain an aqueous dispersion (A) 20B containing a milky white olefin copolymer (a).
  • Example 14 100 parts by weight of a random polypropylene (a-1) copolymerized with 30% by weight of ethylene and butene in total with a weight average molecular weight of 100,000, and a maleated modified polypropylene (a-4) having a weight average molecular weight of 20,000 and a maleation modification degree of 4 )
  • a-1 random polypropylene
  • a-4 maleated modified polypropylene
  • a-4 having a weight average molecular weight of 20,000 and a maleation modification degree of 4
  • Example 13 instead of the ethylene-acrylic acid copolymer (a-3) of Example 13, the olefin copolymer (a) obtained above was used in the same manner as in Example 13 except that the same amount was used as the solid content. Thus, an aqueous dispersion 21B containing a milky white olefin copolymer (a) having a solid content of 19% by weight was obtained.
  • Example 15 In an autoclave, ethylene-methacrylic acid copolymer (weight average molecular weight 80,000 (polystyrene equivalent), content of structural unit derived from methacrylic acid: 15% by weight) (a-3) 250 parts, sodium hydroxide 9 Part, 764 parts of deionized water, stirred at 180 ° C. for 2 hours, and then cooled to give a milky white olefin copolymer (a) having a volume average particle diameter of 20 nm and a solid content of 25% (melting point: 85 ° C.) An aqueous dispersion 20A containing was obtained.
  • Example 16 In an autoclave, ethylene-methacrylic acid copolymer (weight average molecular weight 80,000 (in terms of polystyrene), content of structural unit derived from methacrylic acid: 12%) (a-3) 250 parts, sodium hydroxide 7. 5 parts and 455 parts of deionized water were charged, stirred at 180 ° C. for 2 hours, and then cooled to give a milky white olefin copolymer (a) having a volume average particle diameter of 300 nm and a solid content of 35.8% (melting point: An aqueous dispersion 21A containing 85 ° C.) was obtained.
  • a-3 weight average molecular weight 80,000 (in terms of polystyrene), content of structural unit derived from methacrylic acid: 12%)
  • the obtained emulsion was prepared in the same manner as in Example 13 except that the same amount as that of the olefin copolymer (a) in Example 14 was used, and a milky white emulsion having a solid content of 19.2% by weight. 7b was obtained.
  • a high molecular weight polypropylene resin Novatech PP, BC3H, propylene homopolymer, manufactured by Nippon Polypro Co., Ltd.
  • a sealed 1 liter glass container equipped with a stirrer and a heater was charged with 100 g of the resulting acid-modified polyolefin resin, 12 g of triethylamine as a basic compound, 100 g of isopropanol as an organic solvent, and 288 g of distilled water, and sealed.
  • the mixture was heated to 160 ° C. (internal temperature) while stirring at 200 rpm. After being kept at 160 ° C. for 1 hour under stirring, the heater was turned off and naturally cooled to room temperature under stirring. After cooling, pressure filtration (air pressure 0.2 MPa) with a 300 mesh stainless steel filter (wire diameter 0.035 mm, plain weave) gives a slightly yellow and translucent uniform emulsion (solid content concentration 20% by mass). (Melting point 140 ° C.).
  • the obtained emulsion was prepared in the same manner as in Example 13 except that the same amount was used as the solid content of the olefin copolymer (a) of Example 13, and a milky white emulsion 8b having a solid content of 17% by weight was prepared. Obtained.
  • the obtained viscosity modifier aqueous solution (y1) was a transparent liquid having a solid content of 14.4% by weight.
  • aqueous paste (1) is applied on both sides of a rolled Al foil (thickness: 20 ⁇ m) using an applicator, dried in air at 100 ° C. for 30 minutes, and pressed to produce a positive electrode plate (1) (coating surface) Size: 150 mm (length) ⁇ 70 mm (width) ⁇ 285 ⁇ m (thickness)).
  • the amount of active material applied to the positive electrode plate was 5 mg / cm 2 , and the packing density of the active material was 1.9 g / cm 3 .
  • the electric capacity of this electrode plate was 0.6 mAh / cm 2 .
  • Aqueous paste (2) was applied on both sides of a rolled Cu foil (thickness: 10 ⁇ m) using an applicator, dried in air at 100 ° C. for 30 minutes, and pressed to form negative electrode plate (2) (coating surface) Size: 154 mm (length) ⁇ 74 mm (width) ⁇ 195 ⁇ m (thickness)).
  • the amount of active material applied to the negative electrode plate was 3 mg / cm 2 , and the packing density of the active material was 1.6 g / cm 3 .
  • the electric capacity of this electrode plate was 0.9 mAh / cm 2 .
  • Aqueous paste (3) was applied on both sides of a rolled Al foil (thickness: 20 ⁇ m) using an applicator, dried in air at 100 ° C. for 30 minutes, and pressed to produce positive electrode plate (3) (coating surface) Size: 150 mm (length) ⁇ 70 mm (width) ⁇ 805 ⁇ m (thickness)).
  • the amount of active material applied to the positive electrode plate was 88 mg / cm 2 and the packing density of the active material was 1.1 g / cm 3 .
  • the electric capacity of this electrode plate was 11.9 mAh / cm 2 .
  • the aqueous paste (4) was applied on both sides of an electrolytic Cu foil (thickness: 10 ⁇ m) using an applicator, dried in air at 100 ° C. for 30 minutes, and pressed to form a negative electrode plate (4) (coating surface) Size: 154 mm (length) ⁇ 74 mm (width) ⁇ 425 ⁇ m (thickness)).
  • the amount of active material applied to the negative electrode plate was 46 mg / cm 2 , and the packing density of the active material was 1.1 g / cm 3 .
  • the electric capacity of this electrode plate was 13.8 mAh / cm 2 .
  • a non-aqueous paste (5) was applied on both sides of a rolled Al foil (thickness: 20 ⁇ m) using an applicator, dried in air at 150 ° C. for 30 minutes, and pressed to produce a positive electrode plate E (coating surface size). : 150 mm (length) ⁇ 70 mm (width) ⁇ 805 ⁇ m (thickness)).
  • the amount of active material applied to the positive electrode plate was 70 mg / cm 2 , and the packing density of the active material was 0.9 g / cm 3 .
  • the electric capacity of this electrode plate was 9.4 mAh / cm 2 .
  • the amount of active material applied to the negative electrode plate was 38 mg / cm 2 , and the packing density of the active material was 0.9 g / cm 3 .
  • the electric capacity of this electrode plate was 11.4 mAh / cm 2 .
  • aqueous paste (7) was applied on both sides of a rolled Al foil (thickness: 20 ⁇ m) using an applicator, dried in air at 100 ° C. for 30 minutes, and pressed to obtain a positive electrode plate. Since the composite material layer was cracked and the composite material was peeled off from the electrode plate, the electrode plate could not be produced.
  • aqueous paste (8) was applied on both sides of a rolled Al foil (thickness: 20 ⁇ m) using an applicator, dried in air at 100 ° C. for 30 minutes, and pressed to obtain a positive electrode plate. Since the composite material layer was cracked and the composite material was peeled off from the electrode plate, the electrode plate could not be produced.
  • each side of the positive electrode plate (1), the positive electrode plate (3), the negative electrode plate (2) and the negative electrode plate (4) is wound around a SUS tube having a diameter of 50 mm, and then the back surface is similarly used. After being wound around, peeling and cracking of the electrode material on the electrode plate surface were visually confirmed. As a result, peeling and cracking were not observed for the positive electrode plate (1), the negative electrode plate (2) and the negative electrode plate (4). Moreover, although the fine crack was seen about the positive electrode plate (3), it was a crack of the grade which does not have a problem as an electrode plate.
  • the positive electrode plate (5) and the negative electrode plate (6) had large cracks on its surface. Further, in the negative electrode plate (6), the electrode material partly dropped from the rolled Cu foil.
  • a polyethylene (PE) microporous membrane (1) (156 mm (length) ⁇ 76 mm (width) ⁇ 25 ⁇ m (thickness), porosity: 55%) is placed on the negative electrode plate (2), and the positive electrode is placed thereon.
  • PE polyethylene
  • the PE microporous membrane (1) is interposed between the six negative plates (2) and the five positive plates (1) and the respective electrode plates.
  • a laminate having 10 sheets of) was produced.
  • Ni leads were ultrasonically welded to six negative electrode plates (2), Al leads were ultrasonically welded from five positive electrode plates (1), inserted into an Al laminate bag, and three sides were heat-sealed.
  • a polypropylene (PP) microporous membrane (2) (156 mm (vertical) ⁇ 76 mm (horizontal) ⁇ 25 ⁇ m (thickness), porosity: 50%) is placed on the negative electrode plate (4), and the positive electrode is placed thereon. The operation of stacking the plates (3) and the PP microporous membrane (2) is repeated, so that the PP microporous membrane (2) is interposed between the six negative plates (4) and the five positive plates (3) and the respective electrode plates. ) was laminated. Ni leads were ultrasonically welded to six negative electrode plates (4), Al leads were ultrasonically welded from five positive electrode plates (3), inserted into an Al laminate bag, and three sides were heat-sealed.
  • PP polypropylene
  • the polypropylene (PP) microporous membrane (2) is placed on the negative electrode plate (6), the positive electrode plate (5) is stacked thereon, and the operation of stacking the PP microporous membrane (2) is repeated, A laminate was produced by sandwiching 6 sheets of negative electrode plate (6), 5 sheets of positive electrode plate (5) and 10 PP microporous membranes (2) between the respective electrode plates.
  • Ni leads were ultrasonically welded to six negative electrode plates (6), Al leads were ultrasonically welded from five positive electrode plates (5), inserted into an Al laminate bag, and three sides were heat-sealed.
  • Battery I is charged at a constant current value of 0.1 C (current value at which the battery capacity can be discharged in 10 hours) until the battery voltage reaches 3.8 V, and then at a constant voltage of 3.8 V, the current value is 0.01 C ( The battery was charged until the battery capacity reached a current value that could be discharged in 100 hours.
  • the charge capacity was 310 mAh (initial charge capacity).
  • the battery I was discharged at a constant current value of 0.1 C until the battery voltage reached 2.2V.
  • the discharge capacity was 280 mAh (initial discharge capacity).
  • the discharge capacity after repeating the above charge / discharge 500 times was 250 mAh. In addition, all this measurement was performed in a 25 degreeC thermostat.
  • Battery II Battery II was charged and discharged in the same manner as Battery I. As a result, the initial charge capacity was 6200 mAh, and the initial discharge capacity was 5600 mAh.
  • the discharge capacity after repeating 500 times was 4500 mAh.
  • Battery III Battery III was charged and discharged in the same manner as Battery I. As a result, the initial charge capacity was 4900 mAh, and the initial discharge capacity was 3700 mAh.
  • the discharge capacity after repeating 500 times was 2300 mAh.
  • the impedance value of the battery I after 500 cycles was measured in the same manner. As a result, it was 20 m ⁇ (internal resistance after 500 cycles). In addition, all this measurement was performed in a 25 degreeC thermostat.
  • Battery I was charged at a constant current value of 0.1 C until the battery voltage reached 3.8 V, and then charged at a constant voltage of 3.8 V until the current value reached 0.01 C. Next, the battery I was discharged at a constant current value of 1.0 C (current value capable of discharging the battery capacity in 1 hour) until the battery voltage reached 2.2V. The discharge capacity at that time was 274 mAh (discharge capacity after 1.0 C). In addition, all this measurement was performed in a 25 degreeC thermostat.
  • the battery discharge rate characteristics were evaluated by the ratio (1C / 0.1C) of the discharge capacity after 1.0 C to the initial discharge capacity 280 mAh of battery I. As a result, it was 98%.
  • the aqueous paste according to the present invention since the aqueous paste according to the present invention has excellent fixing strength with respect to the electrode, it can sufficiently withstand continuous coating in which the aqueous paste is applied onto the metal foil. A battery using the electrode has a very high cycle life due to charge and discharge.
  • Electrode plate 2 SUS tube with a diameter of 50 mm 3 Slide direction of electrode plate 3a Positive electrode plate 3b Negative electrode plate 4 Separator 4 5 Exterior material 6 Non-aqueous electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の水性ペーストは、オレフィン系共重合体(a)を含む電気化学セル用水分散体、活物質および導電助剤を含み、前記オレフィン系共重合体(a)は、重量平均分子量が5万以上であり、かつ、プロピレンから導かれる構成単位の含有率が50重量%以上85重量%未満であるランダムプロピレン系共重合体(a-1)、共重合体(a-1)を酸変性した酸変性ランダムプロピレン系共重合体(a-2)および(メタ)アクリル酸から導かれる構成単位の含有率が5重量%以上25重量%未満であるエチレン-(メタ)アクリル酸共重合体(a-3)から選ばれる少なくとも1種である。

Description

電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池
 本発明は、特定のオレフィン系共重合体(a)を含む電気化学セル用水分散体、活物質および導電助剤を含む電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板および該極板を含む電池に関する。
 また、本発明は、二次電池、例えば、水素吸蔵合金を用いて得られるアルカリ二次電池(Ni-MH電池)、リチウム化合物を用いて得られる非水電解液二次電池(リチウムイオン電池)や電気二重層キャパシタ等の蓄電デバイスを構成する電気化学セル用水分散体(A)に関する。詳しくは、特定のオレフィン系共重合体(a)を水に分散させた電気化学セル用水分散体(A)に関する。
 Ni-MH電池やリチウムイオン電池、キャパシタは、正極、負極用の各活物質をバインダーによって、各集電体に結着させ各電極を作成している。正極用バインダーでは、耐酸化性が求められており、ポリフッ化ビニリデン(PVDF)をN-メチル-2ピロリドン(NMP)に溶解させた溶液、あるいはポリテトラフロロエチレン(PTFE)の含フッ素系水分散液が用いられている。また、負極用のバインダーとしては、PVDFの他に、スチレン-ブタジエンラバー(SBR)水分散液が用いられている。
 しかしながら、これら正極用バインダーは、耐酸化性はあるが活物質や集電体との密着性に劣るため多量の添加が必要である。そのため活物質を被覆し、電池特性を低下させるといった問題がある。また、SBRは密着性が比較的高く、配合部数は少なくてすむが活物質との親和性が高いため、電極表面を被覆しやすいといった問題がある。さらに、PDVFやSBRは電解液との親和性が高いため、電池を高温で放置することや、充放電を繰り返すと樹脂が膨潤してしまうため電池が膨れやすくなるといった問題があった。
 そこで、これらの問題を解決するために電気化学的に安定で、電解液に対して膨潤が小さいオレフィン系共重合体の水分散体をバインダーとして用いる検討が行われていた(特許文献1および2など)。これらのバインダーは、耐酸化還元性に優れ、電解液に対する膨潤が小さく活物質を被覆しにくい。
 しかしながら、密着性がSBRに比べ比較的弱いため、電池の重要特性の1つであるサイクル特性が十分でないという問題があった。
 また、特許文献3には、酸変性ポリオレフィン樹脂を含む水分散体と、該水分散体を用いて得られる二次電池電極が開示されている。
 しかしながら、水性媒体として水溶性有機溶媒を使用しているためバインダーには、微量の有機溶媒が残存し、この有機溶媒に起因して、電池性能(特に不可逆容量)が大きく悪化するといった問題があった。さらに、環境対応として、脱VOC(揮発性有機化合物)を目指した水系化と言う点では未だ到達できていない。
特開平9-251856号公報 特開2009-110883号公報 特開2010-189632号公報
 本発明は、上記のような従来技術に伴う問題を解決しようとするものであって、金属集電体、正極活物質、および負極活物質に対して十分な密着性を有しかつ電気化学的に安定で電気化学セルが膨れにくく、従来の静電気容量・内部抵抗を維持しながら、特に二次電池のサイクル特性を向上させることができる電気化学セル用水分散体(A)、および電気化学セル用水性ペーストを提供することである。
 また、該電気化学セル用水性ペーストを含む極板および該極板を含む、充放電によるサイクル寿命の高い電池を提供することである。
 本発明者らは、上記問題点を解決すべく鋭意検討の結果、特定のオレフィン系共重合体(a)を水に乳化分散したエマルション(電気化学セル用水分散体(A))を使用することにより、上記課題を解決し得ることを見出した。
 なお、本発明において、特定のオレフィン系共重合体(a)を、電気化学セル用バインダーと称すこともある。
 また、本発明において変性(体)とは、たとえば、オレフィン系共重合体(a)、ポリオキシエチレン、またはポリビニルアルコール等に重合反応、グラフト反応、付加反応あるいは置換反応などを用いて、主構造と異なる構造を付与する事の意味である。
 本発明の電気化学セル用水性ペーストは、オレフィン系共重合体(a)を含む電気化学セル用水分散体(A)、活物質(B)および導電助剤(C)を含有し、前記オレフィン系共重合体(a)は、ゲルパーミエイションクロマトグラフィー(GPC)により求められる重量平均分子量が5万以上(ポリスチレン換算)であり、かつ、プロピレンから導かれる構成単位の含有率が50重量%以上85重量%未満であるランダムプロピレン系共重合体(a-1)、該ランダムプロピレン系共重合体(a-1)を酸変性した酸変性ランダムプロピレン系共重合体(a-2)および(メタ)アクリル酸から導かれる構成単位の含有率が5重量%以上25重量%以下であるエチレン-(メタ)アクリル酸共重合体(a-3)から選ばれる少なくとも1種であることを特徴とする。
 前記活物質(B)100重量部に対して、前記水分散体(A)の固形分は、0.5~30重量部であり、前記導電助剤(C)は、0.1~20重量部であることが好ましい。
 前記ランダムプロピレン系共重合体(a-1)は、ランダムプロピレン-ブテン共重合体、ランダムエチレン-プロピレン-ブテン共重合体およびランダムエチレン-プロピレン共重合体から選ばれる少なくとも1種であることが好ましい。
 前記水分散体は、さらにゲルパーミエイションクロマトグラフィー(GPC)により求められる重量平均分子量が5万未満(ポリスチレン換算)の酸変性オレフィン系(共)重合体(a-4)を含むことが好ましい。
 前記酸変性オレフィン系(共)重合体(a-4)は、前記ランダムプロピレン系共重合体(a-1)および前記酸変性ランダムプロピレン系共重合体(a-2)の合計100重量部に対して、5~50重量部含まれることが好ましい。
 前記酸変性は、マレイン酸変性であることが好ましい。
 前記水分散体(A)は、界面活性剤(x)および粘度調整剤(y)から選ばれる少なくとも1種を含むことが好ましい。
 前記オレフィン系共重合体(a)の固形分100重量部に対して、前記界面活性剤(x)の固形分は、0~100重量部であり、前記粘度調整剤(y)の固形分は、10~100重量部であることが好ましい。
 前記粘度調整剤(y)は、カルボキシメチルセルロース、ポリエチレンオキサイド、ポリエチレンオキサイドの変性体、ポリビニルアルコールおよびポリビニルアルコールの変性体から選ばれる少なくとも1種であることが好ましい。
 前記活物質(B)は、オリビン型LiFePO4を含むことが好ましい。
 前記オリビン型LiFePO4は、レーザー回折散乱法で測定したメディアン径(D50)が0.5~9μmであることが好ましく、比表面積が5~30m2/gであることが好ましい。
 前記活物質(B)は、球状化した天然黒鉛を含むことが好ましい。
 前記球状化した天然黒鉛は、レーザー回折散乱法で測定したメディアン径(D50)が15~20μmであることが好ましく、比表面積は2~5m2/gであることが好ましい。
 前記導電助剤(C)は、アセチレンブラックおよび人造黒鉛から選ばれる少なくとも1種であることが好ましく、該導電助剤(C)の比表面積は2~80m2/gであることが好ましい。
 前記アセチレンブラックは、レーザー回折散乱法で測定したメディアン径(D50)が0.02~5μmであることが好ましい。
 前記人造黒鉛は、レーザー回折散乱法で測定したメディアン径(D50)が2~80μmであることが好ましい。
 本発明の一つの態様として、電気化学セル用極板は、本発明の電気化学セル用水性ペーストを塗布して得られた極板の電気容量が、0.5~18mAh/cm2であることが好ましい。
 本発明の一つの態様として、電気化学セル用正極板(1)は、板活物質(B)としてオリビン型LiFePO4を含む本発明の電気化学用水性ペーストを塗布して得られた極板において、塗布中に含まれる活物質量が4~90mg/cm2であることが好ましく、塗布中に含まれる活物質の充填密度が1.0~2.0g/cm3であることが好ましい。
 本発明の一つの態様として、電気化学セル用負極板(1)は、板活物質(B)として球状化した天然黒鉛を含む本発明の電気化学用水性ペーストを塗布して得られた極板において、塗布中に含まれる活物質量が2~50mg/cm2であることが好ましく、塗布中に含まれる活物質の充填密度が1.0~1.7g/cm3であることが好ましい。
 本発明の一つの態様として、非水電解質2次電池は、前記正極板(1)と、前記負極板(1)を使用して得られることが好ましい。
 本発明の一つの態様として、家庭用蓄電池は、前記非水電解質2次電池を用いることが好ましい。
 本発明の電気化学セル用水分散体(A)は、ゲルパーミエイションクロマトグラフィー(GPC)により求められる重量平均分子量が5万以上(ポリスチレン換算)であり、かつ、プロピレンから導かれる構成単位の含有率が50重量%以上85重量%未満であるランダムプロピレン系共重合体(a-1)、該ランダムプロピレン系共重合体(a-1)を酸変性した酸変性ランダムプロピレン系共重合体(a-2)および(メタ)アクリル酸から導かれる構成単位の含有率が5重量%以上25重量%未満であるエチレン-(メタ)アクリル酸共重合体(a-3)から選ばれる少なくとも1種であるオレフィン系共重合体(a)を含むことを特徴とする。
 前記水分散体(A)は、界面活性剤(x)および粘度調整剤(y)から選ばれる少なくとも1種を含むことが好ましい。
 本発明の電気化学セル用水分散体(A)および電気化学セル用水性ペーストは、金属集電体、正極活物質、および負極活物質に対して十分な密着性を有し、かつ電池に適用した場合、電気化学的に安定で電気化学セルが膨れにくく、特に二次電池のサイクル特性を向上させることができる。
 本発明の電気化学セル用水性ペーストを用いることで、電極を効率よく生産することが可能である。
 また、該電気化学セル用水性ペーストを用いて得られる極板を含む電池は、充放電によるサイクル寿命が高い。
 したがって、小型化、軽量化し、さらに高容量化である高効率の電池を得ることができる。
図1は、本実施形態の非水電解質2次電池の概略断面図である。 図2は、電極板の曲げ試験における斜視図である。 図3は、電極板の曲げ試験における側面図である。
 <電気化学セル用水性ペースト>
 本発明の電気化学セル用ペーストは、特定の電気化学セル用水分散体(A)、活物質(B)および導電助剤(C)を含む。
 〔電気化学セル用水分散体(A)〕
 本発明の電気化学セル用水分散体(A)は、水に分散したエマルションである。
 また、水分散体(A)は、本発明に係るオレフィン系共重合体(a)のほかに、必要に応じて、界面活性剤(x)、粘度調整剤(y)などを含む。
 水分散体(A)の固形分(すなわち、共重合体(a)と界面活性剤(x)の固形分と粘度調整剤(y)の固形分の合計量)は、活物質100重量部に対して、好ましくは0.5~30重量部、より好ましくは1~20重量部である。この範囲であれば、良好な極板密着性が得られるため好ましい。また、0.5重量部未満であると、極板の集電体から合材層が剥落のおそれがあり、30重量部を超えると、リチウムイオン輸送性の低下を引き起こすおそれがある。
 本発明に係る水分散体(A)には、体積平均粒子径が、特に限定されないが、10~1,000nm、好ましくは10~800nm、より好ましくは10~500nm(Microtrac  HRA:Honneywell社使用)のオレフィン系共重合体(a)で構成される樹脂粒子を含む。粒子径が前記範囲であれば、水分散安定性に優れるため好ましい。また、10nm未満であれば、極板密着性が低下するおそれがあり、1,000nmを超えると分散安定性を損なうおそれがある。また、水分散体を使用して電極を作成する場合、本発明に係る水性ペーストを集電体に塗布、乾燥して作成するが、この範囲であれは、水分の蒸発とともにオレフィン系共重合体(a)が集電体と反対方向に移動する、いわゆるマイグレーションを起こし、集電体との密着性が低下するのを防ぐことができる。この範囲を越えると、マイグレーションが過多となったり、接着面積が低下するため、結果として密着性が低下するなどのおそれがある。粒子径のコントロール方法は特に制限されないが、例えば、製造時の溶融温度、樹脂中和量、乳化助剤量などによって適宜調整することができる。
 (オレフィン系共重合体(a))
 水分散体(A)に、本発明に係るオレフィン系共重合体(a)を用いることで、良好な密着性と電池サイクル性能を得ることができる。
 オレフィン系共重合体(a)は、水分散体(A)中に、固形分換算で、5~80重量%、好ましくは、10~70重量%含まれる。この範囲であれば、良好な極板密着性が得られる。
 また共重合体(a)は、示差走査熱量計(DSC)によって測定した融点〔Tm〕が、通常120℃以下であるかまたは認められなく、好ましくは110℃以下であるかまたは認められない。融点が前記範囲内であれば、極板柔軟性に優れるため好ましい。また、120℃を超えると、極板柔軟性が不足し加工性を損なうおそれがある。さらに、オレフィン系共重合体(a)の結晶性は有っても無くても構わないが、二次電池のサイクル特性・各種基材との密着性の点から、X線回折法による結晶化度は30%以下であることが好ましい。
 オレフィン系共重合体(a)には、下記に述べる共重合体(a-1)~共重合体(a-3)から選ばれる少なくとも1種類が含まれる。また、好ましくは下記の(共)重合体(a-4)を、より好ましくは(共)重合体(a-4)および/または共重合体(a-5)を含み、これらの(共)重合体を任意に使用することが出来る。
 (ランダムプロピレン系共重合体(a-1))
 ランダムプロピレン系共重合体(a-1)は、プロピレンから導かれる構成単位を主体として、他にエチレン、1-ブテン、4-メチルペンテン-1、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-ノナデセン、1-エイコセン、9-メチルデセン-1、11-メチルドデセン-1および12-エチルテトラデセン-1などのα―オレフィンを共重合したものである。これら共重合体は1種のみを使用しても良いし、複数の種類を組み合わせて使用しても良い。
 これらのなかで、ランダムプロピレン-ブテン共重合体、ランダムエチレン-プロピレン-ブテン共重合体およびランダムエチレン-プロピレン共重合体が、極板柔軟性の点で好ましい。
 共重合体(a-1)のゲルパーミエイションクロマトグラフィー(GPC)により求められる重量平均分子量は、ポリスチレン換算で、5万以上、上限は特に限定されないが、好ましくは5万~50万、より好ましくは、水分散体化した時の分散粒子径制御の点から、5万~30万である。5万未満である場合、共重合体(a-1)が活物質を結着させる場合に、結着材としての強度が不足し、電極上の合材層の滑落を生じる事となる。
 共重合成分の含有量は、電気化学セル用極板の耐衝撃性、柔軟性、密着強度の点、特に電極のサイクル特性の観点から、共重合体(a-1)100重量%あたり、プロピレンから導かれる構成単位の含有率が、50重量%以上85重量%未満であり、好ましくは50~80重量%、より好ましくは55~80重量%である。
 (酸変性ランダムプロピレン系共重合体(a-2))
 酸変性ランダムプロピレン系共重合体(a-2)は、前記ランダムプロピレン系共重合体(a-1)を酸で変性した共重合体である。金属集電体との接着のために、酸で変性した共重合体を用いることが好ましい。
 共重合体(a-2)の重量平均分子量は、共重合体(a-1)と同じである。
 酸の種類としては、ランダムプロピレン系共重合体(a-1)を変性できる化合物であれば特に限定されないが、カルボン酸、スルホン酸等が挙げられる。これらの中で、密着性の観点からカルボン酸が好ましい。また、不飽和結合を持つようなマレイン酸、安息香酸とそれらの誘導体などが挙げられ、特に、酸官能基数の点から、マレイン酸で変性された、マレイン化変性ランダムポリプロピレンが好ましい。より好ましくは、極板柔軟性の点から、マレイン化変性ランダムプロピレン-ブテン共重合体、マレイン化変性ランダムエチレン-プロピレン-ブテン共重合体およびマレイン化変性ランダムエチレン-プロピレン共重合体である。
 酸変性の程度(変性度)は高くなると、エマルションの増粘や、電解液に対する樹脂膨潤性の増大などを引き起こす。そのため、変性度は、通常、酸換算で、0.1~5.0重量%の範囲である。また、たとえば、マレイン酸で変性する場合、変性度は、無水マレイン酸換算で0.5~4.0重量%(マレイン化変性度0.5~4.0)が好ましく、より好ましくは0.5~2.0重量%(マレイン化変性度0.5~2.0)である。
 マレイン酸による変性方法は特に制限されないが、例えば、ランダムプロピレン系共重合体(a-1)を、炭化水素溶媒に高温で溶解または分散し、無水マレイン酸と有機過酸化物を添加して無水マレイン酸を付加させる方法や、2軸押出機にてランダムプロピレン系共重合体(a-1)を連続的に溶融混錬しながら、有機過酸化物と無水マレイン酸を連続的に添加し押出機内で反応させる方法等がある。
 (エチレン-(メタ)アクリル酸共重合体(a-3))
 エチレン-(メタ)アクリル酸共重合体(a-3)は、(メタ)アクリル酸から導かれる構成単位の含有率が5重量%以上25重量%以下、好ましくは6~20重量%、より好ましくは極板密着性の点から10~20重量%である。構成単位の含有率が、5重量%未満であると、水分散体としたときの安定性が低下すると共に結着剤としての密着性が低下する。また、25重量%を超えると、水分散体ではなく水溶性高分子となり低添加領域での結着性が低下する。
 共重合体(a-3)の重量平均分子量は、共重合体(a-1)と同じである。
 また、該(メタ)アクリル酸は、アルカリで中和されている事が望ましい。アルカリ種には特に制限はなく、アンモニアや有機アミン、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等のアルカリ金属類が挙げられる。特にアンモニア、水酸化ナトリウム、水酸化リチウムが水分散体化するのに適している。
 該(メタ)アクリル酸のもつカルボン酸の中和率は、特に限定されないが、25mol%以上、85mol%以下が望ましい。25mol%未満であると水分散体の安定性が低下するおそれがあり、85mol%を越えると未中和のカルボン酸が不足して結着剤としての密着性が低下するおそれがある。好ましくは、30mol%以上、80mol%以下、さらに好ましくは35mol%以上、75mol%以下である。
 オレフィン系共重合体(a)中における共重合体(a-3)は、オレフィン系共重合体(a)に対して、100重量%であってもよい。また、共重合体(a-1)と共重合体(a-2)とを混合する場合、共重合体(a-1)と共重合体(a-2)の合計100重量部に対して、好ましくは0~200重量部、より好ましくは0.5~150重量部である。
 (酸変性オレフィン(共)重合体(a-4))
 酸変性オレフィン系(共)重合体(a-4)は、酸で変性した(共)重合体である。オレフィン系(共)重合体は、ポリエチレン、ポリプロピレン等の炭素数2~6の単独重合体や、炭素数2~6のオレフィンを共重合したものが挙げられる。中でも、プロピレン単独重合体、または、プロピレンと、炭素数2~6(プロピレンを除く)のα-オレフィンとのランダム共重合体もしくはブロック共重合体であり、通常、プロピレンから導かれる単位および炭素数2~6(プロピレンを除く)のα-オレフィンから導かれる単位の合計100モル%中、プロピレンから導かれる単位を50モル%以上、好ましくは60モル%以上の量で含む共重合体である。
 酸の種類および変性方法は、前記共重合体(a-2)と同様である。酸としては、酸官能基数の点からマレイン酸が好ましい。
 (共)重合体(a-4)のGPCにより求められる重量平均分子量は、ポリスチレン換算で、5万未満、好ましくは5,000~5万未満、より好ましくは5,000~4万である。本発明において、低分子量の共重合体(a-4)は、オレフィン系共重合体(a)を分散するときの分散助剤としての役割と、水分散体(A)を電極活物質と混練したときの混和安定性と、極板(合材層)密着性、さらに、増粘剤(粘度調整剤)、特にカルボキシメチルセルロースとの相溶性を向上させる役割がある。
 特に、重量平均分子量5万未満の低分子量のマレイン化変性オレフィン系(共)重合体であることが、ランダムプロピレン系共重合体(a-1)あるいは酸変性ランダムプロピレン系共重合体(a-2)との水分散体化工程での相溶性の点で、好ましくは、マレイン化変性ポリプロピレンである。
 変性度は、水分散性の安定度及び極板密着性の点から、通常0.1~10重量%、好ましくは0.5~8重量%である。この範囲を越えると、エマルション分散時の乳化性が低下する、ペーストの混和安定性が低下する、増粘するなどのおそれがある。
 (共)重合体(a-4)は、前記ランダムプロピレン系共重合体(a-1)と前記酸変性ランダムプロピレン系共重合体(a-2)の合計100重量部に対して、オレフィン系共重合体(a)の密着性・電解液に対する膨潤性の点、更に、エマルション分散時の乳化性・ペーストの混和安定性の点で、5~50重量部であることが好ましく、より好ましくは10~40重量部、さらに好ましくは10~30重量部である。
 (その他の共重合体(a-5))
 本発明にかかるオレフィン系共重合体(a)では、本発明の効果を損なわない範囲で、その他の共重合体(a-5)を含んでいてもよい。
 その他の共重合体(a-5)は、前記共重合体(a-1)~(a-4)とは異なる、スチレン、エチレン、プロピレン、1-ブテン、1,3-ブタジエン、3-メチル-1-ブテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン等の共重合可能な単量体を単独または2種類以上組み合わせた共重合体、
 スチレン-エチレン-ブチレン共重合体、およびこれらの水素添加物が挙げられる。
 また、ノルボルネン系重合体、単環の環状ポリオレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体およびこれらの水素添加物などの脂環式構造を含有する重合体も用いることができる。
 また、共重合体(a-5)には、これらの共重合体の酸変性物も含まれ、特にマレイン化変性物が好ましい。
 これらの中で、スチレン-エチレン-ブチレン共重合体が、極板柔軟性の点で好ましい。
 共重合体(a-5)の含有量は、オレフィン系共重合体(a)100重量部に対して、接着性や電極の可とう性を向上させる観点から、0~50重量部、好ましくは0~30重量部である。また、共重合体(a-1)と(a-2)の合計100重量部に対して、接着性や電極の可とう性を向上させる観点から、0~50重量部、好ましくは0~30重量部である。
 マレイン酸で変性した共重合体を用いる場合、マレイン化変性度は、特に限定されないが、0.1~10重量%であることが好ましく、より好ましくは0.1~8重量%である。この範囲を越えると、エマルション分散時の乳化性の低下、ペーストの混和安定性の低下、増粘などを引き起こすおそれがある。
 共重合体(a-5)の重量平均分子量は、特に規定されないが、好ましくは5,000~30万である。
 (界面活性剤(x))
 本発明では、必要に応じて、乳化剤として界面活性剤(x)を添加してもよい。界面活性剤は、水分散体(A)に含まれることが好ましい。
 界面活性剤とは、物質表面あるいは界面の親、疎水状態を改質させるものである。本発明において、界面活性剤は、分散剤、濡れ剤、消泡剤的役割を果たす。これが含まれると、活物質、導電助剤の水分散体化の点で好ましい。
 界面活性剤は、アニオン、ノニオン系、シリコン系であることが望ましいが、特に制限はない。界面活性剤の添加量は、水分散体(A)中のオレフィン系共重合体(a)の固形分100重量部に対して、固形分換算で、0~100重量部、好ましくは3~80重量部である。この範囲を越えると、樹脂粒子の電解液相溶性が高くなり、強度が著しく低下したり、樹脂が膨潤しやすくなる。
 前記アニオン系界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム等のC10~C20までの飽和あるいは不飽和のアルキル鎖を持つスルホン酸塩、アルキルジフェニルエーテルジスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ステアリン酸ナトリウムおよびオレイン酸カリウムなどC10~C20までの飽和あるいは不飽和のアルキル鎖を持つカルボン酸塩、ナトリウムジオクチルスルホサクシネート、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム、ジアルキルスルポコハク酸ナトリウム、ステアリン酸ナトリウム、オレイン酸ナトリウム、t-オクチルフェノキシエトキシポリエトキシエチル硫酸ナトリウム塩等が挙げられる。
 前記ノニオン性界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル等のポリオキシエチレンアルキルエーテル類やポリオキシアルキレンアルキルエーテル類、ポリオキシエチレンポリオキシプロピレンアルキルエーテル類、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンオレイルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、オキシエチレン・オキシプロピレンブロックコポリマー、t-オクチルフェノキシエチルポリエトキシエタノール、ノニルフェノキシエチルポリエトキシエタノール、アセチレニックグリコール誘導体のポリオキシエチレンエーテル等が挙げられる。
 前記シリコン系界面活性剤としては、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリメチルアルキルシロキサン、シリコン変性ポリオキシエチレンエーテル等が挙げられる。
 界面活性剤は、1種のみを使用しても良いし、これらの複数の種類を組み合わせて使用しても良い。
 これら界面活性剤の中でも、活物質や導電助剤を水に分散させる点で、オレイン酸カリウム、ステアリン酸カリウムが好ましい。また、水の表面張力を低下させる点で、アセチレニックグリコール誘導体のポリオキシエチレンエーテル、シリコン変性ポリオキシエチレンエーテルが好ましい。界面活性剤としては、オレイン酸カリウム、アセチレニックグリコール誘導体のポリオキシエチレンエーテルおよびシリコン変性ポリオキシエチレンエーテルから選ばれる少なくとも1種以上を用いると、得られる水分散体は良好な活物質、導電助剤の分散状態を得ることができるためより好ましい。
 また、前記オレフィン系共重合体(a)として、共重合体(a-3)を単独で用いる場合、活物質と導電助剤の分散性向上の点から、水分散体(A)に界面活性剤を含むことが好ましい。このような界面活性剤としては、特に限定されないが、好ましくはオレイン酸カリウム、ステアリン酸カリウム、アセチレニックグリコール誘導体のポリオキシエチレンエーテル、シリコン変性ポリオキシエチレンエーテル、より好ましくはオレイン酸カリウム、アセチレニックグリコール誘導体のポリオキシエチレンエーテル、シリコン変性ポリオキシエチレンエーテルである。この場合、界面活性剤は特に限定されないが、共重合体(a-3)の固形分100重量部に対して固形分換算で0~100重量部、好ましくは、サイクル特性の点から3~80重量部である。この範囲であると、極板密着性に基づく良好な容量保持率を得られるため好ましい。
 (粘度調整剤(y))
 本発明では、必要に応じて、粘度調整剤(y)を添加してもよい。粘度調整剤は、水分散体(A)に含まれることが好ましい。
 本発明の電気化学セル用水性ペースト(正極、負極活材を集電体に塗布するためのインキ)は、粘度調整剤を含むことが好ましい。本発明によるオレフィン系共重合体(a)は水分散型であるため、粘度調整剤を用いると、最適な粘度を電極ペーストに与えることができ、電極ペーストを電極に容易に塗布できる。
 粘度調整剤を配合すると、ペーストを静置した時に、活物質や導電助剤などが経時で沈み分離することを防ぐ事が出来る。さらに、本発明にかかるオレフィン系共重合体(a)の体積平均粒子径が200nmより大きいときに、経時で分離して浮いてくる事も改善することが出来るため好ましい。
 粘度調整剤の添加量は、塗工性・作業性の観点から、オレフィン系共重合体(a)の固形分100重量部に対して、固形分換算で、10~100重量部、好ましくは10~95重量部である。
 粘度調整剤は、特に限定されないが、GPCにより求められる重量平均分子量は、好ましくは50,000~4,000,000(ポリスチレン換算)、より好ましくは60,000~3,500,000、さらに好ましくは65,000~3,000,000である。重量平均分子量が、50,000未満であると、活物質の沈降を生じるおそれがあり、4,000,000を超えると、ペーストに著しいチクソトロピー特性を生じるおそれがある。また、上記範囲内であると、良好な極板塗工性を得られるため、好ましい。
 粘度調整剤としては、特に限定されないが、カルボキシメチルセルロース(CMC)、カルボキシエチルセルロース、ヒドロキシエチルセルロースなどのセルロース誘導体、ポリオキシエチレンまたはその変性体、ポリビニルアルコールまたはその変性体、多糖類などが挙げられる。
 これら粘度調整剤の中でも沈降安定性の点から、CMC、ポリオキシエチレンまたはその変性体、ポリビニルアルコールまたはその変性体がより好ましい。
 粘度調整剤は、1種のみを使用しても良いし、これらの複数の種類を組み合わせて使用しても良い。
 (その他)
 本発明に係る水分散体(A)には、発明の目的を損なわない範囲で、必要に応じて、耐熱安定剤、スリップ防止剤、発泡剤、結晶化助剤、核剤、顔料、染料、可塑剤、老化防止剤、酸化防止剤、衝撃改良剤、充填剤、架橋剤、共架橋剤、架橋助剤、粘着剤、軟化剤、難燃剤、加工助剤等の各種添加剤が配合されていてもよい。
 〔活物質(B)〕
 活物質(B)としては、特に限定されないが、負極用としては天然黒鉛、人造黒鉛、正極用としてはLiCoO2、LiMn24、LiFePO4などが挙げられる。また、導電助剤の炭素材料を適宜用いてもよい。
 例えば、リチウムイオン二次電池用負極活物質としては、リチウムイオンをドープ・脱ドープできるものであれば特に制限はなく、金属リチウム、リチウム合金、酸化スズ、酸化ニオブ、酸化バナジウム、酸化チタン、シリコン、遷移金属窒素化物、天然黒鉛等の炭素材料とこれらの複合物のいずれを用いることができる。
 リチウムイオン二次電池用正極活物質としては、Li2S、Sなどの硫黄系化合物、LiCoO2、LiMnO2、LiMn24、LiNiO2、LiNiXCo(1-X)2、LiNixMnyCo(1-x-y)、LiNixCoyAl(1-x-y)、Li2MnO3、などのリチウムと遷移金属とからなる複合酸化物、LiFePO4、LiMnPO4等の燐酸化合物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール/ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物とLiFePO4、LiMnPO4等の燐酸化合物が好ましい。負極がリチウム金属またはリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属の複合酸化物と炭素材料との混合物を用いることもできる。
 アルカリ二次電池としてニッケル水素二次電池を例にとると、正極用活物質としては水酸化ニッケルや、水酸化ニッケルとコバルトや亜鉛との複合体などを用いることができる。
 また、負極用活物質としては、マンガン、ニッケル、コバルト、アルミニウム、ミッシュメタル等からなる水素吸蔵合金などが挙げられる。
 電気二重層キャパシタ用の正、負極活物質としては、種々の活性炭が用いられる。
 〔導電助剤(C)〕
 導電助剤(C)としては、特に限定されないが、カーボンブラック、アモルファスウィスカーカーボン、グラファイト、アセチレンブラック、人造黒鉛などの炭素材料、ポリチオフェン、ポリピロールなどの導電性ポリマーとその誘導体、コバルト等の金属微粒子などが挙げられる。これらは、1種単独でも、2種以上組み合わせて用いても良い。活物質の炭素材料を適宜用いてもよい。
 導電助剤は、活物質100重量部に対して、好ましくは0.1~20重量部、より好ましくは0.2~15重量部である。この範囲であれば、充電容量を損なわずに良好なリチウムイオン輸送性と電気伝導性が得られる。また、0.1重量部未満であると、合材層の電気抵抗を増加させるおそれがあり、20重量部を超えると、Liイオン輸送性を低下させるおそれがある。
 〔電気化学セル用水分散体(A)の作製について〕
 オレフィン系共重合体(a)の水への分散方法は、公知のもので特に制限されないが、乳化助剤や乳化剤量を最小限にするためには溶融混練した樹脂にアルカリ水を少量添加する方法が好ましい(特公平7-008933号)。
 また、乳化分散にはアルカリによる中和が必要であるが、そのためのアルカリ種には特に制限はなく、アンモニアや有機アミン、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等のアルカリ金属類が挙げられる。
 〔電気化学セル〕
 本発明の一つの態様において、本発明にかかる電気化学セル用電極は、本発明のオレフィン系共重合体(a)を含む電気化学セル用水分散体(A)と、正極では正極活物質、負極では負極活物質と、導電助剤、好ましくはカーボンブラック、アモルファスウィスカーカーボン、グラファイトなどの炭素材料を用いて得られる。
 また、本発明の一つの態様において、本発明の電気化学セルのうち、二次電池は前述の正極及び負極を、セパレータを中心として重ねたものを、円筒型、コイン型、角型、フィルム型その他任意の形状に形成し非水電解液を封入することにより作製されるものである。
 また、電気二重層キャパシタでは前述の電極をセパレータ中心に重ねたものを、円筒型、コイン型等任意の形状に形成し電解液を封入することにより作成されるものである。
 セパレータとして、二次電池においては、多孔性膜や高分子電解質が用いられる。多孔性膜としては、ポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。特に、多孔性ポリオレフィンフィルムが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、または多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされていても良い。
 また、電気二重層キャパシタにおいては、二次電池同様のセパレータに加えて、電解コンデンサー紙や、無機セラミック粉末を含む多孔質膜等を用いることができる。
 二次電池において、リチウムイオンなどの非水系電解液としては、例えばLiPF6,LiBF4,LiClO4,LiAsF6,CF3SO3Li,(CF3SO2)N/Li等の電解質を、単独でまたは2種以上組み合わせて有機溶媒に溶解したものを使用することができる。
 ニッケル水素などのアルカリ電解液としては、例えば水酸化カリウムや水酸化ナトリウム等の電解質を単独または組み合わせて水溶液としたものを使用することができる。
 電気二重層キャパシタにおいて電解液としては、任意のものが使用できるが、非水系電解液が、電解質の例としてテトラエチルアンモニウムテトラフルオロボレート、トリエチルモノメチルアンモニウムテトラフルオロボレート等を単独または2種以上組み合わせて有機溶媒に溶解したものを使用することができる。
 非水系二次電池および電気二重層キャパシタにおいて、非水系電解液における有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、γ-ブチロラクトン、ジメチルスルホキシド、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン等が挙げられ、いずれかが単独でまたは2種以上を混合して使用できる。
 また、本発明の実施形態の一例について、図面を参照して説明する。
 図1は、本実施形態の一つである非水電解質2次電池の概略断面図である。当該非水電解質2次電池は、電気化学セル用水分散体、活物質、導電助剤、増粘剤(粘度調整剤)など(図示せず)が混合された電気化学セル用水性ペーストを、圧延金属箔、多孔質金属板、スポンジ状などの三次元に連なった金属多孔体へ塗布した正極板3a、負極板3bと、又、正極板3aと負極板3bが直接接触して短絡しないように、その間に設けられるセパレータ4と、電極板3a、3b及びセパレータ4を覆う外装材5と、六フッ化リン酸リチウム(LiPF6)などの電解質塩(図示せず)が溶解した非水電解質6と、を備える。
 このような非水電解質2次電池は、充電時にはリチウムイオンが正極から抜け出し負極に移動し、放電時には逆に負極からリチウムイオンが抜け出して正極に戻ってくる。即ち、リチウムイオンの正極と負極との間の移動によって、充放電動作が行われる。
 図1のように構成されるリチウムイオン二次電池の詳細について、以下に説明する。
 まず、このような非水電解質2次電池を、家庭用分散型電源及び太陽光発電システムの蓄電システムのような大容量を必要とするシステムに用いるとき、大容量を得るには組電池とする必要がある。しかしながら、単電池として充放電容量の小さい小型非水電解質2次電池を使用すると数百~数千個の単電池が必要になり、蓄電システムのメンテナンスなどが大変煩雑になる。このため、非水電解質2次電池を、その充放電容量の大きい、中、大型とし、好ましくは単電池としての充放電容量を、5Ah以上とする。
 又、このとき、正極板3a及び負極板3bにおいて、1cm2当たりの電気容量が0.5mAh未満になると単電池当たりの積層枚数が十数枚~数十枚となり、単電池製造の作業が煩雑になる。このため、正極板3a及び負極板3bの1cm2当たりの電気容量は0.5mAh以上とする。更に、正極板3a及び負極板3bにおいて、1cm2当たりの電気容量が18mAhより大きくなると、電極板の厚さによる抵抗値が高くなりすぎ、電池の入出力特性が劣化するため好ましくない。このような充放電容量値を持つ非水電解質2次電池の構成について、以下に述べる。
 (正極板及び負極板)
 まず、正極板及び負極板の厚さが5mm以上であると、十分に電解液が浸透しなくなり、性能を維持することが困難となる。又、電極の厚さが0.1mmより小さくなると、単電池当たりの積層枚数が数百枚となり、単電池製造の作業が煩雑になる。このため、本実施形態において、正極板及び負極板の厚さは、その活物質の密度や混合する水分散体、活物質、導電助剤、増粘剤の種類や、電極のプレス圧等にもよるが、0.1mm以上5mm未満とする。
 又、本実施形態で使用される正極板及び負極板の厚さは、どちらか一方の電極を厚型電極とする場合には、正極を厚くすることが好ましい。これは、非水電解質2次電池では、負極がリチウム金属に近い電位で充放電するため、負極の分極が大きくなるとリチウムが析出する恐れがあるからである。
 又、本実施形態で使用される正極活物質としては、LiCoO2、いわゆる三元系と呼ばれるLi(Ni-Mn-Co)O2、NCA系Li(Ni-Co-Al)O2や、LiMn24、オリビン型LiFePO4などが好適である。
 一方、LiCoO2は、温度上昇に伴い、酸素が放出され、電解液が燃焼し激しく発熱する。又、コバルト(Co)を含むLiCoO2は、Coが鉄(Fe)やMn(マンガン)と比較して埋蔵量が少ないとの問題がある。そこで、近年、低環境負荷・超低コスト正極材料として、鉄を主成分としたオリビン型LiFePO4が注目されている。このLiFePO4は高電位・高エネルギー密度と高い安全性・安定性という双方の要素を両立するだけではなく、鉄を主成分としており環境にかける負荷も低い。又、LiFePO4は全ての酸素が強固な共有結合によって燐と結合しているため、前述したLiCoO2などの他の正極材料のような発熱もなく、温度上昇による酸素放出が非常に起こりにくく、安全性の観点から好ましい。しかしながら、LiFePO4は、他の正極活物質材料に比べて電子伝導性が低く、それを補うべく微粒子であるため、従来の水分散体では、極板に塗布するスラリーを調製し難く、そのため、厚型電極を調整することは困難であった。しかしながら、本発明の水性ペーストを用いれば、LiFePO4の粒子および導電助剤が、オレフィン系共重合体(a)と均一に分散し、かつ、電極との良好な接着性が得られるため、厚膜化した電極を容易に得ることができる。そのため、本発明では、活物質としてLiFePO4を用いても、従来にない小型で高容量な2次電池をより低コストで得ることができる。
 又、正極活物質の粒度分布は、レーザー回折散乱法で測定したメディアン径(D50)が0.5~9μmであることが好ましい。D50が0.5μm未満であると、電気化学セル用水性ペーストの作製において、粒子の再凝集が起こりやすくなり、電極板の作製が困難になるため好ましくない。D50が9μmより大きくなると、粒子自体の電子伝導性が得られにくく、非水電解質2次電池の入出力性能が劣化するため好ましくない。
 又、正極活物質のBET比表面積は、5~30m2/gであることが好ましい。BET比表面積が5m2/g未満であると、導電助剤や集電体との実効接触面積が小さく、電極板の抵抗値が高くなり、非水電解質2次電池の入出力性能が劣化するため、好ましくない。BET比表面積が30m2/gより大きくなると、電気化学セル用水性ペースト作製において、粒子への溶媒の吸着量が多く、ペーストの固形分濃度が低くなり、乾燥後の電極板表面のひび割れの原因となるため好ましくない。
 又、本実施形態で使用される正極活物質は、粒子自体の電子伝導性を上げるために、粒子表面に炭素材等の電子伝導性材料がコーティングされていても良い。
 本実施形態で使用される負極活物質としては、球状化した天然黒鉛、人造黒鉛等の黒鉛材料粉末や難黒鉛化性炭素材料粉末、ハードカーボンなどが好適である。但し、非水電解質2次電池のエネルギー密度向上の観点から、高電圧が得られる黒鉛材料粉末が好適に使用できる。更にコスト的に有利な球状化した天然黒鉛粉末が好ましい。なお、球状化した天然黒鉛は、走査型電子顕微鏡(SEM)などを用いた形状観察により識別できる。また、導電助剤の炭素材料を適宜用いてもよい。
 又、負極活物質の粒度分布は、レーザー回折散乱法で測定したメディアン径(D50)が15~20μmであることが好ましい。D50が15μm未満であると、電気化学セル用水性ペーストの作製において、粒子の再凝集が起こりやすくなり、電極板の作製が困難になるため好ましくない。D50が20μmより大きくなると、電気化学セル用ペースト作製の混練においてせん断力がかけにくく、粒子の分散が困難になるため好ましくない。
 又、負極活物質の比表面積(BET)は、2~5m2/gであることが好ましい。比表面積が2m2/g未満であると、導電助剤や集電体との実効接触面積が小さく、電極板の抵抗値が高くなり、非水電解質2次電池の入出力性能が劣化するため、好ましくない。比表面積が5m2/gより大きくなると、活物質と非水電解質との接触面積が大きくなり、充電時における非水電解質の分解反応が多くなるため好ましくない。
 本実施形態で使用される導電助剤としては、アセチレンブラック、ケッチェンブラック、VGCF、人造黒鉛、天然黒鉛、金属粉末、金属繊維、導電性高分子などの高電子伝導性材料が好適である。但し、非水電解質2次電池のエネルギー密度向上の観点から、嵩密度の高い人造黒鉛材料粉末が好適であり、コスト的には、アセチレンブラックが有利である。これら材料を単独で、あるいは、混合して使用しても良い。また、負極活物質の炭素材料を適宜用いてもよい。
 又、導電助剤の粒度分布は、レーザー回折散乱法で測定したメディアン径(D50)が、好ましくは0.02~80μm、より好ましくは0.4~20μmである。D50が0.02μm未満であると、電気化学セル用水性ペーストの作製において、粒子の再凝集が起こりやすくなり、電極板の作製が困難になるおそれがある。D50が80μmより大きくなると、電気化学セル用ペースト作製の混練においてせん断力がかけにくく、粒子の分散が困難になるおそれがある。特に、導電助剤を負極に用いる場合は、例えば、黒鉛構造を含む一次粒子の結晶が発達した人造黒鉛などの高電子伝導性材料が好適である。また、正極に用いる場合は、アセチレンブラックが好適である。また、人造黒鉛を負極として用いる場合、メディアン径(D50)は、負極活物質のメディアン径とのバランスの点から、好ましくは2~80μm、より好ましくは4~20μmである。アセチレンブラックを正極として用いる場合、正極活物質のメディアン径とのバランスの点から、好ましくは0.02~5μm、より好ましくは0.4~3μmである。
 又、導電助剤の比表面積(BET)は、2~80m2/gであることが好ましい。比表面積が2m2/g未満であると、導電助剤や集電体との実効接触面積が小さく、電極板の抵抗値が高くなり、非水電解質2次電池の入出力性能が劣化するため、好ましくない。比表面積が80m2/gより大きくなると、活物質と非水電解質との接触面積が大きくなり、充電時における非水電解質の分解反応が多くなるため好ましくない。
 本実施形態の電気化学セル用水性ペーストで使用されるオレフィン系共重合体(a)としては、微粒子活物質を塗布後、乾燥するときの収縮応力を緩和する事が可能な120℃以下の低融点を保有するオレフィン系共重合体(a)と、微粒子活物質を水に良分散させる為の界面活性剤を併用する事が好ましい。オレフィン系共重合体(a)としては、記述したオレフィン系重合体を含む水分散体が好ましく、界面活性剤としてはオレイン酸カリウム、アセチレニックグリコール誘導体のポリオキシエチレンエーテルおよびシリコン変性ポリオキシエチレンエーテルから選ばれる少なくとも1種類以上の界面活性剤が好ましい。
 本実施形態の電気化学セル用水性ペーストで使用される増粘剤としては、特に限定されないが、カルボキシメチルセルロース(CMC)、カルボキシエチルセルロース、ヒドロキシエチルセルロースなどのセルロース誘導体、ポリオキシエチレンまたはその変性体、ポリビニルアルコールまたはその変性体、多糖類などが挙げられる。
 これら粘度調整剤の中でも、沈降安定性の点から、CMC、ポリオキシエチレンまたはその変性体、ポリビニルアルコールまたはその変性体が好ましい。
 本実施形態で使用される集電体としては、圧延金属箔、多孔質金属板、ラス状、パンチングメタル、網状やスポンジ状などの三次元に連なった金属多孔体等が使用できる。特に正極板では、Al、Ti等の耐酸化性の高い材質が好ましく、負極板では、Cu、Ni、SUS等のリチウムと合金化しにくい材質が好ましい。
 本実施形態での正極板及び負極板は、上記電気化学セル用水性ペーストを上記集電体上へ塗布することで得られる。塗布膜厚の制御としては、アプリケータやバーコーター、コンマコーター、ダイコーター等が使用できる。また、正極板及び負極板はプレスして使用することができる。正極板は、塗布中に含まれる活物質の充填密度として、1.0~2.0g/cm2の範囲、および塗布中に含まれる活物質量が4~90mg/cm2の範囲になるようにプレスすることが好ましい。負極板は、活物質の充填密度として1.0~1.7g/cm2の範囲、および塗布中に含まれる活物質量が2~50mg/cm2の範囲になるようにプレスすることが好ましい。
 正極板及び負極板の活物質充填密度が1.0cm2未満であると、電池のエネルギー密度が低くなるため好ましくない。
 正極板の活物質の充填密度が2.0g/cm2より高くなると、正極板への電解液の浸透性が低くなり、電池性能が劣化するため好ましくない。また、負極板の活物質の充填密度が1.7g/cm2より高くなると、充電時に負極板上へリチウムが析出しやすくなり、電池性能が劣化するため好ましくない。
 (電極板の曲げ試験)
 一般に、電極材ペーストを金属箔上へ塗布する工程は、工業的には連続塗工機を使用してロールトゥロールで行うため、電極板を支持する支持棒を経由する必要がある。そこで本発明では、以下のような評価方法で電極の曲げ試験を行い、電極板の剥がれ及びひび割れを目視により確認した。
 具体的には、図2および3に示すとおり、正極板(1)、正極板(3)、負極板(2)および負極板(4)のそれぞれの片面を直径50mmのSUS管に巻き付け、次に裏面にして同様に巻き付けた後、電極板表面の電極材の剥がれ及びひび割れを目視により確認した。
 (非水電解質)
 本実施形態で使用される非水電解質で使用できる溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート等の環状カーボネート類、
 ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、
 γ-ブチロラクトン、γ-バレロラクトン等のラクトン類、
 テトラヒドロフラン、2-メチルテトラヒドロフラン等のフラン類、
 ジエチルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、エトキシメトキシエタン、ジオキサン等のエーテル類、
 ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル等が挙げられ、これらの1種以上を混合して用いても構わない。特に、PC、EC及びブチレンカーボネート等の環状カーボネート類が高沸点溶媒であるので好ましい。
 又、本実施形態で使用される非水電解質で使用できる電解質塩として、ホウフッ化リチウム(LiBF4)、六フッ化リン酸リチウム(LiPF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、トリフルオロ酢酸リチウム(LiCF3COO)、リチウムビス(トリフルオロメタンスルホン)イミド(LiN(CF3SO22)等のリチウム塩が挙げられ、これらの1種以上を混合して用いても構わない。
 上述した非水電解質の塩濃度を、0.5mol/l以下とすると、電解液中のキャリア濃度が低くなるため、非水電解質の抵抗が高くなる。又、非水電解質の塩濃度が3mol/lより高いと塩自体の解離度が低くなり、非水電解液6中のキャリア濃度が上がらない。このため、本実施形態における非水電解質の塩濃度は、0.5~3mol/lとする。
 (セパレータ)
 本実施形態で使用されるセパレータは、ポリエチレン、ポリプロピレン、ポリエステルなどから成る不織布や微多孔質膜の中から選択可能である。
 又、上述のセパレータについて、空隙率が30%より低いと、非水電解質の含有量が減り非水電解質2次電池の内部抵抗が高くなり、90%より高いと、正極板と負極板が物理的な接触を起こしてしまい、非水電解質2次電池の内部短絡の原因となる。又、セパレータの厚さが5μmより薄くなるとセパレータの機械的強度が不足し、非水電解質2次電池の内部短絡の原因となり、100μmより厚くなると正極負極間の距離が長くなり、非水電解質2次電池の内部抵抗が高なる。このため、本実施形態において、セパレータの空隙率を、30%以上90%以下とし、又、セパレータの厚さを、5μm以上100μm以下とする。
 (外装材)
 又、本実施形態で使用される非水電解質2次電池の外装材は、金属製の缶、例えば鉄、ステンレススチール、アルミニウムなどから成る缶が好ましい。また、極薄のアルミを樹脂でラミネートしたフィルム状の袋を使用しても構わない。外装材の形状は円筒型、角型、薄型等いずれでも構わないが、大型リチウムイオン二次電池は組電池として使用する機会が多いので、角型または薄型であるのが好ましい。
 以下に実施例および比較例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 <エマルション組成物の調製>
 [実施例1]
 オレフィン系共重合体(a)として、重量平均分子量10万(ポリスチレン換算)、マレイン化変性度1.0で、ブテンを合計で25重量%共重合したマレイン化変性ランダムポリプロピレン(a-2)100重量部と、重量平均分子量2万、マレイン化変性度4のマレイン化変性ポリプロピレン(a-4)30重量部を混合した。更に、オレイン酸カリウム10部を混合し、二軸押出機にて200℃で溶融混錬後、水酸化カリウム水溶液を添加しながら混錬した。
 吐出物を水に分散させ、体積平均粒子径200nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルション(電気化学セル用水分散体A)を得た。この(a)の融点は85℃であった。
 [実施例2]
 オレフィン系共重合体(a)として、変性ランダムポリプロピレン(a-2)100重量部の代わりに、重量平均分子量10万、エチレンおよびブテンを30重量%共重合したランダムポリプロピレン(a-1)20重量部と、マレイン化変性度1.0で、ブテンを合計で25重量%共重合したマレイン化変性ランダムポリプロピレン(a-2)を80重量部とした以外は、実施例1と同様に調製し、体積平均粒子径200nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルションを得た。この(a)の融点は80℃であった。
 [実施例3]
 オレフィン系共重合体(a)として、変性ランダムポリプロピレン(a-2)の代わりに、重量平均分子量10万、エチレンおよびブテンを30重量%共重合したランダムポリプロピレン(a-1)とした以外は、実施例1と同様に調製し、体積平均粒子径350nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルションを得た。この(a)の融点は検出されなかった。
 [実施例4]
 オレフィン系共重合体(a)として、実施例3のランダムポリプロピレン(a-1)の代わりに、ブテンで30重量%共重合したランダムプロピレン(a-1)とした以外は、実施例3と同様に調製し、体積平均粒子径300nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルションを得た。この(a)の融点は80℃であった。
 [実施例5]
 オレフィン系共重合体(a)として、実施例3のランダムポリプロピレン(a-1)の代わりに、エチレンで40重量%共重合したランダムプロピレン(a-1)とした以外は、実施例3と同様に調製し、体積平均粒子径350nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルションを得た。この(a)の融点は85℃であった。
 [実施例6]
 オレフィン系共重合体(a)として、変性ランダムポリプロピレン(a-2)の代わりに、重量平均分子量6万、マレイン化変性度1.0で、エチレンを40重量%共重合したマレイン化変性ランダムポリプロピレン(a-2)とした以外は、実施例1と同様に調製し、体積平均粒子径200nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルションを得た。この(a)の融点は80℃であった。
 [実施例7]
 オレフィン系共重合体(a)として、変性ランダムポリプロピレン(a-2)の代わりに、重量平均分子量6万、マレイン化変性度1.0で、エチレンおよびブテンを30重量%共重合したマレイン化変性ランダムポリプロピレン(a-2)とした以外は、実施例1と同様に調製し、体積平均粒子径200nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルションを得た。この(a)の融点は検出されなかった。
 [実施例8]
 オレフィン系共重合体(a)として、変性ランダムポリプロピレン(a-2)100重量部の代わりに、重量平均分子量10万、マレイン化変性度1.0で、ブテンを合計で25重量%共重合したマレイン化変性ランダムポリプロピレン(a-2)95重量部と、重量平均分子量9万のエチレン-メタクリル酸共重合体(メタクリル酸含有量4重量%)(a-3)5重量部とした以外は、実施例1と同様に調製し、体積平均粒子径200nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルションを得た。この(a)の融点は80℃であった。
 [実施例9]
 オレフィン系共重合体(a)として、変性ランダムポリプロピレン(a-2)の代わりに、重量平均分子量7万、マレイン化変性度1.0で、ブテンを合計で30重量%共重合したマレイン化変性ランダムポリプロピレン(a-2)とした以外は、実施例1と同様に調製し、体積平均粒子径250nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルションを得た。この(a)の融点は80℃であった。
 [実施例10]
 変性ポリプロピレン(a-4)の配合を20重量部とし、オレイン酸カリウムの配合を10重量部とした以外は、実施例1と同様に調製し、体積平均粒子径250nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルションを得た。この(a)の融点は80℃であった。
 [実施例11]
 変性ポリプロピレン(a-4)の配合を10重量部とし、オレイン酸カリウムの配合を4重量部とした以外は、実施例1と同様に調製し、体積平均粒子径300nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルションを得た。この(a)の融点は80℃であった。
 [実施例12]
 変性ポリプロピレン(a-4)の配合を50重量部とし、オレイン酸カリウムの配合を15重量部とした以外は、実施例1と同様に調製し、体積平均粒子径260nm、不揮発分45%のオレフィン系共重合体(a)を含むエマルションを得た。この(a)の融点は80℃であった。
 [比較例1]
 オレフィン系共重合体(a)の代わりに、スチレンブタジエンゴムを含むエマルション(SBR、日本エイアンドエル(株)製SR143、体積平均粒子径:160nm、固形分濃度:48重量%)をそのまま用いた。
 [比較例2]
 変性ランダムポリプロピレン(a-2)の代わりに、重量平均分子量10万、マレイン化変性度1.0で、エチレンおよびブテンを合計で5重量%共重合したマレイン化変性ランダムポリプロピレンとした以外は、実施例1と同様に調製し、体積平均粒子径300nm、不揮発分45%のエマルションを得た。このエマルションの融点は140℃であった。
 [比較例3]
 変性ランダムポリプロピレン(a-2)の代わりに、重量平均分子量6万、マレイン化変性度1.5で、エチレンおよびブテンを合計で5重量%共重合したマレイン化変性ランダムポリプロピレンとした以外は、実施例1と同様に調製し、体積平均粒子径200nm、不揮発分45%のエマルションを得た。このエマルションの融点は135℃であった。
 [比較例4]
 オレフィン系共重合体(a)の代わりに、重量平均分子量10万、マレイン化変性度0.7で、エチレンおよびブテンを合計で5重量%共重合したマレイン化変性ランダムポリプロピレン100重量部と、変性ポリプロピレン(a-4)を20重量部とし、オレイン酸カリウムを6重量部とした以外は、実施例1と同様に調製し、体積平均粒子径300nm、不揮発分45%のエマルションを得た。このエマルションの融点は140℃であった。
 [比較例5]
 オレフィン系共重合体(a)の代わりに、重量平均分子量6万、マレイン化変性度1.5で、エチレンおよびブテンを合計で5重量%共重合したマレイン化変性ランダムポリプロピレンを用いた以外は、比較例4と同様に調製し、体積平均粒子径200nm、不揮発分45%のエマルションを得た。このエマルションの融点は135℃であった。
 [比較例6]
 オレフィン系共重合体(a)の代わりに、重量平均分子量10万、マレイン化変性度0.7で、エチレンおよびブテンを合計で10重量%共重合したマレイン化変性ランダムポリプロピレン100重量部を用いた以外は、比較例4と同様に調製し、体積平均粒子径200nm、不揮発分45%のエマルションを得た。このエマルションの融点は135℃であった。
 <樹脂の電解液に対する膨潤性>
 実施例1~12または比較例1~6のエマルションをガラス板に塗布し、120℃で3時間乾燥後フィルムを得た。エチレンカーボネート(EC)/メチルエチルカーボネート(MEC)=1/1(vol/vol)溶液にフィルムを80℃で3日間浸漬し、膨潤したフィルムの重量を測定した。膨潤フィルムの重量/膨潤前の重量比を算出した。同様にして、浸漬溶液を水酸化カリウム(KOH)水溶液(20℃)とした場合の重量比を算出した。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <リチウム二次電池負極板の作製>
 カルボキシメチルセルロース(ダイセル化学株式会社CMC1160、重量平均分子量:650,000)、ヒドロキシエチルセルロース(ダイセル化学株式会社SP600、重量平均分子量:1,000,000)、ポリオキシエチレン(明成化学工業株式会社アルコックスE-75、重量平均分子量:2,000,000)およびポリビニルアルコール(株式会社クラレKL-318、重量平均分子量:70,000)から選ばれる粘度調整剤(y)を1.2重量%に調製して、固形分換算で1重量部と、
 実施例1~8および比較例1~3で調製したエマルションを固形分換算で2重量部と、
 アニオン型(日油株式会社製ノンサールOK-2)、ノニオン型(日信化学工業株式会社オルフィンE1010)およびシリコン型(信越化学工業株式会社KF354L)から必要に応じて選ばれる界面活性剤(x)を混合し、配合実施例1A~13Aおよび配合比較例1a~3aの水分散体(A)を得た。水分散体(A)の組成を表2に示す。
 天然黒鉛(活物質B)((株)中越黒鉛工業所製LF18A)90重量部、アセチレンブラック(導電助剤C)(デンカブラック:電気化学工業株式会社製)7重量部に、得られた配合実施例または配合比較例の水分散体(A)と蒸留水を添加し、固形分濃度50重量%の負極合材スラリー(水性ペースト)を調製した。なお、得られた負極合材スラリーを、それぞれスラリー1A~13Aおよびスラリー1a~3aとした。
 次に、この負極合材スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し、乾燥し、圧縮成型して、厚さ70μmの負極を作製した。
 また、天然黒鉛(B)(LF18A)90重量部、アセチレンブラック(導電助剤C)(デンカブラック)7部に、1.2重量%に調製したカルボキシメチルセルロース(CMC1160)を固形分換算で1重量部混合し、実施例1、8~12または比較例4~6で調製したエマルションを固形分換算で2重量部混合し、さらに蒸留水を添加して固形分濃度50重量%の負極合材スラリー(水性ペースト)を調製した。なお、得られた負極合材スラリーを、それぞれスラリー14A~19Aおよびスラリー4a~6aとした。
 次に、これらの負極合材スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し、乾燥し、圧縮成型して、厚さ70μmの負極を作製した。
Figure JPOXMLDOC01-appb-T000002
 <リチウム二次電池正極板の作製>
 負極板の作製に使用した粘度調整剤(y)を、固形分換算で1.5重量部と、
 実施例1~8または比較例1~3で調製したエマルションを固形分換算で5重量部と、
 さらに必要に応じて負極板の作製に使用した界面活性剤を加え、配合実施例1B~13Bおよび配合比較例1b~3bの水分散体(A)を得た。水分散体(A)の組成を表3に示す。
 LiCoO2(B)(本荘FMCエナジーシステムズ(株)製HLC-22)85.5重量部、人造黒鉛(導電助剤C)8重量部、アセチレンブラック(導電助剤C)(デンカブラック)3重量部に、得られた配合実施例または配合比較例の水分散体(A)と蒸留水を加え、固形分濃度50重量%のLiCoO2合材スラリー(水性ペースト)を調製した。なお、得られた合材スラリーを、それぞれスラリー1B~13Bおよびスラリー1b~3bとした。
 このLiCoO2合材スラリーを厚さ20μmのアルミ箔に塗布し、乾燥し、圧縮成型して、厚さ70μmの正極を作製した。
 また、LiCoO2(B)(HLC-22)85.5重量部、人造黒鉛(C)8重量部、アセチレンブラック(C)(デンカブラック)3重量部及び1.2重量%に調製したカルボキシメチルセルロース(CMC1160)を固形分換算で1.5重量部、実施例1、8~12または比較例4~6で調製したエマルションを固形分換算で2重量部を添加し、さらに蒸留水を添加して固形分濃度50重量%のLiCoO2合材スラリー(水性ペースト)を調製した。なお、得られた合材スラリーを、それぞれスラリー14B~19Bおよびスラリー4b~6bとした。
 このLiCoO2合材スラリーを厚さ20μmのアルミ箔に塗布し、乾燥し、圧縮成型して、厚さ70μmの正極を作製した。
Figure JPOXMLDOC01-appb-T000003
 <リチウム二次電池の密着性評価>
 前記で作製した電極を切り、瞬間接着剤にてガラスプレパラートに貼り付け電極を固定し評価用サンプルとした。評価用サンプルを塗膜剥離強度測定装置サイカスDN20型(ダイプラウインテス(株)製)で合材層と集電体との界面を水平速度2μm/秒の速度で切削し、切削に必要な水平方向の力から合材層と集電体との界面の剥離強度を測定した。剥離強度の3回の平均値をとり密着性を評価した。なお、合材層とは、水性ペーストをアルミ箔あるいは銅箔(集電体)に塗工して乾燥プレスした塗工部分を指す。
 結果を表4および5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 <リチウムイオン二次電池の非水電解液の調製>
 非水溶媒として、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)を、EC:MEC=4:6(重量比)の割合で混合したものを用い、次に電解質であるLiPF6を溶解し、電解質濃度が1.0モル/リットルとなるように非水電解液を調製した。
 <コイン型リチウムイオン二次電池の作製>
 コイン型電池用負極として前記の負極を直径14mmの円盤状に打ち抜いて、重量20mg/14mmφのコイン状の負極を得た。コイン型電池用正極として前記の正極を直径13.5mmの円盤状に打ち抜いて、重量42mg/13.5mmφのコイン状の正極を得た。
 前記のコイン状の負極、正極、および厚さ25μm、直径16mmの微多孔性ポリプロピレンフィルムからできたセパレータを用いて、ステンレス製の2032サイズ電池缶の負極缶内に、負極、セパレータ、正極の順序で積層した。その後、セパレータに前記非水電解液0.04mlを注入した後、その積層体の上にアルミニウム製の板(厚さ1.2mm、直径16mm)、およびバネを重ねた。
 最後に、ポリプロピレン製のガスケットを介して電池の正極缶をかぶせて、缶蓋をかしめることにより、電池内の気密性を保持し、直径20mm、高さ3.2mmのコイン型電池を作製した。
 <電極膨潤性の評価>
 前記コイン型電池を用いて、この電池を株式会社ナガノの装置を用い0.5mA定電流、4.2V定電圧の条件で、4.2V定電圧の時の電流値が0.05mAになるまで充電し、その後、1mA定電流、3.0V定電圧の条件で、3.0V定電圧の時の電流値が0.05mAになるまで放電した。このサイクルを100回繰り返し、100サイクル後の電極の合材層の厚み(L1)と、電解液注入前の電極の合材層の厚み(L2)を比較した。
 その結果を表6および7に示す。なお、結果は、(L1/L2)で示した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 <電池サイクル特性の評価>
 前記電極膨潤性と同様の評価法にて、サイクルを500回繰り返し、初期の電池容量に対する500サイクル後の容量(%)を評価した。
 評価結果を表8および9に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 <電気二重層キャパシタ電極の作製>
 活性炭(B)(クラレ株式会社RP-20)100重量部、アセチレンブラック(C)(デンカブラック)3重量部、ケッチェンブラック(C)(ケッチェンブラックインターナショナル株式会社EC600JD)2重量部に、配合実施例1A~13Aおよび配合比較例1a~3aで調製した水分散体を固形分換算で5重量部混合し、さらに蒸留水を添加して固形分濃度50重量%の合材スラリー(水性ペースト)を調製した。
 また、同様に、活性炭(B)100重量部、アセチレンブラック(C)3重量部、ケッチェンブラック(C)2重量部に、1.2重量%に調製したカルボキシメチルセルロース(CMC1160)を固形分換算で1.5重量部混合し、実施例1、8~12および比較例4~6で調製したエマルションを固形分換算で5重量部混合し、さらに蒸留水を添加して固形分濃度50重量%の合材スラリー(水性ペースト)を調製した。
 次に、これらの合材スラリーを厚さ20μmの帯状アルミ箔製の集電体に塗布し、乾燥し、圧縮成型して、厚さ70μmの電極を作製した。
 <電気二重層キャパシタの密着性評価>
 前記で作製した電極を用いて、電極の剥離強度をリチウム二次電池で行った評価と同様の方法で測定し、密着性を評価した。
 結果を表10および11に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 <電気二重層キャパシタの電解液の調製>
 テトラエチルアンモニウムテトラフルオロボレートをプロピレンカーボネートに溶解し、電解質濃度が1.5モル/リットルとなるように電解液を調製した。
 <コイン型電気二重層キャパシタの作製>
 前記の電極を、直径14mmの円盤状に打ち抜いて、重量20mg/14mmφのコイン状の電極を得た。前記のコイン状の電極および厚さ25μm、直径16mmの微多孔性ポリプロピレンフィルムからできたセパレータを用いて、ステンレス製の2032サイズ電池缶の負極缶内に、電極、セパレータ、電極の順序で積層した。その後、セパレータに前記電解液0.04mlを注入した後、その積層体の上にアルミニウム製の板(厚さ1.2mm、直径16mm)、およびバネを重ねた。
 最後に、ポリプロピレン製のガスケットを介して電池の缶をかぶせて、缶蓋をかしめることにより、電池内の気密性を保持し、直径20mm、高さ3.2mmのコイン型電気二重層キャパシタを作製した。
 <電気二重層キャパシタの特性評価>
 作製したコイン型電気二重層キャパシタを用いて、10mAの定電流で2.7Vまで10分間充電を行った後、1mAの定電流で放電をおこなった。得られた充放電特性より静電容量を求めた。
 また、内部抵抗は、充放電特性より、社団法人電子情報技術産業協会が定める規格RC-2377の計算方法に従って算出した。各電極を使用したキャパシタの評価結果を表12および13に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 <ニッケル水素電池正極の作製>
 水酸化ニッケル粉末(B)95重量部にアセチレンブラック(C)(デンカブラック)5重量部、配合実施例1B~13Bまたは比較配合実施例1b~3bの水分散体を固形分換算で4.0重量部と蒸留水を混合し、固形分濃度55重量%の合材ペースト(水性ペースト)を調製した。
 この合材ペーストを厚さ30μmのニッケルメッキ鋼板に塗布し、乾燥後、加圧成型してシート状の正極板を作製した。
 また、水酸化ニッケル粉末(B)95重量部にアセチレンブラック(C)(デンカブラック)5重量部、1.2重量%に調製したカルボキシメチルセルロース(CMC1160)を固形分換算で1.0重量部と、実施例1、8~12または比較例4~6で調製したエマルジョンを固形分換算で2.0重量部と、蒸留水を混合し、固形分濃度55重量%の合材ペースト(水性ペースト)を調製した。
 この合材ペーストを厚さ30μmのニッケルメッキ鋼板に塗布し、乾燥後、加圧成型してシート状の正極板を作製した。
 <ニッケル水素電池負極の作製>
 ミッシュメタルを含むNi、Co、Mn、Alからなる平均粒子径30μmの水素吸蔵合金(B)95重量部に、アセチレンブラック(C)(デンカブラック)5重量部、配合実施例1A~13Aまたは配合比較例1a~3aの水分散体を固形分換算で2.5重量部と蒸留水を混合し、固形分濃度50重量%の合材ペーストを得た。
 この合材ペーストを厚さ30μmのパンチングメタルに塗布し、乾燥後、加圧成型してシート状の負極板を作製した。
 <ニッケル水素電池負極の作製>
 ミッシュメタルを含むNi、Co、Mn、Alからなる平均粒子径30μmの水素吸蔵合金(B)95重量部に、アセチレンブラック(C)(デンカブラック)5重量部、1.2重量%に調製したカルボキシメチルセルロース(CMC1160)を固形分換算で0.5重量部と、実施例1,8~12または比較例4~6で調製したエマルジョンを固形分換算で1.5重量部と、蒸留水を混合し、固形分濃度50重量%の合材ペーストを得た。
 この合材ペーストを厚さ30μmのパンチングメタルに塗布し、乾燥後、加圧成型してシート状の負極板を作製した。
 <ニッケル水素電池の密着性評価>
 前記で作製した電極板の剥離強度をリチウム二次電池で行った評価と同様の方法で測定し、密着性を評価した。
 結果を表14および15に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 <ニッケル水素電池の作製>
 前記の負極板または正極板を直径14mmの円盤状に打ち抜いて、重量20mg/14mmφのコイン状の電極を得た。
 コイン状の電極および厚さ25μm、直径16mmの微多孔性ポリプロピレンフィルムからできたセパレータを用いて、ステンレス製の2032サイズ電池缶の負極缶内に、負極、セパレータ、正極の順序で積層し、水酸化カリウム水溶液(20℃における比重が1.3)を注入後、その積層体の上にアルミニウム製の板(厚さ1.2mm、直径16mm)、およびバネを重ねた。
 最後に、ポリプロピレン製のガスケットを介して電池の正極缶をかぶせて、缶蓋をかしめることにより、電池内の気密性を保持し、直径20mm、高さ3.2mmのコイン型電池を作製した。
 <電池サイクル特性の評価>
 前記で作製したコイン電池を使用し、この電池を0.2ItAで、-Δ10mVとなるまで充電し、その後、0.2ItAで、電圧が1Vになるまで放電した。このサイクルを500回繰り返し、初期の電池容量に対する500サイクル後の容量(%)を評価した。
 評価結果を表16および17に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 以上のように、本発明の電気化学セル用ペーストを用いて得られた電池は、電気化学的に安定で、密着力がありかつ電池の膨れが少なく、特に充放電によるサイクル寿命の高い電池を得ることができる。
 <電気化学セル用水分散体(A)の調製>
 [実施例13]
 オートクレーブに、オレフィン系共重合体(a)として、エチレン-アクリル酸共重合体(重量平均分子量8万(ポリスチレン換算)、アクリル酸から導かれる構成単位の含有率:20重量%)(a-3)250部、25重量%のアンモニア水33部、脱イオン水1008部を仕込み、180℃で2時間攪拌後、冷却し、体積平均粒子径45nm、不揮発分25%のオレフィン系共重合体(a)(融点:60℃)を含むエマルションを得た。
 ジムロート、窒素導入管、攪拌羽を取り付けた4つ口フラスコに、得られたエマルション100重量部を窒素置換して仕込んだ。そこに、イオン交換水で20重量%に希釈したノンサールOK-2(日油(株)社製)36重量部を攪拌しながら静かに加えた。続いて、イオン交換水で5重量%に希釈したオルフィンE1010(日信化学製)36重量部を同様に加え、最終固形分が18.3重量%になるように脱イオン水を加え、30分間攪拌を続け、乳白色のオレフィン系共重合体(a)を含む水分散体(A)20Bを得た。
 [実施例14]
 重量平均分子量10万、エチレンおよびブテンを合計で30重量%共重合したランダムポリプロピレン(a-1)100重量部と、重量平均分子量2万、マレイン化変性度4のマレイン化変性ポリプロピレン(a-4)10重量部を混合し、さらに、オレイン酸カリウム4部を混合し、二軸押出機にて200℃で溶融混錬後、水酸化カリウム水溶液を添加しながらさらに混錬し、不揮発分45%のオレフィン系共重合体(a)(融点:観測されない)を得た。
 実施例13のエチレン-アクリル酸共重合体(a-3)の代わりに、前記で得られたオレフィン系共重合体(a)を固形分で同量用いた以外は、実施例13と同様に調製して、固形分19重量%の乳白色のオレフィン系共重合体(a)を含む水分散体21Bを得た。
 [実施例15]
 オートクレーブに、エチレン-メタアクリル酸共重合体(重量平均分子量8万(ポリスチレン換算)、メタアクリル酸から導かれる構成単位の含有率:15重量%)(a-3)250部、水酸化ナトリウム9部、脱イオン水764部を仕込み、180℃で2時間攪拌後、冷却することで、体積平均粒子径20nm、固形分25%の乳白色のオレフィン系共重合体(a)(融点:85℃)を含む水分散体20Aを得た。
 [実施例16]
 オートクレーブに、エチレン-メタアクリル酸共重合体(重量平均分子量8万(ポリスチレン換算)、メタアクリル酸から導かれる構成単位の含有率:12%)(a-3)250部、水酸化ナトリウム7.5部、脱イオン水455部を仕込み、180℃で2時間攪拌後、冷却することで、体積平均粒子径300nm、固形分35.8%の乳白色のオレフィン系共重合体(a)(融点:85℃)を含む水分散体21Aを得た。
 [比較例7]
 重量平均分子量10万、マレイン化変性度0.7で、エチレンおよびブテンを合計で5重量%共重合したマレイン化変性結晶性ランダムポリプロピレン100重量部と、重量平均分子量2万、マレイン化変性度4のマレイン化変性ポリプロピレン20重量部を混合し、共重合体を得た(融点140℃)。該共重合体に、オレイン酸カリウム6重量部を混合し、二軸押出機にて200℃で溶融混錬後、水酸化カリウム水溶液を添加しながらさらに混錬した。吐出物を水に分散させ、体積平均粒子径300nm、不揮発分45%のエマルションを得た(融点140℃)。
 得られたエマルションを、実施例14のオレフィン系共重合体(a)と固形分で同量用いた以外は、実施例13と同様に調製して、固形分19.2重量%の乳白色のエマルジョン7bを得た。
 [比較例8]
 高分子量ポリプロピレン樹脂(日本ポリプロ社製、ノバテックPP、BC3H、プロピレン単独重合体)を窒素ガス通気下、常圧において、360℃×80分の熱減成処理を施して得られたプロピレン樹脂80部を冷却管付き三ツ口フラスコに入れ、窒素置換し、180℃まで加熱昇温し溶融させた後、無水マレイン酸10部を加え、均一に混合した。そこに、ジクミルパーオキサイド0.5部を溶解させたキシレン10部を滴下し、180℃で3時間撹拌を続けた。その後、減圧下でキシレンを留去し、樹脂をアセトンで数回洗浄することにより未反応の無水マレイン酸を除去した後、減圧乾燥機中で減圧乾燥して、酸変性ポリオレフィン樹脂を得た(重量平均分子量:3万、マレイン化変性度:9)。
 攪拌機とヒーターを備えた密閉できる耐圧1リットル容ガラス容器に、得られた酸変性ポリオレフィン樹脂を100g、塩基性化合物としてトリエチルアミンを12g、有機溶剤としてイソプロパノールを100g、蒸留水を288g仕込み、密閉した後、200rpmで攪拌翼しながら、160℃(内温)まで加熱した。攪拌下、160℃で1時間保持した後、ヒーターの電源を切り室温まで攪拌下で自然冷却した。冷却後、300メッシュのステンレス製フィルター(線径0.035mm、平織)で加圧濾過(空気圧0.2MPa)したところ、やや黄色で半透明の均一なエマルション(固形分濃度20質量%)を得た(融点140℃)。
 得られたエマルションを、実施例13のオレフィン系共重合体(a)と固形分で同量用いた以外は、実施例13と同様に調製して、固形分17重量%の乳白色のエマルジョン8bを得た。
 <粘度調整剤(y1)の調製>
 ジムロート、窒素導入管、攪拌羽を取り付けた4つ口フラスコに、イオン交換水を1,000重量部仕込んで窒素置換した。そこに粘度調整剤として、ポリビニルアルコール(クラレ社製KL-318、重量平均分子量:70,000)の粉末150重量部を攪拌しながら徐々に添加した。仕込み終了後、フラスコ内温を80℃まで昇温し、80℃になったところで1時間攪拌を続けた後、室温まで放冷した。
 得られた粘度調整剤水溶液(y1)は、固形分14.4重量%の透明な液体であった。
 <水性ペーストおよび電極板の作製>
 (水性ペースト(1)の作製)
 オリビン型LiFePO4粉末(B)(粒度分布D50:0.54μm、比表面積(BET):15m2/g)100gと、粉状アセチレンブラック(C)(粒度分布D50:0.04μm、BET比表面積:68m2/g)9gと、オレフィン系共重合体(a)を含む水分散体(A)21B(固形分濃度:18.3wt%)76gと、粘度調整剤(y1)水溶液(固形分濃度:14.4wt%)37gと、イオン交換水38gとをフィルミクス40-40型(プライミクス社製)を用いて室温下で攪拌混合して水性ペースト(1)(固形分濃度:51wt%)を得た。
 (正極板(1)の作製)
 水性ペースト(1)を、圧延Al箔(厚さ:20μm)上にアプリケータを用いて両面に塗布し、空気中100℃で30分間乾燥し、プレス加工して正極板(1)(塗工面サイズ:150mm(縦)×70mm(横)×285μm(厚))を得た。
 正極板に塗布された活物質量は5mg/cm2、活物質の充填密度は1.9g/cm3であった。本電極板の電気容量は0.6mAh/cm2であった。
 (水性ペースト(2)の作製)
 球状化した天然黒鉛粉末(B)(粒度分布D50:19.9μm、比表面積:4.0m2/g)100gと、人造黒鉛粉末(C)(粒度分布D50:21.0μm、比表面積:4.2m2/g)11gと、オレフィン系共重合体(a)を含む水分散体20A(固形分濃度:35.8wt%)5gと、増粘剤(1)(CMC(平均分子量:2200、エーテル化度:0.97)、ダイセルファインケム株式会社製)を含む水溶液(固形分濃度:1.5wt%)76gと、イオン交換水41gとを2軸遊星プラネタリミキサを用いて室温下で攪拌混練して水性ペースト(2)(固形分濃度:49wt%)を得た。
 (負極板(2)の作製)
 水性ペースト(2)を、圧延Cu箔(厚さ:10μm)上にアプリケータを用いて両面に塗布し、空気中100℃で30分間乾燥し、プレス加工して負極板(2)(塗工面サイズ:154mm(縦)×74mm(横)×195μm(厚))を得た。
 負極板に塗布された活物質量は3mg/cm2、活物質の充填密度は1.6g/cm3であった。本電極板の電気容量は0.9mAh/cm2であった。
 (水性ペースト(3)の作製)
 オリビン型LiFePO4粉末(B)(粒度分布D50:8.2μm、比表面積:6m2/g)100gと、人造黒鉛粉末(C)(粒度分布D50:78.8μm、比表面積:2.2m2/g)9gと、オレフィン系共重合体(a)を含む水分散体20B(固形分濃度:18.3wt%)76gと、粘度調整剤(y1)水溶液(固形分濃度:14.4wt%)37gと、イオン交換水38gとをフィルミクス40-40型を用いて室温下で攪拌混合して水性ペースト(3)(固形分濃度:51wt%)を得た。
 (正極板(3)の作製)
 水性ペースト(3)を、圧延Al箔(厚さ:20μm)上にアプリケータを用いて両面に塗布し、空気中100℃で30分間乾燥し、プレス加工して正極板(3)(塗工面サイズ:150mm(縦)×70mm(横)×805μm(厚))を得た。
 正極板に塗布された活物質量は88mg/cm2、活物質の充填密度は1.1g/cm3であった。本電極板の電気容量は11.9mAh/cm2であった。
 (水性ペースト(4)の作製)
 球状化した天然黒鉛粉末(B)(粒度分布D50:15.2μm、比表面積:2.1m2/g)100gと、人造黒鉛粉末(C)(粒度分布D50:3.5μm、比表面積:20.0m2/g)11gと、オレフィン系共重合体(a)を含む水分散体21A(固形分濃度:35.8wt%)5gと、増粘剤(1)76gと、イオン交換水41gとを2軸遊星プラネタリミキサを用いて室温下で攪拌混練して水性ペースト(4)(固形分濃度:49wt%)を得た。
 (負極板(4)の作製)
 水性ペースト(4)を、電解Cu箔(厚さ:10μm)上にアプリケータを用いて両面に塗布し、空気中100℃で30分間乾燥し、プレス加工して負極板(4)(塗工面サイズ:154mm(縦)×74mm(横)×425μm(厚))を得た。
 負極板に塗布された活物質量は46mg/cm2、活物質の充填密度は1.1g/cm3であった。本電極板の電気容量は13.8mAh/cm2であった。
 (非水性ペースト(5)の作製)
 オリビン型LiFePO4粉末(B)(粒度分布D50:8.2μm、比表面積:6m2/g)100gと、人造黒鉛粉末(C)(粒度分布D50:78.8μm、比表面積:2.2m2/g)12gと、ポリフッ化ビニリデン(PVDF、重量平均分子量:280000、クレハ社製)のn-メチルピロリドン(NMP、キシダ化学社製特級)溶液(固形分濃度:12.3wt%)113gとを2軸遊星プラネタリミキサを用いて室温下で攪拌混練して非水性ペースト(5)(固形分濃度:56wt%)を得た。
 (正極板(5)の作製)
 非水性ペースト(5)を、圧延Al箔(厚さ:20μm)上にアプリケータを用いて両面に塗布し、空気中150℃で30分間乾燥し、プレス加工して正極板E(塗工面サイズ:150mm(縦)×70mm(横)×805μm(厚))を得た。
 正極板に塗布された活物質量は70mg/cm2、活物質の充填密度は0.9g/cm3であった。本電極板の電気容量は9.4mAh/cm2であった。
 (非水性ペースト(6)の作製)
 球状化した天然黒鉛粉末(B)(粒度分布D50:15.2μm、比表面積:2.1m2/g)100gと、人造黒鉛粉末(C)(粒度分布D50:3.5μm、比表面積:20.0m2/g)11gと、PVDF(重量平均分子量:280000)のNMP溶液(固形分濃度:12.9wt%)54gと、NMP60gとを2軸遊星プラネタリミキサを用いて室温下で攪拌混練して非水性ペースト(6)(固形分濃度:52wt%)を得た。
 (負極板(6)の作製)
 非水性ペースト(6)を、電解Cu箔(厚さ:10μm)上にアプリケータを用いて両面に塗布し、空気中150℃で30分間乾燥し、プレス加工して負極板(6)(塗工面サイズ:154mm(縦)×74mm(横)×425μm(厚))を得た。
 負極板に塗布された活物質量は38mg/cm2、活物質の充填密度は0.9g/cm3であった。本電極板の電気容量は11.4mAh/cm2であった。
 (水性ペースト(7)の作製)
 オリビン型LiFePO4粉末(B)(粒度分布D50:0.54μm、比表面積(BET):15m2/g)100gと、粉状アセチレンブラック(C)(粒度分布D50:0.04μm、BET比表面積:68m2/g)9gと、エマルジョン7b(固形分濃度:18.3wt%)76gと、粘度調整剤(y1)水溶液(固形分濃度:14.4wt%)37gと、イオン交換水38gとをフィルミクス40-40型(プライミクス社製)を用いて室温下で攪拌混合して水性ペースト(7)(固形分濃度:51wt%)を得た。
 (正極板(7)の作製)
 水性ペースト(7)を、圧延Al箔(厚さ:20μm)上にアプリケータを用いて両面に塗布し、空気中100℃で30分間乾燥し、プレス加工して正極板を得ようとしたが、合材層が割れて、極板から合材が剥落したため、極板を作製できなかった。
 (水性ペースト(8)の作製)
 オリビン型LiFePO4粉末(B)(粒度分布D50:0.54μm、比表面積(BET):15m2/g)100gと、粉状アセチレンブラック(C)(粒度分布D50:0.04μm、BET比表面積:68m2/g)9gと、エマルジョン8b(固形分濃度:18.3wt%)76gと、粘度調整剤(y1)水溶液(固形分濃度:14.4wt%)37gと、イオン交換水38gとをフィルミクス40-40型(プライミクス社製)を用いて室温下で攪拌混合して水性ペースト(8)(固形分濃度:51wt%)を得た。
 (正極板(8)の作製)
 水性ペースト(8)を、圧延Al箔(厚さ:20μm)上にアプリケータを用いて両面に塗布し、空気中100℃で30分間乾燥し、プレス加工して正極板を得ようとしたが、合材層が割れて、極板から合材が剥落したため、極板を作製できなかった。
 <電極板の曲げ試験>
 図2および3に示すとおり、正極板(1)、正極板(3)、負極板(2)および負極板(4)のそれぞれの片面を直径50mmのSUS管に巻き付け、次に裏面にして同様に巻き付けた後、電極板表面の電極材の剥がれ及びひび割れを目視により確認した。その結果、正極板(1)、負極板(2)および負極板(4)については、剥がれ及びひび割れは見られなかった。また、正極板(3)については、微細なひび割れが見られたが、電極板として問題ない程度のひび割れであった。
 一方、正極板(5)および負極板(6)について同様の試験を行った。その結果、正極板(5)は、表面に大きなひび割れ(クラック)が発生した。また、負極板(6)は、圧延Cu箔から電極材の脱落が部分的に発生した。
 なお、本実験は、電極材を金属箔上へ塗布する工程を連続塗工機で行うことを想定し、ロールトゥロールでの支持棒を経由できるか否かを検証するものである。
 <電池Iの作製>
 正極板(1)及び負極板(2)を130℃で24hr減圧乾燥し、Ar雰囲気下のグローブボックス中に入れた。以下の電池組み立ては全てそのグローブボックス内、室温下で行った。
 負極板(2)の上に、ポリエチレン(PE)微多孔膜(1)(156mm(縦)×76mm(横)×25μm(厚)、空隙率:55%)を載置し、その上に正極板(1)を重ね、またPE微多孔膜(1)を重ねる作業を繰り返して、負極板(2)6枚と正極板(1)5枚とそれぞれの極板間にPE微多孔膜(1)を10枚挟んだ積層体を作製した。負極板(2)6枚にNiリードを超音波溶接し、正極板(1)5枚からAlリードを超音波溶接し、Alラミネート袋へ挿入し、3辺を熱融着した。エチレンカーボネート(EC)とジエチルカーボネート(DEC)を、体積比1:2で混合した溶媒に1mol/lになるようにLiPF6を溶解させた電解液60mlをセルへ注液し、それぞれのリードを取り出しつつ、Alラミネート袋の最後の1辺を熱融着して電池Iを得た。
 <電池IIの作製>
 正極板(3)及び負極板(4)を130℃で24hr減圧乾燥し、Ar雰囲気下のグローブボックス中に入れた。以下の電池組み立ては全てそのグローブボックス内、室温下で行った。
 負極板(4)の上に、ポリプロピレン(PP)微多孔膜(2)(156mm(縦)×76mm(横)×25μm(厚)、空隙率:50%)を載置し、その上に正極板(3)を重ね、またPP微多孔膜(2)を重ねる作業を繰り返して、負極板(4)6枚と正極板(3)5枚とそれぞれの極板間にPP微多孔膜(2)を10枚挟んだ積層体を作製した。負極板(4)6枚にNiリードを超音波溶接し、正極板(3)5枚からAlリードを超音波溶接し、Alラミネート袋へ挿入し、3辺を熱融着した。ECとジメチルカーボネート(DMC)とDECを、体積比1:1:1体積比で混合した溶媒に1mol/lになるようにLiPF6を溶解させた電解液100mlをセルへ注液し、それぞれのリードを取り出しつつ、Alラミネート袋の最後の1辺を熱融着して電池IIを得た。
 <電池IIIの作製>
 正極板(5)及び負極板(6)を130℃で24hr減圧乾燥し、Ar雰囲気下のグローブボックス中に入れた。以下の電池組み立ては全てそのグローブボックス内、室温下で行った。
 負極板(6)の上に、ポリプロピレン(PP)微多孔膜(2)を載置し、その上に正極板(5)を重ね、またPP微多孔膜(2)を重ねる作業を繰り返して、負極板(6)6枚と正極板(5)5枚とそれぞれの極板間にPP微多孔膜(2)を10枚挟んだ積層体を作製した。負極板(6)6枚にNiリードを超音波溶接し、正極板(5)5枚からAlリードを超音波溶接し、Alラミネート袋へ挿入し、3辺を熱融着した。ECとDMCとDECを、体積比1:1:1体積比で混合した溶媒に1mol/lになるようにLiPF6を溶解させた電解液100mlをセルへ注液し、それぞれのリードを取り出しつつ、Alラミネート袋の最後の1辺を熱融着して電池IIIを得た。
 <電池の初期充放電および500サイクル試験>
 (電池I)
 電池Iを0.1C(電池容量を10時間で放電できる電流値)の定電流値で電池電圧が3.8Vになるまで充電し、その後3.8Vの定電圧で電流値が0.01C(電池容量を100時間で放電できる電流値)になるまで充電した。充電容量は310mAhであった(初期充電容量)。
 次に、電池Iを0.1Cの定電流値で電池電圧が2.2Vになるまで放電した。放電容量は280mAhであった(初期放電容量)。
 上記充放電を500回繰り返した後の放電容量は250mAhであった。なお、本測定は全て25℃の恒温槽中で行った。
 (電池II)
 電池Iと同様にして、電池IIを充電および放電した。その結果、初期充電容量は6200mAh、初期放電容量は5600mAhであった。
 また、500回繰り返した後の放電容量は4500mAhであった。
 (電池III)
 電池Iと同様にして、電池IIIを充電および放電した。その結果、初期充電容量は4900mAh、初期放電容量は3700mAhであった。
 また、500回繰り返した後の放電容量は2300mAhであった。
 <電池の初期及び500サイクル後の内部抵抗測定>
 (電池I)
 電池Iに対して、前記電池の初期充放電を行った後、1kHzで電池電圧±5mV分極した時のインピーダンス値を測定した。その結果、15mΩであった(初期の内部抵抗)。
 また、前記500サイクル後の電池Iについて、同様にインピーダンス値を測定した。その結果、20mΩであった(500サイクル後の内部抵抗)。なお、本測定は全て25℃の恒温槽中で行った。
 (電池II)
 電池Iと同様にして、電池の初期及び500サイクル後の内部抵抗を測定した。その結果、初期の内部抵抗が150mΩ、500サイクル後の内部抵抗が、160mΩであった。
 (電池III)
 電池Iと同様にして、電池の初期及び500サイクル後の内部抵抗を測定した。その結果、初期の内部抵抗が160mΩ、500サイクル後の内部抵抗が、350mΩであった。
 <電池の放電レート性能評価>
 (電池I)
 電池Iを0.1Cの定電流値で電池電圧が3.8Vになるまで充電し、その後3.8Vの定電圧で電流値が0.01Cになるまで充電した。次に、電池Iを1.0C(電池容量を1時間で放電できる電流値)の定電流値で電池電圧が2.2Vになるまで放電した。その時の放電容量は、274mAhであった(1.0C後の放電容量)。なお、本測定は全て25℃の恒温槽中で行った。
 電池の放電レート特性を、1.0C後の放電容量の、電池Iの初期放電容量280mAhに対する比(1C/0.1C)で評価した。その結果、98%であった。
 (電池II)
 電池Iと同様にして、電池の放電レート特性を評価した結果、1.0C後の放電容量は、4760mAh、比(1C/0.1C)は、85%であった。
 (電池III)
 電池Iと同様にして、電池の放電レート特性を評価した結果、1.0C後の放電容量は、2890mAh、比(1C/0.1C)は、78%であった。
 以上のように、本発明にかかる水性ペーストは、電極に対して優れた決着強度を有するため、水性ペーストを金属箔上へ塗布する連続塗工にも十分耐え得る。また、該電極を用いた電池は、充放電によるサイクル寿命が非常に高い。
 1 電極板
 2 直径50mmのSUS管
 3 電極板のスライド方向
 3a 正極板
 3b 負極板
 4 セパレータ4
 5 外装材
 6 非水電解質

Claims (28)

  1.  オレフィン系共重合体(a)を含む電気化学セル用水分散体(A)、活物質(B)および導電助剤(C)を含有し、
     前記オレフィン系共重合体(a)は、ゲルパーミエイションクロマトグラフィー(GPC)により求められる重量平均分子量が5万以上(ポリスチレン換算)であり、かつ、
     プロピレンから導かれる構成単位の含有率が50重量%以上85重量%未満であるランダムプロピレン系共重合体(a-1)、該ランダムプロピレン系共重合体(a-1)を酸変性した酸変性ランダムプロピレン系共重合体(a-2)および(メタ)アクリル酸から導かれる構成単位の含有率が5重量%以上25重量%以下であるエチレン-(メタ)アクリル酸共重合体(a-3)から選ばれる少なくとも1種である
    ことを特徴とする電気化学セル用水性ペースト。
  2.  前記活物質(B)100重量部に対して、
     前記水分散体(A)の固形分は、0.5~30重量部であり、
     前記導電助剤(C)は、0.1~20重量部である
    ことを特徴とする請求項1に記載の電気化学セル用水性ペースト。
  3.  前記ランダムプロピレン系共重合体(a-1)が、ランダムプロピレン-ブテン共重合体、ランダムエチレン-プロピレン-ブテン共重合体およびランダムエチレン-プロピレン共重合体から選ばれる少なくとも1種であることを特徴とする請求項1または2に記載の電気化学セル用ペースト。
  4.  前記水分散体は、さらにゲルパーミエイションクロマトグラフィー(GPC)により求められる重量平均分子量が5万未満(ポリスチレン換算)の酸変性オレフィン系(共)重合体(a-4)を含むことを特徴とする請求項1~3のいずれか一項に記載の電気化学セル用水性ペースト。
  5.  前記酸変性オレフィン系(共)重合体(a-4)が、前記ランダムプロピレン系共重合体(a-1)および前記酸変性ランダムプロピレン系共重合体(a-2)の合計100重量部に対して、5~50重量部含まれることを特徴とする請求項4に記載の電気化学セル用水性ペースト。
  6.  前記酸変性が、マレイン酸変性であることを特徴とする請求項1~5のいずれか一項に記載の電気化学セル用水性ペースト。
  7.  前記水分散体(A)が、界面活性剤(x)および粘度調整剤(y)から選ばれる少なくとも1種を含むことを特徴とする請求項1~6のいずれか一項に記載の電気化学セル用水性ペースト。
  8.  前記オレフィン系共重合体(a)の固形分100重量部に対して、
     前記界面活性剤(x)の固形分は、0~100重量部であり、
     前記粘度調整剤(y)の固形分は、10~100重量部である
    ことを特徴とする請求項7に記載の電気化学セル用水性ペースト。
  9.  前記粘度調整剤(y)が、カルボキシメチルセルロース、ポリエチレンオキサイド、ポリエチレンオキサイドの変性体、ポリビニルアルコールおよびポリビニルアルコールの変性体から選ばれる少なくとも1種であることを特徴とする請求項7または8に記載の電気化学セル用水性ペースト。
  10.  前記活物質(B)が、オリビン型LiFePO4を含むことを特徴とする請求項1~9のいずれか一項に記載の電気化学セル用水性ペースト。
  11.  前記オリビン型LiFePO4は、レーザー回折散乱法で測定したメディアン径(D50)が0.5~9μmであることを特徴とする請求項10に記載の電気化学セル用水性ペースト。
  12.  前記オリビン型LiFePO4の比表面積が、5~30m2/gであることを特徴とする請求項10または11に記載の電気化学セル用水性ペースト。
  13.  前記活物質(B)が、球状化した天然黒鉛を含むことを特徴とする請求項1~9のいずれか一項に記載の電気化学セル用水性ペースト。
  14.  前記球状化した天然黒鉛は、レーザー回折散乱法で測定したメディアン径(D50)が15~20μmであることを特徴とする請求項13に記載の電気化学セル用水性ペースト。
  15.  前記球状化した天然黒鉛の比表面積が、2~5m2/gであることを特徴とする請求項13または14に記載の電気化学セル用水性ペースト。
  16.  前記導電助剤(C)が、アセチレンブラックおよび人造黒鉛から選ばれる少なくとも1種であることを特徴とする請求項1~15のいずれか一項に記載の電気化学セル用水性ペースト。
  17.  前記導電助剤(C)の比表面積が、2~80m2/gであることを特徴とする請求項16に記載の電気化学セル用水性ペースト。
  18.  前記アセチレンブラックは、レーザー回折散乱法で測定したメディアン径(D50)が0.02~5μmであることを特徴とする請求項16に記載の電気化学セル用水性ペースト。
  19.  前記人造黒鉛は、レーザー回折散乱法で測定したメディアン径(D50)が2~80μmであることを特徴とする請求項16に記載の電気化学セル用水性ペースト。
  20.  請求項1~19のいずれか一項に記載の電気化学セル用水性ペーストを塗布して得られた極板の電気容量が、0.5~18mAh/cm2であることを特徴とする電気化学セル用極板。
  21.  請求項10に記載の水性ペーストを塗布して得られた極板において、塗布中に含まれる活物質量が4~90mg/cm2であることを特徴とする電気化学セル用正極板。
  22.  塗布中に含まれる活物質の充填密度が、1.0~2.0g/cm3であることを特徴とする請求項21に記載の電気化学セル用正極板。
  23.  請求項13に記載の水性ペーストを塗布して得られた極板において、塗布中に含まれる活物質量が2~50mg/cm2であることを特徴とする電気化学セル用負極板。
  24.  塗布中に含まれる活物質の充填密度が、1.0~1.7g/cm3であることを特徴とする請求項23に記載の電気化学セル用負極板。
  25.  請求項21または22に記載の正極板と、請求項23または24に記載の負極板を使用した非水電解質2次電池。
  26.  請求項25に記載の非水電解質2次電池を用いた家庭用蓄電池。
  27.  ゲルパーミエイションクロマトグラフィー(GPC)により求められる重量平均分子量が5万以上(ポリスチレン換算)であり、かつ、
     プロピレンから導かれる構成単位の含有率が50重量%以上85重量%未満であるランダムプロピレン系共重合体(a-1)、該ランダムプロピレン系共重合体(a-1)を酸変性した酸変性ランダムプロピレン系共重合体(a-2)および(メタ)アクリル酸から導かれる構成単位の含有率が5重量%以上25重量%未満であるエチレン-(メタ)アクリル酸共重合体(a-3)から選ばれる少なくとも1種であるオレフィン系共重合体(a)を含むことを特徴とする電気化学セル用水分散体(A)。
  28.  界面活性剤(x)および粘度調整剤(y)から選ばれる少なくとも1種を含むことを特徴とする請求項27に記載の電気化学セル用水分散体(A)。
PCT/JP2010/070586 2009-11-18 2010-11-18 電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池 WO2011062232A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201080052000.6A CN102668198B (zh) 2009-11-18 2010-11-18 电化学电池用水性糊剂、涂布该水性糊剂而形成的电化学电池用极板、及包括该极板的电池
KR1020157002216A KR20150029722A (ko) 2009-11-18 2010-11-18 전기 화학 셀용 수성 페이스트, 이 수성 페이스트를 도포하여 이루어지는 전기 화학 셀용 극판, 및 이 극판을 포함하는 전지
JP2011541952A JP5480911B2 (ja) 2009-11-18 2010-11-18 電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池
KR1020167013737A KR20160065214A (ko) 2009-11-18 2010-11-18 전기 화학 셀용 수성 페이스트, 이 수성 페이스트를 도포하여 이루어지는 전기 화학 셀용 극판, 및 이 극판을 포함하는 전지
KR1020147013582A KR20150035475A (ko) 2009-11-18 2010-11-18 전기 화학 셀용 수성 페이스트, 이 수성 페이스트를 도포하여 이루어지는 전기 화학 셀용 극판, 및 이 극판을 포함하는 전지
US13/510,623 US20120231337A1 (en) 2009-11-18 2010-11-18 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by applying the aqueous paste, and battery comprising the electrode plate
US15/241,732 US20160359169A1 (en) 2009-11-18 2016-08-19 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by applying the aqueous paste, and battery comprising the electrode plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009263179 2009-11-18
JP2009-263179 2009-11-18
JP2010-079604 2010-03-30
JP2010079604 2010-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/510,623 A-371-Of-International US20120231337A1 (en) 2009-11-18 2010-11-18 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by applying the aqueous paste, and battery comprising the electrode plate
US15/241,732 Division US20160359169A1 (en) 2009-11-18 2016-08-19 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by applying the aqueous paste, and battery comprising the electrode plate

Publications (1)

Publication Number Publication Date
WO2011062232A1 true WO2011062232A1 (ja) 2011-05-26

Family

ID=44059705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070586 WO2011062232A1 (ja) 2009-11-18 2010-11-18 電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池

Country Status (5)

Country Link
US (2) US20120231337A1 (ja)
JP (1) JP5480911B2 (ja)
KR (4) KR20160065214A (ja)
CN (1) CN102668198B (ja)
WO (1) WO2011062232A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113923A (ja) * 2009-11-30 2011-06-09 Unitika Ltd 二次電池電極用バインダー用樹脂組成物、二次電池電極用バインダー、二次電池電極用バインダーを用いてなる電極及び二次電池
JP2012059534A (ja) * 2010-09-09 2012-03-22 Unitika Ltd 二次電池電極のバインダー用樹脂組成物、およびこれを用いてなるバインダー液、二次電池電極、二次電池
JP2012221685A (ja) * 2011-04-07 2012-11-12 Mitsui Chemicals Inc 電気化学セル用水性ペースト、電気化学セル用水分散体および電気化学セル用極板
WO2013024585A1 (ja) * 2011-08-18 2013-02-21 三井化学株式会社 多孔質正極材料の製造方法およびリチウムイオン電池
WO2013133040A1 (ja) * 2012-03-08 2013-09-12 株式会社 日立製作所 リチウムイオン二次電池用正極、リチウムイオン二次電池及び電池モジュール
JP2013222584A (ja) * 2012-04-16 2013-10-28 Sharp Corp 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池
JP2013222664A (ja) * 2012-04-18 2013-10-28 Mitsui Chemicals Inc リチウムイオン電池正極、および該正極を含む電池
JP2014029835A (ja) * 2012-07-04 2014-02-13 Sanyo Chem Ind Ltd 二次電池電極用バインダー
CN103891016A (zh) * 2011-12-22 2014-06-25 株式会社Lg化学 正极活性材料和包含所述正极活性材料的锂二次电池
JP2015106499A (ja) * 2013-11-29 2015-06-08 三井化学株式会社 二次電池用正極、及びこれを含む非水系二次電池
JP2015519699A (ja) * 2012-05-08 2015-07-09 ハイドロ−ケベック リチウムイオン二次電池およびその生産方法
JP2015144124A (ja) * 2013-12-27 2015-08-06 日本合成化学工業株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極、及びリチウムイオン二次電池
JP2016505207A (ja) * 2013-06-05 2016-02-18 エルジー・ケム・リミテッド 新規な二次電池
WO2016038682A1 (ja) * 2014-09-09 2016-03-17 株式会社 東芝 非水電解質電池及び電池パック
JPWO2014185381A1 (ja) * 2013-05-14 2017-02-23 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
JPWO2015083358A1 (ja) * 2013-12-02 2017-03-16 三井化学株式会社 電気化学セル用バインダー、電気化学セル用ペースト、電気化学セル用電極の製造方法
WO2017056984A1 (ja) * 2015-09-28 2017-04-06 Necエナジーデバイス株式会社 リチウムイオン二次電池用負極の製造方法
JP2017073237A (ja) * 2015-10-05 2017-04-13 積水化学工業株式会社 電極、リチウムイオン二次電池、電極の製造方法及びリチウムイオン二次電池の製造方法
JP2017117576A (ja) * 2015-12-22 2017-06-29 株式会社クラレ 非水電解質電池用バインダー組成物、並びに非水電解質電池用バインダー水溶液、非水電解質電池用スラリー組成物、非水電解質電池負極及び非水電解質電池
JP2017520885A (ja) * 2014-05-19 2017-07-27 ダウ グローバル テクノロジーズ エルエルシー リチウムイオン電池電極用組成物
WO2018101294A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 導電性炭素材料分散液
WO2019132036A1 (ja) * 2017-12-28 2019-07-04 花王株式会社 リチウムイオン電池用正極合剤ペースト
JP2019121471A (ja) * 2017-12-28 2019-07-22 花王株式会社 リチウムイオン電池用正極合剤ペースト及びその製造方法
JP2019121470A (ja) * 2017-12-28 2019-07-22 花王株式会社 リチウムイオン電池用正極合剤ペースト及びその製造方法
JP2021153022A (ja) * 2020-03-24 2021-09-30 積水化学工業株式会社 非水電解質二次電池
WO2024014420A1 (ja) * 2022-07-12 2024-01-18 株式会社クラレ 蓄電デバイス用バインダー、蓄電デバイス用バインダー溶液、蓄電デバイス電極スラリー、蓄電デバイス電極及び蓄電デバイス
JP7477290B2 (ja) 2019-12-25 2024-05-01 デンカ株式会社 負極樹脂組成物、負極及び二次電池

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140052412A (ko) * 2012-10-24 2014-05-07 삼성에스디아이 주식회사 리튬 이차 전지 및 이의 제조방법
KR101582718B1 (ko) * 2013-02-04 2016-01-06 주식회사 엘지화학 구형 천연 흑연을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
WO2014186980A1 (en) * 2013-05-24 2014-11-27 Basf Corporation Ge1 polymer electrolyte and lithium-ion batteries employing the ge1 polymer electrolyte
CN104752683B (zh) * 2013-12-31 2017-05-31 比亚迪股份有限公司 正极材料用组合物和浆料及制备方法以及正极材料和正极及制作方法以及锂离子电池
US10243240B2 (en) * 2014-11-13 2019-03-26 Basf Corporation Electrolytes and metal hydride batteries
TWI678831B (zh) * 2014-12-31 2019-12-01 王琮淇 電池封包
TWI614937B (zh) * 2015-08-10 2018-02-11 Kuraray Co., Ltd. 非水電解質電池用黏合劑組成物、以及使用其之非水電解質電池用漿體組成物、非水電解質電池負極、及非水電解質電池
WO2017025792A1 (ru) * 2015-08-11 2017-02-16 Юнаско Лимитед Способ изготовления электрода для электрохимического конденсатора двойного слоя
KR101938236B1 (ko) * 2015-11-11 2019-01-14 주식회사 엘지화학 분산성 향상 및 저항 감소를 위한 이차전지용 음극 슬러리 및 이를 포함하는 음극
KR20170063233A (ko) * 2015-11-30 2017-06-08 삼성에스디아이 주식회사 리튬 이차 전지
FR3048821B1 (fr) * 2016-03-08 2021-12-17 Commissariat Energie Atomique Encre comprenant un melange d'acides polyacryliques pour la realisation d'une electrode de batterie lithium-ion, et electrode obtenue avec une telle encre
WO2017201180A1 (en) * 2016-05-20 2017-11-23 Avx Corporation Multi-cell ultracapacitor
US10263257B2 (en) * 2016-09-22 2019-04-16 Grst International Limited Electrode assemblies
KR20180054434A (ko) 2016-11-15 2018-05-24 주식회사 엘지화학 접착성이 우수한 저저항 음극 및 이를 포함하는 리튬이차전지
EP3324479B1 (de) * 2016-11-21 2019-05-08 VARTA Microbattery GmbH Asymmetrische, sekundäre elektrochemische zelle
KR102563083B1 (ko) * 2017-03-13 2023-08-02 니폰 제온 가부시키가이샤 비수계 이차 전지 기능층용 슬러리 조성물, 비수계 이차 전지용 기능층 및 비수계 이차 전지
US20190058214A1 (en) * 2017-08-17 2019-02-21 Medtronic, Inc. Polymer solution electrolytes
CN108539095B (zh) * 2018-04-03 2021-06-15 上海恩捷新材料科技有限公司 电池涂布膜浆料、电池隔膜、二次电池及其制备方法
CN114311911A (zh) * 2020-09-29 2022-04-12 宁德新能源科技有限公司 一种包装膜,包含该包装膜的电化学装置及电子装置
WO2022067507A1 (zh) * 2020-09-29 2022-04-07 宁德新能源科技有限公司 一种包含共聚物的粘结剂及包含该粘结剂的电化学装置
CN114361710A (zh) * 2020-09-29 2022-04-15 宁德新能源科技有限公司 一种隔离膜、包含该隔离膜的电化学装置及电子装置
CN114361738A (zh) * 2020-09-29 2022-04-15 宁德新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置
CN114300677A (zh) * 2021-12-09 2022-04-08 深圳市首通新能源科技有限公司 一种锂离子电池水系浆料的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251998A (ja) * 2000-12-22 2002-09-06 Lion Corp 二次電池用バインダー
JP2002324583A (ja) * 2001-04-24 2002-11-08 Toshiba Battery Co Ltd 扁平形非水電解質二次電池
JP2003045432A (ja) * 2001-08-02 2003-02-14 Matsushita Electric Ind Co Ltd 非水系二次電池用正極およびその製造方法
JP2004207034A (ja) * 2002-12-25 2004-07-22 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006179439A (ja) * 2004-12-24 2006-07-06 Sony Corp 負極および電池
JP2007179765A (ja) * 2005-12-27 2007-07-12 Sony Corp 負極および電池
EP1850409A1 (en) * 2006-04-25 2007-10-31 Aquire Energy Co. Ltd. Cathode material for manufacturing a rechargeable battery
WO2008056820A1 (fr) * 2006-11-10 2008-05-15 Tokai Carbon Co., Ltd. Matériau d'électrode négative pour une batterie secondaire lithium-ion et procédé de fabrication de celui-ci
JP2009110883A (ja) * 2007-10-31 2009-05-21 Mitsui Chemicals Inc 電気化学セル用バインダー
WO2009122686A1 (ja) * 2008-03-31 2009-10-08 戸田工業株式会社 リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251856A (ja) 1996-03-15 1997-09-22 Sumitomo Bakelite Co Ltd 非水電解液二次電池用電極フィルム
CN101548418B (zh) * 2007-03-05 2012-07-18 东洋油墨制造股份有限公司 电池用组合物
JP5315665B2 (ja) * 2007-10-31 2013-10-16 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5361753B2 (ja) 2009-01-21 2013-12-04 ユニチカ株式会社 二次電池電極用バインダー、電極および二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251998A (ja) * 2000-12-22 2002-09-06 Lion Corp 二次電池用バインダー
JP2002324583A (ja) * 2001-04-24 2002-11-08 Toshiba Battery Co Ltd 扁平形非水電解質二次電池
JP2003045432A (ja) * 2001-08-02 2003-02-14 Matsushita Electric Ind Co Ltd 非水系二次電池用正極およびその製造方法
JP2004207034A (ja) * 2002-12-25 2004-07-22 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006179439A (ja) * 2004-12-24 2006-07-06 Sony Corp 負極および電池
JP2007179765A (ja) * 2005-12-27 2007-07-12 Sony Corp 負極および電池
EP1850409A1 (en) * 2006-04-25 2007-10-31 Aquire Energy Co. Ltd. Cathode material for manufacturing a rechargeable battery
WO2008056820A1 (fr) * 2006-11-10 2008-05-15 Tokai Carbon Co., Ltd. Matériau d'électrode négative pour une batterie secondaire lithium-ion et procédé de fabrication de celui-ci
JP2009110883A (ja) * 2007-10-31 2009-05-21 Mitsui Chemicals Inc 電気化学セル用バインダー
WO2009122686A1 (ja) * 2008-03-31 2009-10-08 戸田工業株式会社 リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE SOCIETY OF POLYMER SCIENCE: "Kobunshi Zairyo Binran", THE SOCIETY OF POLYMER SCIENCE, 20 February 1973 (1973-02-20), JAPAN, pages 209 - 212 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113923A (ja) * 2009-11-30 2011-06-09 Unitika Ltd 二次電池電極用バインダー用樹脂組成物、二次電池電極用バインダー、二次電池電極用バインダーを用いてなる電極及び二次電池
JP2012059534A (ja) * 2010-09-09 2012-03-22 Unitika Ltd 二次電池電極のバインダー用樹脂組成物、およびこれを用いてなるバインダー液、二次電池電極、二次電池
JP2012221685A (ja) * 2011-04-07 2012-11-12 Mitsui Chemicals Inc 電気化学セル用水性ペースト、電気化学セル用水分散体および電気化学セル用極板
WO2013024585A1 (ja) * 2011-08-18 2013-02-21 三井化学株式会社 多孔質正極材料の製造方法およびリチウムイオン電池
JPWO2013024585A1 (ja) * 2011-08-18 2015-03-05 三井化学株式会社 多孔質正極材料の製造方法およびリチウムイオン電池
CN103891016A (zh) * 2011-12-22 2014-06-25 株式会社Lg化学 正极活性材料和包含所述正极活性材料的锂二次电池
US9812708B2 (en) 2011-12-22 2017-11-07 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising same
EP2760068A4 (en) * 2011-12-22 2015-05-06 Lg Chemical Ltd CATHODIC ACTIVE MATERIAL AND LITHIUM SUBSTITUTING BATTERY THEREWITH
JP2013187034A (ja) * 2012-03-08 2013-09-19 Hitachi Ltd リチウムイオン二次電池用正極、リチウムイオン二次電池及び電池モジュール
WO2013133040A1 (ja) * 2012-03-08 2013-09-12 株式会社 日立製作所 リチウムイオン二次電池用正極、リチウムイオン二次電池及び電池モジュール
JP2013222584A (ja) * 2012-04-16 2013-10-28 Sharp Corp 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池
JP2013222664A (ja) * 2012-04-18 2013-10-28 Mitsui Chemicals Inc リチウムイオン電池正極、および該正極を含む電池
JP2015519699A (ja) * 2012-05-08 2015-07-09 ハイドロ−ケベック リチウムイオン二次電池およびその生産方法
USRE49319E1 (en) 2012-05-08 2022-11-29 Hydro-Quebec Lithium-ion secondary battery and method of producing same
US10050270B2 (en) 2012-05-08 2018-08-14 Hydro-Quebec Lithium-ion secondary battery and method of producing same
JP2017123351A (ja) * 2012-05-08 2017-07-13 ハイドロ−ケベック リチウムイオン二次電池およびその生産方法
JP2014029835A (ja) * 2012-07-04 2014-02-13 Sanyo Chem Ind Ltd 二次電池電極用バインダー
JPWO2014185381A1 (ja) * 2013-05-14 2017-02-23 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
JP2016505207A (ja) * 2013-06-05 2016-02-18 エルジー・ケム・リミテッド 新規な二次電池
JP2015106499A (ja) * 2013-11-29 2015-06-08 三井化学株式会社 二次電池用正極、及びこれを含む非水系二次電池
JPWO2015083358A1 (ja) * 2013-12-02 2017-03-16 三井化学株式会社 電気化学セル用バインダー、電気化学セル用ペースト、電気化学セル用電極の製造方法
KR101831087B1 (ko) * 2013-12-02 2018-02-21 미쓰이 가가쿠 가부시키가이샤 전기화학 셀용 바인더, 전기화학 셀용 페이스트, 및 전기화학 셀용 전극의 제조 방법
JP2015144124A (ja) * 2013-12-27 2015-08-06 日本合成化学工業株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極、及びリチウムイオン二次電池
JP2017520885A (ja) * 2014-05-19 2017-07-27 ダウ グローバル テクノロジーズ エルエルシー リチウムイオン電池電極用組成物
WO2016038682A1 (ja) * 2014-09-09 2016-03-17 株式会社 東芝 非水電解質電池及び電池パック
JPWO2016038682A1 (ja) * 2014-09-09 2017-04-27 株式会社東芝 非水電解質電池及び電池パック
WO2017056984A1 (ja) * 2015-09-28 2017-04-06 Necエナジーデバイス株式会社 リチウムイオン二次電池用負極の製造方法
JPWO2017056984A1 (ja) * 2015-09-28 2018-07-12 Necエナジーデバイス株式会社 リチウムイオン二次電池用負極の製造方法
JP2017073237A (ja) * 2015-10-05 2017-04-13 積水化学工業株式会社 電極、リチウムイオン二次電池、電極の製造方法及びリチウムイオン二次電池の製造方法
JP2017117576A (ja) * 2015-12-22 2017-06-29 株式会社クラレ 非水電解質電池用バインダー組成物、並びに非水電解質電池用バインダー水溶液、非水電解質電池用スラリー組成物、非水電解質電池負極及び非水電解質電池
WO2018101294A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 導電性炭素材料分散液
WO2019132036A1 (ja) * 2017-12-28 2019-07-04 花王株式会社 リチウムイオン電池用正極合剤ペースト
JP2019121471A (ja) * 2017-12-28 2019-07-22 花王株式会社 リチウムイオン電池用正極合剤ペースト及びその製造方法
JP2019121470A (ja) * 2017-12-28 2019-07-22 花王株式会社 リチウムイオン電池用正極合剤ペースト及びその製造方法
JP7057665B2 (ja) 2017-12-28 2022-04-20 花王株式会社 リチウムイオン電池用正極合剤ペースト及びその製造方法
JP7057666B2 (ja) 2017-12-28 2022-04-20 花王株式会社 リチウムイオン電池用正極合剤ペースト及びその製造方法
JP7477290B2 (ja) 2019-12-25 2024-05-01 デンカ株式会社 負極樹脂組成物、負極及び二次電池
JP2021153022A (ja) * 2020-03-24 2021-09-30 積水化学工業株式会社 非水電解質二次電池
WO2024014420A1 (ja) * 2022-07-12 2024-01-18 株式会社クラレ 蓄電デバイス用バインダー、蓄電デバイス用バインダー溶液、蓄電デバイス電極スラリー、蓄電デバイス電極及び蓄電デバイス

Also Published As

Publication number Publication date
US20160359169A1 (en) 2016-12-08
JP5480911B2 (ja) 2014-04-23
US20120231337A1 (en) 2012-09-13
CN102668198A (zh) 2012-09-12
KR20150035475A (ko) 2015-04-06
JPWO2011062232A1 (ja) 2013-04-11
CN102668198B (zh) 2016-09-07
KR20160065214A (ko) 2016-06-08
KR20150029722A (ko) 2015-03-18
KR20120082033A (ko) 2012-07-20

Similar Documents

Publication Publication Date Title
JP5480911B2 (ja) 電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池
CN107112524B (zh) 制备用于形成锂二次电池正极的组合物的方法、及使用所述组合物制造的正极和锂二次电池
CN103947009B (zh) 非水系二次电池用隔膜及其制造方法以及非水系二次电池
CN109565050B (zh) 电极用导电性树脂组合物和电极组合物以及使用了其的电极和锂离子电池
US10199652B2 (en) Binder for electrochemical cells, paste for electrochemical cells, and method for producing electrode for electrochemical cells
CN102859777A (zh) 锂离子二次电池
JP5325413B2 (ja) 電気化学セル用バインダー
KR20120069580A (ko) 결합제 조성물, 슬러리, 축전 디바이스용 부극 및 축전 디바이스
CN109075291A (zh) 包括多孔粘合层的隔板和使用该隔板的锂二次电池
KR20190125329A (ko) 전기 화학 소자 전극용 도전재 분산액, 전기 화학 소자 전극용 슬러리 조성물 및 그 제조 방법, 전기 화학 소자용 전극, 및 전기 화학 소자
JP7471477B2 (ja) 蓄電デバイス用セパレータ及び蓄電デバイス
JP2011018590A (ja) 絶縁層形成用スラリー、リチウムイオン二次電池用セパレータおよびその製造方法、並びにリチウムイオン二次電池
EP3007252A1 (en) Slurry composition for lithium-ion secondary battery positive electrode, production method for lithium-ion secondary battery positive electrode, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery
KR102369524B1 (ko) 축전 디바이스용 세퍼레이터 및 축전 디바이스
JP5564007B2 (ja) 電気化学セル用水性ペースト、電気化学セル用水分散体および電気化学セル用極板
KR20210070284A (ko) 전극 합재층용 도전성 페이스트, 전극 합재층용 슬러리, 전기 화학 소자용 전극, 및 전기 화학 소자
EP3893310A1 (en) Electrolyte membrane for all-solid-state battery, and all-solid-state battery including same
JP6189730B2 (ja) 二次電池用正極、及びこれを含む非水系二次電池
JP2019008884A (ja) パターン塗工用スラリー
JP2018152236A (ja) 袋詰正極板、積層電極体及び蓄電素子
JP2015041570A (ja) リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用多孔膜、リチウムイオン二次電池、およびリチウムイオン二次電池用多孔膜の製造方法
EP4391196A1 (en) Lithium secondary battery comprising separator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052000.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541952

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13510623

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127014997

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10831625

Country of ref document: EP

Kind code of ref document: A1