WO2009122686A1 - リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池 - Google Patents

リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池 Download PDF

Info

Publication number
WO2009122686A1
WO2009122686A1 PCT/JP2009/001374 JP2009001374W WO2009122686A1 WO 2009122686 A1 WO2009122686 A1 WO 2009122686A1 JP 2009001374 W JP2009001374 W JP 2009001374W WO 2009122686 A1 WO2009122686 A1 WO 2009122686A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
olivine
lithium iron
raw material
lithium
Prior art date
Application number
PCT/JP2009/001374
Other languages
English (en)
French (fr)
Inventor
三島祐司
本田晋吾
河野芳輝
佐藤幸太
岡崎精二
片元勉
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to US12/935,456 priority Critical patent/US20110091772A1/en
Priority to EP09727078.9A priority patent/EP2277828B1/en
Priority to CN2009801111827A priority patent/CN101980956A/zh
Publication of WO2009122686A1 publication Critical patent/WO2009122686A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • olivine type LiFePO 4 has attracted attention as a battery having a high charge / discharge capacity.
  • this material has an essentially large electrical resistivity of 10 9 ⁇ ⁇ cm and poor fillability as an electrode, improvement in characteristics is required.
  • LiFePO 4 having an olivine structure is composed of a strong phosphoric acid tetrahedral skeleton, an oxygen octahedron centered on iron ions contributing to redox, and lithium ions that are current carriers. Because of this crystal structure, the crystal structure is stable even by repeating the charge / discharge reaction, and the characteristics are less likely to deteriorate compared to other lithium ion cathode materials even if charge / discharge is repeated. On the other hand, there are drawbacks in that the movement path of lithium ions is one-dimensional and has high electrical resistance due to a small number of free electrons. In order to solve these problems, productivity has not been considered, and primary particles of olivine-type LiFePO 4 have been reduced to 200 to 300 nm or less, and research has been conducted on materials substituted with different elements (non-patent literature). 1-5).
  • LiFePO 4 tends to have better charge / discharge characteristics under a high current load as the primary particle size of the powder is smaller.
  • an olivine-type LiFePO 4 composite oxide positive electrode with excellent characteristics It is necessary to control the aggregate state of each so that they form a network with moderately agglomerated secondary particles and more conductive assistants such as graphitized carbon.
  • the positive electrode combined with a large amount of carbon or the like is bulky and has a drawback that the substantial lithium ion density that can be filled per unit volume is lowered.
  • LiFePO 4 having an olivine structure with low filling and high impurity content and a small electric resistance is produced by an industrial method with a small environmental load. Is required.
  • Patent Document 1 a technology for reducing the electrical resistance by adding a different metal element of LiFePO 4 having an olivine type structure
  • Patent Document 2 a technology for improving the tap density when producing olivine type LiFePO 4 and forming a composite with carbon
  • Patent Document 3 a technique for obtaining an excellent positive electrode active material by adding a dissimilar metal element using an iron raw material having a valence of 3
  • Patent Document 4 a technique using an iron compound of a valence of 3 as a raw material
  • Patent Document 4 a technique using an iron compound of a valence of 3 as a raw material
  • Non-Patent Documents 1 to 5 do not industrially obtain olivine-type LiFePO 4 having a high filling property and a small amount of amorphous portions and consisting of small primary particles.
  • Patent Document 1 is a technique of adding other kinds of metals in order to propose structural stabilization and electrical resistance of the olivine-type LiFePO 4 composite oxide. There is no mention of state controls.
  • Patent Document 2 is a technique for forming an aggregate with carbon in the production of a composite oxide of olivine type LiFePO 4 , but it is difficult to say that the battery performance is high.
  • Patent Document 3 is difficult to synthesize fine primary particles because the solid phase reactivity of iron oxide used as a raw material is not sufficient.
  • Patent Document 4 is a technique that can perform a synthesis reaction while maintaining the particle shape using a general-purpose and inexpensive trivalent iron compound as a raw material. Ion diffusion efficiency is low.
  • the present invention establishes an efficient industrial method with a small environmental load of olivine-type LiFePO 4 having a high filling property and a small impurity crystal phase, and as a secondary battery containing a positive electrode material with a high filling property.
  • the technical problem is that a high capacity can be obtained even in the current load characteristics, and that it can be used repeatedly sufficiently.
  • the present invention uses iron oxide or hydrous oxide as an iron raw material, and contains at least one of the elements Na, Mg, Al, Si, Cr, Mn, and Ni in an amount of 0.1 to 2 mol% with respect to Fe.
  • an iron oxide or a hydrous oxide containing 5 to 10 mol% of element C with respect to Fe, Fe 2+ of 40 mol% or less with respect to the amount of Fe, and an average primary particle diameter of 5 to 300 nm is added to the lithium raw material and phosphorus
  • the first step of mixing with the raw material the second step of adjusting the resulting mixture so that the aggregated particle diameter is 0.3 to 5.0 ⁇ m, and then the oxygen concentration of the mixture after the second step is 0.1% or less
  • This is a method for producing lithium iron phosphate particles having an olivine structure which comprises a third step of firing at a temperature of 250 to 750 ° C. in an inert gas atmosphere or a reducing gas atmosphere (Invention 1).
  • the iron raw material used contains at least one of the elements Na, Mg, Al, Si, Cr, Mn, and Ni in an amount of 0.1 to 2 mol% with respect to Fe, and the seven Fe 3 O containing 1.5 to 4 mol% of the total amount of elements, 5 to 10 mol% of element C to Fe, and an average primary particle diameter of 5 to 300 nm. 4.
  • a method for producing an olivine-type lithium iron phosphate particle powder according to the present invention 1 comprising at least one of ⁇ -FeOOH, ⁇ -FeOOH, and ⁇ -FeOOH (invention 2).
  • the iron raw material used contains at least one of the elements Na, Mg, Al, Si, Cr, Mn, and Ni in an amount of 0.1 to 2 mol% with respect to Fe, and the seven
  • the total amount of elements is 1.5 to 4 mol% with respect to Fe
  • the element C is 5 to 10 mol% with respect to Fe
  • the average primary particle diameter is 5 to 300 nm.
  • the additive element C in the iron raw material used is an organic substance capable of reducing Fe 3+ to Fe 2+ in an inert gas atmosphere having an oxygen concentration of 0.1% or less.
  • a method for producing a lithium iron phosphate particle powder having an olivine structure described in any one of the present invention (Invention 4).
  • the present invention provides at least one selected from conductive carbon, an organic substance capable of reducing Fe 3+ to Fe 2+ , and an organic binder in the middle of the second step or immediately before the third step.
  • Step A is mixed as an electron conduction assistant for the lithium iron phosphate particle powder to be produced, a reducing agent for Fe 3+ contained in the iron raw material to Fe 2+ or a precursor aggregate particle size control agent of 0.3 to 30 ⁇ m.
  • a method for producing an olivine-type lithium iron phosphate particle powder according to any one of the present inventions 1 to 4 (Invention 5).
  • the obtained lithium, iron and phosphorus main content is re-ground and re-precise mixed, and then the re-precise mixture is added to conductive carbon, Fe 3+ to Fe 2+ .
  • At least one selected from organic substances having a reducing ability and organic binders is remixed and remixed at a temperature of 250 to 750 ° C. in an inert gas or reducing gas atmosphere having an oxygen concentration of 0.1% or less. 6.
  • a method for producing a lithium iron phosphate particle powder having an olivine structure according to any one of the first to fifth aspects of the present invention, wherein firing is performed (Invention 6).
  • the solid content concentration of the raw materials is 30 wt% or more.
  • the olivine-type structure in which the slurry is adjusted so that 1 to 25 wt% is added to LiFePO 4 that produces ascorbic acid or sucrose and mixed at 50 ° C. or lower to adjust the pH of the raw slurry to 4 to 8 This is a method for producing a lithium iron phosphate particle powder (Invention 7).
  • the present invention also relates to a lithium iron phosphate particle powder having an olivine type structure, wherein the lithium and phosphorus contents are 0.95 to 1.05 in terms of a molar ratio to iron, and Fe 3+ Impurity crystals other than the olivine structure are less than 5 mol%, have a BET specific surface area of 6 to 30 m 2 / g, have a residual carbon content of 0.5 to 8 wt%, have a residual sulfur content of 0.08 wt% or less.
  • the amount of the phase Li 3 PO 4 is 5 wt% or less, the crystallite size is 25 to 300 nm, the aggregate particle diameter is 0.3 to 20 ⁇ m, and the compression molding density is 2.0 to 2.8 g / cc.
  • This is an olivine type lithium iron phosphate particle powder characterized by having an electrical resistivity of 1 to 1.0 ⁇ 10 5 ⁇ ⁇ cm (Invention 8).
  • the olivine type lithium iron phosphate particle powder according to the present invention 8 is combined with 0.1 to 10 wt% carbon of a conductive auxiliary agent and 1 to 10 wt% of a binder. It is a secondary battery positive electrode material sheet having a density of 8 g / cc or more (Invention 9).
  • the present invention is a secondary battery manufactured using the secondary battery positive electrode material sheet according to the present invention 9 (Invention 10).
  • the method for producing olivine-type lithium iron phosphate particles according to the present invention is low in cost and can be produced with a small environmental load, and the powder obtained by the method has a defect structure due to uniform solid solution of additive elements or surface modification. Therefore, the movement of electrons and Li ions is facilitated, and since the aggregated particles are controlled, the filling property is high.
  • a secondary battery using it as a positive electrode active material has a high capacity in terms of current load characteristics, and can be used repeatedly for charging and discharging sufficiently.
  • the olivine-type LiFePO 4 composite oxide powder according to the present invention has a compactness of 2.0 g / cc or more at 0.5 t / cm 2 or more, so that the filling property is improved. , Energy density per volume can be improved.
  • the LiFePO 4 powder having an olivine structure according to the present invention has a lithium and phosphorus content of 0.95 to 1.05 mol ratio to iron, Fe 3+ is less than 5 mol% with respect to the Fe amount, BET Specific surface area of 6-30 m 2 / g, residual carbon content of 0.5-8 wt%, residual sulfur content of 0.08 wt% or less, amount of impurity crystal phase Li 3 PO 4 other than olivine structure is 5 wt% or less, crystallite size 25 ⁇ 300nm, Agglomerated particle size 0.3 ⁇ 20 ⁇ m, compression molding density 2.0 ⁇ 2.8g / cc, powder electrical resistivity 1 ⁇ 10 5 ⁇ ⁇ cm Current load characteristics and charge / discharge repetition characteristics during battery charge / discharge can be improved.
  • the LiFePO 4 powder having an olivine structure according to the present invention is suitable as a positive electrode active material for a non-aqueous solvent secondary battery.
  • FIG. 2 is a secondary electron image of a Fe 3 O 4 iron raw material shown in Table 1 by a scanning electron microscope. It is the reflected electron image by the scanning electron microscope of the lithium, phosphorus, and iron element containing precursor after the 2nd process obtained in Example 1.
  • FIG. 2 is a secondary electron image of the olivine-type lithium iron phosphate particle powder obtained in Example 1 by a scanning electron microscope.
  • 7 is a high-resolution TEM bright-field image of olivine-type lithium iron phosphate particle powder obtained in Example 5.
  • FIG. 4 is a limited-field electron diffraction pattern inside the particles of lithium iron phosphate having an olivine structure obtained in Example 5.
  • FIG. 6 is a local elemental analysis EDS spectrum on the surface of lithium iron phosphate particles having an olivine structure obtained in Example 5.
  • FIG. 7 is a Rietveld analysis result of an X-ray diffraction pattern of olivine-type lithium iron phosphate particle powder obtained in Example 7. It is the discharge characteristic of the sheet number 2 of Table 5.
  • the olivine-type lithium iron phosphate particle powder according to the present invention has solid solution or adsorption of additive elements such as elements Na, Mg, Al, Si, Cr, Mn, and Ni (hereinafter referred to as “foreign metal elements”).
  • additive elements such as elements Na, Mg, Al, Si, Cr, Mn, and Ni (hereinafter referred to as “foreign metal elements”).
  • the iron raw material, the lithium raw material and the phosphorus raw material can be uniformly and precisely mixed and obtained by appropriate heat treatment.
  • the iron raw material in which different metal elements (Na, Mg, Al, Si, Cr, Mn, Ni) are dissolved is 0.1 to 1.8 mol / l of ferrous sulfate or ferric sulfate.
  • a mixed solution of iron and a sulfate, nitrate, chloride, or organic substance containing a different metal element is prepared so as to have a predetermined molar ratio. Necessary while slowly supplying 0.1 to 18.5 mol / l aqueous alkali solution to the mixed solution to the stirred reaction vessel and maintaining the reaction vessel at a pH of 8 or higher and a temperature of room temperature to 105 ° C. Can be obtained by performing an air oxidation reaction.
  • the generated iron oxide or hydrated oxide may be adsorbed with an additive element-containing sulfate, nitrate, chloride, or organic substance in a predetermined molar ratio.
  • organic substances include carboxylates, alcohols, saccharides, and the like that are easily incorporated into or adsorbed into the iron oxide or hydrated oxide to be generated.
  • NaOH, Na 2 CO 3 , NH 4 OH, ethanolamine or the like is used as an alkali source, and filtration washing or decantation washing is performed to remove impurity sulfate ions and control the composition ratio of the additive to Fe.
  • the apparatus include a press filter and a filter thickener.
  • the reaction concentration, temperature, pH, time, degree of air oxidation, etc. may be controlled.
  • An iron raw material containing at least one of Fe 3 O 4 , ⁇ -FeOOH, ⁇ -FeOOH, and ⁇ -FeOOH having an average primary particle diameter of 5 to 300 nm is obtained.
  • (NH 4 ) H 2 PO 4 , (NH 4 ) 2 HPO 4 is a coprecipitation method using NH 4 OH with H 3 PO 4
  • LiH 2 PO 4 is LiOH or LiOH ⁇ nH 2 O aqueous solution of H 3 PO 4 solution
  • Li 3 PO 4 is obtained by a coprecipitation method by mixing Li 3 or LiOH ⁇ nH 2 O aqueous solution of H 3 PO 4 solution.
  • the average particle size of these lithium raw material and phosphorus raw material is preferably 10 ⁇ m or less, and a predetermined amount is mixed with the iron raw material described above so as to obtain a lithium iron phosphate particle powder having a predetermined olivine structure (first step). .
  • Equipment includes Henschel mixer, Raiki machine, and high speed mixer.
  • the mixture obtained in the first step is adjusted so that the aggregated particle diameter is 0.3 to 5.0 ⁇ m (second step).
  • the Fe element is present at a ratio of 19/20 or more in a 2 ⁇ m ⁇ 2 ⁇ m visual field excluding voids.
  • the adjustment method in the second step is a precision mixing mainly with an iron raw material accompanied by pulverization of a lithium raw material and a phosphorus-containing raw material, and a ball mill, a vibration mill, or a medium stirring mill is used.
  • a ball mill, a vibration mill, or a medium stirring mill is used.
  • LiFePO 4 obtained after the third step undergoes grain growth, and satisfactory battery characteristics cannot be obtained.
  • LiFePO 4 obtained after the third step does not undergo grain growth unless the Fe element is present in a 2 ⁇ m ⁇ 2 ⁇ m visual field excluding voids at a ratio of 19/20 or more.
  • satisfactory battery characteristics cannot be obtained.
  • the proportion of 19/20 or more empirically, preferably LiFePO 4 is produced.
  • the agglomerated particle diameter is controlled by the organic substance added in the first step and appropriate dry compaction.
  • the aggregated particle diameter of the olivine-type LiFePO 4 powder according to the present invention is the aggregated particle diameter of the obtained olivine-type lithium iron phosphate particle powder before and after firing, that is, after the second and third steps. There is almost no change and it is necessary to adjust in the second step.
  • the precursor obtained in the second step is baked at a temperature of 250 to 750 ° C. in an inert gas or reducing gas atmosphere having an oxygen concentration of 0.1% or less (third step).
  • Examples of the apparatus include a gas flow type box muffle furnace, a gas flow type rotary furnace, and a fluidized heat treatment furnace.
  • As the inert gas N 2 , Ar, H 2 O, CO 2 or a mixed gas thereof is used.
  • As the reducing gas, H 2 , CO, or a mixed gas of these gases and the inert gas is used.
  • LiFePO 4 Since Fe 3+ contained in the Fe raw material is changed to Fe 2+ by the additive element C or reducing gas and LiFePO 4 is generated, it is necessary to perform firing in an atmosphere having an oxygen concentration of 0.1% or less. Empirically, LiFePO 4 is sufficiently produced at 350 ° C. or higher, but heat treatment is performed at 400 to 700 ° C. for several hours in order to simplify the solid-phase reaction and to form a graphite phase with high electron conductivity of the additive element C. It is preferable to carry out.
  • raw materials containing Fe 3+ tend to grow more easily in the firing process than raw materials containing Fe 2+ .
  • the preferred average primary particle size is 30 to 250 nm.
  • Li, Fe, P raw material composition ratio and composition ratio of the additive element with respect to Fe are almost the same as those obtained in the first step, with the exception of additive element C, which hardly changes before and after the heat treatment. Is the ratio.
  • the additive element C may be reduced to less than 50% by reduction heat treatment of Fe 3+ to Fe 2+ , and it is necessary to measure the amount of C remaining in each firing condition in advance and adjust it in the first step (this Inventions 1 to 3).
  • the first step of mixing the raw materials in the present invention it is preferable to mix the raw materials in an aqueous solvent, and it is more preferable to adjust the slurry concentration so that the solid content concentration of the raw material is 30 wt% or more.
  • the first step it is preferable to add 1 to 25 wt% of ascorbic acid or sucrose with respect to LiFePO 4 to be produced.
  • ascorbic acid or sucrose By adding ascorbic acid or sucrose to the slurry, the reaction of Li, Fe, and P is promoted, compositional segregation is reduced during drying, and a heterogeneous phase is less likely to be generated after firing.
  • the amount of ascorbic acid or sucrose added is less than 1 wt%, the effect of adding does not appear. If it exceeds 25 wt%, the heterogeneous precipitation cannot be effectively reduced. More preferably, it is 2 to 10 wt%.
  • the reaction temperature in the first step is preferably 50 ° C. or lower. When the temperature during mixing exceeds 50 ° C., it is difficult to obtain an olivine single phase. More preferably, it is from room temperature to 45 ° C, and even more preferably from 25 to 43 ° C.
  • the pH of the slurry in the first step is adjusted to 4-8.
  • the pH is less than 4, P ions are present in the solution, segregate during drying, and a heterogeneous phase is likely to be generated after firing.
  • the pH exceeds 8, it is difficult in principle, more preferably 4.5 to 6.5.
  • an organic substance having a high reducing ability is included to positively promote organic reduction of Fe 3+ to Fe 2+ .
  • An iron raw material can be used, and the amount thereof is adjusted so that the amount of residual carbon is 0.5 to 8.0 wt% or less with respect to the generated lithium iron phosphate particle powder.
  • the organic substance having a high reducing ability carboxylate, alcohols, and saccharides that are easily taken into or adsorbed by iron oxide or hydrous oxide are preferable. However, it is necessary to be careful in handling the organic substance having a high reducing ability so as to reduce it by firing without reducing the iron raw material (Invention 4).
  • the compression molded body of LiFePO 4 powder having an olivine structure obtained at a low temperature firing of 400 to 500 ° C. satisfies the electrical resistivity of 1 to 10 5 ⁇ ⁇ cm and exhibits high performance secondary battery characteristics.
  • the organic substance having a high reducing ability when an inert gas having an oxygen concentration of 0.1% or less is used in the heat treatment in the third step, in order to positively promote organic reduction of Fe 3+ to Fe 2+ , It is possible to add the organic substance having a high reducing ability before the three steps.
  • the amount thereof can be adjusted so that the residual carbon amount is 0.5 to 8 wt% or less with respect to the lithium iron phosphate particle powder to be produced.
  • resin powder such as polyethylene is used as the organic substance.
  • the agglomerated particle diameter of the olivine-type LiFePO 4 composite oxide powder obtained in the present invention hardly changes before and after the third step, that is, firing, as described above. Therefore, the aggregate particle diameter of the precursor is adjusted to 0.3 to 30 ⁇ m by adding an organic binder during the second step or before the third step, and after firing, the aggregate is 0.3 to 30 ⁇ m. It is possible to obtain LiFePO 4 having a particle size.
  • the precursor aggregate particle size control agent having a particle size of 0.3 to 30 ⁇ m is, for example, organic binders such as polyvinyl alcohol and sucrose.
  • the conductive carbon, the reducing agent during the firing, and the precursor aggregate particle size controlling agent can be added,
  • the amount of residual carbon is adjusted to 0.5 to 8 wt% with respect to the lithium iron phosphate particle powder (Description of Step A of Invention 5).
  • the local gas concentration distribution may affect the quality due to the generation of water vapor and the generation of oxidizing gas accompanying the precursor Fe 3+ reduction. Therefore, it is also possible to carry out heat treatment (main firing) again by performing so-called calcination, mixing the carbon-containing additive, pulverizing and mixing again.
  • the calcination temperature is preferably as low as about 250 to 500 ° C.
  • the main calcination temperature is preferably as high as 400 to 750 ° C.
  • the order of operations between calcination and main calcination is not particularly limited.
  • the carbon-containing additive added before the second heat treatment is conductive carbon, an organic reducing agent, and a binder for controlling the aggregated particle size of the precursor, and at least one of these is mixed. It is also possible (description of step A of the present invention 6).
  • FIG. 1 shows a flowchart of a method for producing olivine type lithium iron phosphate particles in the present invention.
  • the composition of the LiFePO 4 powder having an olivine structure according to the present invention is Li x FeP y O 4 (0.95 ⁇ x, y ⁇ 1.05).
  • x and z are out of the above ranges, it is easy to form a heterogeneous phase, and in some cases, grain growth is promoted, and LiFePO 4 having high battery characteristics cannot be obtained.
  • the contents of the different metal elements are preferably 0.1 to 2 mol% with respect to Fe.
  • the mol% of Fe 3+ / Fe in the olivine-type LiFePO 4 composite oxide powder according to the present invention is less than 5%. It is known that LiFePO 4 produced after firing is oxidized by exposure to air to form an Fe 3+ amorphous phase. The formed Fe 3+ compound does not contribute to charging / discharging of the secondary battery, and forms a dendrite at the negative electrode and promotes an internal short circuit of the electrode, and it is necessary to reduce it as much as possible.
  • the BET specific surface area of the LiFePO 4 powder having an olivine structure according to the present invention is 6 to 30 m 2 / g.
  • the BET specific surface area value is less than 6 m 2 / g, the movement of Li ions in LiFePO 4 is slow, so that it is difficult to take out current.
  • it exceeds 30 m ⁇ 2 > / g, since the fall with the packing density of a positive electrode and the reactivity with electrolyte solution increase, it is unpreferable.
  • it is 8 to 28 m 2 / g, more preferably 9 to 25 m 2 / g.
  • the residual carbon content of the olivine-type LiFePO 4 composite oxide powder according to the present invention is 0.5 to 8.0 wt%.
  • the carbon content is less than 0.5%, the particle growth during the heat treatment cannot be suppressed, and the electric resistance of the obtained powder is increased, which deteriorates the charge / discharge characteristics of the secondary battery.
  • it exceeds 8.0% the positive electrode packing density decreases, and the energy density per volume of the secondary battery decreases. More preferably, it is 0.6 to 6.0%.
  • the LiFePO 4 composite oxide powder having an olivine structure according to the present invention has an impurity sulfur content of 0.08 wt% or less, and good storage characteristics can be obtained in a non-aqueous electrolyte secondary battery.
  • impurities such as lithium sulfate are formed, and these impurities undergo a decomposition reaction during charge and discharge, and the reaction with the electrolyte during high-temperature storage is promoted, and after storage Resistance rises intensely. More preferably, it is 0.05 wt% or less.
  • the crystal phase of Li 3 PO 4 may be detected at 5 wt% or less other than the olivine structure.
  • Li 3 PO 4 is detected, sometimes LiFePO 4 particles obtained by solid phase reaction may be fine, resulting in a high discharge capacity.
  • Li 3 PO 4 itself does not contribute to charging / discharging, 5 wt% or less is desirable.
  • the crystallite size of the LiFePO 4 powder having an olivine structure according to the present invention is 25 to 300 nm. It is extremely difficult to mass-produce powders of 25 nm or less while satisfying other powder characteristics, and it takes time for Li to move at a crystallite size of 300 nm. The current load characteristic of the secondary battery is deteriorated.
  • the thickness is preferably 30 nm to 200 nm, more preferably 40 nm to 150 nm.
  • the aggregated particle diameter of the LiFePO 4 powder having an olivine structure according to the present invention is 0.3 to 30 ⁇ m.
  • the thickness is less than 0.3 ⁇ m, the positive electrode packing density is decreased and the reactivity with the electrolytic solution is increased.
  • it is extremely difficult to mass-produce powders exceeding 30 ⁇ m while satisfying other powder characteristics by the production method.
  • it is 0.5 to 15 ⁇ m.
  • the density of the compression molded body of the LiFePO 4 powder having an olivine structure according to the present invention is preferably 2.0 g / cc or more.
  • the true density of the general-purpose layered compound LiCoO 2 is 5.1 g / cc, whereas the true density of LiFePO 4 is as low as 3.6 g / cc. Therefore, a preferable compression-molded body density is 2.0 g / cc or more which is 50% or more of the true density, and the closer to the true density, the better the filling property.
  • the powder electrical resistivity of the LiFePO 4 powder having an olivine structure according to the present invention is 1 to 10 5 ⁇ ⁇ cm, more preferably 10 to 5 ⁇ 10 4 ⁇ ⁇ cm.
  • a conductive agent and a binder are added and mixed according to a conventional method.
  • the conductive agent acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
  • the solvent for example, N-methyl-pyrrolidone is used, and the positive electrode active material sieved to 45 to 105 ⁇ m or less and the slurry containing the additive are kneaded until they become honey. The obtained slurry is applied onto the current collector with a doctor blade having a groove of 25 ⁇ m to 500 ⁇ m.
  • the coating speed is about 60 cm / sec, and an Al foil of about 20 ⁇ m is usually used as a current collector.
  • drying is performed at 80 to 180 ° C. in a non-oxidizing atmosphere of Fe 2+ .
  • the sheet is subjected to a calender roll treatment so as to have a pressure of 1 to 3 t / cm 2 .
  • an oxidation reaction of Fe 2+ to Fe 3+ occurs even at room temperature.
  • the density of the positive electrode made of the positive electrode active material, carbon, and binder on the current collector of the obtained positive electrode sheet is 1.8 g / cc or more.
  • the density of the compression molded body of the positive electrode active material is as high as 2.0 g / cc or more, and the electrical resistivity of the compression molded body of the positive electrode active material is 1 to 10 5 ⁇ ⁇ cm.
  • the amount of carbon added during sheet preparation can be suppressed because it is low, and the amount of binder added can be suppressed because the BET specific surface area of the positive electrode active material is as low as 6 to 30 m 2 / g, resulting in a positive electrode sheet with high density. Is obtained.
  • the negative electrode active material lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite or the like can be used, and the negative electrode sheet is produced by the same doctor blade method as that of the positive electrode.
  • an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.
  • At least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.
  • the secondary battery manufactured using the positive electrode sheet according to the present invention has a discharge capacity of 150 mAh / g or more at C / 10 at room temperature and a capacity deterioration rate of less than 10% in the 50 charge / discharge repetition characteristics.
  • the discharge capacity at 1 C is 120 mAh / g or more, the capacity deterioration rate in the 50 charge / discharge repetition characteristics is less than 5%, and the discharge capacity at 5 C at room temperature is 80 mAh / g or more.
  • the capacity deterioration rate is defined as (C 50 ⁇ C 1 ) / C 1 ⁇ 100, which is the discharge capacity C 50 obtained in the 50th charge / discharge cycle from the discharge capacity C 1 obtained in the first charge / discharge cycle. It is represented by Discharge capacity C n from C n + 1 (n is an integer) value changes continuously, it is confirmed with a validity evaluation.
  • C / 20 is a current value fixed so that a current of LiFePO 4 theoretical capacity of 170 mAh / g flows in 20 hours, and 5C is a current of LiFePO 4 theoretical capacity of 170 mAh / g in 1/5 hours.
  • the current value is fixed as follows.
  • a higher C coefficient means higher current load characteristics.
  • the current value at the time of charging is not particularly limited, in the present invention, it was confirmed that a theoretical capacity was almost obtained using a constant current value of C / 20.
  • the voltage range during charging and discharging is not particularly limited, but in the present invention, the voltage range was 2.0 to 4.5V.
  • the LiFePO 4 powder having an olivine structure according to the present invention uses an inexpensive and stable iron raw material containing Fe 3+ , it can be manufactured at low cost and with a small environmental load.
  • the secondary battery characteristics are satisfied in order to satisfy the powder characteristics described in the present invention 7, and in particular, since the modifying element and the solid solution element are controlled, a high capacity is obtained even in the current load characteristics, and sufficient charge / discharge is achieved. The inventor presumes that it can be used repeatedly.
  • a typical embodiment of the present invention is as follows.
  • the Fe concentration of the iron raw material is quantified by titration (JIS K5109), and an X-ray diffractometer RINT-2500 [manufactured by Rigaku Corporation] is used to identify the crystal phase. It was carried out at 40 kV and 300 mA, and it was confirmed that there was no crystallized additive element.
  • Element C added to the iron raw material was quantified by burning the iron raw material in an oxygen stream in a combustion furnace using EMIA-820 [manufactured by Horiba Seisakusho].
  • Elements Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Co, Ni and Zn added in addition to Li, Fe, P main elements and C are the emission plasma analyzer ICAP-6500 [Thermo Fisher Scientific Measured using
  • a Hitachi S-4800 scanning electron microscope (SEM) was used to calculate the average primary particle size of the iron raw material, and the short axis and long axis of about 200 particles that could be judged from the obtained images were measured and averaged. The primary particle size was calculated. Since the ratio of the major axis to the minor axis differs greatly only for ⁇ -FeOOH, the aspect ratio was calculated.
  • Table 1 shows the characteristics of the iron raw materials used in the present invention.
  • the aspect ratio (major axis diameter / minor axis diameter) of iron raw material number 4 of ⁇ -FeOOH was 5, and the aspect ratio (major axis diameter / minor axis diameter) of iron raw material number 5 was 2.5.
  • the Li and P concentrations of the lithium and phosphorus-containing main raw materials were measured by neutralization titration using a pH meter and hydrochloric acid or NaOH reagent.
  • the impurity element concentration contained in the main raw material containing lithium and phosphorus was such a concentration that the above-mentioned emission plasma analyzer was used and the addition amount could be corrected without affecting the present invention.
  • the scanning electron microscope SEM was used to determine that Fe element was present at a ratio of 19/20 or more in a 2 ⁇ m ⁇ 2 ⁇ m visual field excluding voids.
  • HELOS manufactured by Nippon Laser Co., Ltd.
  • a dry laser diffraction / scattering particle size distribution meter was used for the measurement of the aggregate particle size of the precursor or olivine type lithium iron phosphate particles.
  • used was quantified with a median diameter D 50.
  • the lithium iron phosphate particles having an olivine structure manufactured according to the present invention were dissolved in an acid solution at 200 ° C. using an autoclave for sample dissolution.
  • the above-mentioned emission plasma analyzer was used for the contents of lithium and phosphorus with respect to iron.
  • Rietveld analysis of the X-ray diffraction pattern by the above-described apparatus and local elemental analysis by JEOL JEM-2010F high resolution TEM and its associated EDS were used.
  • the X-ray diffraction pattern was measured in steps of 0.02 ° at 2.5 ° / min and 2 ⁇ in the range of 15 to 120 ° so that the maximum peak intensity count number was 5000 to 8000.
  • Rietan 2000 was used as the Rietveld analysis program.
  • the TCH pseudo-void function is used as the profile function, the method such as Finger is used for asymmetry of the function, and the reliability factor S value is 1.5. Analyzed to cut.
  • This program was applied to the identification of impurity crystal phases other than the olivine structure, the quantification of impurity crystal phases Li 3 PO 4 other than the olivine structure, and the crystallite size quantification of LiFePO 4 particles of 80 nm or more.
  • the crystallite size of LiFePO 4 particles of less than 80 nm calculation was made from the half-value width of the (101) plane X-ray diffraction pattern. The spectrum by EDS ended when the maximum peak intensity exceeded 60.
  • the amount of Fe 3+ was calculated from the amount of Fe described above and Fe 2+ titration (JIS K1462) for quantification of Fe 3+ .
  • the specific surface area is a specific surface area determined by a BET one-point continuous method using MONOSORB [manufactured by Yuasa Ionics Co., Ltd.] after drying and deaeration of the sample under nitrogen gas at 120 ° C. for 45 minutes.
  • the amount of residual sulfur was quantified using the carbon and sulfur measuring device EMIA-820 [manufactured by Horiba Ltd.] and applied to the amount of residual carbon.
  • the density of the compression-molded body was compacted to 1.5 t / cm 2 with a 13 mm ⁇ jig and calculated from the weight and volume. Simultaneously, the powder electrical resistivity was measured by the two-terminal method.
  • the carbon of the conductive auxiliary agent used is acetylene black, ketjen black and graphite KS-6.
  • the binder used was polyvinylidene fluoride having a polymerization degree of 540,000 (manufactured by Aldrich) and was dissolved in N-methylpyrrolidone (manufactured by Kanto Chemical Co., Inc.).
  • a CR22032 type coin cell (manufactured by Hosen Co., Ltd.) was prepared using the electrolytic solution (manufactured by Kishida Chemical Co., Ltd.) mixed in 3: 7).
  • ball mixed powder and a prescribed amount of acetylene black obtained in the first step made ZrO 2 - mill vessel to the slurry - to have a concentration 30 wt% ethanol - Adjust Le, ZrO 2 ball of 5 mm.phi - Le
  • the mixture was pulverized for 24 hours, mixed finely, and the slurry at room temperature was dried (solvent removed) to obtain a precursor.
  • the secondary electron image of the iron raw material used here is shown in FIG. 2, and the reflected electron image of the obtained precursor is shown in FIG.
  • the iron raw material used had an average primary particle size of 200 nm. 24 squares of 2 ⁇ m ⁇ 2 ⁇ m were added to the reflected electron image of FIG. 2, and it was confirmed that the Fe element was present in the field of view excluding voids in the squares.
  • the obtained precursor had an agglomerated particle diameter D 50 of 1.4 ⁇ m (step A, second step).
  • the obtained precursor was put into an alumina crucible and subjected to the heat treatment described in Table 2. That is, the temperature rising rate was 200 ° C./hr, the reached temperature was 500 ° C., the reached temperature holding time was 2 hours, the gas used was 95% N 2 -5% H 2 , and the gas flow rate was 1 L / min (third step).
  • Table 3 shows the powder characteristics of the obtained powder.
  • the obtained powder is fine, has an olivine structure, is not different from the composition ratio of Li, Fe, P prepared in the first step, and the composition ratio of all additive elements and Fe except additive element C Matched within a measurement error range of 3%.
  • FIG. 4 shows an SEM photograph (secondary electron image) of the obtained lithium iron phosphate particles having an olivine structure.
  • Examples 2, 3, and 8 The experiment was conducted with the contents shown in Table 2. Parts not described were performed in the same manner as in Example 1. However, a predetermined amount of the carbon-containing additive was blended in a dry ball mill after the second step. Table 3 shows the powder characteristics of the obtained lithium iron phosphate particles having an olivine structure. In the fine powder having an olivine structure, the composition ratios of all additive elements and Fe except for the composition ratio of Li, Fe, and P and additive element C were within the measurement error range of 3%, as in Example 1. Matched.
  • Examples 4, 5, and 7 A predetermined amount of the main raw material was mixed in a wet (water solvent) ball mill so that 150 g of lithium iron phosphate particle powder was formed, and then dried at 70 ° C. for 12 hours. Lithium and phosphorus-containing main raw materials Li 3 PO 4 and H 3 PO 4 were used (first step).
  • step A The dried product and a predetermined amount of carbon-containing additive were pulverized with a 5 mm ⁇ ZrO 2 dry ball mill for 24 hours (step A, second step), and calcined in a nitrogen atmosphere at 400 ° C. for 2 hours (third) Process). After pulverizing and mixing with a dry ball mill, heat treatment was performed again at 650 ° C. for 2 hours in a nitrogen atmosphere (operation A).
  • Table 3 shows the powder characteristics of the obtained olivine-type lithium iron phosphate particles.
  • the composition ratios of all additive elements and Fe except for the composition ratio of Li, Fe, and P and additive element C were within the measurement error range of 3%, as in Example 1. Matched.
  • FIG. 5 to 7 show the high-resolution TEM bright-field image (FIG. 5), the limited-field electron diffraction pattern (FIG. 6), and the local elemental analysis EDS spectrum (FIG. 7) obtained in Example 5.
  • FIG. 8 shows the Rietveld analysis result of the X-ray diffraction pattern of Example 7.
  • the dotted line shows the measured diffraction pattern
  • the curve shows the calculated diffraction pattern
  • the bottom horizontal straight waveform shows the measured and calculated diffraction patterns. This means that the closer to the straight line, the more the measured value and the calculated value match.
  • the same analysis was performed on all the samples of Examples 1 to 8. No impurity crystal phase other than Li 3 PO 4 was observed, and crystalline compound segregation due to the additive element was not confirmed.
  • Example 6 As shown in Table 2, experiments similar to those in Examples 4, 5, and 7 were performed. However, the predetermined amount of the carbon-containing additive was performed after the second step, and the heat treatment was performed once without performing calcination, pulverization, and mixing (operation A) after firing. It was kept at 400 ° C. for 2 hours in hydrogen, then switched to N 2 and kept at 650 ° C. for 2 hours. In the fine powder having an olivine structure, the composition ratio of all additive elements and Fe except for the composition ratio of Li, Fe, P and additive element C is within the measurement error range of 3%, as in the other examples. Matched.
  • the electrode slurry was applied onto the Al foil current collector with a doctor blade having a gap of 100 ⁇ m. Sheet - After preparative drying, was punched into 3t / cm 2 pressurized to 2 cm 2.
  • Table 4 shows the density of the positive electrode on the current collector. Table 4 also shows the characteristics of the secondary battery using this sheet as the positive electrode.
  • the lithium iron phosphate particles having an olivine structure according to the present invention satisfy high cathode density and secondary battery characteristics.
  • Comparative Example 1 in which the positive electrode active material powder had a low compression molding density had a low positive electrode density. The reason why the discharge capacity at 5C was low is thought to be because the influence of the additive did not appear. In Comparative Examples 2 to 4 having a large crystallite size, almost all the discharge capacities were low. Comparative Example 4 has a high capacity deterioration rate, and it is considered that the surface modification and uniform solid solution of the additive element were insufficient.
  • the secondary battery according to the present invention has an excellent capacity maintenance rate.
  • the film thickness and density of the positive electrode when the electrode composition ratio of the active material obtained in Example 5 was changed to form a sheet and the characteristics of the secondary battery are shown.
  • the thickness of the positive electrode was a value obtained by subtracting the thickness of the Al foil current collector contained in the positive electrode sheet, and was adjusted by the amount of solvent added at the time of coating and the depth of the groove of the doctor blade.
  • the carbon added was acetylene black and KS-6 graphite in a weight ratio of 1: 1.
  • the amount of PVDF and carbon increased, the positive electrode density decreased.
  • high secondary battery characteristics were obtained with all these electrode compositions.
  • Example 10 In the same Li, P, and Fe raw material slurry as in Example 6 (the solid content concentration was adjusted to 50 wt%), 5 wt% and 5 wt% sucrose were similarly added to LiFePO 4 that produces ascorbic acid, and room temperature ( After reaction for 1 day at 25 ° C.), a paste containing Li, P and Fe was obtained. After drying at 70 ° C., the second and third steps were performed in the same manner as in Example 6. In the precision mixture after the second step, the presence of Fe element in the 2 ⁇ m ⁇ 2 ⁇ m field of view was 19/20 or more by SEM observation, and the precursor aggregated particle diameter D 50 was 3.1 ⁇ m.
  • Table 6 shows the powder characteristics and battery characteristics of the olivine-type lithium iron phosphate obtained in Examples 9 and 10. Battery characteristics were evaluated by producing coin cells by the same method as described in Table 4.
  • the method for producing olivine-type lithium iron phosphate particle powder according to the present invention is a low-cost production method with little environmental load.
  • the olivine-type lithium iron phosphate particle powder according to the present invention can produce a highly filled positive electrode sheet, and a secondary battery using the same has a high capacity in terms of current load characteristics. It has been confirmed that charging and discharging can be sufficiently repeated.
  • the present invention uses an olivine-type lithium iron phosphate particle powder produced by a low-cost and low environmental load manufacturing method as a positive electrode active material for a secondary battery, resulting in a high energy density per volume and a high current load.
  • a high capacity can be obtained, and a non-aqueous solvent secondary battery that can be sufficiently charged and discharged repeatedly can be obtained.

Abstract

本発明は、鉄原料として鉄酸化物又は含水酸化物を用い、元素Na、Mg、Al、Si、Cr、Mn、Niのうち少なくとも1種をFeに対し各々0.1~2mol%含み、且つ、元素CがFeに対して5~10mol%含み、Fe量に対しFe2+が40mol%以下で、平均一次粒子径が5~300nmの鉄酸化物又は含水酸化物を、リチウム原料及びリン原料とともに混合する第一工程、得られた混合物の凝集粒子径が0.3~5.0μmとなるように調整する第二工程、次いで、第二工程を経た混合物を酸素濃度0.1%以下の不活性ガス、又は還元性ガス雰囲気下で、温度250~750°Cで焼成を行う第三工程からなるオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法に関する。

Description

リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池
 低コストで、安易に製造でき、且つ、二次電池として充放電容量が大きく、充填性及び充放電繰返し特性に優れたオリビン型構造のリン酸鉄リチウム粒子粉末、それを用いた正極材シート、及び二次電池を提供する。
 近年、AV機器やパソコン等の電子機器、電動工具等のパワーツールのポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、近年地球環境への配慮から、電気自動車、ハイブリッド自動車の開発及び実用化がなされ、大型用途として充放電繰返し特性の優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、充放電容量が大きく、安全性が高いという長所を有するリチウムイオン二次電池が注目されている。
 最近、3.5V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質として、オリビン型LiFePOが高い充放電容量を有する電池として注目されてきている。しかし、この材料は、電気抵抗率が10Ω・cmと本質的に大きく、電極としての充填性が悪い為、特性改善が求められている。
 即ち、オリビン型構造のLiFePOは強固なリン酸4面体骨格と酸化還元に寄与する鉄イオンを中心にもつ酸素8面体と電流の担い手であるリチウムイオンから構成される。この結晶構造ため、充放電反応を繰り返すことによっても結晶構造は安定であり、充放電を繰り返しても特性は他のリチウムイオン正極材に比べ、劣化しにくい特長がある。一方、リチウムイオンの移動経路が一次元的であることや自由電子が少ないことによる高い電気抵抗を有するという欠点がある。これらの課題を解決する為に、生産性は考慮せず、オリビン型LiFePOの一次粒子の200~300nm以下への微粒子化と、異種元素置換した材料の研究が行われてきた(非特許文献1~5)。
 上記のような、LiFePOは粉末を構成する一次粒子径が小さいほど、高い電流負荷での充放電特性がよい傾向があるため、優れた特性のオリビン型LiFePO複合酸化物正極を得るにはそれらが適度に凝集した二次粒子で、且つよりグラファイト化したカーボンのような導電性補助剤でネットワークを形成するように、各々の集合状態を制御する必要がある。しかしながら、多量のカーボン等と複合化された正極は嵩高く、単位体積当たりに充填できる実質的なリチウムイオン密度が低くなるといった欠点が生じる。そこで、単位体積当たりの充放電容量を確保するためには、電気抵抗の小さなオリビン型LiFePOを得ると共に、少量の導電性補助剤を介して高い密度を持った凝集体を形成することが必要とされている。
 また、オリビン型構造のLiFePOの製造方法において、充填性が高く非晶質部分が少なく、小さな一次粒子を得るためには、固相反応性の高い微粒子で、不純物量を制御した、特に湿式合成で得られる鉄酸化物、或いは含水酸化物系粒子を原料として用い、低温且つ短時間で、中性から還元性雰囲気下の条件で焼成を行う必要がある。
 即ち、非水電解質二次電池用の正極活物質粉末としては、充填性が高く不純物結晶相が少なく、電気抵抗の小さなオリビン型構造のLiFePOを環境負荷が小さな工業的な方法で生産することが要求されている。
 従来、オリビン型LiFePO複合酸化物の諸特性改善のために、種々の改良が行われている。例えば、オリビン型構造のLiFePOの異種金属元素を添加し、電気抵抗を低減する技術(特許文献1)、オリビン型LiFePOの製造時にタップ密度を向上させ、カーボンとの複合体を形成する技術(特許文献2)、価数3を含む鉄原料を使用して異種金属元素を添加して優れた正極活物質を得る技術(特許文献3)、価数3の鉄化合物を原料とする技術(特許文献4)等が知られている。
特開2005-514304号公報 特開2006-032241号公報 特表2003-520405号公報 特開2006-347805号公報 A. Yamada等、J. Electrochem. Soc.、2001、 Vol.148、 p.A224-229. H. Huang等,Electrochem. andSolid-State Lett.、 2001、 Vol.4,p.A170-172. Zhaohui Chena等, J. Electrochem. Soc. ,2002、 Vol.149、p.A1184-1189. D. Morgan等,Electrochem. and Solid-State Lett.、 2004、Vol.7、p.A30-32. M. Saiful Islam等,Chem. Mater.、 2005、Vol.17,p.5085-5092.
 非水電解質二次電池用の正極活物質として前記諸特性を満たすオリビン型構造のLiFePO粉末の安価で環境負荷の少ない製造方法について、現在最も要求されているところであるが、未だ確立されていない。
 即ち、前記非特許文献1~5に記載された技術では、充填性が高く非晶質部分が少なく、しかも、小さな一次粒子からなるオリビン型LiFePOを工業的に得られるものではない。
 また、特許文献1記載の技術は、オリビン型LiFePOの複合酸化物の構造安定化や電気抵抗を提言するために他種金属を添加するという技術であり、電極への充填性や2次集合状態のコントロールについては触れられていない。
 また、特許文献2記載の技術は、オリビン型LiFePOの複合酸化物の製造にカーボンとの集合体を形成する技術であるが、電池性能が高いとは言い難い。
 更に、特許文献3記載の技術は、原料として使用する酸化鉄の固相反応性が十分でないので、微細な1次粒子を合成することが困難である。
 また、特許文献4記載の技術は、汎用で安価な3価の鉄化合物を原料として、粒子形状を保持しながら、合成反応を遂行できる技術であるが、使用する酸化鉄粒子が大きく固相反応時のイオン拡散効率が低い。
 そこで、本発明は、充填性が高く不純物結晶相が少ないオリビン型LiFePOの環境負荷が小さな効率的な工業的手法を確立することを、及び充填性の高い正極材を含有する二次電池として、電流負荷特性においても高容量が得られ、且つ十分に繰返し使えることを技術的課題とする。
 前記技術的課題は、次の通りの本発明によって達成できる。
 即ち、本発明は、鉄原料として鉄酸化物又は含水酸化物を用い、元素Na、Mg、Al、Si、Cr、Mn、Niのうち少なくとも1種をFeに対し各々0.1~2mol%含み、且つ、元素CがFeに対して5~10mol%含み、Fe量に対しFe2+が40mol%以下で、平均一次粒子径が5~300nmの鉄酸化物又は含水酸化物を、リチウム原料及びリン原料とともに混合する第一工程、得られた混合物の凝集粒子径が0.3~5.0μmとなるように調整する第二工程、次いで、第二工程を経た混合物を酸素濃度0.1%以下の不活性ガス、又は還元性ガス雰囲気下で、温度250~750℃で焼成を行う第三工程からなるオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法である(本発明1)。
 また、本発明は、用いる鉄原料が、元素Na、Mg、Al、Si、Cr、Mn、Niのうち少なくとも1種をFeに対し各々0.1~2mol%の量で含み、且つ当該7種の元素合計量がFeに対して1.5~4mol%となるように含み、且つ、元素CがFeに対して5~10mol%含み、且つ、平均一次粒子径が5~300nmのFe、α-FeOOH、γ-FeOOH、δ-FeOOHのうち少なくとも1種を含む本発明1記載のオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法である(本発明2)。
 また、本発明は、用いる鉄原料が、元素Na、Mg、Al、Si、Cr、Mn、Niのうち少なくとも1種をFeに対し各々0.1~2mol%の量で含み、且つ当該7種の元素合計量がFeに対して1.5~4mol%となるように含み、且つ、元素CがFeに対して5~10mol%含み、且つ、平均一次粒子径が5~300nmで長軸と短軸のアスペクト比が2以上の針状鉄原料である本発明2記載のオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法である(本発明3)。
 また、本発明は、用いる鉄原料における添加元素Cが、酸素濃度0.1%以下の不活性ガス雰囲気下でFe3+をFe2+へ還元することが可能な有機物である本発明1~3の何れかに記載されたオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法(本発明4)。
 また、本発明は、第二工程の途中、或いは、第三工程の直前に、導電性カーボン、Fe3+のFe2+への還元能力のある有機物および有機系結着剤から選択される少なくとも1種を、生成するリン酸鉄リチウム粒子粉末の電子伝導補助剤、鉄原料に含まれるFe3+のFe2+への還元剤又は0.3~30μmの前駆体凝集粒子径制御剤として混合する工程Aを含む本発明1~4の何れかに記載のオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法である(本発明5)。
 また、本発明は、第三工程の後、得られたリチウム、鉄およびリン主含有物を再粉砕し、再精密混合した後、当該再精密混合物に、導電性カーボン、Fe3+のFe2+への還元能力のある有機物および有機系結着剤から選択される少なくとも1種を再混合し、酸素濃度0.1%以下の不活性ガス又は還元性ガス雰囲気下で、温度250~750℃で再焼成を行う本発明1~5の何れかに記載のオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法である(本発明6)。
 また、本発明は、本発明1~6の何れかに記載のオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法の原料を混合する第一工程において、原料の固形分濃度が30wt%以上となるようにスラリーを調整し、アスコルビン酸又はショ糖を生成するLiFePOに対し1~25wt%添加して、50℃以下で混合を行い、原料スラリーのpHを4~8に調整するオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法である(本発明7)。
 また、本発明は、オリビン型構造のリン酸鉄リチウム粒子粉末であって、リチウムとリンの含有量が鉄に対するmol比で各々0.95~1.05であり、Fe量に対しFe3+が5mol%未満であり、BET比表面積が6~30m/gであり、残存カーボン量が0.5~8wt%であり、残存硫黄量が0.08wt%以下であり、オリビン構造以外の不純物結晶相LiPOの量が5wt%以下であり、結晶子サイズが25~300nmであり、凝集粒子径が0.3~20μmであり、圧縮成型体密度が2.0~2.8g/ccであり、粉体電気抵抗率が1~1.0×10Ω・cmであることを特徴とするオリビン型構造のリン酸鉄リチウム粒子粉末である(本発明8)。 
 また、本発明は、本発明8記載のオリビン型構造のリン酸鉄リチウム粒子粉末、0.1~10wt%の導電補助剤のカーボン及び1~10wt%の結着剤を複合化させた1.8g/cc以上の密度の二次電池正極材シートである(本発明9)。
 また、本発明は、本発明9記載の二次電池正極材シートを用いて作製した二次電池である(本発明10)。
 本発明に係るオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法は低コストで、環境負荷が小さく製造でき、その方法で得られる粉末は添加元素が均一に固溶、或いは表面修飾により欠陥構造を持つため電子とLiイオンの移動を容易にし、且つ、凝集粒子が制御されているため充填性の高いものである。また、それを正極活物質として用いた二次電池は電流負荷特性においても高容量が得られ、且つ十分に充放電を繰返し使える。
 また、具体的には、本発明に係るオリビン型LiFePOの複合酸化物粉末は、0.5t/cm以上での圧縮成型体密度が2.0g/cc以上であるので充填性が向上し、体積あたりのエネルギー密度を向上させることができる。
 更に、本発明に係るオリビン型構造のLiFePO粉末は、リチウムとリンの含有量が鉄に対して各々0.95~1.05のmol比、Fe量に対しFe3+が5mol%未満、BET比表面積6~30m/g、残存カーボン量0.5~8wt%、残存硫黄量0.08wt%以下、オリビン構造以外の不純物結晶相LiPOの量が5wt%以下、結晶子サイズ25~300nm、凝集粒子径0.3~20μm、圧縮成型体密度2.0~2.8g/cc、粉体電気抵抗率1~10Ω・cmの粉体特性を有し、また、二次電池充放電時の電流負荷特性と充放電繰り返し特性を向上させることが出来る。
 従って、本発明に係るオリビン型構造のLiFePO粉末は、非水溶媒系二次電池用の正極活物質として好適である。
本発明におけるオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法のフローチャートである。 表1記載のFe鉄原料の走査型電子顕微鏡による二次電子像である。 実施例1で得られた第二工程後のリチウム、リン、鉄元素含有前駆体の走査型電子顕微鏡による反射電子像である。 実施例1で得られたオリビン型構造のリン酸鉄リチウム粒子粉末の走査型電子顕微鏡による二次電子像である。 実施例5で得られたオリビン型構造のリン酸鉄リチウム粒子粉末の高分解能TEM明視野像である。 実施例5で得られたオリビン型構造のリン酸鉄リチウムの粒子内部の制限視野電子線回折パターンである。 実施例5で得られたオリビン型構造のリン酸鉄リチウムの粒子表面の局所元素分析EDSスペクトルである。 実施例7で得られたオリビン型構造のリン酸鉄リチウム粒子粉末のX線回折パターンのRietveld解析結果である。 表5記載のシート番号2の放電特性である。
 本発明の構成をより詳しく説明すれば次の通りである。
 まず、本発明に係る正極活物質の製造法について述べる。
 本発明に係るオリビン型構造のリン酸鉄リチウム粒子粉末は、元素Na、Mg、Al、Si、Cr、Mn、Ni(以下、「異種金属元素」という)の添加元素を固溶、或いは吸着させた鉄原料と、リチウム原料及びリン原料と均一に精密混合し、適切な熱処理で得ることができる。
 本発明において、異種金属元素(Na、Mg、Al、Si、Cr、Mn、Ni)を固溶させた鉄原料は、0.1~1.8mol/lの硫酸第一鉄、或いは硫酸第二鉄と、異種金属元素を含有硫酸塩、硝酸塩、塩化物、或いは有機物を、所定のmol比となるように混合溶液を作製する。該混合溶液に0.1~18.5mol/lのアルカリ水溶液を攪拌された反応槽へゆっくり供給し、反応槽のpHが8以上、温度が室温~105℃になるように保持しながら、必要により空気酸化反応を行うことで得ることができる。
 また、場合により、生成した鉄酸化物、或いは含水酸化物に、添加元素含有硫酸塩、硝酸塩、塩化物、或いは有機物を、所定のmol比となるように吸着させても構わない。
 有機物としては、生成する鉄酸化物又は含水酸化物に取り込まれやすい若しくは吸着しやすいカルボン酸塩、アルコール類、糖類等がある。
 一方、アルカリ源として、NaOH、NaCO、NHOH、エタノールアミン等が用いられ、不純物硫酸イオンの除去と該添加物のFeに対する組成比制御のため濾過洗浄、或いはデカンテーション洗浄を行う。装置として、プレスフィルター、フィルターシックナー等がある。
 得られる鉄酸化物、或いは含水酸化物の粒径制御の手段として、反応濃度、温度、pH、時間、空気酸化の程度等を制御すればよい。得られる平均一次粒子径が5~300nmのFe、α-FeOOH、γ-FeOOH、δ-FeOOHのうち少なくとも1種を含むものを鉄原料する。
 本発明におけるリチウム原料、及びリン原料はLiOH、LiOH・nHO(主にn=1)LiCO、HPO、(NH)HPO、(NHHPO、LiHPO、LiPO等である。(NH)HPO、(NHHPOはHPOとのNHOHによる共沈法、LiHPOはHPO溶液のLiOH又はLiOH・nHO水溶液の混合溶液の蒸発乾固、LiPOはHPO溶液のLiOH又はLiOH・nHO水溶液の混合による共沈法で得られる。
 これらリチウム原料、及びリン原料の平均粒径は10μm以下であることが好ましく、上記記載の鉄原料と所定のオリビン構造のリン酸鉄リチウム粒子粉末が得られるよう所定量混合する(第一工程)。
 装置として、ヘンシェルミキサー、らいかい機、ハイスピードミキサー等がある。
 第一工程で得られた混合物を、その凝集粒子径が0.3~5.0μmとなるように混合物を調整する(第二工程)。好ましくは、混合物を電子顕微鏡で観察した場合、Fe元素が空隙を除いた2μm×2μmの視野内に19/20以上の割合で存在することである。
 第二工程の調整方法は、主としてリチウム原料及びリン含有原料の粉砕を伴う鉄原料との精密混合であり、ボールミル、振動ミル、媒体攪拌型ミルが用いられる。この場合乾式に比べ湿式による調整が好ましい前駆体を作製しやすいが、主原料、及び添加物が溶媒に溶解しないよう選択する必要がある。
 混合物の凝集粒子径が0.3~5.0μmの範囲外となる場合、第三工程後に得られるLiFePOは粒成長を行い、満足する電池特性は得られない。
 混合物を電子顕微鏡で観察した場合、Fe元素が空隙を除いた2μm×2μmの視野内に19/20以上の割合で存在するよう精密混合しない場合、第三工程後に得られるLiFePOは粒成長を行い、満足する電池特性は得られない。また、19/20以上の割合の場合、経験的に、好ましいLiFePOが作製される。一方、凝集粒子径は第一工程で添加された有機物と適度な乾式の圧粉により制御される。
 Fe元素が空隙を除いた2μm×2μmの視野内に19/20以上の割合で存在することの判定に、例えば、走査型電子顕微鏡による二次電子像と反射電子像によるFe原料の確認が行われる。Fe原料の形状は第二工程の前後でほとんど変化が無く、二次電子像の鉄原料形状と反射電子像による輝度の高い部分をFe元素とした。
 本発明による、オリビン型構造のLiFePO粉末の凝集粒子径は、焼成前後、即ち、第二工程と第三工程を経た後、得られるオリビン型構造のリン酸鉄リチウム粒子粉末の凝集粒子径の変化はほとんどなく、第二工程で調整する必要がある。
 第二工程で得られた前駆体を、酸素濃度0.1%以下の不活性ガス、又は還元性ガス雰囲気下で、温度250~750℃で焼成を行う(第三工程)。
 装置として、ガス流通式箱型マッフル炉、ガス流通式回転炉、流動熱処理炉等がある。不活性ガスとして、N、Ar、HO、CO或いはその混合ガスが用いられる。還元性ガスとして、H、又はCO、或いはこれらのガスと前記不活性ガスの混合ガスが用いられる。
 Fe原料中に含まれるFe3+は添加元素C、或いは還元性ガスによりFe2+へと変化し、LiFePOが生成するため、酸素濃度0.1%以下の雰囲気で焼成を行う必要がある。経験的にLiFePOは350℃以上で十分に生成するが、より固相反応を簡潔させ、且つ、添加元素Cの電子伝導性の高いグラファイト相を形成させるため、400~700℃で数時間熱処理を行うことが好ましい。
 従来、或いは経験的に、Fe3+を含む原料は焼成の過程でFe2+を含む原料に比べて粒成長しやすい傾向がある。一方、Fe原料として固相反応性の高い微細なものを用いることが望ましく、また、精密混合のしやすさを考慮して、好ましい平均一次粒子径は30~250nmである。
 Li、Fe、P原料組成比、及びFeに対する該添加物元素の組成比は、添加元素Cを除いて、熱処理前後で変化することはほとんどなく、第一工程で得られたものと同等の組成比である。添加元素CはFe3+のFe2+への還元熱処理により50%未満に減少することがあり、予め、各焼成条件で残存するCの量を測定し、第一工程で調整する必要がある(本発明1から3)。
 本発明における原料を混合する第一工程において、原料を水溶媒中で混合することが好ましく、原料の固形分濃度が30wt%以上となるようにスラリー濃度を調整することがより好ましい。
 また、前記第一工程において、アスコルビン酸又はショ糖を、生成するLiFePOに対し1~25wt%添加することが好ましい。アスコルビン酸又はショ糖をスラリー中に添加することによってLi、Fe、Pの反応を促進し、乾燥時に組成偏析が少なくなり、焼成後、異相を生成しにくくなる。アスコルビン酸又はショ糖の添加量が1wt%未満の場合、添加する効果が現れない。25wt%を超える場合、効果的に異相析出低減できない。より好ましくは2~10wt%である。
 また、前記第一工程の反応温度は、50℃以下が好ましい。混合時の温度が50℃を超える場合、オリビン単相が得られにくい。より好ましくは室温から45℃であり、さらにより好ましくは25~43℃である。
 また、前記第一工程のスラリーのpHを4~8に調整することが好ましい。pHが4未満の場合、溶液中にPイオンが存在し、乾燥中偏析し、焼成後、異相を生成しやすくなる。pHが8を超える場合、原理的に難しく、より好ましくは4.5~6.5である。
 本発明において、第三工程の熱処理で酸素濃度0.1%以下の不活性ガスを用いる場合、積極的にFe3+のFe2+への有機還元を促進させるために、還元能力の高い有機物を含む鉄原料を用いることが可能であり、その量は生成するリン酸鉄リチウム粒子粉末に対して、残存カーボン量が0.5~8.0wt%以下となるよう調整する。還元能力の高い有機物としては、鉄酸化物、或いは含水酸化物に取り込まれやすい、或いは吸着しやすいカルボン酸塩、アルコール類、糖類が好ましい。但し、前記還元能力の高い有機物は鉄原料を還元させること無く、焼成で還元させるよう取り扱いに注意が必要である(本発明4)。
 第三工程で低温焼成を行うために、第二工程中、或いは第三工程の前に添加元素Cに関して導電性の高いカーボンブラックを混合することも可能である。使用可能なカーボンブラックとして、例えば、アセチレンブラック(電気化学工業(株)製)やケッチェンブラック(ライオン(株)製)がある。これにより、400~500℃といった低温焼成でも、得られるオリビン型構造のLiFePO粉末の圧縮成型体は1~10Ω・cmの電気抵抗率を満たし、性能の高い二次電池特性を示す。
 本発明において、第三工程の熱処理で酸素濃度0.1%以下の不活性ガスを用いる場合、積極的にFe3+のFe2+への有機還元を促進させるために、第二工程中、或いは第三工程の前に前記還元能力の高い有機物を添加することが可能である。その量は生成するリン酸鉄リチウム粒子粉末に対して、残存カーボン量が0.5~8wt%以下となるよう調整することが可能ある。鉄原料に対する溶液反応中の取り込み易さや吸着といった制限は無いものの、前記有機還元を促進させるために、Li、Fe、P前駆体中に微細で均一に存在する必要がある。その有機物として、例えばポリエチレン等の樹脂粉末が用いられる。
 本発明で得られるオリビン型LiFePO複合酸化物粉末の凝集粒子径は、前述の記述どおり、第三工程、即ち、焼成前後でほとんど変化することがない。そのため、第二工程中、或いは第三工程の前に有機系結着剤を添加することにより前駆体の凝集粒子径を0.3~30μmに調整し、焼成後、0.3~30μmの凝集粒子径のLiFePOを得ることが可能である。
 本発明において、0.3~30μmの前駆体凝集粒子径制御剤としては、例えば、有機系結着剤であるポリビニルアルコール、ショ糖等である。
 また、本発明において、第二工程中、或いは第三工程の前に前記導電性カーボン、前記焼成中の還元剤、前記前駆体凝集粒子径制御剤の少なくとも1種を添加することもでき、生成するリン酸鉄リチウム粒子粉末に対して、残存カーボン量が0.5~8wt%となるよう調整する(本発明5の工程Aの説明)。
 本発明において、熱処理の際、水蒸気発生、及び、前駆体Fe3+還元に伴う酸化性ガスの発生に伴い、局所的なガス濃度分布が品質に影響を与えることもある。そのため、所謂仮焼を経て、前記炭素含有添加剤混合と粉砕と混合再び行い、再度、熱処理(本焼成)を行うことも可能である。その際、仮焼温度は250~500℃程度と低く、本焼成温度は400~750℃と高温で行うことが好ましい。仮焼と本焼成の間の操作の順序は特に限定はしない。
 また、本発明において、二回目も熱処理の前に添加される炭素含有添加剤は、導電性カーボン、有機還元剤、前駆体凝集粒子径制御用結着剤であり、これら少なくとも1種を混合することも可能である(本発明6の工程Aの説明)。
 本発明におけるオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法のフローチャートを図1に示す。
 次に、本発明に係る非水電解質二次電池用オリビン型構造のLiFePO粉末について述べる。
 本発明に係るオリビン型構造のLiFePO粉末の組成は、LiFeP(0.95<x、y<1.05)である。x、zが前記範囲外の場合には、異相を形成しやすく、場合によっては粒成長を促進し、性能の高い電池特性のLiFePOを得ることができない。より好ましくは0.98≦x、y≦1.02である。また、異種金属元素(Na、Mg、Al、Si、Cr、Mn、Ni)の含有量は、Feに対して、各々、0.1~2mol%であることが好ましい。
 本発明に係るオリビン型LiFePO複合酸化物粉末のFe3+/Feのmol%は5%未満である。焼成後に生成したLiFePOは空気暴露により酸化され、Fe3+のアモルファス相を形成することが知られている。形成されたFe3+化合物は二次電池の充放電に寄与することなく、負極でデンドライトを形成し、電極内部短絡を促進させる可能性が高く、極力低減する必要がある。
 本発明に係るオリビン型構造のLiFePO粉末のBET比表面積は6~30m/gである。BET比表面積値が6m/g未満の場合には、LiFePO中のLiイオンの移動が遅いため、電流を取出すことが困難である。30m/gを超える場合には、正極の充填密度の低下や電解液との反応性が増加するため好ましくない。好ましくは8~28m/gであり、より好ましくは9~25m/gである
 本発明に係るオリビン型LiFePO複合酸化物粉末の残存カーボン量は0.5~8.0wt%である。炭素含有率が0.5%未満の場合、熱処理時の粒子成長を抑制できず、また、得られた粉体の電気抵抗が高くなり、二次電池の充放電特性を悪化させる。また8.0%を超える場合、正極充填密度の低下し、二次電池の体積当たりのエネルギー密度が小さくなる。より好ましくは0.6~6.0%である。
 本発明に係るオリビン型構造のLiFePO複合酸化物粉末は、不純物の硫黄量が0.08wt%以下で、非水電解質二次電池において良好な保存特性が得られる。前記残存量が0.08wt%を超える場合、硫酸リチウムなどの不純物が形成され、充放電中にそれらの不純物が分解反応を起こして、高温保存時の電解液との反応が促進され保存後の抵抗上昇が激しくなる。より好ましくは0.05wt%以下である。
 本発明に係るオリビン型構造のLiFePO粉末は、オリビン構造以外、LiPOの結晶相が5wt%以下で検出されてもよい。LiPOが検出される場合、時として、固相反応で得られたLiFePO粒子が微細である場合もあり、結果として放電容量も高くなる場合がある。一方、LiPO自身充放電に寄与しないため5wt%以下が望ましい。
 本発明に係るオリビン型構造のLiFePO粉末の結晶子サイズは25~300nmである。他の粉体特性を満たしながらの25nm以下の粉末を該製造法で量産することは極めて困難であり、また、300nmの結晶子サイズではLiが移動するのに時間を要し、結果として、二次電池の電流負荷特性が悪化させる。好ましくは30nm~200nm、より好ましくは40nm~150nmある。
 本発明に係るオリビン型構造のLiFePO粉末の凝集粒子径は0.3~30μmである。0.3μm未満の場合には、正極充填密度の低下や電解液との反応性が増加するため好ましくない。一方、他の粉体特性を満たしながらの30μmを超える粉末を該製造法で量産することは極めて困難である。好ましくは0.5~15μmである。
 本発明に係るオリビン型構造のLiFePO粉末の圧縮成型体密度は、2.0g/cc以上であることが好ましい。汎用品の層状化合物LiCoOの真密度は5.1g/ccであるのに対して、LiFePOの真密度は3.6g/ccと低い。そのため、好ましい圧縮成型体密度は真密度の50%以上の2.0g/cc以上であり、真密度に近づけば近づくほど充填性は良い。一方、他の粉体特性を満たしながらの2.8g/cc以下の粉末を該製造法で量産することは極めて困難である。本発明に係るオリビン型構造のLiFePO粉末は残存カーボン量が少なく、一次粒子同士が凝集しており、圧縮成型体密度が高いと考えられる。
 本発明に係るオリビン型構造のLiFePO粉末の粉体電気抵抗率1~10Ω・cmであり、より好ましくは10~5×10Ω・cmである。
 次に、本発明に係るオリビン型構造のLiFePOを正極活物質として用いた正極シートと非水電解質二次電池について述べる。
 本発明に係る正極活物質を用いて正極シートを製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、グラファイト等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。溶媒として、例えば、N-メチル-ピロリドンを用い、45~105μm以下に篩い分けられた該正極活物質と該添加物を含むスラリーを蜂蜜状になるまで混練する。得られたスラリーを溝が25μm~500μmのドクターブレードで集電体上に塗布する。該塗布速度は約60cm/secで、集電体として、通常約20μmのAl箔を用いる。溶媒除去と結着剤軟化のため、乾燥は80~180℃で、Fe2+の非酸化性雰囲気で行う。該シートを1~3t/cmの圧力になるようカレンダーロール処理を行う。前記シート化の工程で、室温においてもFe2+のFe3+への酸化反応が生じるため、極力、非酸化性雰囲気で行うことが望ましい。
 得られた正極シートの集電体上の正極活物質、カーボン、及び結着剤からなる正極密度は1.8g/cc以上である。本発明に係る正極シートは、該正極活物質の圧縮成型体密度が2.0g/cc以上と高く、また、該正極活物質の圧縮成型体の電気抵抗率が1~10Ω・cmと低いためシート作製時のカーボン添加量を抑制でき、また、該正極活物質のBET比表面積が6~30m/gと低いため、結着剤添加量を抑制でき、結果として密度の高い正極シートが得られる。
 負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、黒鉛等を用いることができ、正極と同様のドクターブレード法により負極シートは作製される。
 また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。
 さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。
 本発明に係る正極シートを用いて製造した二次電池は、室温のC/10における放電容量150mAh/g以上で、且つ、その50回の充放電繰り返し特性における容量劣化率が10%未満、室温の1Cにおける放電容量が120mAh/g以上で、且つ、その50回の充放電繰り返し特性における容量劣化率が5%未満、室温の5Cにおける放電容量が80mAh/g以上の特性である。ここで、容量劣化率とは、初めの充放電サイクルで得られる放電容量Cから50回目の充放電サイクルで得られる放電容量C50とする、(C50-C)/C×100で表される。放電容量CからCn+1(nは整数)値は連続的に変化し、妥当性のある評価を確認している。
 C/20とは20時間でLiFePOの理論容量170mAh/gの電流が流れるよう固定した電流値であり、また、5Cとは1/5時間でLiFePOの理論容量170mAh/gの電流が流れるよう固定した電流値である。Cの係数が高くなるほど、高い電流負荷特性を意味する。
 充電時の電流値は特に限定しないが、本発明において、C/20の定電流値を用い、ほぼ、理論容量が得られることを確認した。また、充電と放電時の電圧範囲は特に限定しないが、本発明において、2.0~4.5V間で行った。
<作用>
 本発明に係るオリビン型構造のLiFePO粉末は安価で安定なFe3+を含む鉄原料を用いるため、低コストで、環境負荷が小さく製造できる。前記二次電池特性を満たすのは、本発明7記載の粉体特性を満たすため、特に、修飾元素と固溶元素制御したため、電流負荷特性においても高容量が得られ、且つ十分に充放電を繰返し使えると本発明者は推定している。
 本発明の代表的な実施の形態は次の通りである。
 本発明の第一工程における、鉄原料のFe濃度は滴定(JIS K5109)により定量化し、結晶相の同定にX線回折装置RINT-2500[(株)リガク製]を用いて、Cu-Kα、40kV,300mAにより行い、結晶化した添加元素の存在が無いことを確認した。
 鉄原料中に添加された元素CはEMIA-820[(株)ホリバ製作所製]を用いて鉄原料を燃焼炉で酸素気流中にて燃焼させ、定量化した。
 Li、Fe、P主元素とC以外に添加された元素Na、Mg、Al、Si、Ca、Ti、Cr、Mn、Co、Ni、Znは発光プラズマ分析装置ICAP-6500[サーモフィッシャーサイエンティフィク社製]を用いて測定した。
 鉄原料の平均一次粒子径の算出に日立製S-4800型の走査型電子顕微鏡(SEM)を用い、得られた画像から判断できる約200個の粒子の短軸と長軸を実測し、平均一次粒子径を算出した。α-FeOOHについてのみ長軸と短軸との比が大きく異なるため、そのアスペクト比を算出した。
 本発明に用いた鉄原料の特性を表1に記す。α-FeOOHの鉄原料番号4のアスペクト比(長軸径/短軸径)は5で、鉄原料番号5のアスペクト比(長軸径/短軸径)は2.5であった。
Figure JPOXMLDOC01-appb-T000001
 リチウム、及びリン含有主原料のLi、P濃度はpH計と塩酸、又はNaOH試薬を用いた中和滴定により測定した。
 リチウム、及びリン含有主原料に含まれる不純物元素濃度は前記記載発光プラズマ分析装置を用い、本発明に影響を与えない、或いは、添加量を補正できる濃度であった。
 本発明の第二工程における、Fe元素が空隙を除いた2μm×2μmの視野内に19/20以上の割合で存在することの判定には、前記走査型電子顕微鏡SEMを用いた。
 前駆体又はオリビン型構造のリン酸鉄リチウム粒子粉末の凝集粒子径の測定には、乾式法のレ-ザ-回折・散乱型粒度分布計のHELOS((株)日本レ-ザ-製)を用い、メジアン径D50で定量化した。
 本発明の製造されたオリビン型構造のリン酸鉄リチウム粒子粉末において、試料溶解にオ-トクレ-ブを用い、200℃の酸溶液中で溶解させた。鉄に対するリチウムとリンの含有量は前記記載発光プラズマ分析装置を用いた。
 添加元素の表面修飾と均一固溶の区別に、前記記載装置によるX線回折パタ-ンのRietveld解析と、JEOL製JEM-2010F高分解能TEMとその付属EDSによる局所元素分析を用いた。X線回折パタ-ンは最高ピ-ク強度のcount数が5000~8000になるよう、0.02°のステップで、2.5°/minで2θが15~120°の範囲で測定した。Rietveld解析プログラムにRIETAN2000を用いた。その際、結晶子の異方的な広がりが無いと仮定し、プロファイル関数としてTCH擬ヴォイド関数を用い、その関数の非対称化にFinger等の手法を用い、信頼度因子S値が1.5を切るように解析した。
 このプログラムは、オリビン構造以外の不純物結晶相の同定、オリビン構造以外の不純物結晶相LiPOの定量化、及びLiFePO粒子の80nm以上の場合の結晶子サイズ定量化に適用した。80nm未満のLiFePO粒子の結晶子サイズ定量化に、(101)面のX線回折パタ-ンの半値幅から算出した。また、EDSによるスペクトルは最高ピ-ク強度が60を超えて終了した。
<参考文献>
 F. Izumi and T. Ikeda, Mater. Sci. Forum, 2000, Vol. 198, p.321-324.
 Fe量に対しFe3+の定量化に前記記載のFe量とFe2+滴定(JIS K1462)から算出した。
 比表面積は試料を窒素ガス下で120℃、45分間乾燥脱気した後、MONOSORB[ユアサアイオニックス(株)製]を用いてBET1点連続法により求めた比表面積である。
 残存硫黄量は前記炭素、硫黄測定装置EMIA-820[(株)ホリバ製作所製]を用いて定量化し、残存カ-ボン量にも適用した。
 圧縮成型体密度は13mmφの治具で1.5t/cmに圧粉し、重量と体積から算出した。また、同時に2端子法により粉体電気抵抗率を測定した。
 オリビン型LiFePO複合酸化物を用いてCR2032型コインセルによる二次電池特性を評価した。
 用いた導電補助剤のカ-ボンは、アセチレンブラック、ケッチェンブラック、グラファイトKS-6である。用いた結着剤は重合度54万のポリフッ化ビニリデン(Aldrich製)で、N-メチルピロリドン(関東化学(株)製)に溶解した。
2cmに打ち抜いた正極シ-ト、17mmφに打ち抜いた厚さ0.15mmLi負極、19mmφにセパレ-タ-(セルガ-ド#2400)、1mol/lのLiPFを溶解したECとDEC(体積比3:7)で混合した電解液(キシダ化学製)用いて、CR22032型コインセル((株)宝泉製)を作製した。
[実施例1]
 表1記載の番号1の鉄原料を用いて、10gのリン酸鉄リチウム粒子粉末ができるようLiHPOを表2記載の仕込み比Li/Fe=1.01、P/Fe=1.01で、ライカイ機を用いて混合した(第一工程)。
 次いで、第一工程で得られた混合粉末と所定量のアセチレンブラックをZrO製のボ-ルミル容器にスラリ-濃度30wt%になるようエタノ-ルで調整し、5mmφのZrOボ-ルを用いて24時間粉砕、精密混合し、室温での該スラリ-を乾燥(溶媒除去)し、前駆体を得た。
 ここで用いた鉄原料の二次電子像を図2に、得られた前駆体の反射電子像を図3に示す。用いた鉄原料は200nmの平均一次粒子径であった。図2の反射電子像に2μm×2μmの正方形を24個書き加え、その正方形内にFe元素が空隙を除いた視野内に存在することの確認がなされた。得られた前駆体の凝集粒子径D50は1.4μmであった(工程A、第二工程)。
 得られた前駆体をアルミナ製坩堝に入れ、表2記載の熱処理を施した。即ち、昇温速度200℃/hr、到達温度500℃、到達温度保持時間2時間、使用ガス95%N-5%H、ガス流量1L/minとした(第三工程)。
 得られた粉末の粉体特性を表3に示す。得られた粉末は微細で、オリビン型構造を有し、第一工程で調整したLi、Fe、Pの組成比と相違なく、また、添加元素Cを除く、すべての添加元素とFeの組成比は測定誤差範囲3%内で一致した。図4に得られたオリビン型構造のリン酸鉄リチウム粒子粉末のSEM写真(二次電子像)を示す。
 以下の実施例、及び比較例の実験条件を表2に、粉体特性を表3に記す。
[実施例2、3、8]
 表2記載の内容で実験を行った。記載の無い部分は実施例1と同様に行った。但し、所定量の炭素含有添加物は、第二工程後、乾式ボ-ルミルにて配合した。得られたオリビン型構造のリン酸鉄リチウム粒子粉末の粉体特性を表3に示す。微細で、オリビン型構造を有する該粉末において、実施例1と同様、Li、Fe、Pの組成比と添加元素Cを除く、すべての添加元素とFeの組成比は測定誤差範囲3%内で一致した。
[実施例4、5、7]
 150gのリン酸鉄リチウム粒子粉末ができるよう主原料を所定量湿式(水溶媒)ボ-ルミルにて混合後、70℃、12時間で乾燥した。リチウム及びリン含有主原料LiPOとHPOを用いた(第一工程)。
 5mmφZrO乾式ボ-ルミルにて該乾燥物と所定量の炭素含有添加物を24時間粉砕し(工程A、第二工程)、400℃、2時間窒素雰囲気下で仮焼を行った(第三工程)。乾式ボ-ルミルで粉砕、混合後、650℃、2時間窒素雰囲気下で再度熱処理を行った(A操作)。
 得られたオリビン型構造のリン酸鉄リチウム粒子粉末の粉体特性を表3に示す。微細で、オリビン型構造を有する該粉末において、実施例1と同様、Li、Fe、Pの組成比と添加元素Cを除く、すべての添加元素とFeの組成比は測定誤差範囲3%内で一致した。
 図5~7に実施例5で得られた高分解能TEM明視野像(図5)、制限視野電子線回折パタ-ン(図6)及び局所元素分析EDSスペクトル(図7)を示す。粒子中央に当てた電子線回折パタ-ンから、明視野像はオリビン構造のリン酸鉄リチウム粒子粉末の晶帯軸[u, v, w]=[0, 1, 1]方向に並行に電子線を透過させた像であり、表面はアモルファス相であった。このアモルファス相のEDS分析からCとSiの偏析が確認された(Cuは試料を乗せたマイクログリッドから検出)。同一サンプルで、他の箇所の粒子も同様に観察したところ、CとSiの偏析の存在が確認され、他の元素の偏析は確認されなかった。
 図8に実施例7のX線回折パタ-ンのRietveld解析結果を示す。点線で示されるのは実測値の回折パタ-ンで、曲線で示されるのは計算値の回折パタ-ンで、一番下の横一直線状の波形は回折パタ-ンの実測値と計算値の差で、直線に近いほど、実測値と計算値が一致することを意味する。これらの間にある縦棒は上段がLiPOのピ-ク位置で、下段がLiFePOのピ-ク位置で、これら以外に回折ピ-クが観測されず、信頼度因子Rwp=11.93、S=1.48で比較的信頼性のあるデ-タであり、他の結晶相は認識できなかった。実施例1~8すべてのサンプルにおいて同解析を行い、LiPO以外の不純物結晶相は観察されず、添加元素による結晶性の化合物偏析は確認されなかった。
[実施例6]
 表2に記すよう、実施例4、5、7と同様の実験を行った。但し、所定量の炭素含有添加物は、第二工程後行い、また、焼成後の仮焼、粉砕、混合(A操作)を施すことなく、熱処理は1度で行った。水素中400℃、2時間保持し、その後、Nに切り替えて、650℃、2時間保持した。微細で、オリビン型構造を有する該粉末において、他の実施例と同様、Li、Fe、Pの組成比と添加元素Cを除く、すべての添加元素とFeの組成比は測定誤差範囲3%内で一致した。
[比較例1]
 表2に記す内容で、実施例1同様の第一工程、第二工程を経て、仮焼、粉砕、混合、カ-ボン源添加、再焼成を行った。微細な粒子径のリン酸リチウムが生成したものの、低い成型体密度であった。
[比較例2]
 表2に記す内容で、実施例4同様の第一工程を経て、該第二工程を経由せず、所定量の炭素含有添加物をライカイ機で混合後(工程A)、第三工程の熱処理を行った。得られた粉末はオリビン構造を有するものの、Fe3+不純物が多く、微細でなく、電気抵抗が高かった。
[比較例3]
 表2に記す内容で、実施例1同様の第一工程を経て、所定量の炭素含有添加物をライカイ機で混合後(工程A)、第二、第三工程を経て、粉砕、混合後、再焼成を行った(A操作)。第一工程におけるLi,Fe,P組成比を本発明の範囲外としたため、得られた粉末は比表面積が小さく、残存カ-ボンが少なく、不純物結晶相LiPOが多く、結晶子サイズも大きかった。
[比較例4]
 表2に記す内容で、実施例1同様の第一工程を経て、所定量の炭素含有添加物をライカイ機で混合後、第二工程を経由せず、第三工程を経てリン酸鉄リチウム粒子粉末を作製した。その粉体特性は残存硫黄が高く、粗大な粒子であった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 次に、本発明における実施例と比較例で得られたオリビン型構造のリン酸鉄リチウム粒子粉末を正極活物質として用い、活物質:Ketjen Black:PVdF=9:1:1(wt%)になるよう調整して、ギャップ100μmのドクタ-ブレ-ドで電極スラリ-をAl箔集電体上に塗布した。シ-ト乾燥後、3t/cmに加圧し、2cmに打ち抜いた。この集電体上の正極の密度を表4に示す。また、このシ-トを正極として用いた二次電池の特性も表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4記載の実施例の電池特性において、本発明に係るオリビン型構造のリン酸鉄リチウム粒子粉末は、高い正極密度と二次電池特性を満たすことがわかった。
 表4記載の比較例の電池特性において、正極活物質粉末の圧縮成型密度が低い比較例1は正極密度も低かった。5Cにおける放電容量が低かったのは添加物の影響が現れなかったためと考えている。結晶子サイズの大きい比較例2~4はほとんどすべての放電容量が低かった。比較例4は容量劣化率も高く、添加元素の表面修飾と均一固溶が不十分であったと考えている。
 なお、実施例1を用いた電池の0.1C容量劣化率(%)は3%であり、1C容量劣化率(%)は1%であった。一方、比較例4を用いた電池の0.1C容量劣化率(%)は12%であり、1C容量劣化率(%)は6%であった。従って、本発明に係る二次電池は、優れた容量維持率を有することが分かった。
 次に、実施例5で得られた活物質の電極組成比を変えてシ-ト化したときの正極膜厚、密度、及びその二次電池特性を示す。ここで、正極膜厚は正極シ-トに含まれるAl箔集電体の厚みを差し引いた値であり、塗料化時の溶媒添加量とドクタ-ブレ-ドの溝の深さで調整した。また、添加カ-ボンはアセチレンブラックとKS-6グラファイト重量比1:1のものを用いた。PVDF、カ-ボン量が多くなるにつれ、正極密度は低下した。しかしながら、これらすべての電極組成で高い二次電池特性が得られた。
Figure JPOXMLDOC01-appb-T000005
 最後に、表4記載のシ-ト番号2の放電特性を図9に示す。測定はC/20、C/10、・・・、10Cの順で放電させ、最後に2回目のC/20放電を行った。比較的良好な放電曲線を描き、他のシ-トも同様の曲線を示すのを確認した。
[実施例9]
 実施例6と同一のLi、P、Fe原料スラリ-(固形分濃度を35wt%に調整)に、アスコルビン酸を生成するLiFePOに対し5wt%添加し、40℃、3時間反応後、pH=5のスラリ-を得た。70℃で乾燥後、第二、第三工程は実施例6と同様に行った。第二工程後の精密混合物はSEM観察で2μm×2μm視野内にFe元素の存在は19/20以上であり、前駆体凝集粒子径D50は3.5μmであった。
[実施例10]
 実施例6と同一のLi、P、Fe原料スラリ-(固形分濃度を50wt%に調整)に、アスコルビン酸を生成するLiFePOに対し5wt%、ショ糖を同様に5wt%添加し、室温(25℃)で、1日間反応後、Li、P、Fe含有ペ-ストを得た。70℃で乾燥後、第二、第三工程は実施例6と同様に行った。第二工程後の精密混合物はSEM観察で2μm×2μm視野内にFe元素の存在は19/20以上であり、前駆体凝集粒子径D50は3.1μmであった。
 実施例9と10で得られたオリビン型構造のリン酸鉄リチウムの粉体特性と電池特性を表6に示す。電池特性は表4記載と同様の方法でコインセルを作製し、評価した。
Figure JPOXMLDOC01-appb-T000006
 以上の結果から本発明に係るオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法は、低コストで、環境負荷の少ない製法である。また、本発明に係るオリビン型構造のリン酸鉄リチウム粒子粉末は、高充填性の正極シ-トを作製することが可能であり、それを用いた二次電池は電流負荷特性においても高容量が得られ、且つ十分に充放電を繰返し使えることが確認された。
 本発明は低コストで、環境負荷の少ない製法で作製されたオリビン型構造のリン酸鉄リチウム粒子粉末を二次電池正極活物質として用いることで、体積当りのエネルギ-密度が高く、高電流負荷特性においても高容量が得られ、且つ十分に充放電を繰返し使える非水溶媒系二次電池を得ることができる。

Claims (10)

  1.  鉄原料として鉄酸化物又は含水酸化物を用い、元素Na、Mg、Al、Si、Cr、Mn、Niのうち少なくとも1種をFeに対し各々0.1~2mol%含み、且つ、元素CがFeに対して5~10mol%含み、Fe量に対しFe2+が40mol%以下で、平均一次粒子径が5~300nmの鉄酸化物又は含水酸化物を、リチウム原料及びリン原料とともに混合する第一工程、得られた混合物の凝集粒子径が0.3~5.0μmとなるように調整する第二工程、次いで、第二工程を経た混合物を酸素濃度0.1%以下の不活性ガス、又は還元性ガス雰囲気下で、温度250~750℃で焼成を行う第三工程からなるオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法。
  2.  用いる鉄原料が、元素Na、Mg、Al、Si、Cr、Mn、Niのうち少なくとも1種をFeに対し各々0.1~2mol%の量で含み、且つ当該7種の元素合計量がFeに対して1.5~4mol%となるように含み、且つ、元素CがFeに対して5~10mol%含み、且つ、平均一次粒子径が5~300nmのFe、α-FeOOH、γ-FeOOH、δ-FeOOHのうち少なくとも1種を含む請求項1記載のオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法。
  3.  用いる鉄原料が、元素Na、Mg、Al、Si、Cr、Mn、Niのうち少なくとも1種をFeに対し各々0.1~2mol%の量で含み、且つ当該7種の元素合計量がFeに対して1.5~4mol%となるように含み、且つ、元素CがFeに対して5~10mol%含み、且つ、平均一次粒子径が5~300nmで長軸と短軸のアスペクト比が2以上の針状鉄原料である請求項2記載のオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法。
  4.  用いる鉄原料における添加元素Cが、酸素濃度0.1%以下の不活性ガス雰囲気下でFe3+をFe2+へ還元することが可能な有機物である請求項1~3の何れかに記載されたオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法。
  5.  第二工程の途中、或いは、第三工程の直前に、導電性カーボン、Fe3+のFe2+への還元能力のある有機物および有機系結着剤から選択される少なくとも1種を、生成するリン酸鉄リチウム粒子粉末の電子伝導補助剤、鉄原料に含まれるFe3+のFe2+への還元剤又は0.3~30μmの前駆体凝集粒子径制御剤として混合する工程Aを含む請求項1~4の何れかに記載のオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法。
  6.  第三工程の後、得られたリチウム、鉄およびリン主含有物を再粉砕し、再精密混合した後、当該再精密混合物に、導電性カーボン、Fe3+のFe2+への還元能力のある有機物および有機系結着剤から選択される少なくとも1種を再混合し、酸素濃度0.1%以下の不活性ガス又は還元性ガス雰囲気下で、温度250~750℃で再焼成を行う請求項1~5の何れかに記載のオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法。
  7.  請求項1~6の何れかに記載のオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法の原料を混合する第一工程において、原料の固形分濃度が30wt%以上となるようにスラリーを調整し、アスコルビン酸又はショ糖を生成するLiFePOに対し1~25wt%添加して、50℃以下で混合を行い、原料スラリーのpHを4~8に調整するオリビン型構造のリン酸鉄リチウム粒子粉末の製造方法。
  8.  オリビン型構造のリン酸鉄リチウム粒子粉末であって、リチウムとリンの含有量が鉄に対するmol比で各々0.95~1.05であり、Fe量に対しFe3+が5mol%未満であり、BET比表面積が6~30m/gであり、残存カーボン量が0.5~8wt%であり、残存硫黄量が0.08wt%以下であり、オリビン構造以外の不純物結晶相LiPOの量が5wt%以下であり、結晶子サイズが25~300nmであり、凝集粒子径が0.3~20μmであり、圧縮成型体密度が2.0~2.8g/ccであり、粉体電気抵抗率が1~1.0×10Ω・cmであることを特徴とするオリビン型構造のリン酸鉄リチウム粒子粉末。
  9.  請求項8記載のオリビン型構造のリン酸鉄リチウム粒子粉末、0.1~10wt%の導電補助剤のカーボン及び1~10wt%の結着剤を複合化させた密度1.8g/cc以上の二次電池正極材シート。
  10.  請求項9記載の二次電池正極材シートを用いて作製した二次電池。
PCT/JP2009/001374 2008-03-31 2009-03-26 リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池 WO2009122686A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/935,456 US20110091772A1 (en) 2008-03-31 2009-03-26 Process for producing lithium iron phosphate particles, lithium iron phosphate particles having olivine type structure, and positive electrode sheet and non-aqueous solvent-based secondary battery using the lithium iron phosphate particles
EP09727078.9A EP2277828B1 (en) 2008-03-31 2009-03-26 Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
CN2009801111827A CN101980956A (zh) 2008-03-31 2009-03-26 磷酸铁锂颗粒粉末的制造方法、橄榄石型结构的磷酸铁锂颗粒粉末、使用该磷酸铁锂颗粒粉末的正极材料片和非水溶剂类二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008094056 2008-03-31
JP2008-094056 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122686A1 true WO2009122686A1 (ja) 2009-10-08

Family

ID=41135094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001374 WO2009122686A1 (ja) 2008-03-31 2009-03-26 リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池

Country Status (6)

Country Link
US (1) US20110091772A1 (ja)
EP (1) EP2277828B1 (ja)
JP (1) JP5464322B2 (ja)
KR (1) KR101587671B1 (ja)
CN (2) CN101980956A (ja)
WO (1) WO2009122686A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100239909A1 (en) * 2008-10-22 2010-09-23 Lg Chem, Ltd. Cathode mix containing having improved efficiency and energy density of electrode
WO2011062232A1 (ja) * 2009-11-18 2011-05-26 三井化学株式会社 電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池
WO2011115211A1 (ja) * 2010-03-19 2011-09-22 戸田工業株式会社 リン酸マンガン鉄リチウム粒子粉末の製造方法、リン酸マンガン鉄リチウム粒子粉末、及び該粒子粉末を用いた非水電解質二次電池
WO2011114918A1 (en) * 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
JP2011210376A (ja) * 2010-03-28 2011-10-20 Niigata Univ Liイオン電池用正極活物質およびその製造方法
US20110269022A1 (en) * 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device
US20110287315A1 (en) * 2008-10-22 2011-11-24 Lg Chem, Ltd. Cathode active material providing improved efficiency and energy density of electrode
KR101186686B1 (ko) 2009-12-29 2012-09-27 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질의 제조 방법
JP2012229147A (ja) * 2011-04-27 2012-11-22 Nichia Corp オリビン型リチウム遷移金属酸化物及びその製造方法
CN102844916A (zh) * 2010-04-21 2012-12-26 株式会社Lg化学 橄榄石晶体结构的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
CN102859762A (zh) * 2010-04-21 2013-01-02 株式会社Lg化学 含有基于硫键的硫化合物的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
CN102893432A (zh) * 2010-04-21 2013-01-23 株式会社Lg化学 碳包覆的具有橄榄石晶体结构的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
JP2013032257A (ja) * 2011-06-28 2013-02-14 Nichia Corp オリビン型リチウム遷移金属酸化物及びその製造方法
EP2576439A1 (de) 2010-05-27 2013-04-10 Süd-Chemie AG Kohlenstoff -lithiumübergangsmetallphosphat -verbundmaterial mit einem niedrigen kohlenstoffgehalt
CN103066293A (zh) * 2011-10-20 2013-04-24 何金祥 锂离子电池正极材料的制备方法
JP2013120621A (ja) * 2011-12-06 2013-06-17 Toyota Motor Corp 非水系二次電池
US9812707B2 (en) * 2010-04-21 2017-11-07 Lg Chem, Ltd. Carbon-coated lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
CN107565132A (zh) * 2017-08-24 2018-01-09 高延敏 磷酸铁的制备方法及其制备的磷酸铁、磷酸铁锂的制备方法及其制备的磷酸铁锂以及锂电池

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201010944A (en) 2008-04-17 2010-03-16 Basf Se Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
TW200951066A (en) * 2008-04-17 2009-12-16 Basf Se Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
BRPI0919654B1 (pt) * 2008-10-22 2019-07-30 Lg Chem, Ltd. Fosfato de ferro-lítio do tipo olivina, mistura de catodo e bateria secundária de lítio
ES2384675T3 (es) * 2009-11-10 2012-07-10 Rockwood Italia Spa Procedimiento hidrotérmico para la producción de polvo de LiFePO4
JP5502518B2 (ja) * 2010-02-15 2014-05-28 旭化成イーマテリアルズ株式会社 リチウムイオン二次電池
JP5784292B2 (ja) * 2010-09-13 2015-09-24 三井金属鉱業株式会社 マグネタイト粒子
US8980126B2 (en) 2010-10-08 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for manufacturing power storage device
JP5710788B2 (ja) * 2011-03-16 2015-04-30 韓華石油化学株式会社Hanwhachemical Corporation ロータリーキルンを用いた電極物質のか焼方法
US8945498B2 (en) 2011-03-18 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
JP2012204322A (ja) * 2011-03-28 2012-10-22 Gs Yuasa Corp 非水電解質二次電池用活物質の製造方法
JP5772197B2 (ja) 2011-05-09 2015-09-02 ソニー株式会社 リチウムイオン二次電池用活物質、リチウムイオン二次電池用電極、リチウムイオン二次電池、電子機器、電動工具、電動車両および電力貯蔵システム
US11476462B2 (en) 2011-06-22 2022-10-18 National Tsing Hua University LiFePO4 precursor for manufacturing electrode material of Li-ion battery and method for manufacturing the same
US9112222B2 (en) 2012-07-13 2015-08-18 Sony Corporation Lithium ion secondary battery active material, lithium ion secondary battery electrode, lithium ion secondary battery, electronic device, electronic power tool, electric vehicle, and power storage system
CN102867953B (zh) * 2012-07-24 2015-01-21 龙能科技(苏州)有限公司 用氢氧化物或羟基氧化物生产锂离子电池正极材料的方法
JP6207923B2 (ja) 2012-08-27 2017-10-04 株式会社半導体エネルギー研究所 二次電池用正極の製造方法
KR101733743B1 (ko) 2012-10-05 2017-05-08 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질의 제조 방법, 상기 제조 방법에 따라 제조된 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
JP6032410B2 (ja) * 2012-10-30 2016-11-30 燐化学工業株式会社 リン酸第二鉄含水和物粒子粉末の製造方法
WO2014069207A1 (ja) * 2012-10-31 2014-05-08 シャープ株式会社 正極活物質および正極並びに非水電解質二次電池
JP5928302B2 (ja) * 2012-11-02 2016-06-01 日立金属株式会社 リチウム二次電池用正極活物質の製造方法
KR101561375B1 (ko) 2013-01-10 2015-10-19 주식회사 엘지화학 리튬 인산철 나노분말 제조방법
KR101586556B1 (ko) 2013-01-10 2016-01-20 주식회사 엘지화학 탄소 코팅 리튬 인산철 나노분말 제조방법
KR101542317B1 (ko) 2013-01-10 2015-08-05 주식회사 엘지화학 리튬 인산철 나노분말 제조방법
JP6028630B2 (ja) 2013-03-12 2016-11-16 ソニー株式会社 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN105144440A (zh) 2013-04-24 2015-12-09 住友大阪水泥股份有限公司 电极材料和电极以及锂离子电池
JP2014216240A (ja) * 2013-04-26 2014-11-17 住友大阪セメント株式会社 電極活物質と電極材料及び電極、リチウムイオン電池並びに電極材料の製造方法
US9431651B2 (en) 2013-08-30 2016-08-30 Hong Kong Applied Science and Technology Research Institute Company Limited Composite material for a lithium ion battery anode and a method of producing the same
US10446833B2 (en) * 2013-09-20 2019-10-15 Basf Se Electrode material including lithium transition metal oxide, lithium iron phosphate, further iron-phosphorous compound. and carbon, and lithium battery including the same
JP5769140B2 (ja) * 2014-01-30 2015-08-26 住友金属鉱山株式会社 リチウム二次電池用正極活物質の製造方法
JP5835446B1 (ja) * 2014-10-28 2015-12-24 住友大阪セメント株式会社 正極材料、正極材料の製造方法、正極およびリチウムイオン電池
DE102015214577A1 (de) * 2015-07-31 2017-02-02 Robert Bosch Gmbh Verfahren zur Herstellung einer Elektrode eines Lithiumionenakkumulators
EP3184170B1 (en) * 2015-12-25 2020-04-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Iron oxide-hydroxide particles, method for producing them and oxidation catalyst using the iron oxide-hydroxide particles
CN105680020A (zh) * 2016-03-17 2016-06-15 贵州安达科技能源股份有限公司 一种制备磷酸铁锂和正极材料的方法
JP6497462B1 (ja) 2018-03-30 2019-04-10 住友大阪セメント株式会社 リチウムイオン電池用電極材料及びリチウムイオン電池
CN111081319B (zh) * 2019-11-01 2023-07-25 力神(青岛)新能源有限公司 一种正极材料碳含量的建模方法
CN111072003A (zh) * 2019-12-20 2020-04-28 合肥师范学院 一种刺球状磷酸盐电极材料及其制备方法和锂离子电池
CN113023703A (zh) * 2021-03-24 2021-06-25 郑州中科新兴产业技术研究院 一种回收废旧磷酸铁锂粉的方法
CN113120876B (zh) * 2021-03-30 2022-06-10 中国石油大学(北京) 一种磷酸铁锂废极片再生回收制备磷酸铁锂材料的方法
CN114261952B (zh) * 2021-12-21 2024-03-29 蜂巢能源科技股份有限公司 一种磷酸铁锂正极材料、其制备方法及用途
CN114497479B (zh) * 2021-12-30 2023-10-31 乳源东阳光新能源材料有限公司 一种高压实高性能磷酸铁锂正极材料及其制备方法
WO2023192443A1 (en) 2022-04-01 2023-10-05 Aspen Aerogels, Inc. Carbon powder containing lithium iron phosphate cathode materials
CN114988386B (zh) * 2022-06-16 2024-02-02 蜂巢能源科技股份有限公司 一种磷酸锰铁锂正极材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520405A (ja) 2000-01-18 2003-07-02 ヴァレンス テクノロジー インコーポレーテッド リチウム金属含有物質の製造方法、生成物、組成物およびバッテリー
JP2004079276A (ja) * 2002-08-13 2004-03-11 Sony Corp 正極活物質及びその製造方法
JP2005514304A (ja) 2001-12-21 2005-05-19 マサチューセッツ・インスティチュート・オブ・テクノロジー 伝導性リチウム貯蔵電極
JP2006032241A (ja) 2004-07-21 2006-02-02 Mitsui Mining Co Ltd リチウムイオン二次電池用正極材料、その製造方法、及びリチウムイオン二次電池
JP2006347805A (ja) 2005-06-15 2006-12-28 Seimi Chem Co Ltd リチウム鉄複合酸化物の製造方法
JP2007022894A (ja) * 2005-07-21 2007-02-01 Seimi Chem Co Ltd リチウム鉄複合酸化物の製造方法
JP2007230784A (ja) * 2004-03-30 2007-09-13 Agc Seimi Chemical Co Ltd リチウム鉄複合酸化物の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350539B1 (en) * 1999-10-25 2002-02-26 General Motors Corporation Composite gas distribution structure for fuel cell
CA2320661A1 (fr) * 2000-09-26 2002-03-26 Hydro-Quebec Nouveau procede de synthese de materiaux limpo4 a structure olivine
JP4963777B2 (ja) * 2001-08-24 2012-06-27 ソニー株式会社 電池
US6960402B2 (en) * 2002-06-28 2005-11-01 Advanced Energy Technology Inc. Perforated cylindrical fuel cells
US7390472B1 (en) * 2002-10-29 2008-06-24 Nei Corp. Method of making nanostructured lithium iron phosphate—based powders with an olivine type structure
CN1305147C (zh) * 2004-12-30 2007-03-14 清华大学 锂离子电池正极材料高密度球形磷酸铁锂的制备方法
KR101264459B1 (ko) * 2005-06-29 2013-05-14 썽뜨르 나쇼날르 드 라 르쉐르쉐 씨엉띠삐끄 결정성 나노메트릭 LiFePO₄
US8323832B2 (en) * 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
CN100385713C (zh) * 2005-11-30 2008-04-30 重庆大学 一种制备磷酸亚铁锂的方法
TWI346406B (en) * 2006-02-16 2011-08-01 Lg Chemical Ltd Lithium secondary battery with enhanced heat-resistance
DE112007001410T5 (de) * 2006-06-16 2009-04-23 Sharp Kabushiki Kaisha Positivelektrode, Herstellverfahren für diese sowie Lithiumsekundärbatterie unter Verwendung derselben
TWI319920B (en) * 2006-07-06 2010-01-21 The preparation and application of the lifepo4/li3v2(po4)3 composite cathode materials for lithium ion batteries
JP5479096B2 (ja) * 2006-08-21 2014-04-23 エルジー・ケム・リミテッド リチウム金属リン酸化物の製造方法
KR100821832B1 (ko) * 2007-04-20 2008-04-14 정성윤 리튬전이금속 인산화물의 나노입자 분말의 제조방법
US20090155689A1 (en) * 2007-12-14 2009-06-18 Karim Zaghib Lithium iron phosphate cathode materials with enhanced energy density and power performance
TWI466370B (zh) * 2008-01-17 2014-12-21 A123 Systems Inc 鋰離子電池的混合式金屬橄欖石電極材料
US8088305B2 (en) * 2008-02-22 2012-01-03 Byd Company Limited Lithium iron phosphate cathode material
KR100939647B1 (ko) * 2009-01-22 2010-02-03 한화석유화학 주식회사 전극 활물질인 음이온 부족형 비화학양론 리튬 전이금속 다중산 화합물, 그 제조 방법 및 그를 이용한 전기화학 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520405A (ja) 2000-01-18 2003-07-02 ヴァレンス テクノロジー インコーポレーテッド リチウム金属含有物質の製造方法、生成物、組成物およびバッテリー
JP2005514304A (ja) 2001-12-21 2005-05-19 マサチューセッツ・インスティチュート・オブ・テクノロジー 伝導性リチウム貯蔵電極
JP2004079276A (ja) * 2002-08-13 2004-03-11 Sony Corp 正極活物質及びその製造方法
JP2007230784A (ja) * 2004-03-30 2007-09-13 Agc Seimi Chemical Co Ltd リチウム鉄複合酸化物の製造方法
JP2006032241A (ja) 2004-07-21 2006-02-02 Mitsui Mining Co Ltd リチウムイオン二次電池用正極材料、その製造方法、及びリチウムイオン二次電池
JP2006347805A (ja) 2005-06-15 2006-12-28 Seimi Chem Co Ltd リチウム鉄複合酸化物の製造方法
JP2007022894A (ja) * 2005-07-21 2007-02-01 Seimi Chem Co Ltd リチウム鉄複合酸化物の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. YAMADA ET AL., J. ELECTROCHEM. SOC., vol. 148, 2001, pages A224 - 229
D. MORGAN ET AL., ELECTROCHEM. AND SOLID-STATE LETT., vol. 7, 2004, pages A30 - 32
H. HUANG ET AL., ELECTROCHEM. AND SOLID-STATE LETT., vol. 4, 2001, pages A170 - 172
M. SAIFUL ISLAM ET AL., CHEM. MATER., vol. 17, 2005, pages 5085 - 5092
ZHAOHUI CHEN ET AL., J. ELECTROCHEM. SOC., vol. 149, 2002, pages A1184 - 1189

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962185B2 (en) * 2008-10-22 2015-02-24 Lg Chem, Ltd. Cathode mix having improved efficiency and energy density of electrode
US20100239909A1 (en) * 2008-10-22 2010-09-23 Lg Chem, Ltd. Cathode mix containing having improved efficiency and energy density of electrode
US20110287315A1 (en) * 2008-10-22 2011-11-24 Lg Chem, Ltd. Cathode active material providing improved efficiency and energy density of electrode
US8974957B2 (en) * 2008-10-22 2015-03-10 Lg Chem, Ltd. Cathode active material providing improved efficiency and energy density of electrode
WO2011062232A1 (ja) * 2009-11-18 2011-05-26 三井化学株式会社 電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池
KR101186686B1 (ko) 2009-12-29 2012-09-27 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질의 제조 방법
WO2011115211A1 (ja) * 2010-03-19 2011-09-22 戸田工業株式会社 リン酸マンガン鉄リチウム粒子粉末の製造方法、リン酸マンガン鉄リチウム粒子粉末、及び該粒子粉末を用いた非水電解質二次電池
WO2011114918A1 (en) * 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
CN102781827A (zh) * 2010-03-19 2012-11-14 户田工业株式会社 磷酸锰铁锂颗粒粉末的制造方法、磷酸锰铁锂颗粒粉末和使用该颗粒粉末的非水电解质二次电池
JP2011210376A (ja) * 2010-03-28 2011-10-20 Niigata Univ Liイオン電池用正極活物質およびその製造方法
US9214700B2 (en) * 2010-04-21 2015-12-15 Lg Chem, Ltd. Lithium iron phosphate containing sulfur compound based upon sulfide bond and lithium secondary battery using the same
CN102844916A (zh) * 2010-04-21 2012-12-26 株式会社Lg化学 橄榄石晶体结构的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
CN102893432A (zh) * 2010-04-21 2013-01-23 株式会社Lg化学 碳包覆的具有橄榄石晶体结构的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
US20130029226A1 (en) * 2010-04-21 2013-01-31 Lg Chem, Ltd. Lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
US20130034776A1 (en) * 2010-04-21 2013-02-07 Lg Chem, Ltd. Lithium iron phosphate containing sulfur compound based upon sulfide bond and lithium secondary battery using the same
US9812707B2 (en) * 2010-04-21 2017-11-07 Lg Chem, Ltd. Carbon-coated lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
US9331329B2 (en) * 2010-04-21 2016-05-03 Lg Chem, Ltd. Carbon-coated lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
CN102859762A (zh) * 2010-04-21 2013-01-02 株式会社Lg化学 含有基于硫键的硫化合物的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
CN102859762B (zh) * 2010-04-21 2016-02-17 株式会社Lg化学 含有基于硫键的硫化合物的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
US20130216902A1 (en) * 2010-04-21 2013-08-22 Lg Chem, Ltd. Carbon-coated lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
KR101400099B1 (ko) 2010-04-21 2014-05-29 주식회사 엘지화학 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지
US8906552B2 (en) 2010-04-21 2014-12-09 Lg Chem, Ltd. Lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
US9318741B2 (en) * 2010-04-28 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device
US20110269022A1 (en) * 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device
US10916774B2 (en) 2010-04-28 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage
US9899678B2 (en) 2010-04-28 2018-02-20 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device
US10224548B2 (en) 2010-04-28 2019-03-05 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage
EP2576439A1 (de) 2010-05-27 2013-04-10 Süd-Chemie AG Kohlenstoff -lithiumübergangsmetallphosphat -verbundmaterial mit einem niedrigen kohlenstoffgehalt
EP2576439B1 (de) * 2010-05-27 2016-08-24 Johnson Matthey PLC Kohlenstoff-lithiumübergangsmetallphosphat-verbundmaterial mit einem niedrigen kohlenstoffgehalt
JP2012229147A (ja) * 2011-04-27 2012-11-22 Nichia Corp オリビン型リチウム遷移金属酸化物及びその製造方法
JP2013032257A (ja) * 2011-06-28 2013-02-14 Nichia Corp オリビン型リチウム遷移金属酸化物及びその製造方法
CN103066293A (zh) * 2011-10-20 2013-04-24 何金祥 锂离子电池正极材料的制备方法
CN103066293B (zh) * 2011-10-20 2016-11-09 何金祥 锂离子电池正极材料的制备方法
JP2013120621A (ja) * 2011-12-06 2013-06-17 Toyota Motor Corp 非水系二次電池
CN107565132A (zh) * 2017-08-24 2018-01-09 高延敏 磷酸铁的制备方法及其制备的磷酸铁、磷酸铁锂的制备方法及其制备的磷酸铁锂以及锂电池

Also Published As

Publication number Publication date
EP2277828B1 (en) 2018-08-08
JP2009263222A (ja) 2009-11-12
KR20110007112A (ko) 2011-01-21
US20110091772A1 (en) 2011-04-21
EP2277828A1 (en) 2011-01-26
EP2277828A4 (en) 2014-12-31
CN105355920A (zh) 2016-02-24
KR101587671B1 (ko) 2016-01-21
JP5464322B2 (ja) 2014-04-09
CN101980956A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
JP5464322B2 (ja) リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池
US9847526B2 (en) Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP5817963B2 (ja) リン酸マンガン鉄リチウム粒子粉末の製造方法、リン酸マンガン鉄リチウム粒子粉末、及び該粒子粉末を用いた非水電解質二次電池
JP6107832B2 (ja) Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5376894B2 (ja) オリビン構造を有する多元系リン酸型リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池
JP4211865B2 (ja) 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5293936B2 (ja) 非水電解質二次電池用オリビン型複合酸化物及びその製造方法、並びに二次電池
JP4829557B2 (ja) リチウム鉄複合酸化物の製造方法
JP6112118B2 (ja) Li−Ni複合酸化物粒子粉末並びに非水電解質二次電池
JP5517032B2 (ja) 非水電解質二次電池用オリビン型複合酸化物粒子粉末及びその製造方法、並びに二次電池
JP6260535B2 (ja) 炭素複合化リン酸マンガン鉄リチウム粒子粉末の製造方法、及び該粒子粉末を用いた非水電解質二次電池の製造方法
JP5364523B2 (ja) オリビン型ケイ酸mリチウムの合成方法およびリチウムイオン二次電池
JP2011132095A (ja) オリビン型化合物粒子粉末の製造方法、並びに非水電解質二次電池
JP2023027147A (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
JP2019019047A (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
JP6362033B2 (ja) 非水系電解液二次電池用正極活物質と非水系電解液二次電池
JPWO2019065195A1 (ja) 非水電解質二次電池
Yamashita et al. Hydrothermal synthesis and electrochemical properties of Li2FexMnxCo1− 2xSiO4/C cathode materials for lithium-ion batteries
JP2018147695A (ja) 非水系電解質二次電池用正極活物質

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111182.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107021513

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009727078

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12935456

Country of ref document: US