CN102859762A - 含有基于硫键的硫化合物的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池 - Google Patents

含有基于硫键的硫化合物的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池 Download PDF

Info

Publication number
CN102859762A
CN102859762A CN2011800199908A CN201180019990A CN102859762A CN 102859762 A CN102859762 A CN 102859762A CN 2011800199908 A CN2011800199908 A CN 2011800199908A CN 201180019990 A CN201180019990 A CN 201180019990A CN 102859762 A CN102859762 A CN 102859762A
Authority
CN
China
Prior art keywords
iron phosphate
lithium iron
carbon
weight
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800199908A
Other languages
English (en)
Other versions
CN102859762B (zh
Inventor
卢炫国
朴洪奎
朴哲熙
朴秀珉
李知恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of CN102859762A publication Critical patent/CN102859762A/zh
Application granted granted Critical
Publication of CN102859762B publication Critical patent/CN102859762B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了具有橄榄石晶体结构的锂铁磷酸盐,其中所述锂铁磷酸盐具有由下式1表示的组成,在所述锂铁磷酸盐的粒子中含有具有硫键的硫化合物作为杂质,并在所述锂铁磷酸盐的粒子表面上包覆有碳(C),Li1+aFe1-xMx(PO4-b)Xb (1)(其中M、X、a、x和b与说明书中所定义的相同)。

Description

含有基于硫键的硫化合物的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
技术领域
本发明涉及含有具有硫键的硫化合物的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池。更具体地,本发明涉及锂铁磷酸盐以及使用所述锂铁磷酸盐作为活性材料的锂二次电池,所述锂铁磷酸盐具有预定组成并在所述锂铁磷酸盐粒子上含有具有硫键的硫化合物作为杂质,其中在所述锂铁磷酸盐的粒子表面上包覆有碳(C)。
背景技术
移动装置的技术开发和需求的增加,导致对作为能源的二次电池的需求快速增加。在这些二次电池中,具有高能量密度和电压、长寿命和低自放电的锂二次电池可商购获得并被广泛使用。
所述锂二次电池通常使用碳材料作为负极活性材料。此外,考虑将锂金属、硫化合物、硅化合物、锡化合物等用作负极活性材料。同时,所述锂二次电池通常使用锂钴复合氧化物(LiCoO2)作为正极活性材料。此外,已经考虑使用锂-锰复合氧化物如具有层状晶体结构的LiMnO2和具有尖晶石晶体结构的LiMn2O4、以及锂镍复合氧化物(LiNiO2)作为正极活性材料。
目前,由于LiCoO2具有优异的物理性能如循环寿命而使用LiCoO2,但是其具有稳定性低且因为使用钴而造成的成本高的劣势,并在大量用作电动汽车的电源方面存在限制,所述钴受到天然资源的限制。LiNiO2由于与其制备方法相关的许多特征而不适合在合理成本下实际应用于批量生产。锂锰氧化物如LiMnO2和LiMn2O4具有循环寿命短的劣势。
因此,已经对使用锂过渡金属磷酸盐作为正极活性材料的方法进行了研究。锂过渡金属磷酸盐大致分为具有Nasicon结构的LixM2(PO4)3和具有橄榄石结构的LiMPO4,且发现与常规LiCoO2相比,锂过渡金属磷酸盐展示了优异的高温稳定性。至今,Li3V2(PO4)3是最广泛已知的Nasicon结构的化合物,且LiFePO4和Li(Mn,Fe)PO4是最广泛研究的橄榄石结构的化合物。
在橄榄石结构的化合物中,与锂(Li)相比,LiFePO4具有3.5V的高输出电压和3.6g/cm3的高体积密度,且与钴(Co)相比,LiFePO4具有170mAh/g的高理论容量,展示优异的高温稳定性,并且LiFePO4利用廉价的Fe作为成分,由此极其适合用作锂二次电池的正极活性材料。
然而,当将LiFePO4用作正极活性材料时,由于导电性低而不利地造成电池内阻增大。鉴于此,在电池电路闭合时,极化电位增大,由此降低了电池容量。
为了解决这些问题,日本特开2001-110414号公报提议,将导电材料并入橄榄石型金属磷酸盐中以提高导电性。
然而,通常通过固态法、水热法等使用Li2CO3或LiOH作为锂源制备LiFePO4。锂源和为了提高导电性而添加的碳源不利地产生大量Li2CO3。这种Li2CO3在充电期间劣化,或与电解液反应而产生CO2气体,由此不利地在存储或循环期间产生大量气体。结果,不利地,发生电池的溶胀且高温稳定性劣化。
在这点上,已知在LiFePO4上包覆碳的方法。然而,通过重复实验,本发明的发明人发现,为了使用该方法获得期望的导电性,应使用大量的碳。在电池设计期间总体物理性能的劣化是不可避免的,此外,用于包覆的大量碳以粒子之间的聚集体的形式存在,由此不利地使得难以实现均匀包覆。
因此,对解决这些问题的方法存在增加的需求。
发明内容
技术问题
因此,为了解决上述问题和尚未解决的其他技术问题而完成了本发明。
作为各种广泛且细致的研究和实验的结果,本发明的发明人已经发现,当在具有橄榄石晶体结构的锂铁磷酸盐中含有特定的硫化合物时,所述化合物有助于提高锂铁磷酸盐的物理性能。基于这种发现,完成了本发明。
技术方案
根据本发明的一个方面,提供具有橄榄石晶体结构的锂铁磷酸盐,其中所述锂铁磷酸盐具有由下式1表示的组成,在所述锂铁磷酸盐的粒子中含有具有硫键的硫化合物作为杂质并在所述锂铁磷酸盐的粒子表面上包覆有碳(C)。
Li1+aFe1-xMx(PO4-b)Xb    (1)
其中
M是选自Al、Mg、Ni、Co、Mn、Ti、Ga、Cu、V、Nb、Zr、Ce、In、Zn和Y中的至少一种元素,
X是选自F、S和N中的至少一种元素,且
-0.5≤a≤+0.5,0≤x≤0.5,0≤b≤0.1。
尽管根据本发明的橄榄石型锂铁磷酸盐含有预定量的硫化合物作为杂质,但是所述橄榄石型锂铁磷酸盐对电池制造过程中的操作性能几乎无影响,而是基于有助于将碳均匀并硬包覆在粒子表面上的作用,即使使用少量碳进行包覆,所述橄榄石型锂铁磷酸盐仍能够展现高导电性,且由于碳包覆具有强结合力而在电极的制造过程中阻止了电极的分离,由此有助于提高电极密度。
可将任意类型的化合物用作根据本发明的橄榄石型锂铁磷酸盐,只要其满足下式1的条件即可且其代表性实例为LiFePO4,但不限于此。在LiFePO4的制备过程中,不可能得到仅是纯的LiFePO4。当满足下式1的条件时,能够发挥本发明所需要的特性。
如上所述,根据本发明的锂铁磷酸盐含有硫化合物作为杂质,其中所述硫化合物具有硫键。未清晰发现使得具有硫键的化合物能够对锂铁磷酸盐具有帮助作用的机理。
硫化合物的实例包括但不限于,Li2S、FeS、(NH4)2S。这些化合物可单独或以其两种以上组合的方式包含。优选地,所述化合物可以为Li2S和/或FeS。
关于所述化合物在锂铁磷酸盐粒子中的含量,基于所述锂铁磷酸盐的总重量,构成所述硫化合物的硫优选为0.01~5重量%。当硫化合物的含量过高时,锂铁磷酸盐的物理性能可能劣化,另一方面,当含量过低时,不能获得期望特性的提高。更优选地,在所述条件下,所述含量可以为0.1~2重量%。
所述硫化合物可以包含在锂铁磷酸盐的粒子中且例如可得自用于制备所述锂铁磷酸盐的前体。
例如,当将FeSO4用作用于制备锂铁磷酸盐的反应材料时,通过将从反应材料中分离的硫(S)与从所述反应材料或其他反应材料中分离的Fe、Li等反应可形成具有硫键的硫化合物。在某些情况中,反应材料的一部分可保持为未反应状态。
在另一个实施方案中,可在制备锂铁磷酸盐的过程中并入硫前体。这种硫前体的实例包括硫化物、亚硫酸盐和硫酸盐。
除了硫化合物之外,根据本发明的锂铁磷酸盐粒子可还含有铁的氧化物作为杂质,所述铁的氧化物为例如FeO且如上所述,基于所述硫化合物的总量,所述铁的氧化物的含量可以为50%以下。
同时,基于锂铁磷酸盐的重量,优选以0.01~10重量%的量包覆碳(C)。当碳的含量过大时,活性材料的量变得相对低,容量不利地下降且电极密度不利地发生劣化。另一方面,当碳含量过小时,不利地,不能获得期望的导电性。碳的包覆量更优选为0.03~7重量%。
另外,优选以2~50nm的厚度在锂铁磷酸盐的表面上均匀包覆碳。当碳过厚地包覆在锂铁磷酸盐的表面上时,其会妨碍锂离子的嵌入和脱嵌,另一方面,过薄的包覆不能确保均匀的包覆且不能提供期望的导电性。更优选的包覆厚度可以为3~10nm。
在本发明中,硫与碳之间的关系不清楚,但硫与碳可以以选自如下的结构的形式存在:(i)其中以在锂铁磷酸盐粒子的表面上和/或其内部含有少量硫的状态将碳包覆在锂铁磷酸盐粒子表面上的结构;(ii)其中将硫和碳两者都包覆在锂铁磷酸盐粒子表面上的结构;(iii)其中通过硫将碳结合到锂铁磷酸盐粒子上的结构;及其组合。据认为,通过该结构,所述硫化合物有助于碳的包覆。
本发明提供具有橄榄石晶体结构的锂铁磷酸盐,其中所述锂铁磷酸盐具有由下式2表示的组成,在所述锂铁磷酸盐粒子中含有具有硫键的硫化合物作为杂质,并在含有预定量硫(S)的所述锂铁磷酸盐的粒子表面上包覆有碳(C):
Li(1-a-b)Fea/2M'b/2Fe1-cM″cP1-dXd O4-eSe    (2)
其中M'是选自Mg、Ni、Co、Mn、Ti、Cr、Cu、V、Ce、Sn、Ba、Ca、Sr和Zn中的至少一种元素;
M″是选自Al、Mg、Ni、Co、Mn、Ti、Cr、Cu、V、Ce、Sn、Ba、Ca、Sr和Zn中的至少一种元素;
X是选自As、Sb、Bi、Mo、V、Nb和Te中的至少一种元素;且
0≤a≤0.6,0≤b≤0.6,0≤c≤1,0≤e≤3.5。
考虑到式2的组成,将Fe和/或M'掺杂入锂位点中并将M″掺杂入Fe位点中,将X掺杂入P位点中,且一部分硫(S)置换氧位点。
在上式中,a和b各自为0.6以下,但当a+b为1以上时,由于不使用锂,所以在充放电期间a+b应小于1。从在充放电期间嵌入和脱嵌以及由此展示电化学性能的锂的量考虑,a+b优选为0.5。
本发明提供一种制备橄榄石型锂铁磷酸盐的方法。
在优选实施方案中,所述橄榄石型锂铁磷酸盐可以通过包括如下的方法制得:
(a)将作为原料的前体进行初步混合;
(b)将步骤(a)的混合物与超临界水或亚临界水进行二次混合以合成锂铁磷酸盐;
(c)将合成的锂铁磷酸盐与碳前体混合并对混合物进行干燥;以及
(d)对锂铁磷酸盐和所述碳前体的混合物进行加热。
在步骤(a)中,作为锂的前体,可使用Li2CO3、Li(OH)、Li(OH)·H2O、LiNO3等中的一种成分。作为铁(Fe)的前体,可使用含有至少硫成分的化合物,从而将硫残留在制得的锂铁磷酸盐的表面上,例如FeSO4、FeC2O4·2H2O或FeCl2。尤其优选FeSO4,因为其含有硫元素。作为磷(P)的前体,可使用H3PO4、NH4H2PO4、(NH4)2HPO4或P2O5
如果需要,可以进一步向所述成分中添加碱化剂。在此情况中,所述碱化剂可以为碱金属氢氧化物、碱土金属氢氧化物、氨化合物等。
在步骤(b)中,所述超临界水或亚临界水可以为在180~550bar压力下在200~700℃下的水且在步骤(d)中的加热温度可以为600~1200℃。
可以使用任意碳前体,只要其能够在减压气氛下的焙烧工艺期间产生碳即可。优选地,所述碳前体可以是多元醇型含碳前体且其非限制性实例包括蔗糖、纤维素、葡萄糖等。
在另一个实施方案中,所述橄榄石型锂铁磷酸盐可通过包括如下的下列方法制得:
(a')将作为原料的前体进行初步混合;
(b')将步骤(a')的混合物与超临界水或亚临界水进行二次混合以合成锂铁磷酸盐,随后进行干燥;
(c')对合成的锂铁磷酸盐进行加热;以及
(d')对所述锂铁磷酸盐和碳粉末进行研磨。
在步骤(d')中,研磨方法是本领域中熟知的方法并由此省略其详细说明。在优选实施方案中,研磨方法可以是球磨。
在步骤(d)或(c')中,可在惰性气体气氛下实施加热。可使用任意惰性气体而没有特别限制,只要其具有低反应性即可。其优选实例包括Ar、N2等。
优选通过连续反应法合成本发明的锂铁磷酸盐。
根据本发明的锂铁磷酸盐可以处于一次粒子或二次粒子的形式。通过将具有预定粒径的一次粒子、粘合剂和溶剂的混合物进行干燥,随后进行聚集,可制备二次粒子形式的锂铁磷酸盐。
在混合物中,优选地,相对于溶剂的重量,所述一次粒子以5~20重量%的量存在,且相对于溶剂的重量,所述粘合剂以5~20重量%的量存在。通过控制一次粒子和溶剂的比例,能够控制所述二次粒子的内部孔隙率。在所述工艺期间能够使用的溶剂的实例包括:极性溶剂如水,和非极性的有机溶剂。另外,用于所述步骤中的粘合剂的实例包括但不限于可溶于极性溶剂中的焦炭,蔗糖和乳糖基糖、PVDF或PE基聚合物。
可通过本领域中已知的各种方法同时进行二次粒子的干燥和制备,所述方法包括喷雾干燥、流化床干燥、振动干燥等。特别地,优选旋转喷雾干燥,因为其使得能够制备球形的二次粒子,由此提高振实密度。
可在惰性气体(例如Ar、N2)气氛下在120~200℃下进行干燥。
另外,优选通过共沉淀或固相法制备根据本发明的橄榄石型锂铁磷酸盐。
在另一个实施方案中,根据本发明的橄榄石型锂铁磷酸盐可通过包括如下的方法制得:
(a″)通过共沉淀或固相法使用作为原料的前体合成锂铁磷酸盐;
(b″)向含有含硫化合物的分散室中添加合成的锂铁磷酸盐,随后搅拌;
(c″)对在步骤(b″)中得到的混合物进行干燥,随后焙烧;以及
(d'')将在步骤(c″)中得到的锂铁磷酸盐与碳粉末混合,随后研磨,或将经煅烧的锂铁磷酸盐和碳前体与溶剂混合,随后干燥并焙烧。
在步骤(a″)中的共沉淀或固相反应是本领域中熟知的方法且由此省略其详细说明。
用于步骤(b″)的含硫前体可以是如上所述的硫化物、亚硫酸盐、硫酸盐等并可以在本发明中建议的硫的含量的范围内加以使用。
本发明提供包含锂铁磷酸盐作为正极活性材料的正极混合物。除了正极活性材料之外,所述正极混合物还可以任选地包含导电材料、粘合剂、填料等。
基于包含正极活性材料的混合物的总重量,通常以1~30重量%的量添加所述导电材料。可以使用任意导电材料而没有特别限制,只要其具有合适的导电性而不会在电池中造成不利的化学变化即可。导电材料的实例包括导电材料,包括:石墨;碳黑如碳黑、乙炔黑、科琴黑、槽法碳黑、炉黑、灯黑和热裂法碳黑;导电纤维如碳纤维和金属纤维;金属粉末如氟化碳粉末、铝粉末和镍粉末;导电晶须如氧化锌和钛酸钾;导电金属氧化物如二氧化钛;和聚亚苯基衍生物。
粘合剂为提高电极活性材料对导电材料和集电器的粘合的成分。基于包含正极活性材料的混合物的总重量,通常以1~30重量%的量添加所述粘合剂。粘合剂的实例包括聚乙二烯、聚乙烯醇、羧甲基纤维素(CMC)、淀粉、羟丙基纤维素、再生纤维素、聚乙烯基吡咯烷酮、四氟乙烯、聚乙烯、聚丙烯、乙烯丙烯双烯三元共聚物(EPDM)、磺化的EPDM、丁苯橡胶、氟橡胶和各种共聚物。
填料为任选用于抑制电极膨胀的成分。可使用任何填料而没有特别限制,只要其在制造的电池中不会造成不利的化学变化且其为纤维状材料即可。填料的实例包括烯烃聚合物如聚乙烯和聚丙烯;以及纤维状材料如玻璃纤维和碳纤维。
同时,所述正极活性材料可仅由橄榄石型锂铁磷酸盐构成,且如果需要,可以由橄榄石型锂铁磷酸盐和含锂的过渡金属氧化物的组合构成。
锂过渡金属复合氧化物的实例包括但不限于,层状化合物如锂钴氧化物(LiCoO2)和锂镍氧化物(LiNiO2),或利用一种或多种过渡金属置换的化合物;锂锰氧化物如式Li1+yMn2-yO4(0≤y≤0.33)的化合物、LiMnO3、LiMn2O3和LiMnO2;锂铜氧化物(Li2CuO2);钒氧化物如LiV3O8、LiFe3O4、V2O5和Cu2V2O7;式LiNi1-yMyO2(M=Co、Mn、Al、Cu、Fe、Mg、B或Ga,且0.01≤y≤0.3)的Ni-位点型锂化的镍氧化物;式LiMn2-yMyO2(M=Co、Ni、Fe、Cr、Zn或Ta,且0.01≤y≤0.1)或式Li2Mn3MO8(M=Fe、Co、Ni、Cu或Zn)的锂锰复合氧化物;其中一部分Li被碱土金属离子置换的LiMn2O4;二硫化物化合物;以及Fe2(MoO4)3
本发明提供一种其中将正极混合物涂布到集电器上的正极。
通过将所述正极混合物与诸如NMP的溶剂进行混合以得到浆料,将所述浆料涂布到正极集电器上,随后进行干燥和压制,可制备二次电池用正极。
通常将正极集电器制成具有3~500μm的厚度。所述正极集电器没有特别限制,只要其具有合适的导电性而不会在制造的电池中造成不利的化学变化即可。正极集电器的实例包括不锈钢;铝;镍;钛;烧结碳;和利用碳、镍、钛或银表面处理过的铝或不锈钢。如果需要,还可对这些集电器进行加工而在其表面上形成细小的不规则,从而提高对正极活性材料的粘合强度。另外,可以以包括膜、片、箔、网、多孔结构、泡沫和无纺布的多种形式使用所述集电器。
本发明提供一种包含正极、负极、隔膜和含锂盐的非水电解质的锂二次电池。
例如,通过将包含负极活性材料的负极混合物涂布到负极集电器上,随后进行干燥,可制备负极。如果需要,所述负极混合物可包含上述成分即导电材料、粘合剂和填料。
通常将负极集电器制成具有3~500μm的厚度。所述负极集电器没有特别限制,只要其具有合适的导电性而不会在制造的电池中造成不利的化学变化即可。负极集电器的实例包括铜;不锈钢;铝;镍;钛;烧结碳;和利用碳、镍、钛或银表面处理过的铜或不锈钢;以及铝-镉合金。与正极集电器类似,如果需要,还可对这些集电器进行加工而在其表面上形成细小的不规则,从而提高对负极活性材料的粘合强度。另外,可以以包括膜、片、箔、网、多孔结构、泡沫和无纺布的多种形式使用所述集电器。
所述负极活性材料的实例包括碳和石墨材料如天然石墨、人造石墨、膨胀石墨、碳纤维、硬碳、炭黑、碳纳米管、二萘嵌苯、活性炭;可与锂形成合金的金属如Al、Si、Sn、Ag、Bi、Mg、Zn、In、Ge、Pb、Pd、Pt和Ti以及含有这些元素的化合物;碳和石墨材料与金属及其化合物的复合材料;和含锂的氮化物。其中,更优选碳基活性材料、硅基活性材料、锡基活性材料或硅-碳基活性材料。所述材料可单独或以其两种以上组合的方式使用。
隔膜插入在所述正极与所述负极之间。作为隔膜,使用具有高离子渗透率和高机械强度的绝缘薄膜。所述隔膜典型地具有0.01~10μm的孔径和5~300μm的厚度。作为隔膜,使用由烯烃聚合物如聚丙烯和/或玻璃纤维或聚乙烯制成的片或无纺布,其具有耐化学性和疏水性。当使用诸如聚合物的固体电解质作为电解质时,所述固体电解质还可充当隔膜和电解质两者。
所述含锂盐的非水电解质由非水电解质和锂盐构成。作为所述非水电解质,可利用非水电解液、有机固体电解质和无机固体电解质。
能够用于本发明中的非水电解质溶液的实例包括非质子有机溶剂如N-甲基-2-吡咯烷酮、碳酸亚丙酯、碳酸亚乙酯、碳酸亚丁酯、碳酸二甲酯、碳酸二乙酯、γ-丁内酯、1,2-二甲氧基乙烷、四羟基Franc、2-甲基四氢呋喃、二甲亚砜、1,3-二氧戊环、甲酰胺、二甲基甲酰胺、二氧戊环、乙腈、硝基甲烷、甲酸甲酯、乙酸甲酯、磷酸三酯、三甲氧基甲烷、二氧戊环衍生物、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、碳酸亚丙酯衍生物、四氢呋喃衍生物、醚、丙酸甲酯和丙酸乙酯。
用于本发明中的有机固体电解质的实例包括聚乙烯衍生物、聚环氧乙烷衍生物、聚环氧丙烷衍生物、磷酸酯聚合物、poly agitation lysine、聚酯硫化物、聚乙烯醇、聚偏二氟乙烯和含有离子离解基团的聚合物。
所述无机固体电解质的实例包括锂的氮化物、卤化物和硫酸盐如Li3N、LiI、Li5NI2、Li3N-LiI-LiOH、LiSiO4、LiSiO4-LiI-LiOH、Li2SiS3、Li4SiO4、Li4SiO4-LiI-LiOH和Li3PO4-Li2S-SiS2
所述锂盐是易溶于上述非水电解质中的材料且其实例包括LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiAlCl4、CH3SO3Li、CF3SO3Li、(CF3SO2)2NLi、氯硼烷锂、低级脂族羧酸锂、四苯基硼酸锂和酰亚胺。
另外,为了提高充/放电特性和阻燃性,例如,可以向非水电解质中添加吡啶、亚磷酸三乙酯、三乙醇胺、环醚、乙二胺、正甘醇二甲醚、六磷酸三酰胺(hexaphosphoric triamide)、硝基苯衍生物、硫、醌亚胺染料、N-取代的
Figure BDA00002279916900121
唑烷酮、N,N-取代的咪唑烷、乙二醇二烷基醚、铵盐、吡咯、2-甲氧基乙醇、三氯化铝等。如果需要,为了赋予不燃性,所述非水电解质可还包含含卤素的溶剂如四氯化碳和三氟乙烯。此外,为了提高高温储存特性,所述非水电解质可还包含二氧化碳气体等且可还包含氟代碳酸亚乙酯(FEC)、丙烯磺酸内酯(PRS)、氟代碳酸亚乙酯(FEC)等。
根据本发明的锂二次电池可以用作电池模块的单元电池,其为需要高温稳定性、长循环性能和高倍率性能的中型和大型装置的电源。
优选地,中型和大型装置的实例包括:由电池驱动的电动机提供动力的电动工具;包括电动车辆(EV)、混合电动车辆(HEV)和插电式混合电动车辆(PHEV)的电动车辆;包含电动自行车(E-自行车)、电动踏板车(E-踏板车)的电动双轮车辆;电动高尔夫球车等。
具体实施方式
现在参考下列实施例对本发明进行更详细的说明。提供这些实施例仅用于说明本发明且不应将其解释为限制本发明的范围和主旨。
<实施例1>
将42.9g的LiOH-H2O、32.4g的氨水(~29重量%)和924.7g的蒸馏水相互混合并溶解以制备水溶液A。以与上述相同的方式,将141.3g的FeSO4-7H2O、14.13g的蔗糖、57.7g的磷酸(85重量%)和786.87g的蒸馏水相互混合并溶解以制备水溶液B。在高温和高压下将超临界水(450℃,250bar)在100g/分钟下流入连续管式反应器中,水溶液A和水溶液B在15g/分钟的流速下流动并与超临界水接触几秒钟且混合以诱发反应。此时,水溶液A首先接触水溶液B以产生浆料,然后与超临界水反应。在产生浆料之后,尽可能快地将水溶液A与超临界水反应。
在管式反应器末端对由此得到的LiFePO4反应溶液进行冷却并过滤以得到LiFePO4浆料。将受控浓度的水添加至浆料中以得到具有15重量%固体含量的浆料,向其中添加按固体计为15重量%的蔗糖,随后溶解。将由此得到的浆料进行喷雾干燥以得到蔗糖包覆的LiFePO4粉末。
在氮气气氛下在约700℃下将由此得到的粉末加热10小时以得到最终碳包覆的LiFePO4粉末。作为XRD-Rietveld分析的结果可看出,所述粉末为LiFePO4晶体。
对由此得到的LiFePO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为2.9重量%并发现硫的含量为0.92重量%。
<实施例2>
将42.9g的LiOH-H2O、38.2g的氨水(~29重量%)和918.9g的蒸馏水相互混合并溶解以制备水溶液A。以与上述相同的方式,将141.3g的FeSO4-7H2O、14.13g的蔗糖、57.7g的磷酸(85重量%)和793.94g的蒸馏水相互混合并溶解以制备水溶液B。在高温和高压下将超临界水(450℃,250bar)在100g/分钟下流入连续管式反应器中,水溶液A和水溶液B在15g/分钟的流速下流动并与超临界水接触几秒钟且混合以诱发反应。此时,水溶液A首先接触水溶液B以产生浆料,然后与超临界水反应。在产生浆料之后,尽可能快地将水溶液A与超临界水反应。
在管式反应器末端对由此得到的LiFePO4反应溶液进行冷却并过滤以得到LiFePO4浆料。将受控浓度的水添加至浆料中以得到具有15重量%固体含量的浆料,向其中添加按固体计为9.8重量%的蔗糖,随后溶解。将由此得到的浆料进行喷雾干燥以得到蔗糖包覆的LiFePO4粉末。
在氮气气氛下在约700℃下将由此得到的粉末加热10小时以得到最终碳包覆的LiFePO4粉末。作为XRD-Rietveld分析的结果可看出,所述粉末为LiFePO4晶体。
对由此得到的LiFePO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为1.54重量%并发现硫的含量为0.89重量%。
<实施例3>
将42.9g的LiOH-H2O、44.1g的氨水(~29重量%)和918.9g的蒸馏水相互混合并溶解以制备水溶液A。以与上述相同的方式,将141.3g的FeSO4-7H2O、7.07g的蔗糖、57.7g的磷酸(85重量%)和793.94g的蒸馏水相互混合并溶解以制备水溶液B。在高温和高压下将超临界水(450℃,250bar)在100g/分钟下流入连续管式反应器中,水溶液A和水溶液B在15g/分钟的流速下流动并与超临界水接触几秒钟且混合以诱发反应。此时,水溶液A首先接触水溶液B以产生浆料,然后与超临界水反应。在产生浆料之后,尽可能快地将水溶液A与超临界水反应。
在管式反应器末端对由此得到的LiFePO4反应溶液进行冷却并过滤,向其中添加制得的浆料10倍重量的蒸馏水,随后洗涤以得到LiFePO4浆料。将受控浓度的水添加至浆料中以得到具有20重量%固体含量的浆料,向其中添加按固体计为12重量%的蔗糖,随后溶解。将由此得到的浆料进行喷雾干燥以得到蔗糖包覆的LiFePO4粉末。
在氮气气氛下在约700℃下将由此得到的粉末加热10小时以得到最终碳包覆的LiFePO4粉末。作为XRD-Rietveld分析的结果可看出,所述粉末为LiFePO4晶体。
对由此得到的LiFePO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为2.1重量%并发现硫的含量为0.53重量%。
<实施例4>
将42.9g的LiOH-H2O、44.1g的氨水(~29重量%)和918.9g的蒸馏水相互混合并溶解以制备水溶液A。以与上述相同的方式,将141.3g的FeSO4-7H2O、7.07g的蔗糖、57.7g的磷酸(85重量%)和801g的蒸馏水相互混合并溶解以制备水溶液B。在高温和高压下将超临界水(450℃,250bar)在100g/分钟下流入连续管式反应器中,水溶液A和水溶液B在15g/分钟的流速下流动并与超临界水接触几秒钟且混合以诱发反应。此时,水溶液A首先接触水溶液B以产生浆料,然后与超临界水反应。在产生浆料之后,尽可能快地将水溶液A与超临界水反应。
在管式反应器末端对由此得到的LiFePO4反应溶液进行冷却并过滤,向其中添加制得的浆料10倍重量的蒸馏水,随后洗涤以得到LiFePO4浆料。将受控浓度的水添加至浆料中以得到具有10重量%固体含量的浆料,向其中添加按固体计为7重量%的蔗糖,随后溶解。将由此得到的浆料进行喷雾干燥以得到蔗糖包覆的LiFePO4粉末。
在氮气气氛下在约700℃下将由此得到的粉末加热10小时以得到最终碳包覆的LiFePO4粉末。作为XRD-Rietveld分析的结果可看出,所述粉末为LiFePO4晶体。
对由此得到的LiFePO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为1.3重量%并发现硫的含量为0.42重量%。
<实施例5>
将52.9g的LiOH-H2O、32.4g的氨水(~29重量%)和914.7g的蒸馏水相互混合并溶解以制备水溶液A。以与上述相同的方式,将141.3g的FeSO4-7H2O、14.13g的蔗糖、57.7g的磷酸(85重量%)和786.87g的蒸馏水相互混合并溶解以制备水溶液B。在高温和高压下将超临界水(490℃,280bar)在100g/分钟下流入连续管式反应器中,水溶液A和水溶液B在15g/分钟的流速下流动并与超临界水接触几秒钟且混合以诱发反应。此时,水溶液A首先接触水溶液B以产生浆料,然后与超临界水反应。在产生浆料之后,尽可能快地将水溶液A与超临界水反应。
在管式反应器末端对由此得到的LiFePO4反应溶液进行冷却并过滤以得到LiFePO4浆料。将受控浓度的水添加至浆料中以得到具有15重量%固体含量的浆料,向其中添加按固体计为15重量%的蔗糖,随后溶解。将由此得到的浆料进行喷雾干燥以得到蔗糖包覆的LiFePO4粉末。
在氮气气氛下在约650℃下将由此得到的粉末加热10小时以得到最终碳包覆的LiFePO4粉末。作为XRD-Rietveld分析的结果可看出,所述粉末为LiFePO4晶体。
对由此得到的LiFePO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为2.9重量%并发现硫的含量为0.72重量%。
<实施例6>
将40.9g的LiOH-H2O、38.2g的氨水(~29重量%)和915.9g的蒸馏水相互混合并溶解以制备水溶液A。以与上述相同的方式,将141.3g的FeSO4-7H2O、14.13g的葡萄糖、57.7g的磷酸(85重量%)和793.94g的蒸馏水相互混合并溶解以制备水溶液B。在高温和高压下将超临界水(450℃,230bar)在80g/分钟下流入连续管式反应器中,水溶液A和水溶液B在10g/分钟的流速下流动并与超临界水接触几秒钟且混合以诱发反应。此时,水溶液A首先接触水溶液B以产生浆料,然后与超临界水反应。在产生浆料之后,尽可能快地将水溶液A与超临界水反应。
在管式反应器末端对由此得到的LiFePO4反应溶液进行冷却并过滤以得到LiFePO4浆料。将受控浓度的水添加至浆料中以得到具有12重量%固体含量的浆料,向其中添加按固体计为8重量%的蔗糖,随后溶解。将由此得到的浆料进行喷雾干燥以得到蔗糖包覆的LiFePO4粉末。
在氮气气氛下在约700℃下将由此得到的粉末加热6小时以得到最终碳包覆的LiFePO4粉末。作为XRD-Rietveld分析的结果可看出,所述粉末为LiFePO4晶体。
对由此得到的LiFePO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为1.54重量%并发现硫的含量为0.50重量%。
<实施例7>
将42.1g的LiOH-H2O、44.1g的氨水(~29重量%)和918.9g的蒸馏水相互混合并溶解以制备水溶液A。以与上述相同的方式,将141.3g的FeSO4-7H2O、7.07g的抗坏血酸、59.6g的磷酸(85重量%)和792.2g的蒸馏水相互混合并溶解以制备水溶液B。在高温和高压下将超临界水(440℃,255bar)在100g/分钟下流入连续管式反应器中,水溶液A和水溶液B在15g/分钟的流速下流动并与超临界水接触几秒钟且混合以诱发反应。此时,水溶液A首先接触水溶液B以产生浆料,然后与超临界水反应。在产生浆料之后,尽可能快地将水溶液A与超临界水反应。
在管式反应器末端对由此得到的LiFePO4反应溶液进行冷却并过滤,向其中添加制得的浆料10倍重量的蒸馏水,随后洗涤以得到LiFePO4浆料。将受控浓度的水添加至浆料中以得到具有20重量%固体含量的浆料,向其中添加按固体计为10重量%的蔗糖,随后溶解。将由此得到的浆料进行喷雾干燥以得到蔗糖包覆的LiFePO4粉末。
在氮气气氛下在约650℃下将由此得到的粉末加热10小时以得到最终碳包覆的LiFePO4粉末。作为XRD-Rietveld分析的结果可看出,所述粉末为LiFePO4晶体。
对由此得到的LiFePO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为2.1重量%并发现硫的含量为0.33重量%。
<实施例8>
将42.9g的LiOH-H2O、44.1g的氨水(~29重量%)和918.9g的蒸馏水相互混合并溶解以制备水溶液A。以与上述相同的方式,将141.3g的FeSO4-7H2O、7.07g的羟乙基纤维素、57.7g的磷酸(85重量%)和801g的蒸馏水相互混合并溶解以制备水溶液B。在高温和高压下将超临界水(450℃,300bar)在80g/分钟下流入连续管式反应器中,水溶液A和水溶液B在12g/分钟的流速下流动并与超临界水接触几秒钟且混合以诱发反应。此时,水溶液A首先接触水溶液B以产生浆料,然后与超临界水反应。在产生浆料之后,尽可能快地将水溶液A与超临界水反应。
在管式反应器末端对由此得到的LiFePO4反应溶液进行冷却并过滤,向其中添加制得的浆料10倍重量的蒸馏水,随后洗涤以得到LiFePO4浆料。将受控浓度的水添加至浆料中以得到具有10重量%固体含量的浆料,向其中添加按固体计为7重量%的蔗糖,随后溶解。将由此得到的浆料进行喷雾干燥以得到蔗糖包覆的LiFePO4粉末。
在氮气气氛下在约800℃下将由此得到的粉末加热10小时以得到最终碳包覆的LiFePO4粉末。作为XRD-Rietveld分析的结果可看出,所述粉末为LiFePO4晶体。
对由此得到的LiFePO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为1.3重量%并发现硫的含量为0.32重量%。
<实施例9>
将40.2g的LiOH-H2O、37.4g的氨水(~29重量%)和911g的蒸馏水相互混合并溶解以制备水溶液A。以与上述相同的方式,将152.3g的FeSO4-7H2O、15.1g的蔗糖、59.7g的磷酸(85重量%)和782g的蒸馏水相互混合并溶解以制备水溶液B。在高温和高压下将超临界水(430℃,250bar)在100g/分钟下流入连续管式反应器中,水溶液A和水溶液B在15g/分钟的流速下流动并与超临界水接触几秒钟且混合以诱发反应。此时,水溶液A首先接触水溶液B以产生浆料,然后与超临界水反应。在产生浆料之后,尽可能快地将水溶液A与超临界水反应以制备Li0.90Fe0.05FePO4
在管式反应器末端对由此得到的Li0.90Fe0.05FePO4反应溶液进行冷却并过滤以得到Li0.90Fe0.05FePO4浆料。将受控浓度的水添加至浆料中以得到具有20重量%固体含量的浆料,向其中添加按固体计为6重量%的蔗糖,随后溶解。将由此得到的浆料进行喷雾干燥以得到蔗糖包覆的Li0.90Fe0.05FePO4粉末。
在氮气气氛下在约700℃下将由此得到的粉末加热10小时以得到最终碳包覆的Li0.90Fe0.05FePO4粉末。
对由此得到的Li0.90Fe0.05FePO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为1.02重量%并发现硫的含量为0.46重量%。
<实施例10>
将41g的LiOH-H2O、33.4g的氨水(~29重量%)和920.2g的蒸馏水相互混合并溶解以制备水溶液A。以与上述相同的方式,将117.3g的FeSO4-7H2O、13.3g的蔗糖、55.7g的磷酸(85重量%)、3.9g的CuCl2-2H2O和796.87g的蒸馏水相互混合并溶解以制备水溶液B。在高温和高压下将超临界水(450℃,280bar)在100g/分钟下流入连续管式反应器中,水溶液A和水溶液B在15g/分钟的流速下流动并与超临界水接触几秒钟且混合以诱发反应。此时,水溶液A首先接触水溶液B以产生浆料,然后与超临界水反应。在产生浆料之后,尽可能快地将水溶液A与超临界水反应以制备LiFe0.88Cu0.12PO4
在管式反应器末端对由此得到的LiFe0.88Cu0.12PO4反应溶液进行冷却并过滤以得到LiFe0.88Cu0.12PO4浆料。将受控浓度的水添加至浆料中以得到具有15重量%固体含量的浆料,向其中添加按固体计为10重量%的蔗糖,随后溶解。将由此得到的浆料进行喷雾干燥以得到蔗糖包覆的LiFe0.88Cu0.12PO4粉末。
在氮气气氛下在约750℃下将由此得到的粉末加热10小时以得到最终碳包覆的LiFe0.88Cu0.12PO4粉末。
对由此得到的LiFe0.88Cu0.12PO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为2.1重量%并发现硫的含量为0.7重量%。
<实施例11>
将38.2g的LiOH-H2O、36.2g的氨水(~29重量%)和934.7g的蒸馏水相互混合并溶解以制备水溶液A。以与上述相同的方式,将122.3g的FeSO4-7H2O、13.3g的蔗糖、55.7g的磷酸(85重量%)、6g的CoSO4-7H2O和792.7g的蒸馏水相互混合并溶解以制备水溶液B。在高温和高压下将超临界水(420℃,240bar)在100g/分钟下流入连续管式反应器中,水溶液A和水溶液B在15g/分钟的流速下流动并与超临界水接触几秒钟且混合以诱发反应。此时,水溶液A首先接触水溶液B以产生浆料,然后与超临界水反应。在产生浆料之后,尽可能快地将水溶液A与超临界水反应以制备Li0.8Co0.1Fe0.91Co0.09PO4
在管式反应器末端对由此得到的Li0.8Co0.1Fe0.91Co0.09PO4反应溶液进行冷却并过滤以得到Li0.8Co0.1Fe0.91Co0.09PO4浆料。将受控浓度的水添加至浆料中以得到具有20重量%固体含量的浆料,向其中添加按固体计为15重量%的蔗糖,随后溶解。将由此得到的浆料进行喷雾干燥以得到蔗糖包覆的Li0.8Co0.1Fe0.91Co0.09PO4粉末。
在氮气气氛下在约700℃下将由此得到的粉末加热6小时以得到最终碳包覆的Li0.8Co0.1Fe0.91Co0.09PO4粉末。
对由此得到的Li0.8Co0.1Fe0.91Co0.09PO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为3.1重量%并发现硫的含量为1.3重量%。
<比较例1>
在高压间歇反应器中在3:1:1的摩尔比下放置LiOH-H2O、Fe(C2O4)-2H2O和H3PO4以作为原材料,在250℃的反应器的高内部温度下将所述材料相互反应10小时以合成LiFePO4
以与实施例1相同的方式向含有由此得到的LiFePO4的浆料中添加蔗糖,随后进行喷雾干燥并在氮气气氛下进行焙烧以得到作为最终产物的LiFePO4粉末。
对由此得到的LiFePO4粉末进行C&S分析以测量碳和硫的含量。结果,发现碳的含量为2.5重量%并发现硫的含量为0.01重量%。
<试验例1>
使用在实施例1~11以及比较例1中制备的LiFePO4粉末作为正极活性材料,制造了包含正极、Li金属负极和隔膜的硬币型单电池。将由此制造的硬币型单电池进行限制倍率的性能试验(2C/0.1C,%)。将结果示于下表1中。
<表1>
Figure BDA00002279916900231
从上表1能够看出,与比较例1的LiFePO4粉末相比,实施例2~4和6~10的锂铁磷酸盐粉末尽管碳的量少,但仍展示了优越的电化学性能。
尽管出于例示性目的而公开了本发明的优选实施方案,但是本领域技术人员应理解,在不背离附属权利要求书中所公开的本发明的范围和主旨的条件下,各种变化、添加和替代是可能的。
工业实用性
从上述可清楚,尽管根据本发明的橄榄石型锂铁磷酸盐含有预定量的硫化合物作为杂质,但是所述橄榄石型锂铁磷酸盐对电池制造过程中的操作性能几乎无影响,而是基于有助于将碳均匀并硬包覆在粒子表面上的作用,即使使用少量碳进行包覆,所述橄榄石型锂铁磷酸盐仍能够有利地展示高导电性,且由于碳包覆具有强结合力而在电极的制造过程中阻止了电极的分离,由此有助于提高电极密度。

Claims (18)

1.具有橄榄石晶体结构的锂铁磷酸盐,其中所述锂铁磷酸盐具有由下式1表示的组成,在所述锂铁磷酸盐的粒子中含有具有硫键的硫化合物作为杂质,并且在所述锂铁磷酸盐的粒子表面上包覆有碳(C),
Li1+aFe1-xMx(PO4-b)Xb            (1)
其中
M是选自Al、Mg、Ni、Co、Mn、Ti、Ga、Cu、V、Nb、Zr、Ce、In、Zn和Y中的至少一种元素,
X是选自F、S和N中的至少一种元素,且
-0.5≤a≤+0.5,0≤x≤0.5,0≤b≤0.1。
2.如权利要求1所述的锂铁磷酸盐,其中所述锂铁磷酸盐为LiFePO4
3.如权利要求1所述的锂铁磷酸盐,其中所述硫化合物是选自Li2S、FeS和(NH4)2S中的至少一种化合物。
4.如权利要求1所述的锂铁磷酸盐,其中基于所述锂铁磷酸盐的总重量,构成所述硫化合物的硫(S)的含量为0.01重量%~5重量%。
5.如权利要求1所述的锂铁磷酸盐,其中所述硫化合物得自用于制备所述锂铁磷酸盐的前体。
6.如权利要求1所述的锂铁磷酸盐,其中所述锂铁磷酸盐粒子还包含铁的氧化物作为杂质。
7.如权利要求1所述的锂铁磷酸盐,其中基于所述锂铁磷酸盐的总重量,碳(C)的包覆量为0.01重量%~10重量%。
8.如权利要求1所述的锂铁磷酸盐,其中以2nm~50nm的厚度在所述锂铁磷酸盐的粒子表面上包覆碳。
9.如权利要求1所述的锂铁磷酸盐,其中通过超临界水热法制备所述锂铁磷酸盐。
10.具有橄榄石晶体结构的锂铁磷酸盐,其中所述锂铁磷酸盐具有由下式2表示的组成,在所述锂铁磷酸盐的粒子中含有具有硫键的硫化合物作为杂质,并且在含有预定量硫(S)的所述锂铁磷酸盐的粒子表面上包覆有碳(C),
Li(1-a-b)Fea/2M'b/2Fe1-cM″cP1-dXdO4-eSe    (2)
其中M'是选自Mg、Ni、Co、Mn、Ti、Cr、Cu、V、Ce、Sn、Ba、Ca、Sr和Zn中的至少一种元素;
M″是选自Al、Mg、Ni、Co、Mn、Ti、Cr、Cu、V、Ce、Sn、Ba、Ca、Sr和Zn中的至少一种元素;
X是选自As、Sb、Bi、Mo、V、Nb和Te中的至少一种元素;且
0≤a≤0.6,0≤b≤0.6,0≤c≤1,0≤e≤3.5。
11.一种制备权利要求1的锂铁磷酸盐的方法,所述方法包括:
(a)将作为原料的前体进行初步混合;
(b)将步骤(a)中得到的混合物与超临界水或亚临界水进行二次混合以合成锂铁磷酸盐;
(c)将合成的锂铁磷酸盐与碳前体混合,并对混合物进行干燥;以及
(d)对所述锂铁磷酸盐和所述碳前体的混合物进行加热。
12.一种制备权利要求1的锂铁磷酸盐的方法,所述方法包括:
(a')将作为原料的前体进行初步混合;
(b')将步骤(a')中得到的混合物与超临界水或亚临界水进行二次混合以合成锂铁磷酸盐,随后进行干燥;
(c')对合成的锂铁磷酸盐进行加热;以及
(d')对所述锂铁磷酸盐和碳粉末进行研磨。
13.如权利要求11或12所述的方法,其中在惰性气体气氛下实施所述加热。
14.如权利要求11或12所述的方法,其中通过连续反应法合成所述锂铁磷酸盐。
15.一种正极混合物,其包含权利要求1~10中任一项的锂铁磷酸盐作为正极活性材料。
16.一种锂二次电池,其包含其中将权利要求15的正极混合物涂布到集电器上而得到的正极。
17.如权利要求16所述的锂二次电池,其中所述锂二次电池是电池模块的单元电池,所述电池模块是中型到大型装置的电源。
18.如权利要求17所述的锂二次电池,其中所述中型到大型装置是电动工具、电动车辆、混合电动车辆或电动高尔夫球车。
CN201180019990.8A 2010-04-21 2011-04-21 含有基于硫键的硫化合物的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池 Active CN102859762B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20100037086 2010-04-21
KR10-2010-0037086 2010-04-21
PCT/KR2011/002884 WO2011132965A2 (ko) 2010-04-21 2011-04-21 설파이드 결합의 황 화합물을 포함하고 있는 리튬 철인산화물 및 이를 이용한 리튬 이차전지

Publications (2)

Publication Number Publication Date
CN102859762A true CN102859762A (zh) 2013-01-02
CN102859762B CN102859762B (zh) 2016-02-17

Family

ID=44834667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180019990.8A Active CN102859762B (zh) 2010-04-21 2011-04-21 含有基于硫键的硫化合物的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池

Country Status (7)

Country Link
US (1) US9214700B2 (zh)
EP (1) EP2562855B1 (zh)
JP (2) JP6030545B2 (zh)
KR (1) KR101304207B1 (zh)
CN (1) CN102859762B (zh)
PL (1) PL2562855T3 (zh)
WO (1) WO2011132965A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520236A (zh) * 2012-08-10 2015-04-15 三星精密化学株式会社 锂金属磷酸盐的制造方法
CN116081589A (zh) * 2022-10-12 2023-05-09 北京钠谛科技有限公司 一种富锂硫磷酸铁锰锂材料及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562859B1 (en) * 2010-04-21 2018-12-12 LG Chem, Ltd. Lithium iron phosphate of olivine crystal structure and lithium secondary battery using same
KR101240176B1 (ko) * 2010-04-21 2013-03-07 주식회사 엘지화학 탄소가 코팅된 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지
CN103400982A (zh) * 2013-07-26 2013-11-20 烟台卓能电池材料有限公司 一种纳米锆酸锂修饰的磷酸铁锂复合材料及其制备方法
WO2016074960A1 (en) * 2014-11-13 2016-05-19 Basf Se Electrode materials, their manufacture and use
KR101994877B1 (ko) 2015-06-26 2019-07-01 주식회사 엘지화학 리튬 황 전지 및 이의 제조방법
KR102050836B1 (ko) 2015-12-08 2019-12-03 주식회사 엘지화학 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
JP2017191720A (ja) * 2016-04-14 2017-10-19 株式会社デンソー 非水電解質二次電池及びその製造方法
CN106410194A (zh) * 2016-11-25 2017-02-15 上海空间电源研究所 一种复合锂电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1785823A (zh) * 2005-12-23 2006-06-14 清华大学 磷位部分取代型磷酸铁锂粉体的制备方法
CN101443273A (zh) * 2006-02-17 2009-05-27 株式会社Lg化学 锂-金属复合氧化物的制备方法
WO2009075289A1 (ja) * 2007-12-10 2009-06-18 Sumitomo Osaka Cement Co., Ltd. 電極材料およびその製造方法、並びに、電極および電池
JP2009146773A (ja) * 2007-12-14 2009-07-02 Agc Seimi Chemical Co Ltd オリビン型リチウム鉄リン複合酸化物およびその製造方法
WO2009122686A1 (ja) * 2008-03-31 2009-10-08 戸田工業株式会社 リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110414A (ja) 1999-10-04 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池正極活物質およびリチウム二次電池
JP4187524B2 (ja) * 2002-01-31 2008-11-26 日本化学工業株式会社 リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2004095386A (ja) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd リチウムイオン電池用正極材料の製造方法およびリチウムイオン電池
CN100448071C (zh) * 2003-03-18 2008-12-31 黄穗阳 锂电池正极材料及其制备方法
JP5004413B2 (ja) * 2004-08-20 2012-08-22 日本コークス工業株式会社 燐酸アンモニウム鉄及びリチウムイオン二次電池用正極材料の製造方法、並びにリチウムイオン二次電池
JP4779323B2 (ja) * 2004-08-24 2011-09-28 日産自動車株式会社 非水電解質リチウムイオン二次電池用正極材料およびその製造方法
CN1794497A (zh) * 2005-11-01 2006-06-28 中国科学院成都有机化学有限公司 一种体相掺杂改性的锂离子蓄电池正极材料及其制备方法
KR100785491B1 (ko) * 2006-03-06 2007-12-13 한국과학기술원 리튬이차전지 양극재료용 활물질의 제조방법 및리튬이차전지
KR100940979B1 (ko) * 2006-05-08 2010-02-05 주식회사 엘지화학 LiFeP04의 제조방법
JP5108588B2 (ja) * 2008-03-31 2012-12-26 古河電池株式会社 二次電池用正極板およびその製造方法
JP2009280466A (ja) * 2008-05-26 2009-12-03 Gs Yuasa Corporation 電気化学的活性材料用製造装置、電気化学的活性材料の製造方法及び非水電解質二次電池。
JP5164260B2 (ja) * 2008-06-12 2013-03-21 テイカ株式会社 炭素−オリビン型リン酸鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料
KR101063934B1 (ko) * 2008-09-30 2011-09-14 한국전기연구원 활물질의 제조방법
JP5509598B2 (ja) * 2009-01-09 2014-06-04 住友大阪セメント株式会社 電極材料及びその製造方法、並びに電極及び電池
JP5540643B2 (ja) * 2009-02-03 2014-07-02 ソニー株式会社 薄膜固体リチウムイオン二次電池及びその製造方法
DE102009043644B4 (de) * 2009-09-29 2011-07-07 KNF Neuberger GmbH, 79112 Mehrstufige Membran-Saugpumpe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1785823A (zh) * 2005-12-23 2006-06-14 清华大学 磷位部分取代型磷酸铁锂粉体的制备方法
CN101443273A (zh) * 2006-02-17 2009-05-27 株式会社Lg化学 锂-金属复合氧化物的制备方法
WO2009075289A1 (ja) * 2007-12-10 2009-06-18 Sumitomo Osaka Cement Co., Ltd. 電極材料およびその製造方法、並びに、電極および電池
JP2009146773A (ja) * 2007-12-14 2009-07-02 Agc Seimi Chemical Co Ltd オリビン型リチウム鉄リン複合酸化物およびその製造方法
WO2009122686A1 (ja) * 2008-03-31 2009-10-08 戸田工業株式会社 リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520236A (zh) * 2012-08-10 2015-04-15 三星精密化学株式会社 锂金属磷酸盐的制造方法
US10752504B2 (en) 2012-08-10 2020-08-25 Samsung Sdi Co., Ltd. Method for preparing lithium metal phosphor oxide
CN116081589A (zh) * 2022-10-12 2023-05-09 北京钠谛科技有限公司 一种富锂硫磷酸铁锰锂材料及其制备方法
CN116081589B (zh) * 2022-10-12 2024-03-29 北京钠谛科技有限公司 一种富锂硫磷酸铁锰锂材料及其制备方法

Also Published As

Publication number Publication date
JP2016006800A (ja) 2016-01-14
CN102859762B (zh) 2016-02-17
WO2011132965A3 (ko) 2012-04-05
KR20110117632A (ko) 2011-10-27
KR101304207B1 (ko) 2013-09-05
US20130034776A1 (en) 2013-02-07
US9214700B2 (en) 2015-12-15
JP6030545B2 (ja) 2016-11-24
EP2562855A2 (en) 2013-02-27
WO2011132965A2 (ko) 2011-10-27
EP2562855A4 (en) 2017-01-18
PL2562855T3 (pl) 2021-09-27
JP2013525976A (ja) 2013-06-20
JP6301299B2 (ja) 2018-03-28
EP2562855B1 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
CN102893432B (zh) 碳包覆的具有橄榄石晶体结构的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
CN102844915B (zh) 碳包覆的具有橄榄石晶体结构的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
CN102859762B (zh) 含有基于硫键的硫化合物的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
KR101139972B1 (ko) 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
CN102844916B (zh) 橄榄石晶体结构的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
CN102186768B (zh) 具有橄榄石结构的锂铁磷酸盐及其制备方法
CN103262309B (zh) 高容量正极活性材料和包含其的锂二次电池
CN102834957B (zh) 二次电池用正极活性材料和包含所述正极活性材料的锂二次电池
CN105322166A (zh) 橄榄石型锂铁磷酸盐、包含其的正极混合物及其分析方法
CN103392250B (zh) 二次电池用正极混合物和含其的二次电池
US20150090926A1 (en) Precursor for preparing lithium composite transition metal oxide, method for preparing the precursor, and lithium composite transition metal oxide
US10903489B2 (en) Precursor for preparation of lithium composite transition metal oxide, method for preparing the same and lithium composite transition metal oxide obtained from the same
KR101817827B1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2018097451A1 (ko) 리튬 코발트 산화물을 포함하는 코어 및 리튬 코발트 인산화물을 포함하는 쉘을 포함하는 양극 활물질 입자 및 이의 제조 방법
CN102804458B (zh) 锂二次电池用正极活性材料
CN104364943B (zh) 高电压正极活性材料及其制备方法
KR101506317B1 (ko) 리튬 이차전지용 양극
KR20130130967A (ko) 올리빈 구조 금속산화물의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211214

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution,Ltd.

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.

TR01 Transfer of patent right