WO2011049231A1 - 半透膜支持体、スパイラル型半透膜エレメント及び半透膜支持体の製造方法 - Google Patents

半透膜支持体、スパイラル型半透膜エレメント及び半透膜支持体の製造方法 Download PDF

Info

Publication number
WO2011049231A1
WO2011049231A1 PCT/JP2010/068791 JP2010068791W WO2011049231A1 WO 2011049231 A1 WO2011049231 A1 WO 2011049231A1 JP 2010068791 W JP2010068791 W JP 2010068791W WO 2011049231 A1 WO2011049231 A1 WO 2011049231A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
semipermeable membrane
roll
membrane support
diameter
Prior art date
Application number
PCT/JP2010/068791
Other languages
English (en)
French (fr)
Inventor
吉田 光男
和彦 高山
木村 薫
竹内 常括
均 藤木
元道 福田
Original Assignee
三菱製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱製紙株式会社 filed Critical 三菱製紙株式会社
Priority to JP2011537329A priority Critical patent/JP5789193B2/ja
Priority to US13/502,881 priority patent/US20120219756A1/en
Priority to KR1020127010046A priority patent/KR101757491B1/ko
Priority to CN201080047695.9A priority patent/CN102574070B/zh
Priority to EP10825079.6A priority patent/EP2492001A4/en
Publication of WO2011049231A1 publication Critical patent/WO2011049231A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/06Surface irregularities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/609Cross-sectional configuration of strand or fiber material is specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/697Containing at least two chemically different strand or fiber materials

Definitions

  • the present invention relates to a semipermeable membrane support, a spiral type semipermeable membrane element, and a method for producing a semipermeable membrane support.
  • Semi-permeable membranes are widely used in the fields of seawater desalination, water purification, food concentration, wastewater treatment, ultrapure water production for medical use, semiconductor cleaning, and the like.
  • the semipermeable membrane is made of a synthetic resin such as a cellulose resin, a polysulfone resin, a polyacrylonitrile resin, a fluorine resin, a polyester resin, a polyamide resin, or a polyimide resin.
  • a semipermeable membrane is provided on one side (hereinafter referred to as “semipermeable membrane application surface”) of a semipermeable membrane support made of a fiber base material such as a nonwoven fabric or a woven fabric. It is used in the form.
  • the semipermeable membrane support is provided on the semipermeable membrane by dissolving the synthetic resin such as polysulfone resin described above in an organic solvent to prepare a semipermeable membrane solution, and then adding the semipermeable membrane solution to the semipermeable membrane.
  • a method of coating on a support is widely used. And in order to perform filtration efficiently, a spiral type semipermeable membrane element is formed, and a semipermeable membrane module is further assembled (for example, refer to patent documents 1).
  • the semipermeable membrane surface has few irregularities, no lateral bending or wrinkling occurs when the semipermeable membrane is formed, and the semipermeable membrane is uniform on the semipermeable membrane support. It is necessary to be provided with an appropriate thickness. Therefore, excellent smoothness is required for the semipermeable membrane application surface of the semipermeable membrane support. And in order to obtain favorable filtration performance, it is necessary to be excellent also in the adhesiveness of a semipermeable membrane and a semipermeable membrane support body.
  • non-application surface the opposite surfaces of the semipermeable membrane application surface (hereinafter referred to as “non-application surface”) using an adhesive. It is also required to have excellent adhesion. Furthermore, it is required that the semipermeable membrane solution does not penetrate the non-coated surface. This is because if the back-through occurs, the thickness of the semipermeable membrane becomes non-uniform and the adhesion between the non-coated surfaces decreases.
  • a non-woven fabric comprising main fibers and binder fibers, manufactured by a wet papermaking method, and subjected to a hot-pressure treatment
  • a semipermeable membrane support has been proposed (see, for example, Patent Document 2).
  • a semipermeable membrane support having a thick fiber layer as a semipermeable membrane application surface and a thin fiber layer as a non-application surface, and sandwiching the thin fiber layer with a thick fiber layer, the semipermeable membrane application surface and the non-application surface
  • a semipermeable membrane support is described in which both are thick fiber layers.
  • thick fibers are used on the semipermeable membrane application surface, the adhesion between the semipermeable membrane and the semipermeable membrane support is improved, but there is a problem that the smoothness is low.
  • the semipermeable membrane solution penetrates into the semipermeable membrane support, and a large amount of semipermeable membrane solution is required to obtain the desired semipermeable membrane thickness. There was a problem of becoming.
  • the thin fiber was used for the non-application surface, there also existed a problem that the adhesiveness of non-application surfaces was not good.
  • a semipermeable membrane support made of a nonwoven fabric having a single layer structure in which the surface roughness of the semipermeable membrane application surface is made larger than that of the non-application surface is also disclosed, but this semipermeable membrane support is also smooth on the semipermeable membrane application surface.
  • This semipermeable membrane support is also smooth on the semipermeable membrane application surface.
  • the semipermeable membrane support of Patent Document 3 describes that the smoothness increases when the binder fiber content is increased, but at the same time, the air permeability becomes too small, and the filtration flow during filtration is reduced. The problem that the bundle is lowered occurs.
  • Patent Document 3 proposes a method for adjusting the air permeability and pore size of the semipermeable membrane support for the purpose of improving the adhesion between the semipermeable membrane and the semipermeable membrane support and preventing the back-through.
  • the air permeability according to JIS L1096 is calculated based on the amount of air passing from one side of the semipermeable membrane support through the inside of the semipermeable membrane support to another side. This does not accurately reflect the penetration of the semipermeable membrane solution applied to the surface of the film application surface to the non-application surface.
  • the average pore size according to the bubble point method in accordance with JIS K3832 is such that a gas is ejected in a pressurized state from the lower surface of a semipermeable membrane support filled with a liquid having a known surface tension, and the semipermeable membrane support.
  • This is a method for obtaining the pore size from the change in pressure of the gas when the gas passes through the upper surface of the film, but also in this case, the penetration of the semipermeable membrane solution applied to the surface of the semipermeable membrane applied surface to the non-coated surface It is not an accurate reflection. Therefore, when a semipermeable membrane solution is applied to a semipermeable membrane support having a pore size in the range shown in Patent Document 3, it is difficult to completely prevent the back-through.
  • a semipermeable membrane support that can be provided at a low cost, it contains fiber for papermaking (pulp) while preventing the back-through of the semipermeable membrane solution and improving the adhesion between the semipermeable membrane and the semipermeable membrane support.
  • a semi-permeable membrane support having a two-layer structure has been proposed (see, for example, Patent Document 4).
  • the non-coated surface layer has a denser structure than the semi-permeable film coated surface layer, there is a problem with the semi-permeable film coating surface uniformity and smoothness, and the non-coated surface adhesion property. It was a membrane support.
  • mold and fungi grow, so that there is a fatal problem for the semipermeable membrane support that clean water cannot be produced.
  • the density of the non-coated surface is lower than the density of the semipermeable membrane coated surface, and the semipermeable membrane coated surface is more than the non-coated surface.
  • a smooth semipermeable membrane support has also been proposed (see, for example, Patent Document 5).
  • a semipermeable membrane is provided so as to reach the concave portion of the semipermeable membrane support having a concave portion on the non-coated surface, or the semipermeable membrane is formed through a hole formed on the semipermeable membrane coated surface. Since the semipermeable membrane is provided so as to reach the non-coated surface, there is a problem that the thickness of the semipermeable membrane is not uniform.
  • Patent Document 5 as a method for preventing the penetration of the semipermeable membrane solution to the non-coated surface, the average density of the region from the non-coated surface to 50% of the total thickness is 50% of the total thickness from the coated surface. There is also shown a method of making it within a range of 5 to 90% with respect to the average density of the above regions.
  • this method in the semipermeable membrane support having the characteristic that the absolute value of the average density in the region from the semipermeable membrane application surface side to 50% of the total thickness is low, the back-through of the semipermeable membrane solution is prevented. There was a problem that we could't.
  • semipermeable membrane support As a semipermeable membrane support that improves the dimensional stability when subjected to tensile stress, has a smooth semipermeable membrane application surface, no back-through, and excellent semipermeable membrane adhesion, it is longitudinal when stretched by 5%.
  • Semipermeable membrane support made of a nonwoven fabric having an average value of direction length (MD) and transverse direction (CD) breaking length of 4.0 km or more and an air permeability of 0.2 to 10.0 cc / cm 2 ⁇ sec Has been proposed (see, for example, Patent Document 6).
  • This semipermeable membrane support is a nonwoven fabric having high strength and small elongation.
  • Patent Document 6 is manufactured so as to equalize the smoothness of the semipermeable membrane application surface and the non-application surface, so the smoothness of the semipermeable membrane application surface and the semipermeable membrane and the semipermeable membrane support There is a problem that it is difficult to achieve compatibility with adhesiveness, and there is still a problem with respect to adhesiveness between non-coated surfaces.
  • the polyacrylonitrile-based synthetic fiber dissolves in the solvent used in the semipermeable membrane solution.
  • a technique for improving the performance has been proposed (see, for example, Patent Document 8).
  • it may not melt. Even when a solvent to be melted is used, the time from the contact of the semipermeable membrane solution with the semipermeable membrane support to the transition to the water washing step is very short, and therefore improvement in adhesion cannot be expected.
  • the semi-permeable membrane application surface fuzzed and the smoothness of the semi-permeable membrane application surface remained.
  • the fiber slurry in which the synthetic fiber is dispersed in water is made into a non-woven fabric by wet paper making.
  • the fiber concentration is 0.01 to 0.1% by mass, and a water-soluble polymer having a molecular weight of 5 million or more is added to the fiber slurry as a polymer viscosity agent, and 3 to 15% by mass based on the fiber mass.
  • a method of making paper by containing see, for example, Patent Document 9).
  • a semipermeable membrane support characterized in that it contains two types of binder fibers having different melting points and changes the drying temperature of the wet papermaking method and the temperature of the hot press treatment.
  • the purpose is to easily manufacture a permeable membrane support. Adhesiveness between a semipermeable membrane and a semipermeable membrane support, adhesion between non-coated surfaces, smoothness of a semipermeable membrane coated surface, back-through No consideration is given to prevention or the like (see, for example, Patent Documents 10 and 11).
  • the smoothness and thickness uniformity of the semipermeable membrane support are adjusted by a hot-pressure treatment (see, for example, Patent Documents 2 to 11).
  • a hot pressure treatment a combination of a metal roll / metal roll, a combination of a metal roll / elastic roll, and a method of performing a pressure treatment after only heat treatment is described.
  • a method of calendering at a temperature from the glass transition point of the synthetic fiber constituting the semipermeable membrane support to a temperature obtained by adding 20 ° C. to the glass transition point is also proposed (for example, see Patent Document 12).
  • the thickness and uniformity of the entire semipermeable membrane support vary only by adjusting the combination of rolls and temperature, and the adhesion between the semipermeable membrane and the semipermeable membrane support or the adhesion between the non-coated surfaces There is a problem that the low part frequently occurs.
  • the semipermeable membrane in the portion where the fluff is generated has a problem that pinholes and scratches are generated and the filtration performance is lowered.
  • the problem of the present invention is that the semipermeable membrane application surface is excellent in smoothness, the semipermeable membrane solution does not pass through, the semipermeable membrane is uniformly applied onto the semipermeable membrane support, Using a semipermeable membrane support and a semipermeable membrane support that have no peeling or wrinkles, strong peel strength between semipermeable membrane and semipermeable membrane support, and excellent adhesion between non-coated surfaces And providing a method for producing a spiral semipermeable membrane element and a semipermeable membrane support.
  • the semipermeable membrane support according to any one of (1) to (3) which contains at least one fiber having a fiber diameter of 10.0 ⁇ m or less as the main synthetic fiber.
  • a main synthetic fiber an aspect ratio of 200 to 1000, a large diameter fiber having a fiber diameter of 20.0 ⁇ m or less, and a fiber diameter smaller than that of the large diameter fiber and an aspect ratio of 200 to 2000 are included.
  • the absorption coefficient in a Bristow tester using a polysulfone resin solution dissolved in n-methylpyrrolidone at a solid content concentration of 15% by mass at 25 ° C.-60% RH on the surface of the semipermeable membrane coated surface is 5 to 100 ml / m
  • the main synthetic fiber and the binder synthetic fiber are contained, the average value of the longitudinal direction (MD) and transverse direction (CD) breaking length at 5% elongation is less than 4.0 km, and A semipermeable membrane support comprising a nonwoven fabric having a dimensional change rate in the transverse direction (CD) of -0.3 to + 1.0%.
  • the elongation percentage of the main synthetic fiber JIS L1013 2010) is 25 to 150%, and the tensile strength of the main synthetic fiber is 0.08 to 0.8 N / tex (14) or
  • Semipermeable membrane support is
  • a method for producing a semipermeable membrane support comprising: producing a sheet by heat-pressing the sheet.
  • the hot pressing process includes a step of passing the sheet through the first hot pressing roll nip and the second hot pressing roll nip, and the second hot pressing roll nip within 60 seconds after passing through the first hot pressing roll nip.
  • the hot pressing includes a step of passing the sheet through the first hot pressing roll nip and the second pressing roll nip, and further, heating between the first hot pressing roll nip and the second hot pressing roll nip.
  • the first feature of the present invention is that it contains two or more main synthetic fibers and binder synthetic fibers having different fiber diameters, and the smoothness ratio between the semipermeable membrane coated surface and the non-coated surface is 5.
  • a semipermeable membrane supporting material comprising a nonwoven fabric of 0: 1.0 to 1.1: 1.0.
  • the smoothness ratio between the three-dimensional network formed by stepwise mixing fibers having different fiber diameters, the semipermeable membrane application surface, and the non-application surface is 5.0: 1.0 to 1.1. : 1.0 means that the semipermeable membrane solution is difficult to see through, is excellent in smoothness of the semipermeable membrane application surface, and the semipermeable membrane is uniformly coated on the semipermeable membrane support. It has become possible to produce a semipermeable membrane support having high adhesion between the membrane-semipermeable membrane support and excellent adhesion between non-coated surfaces.
  • the second feature of the present invention is that it contains a main synthetic fiber and a binder synthetic fiber, and the average value of the longitudinal direction (MD) and transverse direction (CD) breaking length at 5% elongation is 4.0 km.
  • It is a semipermeable membrane support characterized in that it is made of a non-woven fabric having a dimensional change rate in the transverse direction (CD) of ⁇ 0.3 to + 1.0%.
  • CD transverse direction
  • FIG. 1 is a schematic view showing a combination and arrangement of rolls used in hot pressing and a sheet passing state in the present invention.
  • FIG. 2 is a schematic view showing the combination and arrangement of rolls used in hot pressing and the sheet passing state in the present invention.
  • FIG. 3 is a schematic view showing the combination and arrangement of rolls used in hot pressing and the sheet passing state in the present invention.
  • FIG. 4 is a schematic view showing a combination and arrangement of rolls used in hot pressing and a sheet passing state in the present invention.
  • FIG. 5 is a schematic view showing the combination and arrangement of rolls used in hot pressing and the sheet passing state in the present invention.
  • FIG. 6 is a schematic view showing the combination and arrangement of rolls used in hot pressing and the sheet passing state in the present invention.
  • FIG. 7 is a schematic view showing the combination and arrangement of rolls used in hot pressing and the sheet passing state in the present invention.
  • the first feature of the present invention is “containing two or more main synthetic fibers and binder synthetic fibers having different fiber diameters, and the ratio of smoothness between the semipermeable membrane coated surface and the non-coated surface is 5
  • a semipermeable membrane supporting material comprising a nonwoven fabric of 0.0: 1.0 to 1.1: 1.0 will be described.
  • the main synthetic fiber is a synthetic fiber that forms the skeleton of the semipermeable membrane support without melting and bonding at low temperatures.
  • polyolefin fibers, polyamide fibers, polyacrylic resins, vinylon resins, vinylidene resins, polyvinyl chloride resins, polyester resins, benzoate resins, polyclar resins, phenol fibers, etc. Is more preferable.
  • Semi-synthetic fibers such as acetate, triacetate, promix, and regenerated fibers such as rayon, cupra, and lyocell fiber may be contained within a range that does not impair the performance.
  • the binder synthetic fiber When the main synthetic fiber contains one type of fiber and the binder synthetic fiber contains two or more types of fibers with different fiber diameters, the binder synthetic fiber maintains its fiber shape during wet papermaking. Although it plays a role in forming a complex fiber structure, it is difficult to contribute to the fiber network of the semipermeable membrane support because it changes the fiber shape by softening or melting by the drying process or hot pressing process. . As in the present invention, by containing two or more main synthetic fibers having different fiber diameters, a complex fiber structure is formed.
  • the main synthetic fiber having a large fiber diameter is referred to as “thick fiber”, and the main synthetic fiber having a small fiber diameter is referred to as “thin fiber”.
  • the aspect ratio (fiber length / fiber diameter) of the large diameter fiber is preferably 200 to 1000, more preferably 220 to 900, and still more preferably 280 to 800.
  • the aspect ratio is less than 200, the dispersibility of the fiber is good.
  • the fiber is dropped from the paper making wire during paper making, or when the fiber is stuck in the paper making wire and the peelability from the wire is deteriorated. There is.
  • it exceeds 1000 although it contributes to the formation of a three-dimensional network of fibers, the occurrence of entanglement and entanglement may adversely affect the uniformity of the nonwoven fabric and the smoothness of the semipermeable membrane coated surface.
  • the fiber diameter of the large diameter fiber is preferably 20.0 ⁇ m or less, more preferably 2.0 to 20.0 ⁇ m, still more preferably 5.0 to 20.0 ⁇ m, and particularly preferably 10.0 to 20. 0 ⁇ m. If it is less than 2.0 ⁇ m, the adhesion between the non-coated surfaces may deteriorate. When the fiber diameter of the large-diameter fiber exceeds 20.0 ⁇ m, the smoothness of the semipermeable membrane application surface may be lowered or the back-through of the semipermeable membrane solution may occur. Further, fluff is likely to stand on the surface of the nonwoven fabric.
  • the fiber length of the large-diameter fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, still more preferably 3 to 6 mm, and particularly preferably 4 to 6 mm.
  • the cross-sectional shape of the large-diameter fiber is preferably circular, but fibers having irregular cross-sections such as T-type, Y-type, and triangle also have other characteristics for preventing penetration through, surface smoothness, and adhesion between non-coated surfaces. Can be contained within a range not inhibiting.
  • the content of the large-diameter fiber with respect to the nonwoven fabric is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass.
  • the content of the large-diameter fiber is less than 10% by mass, the hardness of the nonwoven fabric may be insufficient.
  • it exceeds 80 mass% there exists a possibility of breaking by intensity
  • the small-diameter fiber is a fiber having a smaller fiber diameter than the large-diameter fiber, and is preferably a fiber having an aspect ratio equal to or greater than that of the large-diameter fiber.
  • the aspect ratio (fiber length / fiber diameter) of the fine fiber is preferably 200 to 2000, more preferably 300 to 1500, and still more preferably 400 to 1000. When the aspect ratio is less than 200, the dispersibility of the fiber is good, but the fiber may fall off the paper making wire during paper making, or the fiber may be stuck in the paper making wire and the peelability from the wire may deteriorate. is there.
  • the small-diameter fiber plays a role of filling a gap in the skeleton of the semipermeable membrane support formed by the large-diameter fiber to form a uniform and complicated three-dimensional network. In addition, it exerts the effect of controlling the voids and enhancing the smoothness. Therefore, the fiber diameter of the small-diameter fiber is not particularly limited as long as it is thinner than the large-diameter fiber.
  • the thickness is preferably 2.0 to 15.0 ⁇ m, more preferably 3.0 to 13.0 ⁇ m, and still more preferably 5.0 to 10.0 ⁇ m. That is, it is preferable that at least a fiber having a fiber diameter of 10.0 ⁇ m or less is contained as the main synthetic fiber. Moreover, in order to improve the smoothness of a semipermeable membrane application surface, it is important that the crimp is not added to the thin fiber.
  • the fiber length of the fine fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, still more preferably 3 to 6 mm, and particularly preferably 4 to 6 mm.
  • the cross-sectional shape of the small-diameter fiber is preferably circular, but fibers having irregular cross-sections such as T-type, Y-type, and triangle also have other characteristics for preventing back-through, surface smoothness, and adhesion between non-coated surfaces. Can be contained within a range not inhibiting.
  • the content of the fine fiber in the nonwoven fabric is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass.
  • the content of the fine fiber is less than 10% by mass, the formation may be deteriorated.
  • it exceeds 80 mass% there exists a possibility that the hardness of a nonwoven fabric may run short or torn by the strength shortage.
  • a large diameter fiber and a small diameter fiber may be selected and used one by one, or a combination of a plurality of kinds of large diameter fibers and one kind of small diameter fiber, one kind of large diameter fiber and a plurality of kinds of small diameter fibers. A combination of these can be selected as appropriate.
  • the average fiber diameter of the main synthetic fiber is obtained by the following formula.
  • N is a positive integer.
  • Average fiber diameter (fiber diameter of main synthetic fiber 1 ( ⁇ m) ⁇ mass% of main synthetic fiber 1 + fiber diameter of main synthetic fiber 2 ( ⁇ m) ⁇ mass% of main synthetic fiber 2 + fiber diameter of main synthetic fiber 3 ( ⁇ m) ⁇ mass% of main synthetic fiber 3 +... + Fiber diameter of main synthetic fiber N ( ⁇ m) ⁇ mass% of main synthetic fiber N) / (mass% of main synthetic fiber 1 + main synthetic fiber 2) Mass% + mass% of main synthetic fiber 3+... + Mass% of main synthetic fiber N)
  • the average fiber diameter of the main synthetic fiber is preferably 20.0 ⁇ m or less.
  • the fiber diameter of all the main synthetic fibers contained in the semipermeable membrane support is preferably 20.0 ⁇ m or less. In this case, the smoothness of the semipermeable membrane application surface is improved, Thickness uniformity is improved.
  • the binder synthetic fiber is a fiber intended to melt and bond by incorporating a process of raising the temperature to the softening point or higher than the melting temperature (melting point) into the manufacturing process of the semipermeable membrane support, and the semipermeable membrane support. Improve the mechanical strength.
  • a semipermeable membrane support can be produced by a wet papermaking method, and the binder synthetic fiber can be softened or melted by a subsequent drying step or hot pressing.
  • binder synthetic fiber examples include core-sheath fibers (core-shell type), parallel fibers (side-by-side type), composite fibers such as radial split fibers, unstretched fibers, and the like. More specifically, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a combination of high melting point polyester (core) and low melting point polyester (sheath), polyester, etc. Of undrawn fiber. Since the composite fiber hardly forms a film, the mechanical strength can be improved while maintaining the space of the semipermeable membrane support.
  • a single fiber (fully fused type) composed only of a low melting point resin such as polyethylene or polypropylene, or a hot water-soluble binder such as polyvinyl alcohol easily forms a film in the drying process of the semipermeable membrane support.
  • a high-melting polyester (core) and a low-melting polyester (sheath) and unstretched polyester fibers can exhibit strength when forming a nonwoven fabric by a wet papermaking method, and can also be used during hot pressing.
  • it can be preferably used since the second-stage strength development is possible.
  • the fiber diameter of the binder synthetic fiber is not particularly limited, but is preferably 2.0 to 20.0 ⁇ m, more preferably 5.0 to 15.0 ⁇ m, and still more preferably 7.0 to 12.0 ⁇ m. . Moreover, it is preferable that it is a fiber diameter thinner than a large diameter fiber. Furthermore, because the fiber diameter is different from the main synthetic fiber, the binder synthetic fiber forms a uniform three-dimensional network with the main synthetic fiber during wet papermaking in addition to the role of improving the mechanical strength of the semipermeable membrane support. Also plays a role. Furthermore, in the step of raising the temperature to the softening temperature or melting temperature of the binder synthetic fiber, the smoothness of the semipermeable membrane support surface can be improved, and in this step, it is more effective when accompanied by pressurization. is there.
  • the aspect ratio (fiber length / fiber diameter) of the binder synthetic fiber is preferably 200 to 1000, more preferably 300 to 800, and still more preferably 400 to 700.
  • the aspect ratio is less than 200, the dispersibility of the fiber is good, but the fiber may fall off from the paper making wire during paper making, or the fiber may pierce the paper making wire and the peelability from the wire may deteriorate. is there.
  • the binder synthetic fiber if it exceeds 1000, the binder synthetic fiber contributes to the formation of a three-dimensional network, but if the fibers are entangled or entangled, the uniformity of the nonwoven fabric and the smoothness of the semipermeable membrane coated surface are adversely affected. Sometimes.
  • the fiber length of the binder synthetic fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, still more preferably 3 to 6 mm, and particularly preferably 4 to 6 mm.
  • the cross-sectional shape of the binder synthetic fiber is preferably circular, but fibers having irregular cross-sections such as T-type, Y-type, and triangle are also used for preventing back-through, smoothness of the semipermeable membrane application surface, and adhesion between non-application surfaces. Furthermore, it can be contained within a range not inhibiting other characteristics.
  • the content of the binder synthetic fiber with respect to the nonwoven fabric related to the semipermeable membrane support of the present invention is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and further preferably 20 to 45% by mass. If the content of the binder synthetic fiber is less than 10% by mass, the binder may be broken due to insufficient strength. Moreover, when it exceeds 60 mass%, there exists a possibility that liquid permeability may fall.
  • the smoothness ratio between the semipermeable membrane application surface and the non-application surface is 5.0: 1.0 to 1.1: 1.0, more preferably 4.0: 1.0 to 1.3: 1.0, more preferably 3.0: 1.0 to 1.1: 1.0.
  • Smoothness can be measured according to JIS P 8119 using a Beck smoothness tester. When the ratio of smoothness between the semipermeable membrane application surface and the non-application surface exceeds 5.0: 1.0, curling and wrinkles occur in the semipermeable membrane application process, and the semipermeable membrane and semipermeable membrane Adhesiveness with the membrane support decreases, which is not preferable.
  • both the adhesion between the semipermeable membrane and the semipermeable membrane support and the adhesion between the non-application surfaces are compatible. Is not preferable because it becomes difficult.
  • the ratio of smoothness between the semipermeable membrane application surface and the non-application surface is 5.0: 1.0 to 1.1: 1.0, (A) When wet paper is brought into close contact with a hot roll such as a Yankee dryer and dried by hot pressure, the surface in contact with the hot roll is made a semipermeable membrane coated surface.
  • the average fiber diameter of the main synthetic fibers contained in the semipermeable membrane coated surface layer is smaller than the average fiber diameter of the main synthetic fibers contained in the non-coated surface layer.
  • the semipermeable membrane coated surface layer may contain a multilayer nonwoven fabric containing thin fibers and binder fibers, and the non-coated surface layer may contain thick fibers and binder fibers, or the semipermeable membrane coated surface layer and the non-coated surface layer Both of them may be a multi-layered nonwoven fabric containing large-diameter fibers, small-diameter fibers, and binder fibers, in which the average fiber diameter of the main synthetic fibers of the semipermeable membrane coated surface layer is smaller than that of the non-coated surface layer.
  • the fiber diameter of the large diameter fibers in the semipermeable membrane coated surface layer is 8.0 to 20. 0 ⁇ m is preferable, 9.0 to 19.0 ⁇ m is more preferable, and 10.0 to 18.0 ⁇ m is further preferable.
  • the aspect ratio is preferably 200 to 1000, more preferably 200 to 900, and still more preferably 250 to 800.
  • the fiber length is preferably 1 to 12 mm, more preferably 2 to 10 mm, and even more preferably 3 to 8 mm.
  • the content of the large-diameter fiber in the semipermeable membrane coated surface layer is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass.
  • the fiber diameter of the fine fibers in the semipermeable membrane coated surface layer is preferably 2.0 to 18.0 ⁇ m, more preferably 3.0 to 15.0 ⁇ m, and further preferably 5.0 to 12.0 ⁇ m.
  • the aspect ratio is preferably 200 to 2000, more preferably 250 to 1500, and still more preferably 300 to 1000.
  • the fiber length is preferably 1 to 12 mm, more preferably 2 to 10 mm, and even more preferably 3 to 6 mm.
  • the content of fine fibers in the semipermeable membrane coated surface layer is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass.
  • the fiber diameter of the binder synthetic fiber in the semipermeable membrane coated surface layer is preferably 2.0 to 20.0 ⁇ m, more preferably 5.0 to 17.0 ⁇ m, and even more preferably 7.0 to 15.0 ⁇ m.
  • the aspect ratio is preferably 200 to 1000, more preferably 300 to 800, and still more preferably 400 to 700.
  • the fiber length is preferably 1 to 12 mm, more preferably 2 to 10 mm, and even more preferably 3 to 6 mm.
  • the content of the binder synthetic fiber in the semipermeable membrane coated surface layer is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and further preferably 20 to 40% by mass.
  • the fiber diameter of the thick fibers in the non-coated surface layer is preferably 9.0 to 20.0 ⁇ m, more preferably 10.0 to 19.0 ⁇ m, and even more preferably 10.0 to 18.0 ⁇ m.
  • the aspect ratio is preferably 200 to 1000, more preferably 200 to 900, and still more preferably 250 to 800.
  • the fiber length is preferably 1 to 12 mm, more preferably 2 to 10 mm, and even more preferably 3 to 6 mm.
  • the content of the large diameter fiber in the non-coated surface layer is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass.
  • the fiber diameter of the fine fibers in the non-coated surface layer is preferably 5.0 to 18.0 ⁇ m, more preferably 6.0 to 15.0 ⁇ m, and even more preferably 7.0 to 13.0 ⁇ m.
  • the aspect ratio is preferably 200 to 1000, more preferably 250 to 900, and still more preferably 300 to 800.
  • the fiber length is preferably 1 to 12 mm, more preferably 2 to 10 mm, and even more preferably 3 to 6 mm.
  • the content of the fine fiber in the non-coated surface layer is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass.
  • the fiber diameter of the binder synthetic fiber in the non-coated surface layer is preferably 2.0 to 20.0 ⁇ m, more preferably 5.0 to 17.0 ⁇ m, and even more preferably 7.0 to 15.0 ⁇ m.
  • the aspect ratio is preferably 200 to 1000, more preferably 300 to 800, and still more preferably 400 to 700.
  • the fiber length is preferably 1 to 12 mm, more preferably 2 to 10 mm, and even more preferably 3 to 6 mm.
  • the content of the binder fiber in the non-coated surface layer is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and further preferably 20 to 40% by mass.
  • the ratio of the semipermeable membrane coated surface layer to the nonwoven fabric is 10 to 90% by mass. It is preferably 20 to 80% by mass, more preferably 30 to 70% by mass.
  • the ratio of the semipermeable membrane application surface layer is less than 10% by mass, the solution may easily escape to the back surface of the semipermeable membrane support during the semipermeable membrane solution coating.
  • the ratio of a semipermeable membrane application surface layer exceeds 90 mass%, the adhesiveness of support non-application surfaces may fall.
  • the nonwoven fabric may have a multilayer structure in which the fiber blending of each layer is the same.
  • concentration of a slurry can be lowered
  • the formation of each layer is not uniform, it can be compensated by laminating. Further, the paper making speed can be increased, and the operability is improved.
  • the semipermeable membrane support of the present invention preferably further contains fibrillated organic fibers.
  • the fiber structure formed by the fibrillated organic fiber and the main synthetic fiber can prevent the semipermeable membrane solution from being breached.
  • the smoothness of a semipermeable membrane application surface can be improved by including the fibrillated organic fiber.
  • a semipermeable membrane support in which the adhesion between the semipermeable membrane and the semipermeable membrane support is good and the fluffing of the semipermeable membrane application surface is suppressed is obtained. Can do.
  • a liquid crystalline polymer pulp which is obtained by treating a liquid crystalline polymer into a pulp form.
  • liquid crystalline polymer pulp is contained, it is possible to obtain a semipermeable membrane support in which generation of wrinkles and dimensional changes in the steps such as washing and drying after coating the semipermeable membrane solution is suppressed due to its heat resistance.
  • Liquid crystalline polymers include wholly aromatic polyamides, semi-aromatic polyamides, wholly aromatic polyesters, semi-aromatic polyesters, wholly aromatic polyester amides, semi-aromatic polyester amides, wholly aromatic polyethers, and semi-aromatic polyethers.
  • the semi-aromatic refers to those having, for example, a fatty chain in a part of the main chain.
  • wholly aromatic polyamides and wholly aromatic polyesters that are easily fibrillated are preferable.
  • para-aramid is preferred.
  • the liquid crystalline polymer pulp can be produced by using a high-pressure homogenizer, a refiner, a beater, a mill, a grinding device, etc. alone or in combination.
  • a high-pressure homogenizer alone or a combination of a high-pressure homogenizer and another device, because the fiber length distribution and the fiber diameter distribution are relatively narrow and the fibers tend to be thin and uniform. .
  • “Liquid crystalline polymer pulp” refers to a liquid crystalline polymer fiber having a fibrous shape mainly having a portion finely divided in a direction parallel to the fiber axis, and at least a part of which has a fiber diameter of 1 ⁇ m or less. In the present invention, those having a mass average fiber length in the range of 0.20 to 2.00 mm are used. Thus, the fibrils of the present invention are different from fibrils.
  • the fibrid is, as specified in US Pat. No. 5,833,807 and US Pat. No. 5,026,456, an average length of 0.2 mm to 1 mm and an aspect ratio of length to width of 5: 1 to 10: 1.
  • the film-like particles are not fibrous.
  • the fibrils in the present invention have a length / width aspect ratio distributed in a range of 20: 1 to 100,000: 1 and a Canadian standard freeness in a range of 0 ml to 500 ml. Further, those having a mass average fiber length in the range of 0.20 to 2.00 mm are preferred.
  • the second fibrillated organic fiber includes fibrillated acrylic fiber.
  • Ball mills, dyno mills, and mixers that use split fiber acrylic fibers that can be split and fibrillated to disperse and grind pigments, beaters, PFI mills, single disc refiners (SDR), double disc refiners (DDR), pigments, etc.
  • It is a fiber that has been split and fibrillated with a beating / dispersing facility such as a high-pressure homogenizer. If splitting and fibrillation are possible with these beating / dispersing facilities, there is no particular limitation on the polymer constituting the splittable acrylic fiber.
  • it may be composed only of an acrylonitrile-based polymer used for ordinary acrylic fibers, or may be composed of an acrylonitrile-based polymer and an additive polymer. Considering that splitting and fibrillation are easy, splitting acrylic fibers composed of an acrylonitrile-based polymer and an additive polymer are more preferable.
  • phase separation domain size is in the order of micron to submicron.
  • the splitting or fibrillation is improved by the beating process.
  • it is important that the acrylonitrile polymer and the additive polymer are not miscible during spinning, but are appropriately mixed.
  • the copolymerization component of acrylonitrile is not particularly limited as long as it is a copolymerization monomer constituting a normal acrylic fiber, and examples thereof include the following monomers. That is, acrylic esters represented by methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate And unsaturated monomers such as acrylic acid esters, acrylic acid, methacrylic acid, maleic acid, acrylamide, styrene, vinyl toluene, vinyl acetate, vinyl chloride, vinylidene chloride, and vinylidene fluoride.
  • acrylic esters represented by methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, methyl methacrylate,
  • the additive polymer is not particularly limited, and examples thereof include acrylic polymers and some polymers other than acrylic polymers.
  • the monomer which comprises an acryl-type polymer is not specifically limited, For example, the following monomers are mentioned, Among these, 1 or more types can be used.
  • Methacrylic acid esters such as acrylic acid, methacrylic acid, maleic acid, acrylamide, styrene, vinyl toluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, etc. It is.
  • Polymers other than acrylic polymers include polyvinyl chloride, polyalkylene glycol, polyether compounds, polyether ester compounds, cellulose acetate, cellulose diacetate, polysulfone, polyvinyl alcohol, polyamide, polyester, and polypeptide. Can be mentioned. Further, chitin, chitosan and the like may be added to impart antibacterial and deodorizing properties.
  • the smoothness of the semipermeable membrane application surface is improved and the fuzz is suppressed, but the softening point or glass transition point of the additive polymer used for the split fiber acrylic fiber is also half.
  • the temperature is lower than the treatment temperature in the step of producing the permeable membrane support, a part of or all of the additive polymer is melted by applying a temperature equal to or higher than the softening point or the glass transition point. It functions to increase the strength of the permeable membrane application surface, further serves to prevent fiber fluffing on the semipermeable membrane application surface, and suppresses defects of the semipermeable membrane.
  • the cross-sectional shape of the split acrylic fiber used in the semipermeable membrane support of the present invention not only circular and elliptical, but also flat, triangular, Y-shaped, T-shaped, U-shaped, star-shaped, Any of a dog-bone type having a so-called irregular cross-sectional shape, a hollow shape, and a branched shape may be used. However, from the viewpoint of easy splitting, a circular or elliptical shape is most preferable.
  • the degree of fibrillation of the split fiber acrylic fiber is not particularly limited. However, (A) a fibrillated acrylic fiber having an average fiber diameter of 1 ⁇ m or less, and (B) a fibrillated acrylic fiber in which branches having an average fiber diameter of 1 ⁇ m or less are generated from a trunk part having an average fiber diameter of 2 ⁇ m or more.
  • the acrylic fiber is included, the characteristics of the fibrillated acrylic fiber are exhibited to the maximum, smoothness of the semipermeable membrane application surface, suppression of fuzziness, uniformity of the semipermeable membrane support, and semi-permeability during the semipermeable membrane coating. Uniformity of the permeable membrane, prevention of see-through of the semipermeable membrane solution, adhesion between the semipermeable membrane and the semipermeable membrane support, and the like can be improved in a balanced manner.
  • the fibrillated acrylic fibers are sufficiently diluted with water or the like and then dried and observed with a microscope or preferably with an electron microscope. It is preferable. Once the fibrillation conditions are determined, there is no need to observe each time.
  • the fiber diameter of the fibrillated acrylic fiber is an arithmetic average value of the fiber diameters measured by arbitrarily selecting 20 fibers (A) and (B) from the electron micrograph.
  • the aspect ratio (fiber length / fiber diameter) of the fibrillated acrylic fiber (A) is preferably 10 to 100,000, more preferably 100 to 50,000.
  • the aspect ratio of the trunk is preferably 10 to 50000, more preferably 50 to 30000.
  • the aspect ratio of the branch is preferably 10 to 100,000, more preferably 100 to 50,000.
  • the third fibrillated organic fiber includes fibrillated lyocell fiber.
  • “Lyocell” is a fiber term defined in ISO standards and Japanese JIS standards, and is “cellulose fibers obtained by spinning in an organic solvent directly without passing through a cellulose derivative”.
  • Features of lyocell fiber include excellent wet strength, easy fibrillation, and easy strength when formed into a sheet by hydrogen bonds derived from cellulose fibers.
  • Lyocell fiber is fibrillated by applying shearing force with beater / dispersion equipment such as beater, PFI mill, single disc refiner (SDR), double disc refiner (DDR), ball mill used for dispersing and grinding pigments, dyno mill, etc. can do. Since lyocell fiber is made from cellulose fiber, it can be bonded to the fiber by hydrogen bonding even after fibrillation. As a result, the strength of the semipermeable membrane support, the uniformity of the semipermeable membrane support, and the semipermeable membrane coating The effect of improving the smoothness of the surface and the prevention of the back-through of the semipermeable membrane solution can be obtained.
  • beater / dispersion equipment such as beater, PFI mill, single disc refiner (SDR), double disc refiner (DDR), ball mill used for dispersing and grinding pigments, dyno mill, etc.
  • the degree of fibrillation of lyocell fiber is not particularly limited. However, (A) fibrillated lyocell fiber having an average fiber diameter of 1 ⁇ m or less, and (B) fibrillated lyocell fiber in which branches having an average fiber diameter of 1 ⁇ m or less are generated from a trunk portion having an average fiber diameter of 2 ⁇ m or more.
  • lyocell fiber When lyocell fiber is included, the characteristics of the fibrillated lyocell fiber are maximized, and the uniformity of the semipermeable membrane support, the smoothness of the semipermeable membrane application surface, the prevention of see-through of the semipermeable membrane solution, etc. Can be increased.
  • the fibrillated lyocell fibers are sufficiently diluted with water or the like and then dried and observed with a microscope or preferably an electron microscope. It is preferable. Once the fibrillation conditions are determined, there is no need to observe each time.
  • the fiber diameter of the fibrillated lyocell fiber is an arithmetic average value of the fiber diameters measured by arbitrarily selecting 20 fibers (A) and (B) from an electron micrograph.
  • the aspect ratio (fiber length / fiber diameter) of the fiber (A) is preferably 10 to 100,000, more preferably 100 to 50,000.
  • the aspect ratio of the trunk is preferably 10 to 50000, and more preferably 50 to 30000.
  • the aspect ratio of the branch is preferably 10 to 100,000, more preferably 100 to 50,000.
  • the blending ratio of the fibrillated organic fiber is not particularly limited, but is preferably 0.5 to 20.0% by mass, and preferably 0.5 to 10.0% by mass with respect to the semipermeable membrane support. More preferred.
  • the content of the fibrillated organic fiber is less than 0.5% by mass, the uniformity of the semipermeable membrane support may not be improved because the fibrillated organic fiber cannot be uniformly distributed on the semipermeable membrane support. is there. Further, there may be insufficient contribution to the prevention of see-through of the semipermeable membrane solution, suppression of fuzz, adhesion between the semipermeable membrane and the semipermeable membrane support, and dimensional stability.
  • the content of the fibrillated organic fiber exceeds 20.0% by mass, the uniformity of the semipermeable membrane support and the prevention of the back-through of the semipermeable membrane solution can be sufficiently obtained, but the liquid flow resistance becomes too high. Thus, the life of the semipermeable membrane may be shortened. Moreover, the adhesiveness of a semipermeable membrane and a semipermeable membrane support body may become inadequate.
  • the fibrillated organic fiber is a liquid crystalline polymer pulp
  • the content is 0.5 to 20.0% by mass, so that the heat resistance characteristic of the liquid crystalline polymer pulp allows the semipermeable membrane solution coating.
  • a semipermeable membrane supporting body in which generation of wrinkles and dimensional changes in subsequent steps such as washing and drying can be suppressed can be obtained.
  • the fibrillated organic fibers can be placed in both the semipermeable membrane coated surface layer and the non-coated surface layer, but preferably only in the semipermeable membrane coated surface layer, Or when it puts into both layers, it is preferable to put many in a semipermeable membrane application surface layer.
  • By adding only the semipermeable membrane coated surface layer or in the coated layer it is possible to improve the smoothness and uniformity of the semipermeable membrane coated surface, and to lower the smoothness of the non-coated surface layer surface than the coated surface, As a result, both the penetration of the semipermeable membrane and the adhesiveness of the non-coated surface can be achieved.
  • the basis weight of the semipermeable membrane support is not particularly limited, but is preferably 20 to 150 g / m 2 , more preferably 50 to 100 g / m 2 . When it is less than 20 g / m 2, there are cases where sufficient tensile strength can not be obtained. Moreover, when it exceeds 150 g / m ⁇ 2 >, a liquid flow resistance may become high, thickness may increase, and a predetermined amount of semipermeable membrane may not be accommodated in a unit or a module.
  • the density of the semipermeable membrane support is preferably 0.5 to 1.0 g / cm 3 , more preferably 0.6 to 0.9 g / cm 3 .
  • the density of the semipermeable membrane support is less than 0.5 g / cm 3 , the thickness increases, and the area of the semipermeable membrane that can be incorporated into the unit is reduced. As a result, the life of the semipermeable membrane is shortened. May end up. On the other hand, when it exceeds 1.0 g / cm 3 , the liquid permeability may be lowered, and the life of the semipermeable membrane may be shortened.
  • the thickness of the semipermeable membrane support is preferably 50 to 150 ⁇ m, more preferably 60 to 130 ⁇ m, and still more preferably 70 to 120 ⁇ m.
  • the thickness of the semipermeable membrane support exceeds 150 ⁇ m, the area of the semipermeable membrane that can be incorporated into the unit is reduced, and as a result, the life of the semipermeable membrane may be shortened.
  • the thickness is less than 50 ⁇ m, sufficient tensile strength may not be obtained or the liquid permeability may be reduced, and the life of the semipermeable membrane may be shortened.
  • the arithmetic average roughness (Ra) can be analyzed by, for example, a surface roughness analyzer Surfcom E-RM-S27A manufactured by Tokyo Seimitsu Co., Ltd., a trade name VK8510 manufactured by KEYENCE, or the like.
  • Ra is the cross-sectional curve of the semipermeable membrane application surface, and in the part extracted by the reference length, the sum of the area of the part surrounded by the average line and the cross-sectional curve of the extracted part is divided by the length of the extracted part.
  • the value is expressed in micrometers ( ⁇ m) and is defined in JIS B0601-1994 (Japanese Industrial Standard).
  • the Ra of the semipermeable membrane coated surface is 5.0 to 15.0 ⁇ m.
  • Ra is less than 5.0 ⁇ m, the smoothness of the surface of the semipermeable membrane applied surface becomes high and a uniform semipermeable membrane can be obtained, but the contact area between the semipermeable membrane and the semipermeable membrane support becomes small, and the anchor When the effect is lowered, the semipermeable membrane may be easily peeled off from the semipermeable membrane support.
  • Ra of the semipermeable membrane application surface exceeds 15.0 ⁇ m, it may be difficult to obtain a semipermeable membrane having a uniform thickness.
  • a more preferable range of Ra on the semipermeable membrane application surface is 5.0 to 12.0 ⁇ m, and a more preferable range is 5.0 to 9.0 ⁇ m.
  • the ten-point average roughness (Rz) is analyzed by, for example, a surface roughness analyzer Surfcom E-RM-S27A manufactured by Tokyo Seimitsu Co., Ltd., a trade name VK8510 manufactured by KEYENCE, etc. Is possible.
  • the calculation method is according to JIS B0601-1994 (Japanese Industrial Standards). From the roughness curve of the semipermeable membrane coated surface, only the reference length is extracted in the direction of the average line, and the direction of the vertical magnification from the average line of the extracted part. Calculated the sum of the absolute value of the highest elevation (Yp) from the highest peak to the fifth and the average absolute value of the lowest elevation (Yv) from the lowest to the fifth. This value is expressed in micrometers ( ⁇ m).
  • the Rz of the semipermeable membrane application surface when the Rz of the semipermeable membrane application surface is 150 ⁇ m or less, a uniform semipermeable membrane is obtained, and when it exceeds 150 ⁇ m, the adhesion between the semipermeable membrane support and the semipermeable membrane is due to the anchor effect. Although improved, a uniform semipermeable membrane may not be obtained.
  • a more preferable range of Rz on the semipermeable membrane application surface is 50 to 150 ⁇ m, and a more preferable range is 70 to 130 ⁇ m.
  • the absorption coefficient in a Bristow tester using an n-methylpyrrolidone solution in which polysulfone is dissolved at 15% by mass at 25 ° C. to 60% RH on the surface of the semipermeable membrane is 5 to 100 ml / m 2 ⁇ msec. It is preferable that it is 1/2 .
  • the target liquid transfer amount is preferably 5 to 30 ml / m 2 .
  • the JAPAN TAPPI paper pulp test method no In order to obtain the absorption coefficient and dynamic liquid transfer amount of the semipermeable membrane coated surface, the JAPAN TAPPI paper pulp test method no.
  • the Bristow tester shown in 51 is used.
  • the Bristow tester can accurately capture the instantaneous liquid absorption with a contact time of several seconds or less.
  • the measurement of the dynamic liquid transition amount V (ml / m 2 ) by the Bristow tester was conducted using the JAPAN TAPPI paper pulp test method No. 51, when the amount of liquid added to the head box is X ( ⁇ l), and the length of the transfer trace left before the transfer to the paper surface is A (mm), the dynamic liquid transfer amount V is Defined.
  • the absorption coefficient was measured using the JAPAN TAPPI Paper Pulp Test Method No. 51, the amount of dynamic liquid transfer to the test piece with respect to the square root of the contact time is measured, and the slope of the linear portion of the obtained absorption curve is calculated.
  • the contact time T (msec) is determined by the slit width and the test. From the movement speed of the piece, it is defined by the following formula.
  • a semipermeable membrane solution used in the Bristow tester When coating a semipermeable membrane on a semipermeable membrane support, a cellulose resin such as cellulose acetate, a polysulfone resin such as polyethersulfone, polyphenylenesulfone, polyphenylenesulfidesulfone, polyacrylonitrile resin, polyvinylidene fluoride, etc.
  • a synthetic resin such as a fluorine resin, polyester resin, polyamide resin, or polyimide resin is dissolved in an organic solvent such as n-methylpyrrolidone or dimethylformamide (DMF), and then applied and solidified on a semipermeable membrane support. After coating, a method of gelling in a water tank is used.
  • the concentration of the synthetic resin constituting the semipermeable membrane in the organic solvent is, for example, disclosed in Japanese Patent Application Laid-Open No. 2003-245530, edited by the Chemical Society of Japan, “New Experimental Chemistry Course Volume 19 Polymer II”. , Maruzen Co., Ltd., pages 969-998, and is prepared at 12-20% by mass.
  • polysulfone manufactured by SIGMA-ALDRICH Corporation, weight average molecular weight M w ⁇ 35,000, number average molecular weight M n ⁇ 16,000, product number 428302
  • n-methylpyrrolidone 15% by mass and half
  • the absorption coefficient or the dynamic liquid transfer amount is measured by a Bristow tester, so that the uniformity of the semipermeable membrane thickness, the penetration of the semipermeable membrane solution
  • the effect on the support properties on the peel strength between the semipermeable membrane and the semipermeable membrane support was clarified.
  • the absorption coefficient of the semipermeable membrane application surface is preferably 5 to 100 ml / m 2 ⁇ msec 1/2 , more preferably 10 to 90 ml / m 2 ⁇ msec 1/2 , still more preferably 10 ⁇ 80 ml / m 2 ⁇ msec 1/2 .
  • the absorption coefficient of the semipermeable membrane support is less than 5 ml / m 2 ⁇ msec 1/2 , the semipermeable membrane solution hardly penetrates between the support fibers, and the semipermeable membrane is easily peeled from the semipermeable membrane support. However, it may be difficult to obtain a uniform semipermeable membrane, and good filtration performance may not be obtained.
  • the absorption coefficient exceeds 100 ml / m 2 ⁇ msec 1/2 , the back surface to the back of the support is vigorously generated, and when the semipermeable membrane is made into a module, the non-coated surfaces of the semipermeable membrane support are After bonding and forming a module, it becomes difficult to obtain good adhesiveness, and it becomes difficult to obtain a uniform semipermeable membrane, and as a result, good filtration performance may not be obtained.
  • the fiber diameter of the main synthetic fiber exceeds 20.0 ⁇ m, it is difficult to keep the absorption coefficient in the range of 5 to 100 ml / m 2 ⁇ msec 1/2 .
  • the fiber diameter of the binder synthetic fiber is different from the fiber diameter of the main synthetic fiber, it becomes easy to keep the absorption coefficient in the range of 5 to 100 ml / m 2 ⁇ msec 1/2 .
  • the amount of dynamic liquid transfer is related to the roughness and absorbency of the semipermeable membrane application surface, and although there is no clear reason, polysulfone at 25 ° C.-60% RH on the semipermeable membrane application surface.
  • the amount of dynamic liquid transfer at a contact time of 0.2 sec in a Bristow tester using an n-methylpyrrolidone solution in which 15% by mass is dissolved is 5 to 30 ml / m 2 , the semipermeable membrane solution can break through. Therefore, a semipermeable membrane having a uniform thickness is obtained, and it becomes easy to provide a semipermeable membrane support excellent in adhesion between the semipermeable membrane and the semipermeable membrane support.
  • the contact time between the semipermeable membrane solution and the semipermeable membrane application surface when calculating the dynamic liquid transfer amount is 0.2 sec. The reason will be described.
  • the synthetic resin constituting the semipermeable membrane is dissolved in an organic solvent, and immediately after being applied to the semipermeable membrane support by a gap coater, the resin constituting the semipermeable membrane As a first step of separating the organic solvent and the organic solvent and providing fine holes inside the semipermeable membrane, a heat treatment with high-temperature air is performed.
  • the viscosity of the semipermeable membrane solution is increased by the evaporation of the organic solvent, and the penetration into the semipermeable membrane support is almost stopped.
  • the time from when the organic solvent in which the synthetic resin constituting the semipermeable membrane is dissolved is applied on the semipermeable membrane support until it is heated by an air dryer or the like is about 0.2 to 10 seconds.
  • the contact time when measuring the amount of dynamic liquid transfer is 0.2 sec.
  • the amount of dynamic liquid transfer exceeds 30 ml / m 2 , it may be difficult to obtain a semipermeable membrane having a uniform thickness, and there may be occurrence of strikethrough.
  • a more preferable range of the dynamic liquid transfer amount is 10 to 25 ml / m 2 , and a more preferable range is 15 to 25 ml / m 2 .
  • the amount of dynamic liquid transition at a contact time of 0.2 sec in a Bristow tester using an n-methylpyrrolidone solution in which polysulfone is dissolved at 15% by mass at 25 ° C. to 60% RH on the surface of the semipermeable membrane application surface is 5 to 30 ml. / M 2
  • A adjusting the fiber diameter of the main synthetic fiber constituting the semipermeable membrane support;
  • B adjusting the amount of the binder synthetic fiber constituting the semipermeable membrane support;
  • C After the semipermeable membrane support papermaking, the heating temperature at the time of the thermal calendar treatment is adjusted.
  • D adjusting the nip pressure during the heat calendering process after paper making of the semipermeable membrane support; Can be mentioned.
  • the amount of dynamic liquid transition can be easily kept within the range of 5 to 30 ml / m 2 .
  • the average fiber diameter of the main synthetic fiber is less than 2.0 ⁇ m
  • the amount of dynamic liquid transfer of the semipermeable membrane solution on the surface of the semipermeable membrane applied surface at a contact time of 0.2 sec may be less than 5 ml / m 2.
  • the adhesion between the permeable membrane-semipermeable membrane support may be deteriorated.
  • the dynamic liquid transfer amount of the semipermeable membrane solution on the surface of the semipermeable membrane applied surface at a contact time of 0.2 sec may exceed 30 ml / m 2 , and the thickness of the semipermeable membrane is uniform. There is a case where a permeable membrane cannot be obtained, and there is also a case where a breakthrough occurs.
  • the second feature of the present invention is that it contains “main synthetic fibers and binder synthetic fibers, and the average value of the longitudinal direction (MD) and transverse direction (CD) breaking lengths at 5% elongation is 4.
  • a semipermeable membrane support characterized in that it is made of a nonwoven fabric having a heating dimension change rate in the transverse direction (CD) of ⁇ 0.3 to + 1.0%, which is less than 0 km.
  • the breaking length and the heating dimensional change rate at 5% elongation of the semipermeable membrane support are extremely important requirements. And especially the average value of the longitudinal direction (MD) and transverse direction (CD) breaking length at the time of 5% elongation of the nonwoven fabric constituting the semipermeable membrane support [hereinafter referred to as "average breaking length (at 5% elongation)" ”Is less than 4.0 km, and the transverse dimensional change rate (CD) before and after immersing the semipermeable membrane support in a 90 ° C. hot water bath for 10 minutes is ⁇ 0.3 to + 1.0%. It was found that this is extremely important.
  • MD longitudinal direction
  • CD transverse dimensional change rate
  • the average breaking length (at the time of 5% elongation) is less than 4.0 km.
  • the average breaking length (at the time of 5% elongation) of the semipermeable membrane support is 4.0 km or more, the strength becomes excessive and the air permeability is lowered.
  • the average breaking length (at 5% elongation) is less than 4.0 km, preferably 3.8 km or less, more preferably 3.6 km or less.
  • the transverse dimensional change rate (CD) of the semipermeable membrane support is ⁇ 0.3 to + 1.0%, preferably ⁇ 0.2 to + 0.8%, more preferably ⁇ 0. .1 to + 0.6%.
  • the elongation percentage of the main synthetic fiber is preferably 25 to 150%, and the tensile strength of the main synthetic fiber is The thickness (JIS L1013-2010) is preferably 0.08 to 0.80 N / tex.
  • the average tear length may exceed 4.0 km, or the paper may be cut due to insufficient elongation of the nonwoven fabric during hot pressing. .
  • it exceeds 150% wrinkles may occur due to excessive shrinkage of the nonwoven fabric during hot pressing.
  • the elongation percentage of the main synthetic fiber is preferably 25 to 150%, more preferably 30 to 120%, and still more preferably 35 to 100%.
  • the tensile strength of the main synthetic fiber is preferably 0.08 to 0.80 N / tex, more preferably 0.1 to 0.70 N / tex, and still more preferably 0.2 to 0.60 N / tex. is there.
  • less than 0.08 N / tex due to insufficient strength, a paper break may be caused in a wet papermaking process for forming a nonwoven fabric or in a hot pressing process.
  • the breaking length exceeds 4.0 km. There is a case.
  • a hot roll such as a Yankee dryer is used when wet paper is dried in the wet papermaking process. It is important to optimally combine, for example, the roll temperature during hot pressing, the number of times of hot pressing, the heat processing after hot pressing, and the like.
  • the tear length refers to a value measured according to JIS P 8113-1976, and is an index indicating the tensile strength of the nonwoven fabric itself that is not affected by the basis weight or width of the nonwoven fabric sample.
  • extension)" of the nonwoven fabric concerning the semipermeable membrane support body of this invention is calculated
  • the rate of change in heating dimension is the semipermeable membrane support by heat applied to the semipermeable membrane support in the step of forming the semipermeable membrane on the semipermeable membrane support (for example, heat applied in the hot water washing step or drying step).
  • the dimensional change of the body is quantified. It is important for this numerical value to fall within a specific range to suppress wrinkling and curving.
  • the smoothness of the semipermeable membrane application surface is higher than the smoothness of the non-application surface.
  • the smoothness ratio between the semipermeable membrane coated surface and the non-coated surface is preferably 5.0: 1.0 to 1.1: 1.0, more preferably 4.0: 1.0 to 1. .3: 1.0, and more preferably 3.0: 1.0 to 1.1: 1.0. Smoothness can be measured according to JIS P 8119 using a Beck smoothness tester.
  • the ratio of smoothness between the semipermeable membrane application surface and the non-application surface exceeds 5.0: 1.0, curling or wrinkles may occur in the coating process of the semipermeable membrane, or the semipermeable membrane and the semipermeable membrane Adhesiveness with the membrane support may be reduced.
  • the ratio of the smoothness between the semipermeable membrane application surface and the non-application surface is less than 1.1: 1.0, both the adhesion between the semipermeable membrane and the semipermeable membrane support and the adhesion between the non-application surfaces are compatible. May be difficult.
  • the method described in the first feature of the present invention can be given.
  • the main synthetic fiber is a fiber that forms the skeleton of the semipermeable membrane support.
  • a synthetic fiber is used as the main synthetic fiber.
  • polyolefin fibers, polyamide fibers, polyacrylic resins, vinylon resins, vinylidene resins, polyvinyl chloride resins, polyester resins, benzoate resins, polyclar resins, phenol fibers, etc. Is more preferable.
  • Semi-synthetic fibers such as acetate, triacetate, promix, and regenerated fibers such as rayon, cupra, and lyocell fiber may be contained within a range that does not impair the performance.
  • the aspect ratio (fiber length / fiber diameter) of the main synthetic fiber is preferably 200 to 2000, more preferably 220 to 1500, and still more preferably 280 to 1000.
  • the aspect ratio is less than 200, the dispersibility of the fiber is good, but the fiber may fall off the paper making wire during paper making, or the fiber may be stuck in the paper making wire and the peelability from the wire may deteriorate. is there.
  • it exceeds 2000 it contributes to the formation of a three-dimensional network of fibers, but the entanglement and entanglement of the fibers adversely affects the uniformity of the nonwoven fabric and the smoothness of the semipermeable membrane coated surface.
  • the fiber diameter of the main synthetic fiber is preferably 20.0 ⁇ m or less, more preferably 2.0 to 20.0 ⁇ m, still more preferably 5.0 to 20.0 ⁇ m, and particularly preferably 10.0 to 20.0 ⁇ m. It is. If it is less than 2.0 ⁇ m, the adhesion between the non-coated surfaces may deteriorate. When the fiber diameter of the main synthetic fiber exceeds 20.0 ⁇ m, the smoothness of the semipermeable membrane application surface is lowered, and the back-through of the semipermeable membrane solution also occurs. Moreover, fluff tends to stand on the surface of the nonwoven fabric, which is not preferable.
  • the main synthetic fiber preferably contains two or more kinds of fibers having different fiber diameters.
  • the fiber length of the main synthetic fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, still more preferably 3 to 6 mm, and particularly preferably 4 to 6 mm.
  • the cross-sectional shape of the main synthetic fiber is preferably circular, but fibers having irregular cross-sections such as T-type, Y-type, and triangles also have other characteristics for preventing back-through, surface smoothness, and adhesion between non-coated surfaces. Can be contained within a range not inhibiting.
  • the content of the main synthetic fiber with respect to the nonwoven fabric is preferably 40 to 90% by mass, more preferably 50 to 85% by mass, and further preferably 55 to 80% by mass. If the content of the main synthetic fiber is less than 40% by mass, the nonwoven fabric may have insufficient hardness. Moreover, when it exceeds 90 mass%, there exists a possibility of breaking by intensity
  • the proportion of the main synthetic fiber having an elongation of 25 to 150% and a tensile strength of 0.08 to 0.80 N / tex is preferably 10% by mass or more, more preferably 20% by mass or more with respect to the total main synthetic fiber. Preferably, 30 mass% or more is more preferable. If it is less than 10% by mass, the average tear length (at 5% elongation) may exceed 4.0 km, or the paper may be cut due to insufficient elongation of the nonwoven fabric during hot pressing.
  • the binder synthetic fiber is a fiber intended to melt and bond by incorporating a process of raising the temperature to the softening point or higher than the melting temperature (melting point) into the manufacturing process of the semipermeable membrane support, and the semipermeable membrane support. Improve the mechanical strength.
  • a semipermeable membrane support can be produced by a wet papermaking method, and the binder synthetic fiber can be softened or melted by a subsequent drying step or hot pressing.
  • binder synthetic fiber examples include core-sheath fibers (core-shell type), parallel fibers (side-by-side type), composite fibers such as radial split fibers, unstretched fibers, and the like. More specifically, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a combination of high melting point polyester (core) and low melting point polyester (sheath), polyester, etc. Of undrawn fiber. Since the composite fiber hardly forms a film, the mechanical strength can be improved while maintaining the space of the semipermeable membrane support.
  • a single fiber (fully fused type) composed only of a low melting point resin such as polyethylene or polypropylene, or a hot water-soluble binder such as polyvinyl alcohol easily forms a film in the drying process of the semipermeable membrane support.
  • a high-melting polyester (core) and a low-melting polyester (sheath) and unstretched polyester fibers can exhibit strength when forming a nonwoven fabric by a wet papermaking method, and can also be used during hot pressing.
  • it can be preferably used since the second-stage strength development is possible.
  • the fiber diameter of the binder synthetic fiber is preferably different from the fiber diameter of the main synthetic fiber.
  • the thickness is preferably 2.0 to 20.0 ⁇ m, more preferably 5.0 to 15.0 ⁇ m, and still more preferably 7.0 to 12.0 ⁇ m. Further, the fiber diameter is preferably thinner than the thickest fiber of the main synthetic fiber. Because the fiber diameter is different from that of the main synthetic fiber, the binder synthetic fiber forms a fiber structure consisting of a complex and uniform three-dimensional network together with the main synthetic fiber, in addition to improving the mechanical strength of the semipermeable membrane support. Also plays a role. Furthermore, in the step of raising the temperature to the softening temperature or melting temperature of the binder synthetic fiber, the smoothness of the semipermeable membrane support surface can be improved, and in this step, it is more effective when accompanied by pressurization. is there.
  • the aspect ratio (fiber length / fiber diameter) of the binder synthetic fiber is preferably 200 to 1000, more preferably 300 to 800, and still more preferably 400 to 700.
  • the aspect ratio is less than 200, the dispersibility of the fiber is good, but the fiber may fall off from the paper making wire during paper making, or the fiber may pierce the paper making wire and the peelability from the wire may deteriorate. is there.
  • the binder synthetic fiber if it exceeds 1000, the binder synthetic fiber contributes to the formation of a three-dimensional network, but the fiber may be entangled or entangled, which may adversely affect the uniformity of the nonwoven fabric and the smoothness of the semipermeable membrane coated surface. is there.
  • the fiber length of the binder synthetic fiber is not particularly limited, but is preferably 1 to 12 mm, more preferably 3 to 10 mm, and further preferably 4 to 6 mm.
  • the cross-sectional shape of the binder synthetic fiber is preferably circular, but fibers having irregular cross-sections such as T-type, Y-type, and triangle are also used for preventing back-through, smoothness of the semipermeable membrane application surface, and adhesion between non-application surfaces. Furthermore, it can be contained within a range not inhibiting other characteristics.
  • the content of the binder synthetic fiber with respect to the nonwoven fabric is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and further preferably 20 to 45% by mass.
  • the content of the main synthetic fiber is less than 10% by mass, there is a risk of tearing due to insufficient strength. Moreover, when it exceeds 60 mass%, there exists a possibility that liquid permeability may fall.
  • the method for producing the semipermeable membrane support of the present invention will be described.
  • the semipermeable membrane support of the present invention is formed into a sheet by a wet papermaking method and then hot-pressed with a heating roll.
  • the main synthetic fiber and binder synthetic fiber are uniformly dispersed in water, and then passed through a process such as screen (removal of foreign matter, lump etc.), and the final fiber concentration is 0.01 to 0.50.
  • Slurry prepared to mass% is made up by a paper machine to obtain wet paper.
  • chemicals such as dispersants, antifoaming agents, hydrophilic agents, antistatic agents, polymer thickeners, mold release agents, antibacterial agents, bactericides, etc. may be added during the process. is there.
  • a long net paper machine for example, a circular net paper machine, or an inclined wire type paper machine can be used. These paper machines can be used alone, or a combination paper machine in which two or more same or different types of paper machines are installed online may be used.
  • a fiber bonding method in which wet papers made by each paper machine are laminated, or after forming one sheet, fibers are placed on the sheet. Any method of casting the dispersed slurry may be used.
  • the sheet is obtained by drying the wet paper produced by the paper machine with a Yankee dryer, air dryer, cylinder dryer, suction drum dryer, infrared dryer, or the like.
  • a hot roll such as a Yankee dryer and dried by heat and pressure to improve the smoothness of the contacted surface.
  • Hot-pressure drying means that the wet paper is pressed against the heat roll with a touch roll or the like and dried.
  • the surface temperature of the hot roll is preferably from 100 to 180 ° C, more preferably from 100 to 160 ° C, and even more preferably from 110 to 160 ° C.
  • the pressure is preferably 50 to 1000 N / cm, more preferably 100 to 800 N / cm.
  • the sheet produced by the wet papermaking method is passed while performing a hot pressing process while niping between the rolls of the hot pressing apparatus.
  • Examples of the combination of rolls include two metal rolls, a metal roll and an elastic (resin) roll, a metal roll and a cotton roll, and the like. If necessary, the sheet may be reversed so that the number of passes through the nip is two or more. Two rolls heat one or both. At that time, a desired semipermeable membrane support is obtained by controlling the surface temperature of the heating roll, the nip pressure between the rolls, and the sheet processing speed.
  • the surface temperature of the heating roll is not particularly limited, but is preferably 150 to 260 ° C, more preferably 180 to 240 ° C.
  • the sheet After the wet paper is brought into close contact with the hot roll and dried by hot pressure, the sheet is hot-pressed within 10 minutes, thereby increasing the plasticization of the binder synthetic fiber by heat in the hot-pressure drying. In the meantime, hot pressing can be performed, and as a result, it is presumed that plasticization by heat of the binder synthetic fiber further proceeds, the smoothness of the semipermeable membrane support is improved, and fuzz is suppressed.
  • the temperature of the sheet surface is once lowered, and not only the heat transfer effect to the sheet in the hot-pressing process is lowered, but also on the sheet surface.
  • the melting point of the binder synthetic fiber can be measured by differential scanning calorimetry (JIS K0129 2005).
  • hot pressing is performed so that a heating roll having a surface temperature of ⁇ 50 ° C. to + 10 ° C. with respect to the melting point of the binder synthetic fiber is in contact with the semipermeable membrane application surface. It is preferable to carry out.
  • a more preferable surface temperature is ⁇ 40 to ⁇ 0 ° C. with respect to the melting point of the binder synthetic fiber, and a more preferable surface temperature is ⁇ 30 to ⁇ 0 ° C.
  • the temperature at the time of hot pressing the semipermeable membrane coated surface is lower than the melting point of the binder synthetic fiber by more than 50 ° C.
  • fuzzing may occur easily under any conditions.
  • the air permeability profile is difficult to be uniform, and as a result, the back-through of the semipermeable membrane solution is likely to occur.
  • the temperature at the time of hot pressing of the semipermeable membrane application surface is higher than the melting point of the binder synthetic fiber by more than 10 ° C., the melt of the fibers adheres to the heating roll and the air permeability becomes non-uniform. There is a case.
  • the roll temperature at the time of hot pressing is, for example, a main synthetic fiber having a melting point of 260 ° C and a binder synthetic fiber having a crystallization temperature of 120 ° C and a melting point of 260 ° C.
  • the temperature is adjusted to about 1
  • the main synthetic fiber having a melting point of 260 ° C. and the binder synthetic fiber having a crystallization temperature of 125 ° C. and a melting point of 238 ° C. are used, and the roll temperature during hot pressing is adjusted to about 190 to 200 ° C.
  • the Ra of the semipermeable membrane coated surface can be easily accommodated to 5.0 to 15.0 ⁇ m, and the absorption coefficient of the semipermeable membrane coated surface can be easily accommodated to 5 to 100 ml / m 2 ⁇ msec 1/2.
  • the present invention is not limited to this temperature range.
  • the nip pressure of the roll is not particularly limited, but is preferably 190 to 2500 N / cm, and more preferably 390 to 2000 N / cm.
  • the processing speed is not particularly limited, but is preferably 5 to 150 m / min, and more preferably 10 to 80 m / min.
  • the metal roll when performing hot-pressure processing, as a method of adjusting the surface temperature of the heating roll, the metal roll has a multi-layered structure, in which steam or heated oil is circulated, and a heating wire embedded inside
  • the air permeability profile in the width direction and the flow direction of the semipermeable membrane support can be made uniform.
  • a jacket roll provided with a jacket inside the roll it becomes possible to make the surface temperature in the width direction and the circumferential direction of the metal roll more uniform, and the ventilation in the width direction and the flow direction of the semipermeable membrane support.
  • the sex profile can be made more uniform.
  • a device in which the first and second hot press roll nips are continuously installed is used, and after leaving the first hot press roll nip, the sheet is continuously put in the second hot press roll nip. Is preferably processed.
  • Examples of the combination of the first hot-pressing roll include two metal rolls, a metal roll and a resin roll, a metal roll and a cotton roll, etc.
  • a combination of two metal rolls Is preferred.
  • the two rolls in a pair heat one or both.
  • a desired semipermeable membrane support is obtained by controlling the surface temperature of the heating roll, the nip pressure between the rolls, and the sheet processing speed.
  • the surface temperature of the heating roll is preferably 150 to 260 ° C, more preferably 180 to 240 ° C.
  • the roll nip pressure is preferably 190 to 2500 N / cm, more preferably 390 to 2000 N / cm.
  • Examples of the combination of the second hot pressing roll include two metal rolls, a metal roll and a resin roll, a metal roll and a cotton roll, and the like. Two rolls in a pair heat one or both, but in some cases, both rolls may not heat. At that time, a desired semipermeable membrane support is obtained by controlling the surface temperature of the heating roll, the nip pressure between the rolls, and the sheet processing speed.
  • the surface temperature of the heating roll is preferably 20 to 260 ° C, more preferably 40 to 240 ° C.
  • the roll nip pressure is preferably 190 to 2500 N / cm, more preferably 390 to 2000 N / cm.
  • the combination of the first hot-pressing roll and the second hot-pressing roll are each an apparatus in which four or more rolls are combined in multiple stages, such as a supercalender generally used in paper manufacture.
  • both the first hot-pressing roll and the second hot-pressing roll have 4 or less rolls vertical. 3 nips or less combined with each other, more preferably 2 nips each.
  • the time from when the sheet passes through the first hot-pressing roll nip to the second hot-pressing roll nip is short, and preferably 60 seconds or less. More preferably, it is 30 seconds or less, More preferably, it is 20 seconds or less. If it exceeds 60 seconds, the degree of crystallinity of the binder synthetic fiber may decrease, and the fuzz suppression effect may decrease.
  • the hot pressing speed is not particularly limited, but is preferably 5 to 150 m / min, and more preferably 10 to 100 m / min.
  • the sheet In hot pressing, when a sheet is passed through the first hot pressure roll nip and the second hot pressure roll nip, the sheet is heated by a heating device between the first hot pressure roll nip and the second hot pressure roll nip.
  • a heating device By adding the process, after passing through the first hot-press roll nip, it can be passed through the second hot-press roll nip while maintaining the state in which the plasticization of the binder synthetic fiber contained in the sheet is increased by heat, As a result, the plasticity of the binder synthetic fiber can be further accelerated.
  • the heating device is a roll-shaped heating device, the sheet can be heated while being in contact with the hot roll for a long time, so that the smoothness can be improved. Furthermore, it is possible to improve the dimensional stability of the sheet by heating while contacting the roll-shaped heating device after passing through the first hot-press roll nip.
  • FIG. 1 to FIG. 7 are schematic views showing the combination and arrangement of rolls used in hot pressing and the sheet passing state in the present invention.
  • 1 to 7 are examples, and the present invention is not limited to these.
  • the metal roll has a horizontal stripe pattern
  • the cotton or elastic roll has a dotted pattern if the roll may be a dot pattern, metal, cotton, or elastic.
  • any of a metal roll, an elastic roll, and a cotton roll can be used as the heating roll, preferably, a metal roll or an elastic roll is used as the heating roll. More preferably, a metal roll is used as the heating roll.
  • FIG. 1A shows a combination of two metal rolls.
  • FIG. 1B also shows a combination of two metal rolls, but the sheet that has passed through the roll nip is passed so as to be in contact with one metal roll for a long time.
  • a first roll nip composed of two metal rolls, a metal roll, and a second roll nip composed of cotton or an elastic roll are continuously installed.
  • FIG. 1D shows that the first and second roll nips composed of a metal roll and cotton or an elastic roll are continuously installed, and the surface in contact with the metal roll at the first roll nip is cotton in the second roll nip.
  • the paper is passed so as to contact the elastic roll.
  • FIG. 2 (E) shows a combination of two metal rolls, and the sheet that has passed through the roll nip is passed so as to hold one of the metal rolls.
  • a cotton or elastic roll and two metal rolls are combined in the vertical direction.
  • the sheet passes through the first roll nip between the upper and middle rolls, and then is held by the middle roll and passes through the second roll nip between the middle and lower rolls. To do.
  • the sheet passes through the first roll nip between the upper and middle rolls, and then is held by the middle roll and passes through the second roll nip between the middle and lower rolls. In addition, it is held in the lower roll.
  • a first roll nip composed of two metal rolls and a second roll nip composed of a metal roll and cotton or an elastic roll are continuously installed.
  • the sheet that has passed through the first roll nip passes through the second roll nip in a state of being attached to the cotton or elastic roll, and is then passed through so as to hold the metal roll.
  • the sheet that has passed through the first roll nip passes through the second roll nip in a state of being attached to the metal roll, and is then passed through to hold a cotton or elastic roll.
  • first and second roll nips composed of a metal roll and cotton or an elastic roll are continuously installed.
  • the sheet that has passed through the first roll nip passes through the second roll nip in a state of being attached to the metal roll, and is then passed through so as to hold a cotton or elastic roll. Further, the sheet is passed so that the surface in contact with the metal roll at the first roll nip contacts the cotton or elastic roll at the second roll nip.
  • FIG. 4K the sheet that has passed through the first roll nip passes through the second roll nip in a state of being attached to the cotton or elastic roll, and is then passed through so as to hold the metal roll.
  • the sheet is passed so that the surface in contact with the metal roll at the first roll nip contacts the metal roll at the second roll nip.
  • the sheet that has passed through the first roll nip passes through the second roll nip, and is then passed through to hold a cotton or elastic roll. Further, the sheet is passed so that the surface in contact with the metal roll at the first roll nip contacts the cotton or elastic roll at the second roll nip.
  • a metal roll, a metal, a cotton or elastic roll and metal a first device in which the cotton or elastic roll is vertically combined, a metal, cotton or elastic roll, a cotton or elastic roll and metal, A second device in which cotton or elastic rolls are combined in the vertical direction is continuously installed.
  • the sheet passes through the first roll nip between the upper and middle rolls in the first device and then passes through the second roll nip between the upper and middle rolls in the second device,
  • the paper is passed through the middle roll, passed through the third roll nip between the middle and lower rolls, and held by the lower roll.
  • vertical direction is installed continuously.
  • the sheet passes through the first roll nip between the upper and middle rolls so as to be held by the upper roll, is held by the middle roll, and the middle and lower rolls
  • the second roll nip between, in the second device it passes through the third roll nip between the upper and middle rolls and is held by the middle roll, between the middle and lower rolls.
  • the paper passes through the fourth roll nip so as to be held by the lower roll.
  • a metal roll, a metal, cotton or an elastic roll and metal a first apparatus in which cotton or an elastic roll is vertically combined, and a metal, cotton or elastic roll, cotton or an elastic roll and metal
  • a second device in which cotton or elastic rolls are combined in the vertical direction is continuously installed.
  • the sheet passes through the first roll nip between the upper and middle rolls in the first device and then passes between the upper and middle rolls without nip pressure in the second device.
  • the sheet is passed through the second roll nip between the middle roll and the lower roll and passed through the second roll nip between the middle roll and the lower roll.
  • vertical direction is installed continuously.
  • the sheet passes through the first roll nip between the upper and middle rolls so as to be held by the upper roll, is held by the middle roll, and the middle and lower rolls
  • the second roll nip passes between the upper and middle rolls where no nip pressure is applied, and is held by the middle roll, between the middle and lower rolls.
  • the paper is passed through the third roll nip so that it is held by the lower roll.
  • FIG. 7 (Q) a first apparatus in which a metal roll and two metals, cotton or elastic rolls are combined in a vertical direction, and a second apparatus in which three metals, cotton or elastic rolls are combined in a vertical direction.
  • the sheet passes through the first roll nip between the upper and middle rolls in the first device and then passes between the upper and middle rolls without nip pressure in the second device.
  • the paper is passed through so that it is held by the middle roll, passes between the middle and lower rolls where no nip pressure is applied, and is held by the lower roll.
  • vertical direction is installed continuously.
  • the sheet passes through the first roll nip between the upper and middle rolls so as to be held by the upper roll, is held by the middle roll, and the middle and lower rolls
  • the second roll nip passes between the upper and middle rolls where no nip pressure is applied and is held by the middle roll, and the middle where no nip pressure is applied.
  • the paper is passed so as to pass between the lower rolls and be held by the lower rolls.
  • the semipermeable membrane support of the present invention is used for water purification, food concentration, wastewater treatment, seawater desalination, separation of microorganisms such as bacteria, yeast and viruses, medical use represented by blood filtration, and semiconductor cleaning. It can be used in fields such as the production of ultrapure water. That is, it is used as a support for separation membranes such as ultrafiltration membranes, reverse osmosis membranes, and microfiltration membranes.
  • the semipermeable membrane support provided with the semipermeable membrane is used in the form of a flat membrane plate frame type element, pleated type element, spiral type element, etc., but the semipermeable membrane support of the present invention is a spiral type. It is preferably used for a semipermeable membrane element. These elements can be made into a semipermeable membrane module by being connected in series or in parallel.
  • a semipermeable membrane support provided with a semipermeable membrane is disposed between the stock solution side spacer and the permeate side spacer.
  • the stock solution side spacer is provided with a passage gap for supplying the stock solution.
  • the permeate side spacer is provided with a passage gap through which the permeate passes. The permeate is obtained by allowing the stock solution to permeate the semipermeable membrane.
  • the semipermeable membrane support provided with the semipermeable membrane is wound around the water collecting pipe in a spiral shape together with the stock solution side spacer and the permeate side spacer.
  • Test 1 The thickness was measured according to JIS P 8118.
  • Test 2 (Smoothness) According to JIS P 8119, it was measured using a Beck smoothness tester.
  • Test 3 Average pore diameter, maximum pore diameter
  • ASTMF 316-86 and JIS K 3832 it measured using the automatic pore diameter distribution measuring device (Brand name: Palm porometer, the product made by Porous Materials Inc.).
  • Test 4 (semipermeable membrane penetration) Polysulfone (manufactured by SIGMA-ALDRICH Corporation, weight average molecular weight) on the semipermeable membrane application surface of the semipermeable membrane support using a constant speed coating apparatus (trade name: Automatic Film Applicator, manufactured by Yasuda Seiki Co., Ltd.) having a certain clearance.
  • a constant speed coating apparatus (trade name: Automatic Film Applicator, manufactured by Yasuda Seiki Co., Ltd.) having a certain clearance.
  • a DMF solution (concentration: 18%) of M w ⁇ 35,000, number average molecular weight M n ⁇ 16,000, product number 428302) is applied, washed with water, dried, and a semipermeable membrane of a semipermeable membrane support A polysulfone membrane was formed on the coated surface to prepare a semipermeable membrane, and a cross-sectional SEM photograph of the semipermeable membrane was taken to evaluate the degree of penetration of polysulfone into the semipermeable membrane support.
  • Test 5 (Semipermeable membrane adhesion) Regarding the semipermeable membrane produced in Test 4, the degree of adhesion between the semipermeable membrane made of polysulfone resin and the semipermeable membrane support was determined by the degree of resistance when peeling.
  • Test 6 non-coated surface adhesion
  • a heated and melted vinyl acetate adhesive was applied and immediately pressed to adhere. After bonding, the sample was cut to a width of 25 mm and a length of 200 mm, and a tensile tester (trade name: STA-1150 Tensilon tensile tester, manufactured by Orientec Co., Ltd.) was used. A peel test of the bonded portion was performed to evaluate non-coated surface adhesion.
  • Test 7 (Semipermeable membrane thickness uniformity) Polysulfone (SIGMA-ALDRICH Corporation, weight average molecular weight) is applied to the semipermeable membrane application surface of the semipermeable membrane support using a constant speed coating apparatus (trade name: Automatic Film Applicator, Yasuda Seiki Co., Ltd.) having a certain clearance. A DMF solution (concentration: 18%) of M w ⁇ 35,000, number average molecular weight M n ⁇ 16,000, product number 428302) is applied, washed with water, dried, and a thickness of 50 ⁇ m on the semipermeable membrane coated surface. A polysulfone membrane was formed, and a cross-sectional SEM photograph was taken. Then, the thickness of the semipermeable membrane at 10 arbitrary locations was measured with an SEM photograph, and the difference ( ⁇ m) in thickness between the maximum portion and the minimum portion was determined. If this difference is within 8 ⁇ m, it is acceptable.
  • Test 8 heat shrinkage The dimensions in the width direction before and after immersing the semipermeable membrane support having a width of 40 cm and a flow direction of 30 cm in 90 ° C. hot water for 10 minutes were measured, and the change in dimensions was calculated.
  • Example 1 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a blending ratio of 30:30:40. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 2 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 14.3 ⁇ m, fiber length 5 mm, aspect ratio 351), binder synthetic fiber (unstretched polyester fiber, fiber diameter 6.8 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a blending ratio of 30:30:40. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 3 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (fine fiber, drawn polyester fiber, fiber diameter 8.6 ⁇ m, fiber length 5 mm, aspect ratio 582) are mixed and dispersed in water at a blending ratio of 40:30:30. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 4 Main synthetic fiber (large diameter fiber, drawn polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), main synthetic fiber (large diameter fiber, drawn polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm) , Aspect ratio 399), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.), main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 7.4 ⁇ m, A fiber length of 5 mm, an aspect ratio of 672) is mixed and dispersed in water at a blending ratio of 15: 20: 30: 35, wet paper is formed with a circular net paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. Thus, a sheet having a basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 5 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 10 mm, aspect ratio 798), binder synthetic fiber (unstretched polyester fiber, fiber diameter 14.3 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (fine fiber, stretched polyester fiber, fiber diameter 6.4 ⁇ m, fiber length 5 mm, aspect ratio 785) are mixed and dispersed in water at a blending ratio of 30:30:40. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 6 Main synthetic fiber (large diameter fiber, drawn polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), main synthetic fiber (large diameter fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm) , Aspect ratio 432), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.), main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 7.4 ⁇ m, Fiber length 5 mm, aspect ratio 672), main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 3.0 ⁇ m, fiber length 5 mm, aspect ratio 1646) at a blending ratio of 15: 20: 30: 30: 5 were mixed and dispersed in water, after forming the wet paper in the cylinder paper machine, and hot pressing dried by a Yankee dryer having a surface temperature 130 ° C., a basis weight of 80 g / m 2 Sea It was obtained.
  • binder synthetic fiber unstretched polyester fiber,
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 7 Sheets with a two-layer structure were manufactured using a combination machine of an inclined wire type paper machine and a circular net paper machine.
  • Main synthetic fiber thin fiber, stretched polyester fiber, fiber diameter 14.3 ⁇ m, fiber length 5 mm, aspect ratio 351
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 6.8 ⁇ m, fiber length 5 mm, melting point 230 ° C
  • main synthetic fibers thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432 are mixed and dispersed in water at a mixing ratio of 30:30:40, and an inclined wire type papermaking A wet paper was formed on the machine.
  • Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 14.3 ⁇ m, fiber length 5 mm, aspect ratio 351), binder synthetic fiber (unstretched polyester fiber, fiber diameter 6.8 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a blending ratio of 30:30:40. After forming the wet paper, the two layers of wet paper are made together and dried by hot pressing with a Yankee dryer having a surface temperature of 130 ° C., the basis weight ratio of each layer is 1: 1, and the total basis weight is 80 g / m. 2 sheets were obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 8 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 3 mm, aspect ratio 259) are mixed and dispersed in water at a blending ratio of 30:30:40. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 9 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a blending ratio of 30:30:40. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min in a calender device in which a heated metal roll and a heated metal roll were combined.
  • the combined calender device was processed under conditions of a temperature of 200 ° C., a pressure of 850 N / cm, and a processing speed of 20 m / min to obtain a semipermeable membrane support.
  • the surface in contact with the heated metal roll was the semipermeable membrane coated surface.
  • Example 10 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a blending ratio of 30:30:40. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • a heating metal roll temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 30 m / min in a calender device that is a combination of a heating metal roll and an elastic roll, it is processed under the conditions of a heated metal roll temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 30 m / min. Got the body.
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Sheets with a two-layer structure were manufactured using a combination machine of an inclined wire type paper machine and a circular net paper machine.
  • Main synthetic fiber thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a mixing ratio of 30:30:40, and an inclined wire type papermaking A wet paper having a non-coated surface layer was formed by a machine.
  • Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (fine fiber, drawn polyester fiber, fiber diameter 8.6 ⁇ m, fiber length 5 mm, aspect ratio 583) are mixed and dispersed in water at a mixing ratio of 40:30:30, and the circular net paper machine After forming the wet paper with the semipermeable membrane coated surface layer, the two wet paper sheets are combined and dried by hot pressure with a Yankee dryer having a surface temperature of 130 ° C. to form the semipermeable membrane coated surface layer and the non-coated surface layer. A sheet having a basis weight ratio of 1: 1 and a total basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Example 12 Sheets with a two-layer structure were manufactured using a combination machine of an inclined wire type paper machine and a circular net paper machine.
  • Main synthetic fiber thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a mixing ratio of 30:30:40, and an inclined wire type papermaking A wet paper having a non-coated surface layer was formed by a machine.
  • Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 10 mm, aspect ratio 798), binder synthetic fiber (unstretched polyester fiber, fiber diameter 14.3 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (fine fiber, stretched polyester fiber, fiber diameter 6.4 ⁇ m, fiber length 5 mm, aspect ratio 785) are mixed and dispersed in water at a blending ratio of 30:30:40. After forming the wet paper with the semipermeable membrane coated surface layer, the two wet paper sheets are combined and dried by hot pressure with a Yankee dryer having a surface temperature of 130 ° C. to form the semipermeable membrane coated surface layer and the non-coated surface layer. A sheet having a basis weight ratio of 1: 1 and a total basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Sheets with a two-layer structure were manufactured using a combination machine of an inclined wire type paper machine and a circular net paper machine.
  • Main synthetic fiber thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a mixing ratio of 30:30:40, and an inclined wire type papermaking A wet paper having a non-coated surface layer was formed by a machine.
  • Main synthetic fiber large diameter fiber, drawn polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), main synthetic fiber (large diameter fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm) , Aspect ratio 432), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.), main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 7.4 ⁇ m, Fiber length 5 mm, aspect ratio 672), main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 3.0 ⁇ m, fiber length 5 mm, aspect ratio 1646) at a blending ratio of 15: 20: 30: 30: 5 After mixing and dispersing in water, forming a wet paper with a semipermeable membrane coated surface layer with a circular paper machine, the two wet papers are made together and a Yankee dryer with a surface temperature of 130 ° C. Then, a sheet having a basis weight ratio of 1: 1 and a total
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Sheets with a two-layer structure were manufactured using a combination machine of an inclined wire type paper machine and a circular net paper machine.
  • Main synthetic fiber thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a mixing ratio of 30:30:40, and an inclined wire type papermaking A wet paper having a non-coated surface layer was formed by a machine.
  • Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (fine fiber, drawn polyester fiber, fiber diameter 8.6 ⁇ m, fiber length 5 mm, aspect ratio 583) are mixed and dispersed in water at a mixing ratio of 40:30:30, and the circular net paper machine After forming the wet paper with the semipermeable membrane coated surface layer, the two wet paper sheets are combined and dried by hot pressure with a Yankee dryer having a surface temperature of 130 ° C. to form the semipermeable membrane coated surface layer and the non-coated surface layer. A sheet having a basis weight ratio of 1: 1 and a total basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 50 m / min using a calendering device of a combination of a heated metal roll and a heated metal roll, and then further heated metal roll and cotton roll
  • the semi-permeable membrane support was processed by using a calender device having a combination of the following: a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 30 m / min. Got.
  • Example 15 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a mixing ratio of 30:30:40, and the circular net paper machine After forming the wet paper of the non-coated surface layer, the sheet A of the non-coated surface layer having a basis weight of 20 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • Sheets with a two-layer structure were manufactured using a combination machine of an inclined wire type paper machine and a circular net paper machine.
  • Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a mixing ratio of 30:30:40, and the inclined wire type papermaking An intermediate layer wet paper was formed by a machine.
  • Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (fine fiber, stretched polyester fiber, fiber diameter 8.6 ⁇ m, fiber length 5 mm, aspect ratio 583) are mixed and dispersed in water at a blending ratio of 40:30:30. After forming the wet paper with the semipermeable membrane coated surface layer, combine the two wet papers and dry them with a Yankee dryer with a surface temperature of 130 ° C to obtain the basis weight of the semipermeable membrane coated surface layer and the intermediate layer. A sheet B having a ratio of 1: 1 and a total basis weight of 60 g / m 2 was obtained.
  • the sheet A is overlapped on the intermediate layer surface of the sheet B, and processed using a calender device of a combination of a heated metal roll and a heated metal roll at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min.
  • a basis weight ratio of the membrane coated surface layer, the intermediate layer, and the non-coated surface layer was 3: 3: 2, and a semipermeable membrane support having a total basis weight of 80 g / cm 2 was obtained.
  • Example 16 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 39.6 ⁇ m, fiber length 5 mm, aspect ratio 126), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432) are mixed and dispersed in water at a blending ratio of 30:30:40. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 17 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (fine fiber, drawn polyester fiber, fiber diameter 2.4 ⁇ m, fiber length 5 mm, aspect ratio 2125) are mixed and dispersed in water at a blending ratio of 40:30:30. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 18 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (fine fiber, drawn polyester fiber, fiber diameter 14.3 ⁇ m, fiber length 2 mm, aspect ratio 140) are mixed and dispersed in water at a mixing ratio of 30:30:40. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 19 Main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 13 mm, aspect ratio 1040), binder synthetic fiber (undrawn polyester fiber, fiber diameter 14.3 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (fine fiber, stretched polyester fiber, fiber diameter 6.4 ⁇ m, fiber length 5 mm, aspect ratio 785) are mixed and dispersed in water at a blending ratio of 30:30:40. After forming the wet paper, a sheet having a basis weight of 80 g / m 2 was obtained by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C.
  • the obtained non-woven fabric was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min using a calender device that is a combination of a heated metal roll and a heated metal roll to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Example 20 Sheets with a two-layer structure were manufactured using a combination machine of an inclined wire type paper machine and a circular net paper machine.
  • Main synthetic fiber thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 260 C.
  • a wet paper having a semipermeable membrane coated surface layer was formed using an inclined wire paper machine and an inclined wire paper machine.
  • Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 20.2 ⁇ m, fiber length 10 mm, aspect ratio 495), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 260 ° C) was mixed and dispersed in water at a blending ratio of 55:45, and after forming a wet paper with a non-coated surface layer with a circular paper machine, the two wet papers were combined together to form a Yankee dryer with a surface temperature of 130 ° C. Then, a sheet having a basis weight ratio of 1: 1 and a total basis weight of 103 g / m 2 was obtained.
  • a heated metal roll temperature of 230 ° C., a pressure of 785 N / cm, and a processing speed of 10 m / min in a calender device of a combination of a heated metal roll and a cotton roll In a calender device with a combination of a heated metal roll and a cotton roll so that the contacting surface is in contact with the cotton roll, it is processed under the conditions of a heated metal roll temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 10 m / min. Got the body.
  • the semipermeable membrane coated surface layer was in contact with the heated metal roll for the first time.
  • Example 21 Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 10 mm, aspect ratio 798), binder synthetic fiber 1 (unstretched polyester fiber, fiber diameter 14.3 ⁇ m, fiber length 5 mm, melting point) 230 ° C.), binder synthetic fiber 2 (unstretched polyester fiber, fiber diameter 14.3 ⁇ m, fiber length 5 mm, melting point 255 ° C.), main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 6.4 ⁇ m, fiber) 5 mm long, aspect ratio 785) is mixed and dispersed in water at a mixing ratio of 30: 15: 15: 40, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer with a surface temperature of 130 ° C. A sheet having a basis weight of 80 g / m 2 was obtained.
  • One sheet of heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min.
  • a semi-permeable membrane support was obtained by holding the roll and processing so that one surface was heated more.
  • the surface in contact with the held metal roll surface was defined as a semipermeable membrane application surface.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the obtained sheet was processed under the conditions of a heated metal roll temperature of 230 ° C., a pressure of 785 N / cm, and a processing speed of 10 m / min in a calender device of a combination of a heated metal roll and a cotton roll
  • a calender device with a combination of a heated metal roll and a cotton roll so that the contacted surface is in contact with the cotton roll
  • the heated metal roll temperature is 240 ° C.
  • the pressure is 1470 N / cm
  • the processing speed is 10 m / min. Got the body.
  • the surface in contact with the heated metal roll was the non-coated surface.
  • the obtained sheet was processed under the conditions of a temperature of 225 ° C., a pressure of 588 N / cm, and a processing speed of 25 m / min using a calender device that is a combination of a heated metal roll and an elastic roll, and then contacted with the heated metal roll for the first time.
  • a calender device in which a heated metal roll and an elastic roll are combined so that the finished surface is in contact with the elastic roll, the semi-permeable membrane support is processed under conditions of a heated metal roll temperature of 225 ° C., a pressure of 588 N / cm, and a processing speed of 25 m / min. Got.
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C), main synthetic fibers (fine fiber, drawn polyester fiber, fiber diameter 8.6 ⁇ m, fiber length 5 mm, aspect ratio 583) are mixed and dispersed in water at a mixing ratio of 40:30:30, and the circular net paper machine After forming the wet paper with the semipermeable membrane coated surface layer, the two wet paper sheets are combined and dried by hot pressure with a Yankee dryer having a surface temperature of 130 ° C. to form the semipermeable membrane coated surface layer and the non-coated surface layer. A sheet having a basis weight ratio of 1: 1 and a total basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 50 m / min using a calendering device of a combination of a heated metal roll and a heated metal roll, and then further heated metal roll and cotton roll Using a calender device of a combination of the above, processing at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 30 m / min so that the semipermeable membrane coated surface layer is in contact with the heated metal roll surface, Using a calender device with a combination of cotton rolls, processing is performed so that the semipermeable membrane coated surface layer is in contact with the heated metal roll surface at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 30 m / min. A support was obtained.
  • Example 5 In the semipermeable membrane support of Example 14, the non-coated surface layer was a semipermeable membrane coated surface, and the semipermeable membrane coated surface layer was a non-coated surface.
  • the obtained sheet was processed under the conditions of a temperature of 225 ° C., a pressure of 588 N / cm, and a processing speed of 25 m / min using a calender device that is a combination of a heated metal roll and an elastic roll, and a nonwoven fabric C was obtained.
  • the main synthetic fiber thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286)
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, (Melting point 260 ° C.) was mixed and dispersed in water at a blending ratio of 60:40, wet paper was formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C., and the basis weight was 34 g / m 2. Sheet D was obtained.
  • a calender of a combination of a heated metal roll and an elastic roll such that the nonwoven fabric C is a semipermeable membrane coated surface layer, the sheet D is a non-coated surface layer, the nonwoven fabric C and the sheet D are stacked, and the sheet D is in contact with the heated metal roll.
  • the heated metal roll temperature is 225 ° C.
  • the pressure is 588 N / cm
  • the processing speed is 25 m / min.
  • a semipermeable membrane support of 70 g / m 2 was obtained.
  • the main synthetic fiber thin fiber, stretched polyester fiber, fiber diameter 22.5 ⁇ m, fiber length 5 mm, aspect ratio 222
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, (Melting point 260 ° C.) was mixed and dispersed in water at a blending ratio of 60:40, wet paper was formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C., and a basis weight of 50 g / m 2.
  • Sheet F was obtained.
  • the sheet E is a non-coated surface layer
  • the sheet F is a semipermeable membrane coated surface layer
  • the sheet E and the sheet F are overlapped, and a temperature of 226 ° C. and a pressure of 980 N are used using a calender device that combines a heated metal roll and an elastic roll.
  • a calender device in which a heated metal roll and an elastic roll are combined so that the surface in contact with the heated metal roll for the first time comes into contact with the elastic roll after being processed under the conditions of / cm and a processing speed of 30 m / min.
  • Semi-permeable membrane with a basis weight ratio of 5: 4 and a total basis weight of 90 g / m 2 processed at a temperature of 980 N / cm and a processing speed of 30 m / min.
  • a support was obtained.
  • Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 10 mm, aspect ratio 798), binder synthetic fiber 1 (unstretched polyester fiber, fiber diameter 14.3 ⁇ m, fiber length 5 mm, melting point) 230 ° C.), binder synthetic fiber 2 (unstretched polyester fiber, fiber diameter 14.3 ⁇ m, fiber length 5 mm, melting point 255 ° C.), main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 6.4 ⁇ m, fiber) 5 mm long, aspect ratio 785) is mixed and dispersed in water at a mixing ratio of 30: 15: 15: 40, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer with a surface temperature of 130 ° C. A sheet having a basis weight of 80 g / m 2 was obtained.
  • One sheet of heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min.
  • a semi-permeable membrane support was obtained by holding the roll and processing so that one surface was heated more. The surface not in contact with the held metal roll surface was defined as a semipermeable membrane application surface.
  • Sheets with a two-layer structure were manufactured using a combination machine of an inclined wire type paper machine and a circular net paper machine.
  • Main synthetic fiber thin fiber, drawn polyester fiber, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 260 C.
  • a wet paper having a non-coated surface layer was formed using an inclined wire paper machine and an inclined wire paper machine.
  • Main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 20.2 ⁇ m, fiber length 10 mm, aspect ratio 495), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 260 ° C) was mixed and dispersed in water at a blending ratio of 55:45.
  • the two wet papers were combined and a Yankee with a surface temperature of 130 ° C.
  • the sheet was dried by hot pressing with a dryer to obtain a sheet having a basis weight ratio of 1: 1 and a total basis weight of 103 g / m 2 between the semipermeable membrane coated surface layer and the non-coated surface layer.
  • a heated metal roll temperature of 230 ° C., a pressure of 785 N / cm, and a processing speed of 10 m / min in a calender device of a combination of a heated metal roll and a cotton roll In a calender device with a combination of a heated metal roll and a cotton roll so that the contacting surface is in contact with the cotton roll, it is processed under the conditions of a heated metal roll temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 10 m / min. Got the body.
  • the semipermeable membrane coated surface layer was in contact with the cotton roll for the first time.
  • Tests 1 to 6 were evaluated for the semipermeable membrane supports obtained in Examples 1 to 21 and Comparative Examples 1 to 9, and the results are shown in Tables 1 to 6.
  • the semipermeable membrane supports of Examples 1 to 10 achieved practically usable levels in the evaluation of semipermeable membrane penetration, semipermeable membrane adhesion, and non-coated surface adhesion.
  • Example 7 Comparing Example 2 and Example 7 in which the fiber composition is the same, the semipermeable membrane support of Example 7 having a two-layer structure is more than the semipermeable membrane support of Example 2 having a single layer structure. However, the smoothness was high and the penetration of the semipermeable membrane was good.
  • the semipermeable membrane supports of Examples 11 to 15 are non-woven fabrics having a multilayer structure in which the fiber composition of the semipermeable membrane coated surface and the non-coated surface is different. In the evaluation of wearability, a practically usable level was achieved in a well-balanced manner.
  • the support of Example 16 uses a large diameter fiber having an aspect ratio of less than 200, and the fiber diameter of the large diameter fiber exceeds 20.0 ⁇ m, so the smoothness of the semipermeable membrane application surface is low, The semipermeable membrane oozed slightly to the non-coated surface.
  • the aspect ratio of the fine fiber exceeded 2000, the fiber entangled and the formation was poor, but the penetration of the semipermeable membrane was good.
  • the support of Example 18 used fine fibers having an aspect ratio of less than 200, and therefore, the peelability from the papermaking wire was poor. However, the penetration of the semipermeable membrane was at a practically usable level. It was. Since the support of Example 19 uses large diameter fibers having an aspect ratio exceeding 1000, the formation was poor, but the penetration of the semipermeable membrane that can be used practically was good, and the coating was not applied. The surface adhesion was also practically usable.
  • the semipermeable membrane support of Example 20 does not contain fine fiber in both the semipermeable membrane coated surface layer and the non-coated surface layer, and the fiber diameter of the large fiber exceeds 20.0 ⁇ m. Therefore, there was a tendency for the formation to become worse.
  • the semipermeable membrane support of Example 21 is a blend of two types of binder synthetic fibers containing large diameter fibers and small diameter fibers with different melting points, and the semipermeable membrane application surface is in long contact with the heated metal roll. Therefore, the smoothness was high, and both the penetration of the semipermeable membrane and the adhesion of the non-coated surface were good.
  • the semipermeable membrane support of Comparative Example 1 has the same fiber blend as the semipermeable membrane support of Example 1, but there is no difference in smoothness between the semipermeable membrane coated surface and the non-coated surface. Compared with 1, semi-permeable membrane soaking and non-application surface adhesion were inferior.
  • the semipermeable membrane support of Comparative Example 4 has the same layer structure as the semipermeable membrane support of Example 11, but has been subjected to hot pressing three times, and further has a heated metal on the semipermeable membrane application surface. Since the roll is in contact three times, the smoothness of the semipermeable membrane coated surface and the non-coated surface is higher than that of Example 11, and the ratio of smoothness between the semipermeable membrane coated surface and the non-coated surface is also 5.0: It exceeded 1.0. Therefore, compared with Example 11, semipermeable membrane adhesiveness fell and the non-application surface adhesiveness also deteriorated.
  • the semipermeable membrane support of Comparative Example 5 was obtained by reversing the front and back surfaces of the semipermeable membrane support of Example 14. As a result, the smoothness of the non-coated surface was too high, so that the adhesive was sufficient. The adhesion to the non-coated surface was very poor.
  • the semipermeable membrane supports of Comparative Examples 6 and 7 had poor smoothness of the semipermeable membrane because the non-coated surface was smoother than the semipermeable membrane coated surface.
  • the semipermeable membrane support of Comparative Example 8 was obtained by reversing the front and back surfaces of the semipermeable membrane support of Example 21, and as a result, the smoothness of the non-coated surface was increased, and the adhesive was sufficient. It did not penetrate, and the non-coated surface adhesion was poor.
  • the semipermeable membrane support of Comparative Example 9 was obtained by reversing the front and back surfaces of the semipermeable membrane support of Example 20. As a result, the smoothness of the non-coated surface was increased, and the adhesive was sufficient. It did not penetrate, and the non-coated surface adhesion was poor.
  • Main synthetic fiber small diameter fiber, drawn polyester fiber, fiber diameter 7.8 ⁇ m, fiber length 5 mm
  • main synthetic fiber large diameter fiber, drawn polyester fiber, fiber diameter 12.4 ⁇ m, fiber length 5 mm
  • main composition Fiber thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 800 N / cm, and a processing speed of 20 m / min, using a calender device that is a combination of a heated metal roll and a heated metal roll.
  • the surface in contact with the Yankee dryer was used as a semipermeable membrane coating surface, and the surface roughness was measured with a surface roughness meter (trade name: VK8510, manufactured by KEYENCE), and the semipermeable membrane coating obtained by the method described in JIS B0601
  • a semipermeable membrane support having an Ra of the surface surface of 8.5 ⁇ m and Rz of 100 ⁇ m was obtained.
  • Example 23 Main synthetic fiber (small diameter fiber, drawn polyester fiber, fiber diameter 7.8 ⁇ m, fiber length 5 mm), main synthetic fiber (large diameter fiber, drawn polyester fiber, fiber diameter 12.4 ⁇ m, fiber length 5 mm), main composition Fiber (thick fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) 10:20 : The mixing ratio of 40:30, the average fiber diameter of the main synthetic fiber is 14.7 ⁇ m, the Ra of the semipermeable membrane application surface is 10.6 ⁇ m, and Rz is 114 ⁇ m, the same as in Example 22. By the method, a semipermeable membrane support was obtained.
  • Example 24 Main synthetic fiber (thin fiber, drawn polyester fiber, fiber diameter 7.8 ⁇ m, fiber length 5 mm), main synthetic fiber (drawn polyester fiber, fiber diameter 12.4 ⁇ m, fiber length 5 mm), binder synthetic fiber (undrawn) Polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) at a blending ratio of 50:20:30, the average fiber diameter of the main synthetic fiber is 9.1 ⁇ m, and the surface of the semipermeable membrane coated surface is A semipermeable membrane support was obtained in the same manner as in Example 22 except that Ra was 6.0 ⁇ m and Rz was 50 ⁇ m.
  • Example 25 Main synthetic fiber (thin fiber, drawn polyester fiber, fiber diameter 7.8 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 12.4 ⁇ m, fiber length 5 mm), main composition Fiber (thick fiber, stretched polyester fiber (fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) 10:10 : Same as Example 22 except that the blending ratio is 50:30, the average fiber diameter of the main synthetic fiber is 15.4 ⁇ m, Ra of the semipermeable membrane coating surface is 11.0 ⁇ m, and Rz is 123 ⁇ m. By the method, a semipermeable membrane support was obtained.
  • Example 26 Main synthetic fiber (fine fiber, drawn polyester fiber, fiber diameter 7.8 ⁇ m, fiber length 5 mm), main synthetic fiber (large diameter fiber, drawn polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthesis
  • the fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the average fiber diameter of the main synthetic fiber is 10.6 ⁇ m
  • a semipermeable membrane support was obtained in the same manner as in Example 22 except that Ra on the coated surface was 7.9 ⁇ m and Rz was 85 ⁇ m.
  • Main synthetic fiber (thin fiber, drawn polyester fiber, fiber diameter 7.8 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm), main composition 40:20 fibers (thick fiber, stretched polyester fiber, fiber diameter 24.7 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) : The mixing ratio is 10:30, the average fiber diameter of the main synthetic fiber is 13.0 ⁇ m, the Ra of the semipermeable membrane coating surface is 8.2 ⁇ m, and the Rz is 90 ⁇ m. By the method, a semipermeable membrane support was obtained.
  • Main synthetic fiber (thin fiber, drawn polyester fiber, fiber diameter 12.4 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthesis
  • the fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the fiber is 20:60:20
  • the average fiber diameter of the main synthetic fiber is 16.2 ⁇ m
  • the temperature is 160 ° C.
  • the semipermeable membrane was processed in the same manner as in Example 22 except that the processing was carried out under conditions of a pressure of 1200 N / cm and a processing speed of 20 m / min, and the Ra of the semipermeable membrane coated surface was 14.0 ⁇ m and Rz was 160 ⁇ m. A support was obtained.
  • Tests 2, 5, and 7 were evaluated for the semipermeable membrane supports obtained in Examples 22 to 28 and Comparative Examples 10 to 12, and the results are shown in Table 7.
  • the semipermeable membrane supports of Examples 22 to 28 achieved practically possible levels in the semipermeable membrane thickness uniformity and the support-semipermeable membrane peel strength. Further, in Examples 22 to 27 where Rz on the semipermeable membrane application surface was 150 ⁇ m or less, the semipermeable membrane thickness uniformity and the semipermeable membrane-semipermeable membrane peel strength were more excellent.
  • the semipermeable membrane supports of Comparative Examples 10 to 12 containing only one type of main synthetic fiber and the Ra of the semipermeable membrane coated surface surface being less than 5.0 ⁇ m or exceeding 15.0 ⁇ m are semi-permeable membrane thickness uniformity Is outside the allowable range, or the semipermeable membrane adhesiveness is practically the lower limit level or unusable level.
  • Example 29 Stretched polyester fiber of main synthetic fiber (thin fiber, stretched polyester fiber, fiber diameter 7.9 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, stretched polyester fiber, fiber diameter 12.1 ⁇ m, fiber length) 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) is mixed and dispersed in water at a mixing ratio of 50:20:30, and wet paper is used with a circular net paper machine. After forming, a sheet having a basis weight of 80 g / m 2 and an average fiber diameter of the main synthetic fiber of 9.1 ⁇ m was obtained by drying with a Yankee dryer having a surface temperature of 130 ° C.
  • One sheet of heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min.
  • a semi-permeable membrane support having an absorption coefficient of 25 ml / m 2 ⁇ msec 1/2 on the semipermeable membrane-coated surface by a Bristow tester was obtained by holding a roll and processing so that one surface was further heated. In addition, it processed so that it might contact the metal roll surface which held the surface which does not contact a Yankee dryer, and the surface which contacted the held metal roll surface was made into the semipermeable membrane application surface.
  • Example 30 Main synthetic fiber (fine fiber, drawn polyester fiber, fiber diameter 5.3 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 7.9 ⁇ m, fiber length 5 mm), binder synthesis
  • the fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) is 45:25:30, the average fiber diameter of the main synthetic fiber is 6.2 ⁇ m, and heated metal roll and using a calender device of a combination of a heating metal roll, temperature 200 ° C., a pressure 820N / cm, processing speed 10 m / processed under the condition of min, and the absorption coefficient of the semipermeable membrane coating surface 7ml / m 2 ⁇ msec 1 /
  • a semipermeable membrane support was obtained in the same manner as in Example 29 except that it was 2 .
  • Example 31 Main synthetic fiber (thin fiber, drawn polyester fiber, fiber diameter 7.9 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 12.1 ⁇ m, fiber length 5 mm), main composition Fiber (thick fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) 15:10 : Same as Example 29 except that the blending ratio is 45:30, the average fiber diameter of the main synthetic fiber is 14.7 ⁇ m, and the absorption coefficient of the semipermeable membrane application surface is 75 ml / m 2 ⁇ msec 1/2 In this way, a semipermeable membrane support was obtained.
  • Example 32 Main synthetic fiber (thin fiber, drawn polyester fiber, fiber diameter 12.1 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthesis
  • the fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the average fiber diameter of the main synthetic fiber is 16.0 ⁇ m
  • heated metal roll Except that the absorption coefficient of the coated surface of the semipermeable membrane is set to 70 ml / m 2 ⁇ msec 1/2 , using a calender device that combines a heated metal roll and a pressure of 820 N / cm and a processing speed of 10 m / min. Obtained a semipermeable membrane support in the same manner as in Example 29.
  • Tests 2, 4, 6, and 7 were evaluated for the semipermeable membrane supports obtained in Examples 29 to 32 and Comparative Examples 13 to 14, and the results are shown in Table 8.
  • the semipermeable membrane supports of Examples 29 to 32 achieved practically usable levels in the evaluation of semipermeable membrane penetration, non-coated surface adhesion, and semipermeable membrane thickness uniformity.
  • the semipermeable membrane of Comparative Examples 13 to 14 containing only one type of main synthetic fiber and having an absorption coefficient of less than 5 ml / m 2 ⁇ msec 1/2 or more than 100 ml / m 2 ⁇ msec 1/2 The support did not simultaneously satisfy the penetration of the semipermeable membrane, the non-application surface adhesion, and the uniformity of the semipermeable membrane thickness.
  • Example 33 Main synthetic fiber (thin fiber, drawn polyester fiber, fiber diameter 7.9 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 12.1 ⁇ m, fiber length 5 mm), binder synthesis After forming fibers (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) at a mixing ratio of 40:30:30, mixing and dispersing in water, and forming wet paper with a circular net paper machine Then, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a sheet having a basis weight of 80 g / m 2 .
  • the obtained sheet is subjected to one heating metal roll after being nipped by the calender device under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min.
  • the dynamic liquid is processed so that one surface is heated further, the average fiber diameter of the main synthetic fiber is 9.7 ⁇ m, and the contact time of the coated surface of the semipermeable membrane support by the Bristow tester is 0.2 sec.
  • a semipermeable membrane support having a transfer amount of 19 ml / m 2 was obtained.
  • coating surface
  • Example 34 Main synthetic fiber (thin fiber, drawn polyester fiber, fiber diameter 7.9 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm), main composition Fiber (thick fiber, stretched polyester fiber, fiber diameter 24.7 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) 20:40 : The mixing ratio of 10:30, the average fiber diameter of the main synthetic fiber is 15.8 ⁇ m, and the amount of dynamic liquid transfer at the contact time of 0.2 sec on the semipermeable membrane coated surface by Bristow tester is 22 ml / m 2 A semipermeable membrane support was obtained in the same manner as in Example 33 except for the above.
  • Example 35 Main synthetic fiber (fine fiber, drawn polyester fiber, fiber diameter 5.3 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 7.9 ⁇ m, fiber length 5 mm), binder synthesis
  • the fiber is 55:15:30, and the average fiber diameter of the main synthetic fiber is 5.8 ⁇ m.
  • a semipermeable membrane support was obtained in the same manner as in Example 33 except that the amount of dynamic liquid transfer at a contact time of 0.2 sec on the semipermeable membrane application surface by a Bristow tester was 16 ml / m 2 .
  • Example 36 Main synthetic fiber (fine fiber, drawn polyester fiber, fiber diameter 7.9 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm), main composition Fiber (thick fiber, stretched polyester fiber, fiber diameter 24.7 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) 20:40 : The blending ratio is 10:30, the average fiber diameter of the main synthetic fiber is 15.8 ⁇ m, the processing conditions are a temperature of 200 ° C., a pressure of 700 N / cm, and a speed of 20 m / min.
  • a semipermeable membrane support was obtained in the same manner as in Example 33 except that the amount of dynamic liquid transfer on the semipermeable membrane application surface at a contact time of 0.2 sec was 30 ml / m 2 .
  • Example 37 Main synthetic fiber (fine fiber, drawn polyester fiber, drawn polyester fiber with fiber diameter 7.9 ⁇ m, fiber length 5 mm), main synthetic fiber (thick fiber, drawn polyester fiber, fiber diameter 12.1 ⁇ m, fiber length) 5mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) at a mixing ratio of 40:30:30, and the average fiber diameter of the main synthetic fiber is 9.7 ⁇ m Yes, the processing conditions are a temperature of 200 ° C., a pressure of 900 N / cm, and a speed of 20 m / min. A semipermeable membrane support was obtained in the same manner as in Example 33 except that it was 2 .
  • Tests 2, 4, 5, and 7 were evaluated for the semipermeable membrane supports obtained in Examples 33 to 37 and Comparative Examples 15 to 16, and the results are shown in Table 9.
  • the semipermeable membrane support of Examples 33 to 37 it becomes possible to obtain a semipermeable membrane having a uniform thickness, the semipermeable membrane does not pass through, and the semipermeable membrane-semipermeable membrane support adhesion evaluation Achieved a practically usable level.
  • the semipermeable membrane support of Comparative Example 15 containing only one type of main synthetic fiber and the dynamic liquid transfer amount exceeding 30 ml / m 2 provides a semipermeable membrane with a uniform thickness. I could't.
  • the semipermeable membrane support of Comparative Example 16 containing only one type of main synthetic fiber and having a dynamic liquid transfer amount of less than 5 ml / m 2 is good between the semipermeable membrane and the semipermeable membrane support. High adhesion could not be obtained.
  • Table 10 shows the arithmetic average roughness (Ra), ten-point average roughness (Rz), Bristow of the semipermeable membrane-coated surface of the semipermeable membrane supports obtained in Examples 1-21 and Comparative Examples 1-9.
  • the absorption coefficient in the tester, the amount of dynamic liquid transition in the contact time of 0.2 sec in the Bristow tester, and the result of evaluation 7 are shown.
  • the semipermeable membrane supports of Examples 1 to 15, 17 to 21, and Comparative Examples 5, 8, and 9 have Ra of 5.0 to 15.0 ⁇ m, Rz of 150 ⁇ m or less, and an absorption coefficient of 5 to 100 ml / m.
  • the dynamic liquid transfer amount was 5 to 30 ml / m 2 at 2 ⁇ msec 1/2 , and the semipermeable membrane thickness uniformity was good.
  • Ra exceeds 15.0 ⁇ m
  • the absorption coefficient exceeds 100 ml / m 2 ⁇ msec 1/2
  • the dynamic liquid transfer amount also exceeds 30 ml / m 2 . Therefore, the semipermeable membrane thickness uniformity was low.
  • the semipermeable membrane support of Comparative Example 1 had a low semipermeable membrane thickness uniformity because Ra exceeded 15.0 ⁇ m and the dynamic liquid transfer amount also exceeded 30 ml / m 2 .
  • the semipermeable membrane supports of Comparative Examples 2 and 7 had a low semipermeable membrane thickness uniformity because the absorption coefficient exceeded 100 ml / m 2 ⁇ msec 1/2 and the dynamic liquid transfer amount exceeded 30 ml / m 2. It was.
  • the semipermeable membrane support of Comparative Example 3 had an Ra of more than 15.0 ⁇ m, an absorption coefficient of more than 100 ml / m 2 ⁇ msec 1/2 and a dynamic liquid transfer amount of more than 30 ml / m 2 , The film thickness uniformity was low. Since the semipermeable membrane support of Comparative Example 4 had an Ra of less than 5.0 ⁇ m, the semipermeable membrane adhesion was low as shown in Table 5.
  • Para-aramid fiber fineness: 2.5 dtex, fiber length: 3 mm
  • a double disc refiner beating is repeated 15 times while narrowing the clearance every time
  • a high-pressure homogenizer was repeated 35 times under the condition of 50 MPa to prepare a liquid crystalline polymer pulp having a mass average fiber length of 0.24 mm.
  • liquid crystalline polymer pulp As semi-permeable membrane coated surface layer, liquid crystalline polymer pulp, main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 0.5: 79.5: 20.0 and stored in a stock tank having a stirring device.
  • main synthetic fiber fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 20 g in dry mass. / M 2
  • non-coated surface layer 60 g / m 2 woven wet paper was formed, and then the film was dried with heat and pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • liquid crystalline polymer pulp As semi-permeable membrane coated surface layer, liquid crystalline polymer pulp, main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 10.0: 70.0: 20.0 and stored in a stock tank having a stirring device.
  • main synthetic fiber fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 20 g in dry mass. / M 2
  • non-coated surface layer 60 g / m 2 woven wet paper was formed, and then the film was dried with heat and pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • liquid crystalline polymer pulp As semi-permeable membrane coating surface layer, liquid crystalline polymer pulp, main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 20.0: 60.0: 20.0 and stored in a stock tank having a stirring device.
  • main synthetic fiber fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 15 g in dry mass. / M 2
  • non-coated surface layer 65 g / m 2 woven wet paper was formed, and then the film was dried by hot pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • liquid crystalline polymer pulp As semi-permeable membrane coated surface layer, liquid crystalline polymer pulp, main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 0.3: 79.7: 20, and stored in a stock tank having a stirring device.
  • main synthetic fiber fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 20 g in dry mass. / M 2
  • non-coated surface layer 60 g / m 2 woven wet paper was formed, and then the film was dried with heat and pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • liquid crystalline polymer pulp As semi-permeable membrane coating surface layer, liquid crystalline polymer pulp, main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 22.5: 57.5: 20 and stored in a stock tank having a stirring device.
  • main synthetic fiber fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 15 g in dry mass. / M 2
  • non-coated surface layer 65 g / m 2 woven wet paper was formed, and then the film was dried by hot pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Example 43 Liquid crystalline polymer pulp, main synthetic fiber (fine fiber, drawn polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, (Melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 10.0: 70.0: 20.0, and a single-layer wet paper having a dry mass of 80 g / m 2 was formed using an inclined wire paper machine. After that, it was hot-pressure dried to obtain a sheet having a basis weight of 80 g / m 2 .
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the surface in contact with the Yankee dryer was used as the semipermeable membrane application surface.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm) , 230 ° C.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 20 g in dry mass. / M 2
  • non-coated surface layer 60 g / m 2 woven wet paper was formed, and then the film was dried with heat and pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Tests 1, 2, 4, 5, 6, and 8 were evaluated for the semipermeable membrane supports obtained in Examples 38 to 44 and Comparative Example 17, and the results are shown in Table 11.
  • the semipermeable membrane supports of Examples 38 to 44 were excellent in adhesion between non-coated surfaces because the non-coated surface layer contained main synthetic fibers and binder synthetic fibers.
  • the semipermeable membrane support of Comparative Example 17 contained only one type of main synthetic fiber and also did not contain liquid crystalline polymer pulp, so the evaluation of semipermeable membrane soaking was poor.
  • the semipermeable membrane supports of Examples 38 to 43 were prepared by blending a liquid crystalline polymer pulp in the semipermeable membrane application surface layer. In addition, good results were obtained in the evaluation of the penetration of the semipermeable membrane.
  • Split fiber acrylic fiber (fineness: 1.2 dtex, fiber length: 6 mm, acrylic / cellulose acetate composite fiber, manufactured by Mitsubishi Rayon Co., Ltd.) was repeated 30 times using a single disc refiner, and the average fiber from the trunk with an average fiber diameter of 6 ⁇ m A fibrillated acrylic fiber having a branch portion having a diameter of 1 ⁇ m or less was prepared.
  • Example 45 As a semipermeable membrane coated surface layer, fibrillated acrylic fiber, main synthetic fiber (thin fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10) 0.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 0.5: 79.5: 20.0, and stored in a stock tank having a stirring device.
  • main synthetic fiber thin fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10 0.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 20 g in dry mass. / M 2
  • non-coated surface layer 60 g / m 2 woven wet paper was formed, and then the film was dried with heat and pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Example 46 As a semipermeable membrane coating surface layer, fibrillated acrylic fiber, main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10) 0.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 10.0: 70.0: 20.0, and stored in a stock tank having a stirring device.
  • main synthetic fiber fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10) 0.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 20 g in dry mass. / M 2
  • non-coated surface layer 60 g / m 2 woven wet paper was formed, and then the film was dried with heat and pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Example 47 As a semipermeable membrane coating surface layer, fibrillated acrylic fiber, main synthetic fiber (fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10) 0.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 20.0: 60.0: 20.0, and stored in a stock tank having a stirring device.
  • main synthetic fiber fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10) 0.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm) , 230 ° C.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 15 g in dry mass. / M 2
  • non-coated surface layer 65 g / m 2 woven wet paper was formed, and then the film was dried by hot pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Example 48 As a semipermeable membrane coating surface layer, fibrillated acrylic fiber, main synthetic fiber (stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber) 5 mm long, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 0.3: 79.7: 20.0, and stored in a stock tank having a stirring device.
  • main synthetic fiber stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber 5 mm long, melting point 230 ° C.
  • a main synthetic fiber (stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230) ° C) was mixed and dispersed in water at a blending ratio of 70.0: 30.0, and stored in a stock tank having a stirrer separately from the dispersion for the semipermeable membrane coated surface layer.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 20 g in dry mass. / M 2
  • non-coated surface layer 60 g / m 2 woven wet paper was formed, and then the film was dried with heat and pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Example 49 As a semipermeable membrane coating surface layer, fibrillated acrylic fiber, main synthetic fiber (stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber) 5 mm long, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 22.0: 58.0: 20.0, and stored in a stock tank having a stirring device.
  • main synthetic fiber stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber 5 mm long, melting point 230 ° C.
  • a main synthetic fiber (stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C. ) was mixed and dispersed in water at a blending ratio of 70.0: 30.0, and stored in a stock tank having a stirring device separately from the dispersion for the semipermeable membrane coated surface layer.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 15 g in dry mass. / M 2
  • non-coated surface layer 65 g / m 2 woven wet paper was formed, and then the film was dried by hot pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • the main synthetic fiber fine fiber, acrylic fiber, fiber diameter 10.9 ⁇ m, fineness 1.1 dtex, fiber length 5 mm
  • main synthetic fiber fine fiber, stretched polyester fiber, Fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm
  • Melting point 230 ° C. was mixed and dispersed in water at a blending ratio of 70.0: 30.0, and stored in a stock tank having a stirring device separately from the dispersion for the semipermeable membrane coated surface layer.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 20 g in dry mass. / M 2
  • non-coated surface layer 60 g / m 2 woven wet paper was formed, and then the film was dried with heat and pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Tests 1, 2, 4, 5, 6, and 9 were evaluated for the semipermeable membrane supports obtained in Examples 45 to 50, and the results are shown in Table 12.
  • the semipermeable membrane supports of Examples 45 to 50 were excellent in adhesion between non-coated surfaces because the non-coated surface layer contained main synthetic fibers and binder synthetic fibers. Compared with the semipermeable membrane support of Example 50, the semipermeable membrane supports of Examples 45 to 49 contain fibrillated acrylic fibers in the semipermeable membrane application surface layer, so that the semipermeable membrane application surface The smoothness of the semi-permeable membrane was suppressed. Moreover, it was recognized that the fuzz suppression effect on a semipermeable membrane application surface is high.
  • non-fibrillated lyocell monofilament (1.7 dtex ⁇ 4 mm, manufactured by Coatles Co., Ltd.) is treated, and (A) fibrillated lyocell fiber having an average fiber diameter of 1 ⁇ m or less, and (B) A mixed fiber of fibrillated lyocell fibers in which branches having an average fiber diameter of 1 ⁇ m or less were generated from a trunk part having an average fiber diameter of 4 ⁇ m was prepared.
  • DDR double disc refiner
  • Example 51 As a semipermeable membrane coating surface layer, mixed fibers of fibrillated lyocell fibers, main synthetic fibers (fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, Fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 0.5: 69.5: 30.0 and stored in a stock tank having a stirring device.
  • main synthetic fibers fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, Fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • semipermeable membrane coated surface layer is inclined wire paper machine
  • non-coated surface layer is circular mesh paper machine
  • semipermeable membrane coated surface layer in dry mass After forming a laminated wet paper of 20 g / m 2 and a non-coated surface layer of 60 g / m 2 , it was hot-pressure dried so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C. A sheet having a basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Example 52 As a semipermeable membrane coating surface layer, mixed fibers of fibrillated lyocell fibers, main synthetic fibers (fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, Fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) was mixed and dispersed in water at a blending ratio of 10.0: 60.0: 30.0, and stored in a stock tank having a stirring device.
  • main synthetic fibers fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, Fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 20 g in dry mass. / M 2
  • non-coated surface layer 60 g / m 2 woven wet paper was formed, and then the film was dried with heat and pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Example 53 As the semipermeable membrane coated surface layer, mixed fibers of the above fibrillated lyocell fibers, main synthetic fibers (fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber) And a fiber diameter of 10.5 ⁇ m, a fiber length of 5 mm, and a melting point of 230 ° C.) were mixed and dispersed in water at a blending ratio of 20.0: 50.0: 30.0 and stored in a stock tank having a stirring device.
  • main synthetic fibers fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the semipermeable membrane coated surface layer is an inclined wire paper machine
  • the non-coated surface layer is a circular mesh paper machine
  • the semipermeable membrane coated surface layer is 15 g in dry mass. / M 2
  • non-coated surface layer 65 g / m 2 woven wet paper was formed, and then the film was dried by hot pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Example 54 As a semipermeable membrane application surface layer, mixed fibers of fibrillated lyocell fibers, main synthetic fibers (fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, Fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.) was mixed and dispersed in water at a compounding ratio of 0.3: 69.7: 30.0, and stored in a stock tank having a stirring device.
  • main synthetic fibers fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, Fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 20 g in dry mass. / M 2
  • non-coated surface layer 60 g / m 2 woven wet paper was formed, and then the film was dried with heat and pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Example 55 As a semipermeable membrane coated surface layer, mixed fibers of the above fibrillated lyocell fibers, main synthetic fibers (fine fibers, drawn polyester fibers, fiber diameter 12.5 ⁇ m, fiber length 5 mm), binder synthetic fibers (undrawn polyester fibers) And a fiber diameter of 10.5 ⁇ m, a fiber length of 5 mm, and a melting point of 230 ° C.) were mixed and dispersed in water at a mixing ratio of 22.5: 47.5: 30.0 and stored in a stock tank having a stirring device.
  • main synthetic fibers fine fibers, drawn polyester fibers, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fibers undrawn polyester fibers
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • the semipermeable membrane coated surface layer is an inclined wire paper machine
  • the non-coated surface layer is a circular mesh paper machine
  • the semipermeable membrane coated surface layer is 15 g in dry mass. / M 2
  • non-coated surface layer 65 g / m 2 woven wet paper was formed, and then the film was dried by hot pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • main synthetic fibers fine fiber, stretched polyester fiber, fiber diameter 12.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fibers thin fiber, stretched polyester fiber, fiber diameter 17.5 ⁇ m, fiber length 5 mm
  • binder synthetic fiber unstretched polyester fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm
  • Melting point 230 ° C. was mixed and dispersed in water at a blending ratio of 70.0: 30.0, and stored in a stock tank having a stirring device separately from the dispersion for the semipermeable membrane coated surface layer.
  • the semipermeable membrane coated surface layer is the inclined wire paper machine
  • the non-coated surface layer is the circular mesh paper machine
  • the semipermeable membrane coated surface layer is 20 g in dry mass. / M 2
  • non-coated surface layer 60 g / m 2 woven wet paper was formed, and then the film was dried with heat and pressure so that the semipermeable membrane coated surface layer was in contact with a Yankee dryer having a surface temperature of 130 ° C.
  • a sheet having a combined basis weight of 80 g / m 2 was obtained.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. .
  • Tests 1, 2, 4, 5, and 6 were evaluated for the semipermeable membrane supports obtained in Examples 51 to 56, and the results are shown in Table 13.
  • the semipermeable membrane supports of Examples 51 to 56 were excellent in adhesion between non-coated surfaces because the non-coated surface layer contained main synthetic fibers and binder synthetic fibers. Compared with the semipermeable membrane support of Example 56, the semipermeable membrane supports of Examples 51 to 55 contain the fibrillated lyocell fiber in the semipermeable membrane application surface layer. The smoothness of was excellent. Moreover, the penetration of the semipermeable membrane was suppressed. In the semipermeable membrane support of Example 54, the polysulfone resin oozed out to a very small part of the non-coated surface of the semipermeable membrane support, but was better than the semipermeable membrane support of Example 56. .
  • the semipermeable membrane supports of Examples 51 to 53 in which the content of fibrillated lyocell fibers in the semipermeable membrane coated surface layer is 0.5 to 20.0 mass% the penetration of the semipermeable membrane is suppressed.
  • the semipermeable membrane adhesiveness was also excellent.
  • Example 57 Main synthetic fiber (stretched polyester fiber, 48% elongation, tensile strength 0.41 N / tex, fiber diameter 18.2 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, (Fiber length 5 mm, melting point 230 ° C.) is mixed and dispersed in water at a blending ratio of 70:30, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. An 80 g / m 2 sheet was obtained.
  • One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 980 N / cm, and a processing speed of 25 m / min. hugging roll, and processed as one surface is more heated, to obtain a semipermeable membrane support.
  • it processes so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into a Y surface, and the surface on the opposite side is made into a Z surface.
  • Example 58 Main synthetic fiber (stretched polyester fiber, elongation 23%, tensile strength 0.75 N / tex, fiber diameter 18.2 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 6.8 ⁇ m, (Fiber length 5 mm, melting point 230 ° C.) is mixed and dispersed in water at a blending ratio of 70:30, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. An 80 g / m 2 sheet was obtained.
  • One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 780 N / cm, and a processing speed of 20 m / min.
  • a semi-permeable membrane support was obtained by holding the roll and processing so that one surface was heated more. In addition, it processes so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into a Y surface, and the surface on the opposite side is made into a Z surface.
  • Example 59 Main synthetic fiber (stretched polyester fiber, elongation 80%, tensile strength 0.51 N / tex, fiber diameter 18.2 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, (Fiber length 5 mm, melting point 230 ° C.) is mixed and dispersed in water at a blending ratio of 70:30, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. An 80 g / m 2 sheet was obtained.
  • One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 780 N / cm, and a processing speed of 20 m / min.
  • a semi-permeable membrane support was obtained by holding the roll and processing so that one surface was heated more. In addition, it processes so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into a Y surface, and the surface on the opposite side is made into a Z surface.
  • Example 60 Main synthetic fiber (stretched polyester fiber, elongation 60%, tensile strength 0.36 N / tex, fiber diameter 18.2 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, (Fiber length 5 mm, melting point 230 ° C.) is mixed and dispersed in water at a blending ratio of 70:30, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. An 80 g / m 2 sheet was obtained.
  • One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 980 N / cm, and a processing speed of 25 m / min. hugging roll, and processed as one surface is more heated, to obtain a semipermeable membrane support.
  • it processes so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into a Y surface, and the surface on the opposite side is made into a Z surface.
  • Example 61 Main synthetic fiber (stretched polyester fiber, elongation 120%, tensile strength 0.31 N / tex, fiber diameter 18.2 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 6.8 ⁇ m, (Fiber length 5 mm, melting point 230 ° C.) is mixed and dispersed in water at a blending ratio of 70:30, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. An 80 g / m 2 sheet was obtained.
  • One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 780 N / cm, and a processing speed of 20 m / min. hugging roll, and processed as one surface is more heated, to obtain a semipermeable membrane support.
  • it processes so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into a Y surface, and the surface on the opposite side is made into a Z surface.
  • Example 62 Main synthetic fiber (stretched polyester fiber, elongation 140%, tensile strength 0.26 N / tex, fiber diameter 18.2 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 6.8 ⁇ m, (Fiber length 5 mm, melting point 230 ° C.) is mixed and dispersed in water at a blending ratio of 70:30, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. An 80 g / m 2 sheet was obtained.
  • One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 780 N / cm, and a processing speed of 20 m / min. hugging roll, and processed as one surface is more heated, to obtain a semipermeable membrane support.
  • it processes so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into a Y surface, and the surface on the opposite side is made into a Z surface.
  • Example 63 Main synthetic fiber (stretched polyester fiber, elongation 30%, tensile strength 0.44 N / tex, fiber diameter 18.2 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 6.8 ⁇ m, (Fiber length 5 mm, melting point 230 ° C.) is mixed and dispersed in water at a blending ratio of 70:30, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. An 80 g / m 2 sheet was obtained.
  • One sheet of heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min. Hold the roll, process so that one side is heated further, and further wrap the two heated metal rolls at 120 ° C. that are not niped in an S shape to produce a semi-permeable membrane A support was obtained. In addition, it processes so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into a Y surface, and the surface on the opposite side is made into a Z surface.
  • Example 64 Main synthetic fiber (thick fiber, stretched polyester fiber, elongation 48%, tensile strength 0.41 N / tex, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber) Fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C., main synthetic fiber (fine fiber, stretched polyester fiber, elongation 50%, tensile strength 0.51 N / tex, fiber diameter 11.6 ⁇ m, A fiber length of 5 mm and an aspect ratio of 432) are mixed and dispersed in water at a blending ratio of 30:30:40, and wet paper is formed by a circular paper machine, followed by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C. A sheet having a basis weight of 80 g / m 2 was obtained.
  • One sheet of heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min.
  • a semi-permeable membrane support was obtained by holding the roll and processing so that one surface was heated more. In addition, it processes so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into a Y surface, and the surface on the opposite side is made into a Z surface.
  • Example 65 Sheets with a two-layer structure were produced using a combination machine of an inclined wire type paper machine and a circular net paper machine.
  • Main synthetic fiber thin fiber, stretched polyester fiber, elongation 48%, tensile strength 0.41 N / tex, fiber diameter 17.5 ⁇ m, fiber length 5 mm, aspect ratio 286), binder synthetic fiber (unstretched polyester fiber) Fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.
  • main synthetic fiber fine fiber, stretched polyester fiber, elongation 50%, tensile strength 0.51 N / tex, fiber diameter 11.6 ⁇ m, A fiber length of 5 mm and an aspect ratio of 432) were mixed and dispersed in water at a mixing ratio of 30:30:40, and a Z-plane wet paper was formed with an inclined wire type paper machine.
  • Main synthetic fiber (thick fiber, stretched polyester fiber, elongation 50%, tensile strength 0.51 N / tex, fiber diameter 11.6 ⁇ m, fiber length 5 mm, aspect ratio 432), binder synthetic fiber (unstretched polyester fiber) Fiber, fiber diameter 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C., main synthetic fiber (fine fiber, stretched polyester fiber, elongation 45%, tensile strength 0.41 N / tex, fiber diameter 8.6 ⁇ m, A fiber length of 5 mm and an aspect ratio of 583) are mixed and dispersed in water at a blending ratio of 40:30:30, and a Y-layer wet paper is formed with a circular paper machine.
  • the obtained sheet was processed under the conditions of a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min by using a calender device in which a heated metal roll and a heated metal roll were combined to obtain a semipermeable membrane support. . In addition, it heat-dried so that the Y surface might contact a Yankee dryer.
  • One sheet of the heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 980 N / cm, and a processing speed of 25 m / min. hugging roll, and processed as one surface is more heated, to obtain a semipermeable membrane support.
  • it processes so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into a Y surface, and the surface on the opposite side is made into a Z surface.
  • One sheet of heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min.
  • a semi-permeable membrane support was obtained by holding the roll and processing so that one surface was heated more. In addition, it processes so that it may contact the metal roll surface which held the surface which does not contact a Yankee dryer, the surface which contacted the held metal roll surface is made into a Y surface, and the surface on the opposite side is made into a Z surface.
  • One sheet of heated metal was niped with a calendering device using a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min.
  • a calendering device of a combination of a heating metal roll and a heating metal roll at a temperature of 200 ° C., a pressure of 785 N / cm, and a processing speed of 20 m / min.
  • the elongation and tensile strength of the main synthetic fiber were measured by the methods of Tests 10 and 11.
  • Test 10 (Elongation rate of main synthetic fiber) In accordance with JIS L1013 2010, the elongation of the main synthetic fiber was measured.
  • Test 11 (Tensile strength of main synthetic fiber) The tensile strength of the main synthetic fiber was measured in accordance with JIS L1013 2010.
  • Test 2 (Smoothness) According to JIS P 8119, it was measured using a Beck smoothness tester.
  • the width of the semipermeable membrane support exceeds 1000 mm
  • the semipermeable membrane support is sampled from three locations (right, center, left) in the lateral direction, and the longitudinal and lateral tears are taken. the length was measured, and this all three aspect average value and the average breaking length (at 5% extension).
  • the width of the semipermeable membrane support is 500 to 1000 mm, it is divided into two in the horizontal direction and collected from two locations (the center on the right side and the center on the left side), and the tear lengths in the vertical and horizontal directions are measured. The vertical and horizontal average values of all these two locations were taken as the average breaking length (at 5% elongation).
  • the width of the semipermeable membrane support was 500 mm or less, the average value in the vertical and horizontal directions at the center was used.
  • Test 13 (heating dimensional change rate) The semipermeable membrane support is cut into a rectangle of 200 mm in the vertical direction and 1000 mm in the horizontal direction, marked at three locations in the horizontal direction, and the width is measured in units of 0.1 mm. After the dimension measurement, the semipermeable membrane support is immersed in a 90 ° C. hot water bath for 10 minutes, and then the moisture is wiped off. Again, the same three widths are measured in units of 0.1 mm. The amount of dimensional change before and after being immersed in a 90 ° C. hot water bath was calculated, and the heating dimensional change rate relative to the size before being immersed in the hot water bath was determined.
  • Test 14 (Situation during hot pressing) The occurrence of paper breaks and wrinkles at the heating roll outlet was confirmed in the hot-pressure processing of the nonwoven fabric. When there was no paper break or wrinkle, “ ⁇ ” was given.
  • Test 15 wrinkles during semipermeable membrane coating
  • a DMF solution of polysulfone manufactured by SIGMA-ALDRICH Corporation, weight average molecular weight M w ⁇ 35,000, number average molecular weight M n ⁇ 16,000, product number 428302
  • Consulation 18% by mass, temperature 20 ° C is applied to the Y or Z surface, immersed in pure water at 20 ° C to solidify the polysulfone, and then checked for the occurrence of wrinkles after washing in a 85 ° C hot water bath did.
  • Test 16 (semipermeable membrane penetration) Using a constant-speed coating apparatus (trade name: Automatic Film Applicator, manufactured by Yasuda Seiki Co., Ltd.) having a certain clearance, polysulfone (manufactured by SIGMA-ALDRICH Corporation, weight average molecular weight M w ⁇ A DMF solution (concentration: 18%) of 35,000, number average molecular weight M n ⁇ 16,000, product number 428302) is applied, washed with water and dried to form a polysulfone film on the Y or Z plane. A semipermeable membrane was prepared, a cross-sectional SEM photograph of the semipermeable membrane was taken, and the degree of penetration of polysulfone into the semipermeable membrane support was evaluated.
  • a constant-speed coating apparatus trade name: Automatic Film Applicator, manufactured by Yasuda Seiki Co., Ltd.
  • polysulfone manufactured by SIGMA-ALDRICH Corporation, weight average molecular weight M
  • Test 17 (semipermeable membrane adhesion) Regarding the semipermeable membrane produced in Test 16, the degree of adhesion between the semipermeable membrane made of polysulfone resin and the semipermeable membrane support was determined by the degree of resistance when peeling.
  • Test 18 non-coated surface adhesion
  • a semi-permeable membrane support in which the semi-permeable membrane was prepared in Test 16 was coated with a heated and melted vinyl acetate adhesive between the non-coated surfaces (non-coated surfaces). And immediately pressurized to bond. After bonding, the sample was cut into a width of 25 mm and a length of 200 mm, and a tensile tester (trade name: STA-1150 Tensilon tensile tester, manufactured by Orientec Co., Ltd.) was used, with a peeling angle of 180 degrees and a peeling speed of 100 mm / min. A peel test of the bonded portion was performed to evaluate non-coated surface adhesion.
  • the semipermeable membrane supports of Examples 57 to 65 have an average breaking length (at 5% elongation) of less than 4.0 km, a heating dimensional change rate of -0.3 to 1.0%, There were no wrinkles due to paper breakage or shrinkage during processing. Even when the semipermeable membrane was applied, no wrinkles were produced in Examples 57 to 61, 64 and 65, and slight wrinkles were produced in Examples 62 to 63, but this was at a practical level.
  • the semipermeable membrane support of Comparative Example 18 had an average breaking length (at 5% elongation) of 4.0 km or more and a high fiber tensile strength of 0.90 N / tex, and an average breaking length (5% elongation).
  • the semipermeable membrane support of Comparative Example 19 had a heating dimensional change rate of less than ⁇ 0.3%, a fiber tensile strength as weak as 0.07 N / tex, a fiber elongation rate as high as 170%, During processing, the width shrinkage was large and wrinkles occurred on the edges. In addition, the edge portion was curled and wrinkled during the hot water washing process during semipermeable membrane coating.
  • the semipermeable membrane support of Comparative Example 20 had a high average breaking length (at 5% elongation) of 4.0 km or more and a heating dimensional change rate exceeding 1.0%. In the hot water washing process, curling occurred in the entire lateral direction and wrinkles occurred.
  • Example 66 Main synthetic fiber (thin fiber, 60% elongation, tensile strength 0.31 N / tex, fiber diameter 7.9 ⁇ m, stretched polyester fiber) Main synthetic fiber (large fiber, 50% elongation, tensile strength 0) .51 N / tex, fiber diameter 12.1 ⁇ m, stretched polyester fiber) 25% by mass, main synthetic fiber (thick fiber, elongation 48%, tensile strength 0.41 N / tex, fiber diameter 17.5 ⁇ m) 20% by mass of polyester fiber and binder synthetic fiber (unstretched polyester fiber, melting point 230 ° C.) were mixed and dispersed in water at a blending ratio of 25: 25: 20: 30, and wet paper was formed with a circular net paper machine. Thereafter, it was hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. to obtain a fiber base material having a basis weight of 80 g / m 2. All fiber lengths were 5 mm. It was.
  • the fiber base material was hot-pressed to obtain a semipermeable membrane support.
  • Example 67 A semipermeable membrane support was obtained in the same manner as in Example 66 except that the surface temperature of the metal roll was 190 ° C.
  • Example 68 A semipermeable membrane support was obtained in the same manner as in Example 66 except that the surface temperature of the metal roll was 180 ° C.
  • Example 69 A semipermeable membrane support was obtained in the same manner as in Example 66 except that the surface temperature of the metal roll was 230 ° C.
  • Example 70 A semipermeable membrane support was obtained in the same manner as in Example 66 except that the surface temperature of the metal roll was 240 ° C.
  • Example 71 As binder synthetic fiber, 30 mass% of unstretched polyester binder synthetic fiber having a melting point of 260 ° C was used, and the surface temperature of a metal roll composed of an induction heating type jacket roll was changed to 230 ° C, which was the same as in Example 66. By the method, a semipermeable membrane support was obtained.
  • Example 72 A semipermeable membrane support was obtained in the same manner as in Example 71 except that the surface temperature of the metal roll was 220 ° C.
  • Example 73 A semipermeable membrane support was obtained in the same manner as in Example 71 except that the surface temperature of the metal roll was 210 ° C.
  • Example 74 In the same manner as in Example 66, except that the upper and lower induction heat generation type metal rolls are used instead of the upper and lower induction heat generation type metal rolls, and the surface temperature is 200 ° C. A membrane support was obtained.
  • Example 75 In the same manner as in Example 66 except that an oil circulation type jacket roll is used for both the upper and lower sides instead of the metal roll made of the induction heating type jacket roll for the upper and lower sides, and the surface temperature is 200 ° C. A membrane support was obtained.
  • Example 76 A semi-transparent method was used in the same manner as in Example 66, except that an oil circulation type metal roll was used for both the upper and lower sides instead of the metal roll consisting of the jacket roll of induction heat generation method, and the surface temperature was 160 ° C. A membrane support was obtained.
  • Example 77 A semipermeable membrane support was obtained in the same manner as in Example 76 except that the surface temperature of the metal roll was 250 ° C.
  • Example 78 The surface temperature of the metal roll except for using 170 ° C., in the same manner as in Example 66 to obtain a semipermeable membrane support.
  • Example 79 The surface temperature of the metal roll except for using 250 ° C., in the same manner as in Example 66 to obtain a semipermeable membrane support.
  • Example 80 Instead of using a metal roll consisting of an induction heating type jacket roll on both the upper and lower sides, using a metal roll of a type that is heated by a plurality of heating wires embedded inside the roll both on the upper and lower sides, except that the surface temperature was 170 ° C., A semipermeable membrane support was obtained in the same manner as in Example 66.
  • Tests 12, 13, 19 and 20 were evaluated on the semipermeable membrane supports obtained in Examples 66 to 80, and the results are shown in Table 15.
  • Test 19 (Breathability profile) According to JIS L1079, a semipermeable membrane support prepared with a width of 1 m was measured with an air permeability meter (KES-F8-AP1: manufactured by Kato Tech Co., Ltd.) at 20 points every 5 cm in the width direction and every 5 cm in the width direction 2 m downstream in the flow direction. The air permeability [cc / cm 2 ⁇ sec] of 20 points in total and 40 points in total was measured, and the difference between the maximum value and the minimum value was used as an index of the air permeability profile of the semipermeable membrane support. 1.0 or less is an allowable range.
  • Example 66 using a metal roll made of an induction heating type jacket roll and Example 74 using an induction heating type metal roll are compared, Example 66 has a better evaluation result of air permeability profile and fluffing. Met.
  • Example 66 using a metal roll made of an induction heating type jacket roll and Example 75 using a metal roll made of an oil circulation type jacket roll Example 66 has a better breathability profile and fuzziness. The evaluation result was good.
  • Example 76 in which an oil circulation type metal roll is used, and a roll having a surface temperature of ⁇ 70 ° C. with respect to the melting point of the binder synthetic fiber is brought into contact with the semipermeable membrane application surface, and hot pressing is performed. There was much fuzzing and the air permeability profile was also deteriorated.
  • Example 77 in which an oil circulation type metal roll is used, a roll having a surface temperature of + 20 ° C. with respect to the melting point of the binder synthetic fiber is brought into contact with the semipermeable membrane application surface, and hot pressing is performed. Since the semipermeable membrane support was adhered to the metal roll, the air permeability profile was deteriorated.
  • a metal roll made of an induction heat generation type jacket roll is used, and a roll having a surface temperature of ⁇ 60 ° C. with respect to the melting point of the binder synthetic fiber is brought into contact with the semipermeable membrane coating surface to perform hot pressing.
  • fluffing occurred and was a practically lower limit level.
  • fuzz occurred and the semipermeable membrane support adhered to the metal roll, so the air permeability profile was deteriorated.
  • Example 80 An implementation in which a metal roll of the type heated by heating wire is used, and a roll having a surface temperature of ⁇ 60 ° C. with respect to the melting point of the binder synthetic fiber is brought into contact with the semipermeable membrane coated surface, and hot pressing is performed In Example 80, there was much fuzz and the air permeability profile of the semipermeable membrane support was also deteriorated.
  • Example 81 Main synthetic fiber (thick fiber, stretched polyester fiber, elongation 55%, tensile strength 0.38 N / tex, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C., main synthetic fiber (fine fiber, stretched polyester fiber, elongation 48%, tensile strength 0.35 N / tex, fiber diameter 11.6 ⁇ m, fiber length 5 mm) ) Is mixed and dispersed in water at a blending ratio of 30:30:40, and wet paper is formed by a circular paper machine, followed by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C., and a basis weight of 80 g / m 2 . A fiber substrate (sheet) was wound up.
  • Winding of the fiber base is installed in the unwinding device, and after 20 minutes from the hot pressure drying by the Yankee dryer, the calender device is a combination of the heated metal roll (200 ° C.) and the heated metal roll (200 ° C.).
  • calender device second hot press roll nip, roll nip pressure 800 N / cm
  • heated metal roll 200 ° C.
  • cotton roll normal temperature
  • Example 82 20 minutes after the hot pressure drying by the Yankee dryer, a calender device (first hot pressure roll nip, roll nip pressure 1000 N / cm) of a combination of a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.), a heated metal roll ( 200 ° C.) and a cotton roll (normal temperature) combination calender device (second hot-press roll nip, roll nip pressure 800 N / cm) is used in series, and a hot press working speed of 10 m / min (fiber base)
  • a semipermeable membrane support was obtained in the same manner as in Example 81 except that the material was processed under the conditions of the material passed through the second hot-press roll nip 36 seconds after passing through the first hot-press roll nip. Incidentally, the surface in contact with the heated metal roll surface of the second heat pressure roll nip and semi-permeable membrane coated surface.
  • Example 83 20 minutes after the hot pressure drying by the Yankee dryer, a calender device (first hot pressure roll nip, roll nip pressure 1000 N / cm) of a combination of a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.), a heated metal roll ( 200 ° C) and a cotton roll (room temperature) combination calender device (second hot-press roll nip, roll nip pressure 800 N / cm) is used in series, and the position of the second hot-press roll nip is moved backward.
  • first hot pressure roll nip, roll nip pressure 1000 N / cm of a combination of a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.), a heated metal roll ( 200 ° C) and a cotton roll (room temperature) combination calender device (second hot-press roll nip, roll nip pressure 800 N / cm) is used in series, and the position of
  • Example 81 except that processing was performed under the conditions of a hot-pressing speed of 30 m / min (the fiber base material passed through the second hot-pressing roll nip 60 seconds after passing through the first hot-pressing roll nip).
  • a semipermeable membrane support was obtained in the same manner. Incidentally, the surface in contact with the heated metal roll surface of the second heat pressure roll nip and semi-permeable membrane coated surface.
  • Example 84 After 20 minutes of hot-pressure drying with a Yanki dryer, a calender device (first hot-pressure roll nip, roll nip pressure 1000 N / cm) of a combination of a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.) is used for paper production.
  • a calendar device cotton roll and heating in which three cotton rolls (no heating), a heating metal roll (200 ° C.), and three heating metal rolls (200 ° C.) are combined in the vertical direction as in the case of the super calendar.
  • the processing speed is 10 m / min (the fiber substrate is the first)
  • the processing speed is 10 m / min (the fiber substrate is the first)
  • Main synthetic fiber large diameter fiber, stretched polyester fiber, elongation 40%, tensile strength 0.55 N / tex, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.), main synthetic fiber (fine fiber, stretched polyester fiber, elongation 42%, tensile strength 0.45 N / tex, fiber diameter 8.6 ⁇ m, fiber length 5 mm) Are mixed and dispersed in water at a mixing ratio of 30:30:40, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C., and a fiber having a basis weight of 80 g / m 2 . A substrate (sheet) was wound up.
  • Winding of the obtained fiber base material is installed in an unwinding apparatus, and after 20 minutes from hot pressure drying with a Yankee dryer, the fiber base material is combined with a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.).
  • Calender device first hot-press roll nip, roll nip pressure 1000 N / cm
  • calender device of combination of heated metal roll (200 ° C.) and cotton roll (normal temperature) (second hot-press roll nip, roll nip pressure 800 N / cm)
  • second hot-press roll nip, roll nip pressure 800 N / cm are processed under the conditions of a hot pressing speed of 30 m / min (a fiber substrate passes through the second hot press roll nip 12 seconds after passing through the first hot press roll nip).
  • a semipermeable membrane support was obtained.
  • the surface in contact with the heated metal roll surface of the second hot-press roll nip was defined as a semipermeable membrane
  • Example 86 Main synthetic fiber (thick fiber, stretched polyester fiber, elongation 45%, tensile strength 0.52 N / tex, fiber diameter 24.7 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C.), main synthetic fiber (fine fiber, stretched polyester fiber, elongation 50%, tensile strength 0.38 N / tex, fiber diameter 17.5 ⁇ m, fiber length 5 mm) was mixed and dispersed in water at a blending ratio of 35:30:35, wet paper was formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C., and a fiber having a basis weight of 80 g / m 2 . A substrate (sheet) was wound up.
  • Winding of the obtained fiber base material is installed in an unwinding apparatus, and after 20 minutes from hot pressure drying with a Yanki dryer, the fiber base material is combined with a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.).
  • Calender device first hot-press roll nip, roll nip pressure 1000 N / cm
  • calender device of combination of heated metal roll (200 ° C.) and cotton roll (normal temperature) (second hot-press roll nip, roll nip pressure 800 N / cm)
  • the hot pressing speed is 10 m / min (the fiber substrate passes through the second hot press roll nip 36 seconds after passing through the first hot press roll nip).
  • a semipermeable membrane support was obtained.
  • the surface in contact with the metal roll surface of the second hot-press roll nip was defined as a semipermeable membrane application surface.
  • Example 87 After 20 minutes from hot pressure drying with Yanki dryer, cotton roll (no heating), heating metal roll (200 ° C) and heating metal roll (200 ° C) are in order from the top like the super calender used in paper manufacture.
  • a calender device that combines three in the vertical direction (first nip pressure of cotton roll and heated metal roll, second nip pressure of heated metal roll and heated metal roll are both 1000 N / cm)
  • processing speed 30 m / min After the fiber substrate has passed through the first hot-press roll nip, it was added to the second (middle) heated metal roll from the top, and processed under the conditions of the second hot-press roll nip after 2 seconds)
  • a semipermeable membrane support was obtained in the same manner as in Example 81.
  • the surface in contact with the second (middle) heated metal roll surface from the top was defined as a semipermeable membrane application surface.
  • Example 88 20 minutes after the hot-pressure drying with a Yanki dryer, using a calender device of a combination of a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.), a roll nip pressure of 1000 N / cm and a hot-pressure processing speed of 30 m / min.
  • Example 89 20 minutes after the hot-pressure drying with a Yanki dryer, a combination of a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.) (first hot-pressure roll nip, roll nip pressure 1000 N / cm), heated metal roll ( 200 ° C) and a cotton roll (room temperature) combination calender device (second hot-press roll nip, roll nip pressure 800 N / cm) is used in series, and the position of the second hot-press roll nip is moved backward.
  • heated metal roll 200 ° C
  • a cotton roll (room temperature) combination calender device second hot-press roll nip, roll nip pressure 800 N / cm
  • Example 81 except that processing was performed under the conditions of a hot pressing speed of 30 m / min (the fiber base material passed through the second hot press roll nip 70 seconds after passing through the first hot press roll nip).
  • a semipermeable membrane support was obtained in the same manner. Incidentally, the surface in contact with the heated metal roll surface of the second heat pressure roll nip and semi-permeable membrane coated surface.
  • Example 90 Main synthetic fiber (stretched polyester fiber, 63% elongation, tensile strength 0.47 N / tex, fiber diameter 24.7 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter 10.5 ⁇ m, (Fiber length 5 mm, melting point 230 ° C.) is mixed and dispersed in water at a blending ratio of 70:30, wet paper is formed with a circular paper machine, and then hot-pressure dried with a Yankee dryer having a surface temperature of 130 ° C. A winding of a fiber substrate (sheet) of 80 g / m 2 was produced.
  • sheet 80 g / m 2
  • the resulting fiber base material is wound up in an unwinding device, and after 20 minutes of hot-pressure drying with a Yankee dryer, the fiber base material is made of cotton in order from the top like a super calender used in paper manufacture.
  • Calender device first nip pressure of cotton roll and heated metal roll, heated metal roll and heated
  • the second nip pressure of the metal roll is 1000 N / cm
  • the processing speed is 30 m / min (after the fiber substrate has passed through the first hot-pressing roll nip, it is added to the second (middle) heated metal roll from the top.
  • the surface in contact with the second (middle) heated metal roll surface from the top was defined as a semipermeable membrane application surface.
  • Example 91 20 minutes after the hot pressure drying by the Yankee dryer, a calender device (first hot pressure roll nip, roll nip pressure 1000 N / cm) of a combination of a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.), a heated metal roll ( 200 ° C.) and a cotton roll (normal temperature) combination calender device (second hot-press roll nip, roll nip pressure 800 N / cm) is used in series, and a hot press working speed of 30 m / min (fiber base)
  • a semipermeable membrane support was obtained in the same manner as in Example 90 except that the material was processed under the conditions of 12 seconds after passing through the first hot-pressing roll nip and passing through the second hot-pressing roll nip. Incidentally, the surface in contact with the heated metal roll surface of the second heat pressure roll nip and semi-permeable membrane coated surface.
  • Example 92 Twenty minutes after the hot-pressure drying with a Yanki dryer, the fiber base material was subjected to a roll nip pressure of 1000 N / cm and a processing speed of 30 m / cm using a calendering device of a combination of a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.).
  • Example 93 Main synthetic fiber (thick fiber, stretched polyester fiber, elongation 55%, tensile strength 0.38 N / tex, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C., main synthetic fiber (fine fiber, stretched polyester fiber, elongation 48%, tensile strength 0.35 N / tex, fiber diameter 11.6 ⁇ m, fiber length 5 mm) ) Is mixed and dispersed in water at a blending ratio of 30:30:40, and wet paper is formed by a circular paper machine, followed by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C., and a basis weight of 80 g / m 2 .
  • a calender device (first hot pressure) of a combination of a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.) continuously.
  • a calender device (second hot press roll nip, roll nip pressure 800 N / cm) of a combination of heated metal roll (200 ° C.) and cotton roll (room temperature) is arranged in series.
  • Example 94 Main synthetic fiber (thick fiber, stretched polyester fiber, elongation 55%, tensile strength 0.38 N / tex, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C., main synthetic fiber (fine fiber, stretched polyester fiber, elongation 48%, tensile strength 0.35 N / tex, fiber diameter 11.6 ⁇ m, fiber length 5 mm) ) Is mixed and dispersed in water at a blending ratio of 30:30:40, and wet paper is formed by a circular paper machine, followed by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C., and a basis weight of 80 g / m 2 .
  • the calender device (first hot pressure) of the combination of the heated metal roll (200 ° C) and the heated metal roll (200 ° C) continuously.
  • a hot pressing speed of 10 m / min the fiber substrate passes through the second hot press roll nip 12 seconds after passing through the first hot press roll nip
  • the surface in contact with the heated metal roll surface of the second heat pressure roll nip and semi-permeable membrane coated surface.
  • Example 95 Main synthetic fiber (thick fiber, stretched polyester fiber, elongation 55%, tensile strength 0.38 N / tex, fiber diameter 17.5 ⁇ m, fiber length 5 mm), binder synthetic fiber (unstretched polyester fiber, fiber diameter) 10.5 ⁇ m, fiber length 5 mm, melting point 230 ° C., main synthetic fiber (fine fiber, stretched polyester fiber, elongation 48%, tensile strength 0.35 N / tex, fiber diameter 11.6 ⁇ m, fiber length 5 mm) ) Is mixed and dispersed in water at a blending ratio of 30:30:40, and wet paper is formed by a circular paper machine, followed by hot-pressure drying with a Yankee dryer having a surface temperature of 130 ° C., and a basis weight of 80 g / m 2 .
  • a calender device (first hot pressure) is continuously combined with a heated metal roll (200 ° C.) and a heated metal roll (200 ° C.).
  • a hot pressing speed of 4.5 m / min
  • Tests 1, 2, 4, 5, 6, 12, 13 and 20 were evaluated for the semipermeable membrane supports obtained in Examples 81 to 95, and the results are shown in Table 16.
  • “Passing time” in Table 16 is the passing time between the first hot-pressing roll nip and the second hot-pressing roll nip.
  • the semipermeable membrane supports of Examples 81 to 87 achieved practically usable levels in the evaluation of semipermeable membrane soaking, semipermeable membrane adhesion and non-coated surface adhesion, and the semipermeable membrane coated surface.
  • the fiber fluff was also good. From a comparison between Example 81 and Example 85, Example 85 containing fine fiber having a fiber diameter of 10.0 ⁇ m or less as the main synthetic fiber was excellent in the evaluation result of the semipermeable membrane soaking. Further, from the comparison between Example 82 and Example 86, in Example 82 in which the average fiber diameter of the main synthetic fiber is 20.0 ⁇ m or less, the evaluation result of the semipermeable membrane penetration is excellent, and the semipermeable membrane coating is performed.
  • Example 87 Fiber fluffing on the surface was also suppressed. Compared with Example 81 and Example 83, the semipermeable membrane support of Example 87 is fluffy because the time from the first hot-pressing roll nip to the nip with the second hot-pressing roll nip is shorter. The evaluation of was good.
  • the semipermeable membrane support of Example 88 and Example 89 has a semi-permeable membrane support of more than 60 seconds after leaving the first hot-pressing roll nip to the nip with the second hot-pressing roll.
  • the fuzz on the permeable membrane application surface was inferior to that of Examples 81 to 87.
  • the semipermeable membrane support of Example 90 and Example 91 had a time from the first hot pressure roll nip to the nip of the second hot pressure roll nip within 60 seconds. Since only one type of main synthetic fiber was contained, the smoothness was low, and the polysulfone resin partially oozed out on the non-coated surface of the semipermeable membrane support.
  • the semipermeable membrane support of Example 92 has the same fiber composition as the semipermeable membrane supports of Examples 90 and 91, but the second hot press roll 10 minutes after leaving the first hot press roll nip. , The semipermeable membrane oozed out more on the non-coated surface than the semipermeable membrane supports of Examples 90 and 91, and there was more fuzz.
  • the semipermeable membrane support, the spiral type semipermeable membrane element, and the method for producing the semipermeable membrane support of the present invention include water purification, food concentration, wastewater treatment, seawater desalination, microorganisms such as bacteria, yeast, and viruses. It can be used in fields such as separation of water, production of ultrapure water for medical use, such as blood filtration, and semiconductor cleaning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Paper (AREA)

Abstract

繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維を含有してなり、かつ、半透膜塗布面と非塗布面との平滑性の比が5.0:1.0~1.1:1.0である不織布からなることを特徴とする半透膜支持体、主体合成繊維とバインダー合成繊維とを含有してなり、5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値が4.0km未満であり、かつ、横方向(CD)の加熱寸法変化率が-0.3~+1.0%である不織布からなることを特徴とする半透膜支持体、該半透膜支持体を用いてなるスパイラル型半透膜エレメント、及び、半透膜支持体の製造方法。

Description

半透膜支持体、スパイラル型半透膜エレメント及び半透膜支持体の製造方法
 本発明は、半透膜支持体、スパイラル型半透膜エレメント及び半透膜支持体の製造方法に関する。
 海水の淡水化、水の浄化、食品の濃縮、廃水処理、血液濾過に代表される医療用、半導体洗浄用の超純水製造等の分野で、半透膜が広く用いられている。半透膜は、セルロース系樹脂、ポリスルホン系樹脂、ポリアクリロニトリル系樹脂、フッ素系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂等の合成樹脂で構成されている。しかしながら、半透膜単体では機械的強度に劣るため、不織布や織布などの繊維基材からなる半透膜支持体の片面(以下、「半透膜塗布面」という)に半透膜が設けられた形態で使用されている。
 半透膜支持体に半透膜に設けられた形態は、上述したポリスルホン系樹脂等の合成樹脂を有機溶媒に溶解し、半透膜溶液を調製した後、この半透膜溶液を半透膜支持体上に塗布する方法が広く用いられている。そして、効率的に濾過を行うために、スパイラル型の半透膜エレメントが形成され、さらに、半透膜モジュールが組み立てられる(例えば、特許文献1参照)。
 高い濾過流束と濾過性能を得るためには、半透膜表面に凹凸が少なく、半透膜形成時の横方向湾曲やシワの発生がなく、半透膜支持体上に半透膜が均一な厚みで設けられる必要がある。そのため、半透膜支持体の半透膜塗布面には、優れた平滑性が必要とされる。そして、良好な濾過性能を得るためには、半透膜と半透膜支持体との接着性にも優れている必要がある。また、半透膜モジュールを組み立てる際に、接着剤を使って、半透膜塗布面とは反対面(以下、「非塗布面」という)同士を貼り合わせる工程があるため、この非塗布面同士の接着性に優れていることも要求されている。さらに、半透膜溶液が非塗布面に裏抜けしないことが要求されている。裏抜けが発生すると、半透膜の厚みが不均一になる、非塗布面同士の接着性が低下するという問題が発生するからである。
 半透膜支持体として、主体繊維とバインダー繊維とを含有してなり、湿式抄造法で製造され、熱圧処理された不織布が提案されている。例えば、太い繊維を使用した表面粗度の大きな表面層(太い繊維層)と細い繊維を使用した緻密な構造の裏面層(細い繊維層)との二重構造を基本とした多層構造の不織布よりなる半透膜支持体が提案されている(例えば、特許文献2参照)。具体的には、太い繊維層を半透膜塗布面とし、細い繊維層を非塗布面とした半透膜支持体、細い繊維層を太い繊維層で挟み込み、半透膜塗布面と非塗布面の両方を太い繊維層とした半透膜支持体が記載されている。しかしながら、半透膜塗布面において、太い繊維を使用しているため、半透膜と半透膜支持体との接着性は向上するものの、平滑性が低いという問題があった。また、太い繊維を使用しているため、半透膜溶液が半透膜支持体の内部にまで入り込んでしまい、所望の半透膜の厚みを得るためには、大量の半透膜溶液が必要となるという問題があった。また、前者では、非塗布面に細い繊維を使用しているため、非塗布面同士の接着性が良くないという問題もあった。
 半透膜塗布面の表面粗さを非塗布面よりも大きくした単層構造の不織布よりなる半透膜支持体も開示されているが、この半透膜支持体も半透膜塗布面の平滑性、半透膜の均一性、非塗布面同士の接着性に問題があった(例えば、特許文献3参照)。また、特許文献3の半透膜支持体では、抄紙流れ方向(縦方向、MD)と幅方向(横方向、CD)の引張強度比が規定されているが、これは、半透膜形成時の幅方向湾曲防止を目的としたものである。抄紙流れ方向と幅方向の引張強度比を特定の範囲内に収めるために、抄紙工程において、原料分散混合液の濃度、水流速度、傾斜金網のワイヤーの速度、傾斜の角度等を調整する必要がある。また、抄紙流れ方向と幅方向の引張強度比を調整しても、半透膜形成時の湯洗浄や乾燥パートにおいて発生する半透膜支持体の幅収縮抑制は困難であり、幅収縮によるシワの発生や湾曲の発生を解決することはできていなかった。さらに、特許文献3の半透膜支持体には、バインダー繊維の含有量を多くすると、平滑性が高くなることが記載されているが、同時に、通気性が小さくなりすぎ、濾過時の濾過流束が低下するという問題が発生する。
 さらに、特許文献3では、半透膜と半透膜支持体の接着性を良くすること及び裏抜け防止を目的として、半透膜支持体の通気度やポアサイズを調整する方法が提示されている。しかしながら、このJIS L1096に準拠した通気度は、半透膜支持体の片面から半透膜支持体内部を通過して別の片面へ透過する空気の量をもとに算出されており、半透膜塗布面の表面に塗布された半透膜溶液の非塗布面への裏抜けを正確に反映しているものではない。そのため、特許文献3で示された範囲の通気度を有する半透膜支持体に半透膜溶液を塗布した場合、半透膜支持体非塗布面まで半透膜溶液が裏抜けしてしまい、半透膜支持体非塗布面同士を貼り付けて半透膜モジュールを作製した場合に、接着力が低下し、濾過性能が著しく低下するという問題が発生する場合がある。また、支持体の通気性を低くする方法として、半透膜支持体を構成する繊維の繊維径を小さくする方法が提案されているが、この場合も、非塗布面の平滑性も高くなり、非塗布面同士の接着性が低下するという問題があった。
 また、特許文献3では、JIS K3832に準拠したバブルポイント法による平均ポアサイズは、表面張力既知の液体を満たした半透膜支持体の下面より気体を加圧状態で噴出させ、半透膜支持体の上面に気体が通過したときの気体の圧力変化からポアサイズを求める方法であるが、これについても、半透膜塗布面の表面に塗布された半透膜溶液の非塗布面への裏抜けを正確に反映しているものではない。よって、特許文献3で示されている範囲のポアサイズを有する半透膜支持体に半透膜溶液を塗布した場合、裏抜けを完全に防ぐことは困難であった。
 半透膜溶液の裏抜けを抑制し、半透膜と半透膜支持体との接着性を向上させると共に、安価に提供できる半透膜支持体として、製紙用繊維(パルプ)を含有してなる二層構造の半透膜支持体が提案されている(例えば、特許文献4参照)。しかしながら、半透膜塗布面の層よりも非塗布面の層が密な構造となっているため、半透膜塗布面の均一性や平滑性、非塗布面同士の接着性に問題ある半透膜支持体であった。また、パルプを使用した場合、カビや菌が増殖するため、清浄な水を製造することができないという半透膜支持体にとって致命的な問題もあった。
 特許文献2~4に記載されている半透膜支持体とは反対に、非塗布面の密度が半透膜塗布面の密度よりも低く、半透膜塗布面の方が非塗布面よりも平滑である半透膜支持体も提案されている(例えば、特許文献5参照)。しかしながら、非塗布面に凹部を有する半透膜支持体の該凹部にまで到達するように半透膜を設けているか、半透膜塗布面に形成されている孔を通って、半透膜が非塗布面にまで到達するように半透膜を設けているため、半透膜の厚みが均一にならないという問題があった。また、特許文献5には、半透膜溶液の非塗布面への裏抜けを防止する方法として、非塗布面から全厚みの50%までの領域の平均密度を塗布面から全厚みの50%までの領域の平均密度に対して5~90%の範囲内にする方法も示されている。しかしながら、この方法では、半透膜塗布面側から全厚みの50%までの領域の平均密度の絶対値が低いという特性を有する半透膜支持体では、半透膜溶液の裏抜けを防止することはできないという問題があった。
 引張応力がかかった際の寸法安定性を向上させ、半透膜塗布面が平滑で、裏抜けがなく、半透膜の付着性に優れた半透膜支持体として、5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値が4.0km以上であり、通気度が0.2~10.0cc/cm・秒である不織布からなる半透膜支持体が提案されている(例えば、特許文献6参照)。この半透膜支持体は、強度が高く、伸びが小さい不織布である。そのため、この半透膜支持体を作製するためには、複屈折(Δn)が高く、特定の熱収縮応力を有するポリエステル系繊維を用いる必要がある。また、裂断長を高めるためには、熱圧処理工程において、不織布に与える熱や圧力を高める必要があり、引張応力や熱による繊維の部分的な伸縮不均一による不織布の不均一性を改良する効果はあるものの、不織布の厚み方向全てに熱・圧力が過剰に加わってしまい、不織布に含まれるバインダー繊維が過剰に溶融し、空隙が減少しすぎる問題や半透膜塗工時にシワが発生する問題が残っていた。また、半透膜塗布面の平滑性にはさらなる改良が必要であった。特に、特許文献6では、半透膜塗布面と非塗布面の平滑性を均等化させるように製造されているため、半透膜塗布面の平滑性と半透膜と半透膜支持体の接着性との両立が困難になるという問題があり、さらに、非塗布面同士の接着性についても問題が残っていた。
 半透膜と半透膜支持体の接着性を高めるために、半透膜塗布面層に異型断面繊維を含有させた半透膜支持体も提案されているが、異型断面繊維を半透膜支持体に配合した場合、湿式抄紙工程で繊維を水に分散する際に異型断面繊維に形成されている凸部や凹部に繊維が引っかかり、もつれが発生して均一な分散ができないという問題があった(例えば、特許文献7参照)。
 半透膜支持体にポリアクリロニトリル系合成繊維を含有させることによって、ポリアクリロニトリル系合成繊維が半透膜溶液に使用される溶媒に溶解することから、半透膜と半透膜支持体との接着性を向上させる技術が提案されている(例えば、特許文献8参照)。しかしながら、半透膜溶液に使用される溶媒によっては、溶融しない場合がある。また、溶融する溶媒を使用しても、半透膜溶液が半透膜支持体に接してから水洗工程に移るまでの時間は非常に短いため、接着性の向上は期待できなかった。また、半透膜塗布面の毛羽立ちが発生し、半透膜塗布面の平滑性が低下するという問題も残っていた。
 裏抜けが生じないように、半透膜支持体の均一性を高めることを目的として、合成繊維を水に分散した繊維スラリーを湿式抄紙して不織布とする工程において、抄紙時における該繊維スラリーの繊維分濃度を0.01~0.1質量%とし、かつ、該繊維スラリーに、高分子粘剤として、分子量500万以上の水溶性高分子を、繊維分質量を基準として3~15質量%含有させて抄紙する方法が提案されている(例えば、特許文献9参照)。しかし、高分子粘剤が過剰に添加されているため、均一性は高まるが、抄紙ワイヤー上での繊維スラリー粘度が高まって、ワイヤーからの脱水性が低下して、生産速度が上げられないという問題が起こる可能性がある。また、抄紙後の半透膜支持体を形成する繊維表面に高分子粘剤が残留するという問題もあった。
 融点の異なる2種類のバインダー繊維を含有させ、湿式抄造法の乾燥温度と熱圧処理の温度を変えることを特徴とした半透膜支持体も提案されているが、これは湿式抄造法で半透膜支持体を容易に製造することを目的としたものであり、半透膜と半透膜支持体の接着性、非塗布面同士の接着性、半透膜塗布面の平滑性、裏抜け防止等については、何ら考慮されていない(例えば、特許文献10及び11参照)。
 半透膜支持体の平滑性や厚みの均一性は、熱圧処理によって、調整されている(例えば、特許文献2~11参照)。熱圧処理として、金属ロール/金属ロールの組み合わせ、金属ロール/弾性ロールの組み合わせ、先に熱処理のみ行った後、加圧処理を行う方法が記載されている。また、半透膜支持体を構成する合成繊維のガラス転移点からガラス転移点に20℃を加えた温度までの温度でカレンダー処理する方法も提示されている(例えば、特許文献12参照)。しかしながら、ロールの組み合わせや温度を調整するだけでは、半透膜支持体全体の厚みや均一性にばらつきが発生し、半透膜と半透膜支持体の接着性や非塗布面同士の接着性が低い部分が多発するという問題点がある。また、毛羽立ちが発生した部分の半透膜にはピンホールや傷が発生して、濾過性能が低下するという問題も発生する。
 このように、半透膜塗布面の平滑性、半透膜と半透膜支持体との接着性、非塗布面同士の接着性、裏抜け防止、半透膜形成時の横方向湾曲防止やシワの発生防止等の性能を全てバランス良く満たした半透膜支持体は得られていない。
特開2001−252543号公報 特開昭60−238103号公報 特開2002−95937号公報(米国特許出願公開第2002/0056535号明細書) 特開2009−178915号公報 特開2003−245530号公報(国際公開第2003/049843号パンフレット、米国特許出願公開第2005/0087070号明細書) 特開平10−225630号公報(国際公開第2000/09246号パンフレット、欧州特許第1044719号明細書) 特開平11−347383号公報 特開2001−79368号公報(米国特許出願第2005/0176330号明細書) 特開2008−238147号公報 米国特許第5851355号明細書 米国特許第6156680号明細書 特開昭60−251904号公報
 本発明の課題は、半透膜塗布面の平滑性に優れ、半透膜溶液が裏抜けせず、半透膜が半透膜支持体上に均一に塗布され、半透膜形成時の横方向湾曲やシワの発生がなく、半透膜−半透膜支持体間の剥離強度が強く、非塗布面同士の接着性にも優れた半透膜支持体とこの半透膜支持体を用いてなるスパイラル型半透膜エレメント及び半透膜支持体の製造方法を提供することにある。
 上記課題を解決するために鋭意検討した結果、下記発明を見出した。
(1)繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維を含有してなり、かつ、半透膜塗布面と非塗布面との平滑性の比が5.0:1.0~1.1:1.0である不織布からなることを特徴とする半透膜支持体。
(2)主体合成繊維の平均繊維径が20.0μm以下である(1)記載の半透膜支持体。
(3)全主体合成繊維の繊維径が20.0μm以下である(1)又は(2)記載の半透膜支持体。
(4)主体合成繊維として、繊維径10.0μm以下の繊維を少なくとも1種含有してなる(1)~(3)のいずれかに記載の半透膜支持体。
(5)主体合成繊維として、アスペクト比が200~1000であり、繊維径が20.0μm以下の太径繊維及び太径繊維より繊維径が細く、アスペクト比が200~2000の細径繊維を含有してなる(1)~(4)のいずれかに記載の半透膜支持体。
(6)主体合成繊維とバインダー合成繊維の繊維径が異なる(1)~(5)のいずれかに記載の半透膜支持体。
(7)さらに、フィブリル化有機繊維を含有してなる(1)~(6)のいずれかに記載の半透膜支持体。
(8)不織布が多層構造である(1)~(7)のいずれかに記載の半透膜支持体。
(9)半透膜塗布面層に含まれる主体合成繊維の平均繊維径が、非塗布面層に含まれる主体合成繊維の平均繊維径よりも小さい(8)記載の半透膜支持体。
(10)半透膜塗布面表面の算術平均粗さ(Ra)が5.0~15.0μmである(1)~(9)のいずれかに記載の半透膜支持体。
(11)半透膜塗布面表面の十点平均粗さ(Rz)が150μm以下である(1)~(10)のいずれかに記載の半透膜支持体。
(12)半透膜塗布面表面の25℃−60%RHにおける、固形分濃度15質量%でn−メチルピロリドンに溶解したポリスルホン樹脂溶液を使用したブリストーテスタでの吸収係数が5~100ml/m・msec1/2である(1)~(11)のいずれかに記載の半透膜支持体。
(13)半透膜塗布面表面の25℃−60%RHにおける、固形分濃度15質量%でn−メチルピロリドンに溶解したポリスルホン樹脂溶液を使用したブリストーテスタでの接触時間0.2secにおける動的液体転移量が5~30ml/mである(1)~(12)のいずれかに記載の半透膜支持体。
(14)主体合成繊維とバインダー合成繊維とを含有してなり、5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値が4.0km未満であり、かつ、横方向(CD)の加熱寸法変化率が−0.3~+1.0%である不織布からなることを特徴とする半透膜支持体。
(15)半透膜塗布面の平滑性が、非塗布面の平滑性よりも高い(14)記載の半透膜支持体。
(16)主体合成繊維の伸び率(JIS L1013 2010)が25~150%であり、主体合成繊維の引張り強さが0.08~0.8N/texである(14)又は(15)記載の半透膜支持体。
(17)(1)~(16)のいずれかに記載の半透膜支持体を用いてなるスパイラル型半透膜エレメント。
(18)(1)~(16)のいずれかに記載の半透膜支持体の製造方法であって、長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機の群から選ばれる1種の抄紙機によって製造された単層の湿紙又は該群から選ばれる同種若しくは異種の抄紙機を複数組み合わせたコンビネーション抄紙機によって製造された多層構造の湿紙を熱ロールに密着させて熱圧乾燥させてシートを作製した後、該シートを熱圧加工することを特徴とする半透膜支持体の製造方法。
(19)熱圧加工に用いるロールが、誘導発熱方式の金属ロールである(18)記載の半透膜支持体の製造方法。
(20)熱圧加工に用いるロールが、ジャケットロールである(18)または(19)記載の半透膜支持体の製造方法。
(21)熱圧加工において、バインダー合成繊維の融点に対して−50℃~+10℃の表面温度を有するロールを半透膜塗布面に接触させる(18)~(20)のいずれかに記載の半透膜支持体の製造方法。
(22)熱圧加工が、シートを第一の熱圧ロールニップ及び第二の熱圧ロールニップに通過させる工程を含有し、第一の熱圧ロールニップを通過後60秒以内に第二の熱圧ロールニップを通過させる(18)~(21)のいずれか記載の半透膜支持体の製造方法。
(23)熱圧加工が、シートを第一の熱圧ロールニップ及び第二の圧ロールニップに通過させる工程を含み、さらに、第一の熱圧ロールニップと第二の熱圧ロールニップとの間に、加熱装置でシートを加熱する工程を含む(18)~(22)のいずれかに記載の半透膜支持体の製造方法。
(24)加熱装置がロール状加熱装置である(23)記載の半透膜支持体の製造方法。
(25)長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機の群から選ばれる1種の抄紙機によって製造された単層の湿紙又は該群から選ばれる同種若しくは異種の抄紙機を複数組み合わせたコンビネーション抄紙機によって製造された多層構造の湿紙を熱ロールに密着させて熱圧乾燥させてシートを作製した後、該シートを10分以内に熱圧加工することを特徴とする(18)記載の半透膜支持体の製造方法。
 本発明の第一の特徴は、繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維を含有してなり、かつ、半透膜塗布面と非塗布面との平滑性の比が5.0:1.0~1.1:1.0である不織布からなることを特徴とする半透膜支持体である。このように繊維径の異なる繊維を段階的に混合することで形成された三次元ネットワークと半透膜塗布面と非塗布面との平滑性の比が5.0:1.0~1.1:1.0であることによって、半透膜溶液が裏抜けしにくく、半透膜塗布面の平滑性にも優れ、半透膜が半透膜支持体上に均一に塗設され、半透膜−半透膜支持体の接着性が高く、かつ、非塗布面同士の接着性にも優れた半透膜支持体を生み出すことが可能となった。
 本発明の第二の特徴は、主体合成繊維とバインダー合成繊維とを含有してなり、5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値が4.0km未満であり、かつ、横方向(CD)の加熱寸法変化率が−0.3~+1.0%である不織布からなることを特徴とする半透膜支持体である。このように裂断長を低く抑えながら、CDの加熱寸法変化率が−0.3~+1.0%である不織布を半透膜支持体とすることで、半透膜形成時の横方向の湾曲やシワの発生がない半透膜支持体を生み出すことが可能となった。
図1は本発明において、熱圧加工で使用されるロールの組合せ及び配置並びにシートの通紙状態を表した概略図である。
図2は本発明において、熱圧加工で使用されるロールの組合せ及び配置並びにシートの通紙状態を表した概略図である。
図3は本発明において、熱圧加工で使用されるロールの組合せ及び配置並びにシートの通紙状態を表した概略図である。
図4は本発明において、熱圧加工で使用されるロールの組合せ及び配置並びにシートの通紙状態を表した概略図である。
図5は本発明において、熱圧加工で使用されるロールの組合せ及び配置並びにシートの通紙状態を表した概略図である。
図6は本発明において、熱圧加工で使用されるロールの組合せ及び配置並びにシートの通紙状態を表した概略図である。
図7は本発明において、熱圧加工で使用されるロールの組合せ及び配置並びにシートの通紙状態を表した概略図である。
 本発明の第一の特徴である「繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維を含有してなり、かつ、半透膜塗布面と非塗布面との平滑性の比が5.0:1.0~1.1:1.0である不織布からなることを特徴とする半透膜支持体」を説明する。
 主体合成繊維は、低温で溶融接着することなく、半透膜支持体の骨格を形成する合成繊維である。例えば、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ベンゾエート系、ポリクラール系、フェノール系などの繊維が挙げられるが、耐熱性の高いポリエステル系の繊維がより好ましい。また、半合成繊維のアセテート、トリアセテート、プロミックスや、再生繊維のレーヨン、キュプラ、リヨセル繊維等は、性能を阻害しない範囲で含有しても良い。
 主体合成繊維として、繊維径が1種の繊維を含有させ、バインダー合成繊維として、繊維径の異なる2種以上の繊維を含有させた場合には、バインダー合成繊維は湿式抄造時には繊維形状を維持して複雑な繊維構造体を形成する役割を果たすものの、乾燥工程や熱圧加工処理によって軟化又は溶融して繊維形状が変化するため、最終的に半透膜支持体の繊維ネットワークには寄与しにくい。本発明のように、繊維径の異なる2種以上の主体合成繊維を含有させることで、複雑な繊維構造体が形成され、半透膜塗布面においては、平滑性が高く、凹凸が少なく、半透膜と半透膜支持体との接着性に優れるという効果が得られ、非塗布面においては、非塗布面同士の接着性が高いという効果が得られる。また、複雑に絡んだ繊維間に半透膜溶液が浸み込むため、裏抜けも抑制される。繊維径が太い主体合成繊維を「太径繊維」と記載し、繊維径が細い主体合成繊維を「細径繊維」と記載する。
 太径繊維のアスペクト比(繊維長/繊維径)は、200~1000が好ましく、より好ましくは220~900であり、さらに好ましくは280~800である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙ワイヤーから脱落する場合や、抄紙ワイヤーに繊維が刺さって、ワイヤーからの剥離性が悪化する場合がある。一方、1000を超えた場合、繊維の三次元ネットワーク形成に寄与はするものの、繊維の絡まりやもつれの発生により、不織布の均一性や半透膜塗布面の平滑性に悪影響を及ぼす場合がある。
 太径繊維の繊維径は、20.0μm以下が好ましく、より好ましくは2.0~20.0μmであり、さらに好ましくは5.0~20.0μmであり、特に好ましくは10.0~20.0μmである。2.0μm未満の場合、非塗布面同士の接着性が悪くなる場合がある。太径繊維の繊維径が20.0μmを超えると、半透膜塗布面の平滑性が低くなる場合や、半透膜溶液の裏抜けが発生する場合がある。また、不織布の表面に毛羽が立ちやすくなる。
 太径繊維の繊維長は、特に限定しないが、好ましくは1~12mmであり、より好ましくは3~10mmであり、さらに好ましくは3~6mmであり、特に好ましくは4~6mmである。太径繊維の断面形状は円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、表面平滑性、非塗布面同士の接着性のために、他の特性を阻害しない範囲内で含有できる。
 不織布に対する太径繊維の含有量は、10~80質量%が好ましく、20~70質量%がより好ましく、30~60質量%がさらに好ましい。太径繊維の含有量が10質量%未満の場合、不織布の硬さが不足する恐れがある。また、80質量%を超えた場合、強度不足により破れる恐れがある。
 細径繊維とは、太径繊維よりも繊維径が細い繊維であり、好ましくは、太径繊維以上のアスペクト比を有する繊維である。細径繊維のアスペクト比(繊維長/繊維径)は、200~2000であることが好ましく、より好ましくは300~1500であり、さらに好ましくは400~1000である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙ワイヤーから脱落する場合や、抄紙ワイヤーに繊維が刺さってワイヤーからの剥離性が悪化する場合がある。一方、2000を超えた場合、細径繊維は三次元ネットワーク形成に寄与はするものの、繊維が絡まる場合や、もつれの発生により、不織布の均一性や半透膜塗布面の平滑性に悪影響を及ぼす場合がある。
 細径繊維は、太径繊維が形成した半透膜支持体の骨格の隙間を埋めて、均一で複雑な三次元ネットワークを形成する役割を果たす。また、空隙をコントロールし、平滑性を高める効果を発現する。そのため、細径繊維の繊維径は太径繊維よりも細ければ、特に限定されない。好ましくは2.0~15.0μmであり、より好ましくは3.0~13.0μmであり、さらに好ましくは5.0~10.0μmである。すなわち、主体合成繊維として、繊維径10.0μm以下の繊維を少なくとも含有していることが好ましい。また、半透膜塗布面の平滑性を高めるためには、細径繊維に捲縮が加わっていないことが重要である。
 細径繊維の繊維長は、特に限定されないが、好ましくは1~12mmであり、より好ましくは3~10mmであり、さらに好ましくは3~6mmであり、特に好ましくは4~6mmである。細径繊維の断面形状は円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、表面平滑性、非塗布面同士の接着性のために、他の特性を阻害しない範囲内で含有できる。
 不織布に対する細径繊維の含有量は、10~80質量%が好ましく、20~70質量%がより好ましく、30~60質量%がさらに好ましい。細径繊維の含有量が10質量%未満の場合、地合が悪化する恐れがある。また、80質量%を超えた場合、不織布の硬さが不足する恐れや、強度不足によって破れる恐れがある。
 太径繊維及び細径繊維は1種ずつ選択して使用してもよいし、複数種の太径繊維と1種の細径繊維の組み合わせ、1種の太径繊維と複数種の細径繊維の組み合わせ等、適宜選択することができる。
 本発明において、主体合成繊維の平均繊維径は以下の式により求められる。Nは、正の整数である。
平均繊維径=(主体合成繊維1の繊維径(μm)×主体合成繊維1の質量%+主体合成繊維2の繊維径(μm)×主体合成繊維2の質量%+主体合成繊維3の繊維径(μm)×主体合成繊維3の質量%+・・・+主体合成繊維Nの繊維径(μm)×主体合成繊維Nの質量%)/(主体合成繊維1の質量%+主体合成繊維2の質量%+主体合成繊維3の質量%+・・・+主体合成繊維Nの質量%)
 主体合成繊維の平均繊維径は、20.0μm以下であることが好ましい。主体合成繊維の平均繊維径が20.0μmを上回る場合、半透膜支持体上に半透膜を塗布した後、均一な厚みの半透膜が得られ難い場合がある。また、半透膜支持体に含有される主体合成繊維全ての繊維径が20.0μm以下であることが好ましく、この場合、半透膜塗布面の平滑性が向上することで、半透膜の厚みの均一性が向上する。
 バインダー合成繊維は、軟化点又は溶融温度(融点)以上まで温度を上げる工程を半透膜支持体の製造工程に組み入れることで、溶融接着することを目的とした繊維であり、半透膜支持体の機械的強度を向上させる。例えば、半透膜支持体を湿式抄造法で製造し、その後の乾燥工程や熱圧加工でバインダー合成繊維を軟化又は溶融させることができる。
 バインダー合成繊維としては、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維などの複合繊維、未延伸繊維等が挙げられる。より具体的には、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、ポリエステル等の未延伸繊維が挙げられる。複合繊維は、皮膜を形成しにくいので、半透膜支持体の空間を保持したまま、機械的強度を向上させることができる。また、ポリエチレンやポリプロピレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、ポリビニルアルコール系のような熱水可溶性バインダーは、半透膜支持体の乾燥工程で皮膜を形成しやすいが、特性を阻害しない範囲で使用することができる。本発明においては、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、ポリエステルの未延伸繊維は、湿式抄造法にて不織布を形成する際に強度を発現できると共に、熱圧加工の際に第二段の強度発現が可能であることから好ましく用いることができる。
 バインダー合成繊維の繊維径は、特に限定されないが、好ましくは2.0~20.0μmであり、より好ましくは5.0~15.0μmであり、さらに好ましくは7.0~12.0μmである。また、太径繊維よりも細い繊維径であることが好ましい。さらに、主体合成繊維と繊維径が異なることで、バインダー合成繊維は半透膜支持体の機械的強度を向上させる役割の他に、湿式抄造時に、主体合成繊維と共に均一な三次元ネットワークを形成する役割も果たす。さらに、バインダー合成繊維の軟化温度又は溶融温度以上まで温度を上げる工程では、半透膜支持体表面の平滑性をも向上させることができ、該工程では加圧が伴っているとより効果的である。
 バインダー合成繊維のアスペクト比(繊維長/繊維径)は、好ましくは200~1000であり、より好ましくは300~800であり、さらに好ましくは400~700である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙ワイヤーから脱落する場合や、抄紙ワイヤーに繊維が刺さってワイヤーからの剥離性が悪化する恐れがある。一方、1000を超えた場合、バインダー合成繊維は三次元ネットワーク形成に寄与はするものの、繊維が絡まる場合や、もつれの発生により、不織布の均一性や半透膜塗布面の平滑性に悪影響を及ぼすことがある。
 バインダー合成繊維の繊維長は、特に限定しないが、好ましくは1~12mmであり、より好ましくは3~10mmであり、さらに好ましくは3~6mmであり、特に好ましくは4~6mmである。バインダー合成繊維の断面形状は円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、半透膜塗布面の平滑性、非塗布面同士の接着性のために、他の特性を阻害しない範囲内で含有できる。
 本発明の半透膜支持体に係わる不織布に対するバインダー合成繊維の含有量は、10~60質量%が好ましく、15~50質量%がより好ましく、20~45質量%がさらに好ましい。バインダー合成繊維の含有量が10質量%未満の場合、強度不足により破れる恐れがある。また、60質量%を超えた場合、通液性が低下する恐れがある。
 半透膜塗布面と非塗布面との平滑性の比は、5.0:1.0~1.1:1.0であり、より好ましくは4.0:1.0~1.3:1.0であり、さらに好ましくは3.0:1.0~1.1:1.0である。平滑性は、JIS P 8119に準じ、ベック平滑度試験機を用いて測定することができる。半透膜塗布面と非塗布面との平滑性の比が5.0:1.0を超える場合、半透膜の塗工工程でカールやシワが発生し、また、半透膜と半透膜支持体との接着性が低下し、好ましくない。半透膜塗布面と非塗布面との平滑性の比が1.1:1.0未満になると、半透膜と半透膜支持体との接着性及び非塗布面同士の接着性の両立が困難となるため、好ましくない。
 半透膜塗布面と非塗布面との平滑性の比を5.0:1.0~1.1:1.0にすることは、
(A)湿紙をヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させた場合、熱ロールに接した面を半透膜塗布面にする、
(B)不織布を2層以上の多層構造として、半透膜塗布面となる層(以下、「半透膜塗布面層」という)と非塗布面となる層(以下、「非塗布面層」という)との繊維配合を変える、
(C)加熱ロールによる熱圧加工の際に、加熱ロールに接する時間や温度を半透膜塗布面と非塗布面で変える、
(D)加熱ロールによる熱圧加工の際に、金属ロールと樹脂ロール、金属ロールとコットンロール等の異種ロールの組み合わせを使用し、金属ロールに接する面を半透膜塗布面にする、等で達成できる。
 上記(B)において、半透膜塗布面層に含まれる主体合成繊維の平均繊維径が、非塗布面層に含まれる主体合成繊維の平均繊維径よりも小さくすることが好ましい。半透膜塗布面層が細径繊維とバインダー繊維を含有し、非塗布面層が太径繊維とバインダー繊維を含有する多層構造不織布でもよいし、半透膜塗布面層と非塗布面層の両方が太径繊維、細径繊維、バインダー繊維を含有し、半透膜塗布面層の主体合成繊維の平均繊維径を非塗布面層のそれよりも小さくした多層構造不織布であってもよい。
 半透膜塗布面層と非塗布面層の両方が太径繊維、細径繊維、バインダー繊維を含有した場合、半透膜塗布面層における太径繊維の繊維径は、8.0~20.0μmが好ましく、9.0~19.0μmがより好ましく、10.0~18.0μmがさらに好ましい。アスペクト比は、200~1000が好ましく、200~900がより好ましく、250~800がさらに好ましい。繊維長は、1~12mmが好ましく、2~10mmがより好ましく、3~8mmがさらに好ましい。半透膜塗布面層における太径繊維の含有量は、10~80質量%が好ましく、20~70質量%がより好ましく、30~60質量%がさらに好ましい。
 半透膜塗布面層における細径繊維の繊維径は、2.0~18.0μmが好ましく、3.0~15.0μmがより好ましく、5.0~12.0μmがさらに好ましい。アスペクト比は、200~2000が好ましく、250~1500がより好ましく、300~1000がさらに好ましい。繊維長は、1~12mmが好ましく、2~10mmがより好ましく、3~6mmがさらに好ましい。半透膜塗布面層における細径繊維の含有量は、10~80質量%が好ましく、20~70質量%がより好ましく、30~60質量%がさらに好ましい。
 半透膜塗布面層におけるバインダー合成繊維の繊維径は、2.0~20.0μmが好ましく、5.0~17.0μmがより好ましく、7.0~15.0μmがさらに好ましい。アスペクト比は、200~1000が好ましく、300~800がより好ましく、400~700がさらに好ましい。繊維長は、1~12mmが好ましく、2~10mmがより好ましく、3~6mmがさらに好ましい。半透膜塗布面層におけるバインダー合成繊維の含有量は、10~60質量%が好ましく、15~50質量%がより好ましく、20~40質量%がさらに好ましい。
 非塗布面層における太径繊維の繊維径は、9.0~20.0μmが好ましく、10.0~19.0μmがより好ましく、10.0~18.0μmがさらに好ましい。アスペクト比は、200~1000が好ましく、200~900がより好ましく、250~800がさらに好ましい。繊維長は、1~12mmが好ましく、2~10mmがより好ましく、3~6mmがさらに好ましい。非塗布面層における太径繊維の含有量は、10~80質量%が好ましく、20~70質量%がより好ましく、30~60質量%がさらに好ましい。
 非塗布面層における細径繊維の繊維径は、5.0~18.0μmが好ましく、6.0~15.0μmがより好ましく、7.0~13.0μmがさらに好ましい。アスペクト比は、200~1000が好ましく、250~900がより好ましく、300~800がさらに好ましい。繊維長は、1~12mmが好ましく、2~10mmがより好ましく、3~6mmがさらに好ましい。非塗布面層における細径繊維の含有量は、10~80質量%が好ましく、20~70質量%がより好ましく、30~60質量%がさらに好ましい。
 非塗布面層におけるバインダー合成繊維の繊維径は、2.0~20.0μmが好ましく、5.0~17.0μmがより好ましく、7.0~15.0μmがさらに好ましい。アスペクト比は、200~1000が好ましく、300~800がより好ましく、400~700がさらに好ましい。繊維長は、1~12mmが好ましく、2~10mmがより好ましく、3~6mmがさらに好ましい。非塗布面層におけるバインダー繊維の含有量は、10~60質量%が好ましく、15~50質量%がより好ましく、20~40質量%がさらに好ましい。
 半透膜支持体が半透膜塗布面層と非塗布面層とからなる2層構造の不織布である場合、不織布に対する半透膜塗布面層の割合が、10~90質量%であることが好ましく、20~80質量%であることがより好ましく、30~70質量%であることがさらに好ましい。半透膜塗布面層の割合が10質量%未満になると、半透膜溶液塗工の際に半透膜支持体の裏面にまで溶液が抜けやすくなることがある。また、半透膜塗布面層の割合が90質量%を超えると、支持体非塗布面同士の接着性が低下することがある。
 本発明の半透膜支持体において、不織布が各層の繊維配合が同一である多層構造であっても良い。この場合、各層の坪量が下がることにより、スラリーの繊維濃度を下げることができるため、不織布の地合が良くなり、その結果、半透膜塗布面の平滑性や均一性が向上する。また、各層の地合が不均一であった場合でも、積層することで補填できる。さらに、抄紙速度を上げることができ、操業性が向上する。
 本発明の半透膜支持体において、さらに、フィブリル化有機繊維を含有させることが好ましい。フィブリル化有機繊維と主体合成繊維とによって形成された繊維構造体によって、半透膜溶液の裏抜けを防止することができる。また、フィブリル化有機繊維を含んでいることで、半透膜塗布面の平滑性を高めることができる。さらに、フィブリル化有機繊維を含有させることで、半透膜と半透膜支持体との接着性が良好で、かつ、半透膜塗布面の毛羽立ちが抑制された半透膜支持体を得ることができる。
 第一のフィブリル化有機繊維としては、液晶性高分子パルプが挙げられ、それは液晶性高分子をパルプ状に処理したものである。液晶性高分子パルプを含有させると、その耐熱性により、半透膜溶液塗工後の水洗や乾燥等の工程でのしわの発生や寸法変化が抑制された半透膜支持体を得ることができる。液晶性高分子としては、全芳香族ポリアミド、半芳香族ポリアミド、全芳香族ポリエステル、半芳香族ポリエステル、全芳香族ポリエステルアミド、半芳香族ポリエステルアミド、全芳香族ポリエーテル、半芳香族ポリエーテル、全芳香族ポリカーボネート、半芳香族ポリカーボネート、全芳香族ポリアゾメジン、半芳香族ポリアゾメジン、ポリフェニレンスルフィド(PPS)、ポリ−p−フェニレンベンゾビスチアゾール(PBZT)などが挙げられる。ここで、半芳香族とは、主鎖の一部に例えば脂肪鎖などを有するものを指す。これらの中でも、均一にフィブリル化されやすい全芳香族ポリアミド、全芳香族ポリエステルが好ましい。全芳香族ポリアミドの中でもパラアラミドが好ましい。
 液晶性高分子パルプは、高圧ホモジナイザー、リファイナー、ビーター、ミル、摩砕装置などを、単独で又は組み合わせて用いることによって、製造することができる。この中でも、高圧ホモジナイザー単独又は高圧ホモジナイザーと他の装置との組み合わせによって、液晶性高分子パルプを製造すると、繊維長分布と繊維径分布が相対的に狭く、繊維が細く均一になりやすいため、好ましい。
 液晶性高分子パルプとは、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部が繊維径1μm以下になっている液晶性高分子繊維を指す。本発明においては、質量平均繊維長が0.20~2.00mmの範囲にあるものを用いる。従って、本発明のフィブリルは、フィブリッドとは異なる。フィブリッドとは、米国特許第5833807号明細書や米国特許第5026456号明細書に明記されているように、平均長さ0.2mm~1mm、長さと巾のアスペクト比が5:1~10:1のフィルム状粒子で繊維状物ではない。本発明におけるフィブリルは、長さと巾のアスペクト比が20:1~100000:1の範囲に分布し、カナダ標準形濾水度が0ml~500mlの範囲にある。さらに、質量平均繊維長が0.20~2.00mmの範囲にあるものが好ましい。
 第二のフィブリル化有機繊維としては、フィブリル化アクリル繊維が挙げられる。割繊及びフィブリル化が可能である割繊性アクリル繊維を、ビーター、PFIミル、シングルディスクリファイナー(SDR)、ダブルディスクリファイナー(DDR)、または、顔料等の分散や粉砕に使用するボールミル、ダイノミル、ミキサー、高圧ホモジナイザー等の叩解・分散設備で割繊及びフィブリル化した繊維である。これらの叩解・分散設備で割繊及びフィブリル化が可能であれば、割繊性アクリル繊維を構成するポリマーに特に制限はない。すなわち、通常のアクリル繊維に用いられるアクリロニトリル系ポリマーのみから構成されても良いし、アクリロニトリル系ポリマーと添加剤ポリマーとから構成されても構わない。割繊及びフィブリル化が容易であることを考慮すれば、アクリロニトリル系ポリマーと添加剤ポリマーとから構成された割繊性アクリル繊維の方がより好ましい。
 割繊性アクリル繊維を紡糸する際、該繊維を構成するアクリロニトリル系ポリマーと添加剤ポリマーとの間でミクロ相分離が起こり、相分離のドメインサイズがミクロンからサブミクロンのオーダーである場合に、後の叩解処理により割繊又はフィブリル化が良好となる。この相分離のドメインサイズを実現するためには、紡糸する際にアクリロニトリル系ポリマーと添加剤ポリマーとが相溶はしないが、適度に混和することが重要である。
 アクリロニトリルの共重合成分は、通常のアクリル繊維を構成する共重合モノマーであれば特に限定されないが、例えば以下のモノマーが挙げられる。すなわち、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチルなどに代表されるアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチルなどに代表されるメタクリル酸エステル類、アクリル酸、メタクリル酸、マレイン酸、アクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどの不飽和単量体などである。
 また、添加剤ポリマーは、特に限定されないが、アクリル系ポリマー及びアクリル系ポリマー以外の一部のポリマーが挙げられる。アクリル系ポリマーを構成するモノマーは特に限定されないが、例えば以下のモノマーが挙げられ、このうちの1種以上を用いることができる。すなわち、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチルなどに代表されるアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチルなどに代表されるメタクリル酸エステル類、アクリル酸、メタクリル酸、マレイン酸、アクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデンなどの不飽和単量体などである。また、アクリル系ポリマー以外のポリマーとしては、ポリ塩化ビニル、ポリアルキレングリコール、ポリエーテル系化合物、ポリエーテルエステル系化合物、セルロースアセテート、セルロースジアセテート、ポリスルホン、ポリビニルアルコール、ポリアミド、ポリエステル、ポリペプチドなどが挙げられる。また、抗菌、防臭性を付与するためにキチン、キトサン等を添加しても良い。
 フィブリル化アクリル繊維を含有させることで、半透膜塗布面の平滑性が向上し、毛羽立ちが抑制されるが、さらに、割繊性アクリル繊維に用いる添加剤ポリマーの軟化点もしくはガラス転移点が半透膜支持体を製造する工程での処理温度よりも低い場合、軟化点もしくはガラス転移点以上の温度がかかることで、添加剤ポリマーの一部又は全てが溶融し、半透膜支持体の半透膜塗布面の強度を増す働きをし、さらに、半透膜塗布面の繊維毛羽立ち防止の役割を果たし、半透膜の欠点が抑制される。
 本発明の半透膜支持体に用いられる割繊性アクリル繊維の断面形状については特に制限はなく、円形、楕円形のみならず、偏平、三角、Y型、T型、U型、星型、ドッグボーン型など、いわゆる異形断面形状をとるもの、中空状のもの、枝別れ状のもののいずれでも良い。しかし、割繊の容易さの点から、円形又は楕円形のものが最も好ましい。また、割繊後の繊維の断面形状についても特に制限はなく、円形、楕円形のみならず、扁平、筋状、米字、三角などの異形断面形状をとるものが挙げられる。
 割繊性アクリル繊維のフィブリル化の度合いは特に限定されない。しかしながら、(A)平均繊維径1μm以下のフィブリル化アクリル繊維、(B)平均繊維径2μm以上の幹部から、平均繊維径1μm以下の枝部が発生したフィブリル化アクリル繊維という2つのフィブリル化状態のアクリル繊維を含有させると、フィブリル化アクリル繊維の特徴が最大限に発揮されて、半透膜塗布面の平滑性、毛羽立ち抑制、半透膜支持体の均一性、半透膜塗工時の半透膜の均一性、半透膜溶液の裏抜け防止性、半透膜と半透膜支持体との接着性等をバランス良く高めることができる。
 フィブリル化アクリル繊維(A)及び(B)が存在するフィブリル化状態を確認するためには、フィブリル化アクリル繊維を水等で十分希釈した後に乾燥させて、顕微鏡か、好ましくは電子顕微鏡で観察することが好ましい。フィブリル化条件が決定された後は、その都度観察する必要はない。フィブリル化アクリル繊維の繊維径は、電子顕微鏡写真より(A)及び(B)の繊維を各々任意に20本選択して計測した繊維径の算術平均値とする。
 半透膜支持体の均一性、膜塗工時の半透膜の均一性、半透膜溶液の裏抜け防止性、半透膜と半透膜支持体との接着性をバランス良く発現するためには、フィブリル化アクリル繊維(A)のアスペクト比(繊維長/繊維径)としては、10~100000が好ましく、100~50000がより好ましい。また、フィブリル化アクリル繊維(B)において、幹部のアスペクト比は、10~50000が好ましく、50~30000がより好ましい。また、枝部のアスペクト比は、10~100000が好ましく、100~50000がより好ましい。これらのフィブリル化状態は、上述の顕微鏡観察によって、確認することができる。
 第三のフィブリル化有機繊維としては、フィブリル化リヨセル繊維が挙げられる。「リヨセル」とは、ISO規格及び日本のJIS規格に定める繊維用語で、「セルロース誘導体を経ずに、直接、有機溶剤に溶解させて紡糸して得られるセルロース繊維」とされている。リヨセル繊維の特徴としては、湿潤強度に優れていること、フィブリル化しやすいこと、及びセルロース繊維由来の水素結合によりシート化したときの強度が得やすいこと等が挙げられる。
 リヨセル繊維は、ビーター、PFIミル、シングルディスクリファイナー(SDR)、ダブルディスクリファイナー(DDR)、顔料等の分散や粉砕に使用するボールミル、ダイノミル等の叩解・分散設備で剪断力を加えることによって、フィブリル化することができる。リヨセル繊維はセルロース繊維が原料であることから、フィブリル化した後も水素結合による繊維間結合が望め、その結果、半透膜支持体の強度、半透膜支持体の均一性、半透膜塗布面の平滑性、半透膜溶液の裏抜け防止性等を向上させるという効果が得られる。
 リヨセル繊維のフィブリル化の度合いは特に限定されない。しかしながら、(A)平均繊維径1μm以下のフィブリル化リヨセル繊維、(B)平均繊維径2μm以上の幹部から、平均繊維径1μm以下の枝部が発生したフィブリル化リヨセル繊維という2つのフィブリル化状態のリヨセル繊維を含有させると、フィブリル化リヨセル繊維の特徴が最大限に発揮されて、半透膜支持体の均一性、半透膜塗布面の平滑性、半透膜溶液の裏抜け防止性等を高めることができる。
 フィブリル化リヨセル繊維(A)及び(B)が存在するフィブリル化状態を確認するためには、フィブリル化リヨセル繊維を水等で十分希釈した後に乾燥させて、顕微鏡か、好ましくは電子顕微鏡で観察することが好ましい。フィブリル化条件が決定された後は、その都度観察する必要はない。フィブリル化リヨセル繊維の繊維径は、電子顕微鏡写真より、(A)及び(B)の繊維を各々任意に20本選択して計測した繊維径の算術平均値とする。
 本発明の半透膜支持体において、半透膜支持体の均一性、半透膜塗布面の平滑性、半透膜溶液の裏抜け防止性等をバランス良く発現するためには、フィブリル化リヨセル繊維(A)のアスペクト比(繊維長/繊維径)としては、10~100000が好ましく、100~50000がより好ましい。また、フィブリル化リヨセル繊維(B)において、幹部のアスペクト比は、10~50000が好ましく、50~30000がより好ましい。また、枝部のアスペクト比は、10~100000が好ましく、100~50000がより好ましい。これらのフィブリル化状態は、上述の顕微鏡観察によって、確認することができる。
 フィブリル化有機繊維の配合比率は特に限定しないが、半透膜支持体に対して、0.5~20.0質量%であることが好ましく、0.5~10.0質量%であることがより好ましい。フィブリル化有機繊維の含有量が0.5質量%未満の場合、フィブリル化有機繊維が半透膜支持体に均一に分布できないことから、半透膜支持体の均一性を高めることができない場合がある。また、半透膜溶液の裏抜け防止性、毛羽立ち抑制、半透膜と半透膜支持体との接着性、寸法安定性への寄与が不十分になる場合がある。一方、フィブリル化有機繊維の含有量が20.0質量%を超えると、半透膜支持体の均一性や半透膜溶液の裏抜け防止性は十分得られるものの、通液抵抗が高くなりすぎて、半透膜の寿命が短くなってしまう場合がある。また、半透膜と半透膜支持体との接着性が不十分になる場合もある。フィブリル化有機繊維が液晶性高分子パルプの場合、その含有量が0.5~20.0質量%であることで、液晶性高分子パルプの特徴である耐熱性により、半透膜溶液塗工後の水洗や乾燥等の工程でのしわの発生や寸法変化が抑制された半透膜支持体を得ることができる。
 半透膜支持体が多層構造の場合、フィブリル化有機繊維は半透膜塗布面層と非塗布面層の両方に入れることができるが、好ましくは、半透膜塗布面層のみに入れるか、または両層に入れる場合は半透膜塗布面層に多く入れることが好ましい。半透膜塗布面層のみ又は塗布層に多く入れることによって、半透膜塗布面の平滑性、均一性を高めると共に、非塗布面層面の平滑性を塗布面よりも低くすることが可能となり、その結果、半透膜の滲み込み、非塗布面の接着性を両立することが可能となる。
 半透膜支持体の坪量は、特に限定しないが、20~150g/mが好ましく、より好ましくは50~100g/mである。20g/m未満の場合は、十分な引張強度が得られない場合がある。また、150g/mを超えた場合、通液抵抗が高くなる場合や厚みが増してユニットやモジュール内に規定量の半透膜を収納できない場合がある。
 また、半透膜支持体の密度は、0.5~1.0g/cmであることが好ましく、より好ましくは0.6~0.9g/cmである。半透膜支持体の密度が0.5g/cm未満の場合は、厚みが厚くなるため、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜のライフが短くなってしまうことがある。一方、1.0g/cmを超える場合は、通液性が低くなることがあり、半透膜のライフが短くなる場合がある。
 半透膜支持体の厚みは、50~150μmであることが好ましく、60~130μmであることがより好ましく、70~120μmであることがさらに好ましい。半透膜支持体の厚みが150μmを超えると、ユニットに組み込める半透膜の面積が小さくなってしまい、結果として、半透膜のライフが短くなってしまうことがある。一方、50μm未満の場合、十分な引張強度が得られない場合や通液性が低くなって、半透膜のライフが短くなる場合がある。
 算術平均粗さ(Ra)は、例えば、東京精密社製の表面粗さ解析装置Surfcom E−RM−S27A型、KEYENCE社製の商品名VK8510等により解析することが可能である。Raとは、半透膜塗布面表面の断面曲線から、基準長さだけ抜き取った部分において、抜き取り部分の平均線と断面曲線で囲まれた部分の面積の和を抜き取り部分の長さで除した値をマイクロメートル(μm)で表したものであり、JIS B0601−1994(日本工業規格)に規定されている。
 本発明では、半透膜塗布面表面のRaが5.0~15.0μmであることが好ましい。Raが5.0μmを下回る場合、半透膜塗布面表面の平滑性は高くなり、均一な半透膜が得られるものの、半透膜と半透膜支持体との接触面積が小さくなり、アンカー効果が低下してしまうことにより、半透膜が半透膜支持体から容易に剥離する場合がある。また、半透膜塗布面表面のRaが15.0μmを上回る場合、均一な厚みの半透膜が得られ難くなる場合がある。半透膜塗布面表面のRaのより好ましい範囲は、5.0~12.0μmであり、さらに好ましい範囲は5.0~9.0μmである。支持体塗布面表面Ra値を特定の範囲内にすることにより、半透膜の均一性を保持しつつ、支持体と半透膜との接着性を両立できる。
 十点平均粗さ(Rz)は、上述のRaと同様に、例えば、東京精密社製の表面粗さ解析装置Surfcom E−RM−S27A型、、KEYENCE社製の商品名VK8510等により解析することが可能である。算出方法はJIS B0601−1994(日本工業規格)に従い、半透膜塗布面表面の粗さ曲線から、その平均線の方向に基準長さだけを抜き取り、この抜き取り部分の平均線から縦倍率の方向に測定した、最も高い山頂から5番目までの山頂の標高(Yp)の絶対値の平均と最も低い谷底からから5番目までの谷底の標高(Yv)の絶対値の平均値との和を求め、この値をマイクロメートル(μm)で表したものをいう。
 本発明では、半透膜塗布面表面のRzが150μm以下である場合、均一な半透膜が得られ、150μmを超えた場合、半透膜支持体と半透膜の接着性はアンカー効果により向上するものの、均一な半透膜が得られない場合がある。半透膜塗布面表面のRzのより好ましい範囲は50~150μmであり、さらに好ましい範囲は70~130μmである。
 本発明では、半透膜塗布面表面の25℃−60%RHにおける、ポリスルホンを15質量%で溶解したn−メチルピロリドン溶液を使用したブリストーテスタでの吸収係数が5~100ml/m・msec1/2であることが好ましい。また、半透膜塗布面表面の25℃−60%RHにおける、固形分濃度15質量%で溶解したn−メチルピロリドンに溶解したポリスルホン樹脂溶液を使用したブリストーテスタでの接触時間0.2secにおける動的液体転移量が5~30ml/mであることが好ましい。
 半透膜塗布面表面の吸収係数及び動的液体転移量を求めるには、JAPAN TAPPI紙パルプ試験法No.51に示すブリストーテスタを使用している。ブリストーテスタは接触時間数秒以下の瞬間的な液体の吸収性を正確に捉えることが可能である。ブリストーテスタによる動的液体転移量V(ml/m)の測定は、JAPAN TAPPI紙パルプ試験法No.51に従い、ヘッドボックスへの液体添加量をX(μl)、紙面に転移し終わるまでに液体が残した転移跡の長さをA(mm)とすると、動的液体転移量Vは下式で定義される。
動的液体転移量V=X×1000/(A×スリット長さ(mm))
 吸収係数の測定は、JAPAN TAPPI紙パルプ試験法No.51に従い、接触時間の平方根に対する試験片への動的液体転移量を測定し、得られた吸収曲線の直線部分の傾きを算出するものである。既知量の液体を添加したヘッドボックスを、任意の一定速度で移動している試験片に接触させ、スリットを通して紙面に液を完全に吸収させたとき、接触時間T(msec)はスリット幅と試験片の移動速度から、下式で定義される。
接触時間T=スリット幅(mm)×1000/紙の移動速度(mm/sec)
 次に、ブリストーテスタで使用する半透膜溶液について説明する。半透膜支持体上に半透膜を塗設する際、酢酸セルロース等のセルロース系樹脂、ポリエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスルフィドスルホン等のポリスルホン系樹脂、ポリアクリロニトリル系樹脂、ポリフッ化ビニリデン等のフッ素系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂等の合成樹脂をn−メチルピロリドン、ジメチルホルムアミド(DMF)等の有機溶剤に溶解した後、半透膜支持体上に塗布・固化し塗設した後、水槽内でゲル化する方法が用いられる。
 半透膜溶液を調製する際、半透膜を構成する合成樹脂の有機溶剤への溶解濃度は、例えば特開2003−245530号公報、日本化学会編「新実験化学講座19巻高分子II」、丸善株式会社、969~998頁に記載のごとく、12~20質量%で調製される。
 本発明では、ポリスルホン(SIGMA−ALDRICH Corporation製、重量平均分子量M<35,000、数平均分子量M<16,000、商品番号428302)を15質量%でn−メチルピロリドンに溶解して半透膜溶液を調製した後、この半透膜溶液を用いて、ブリストーテスタにより吸収係数又は動的液体転移量を測定することにより、半透膜の厚みの均一性、半透膜溶液の裏抜け、半透膜−半透膜支持体間の剥離強度に及ぼす支持体特性への影響が明確となった。
 半透膜塗布面表面の吸収係数は5~100ml/m・msec1/2であることが好ましく、より好ましくは、10~90ml/m・msec1/2であり、さらに好ましくは、10~80ml/m・msec1/2である。半透膜支持体の吸収係数が5ml/m・msec1/2を下回る場合、半透膜溶液の支持体繊維間への食い込みが少なく、半透膜は半透膜支持体から容易に剥離し、均一な半透膜が得られにくくなり、良好な濾過性能を得られない場合がある。また、吸収係数が100ml/m・msec1/2を上回る場合、支持体裏面への裏抜けが激しく発生し、半透膜をモジュールにする際、半透膜支持体の非塗布面同士を接着し、モジュールにした後、良好な接着性が得られ難くなり、また、均一な半透膜も得られ難くなり、結果として、良好な濾過性能を得られない場合がある。
 半透膜塗布面表面の吸収係数を5~100ml/m・msec1/2の範囲にする方法として、
a)半透膜支持体を構成する主体合成繊維の繊維径を調節する、
b)半透膜支持体を構成するバインダー合成繊維の量を調節する、
c)半透膜支持体抄紙後、熱カレンダー処理時の加熱温度を調節する、
d)半透膜支持体抄紙後、熱カレンダー処理時のニップ圧力を調節する、
を挙げることができる。
 主体合成繊維の繊維径が20.0μmを超える場合、吸収係数を5~100ml/m・msec1/2の範囲に収めることが難しくなる。バインダー合成繊維の繊維径が、主体合成繊維の繊維径と異なっていると、吸収係数を5~100ml/m・msec1/2の範囲に収めることが容易となる。
 半透膜塗布面表面の平滑性が低いほど、又は、吸収性が高いほど、半透膜溶液の動的液体転移量は多くなる傾向にある。したがって、動的液体転移量は半透膜塗布面表面の粗さと吸収性が関与しており、明確な理由は不明であるものの、半透膜塗布面表面の25℃−60%RHにおける、ポリスルホンを15質量%で溶解したn−メチルピロリドン溶液を使用したブリストーテスタでの接触時間0.2secにおける動的液体転移量が5~30ml/mである場合に、半透膜溶液が裏抜けせず、均一な厚みの半透膜が得られ、半透膜−半透膜支持体間の接着性に優れた半透膜支持体を提供することが容易となる。
 動的液体転移量を算出する際の半透膜溶液と半透膜塗布面表面との接触時間を0.2secとしているが、その理由について説明する。半透膜支持体に半透膜を塗布する際、半透膜を構成する合成樹脂は有機溶剤に溶解され、ギャップコーターにより半透膜支持体に塗布された直後、半透膜を構成する樹脂と有機溶剤を層分離させ、半透膜内部に微細な孔を設ける最初の工程として、高温空気による加熱処理がなされる。この段階では、半透膜溶液の粘度は有機溶剤の蒸発により上昇し、半透膜支持体への浸透はほぼ停止すると考えられる。この、半透膜を構成する合成樹脂が溶解されている有機溶剤が、半透膜支持体上に塗布されてから、エアードライヤー等により加熱されるまでの時間が約0.2~10sec程度であり、本発明において、動的液体転移量を測定する際の接触時間を0.2secとしている。
 半透膜塗布面表面の25℃−60%RHにおける、固形分濃度15質量%で溶解したn−メチルピロリドンに溶解したポリスルホン樹脂溶液を使用したブリストーテスタでの接触時間0.2secにおける動的液体転移量が5ml/mを下回る場合、厚みの均一な半透膜が得られ易く、半透膜の裏抜けも少なくなるものの、半透膜−半透膜支持体間の接着性が悪化する場合がある。また、動的液体転移量が30ml/mを上回る場合、厚みの均一な半透膜を得ることが難しくなる場合があり、裏抜けも発生する場合がある。動的液体転移量のより好ましい範囲は10~25ml/mであり、さらに好ましい範囲は15~25ml/mである。
 半透膜塗布面表面の25℃−60%RHにおける、ポリスルホンを15質量%で溶解したn−メチルピロリドン溶液を使用したブリストーテスタでの接触時間0.2secにおける動的液体転移量が5~30ml/mとする方法として、
(a)半透膜支持体を構成する主体合成繊維の繊維径を調節する、
(b)半透膜支持体を構成するバインダー合成繊維の量を調節する、
(c)半透膜支持体抄紙後、熱カレンダー処理時の加熱温度を調節する、
(d)半透膜支持体抄紙後、熱カレンダー処理時のニップ圧力を調節する、
を挙げることができる。
 バインダー合成繊維の繊維径が主体合成繊維と繊維径が異なることで、動的液体転移量を5~30ml/mの範囲に収めることが容易となる。主体合成繊維の平均繊維径が2.0μm未満の場合、接触時間0.2secにおける半透膜塗布面表面の半透膜溶液の動的液体転移量が5ml/mを下回る場合があり、半透膜−半透膜支持体間の接着性が悪化する恐れがある。平均繊維径が20.0μmを超える場合、接触時間0.2secにおける半透膜塗布面表面の半透膜溶液の動的液体転移量が30ml/mを上回る場合があり、厚みの均一な半透膜が得られない場合があり、また、裏抜けが発生する場合もある。
 本発明の第二の特徴は、「主体合成繊維とバインダー合成繊維とを含有してなり、5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値が4.0km未満であり、かつ、横方向(CD)の加熱寸法変化率が−0.3~+1.0%である不織布からなることを特徴とする半透膜支持体」である。
 本発明において、半透膜塗工工程において、半透膜支持体の5%伸長時の裂断長及び加熱寸法変化率が極めて重要な要件となるということを見出した。そして、特に、半透膜支持体を構成する不織布の5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値[以下「平均裂断長(5%伸長時)」という]が4.0km未満であり、半透膜支持体を90℃湯浴に10分間浸した前後の横方向(CD)の加熱寸法変化率が−0.3~+1.0%であることが極めて重要であるという知見を得た。
 本発明の半透膜支持体では、平均裂断長(5%伸長時)が4.0km未満であることが必要である。半透膜支持体の平均裂断長(5%伸長時)が4.0km以上になると、強度が過剰となり、通気性の低下を招く。本発明の半透膜支持体においては、平均裂断長(5%伸長時)は4.0km未満であり、好ましくは3.8km以下、より好ましくは3.6km以下である。また、半透膜支持体の横方向(CD)の加熱寸法変化率が−0.3~+1.0%であり、好ましくは−0.2~+0.8%であり、より好ましくは−0.1~+0.6%である。支持体の横方向(CD)の加熱寸法変化率が−0.3%未満の場合、横方向の収縮が過大であり、半透膜支持体エッジ部の半透膜非塗布部でカールによるシワが発生する。一方、+1.0%を超えた場合、半透膜塗布面に向かって、幅方向全体にカールによるシワの発生が起こる。
 平均裂断長(5%伸長時)を4.0km未満にするためには、主体合成繊維の伸び率(JIS L1013−2010)が25~150%であることが好ましく、主体合成繊維の引張強さ(JIS L1013−2010)が0.08~0.80N/texであることが好ましい。主体合成繊維の伸び率が25%未満の場合、平均裂断長(5%伸長時)が4.0kmを超える場合や、熱圧加工の際に不織布の伸び不足によって、断紙する場合がある。一方、150%を超えた場合、熱圧加工の際に不織布の収縮過剰によって、シワの発生を招く場合がある。そのため、主体合成繊維の伸び率は25~150%が好ましく、より好ましくは30~120%であり、さらに好ましくは35~100%である。また、主体合成繊維の引張強さは0.08~0.80N/texが好ましく、より好ましくは0.1~0.70N/texであり、さらに好ましくは0.2~0.60N/texである。0.08N/tex未満の場合、強度不足により、不織布を形成する湿式抄造工程での断紙又は熱圧加工工程で断紙を招く場合がある。また、0.80N/texを超えた場合、得られる不織布が硬いために、熱圧加工後も平滑性が得られない場合があるばかりでなく、裂断長が4.0kmを超えたものになる場合がある。
 半透膜支持体の横方向(CD)の加熱寸法変化率を−0.3~+1.0%に収めるためには、湿式抄造工程で湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて乾燥させることや熱圧加工時のロール温度、熱圧加工回数、熱圧加工後の加熱加工処理等を最適に組み合わせることが重要となる。
 裂断長とは、JIS P 8113−1976に準拠して測定した値をいい、不織布試料の坪量や幅などに左右されない不織布自体の抗張力を示す指標である。そして、本発明の半透膜支持体に係わる不織布の「平均裂断長(5%伸長時)」は、実施例に詳述する方法で求められる。
 加熱寸法変化率とは、半透膜支持体に半透膜を形成する工程において、半透膜支持体に加えられる熱(例えば、湯洗浄工程、乾燥工程で加えられる熱)による半透膜支持体の寸法変化を数値化するものである。この数値が特定の範囲内に収まっていることが、シワの発生抑制、湾曲抑制のために重要となる。
 本発明の第二の特徴において、半透膜塗布面の平滑性が非塗布面の平滑性よりも高いことが好ましい。半透膜塗布面と非塗布面との平滑性の比は、5.0:1.0~1.1:1.0であることが好ましく、より好ましくは4.0:1.0~1.3:1.0であり、さらに好ましくは3.0:1.0~1.1:1.0である。平滑性は、JIS P 8119に準じ、ベック平滑度試験機を用いて測定することができる。半透膜塗布面と非塗布面との平滑性の比が5.0:1.0を超える場合、半透膜の塗工工程でカールやシワが発生する場合や、半透膜と半透膜支持体との接着性が低下する場合がある。半透膜塗布面と非塗布面との平滑性の比が1.1:1.0未満になると、半透膜と半透膜支持体との接着性及び非塗布面同士の接着性の両立が困難となる場合がある。なお、半透膜塗布面と非塗布面との平滑性の比を調整する方法としては、本発明の第一の特徴で説明した方法が挙げられる。
 主体合成繊維は、半透膜支持体の骨格を形成する繊維である。主体合成繊維としては、合成繊維を使用する。例えば、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ベンゾエート系、ポリクラール系、フェノール系などの繊維が挙げられるが、耐熱性の高いポリエステル系の繊維がより好ましい。また、半合成繊維のアセテート、トリアセテート、プロミックスや、再生繊維のレーヨン、キュプラ、リヨセル繊維等は性能を阻害しない範囲で含有しても良い。
 主体合成繊維のアスペクト比(繊維長/繊維径)は200~2000が好ましく、より好ましくは220~1500であり、さらに好ましくは280~1000である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙ワイヤーから脱落する場合や、抄紙ワイヤーに繊維が刺さってワイヤーからの剥離性が悪化する場合がある。一方、2000を超えた場合、繊維の三次元ネットワーク形成に寄与はするものの、繊維の絡まりやもつれの発生により、不織布の均一性や半透膜塗布面の平滑性に悪影響を及ぼす。
 主体合成繊維の繊維径は20.0μm以下が好ましく、より好ましくは2.0~20.0μmであり、さらに好ましくは5.0~20.0μmであり、特に好ましくは10.0~20.0μmである。2.0μm未満の場合、非塗布面同士の接着性が悪くなる場合がある。主体合成繊維の繊維径が20.0μmを超えると、半透膜塗布面の平滑性が低くなり、半透膜溶液の裏抜けも発生する。また、不織布の表面に毛羽が立ちやすくなり、好ましくない。主体合成繊維は、繊維径の異なる2種以上の繊維を含有していることが好ましい。
 主体合成繊維の繊維長は、特に限定しないが、好ましくは1~12mmであり、より好ましくは3~10mmであり、さらに好ましくは3~6mmであり、特に好ましくは4~6mmである。主体合成繊維の断面形状は円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、表面平滑性、非塗布面同士の接着性のために、他の特性を阻害しない範囲内で含有できる。
 不織布に対する主体合成繊維の含有量は、40~90質量%が好ましく、50~85質量%がより好ましく、55~80質量%がさらに好ましい。主体合成繊維の含有量が40質量%未満の場合、不織布の硬さが不足する恐れがある。また、90質量%を超えた場合、強度不足により破れる恐れがある。
 全主体合成繊維に対して、伸び率25~150%で、引張強さが0.08~0.80N/texの主体合成繊維が占める割合は10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。10質量%未満の場合、平均裂断長(5%伸長時)が4.0kmを超える場合や、熱圧加工の際に不織布の伸び不足によって、断紙する場合がある。
 バインダー合成繊維は、軟化点又は溶融温度(融点)以上まで温度を上げる工程を半透膜支持体の製造工程に組み入れることで、溶融接着することを目的とした繊維であり、半透膜支持体の機械的強度を向上させる。例えば、半透膜支持体を湿式抄造法で製造し、その後の乾燥工程や熱圧加工でバインダー合成繊維を軟化又は溶融させることができる。
 バインダー合成繊維としては、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維などの複合繊維、未延伸繊維等が挙げられる。より具体的には、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、ポリエステル等の未延伸繊維が挙げられる。複合繊維は、皮膜を形成しにくいので、半透膜支持体の空間を保持したまま、機械的強度を向上させることができる。また、ポリエチレンやポリプロピレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、ポリビニルアルコール系のような熱水可溶性バインダーは、半透膜支持体の乾燥工程で皮膜を形成しやすいが、特性を阻害しない範囲で使用することができる。本発明においては、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ、ポリエステルの未延伸繊維は、湿式抄造法にて不織布を形成する際に強度を発現できると共に、熱圧加工の際に第二段の強度発現が可能であることから好ましく用いることができる。
 バインダー合成繊維の繊維径は、主体合成繊維の繊維径と異なっていることが好ましい。好ましくは2.0~20.0μmであり、より好ましくは5.0~15.0μmであり、さらに好ましくは7.0~12.0μmである。また、主体合成繊維の最も太い繊維よりも細い繊維径であることが好ましい。主体合成繊維と繊維径が異なることで、バインダー合成繊維は半透膜支持体の機械的強度を向上させる役割の他に、主体合成繊維と共に複雑かつ均一な三次元ネットワークからなる繊維構造体を形成する役割も果たす。さらに、バインダー合成繊維の軟化温度又は溶融温度以上まで温度を上げる工程では、半透膜支持体表面の平滑性をも向上させることができ、該工程では加圧が伴っているとより効果的である。
 バインダー合成繊維のアスペクト比(繊維長/繊維径)は、好ましくは200~1000であり、より好ましくは300~800であり、さらに好ましくは400~700である。アスペクト比が200未満の場合は、繊維の分散性は良好となるが、抄紙の際に繊維が抄紙ワイヤーから脱落する場合や、抄紙ワイヤーに繊維が刺さってワイヤーからの剥離性が悪化する恐れがある。一方、1000を超えた場合、バインダー合成繊維は三次元ネットワーク形成に寄与はするものの、繊維が絡まりやもつれの発生により、不織布の均一性や半透膜塗布面の平滑性に悪影響を及ぼす場合がある。
 バインダー合成繊維の繊維長は、特に限定しないが、好ましくは1~12mmであり、より好ましくは3~10mmであり、さらに好ましくは4~6mmである。バインダー合成繊維の断面形状は円形が好ましいが、T型、Y型、三角等の異形断面を有する繊維も、裏抜け防止、半透膜塗布面の平滑性、非塗布面同士の接着性のために、他の特性を阻害しない範囲内で含有できる。
 不織布に対するバインダー合成繊維の含有量は、10~60質量%が好ましく、15~50質量%がより好ましく、20~45質量%がさらに好ましい。主体合成繊維の含有量が10質量%未満の場合、強度不足により破れる恐れがある。また、60質量%を超えた場合、通液性が低下する恐れがある。
 本発明の半透膜支持体の製造方法について説明する。本発明の半透膜支持体は、湿式抄造法によりシート化された後に、加熱ロールによって熱圧加工される。
 湿式抄造法では、まず、主体合成繊維、バインダー合成繊維を均一に水中に分散させ、その後、スクリーン(異物、塊等除去)等の工程を通り、最終の繊維濃度を0.01~0.50質量%に調製されたスラリーが抄紙機で抄き上げられ、湿紙が得られる。繊維の分散性を均一にするために、工程中で分散剤、消泡剤、親水剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。
 抄紙機としては、例えば、長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機を用いることができる。これらの抄紙機は、単独でも使用できるし、同種又は異種の2機以上の抄紙機がオンラインで設置されているコンビネーション抄紙機を使用しても良い。また、不織布が2層以上の多層構造の場合には、各々の抄紙機で抄き上げた湿紙を積層する抄き合わせ法や、一方のシートを形成した後に、該シートの上に繊維を分散したスラリーを流延する方法のいずれでも良い。
 抄紙機で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することにより、シートを得る。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることをいう。熱ロールの表面温度は、100~180℃が好ましく、100~160℃がより好ましく、110~160℃がさらに好ましい。圧力は、好ましくは50~1000N/cm、より好ましくは100~800N/cmである。
 次に、加熱ロールによる熱圧加工について説明するが、本発明は下記のものに特定されない。熱圧加工装置のロール間をニップしながら、湿式抄紙法で製造されたシートを通過させて熱圧加工を行う。ロールの組み合わせとしては、2本の金属ロール、金属ロールと弾性(樹脂)ロール、金属ロールとコットンロール等が挙げられる。必要に応じて、シートの表裏を逆にして、ニップへの通過回数を2回以上にしても良い。2本のロールは、一方あるいは両方を加熱する。その際に、加熱ロールの表面温度、ロール間のニップ圧力、シートの加工速度を制御することによって、所望の半透膜支持体を得る。加熱ロールの表面温度は特に限定しないが、好ましくは150~260℃であり、より好ましくは180~240℃である。
 湿紙を熱ロールに密着させて熱圧乾燥させてシートを作製した後、該シートを10分以内に熱圧加工することによって、熱圧乾燥でバインダー合成繊維の熱による可塑化が高まっている間に、熱圧加工を行うことができ、その結果、バインダー合成繊維の熱による可塑化がより進むと推測され、半透膜支持体の平滑性が向上し、毛羽立ちが抑制される。また、湿式抄造後に、一旦シートを巻き上げ、巻き上げたシートを熱圧加工した場合、シート表面の温度が一旦低下し、熱圧加工におけるシートへの伝熱効果が低下するばかりでなく、シート表面にある倒された主体合成繊維が逆側からニップされるために、毛羽立ちが生じる場合がある。これに対して、湿式抄造法で形成されたシートを一旦巻き上げることなく、連続して、熱圧加工を行うということは、湿式抄造と同一方向でシートを熱圧加工することとなり、熱圧乾燥で倒された主体合成繊維が同一方向で再度寝かされることから、毛羽立ちを抑制できる。
 バインダー合成繊維の融点は示差走査熱量測定(JIS K0129 2005)により測定することが可能である。本発明の半透膜支持体の製造方法においては、バインダー合成繊維の融点に対して−50℃~+10℃の表面温度を有する加熱ロールが半透膜塗布面に接触するように、熱圧加工を行うことが好ましい。より好ましい表面温度は、バインダー合成繊維の融点に対して−40~±0℃であり、さらに好ましい表面温度は−30~±0℃である。
 半透膜塗布面の熱圧加工時の温度を、バインダー合成繊維の融点よりも50℃を超えて低くすると、どのような条件においても、毛羽立ちが発生し易くなる場合がある。また、通気性プロファイルも均一となり難く、結果として、半透膜溶液の裏抜けが発生しやすくなる場合がある。一方、半透膜塗布面の熱圧加工時の温度を、バインダー合成繊維の融点よりも10℃を超えて高くすると、加熱ロールに繊維の溶融分が付着して、通気性が不均一化する場合がある。
 熱圧加工処理時のロール温度は、例えば融点260℃の主体合成繊維と結晶化温度120℃、融点260℃のバインダー合成繊維とを使用し、熱圧加工処理時のロール温度を220~230℃程度に調節した場合、また、融点260℃の主体合成繊維と結晶化温度125℃、融点238℃のバインダー合成繊維とを使用し、熱圧加工処理時のロール温度を190~200℃程度に調節した場合、半透膜塗布面表面のRaを5.0~15.0μmに容易に収めること及び半透膜塗布面の吸収係数を5~100ml/m・msec1/2に容易に収めることが容易となるが、本発明ではこの温度範囲に限定されない。
 ロールのニップ圧力は特に限定しないが、好ましくは190~2500N/cmであり、より好ましくは390~2000N/cmである。加工速度は特に限定しないが、好ましくは5~150m/minであり、より好ましくは10~80m/minである。
 さらに、熱圧加工を行う場合に、加熱ロールの表面温度を調整する方式として、金属ロール内部を多重構造とし、その内部に蒸気あるいは加熱されたオイルを循環させる方式、内部に埋設された電熱線により加熱する方式等が挙げられるが、誘導発熱方式により調温する金属ロールを使用した場合、半透膜支持体の幅方向及び流れ方向の通気性プロファイルを均一化できる。さらに、ロール内部にジャケットを設けたジャケットロールを用いることによって、金属ロールの幅方向及び円周方向の表面温度をより均一することが可能となり、半透膜支持体の幅方向及び流れ方向の通気性プロファイルをさらに均一化できる。
 また、熱圧加工では、第一及び第二の熱圧ロールニップが連続して設置された装置を使用し、第一の熱圧ロールニップを出てから、連続して第二の熱圧ロールニップでシートを加工することが好ましい。
 第一の熱圧加工ロールの組み合わせとしては、2本の金属ロール、金属ロールと樹脂ロール、金属ロールとコットンロール等が挙げられるが、平滑性向上のためには、2本の金属ロールの組み合わせが好ましい。対の2本のロールは、一方あるいは両方を加熱する。その際に、加熱ロールの表面温度、ロール間のニップ圧力、シートの加工速度を制御することによって、所望の半透膜支持体を得る。加熱ロールの表面温度は、好ましくは150~260℃であり、より好ましくは180~240℃である。ロールのニップ圧力は、好ましくは190~2500N/cmであり、より好ましくは390~2000N/cmである。
 第二の熱圧加工ロールの組み合わせとしては、2本の金属ロール、金属ロールと樹脂ロール、金属ロールとコットンロール等が挙げられる。対の2本のロールは、一方あるいは両方を加熱するが、場合によっては、両方のロール共に加熱しない場合もある。その際に、加熱ロールの表面温度、ロール間のニップ圧力、シートの加工速度を制御することによって、所望の半透膜支持体を得る。加熱ロールの表面温度は、好ましくは20~260℃であり、より好ましくは40~240℃である。ロールのニップ圧力は、好ましくは190~2500N/cmであり、より好ましくは390~2000N/cmである。
 第一の熱圧加工ロールの組み合わせ、第二の熱圧加工ロールの組み合わせは、各々紙製造で一般的に用いられているスーパーカレンダーのように、4本以上のロールが多段に組み合わされた装置を用いても良いが、ニップ回数が増すごとに半透膜支持体の厚みが減少することから、第一の熱圧加工ロール、第二の熱圧加工ロール共に、4本以下のロールが垂直に組み合わされた各3ニップ以下とすることが好ましく、より好ましくは各2ニップである。
 シートに対して、第一の熱圧ロールニップと第二の熱圧ロールニップ加工を連続的に行うことにより、第一の熱圧ロールニップを通過後のシートに含まれるバインダー合成繊維の熱による可塑化が高まっている間に、第二の熱圧ロールニップを通過させることができ、その結果、バインダー合成繊維の熱による可塑化がより進むと推測され、半透膜支持体の平滑性が向上し、毛羽立ちが抑制される。また、第一の熱圧ロールニップ後、一旦シートを巻き上げ、巻き上げたシートを第二の熱圧ロールニップに再度通過させる場合、シート表面の温度が低下し、第二の熱圧ロールニップ時におけるシートへの伝熱効果が低下するばかりでなく、シート表面にある倒された主体合成繊維が逆側からニップされるために、毛羽立ち抑制効果も低下すると推測される。これに対し、第一及び第二の熱圧ロールニップを連続で加工することは、同一方向でシートを加工することとなり、第一の熱圧ロールニップ通過時に倒された主体合成繊維が同一方向で再度寝かされることから、毛羽立ちを抑制できる。
 そのため、シートが第一の熱圧ロールニップを通過してから第二の熱圧ロールニップに達するまでの時間が短いことが重要であり、60秒以下とすることが好ましい。より好ましくは30秒以下、さらに好ましくは20秒以下である。60秒を超えると、バインダー合成繊維の結晶化度が低下し、毛羽立ち抑制効果が低下する場合がある。熱圧加工速度は特に限定しないが、好ましくは5~150m/分であり、より好ましくは10~100m/分である。
 熱圧加工において、シートを第一の熱圧ロールニップ及び第二の圧ロールニップに通過させる際に、第一の熱圧ロールニップと第二の熱圧ロールニップとの間に、加熱装置でシートを加熱する工程を加えることによって、第一の熱圧ロールニップ通過後、シートに含まれるバインダー合成繊維の熱による可塑化が高まっている状態を維持したまま、第二の熱圧ロールニップを通過させることができ、その結果、バインダー合成繊維の可塑性をより加速することができる。さらに、加熱装置がロール状加熱装置である場合には、シートが長時間熱ロールに面で接触しながら加熱できることから、平滑性を向上させることも可能となる。さらに、第一の熱圧ロールニップ通過後にロール状加熱装置に接しながら加熱することで、シートの寸法安定性を向上させることも可能となる。
 図1~図7は、本発明において、熱圧加工で使用されるロールの組合せ及び配置並びにシートの通紙状態を表した概略図である。図1~図7は、一例であり、これらに限定されるものではない。図1~図7において、金属ロールは横縞模様、コットン又は弾性ロールは点模様、金属、コットン、弾性のいずれのロールでも良い場合は斜線模様である。金属ロール、弾性ロール、コットンロールのいずれも加熱ロールとして使用できるが、好ましくは、金属ロール、弾性ロールを加熱ロールとして使用する。より好ましくは、金属ロールを加熱ロールとして使用する。
 図1(A)は、2本の金属ロールの組み合わせである。図1(B)も、2本の金属ロールの組み合わせであるが、ロールニップを通過したシートが一方の金属ロールにより長い時間接するように通紙されている。図1(C)は、2本の金属ロールからなる第一のロールニップと金属ロールとコットン又は弾性ロールからなる第二のロールニップとが連続で設置されている。図1(D)は、金属ロールとコットン又は弾性ロールからなる第一及び第二のロールニップが連続で設置されていて、第一のロールニップで金属ロールに接した面が、第二のロールニップではコットン又は弾性ロールに接するように、通紙されている。
 図2(E)は、2本の金属ロールの組合せであり、ロールニップを通過したシートが一方の金属ロールを抱くように通紙されている。図2(F)及び図2(G)は、コットン又は弾性ロール及び2本の金属ロールが垂直方向に組み合わせられている。図2(F)では、シートは、上と真ん中のロールとの間の第一のロールニップを通過した後、真ん中のロールに抱かれ、真ん中と下のロールとの間の第二のロールニップを通過する。図2(G)では、シートは、上と真ん中のロールとの間の第一のロールニップを通過した後、真ん中のロールに抱かれ、真ん中と下のロールとの間の第二のロールニップを通過し、さらに、下のロールに抱かれている。
 図3(H)及び図3(I)は、2本の金属ロールからなる第一のロールニップと金属ロールとコットン又は弾性ロールからなる第二のロールニップとが連続で設置されている。図3(H)では、第一のロールニップを通過したシートは、コットン又は弾性ロールに添った状態で第二のロールニップを通過し、その後、金属ロールを抱くように通紙されている。図3(I)では、第一のロールニップを通過したシートは、金属ロールに添った状態で第二のロールニップを通過し、その後、コットン又は弾性ロールを抱くように通紙されている。
 図4(J)、図4(K)及び図4(L)では、金属ロールとコットン又は弾性ロールからなる第一及び第二のロールニップが連続で設置されている。図4(J)では、第一のロールニップを通過したシートは、金属ロールに添った状態で第二のロールニップを通過し、その後、コットン又は弾性ロールを抱くように通紙されている。また、第一のロールニップで金属ロールに接した面が、第二のロールニップではコットン又は弾性ロールに接するように、通紙されている。図4(K)では、第一のロールニップを通過したシートは、コットン又は弾性ロールに添った状態で第二のロールニップを通過し、その後、金属ロールを抱くように通紙されている。また、第一のロールニップで金属ロールに接した面が、第二のロールニップでも金属ロールに接するように、通紙されている。図4(L)では、第一のロールニップを通過したシートは、第二のロールニップを通過し、その後、コットン又は弾性ロールを抱くように通紙されている。また、第一のロールニップで金属ロールに接した面が、第二のロールニップではコットン又は弾性ロールに接するように、通紙されている。
 図5(M)では、金属ロール、金属、コットン又は弾性ロール及び金属、コットン又は弾性ロールが垂直方向に組み合わせられた第一の装置と、金属、コットン又は弾性ロール、コットン又は弾性ロール及び金属、コットン又は弾性ロールが垂直方向に組み合わせられた第二の装置とが、連続で設置されている。シートは、第一の装置において、上と真ん中のロールとの間の第一のロールニップを通過した後、第二の装置において、上と真ん中のロールとの間の第二のロールニップを通過し、真ん中のロールに抱かれ、真ん中と下のロールとの間の第三のロールニップを通過し、下のロールに抱かれるように、通紙されている。図5(N)では、金属、コットン又は弾性ロール、金属ロール及び金属、コットン又は弾性ロールが垂直方向に組み合わせられた第一及び第二の装置が、連続で設置されている。シートは、第一の装置において、上のロールに抱かれるようにして、上と真ん中のロールとの間の第一のロールニップを通過し、真ん中のロールに抱かれ、真ん中と下のロールとの間の第二のロールニップを通過した後、第二の装置において、上と真ん中のロールとの間の第三のロールニップを通過し、真ん中のロールに抱かれ、真ん中と下のロールとの間の第四のロールニップを通過し、下のロールに抱かれるように、通紙されている。
 図6(O)では、金属ロール、金属、コットン又は弾性ロール及び金属、コットン又は弾性ロールが垂直方向に組み合わせられた第一の装置と、金属、コットン又は弾性ロール、コットン又は弾性ロール及び金属、コットン又は弾性ロールが垂直方向に組み合わせられた第二の装置とが、連続で設置されている。シートは、第一の装置において、上と真ん中のロールとの間の第一のロールニップを通過した後、第二の装置において、ニップ圧力のかかっていない上と真ん中のロールとの間を通過し、真ん中のロールに抱かれ、真ん中と下のロールとの間の第二のロールニップを通過し、下のロールに抱かれるように、通紙されている。図6(P)では、金属、コットン又は弾性ロール、金属ロール及び金属、コットン又は弾性ロールが垂直方向に組み合わせられた第一及び第二の装置が、連続で設置されている。シートは、第一の装置において、上のロールに抱かれるようにして、上と真ん中のロールとの間の第一のロールニップを通過し、真ん中のロールに抱かれ、真ん中と下のロールとの間の第二のロールニップを通過した後、第二の装置において、ニップ圧力のかかっていない上と真ん中のロールとの間を通過し、真ん中のロールに抱かれ、真ん中と下のロールとの間の第三のロールニップを通過し、下のロールに抱かれるように、通紙されている。
 図7(Q)では、金属ロール及び2本の金属、コットン又は弾性ロールが垂直方向に組み合わせられた第一の装置と、3本の金属、コットン又は弾性ロールが垂直方向に組み合わせられた第二の装置とが、連続で設置されている。シートは、第一の装置において、上と真ん中のロールとの間の第一のロールニップを通過した後、第二の装置において、ニップ圧力のかかっていない上と真ん中のロールとの間を通過し、真ん中のロールに抱かれ、ニップ圧力のかかっていない真ん中と下のロールとの間を通過し、下のロールに抱かれるように、通紙されている。図7(R)では、金属、コットン又は弾性ロール、金属ロール及び金属、コットン又は弾性ロールが垂直方向に組み合わせられた第一及び第二の装置が、連続で設置されている。シートは、第一の装置において、上のロールに抱かれるようにして、上と真ん中のロールとの間の第一のロールニップを通過し、真ん中のロールに抱かれ、真ん中と下のロールとの間の第二のロールニップを通過した後、第二の装置において、ニップ圧力のかかっていない上と真ん中のロールとの間を通過し、真ん中のロールに抱かれ、ニップ圧力のかかっていない真ん中と下のロールとの間を通過し、下のロールに抱かれるように、通紙されている。
 本発明の半透膜支持体は、水の浄化、食品の濃縮、廃水処理、海水の淡水化、バクテリア・酵母・ウイルスなどの微生物の分離、血液濾過に代表される医療用、半導体洗浄用の超純水の製造等分野で、使用することができる。すなわち、限外濾過膜、逆浸透膜、精密濾過膜等の分離膜の支持体として、使用される。半透膜が設けられた半透膜支持体は、平膜のプレートフレーム型エレメント、プリーツ型エレメント、スパイラル型エレメント等の形態で使用されるが、本発明の半透膜支持体は、スパイラル型半透膜エレメントに使用されることが好ましい。これらのエレメントは、直列あるいは並列に接続されることによって、半透膜モジュールとすることができる。
 スパイラル型エレメントでは、原液側スペーサーと透過液側スペーサーとの間に、半透膜が設けられた半透膜支持体が配置されている。原液側スペーサーには、原液を供給するための通過隙間が設けられている。透過液側スペーサーには、透過液を通過させる通過隙間が設けられている。原液が半透膜を透過することによって、透過液が得られる。半透膜が設けられた半透膜支持体は、原液側スペーサーと透過液側スペーサーと共に、集水管の周りにスパイラル状に巻き付けられる。
 本発明を実施例によりさらに詳細に説明する。以下、特にことわりのないかぎり、実施例に記載される部及び比率は質量を基準とする。
試験1(厚さ)
 JIS P 8118に準じ、厚さを測定した。
試験2(平滑性)
 JIS P 8119に準じ、ベック平滑度試験機を用いて測定した。
試験3(平均ポア径、最大ポア径)
 ASTMF 316−86、JIS K 3832のバブルポイント法に準じ、自動細孔径分布測定器(商品名:パームポロメーター、Porous Materials Inc.製)を用いて測定した。
試験4(半透膜滲み込み)
 一定のクリアランスを有する定速塗工装置(商品名:Automatic Film Applicator、安田精機社製)を用いて、半透膜支持体の半透膜塗布面にポリスルホン(SIGMA−ALDRICH Corporation製、重量平均分子量M<35,000、数平均分子量M<16,000、商品番号428302)のDMF溶液(濃度:18%)を塗工し、水洗、乾燥を行い、半透膜支持体の半透膜塗布面にポリスルホン膜を形成させて半透膜を作製し、半透膜の断面SEM写真を撮影して、ポリスルホンの半透膜支持体への滲み込み度合いを評価した。
◎:ポリスルホンが半透膜支持体の中心付近までしか滲み込んでいない。非常に良好なレベル。
○:ポリスルホンが半透膜支持体の非塗布面に滲み出ていない。良好なレベル。
△:ポリスルホンが半透膜支持体の非塗布面に一部滲み出ている。実用上、使用可能レベル。
×:ポリスルホンが半透膜支持体の非塗布面に滲み出ている。実用上、使用不可レベル。
試験5(半透膜接着性)
 試験4で作製した半透膜に関して、ポリスルホン樹脂からなる半透膜と半透膜支持体間の接着度合いを、剥離するときの抵抗度合いで判断した。
◎:半透膜と半透膜支持体の接着性が非常に高く、剥離できない。非常に良好なレベル。
○:部分的に剥離しやすい所が存在する。良好なレベル。
△:半透膜と半透膜支持体とが接着はしているが、全体的に剥離しやすい。実用上、下限レベル。
×:半透膜塗工後の水洗又は乾燥工程で剥離が発生する。使用不可レベル。
試験6(非塗布面接着性)
 試験4で半透膜を作製した半透膜支持体の非塗布面同士の間に、加温して溶融させた酢酸ビニル系接着剤を塗布して、直ぐに加圧して接着させた。接着後、サンプルを幅25mm、長さ200mmに裁断し、引張試験機(商品名:STA−1150テンシロン引張試験機、オリエンテック社製)を使用し、剥離角度180度、剥離速度100mm/minで接着部の剥離テストを行い、非塗布面接着性を評価した。
◎:剥離強度が極めて高く、半透膜支持体層内部で剥離が起こっている。
○:剥離強度が高く、接着剤と半透膜支持体間で部分的に剥離が起こっているが、大部分の剥離は半透膜支持体層内部で剥離が起こっている。
△:剥離強度がやや高く、接着剤と半透膜支持体間での剥離が起こっているが、半透膜支持体層内部でも剥離が確認される。実用上、下限レベル。
×:剥離強度が低く、全体的に接着剤と半透膜支持体の間で剥離が起こっている。使用不可レベル。
試験7(半透膜厚み均一性)
 一定のクリアランスを有する定速塗工装置(商品名:Automatic Film Applicator、安田精機社製)を用いて、半透膜支持体の半透膜塗布面にポリスルホン(SIGMA−ALDRICH Corporation製、重量平均分子量M<35,000、数平均分子量M<16,000、商品番号428302)のDMF溶液(濃度:18%)を塗工し、水洗、乾燥を行い、半透膜塗布面表面に厚み50μmのポリスルホン膜を形成させ、断面SEM写真を撮影した。その後、SEM写真で任意の場所10点における半透膜の厚みを測定し、その厚みの最大部分から最小部分の厚みの差(μm)を求めた。この差が8μm以内であれば許容範囲である。
試験8(熱収縮)
 幅40cm、流れ方向30cmの半透膜支持体を90℃の湯に10分間浸す前後の幅方向の寸法を4点測定し、寸法変化を算出した。
×:寸法変化が−0.3%未満
△:寸法変化が−0.1~−0.3%
○:寸法変化が−0.1%超
試験9(毛羽立ち)
 幅30cmの半透膜支持体の流れ方向を横切るように、半透膜塗布面を山にして、折り目を付け、折り目の上にステンレス製の直径5cm、長さ40cmの円柱状ロールを転がし、折り目に発生した繊維の毛羽立ち本数を計測した。測定はn=4で行い、平均値を示す。
0~10本:毛羽立ちが少なく、非常に良好なレベル。
11~20本:良好なレベル。
21~30本:実用上、下限レベル。
31本以上:使用不可レベル。
(実施例1)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例2)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、アスペクト比351)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例3)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径8.6μm、繊維長5mm、アスペクト比582)を40:30:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例4)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、アスペクト比399)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.4μm、繊維長5mm、アスペクト比672)を15:20:30:35の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例5)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長10mm、アスペクト比798)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、アスペクト比785)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例6)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.4μm、繊維長5mm、アスペクト比672)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径3.0μm、繊維長5mm、アスペクト比1646)を15:20:30:30:5の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例7)
 傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、アスペクト比351)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機で湿紙を形成した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、アスペクト比351)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、二つの層の湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、各層の坪量比が1:1で、総坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例8)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長3mm、アスペクト比259)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例9)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置において、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、次に、加熱金属ロールとコットンロールの組み合わせのカレンダー装置において、温度200℃、圧力850N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、2回目のカレンダー装置において、加熱金属ロールに接した面を半透膜塗布面とした。
(実施例10)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと弾性ロールの組み合わせのカレンダー装置において、加熱金属ロール温度200℃、圧力785N/cm、加工速度30m/minの条件で加工した後、一回目に加熱金属ロールに接した面が弾性ロールに接するように加熱金属ロールと弾性ロールの組み合わせのカレンダー装置において、加熱金属ロール温度200℃、圧力785N/cm、加工速度30m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例11)
 傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機で非塗布面層の湿紙を形成した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径8.6μm、繊維長5mm、アスペクト比583)を40:30:30の配合比率で水に混合分散し、円網抄紙機で半透膜塗布面層の湿紙を形成した後、二つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、半透膜塗布面層と非塗布面層の坪量比が1:1で、総坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例12)
 傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機で非塗布面層の湿紙を形成した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長10mm、アスペクト比798)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、アスペクト比785)を30:30:40の配合比率で水に混合分散し、円網抄紙機で半透膜塗布面層の湿紙を形成した後、二つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、半透膜塗布面層と非塗布面層の坪量比が1:1で、総坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例13)
 傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機で非塗布面層の湿紙を形成した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.4μm、繊維長5mm、アスペクト比672)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径3.0μm、繊維長5mm、アスペクト比1646)を15:20:30:30:5の配合比率で水に混合分散し、円網抄紙機で半透膜塗布面層の湿紙を形成した後、二つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、半透膜塗布面層と非塗布面層の坪量比が1:1で、総坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例14)
 傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機で非塗布面層の湿紙を形成した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径8.6μm、繊維長5mm、アスペクト比583)を40:30:30の配合比率で水に混合分散し、円網抄紙機で半透膜塗布面層の湿紙を形成した後、二つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、半透膜塗布面層と非塗布面層の坪量比が1:1で、総坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度50m/minの条件で加工した後、さらに加熱金属ロールとコットンロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度30m/minの条件で、加熱金属ロール面に半透膜塗布面層が接するように加工し、半透膜支持体を得た。
(実施例15)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、円網抄紙機で非塗布面層の湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量20g/mの非塗布面層のシートAを得た。
 傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機で中間層の湿紙を形成した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径8.6μm、繊維長5mm、アスペクト比583)を40:30:30の配合比率で水に混合分散し、円網抄紙機で半透膜塗布面層の湿紙を形成した後、二つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、半透膜塗布面層と中間層の坪量比が1:1で、総坪量60g/mのシートBを得た。
 シートBの中間層面にシートAを重ねて、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜塗布面層と中間層と非塗布面層の坪量比が3:3:2で、総坪量80g/cmの半透膜支持体を得た。
(実施例16)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径39.6μm、繊維長5mm、アスペクト比126)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例17)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径2.4μm、繊維長5mm、アスペクト比2125)を40:30:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例18)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径14.3μm、繊維長2mm、アスペクト比140)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例19)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長13mm、アスペクト比1040)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、アスペクト比785)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られた不織布を、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例20)
 傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を55:45の配合比率で水に混合分散し、傾斜ワイヤー抄紙機傾斜ワイヤー式抄紙機で半透膜塗布面層の湿紙を形成した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径20.2μm、繊維長10mm、アスペクト比495)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を55:45の配合比率で水に混合分散し、円網抄紙機で非塗布面層の湿紙を形成した後、二つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、半透膜塗布面層と非塗布面層の坪量比が1:1で、総坪量103g/mのシートを得た。
 得られたシートを、加熱金属ロールとコットンロールの組み合わせのカレンダー装置において、加熱金属ロール温度230℃、圧力785N/cm、加工速度10m/minの条件で加工した後、一回目に加熱金属ロールに接した面がコットンロールに接するように加熱金属ロールとコットンロールの組み合わせのカレンダー装置において、加熱金属ロール温度200℃、圧力785N/cm、加工速度10m/minの条件で加工し、半透膜支持体を得た。なお、一回目に半透膜塗布面層が加熱金属ロールに接するようにした。
(実施例21)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長10mm、アスペクト比798)、バインダー合成繊維1(未延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、融点230℃)、バインダー合成繊維2(未延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、融点255℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、アスペクト比785)を30:15:15:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、半透膜支持体を得た。なお、抱いた金属ロール面に接した面を半透膜塗布面とした。
(比較例1)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、熱風温度150℃のエアードライヤーにて乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(比較例2)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径24.7μm、繊維長10mm、アスペクト比405)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、アスペクト比399)を25:45:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量104g/mのシートを得た。
 得られたシートを、加熱金属ロールとコットンロールの組み合わせのカレンダー装置において、加熱金属ロール温度230℃、圧力785N/cm、加工速度10m/minの条件で加工した後、一回目に加熱金属ロールに接した面がコットンロールに接するように加熱金属ロールとコットンロールの組み合わせのカレンダー装置において、加熱金属ロール温度240℃、圧力1470N/cm、加工速度10m/minの条件で加工し、半透膜支持体を得た。なお、2回目のカレンダー装置において、加熱金属ロールに接した面を非塗布面とした。
(比較例3)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、アスペクト比399)を30:40:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量68g/mのシートを得た。
 得られたシートを、加熱金属ロールと弾性ロールの組み合わせのカレンダー装置を用いて、温度225℃、圧力588N/cm、加工速度25m/minの条件で加工した後、一回目に加熱金属ロールに接した面が弾性ロールに接するように加熱金属ロールと弾性ロールの組み合わせのカレンダー装置において、加熱金属ロール温度225℃、圧力588N/cm、加工速度25m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(比較例4)
 傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機で非塗布面層の湿紙を形成した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径8.6μm、繊維長5mm、アスペクト比583)を40:30:30の配合比率で水に混合分散し、円網抄紙機で半透膜塗布面層の湿紙を形成した後、二つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、半透膜塗布面層と非塗布面層の坪量比が1:1で、総坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度50m/minの条件で加工した後、さらに加熱金属ロールとコットンロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度30m/minの条件で、加熱金属ロール面に半透膜塗布面層が接するように加工し、さらに加熱金属ロールとコットンロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度30m/minの条件で、加熱金属ロール面に半透膜塗布面層が接するように加工し、半透膜支持体を得た。
(比較例5)
 実施例14の半透膜支持体において、非塗布面層を半透膜塗布面とし、半透膜塗布面層を非塗布面として、半透膜支持体とした。
(比較例6)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、アスペクト比399)を30:40:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量34g/mのシートCを得た。
 得られたシートを、加熱金属ロールと弾性ロールの組み合わせのカレンダー装置を用いて、温度225℃、圧力588N/cm、加工速度25m/minの条件で加工し、不織布Cを得た。
 次いで、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を60:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量34g/mのシートDを得た。
 不織布Cを半透膜塗布面層とし、シートDを非塗布面層として、不織布CとシートDを重ねて、シートDが加熱金属ロールに接するように、加熱金属ロールと弾性ロールの組み合わせのカレンダー装置において、加熱金属ロール温度225℃、圧力588N/cm、加工速度25m/minの条件で加工し、半透膜塗布面層と非塗布面層の坪量比が1:1で、総坪量70g/mの半透膜支持体を得た。
(比較例7)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm、アスペクト比399)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を60:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量40g/mのシートEを得た。
 次いで、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径22.5μm、繊維長5mm、アスペクト比222)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を60:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量50g/mのシートFを得た。
 シートEを非塗布面層とし、シートFを半透膜塗布面層として、シートEとシートFを重ねて、加熱金属ロールと弾性ロールの組み合わせのカレンダー装置を用いて、温度226℃、圧力980N/cm、加工速度30m/minの条件で加工した後、一回目に加熱金属ロールに接した面が弾性ロールに接するように加熱金属ロールと弾性ロールの組み合わせのカレンダー装置において、加熱金属ロール温度226℃、圧力980N/cm、加工速度30m/minの条件で加工し、半透膜塗布面層と非塗布面層の坪量比が5:4で、総坪量90g/mの半透膜支持体を得た。
(比較例8)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長10mm、アスペクト比798)、バインダー合成繊維1(未延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、融点230℃)、バインダー合成繊維2(未延伸ポリエステル系繊維、繊維径14.3μm、繊維長5mm、融点255℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径6.4μm、繊維長5mm、アスペクト比785)を30:15:15:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、半透膜支持体を得た。なお、抱いた金属ロール面に接しない面を半透膜塗布面とした。
(比較例9)
 傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径11.6μm、繊維長5mm、アスペクト比432)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を55:45の配合比率で水に混合分散し、傾斜ワイヤー抄紙機傾斜ワイヤー式抄紙機で非塗布面層の湿紙を形成した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径20.2μm、繊維長10mm、アスペクト比495)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点260℃)を55:45の配合比率で水に混合分散し、円網抄紙機で半透膜塗布面層の湿紙を形成した後、二つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、半透膜塗布面層と非塗布面層の坪量比が1:1で、総坪量103g/mのシートを得た。
 得られたシートを、加熱金属ロールとコットンロールの組み合わせのカレンダー装置において、加熱金属ロール温度230℃、圧力785N/cm、加工速度10m/minの条件で加工した後、一回目に加熱金属ロールに接した面がコットンロールに接するように加熱金属ロールとコットンロールの組み合わせのカレンダー装置において、加熱金属ロール温度200℃、圧力785N/cm、加工速度10m/minの条件で加工し、半透膜支持体を得た。なお、半透膜塗布面層が一回目にコットンロールに接するようにした。
 実施例1~21及び比較例1~9で得られた半透膜支持体に対して、試験1~6の評価を行い、結果を表1~6に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例1~10の半透膜支持体は、半透膜滲み込み、半透膜接着性及び非塗布面接着性の評価において、実用上使用可能なレベルを達成した。
 繊維配合が同一である実施例2と実施例7を比較すると、2層構造である実施例7の半透膜支持体の方が、単層構造である実施例2の半透膜支持体よりも、平滑性が高くなり、半透膜の滲み込みが良好であった。
 実施例11~15の半透膜支持体は、半透膜塗布面と非塗布面の繊維配合が異なる多層構造の不織布であり、半透膜の滲み込み、半透膜接着性、非塗布面接着性の評価において、バランス良く、実用上使用可能なレベルを達成した。
 実施例16の支持体は、アスペクト比が200未満の太径繊維を使用し、かつ、太径繊維の繊維径が20.0μmを超えているため、半透膜塗布面の平滑性が低く、半透膜が非塗布面にまでやや滲み出していた。実施例17の支持体は、細径繊維のアスペクト比が2000を超えているため、繊維のもつれが発生していて地合が悪かったが、半透膜の滲み込みは良好であった。
 実施例18の支持体は、アスペクト比が200未満の細径繊維を使用しているため、抄紙ワイヤーからの剥離性が悪かったが、半透膜の滲み込みは実用上使用可能なレベルであった。実施例19の支持体は、アスペクト比が1000を超える太径繊維を使用しているために、地合が悪かったが、実用上使用可能な半透膜の滲み込みは良好であり、非塗布面の接着性も実用上使用可能なレベルであった。
 実施例20の半透膜支持体は、半透膜塗布面層と非塗布面層の両方において、細径繊維を含んでおらず、また、太径繊維の繊維径が20.0μmを超えているため、地合が悪くなる傾向が見られた。
 実施例21の半透膜支持体は、太径繊維と細径繊維を含み、融点の異なる2種類のバインダー合成繊維配合したものであり、半透膜塗布面が加熱金属ロールに長く接しているために平滑性が高く、半透膜の滲み込み、非塗布面の接着性は共に良好であった。
 比較例1の半透膜支持体は、実施例1の半透膜支持体と繊維配合が同じであるが、半透膜塗布面と非塗布面との平滑性に差がないため、実施例1と比較して、半透膜滲み込み及び非塗布面接着性が劣っていた。
 比較例2の半透膜支持体は、太径繊維の繊維径が20.0μmを超えているため、半透膜塗布面の平滑性が低くなって、半透膜塗布面と非塗布面との平滑性の比が0.9:1.0となり、半透膜溶液の滲み込みが多かった。比較例3の支持体は、半透膜塗布面より非塗布面の平滑性が高いために、半透膜の滲み込みが悪く、半透膜接着性及び非塗布面接着性は実用上、下限レベルであった。
 比較例4の半透膜支持体は、実施例11の半透膜支持体と層構成が同一であるが、熱圧加工を3回実施していて、さらに、半透膜塗布面に加熱金属ロールが3回接しているため、半透膜塗布面及び非塗布面の平滑性が実施例11よりも高くなり、半透膜塗布面と非塗布面との平滑性の比も5.0:1.0を超えていた。そのため、実施例11と比較して、半透膜接着性が低下し、非塗布面接着性も悪化した。
 比較例5の半透膜支持体は、実施例14の半透膜支持体の表裏面を逆転させたものであるが、その結果、非塗布面の平滑性が高すぎるため、接着剤が十分に浸透せず、非塗布面接着性が非常に悪かった。
 比較例6及び7の半透膜支持体は、半透膜塗布面より非塗布面の平滑性が高いため、半透膜の滲み込みが悪かった。
 比較例8の半透膜支持体は、実施例21の半透膜支持体の表裏面を逆転させたものであるが、その結果、非塗布面の平滑性が高くなり、接着剤が十分に浸透せず、非塗布面接着性が悪かった。
 比較例9の半透膜支持体は、実施例20の半透膜支持体の表裏面を逆転させたものであるが、その結果、非塗布面の平滑性が高くなり、接着剤が十分に浸透せず、非塗布面接着性が悪かった。
(実施例22)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.8μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.4μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を25:25:20:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/m、主体合成繊維の平均繊維径が12.2μmであるシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力800N/cm、加工速度20m/minの条件で加工した。ヤンキードライヤーに接触した面を半透膜塗布面とし、その表面粗さを表面粗さ計(KEYENCE社製、商品名:VK8510)で測定し、JIS B0601に記載の方法で求めた半透膜塗布面表面のRaが8.5μm、Rzが100μmである半透膜支持体を得た。
(実施例23)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.8μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.4μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を10:20:40:30の配合比率とし、主体合成繊維の平均繊維径が14.7μmであり、半透膜塗布面表面のRaが10.6μm、Rzが114μmとした以外は、実施例22と同様の方法で、半透膜支持体を得た。
(実施例24)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.8μm、繊維長5mm)、主体合成繊維(延伸ポリエステル系繊維、繊維径12.4μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を50:20:30の配合比率とし、主体合成繊維の平均繊維径が9.1μmであり、半透膜塗布面表面のRaが6.0μm、Rzを50μmとした以外は、実施例22と同様の方法で、半透膜支持体を得た。
(実施例25)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.8μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.4μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維(繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を10:10:50:30の配合比率とし、主体合成繊維の平均繊維径が15.4μmであり、半透膜塗布面表面のRaが11.0μm、Rzを123μmとした以外は、実施例22と同様の方法で、半透膜支持体を得た。
(実施例26)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.8μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を50:20:30の配合比率とし、主体合成繊維の平均繊維径が10.6μmであり、半透膜塗布面表面のRaが7.9μm、Rzを85μmとした以外は、実施例22と同様の方法で、半透膜支持体を得た。
(実施例27)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.8μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径24.7μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を40:20:10:30の配合比率とし、主体合成繊維の平均繊維径が13.0μmであり、半透膜塗布面表面のRaが8.2μm、Rzを90μmとした以外は、実施例22と同様の方法で、半透膜支持体を得た。
(実施例28)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.4μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を20:60:20の配合比率とし、主体合成繊維の平均繊維径が16.2μmであり、温度160℃、圧力1200N/cm、加工速度20m/minの条件で加工し、半透膜塗布面表面のRaが14.0μm、Rzを160μmとした以外は、実施例22と同様の方法で、半透膜支持体を得た。
(比較例10)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径24.7μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70:30の配合比率とし、主体合成繊維の平均繊維径が24.7μmであり、半透膜塗布面表面のRaが17.5μm、Rzを180μmとした以外は、実施例22と同様の方法で、半透膜支持体を得た。
(比較例11)
 主体合成繊維(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70:30の配合比率とし、主体合成繊維の平均繊維径が12.4μmであり、半透膜塗布面表面のRaが15.2μm、Rzを155μmとした以外は、比較例10と同様の方法で、半透膜支持体を得た。
(比較例12)
 主体合成繊維(延伸ポリエステル系繊維、繊維径7.8μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を60:40の配合比率とし、主体合成繊維の平均繊維径が7.8μmであり、温度200℃、圧力1200N/cm、加工速度20m/minの条件で加工し、半透膜塗布面表面のRaが4.5μm、Rzを45μmとした以外は、比較例10と同様の方法で、半透膜支持体を得た。
 実施例22~28及び比較例10~12で得られた半透膜支持体に対して、試験2、5、7の評価を行い、結果を表7に示した。
Figure JPOXMLDOC01-appb-T000007
 実施例22~28の半透膜支持体は、半透膜厚み均一性及び支持体−半透膜剥離強度において、実用上可能なレベルを達成した。また、半透膜塗布面表面のRzが150μm以下である実施例22~27において、半透膜厚み均一性及び半透膜−半透膜剥離強度がより優れていた。主体合成繊維を1種のみ含有し、半透膜塗布面表面のRaが5.0μm未満又は15.0μmを超えている比較例10~12の半透膜支持体は、半透膜厚み均一性が許容範囲外であるか、又は、半透膜接着性が実用上下限レベル又は使用不可レベルであった。
(実施例29)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.9μm、繊維長5mm)の延伸ポリエステル系繊維、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.1μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を50:20:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/m、主体合成繊維の平均繊維径が9.1μmであるシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、ブリストーテスタによる半透膜塗布面の吸収係数が25ml/m・msec1/2である半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面を半透膜塗布面とした。
(実施例30)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径5.3μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径7.9μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を45:25:30の配合比率とし、主体合成繊維の平均繊維径が6.2μmであり、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力820N/cm、加工速度10m/minの条件で加工し、半透膜塗布面の吸収係数を7ml/m・msec1/2とした以外は実施例29と同一の方法で、半透膜支持体を得た。
(実施例31)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.9μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.1μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を15:10:45:30の配合比率とし、主体合成繊維の平均繊維径が14.7μmであり、半透膜塗布面の吸収係数を75ml/m・msec1/2とした以外は実施例29と同一の方法で、半透膜支持体を得た。
(実施例32)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.1μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を20:50:30の配合比率とし、主体合成繊維の平均繊維径が16.0μmであり、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、圧力820N/cm、加工速度10m/minの条件で加工し、半透膜塗布面の吸収係数を70ml/m・msec1/2とした以外は実施例29と同一の方法で、半透膜支持体を得た。
(比較例13)
 主体合成繊維(延伸ポリエステル系繊維、繊維径24.7μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70:30の配合比率とし、主体合成繊維の平均繊維径を24.7μm、半透膜塗布面の吸収係数を111ml/m・msec1/2とした以外は実施例29と同一の方法で、半透膜支持体を得た。
(比較例14)
 主体合成繊維(延伸ポリエステル系繊維、繊維径5.3μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を50:50の配合比率とし、主体合成繊維の平均繊維径を5.3μm、半透膜塗布面の吸収係数を4ml/m・msec1/2とした以外は実施例29と同一の方法で、半透膜支持体を得た。
 実施例29~32、比較例13~14で得られた半透膜支持体に対して、試験2、4、6、7の評価を行い、結果を表8に示した。
Figure JPOXMLDOC01-appb-T000008
 実施例29~32の半透膜支持体は、半透膜滲み込み、非塗布面接着性及び半透膜厚み均一性の評価において、実用上使用可能なレベルを達成した。これに対し、主体合成繊維を1種のみ含有し、吸収係数が5ml/m・msec1/2未満又は100ml/m・msec1/2を超えている比較例13~14の半透膜支持体は、半透膜滲み込み、非塗布面接着性、半透膜厚みの均一性を同時に満たすものではなかった。
(実施例33)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.9μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.1μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を40:30:30の配合比率とし、水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に一方の加熱金属ロールを抱いて一方の面がより加熱されるように加工し、主体合成繊維の平均繊維径が9.7μm、ブリストーテスタによる半透膜支持体の塗布面表面の接触時間0.2secにおける動的液体転移量が19ml/mである半透膜支持体を得た。、なお、ヤンキードライヤーに接した面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面を半透膜塗布面とした。
(実施例34)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.9μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径24.7μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を20:40:10:30の配合比率とし、主体合成繊維の平均繊維径が15.8μmであり、ブリストーテスタによる半透膜塗布面の接触時間0.2secにおける動的液体転移量を22ml/mとした以外は実施例33と同一の方法で、半透膜支持体を得た。
(実施例35)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径5.3μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径7.9μm、繊維長5mm)、バインダー合成繊維(太径繊維、未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を55:15:30の配合比率とし、主体合成繊維の平均繊維径が5.8μmであり、ブリストーテスタによる半透膜塗布面の接触時間0.2secにおける動的液体転移量を16ml/mとした以外は実施例33と同一の方法で、半透膜支持体を得た。
(実施例36)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.9μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径24.7μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を20:40:10:30の配合比率とし、主体合成繊維の平均繊維径が15.8μmであり、加工条件を温度200℃、圧力700N/cm、速度20m/minとし、ブリストーテスタによる半透膜塗布面の接触時間0.2secにおける半透膜塗布面の動的液体転移量が30ml/mとした以外は実施例33と同一の方法で、半透膜支持体を得た。
(実施例37)
 主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径7.9μm、繊維長5mmの延伸ポリエステル系繊維)、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径12.1μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を40:30:30の配合比率とし、主体合成繊維の平均繊維径が9.7μmであり、加工条件を温度200℃、圧力900N/cm、速度20m/minとし、ブリストーテスタによる半透膜塗布面の接触時間0.2secにおける半透膜塗布面の動的液体転移量が6ml/mとした以外は実施例33と同一の方法で、半透膜支持体を得た。
(比較例15)
 主体合成繊維(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70:30の配合比率とし、主体合成繊維の平均繊維径が17.5μmであり、ブリストーテスタによる半透膜塗布面の接触時間0.2secにおける半透膜塗布面の動的液体転移量を32ml/mとした以外は実施例33と同一の方法で、半透膜支持体を得た。
(比較例16)
 主体合成繊維(延伸ポリエステル系繊維、繊維径5.3μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を50:50の配合比率とし、主体合成繊維の平均繊維径を5.3μm、ブリストーテスタによる半透膜塗布面の接触時間0.2secにおける半透膜塗布面の動的液体転移量を4ml/mとした以外は実施例33と同一の方法で、半透膜支持体を得た。
 実施例33~37、比較例15~16で得られた半透膜支持体に対して、試験2、4、5、7の評価を行い、結果を表9に示した。
Figure JPOXMLDOC01-appb-T000009
 実施例33~37の半透膜支持体は、厚みの均一な半透膜を得ることが可能となり、半透膜が裏抜けせず、半透膜−半透膜支持体接着性の評価において、実用上使用可能なレベルを達成した。これに対し、主体合成繊維を1種のみ含有し、かつ、動的液体転移量が30ml/mを超えている比較例15の半透膜支持体は、厚みの均一な半透膜が得られなかった。また、主体合成繊維を1種のみ含有し、かつ、動的液体転移量が5ml/m未満である比較例16の半透膜支持体は、半透膜−半透膜支持体間の良好な接着性を得ることができなかった。
 表10に、実施例1~21及び比較例1~9で得られた半透膜支持体の半透膜塗布面表面の算術平均粗さ(Ra)、十点平均粗さ(Rz)、ブリストーテスタでの吸収係数、ブリストーテスタでの接触時間0.2secにおける動的液体転移量及び評価7の結果を示した。
 実施例1~15、17~21、比較例5、8、9の半透膜支持体は、Raが5.0~15.0μmで、Rzが150μm以下で、吸収係数が5~100ml/m・msec1/2で、動的液体転移量が5~30ml/mであり、半透膜厚み均一性は良好であった。実施例16及び比較例6の半透膜支持体は、Raが15.0μmを超え、吸収係数が100ml/m・msec1/2を超え、動的液体転移量も30ml/mを超えたため、半透膜厚み均一性が低かった。比較例1の半透膜支持体は、Raが15.0μmを超え、動的液体転移量も30ml/mを超えたため、半透膜厚み均一性が低かった。比較例2及び7の半透膜支持体は、吸収係数が100ml/m・msec1/2を超え、動的液体転移量も30ml/mを超えたため、半透膜厚み均一性が低かった。比較例3の半透膜支持体は、Raが15.0μmを超え、吸収係数が100ml/m・msec1/2を超え、動的液体転移量も30ml/mを超えたため、半透膜厚み均一性が低かった。比較例4の半透膜支持体は、Raが5.0μm未満であるため、表5に示したように、半透膜接着性が低かった。
Figure JPOXMLDOC01-appb-T000010
 パラアラミド繊維(繊度2.5dtex、繊維長3mm)を初期濃度5%になるように水に分散させ、ダブルディスクリファイナーを用いて、クリアランスを回数毎に狭めながら15回繰り返し叩解処理した後、高圧ホモジナイザーを用いて50MPaの条件で35回繰り返し処理し、質量平均繊維長0.24mmの液晶性高分子パルプを作製した。
(実施例38)
 半透膜塗布面層として、液晶性高分子パルプ、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を0.5:79.5:20.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例39)
 半透膜塗布面層として、液晶性高分子パルプ、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を10.0:70.0:20.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例40)
 半透膜塗布面層として、液晶性高分子パルプ、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を20.0:60.0:20.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層15g/m、非塗布面層65g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例41)
 半透膜塗布面層として、液晶性高分子パルプ、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を0.3:79.7:20の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例42)
 半透膜塗布面層として、液晶性高分子パルプ、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を22.5:57.5:20の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層15g/m、非塗布面層65g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例43)
 液晶性高分子パルプ、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を10.0:70.0:20.0の配合比率で水に混合分散し、傾斜ワイヤー抄紙機を用いて、乾燥質量で80g/mの単層の湿紙を形成した後、熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接した面を半透膜塗布面とした。
(実施例44)
 半透膜塗布面層として、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を80.0:20.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(比較例17)
 半透膜塗布面層として、主体合成繊維(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を80.0:20.0の配合比率で水に混合分散し、円網抄紙機で、乾燥質量で80g/mの湿紙を形成した後、半透膜塗布面が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
 実施例38~44及び比較例17で得られた半透膜支持体に対して、試験1、2、4、5、6、8の評価を行い、結果を表11に示した。
Figure JPOXMLDOC01-appb-T000011
 実施例38~44の半透膜支持体は、非塗布面層が主体合成繊維及びバインダー合成繊維を含んでいるため、非塗布面同士の接着性に優れていた。比較例17の半透膜支持体は、主体合成繊維を1種しか含有してなく、また、液晶性高分子パルプも含有していないため、半透膜滲み込みの評価が悪かった。実施例44の半透膜支持体と比較して、実施例38~43の半透膜支持体は、半透膜塗布面層に液晶性高分子パルプを配合することにより、半透膜塗布面の平滑性が高くなり、また、半透膜滲み込みの評価において、良好な結果が得られた。半透膜塗布面層に対する液晶性高分子パルプの含有量が0.5~20.0質量%である実施例38~40及び43では、半透膜と半透膜支持体との接着性及び熱収縮の両方において、良好な結果が得られた。
 割繊性アクリル繊維(繊度1.2dtex、繊維長6mm、アクリル/セルロースアセテートの複合繊維、三菱レイヨン社製)を、シングルディスクリファイナーを用いて30回繰り返し処理し、平均繊維径6μmの幹部から平均繊維径1μm以下の枝部が発生したフィブリル化アクリル繊維を調製した。
(実施例45)
 半透膜塗布面層として、フィブリル化アクリル繊維、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を0.5:79.5:20.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例46)
 半透膜塗布面層として、フィブリル化アクリル繊維、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を10.0:70.0:20.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例47)
 半透膜塗布面層として、フィブリル化アクリル繊維、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を20.0:60.0:20.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層15g/m、非塗布面層65g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例48)
 半透膜塗布面層として、フィブリル化アクリル繊維、主体合成繊維(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を0.3:79.7:20.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例49)
 半透膜塗布面層として、フィブリル化アクリル繊維、主体合成繊維(延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を22.0:58.0:20.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで非塗布面層として、主体合成繊維(延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層15g/m、非塗布面層65g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例50)
 半透膜塗布面層として、主体合成繊維、(細径繊維、アクリル系繊維、繊維径10.9μm、繊度1.1dtex、繊維長5mm)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を10.0:70.0:20.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
 実施例45~50で得られた半透膜支持体に対して、試験1、2、4、5、6、9の評価を行い、結果を表12に示した。
Figure JPOXMLDOC01-appb-T000012
 実施例45~50の半透膜支持体は、非塗布面層が主体合成繊維及びバインダー合成繊維を含んでいるため、非塗布面同士の接着性に優れていた。実施例50の半透膜支持体と比較して、実施例45~49の半透膜支持体は、半透膜塗布面層にフィブリル化アクリル繊維が含まれているので、半透膜塗布面の平滑性が優れており、また、半透膜の裏抜けが抑制されていた。また、半透膜塗布面の毛羽立ち抑制効果が高いことが認められた。特に、半透膜塗布面層のフィブリル化アクリル繊維の含有量が0.5~20.0質量%である実施例45~47の半透膜支持体では、半透膜塗布面の毛羽立ちが抑制され、かつ、半透膜と半透膜支持体との接着性にも優れていた。
 ダブルディスクリファイナー(DDR)を用いて、フィブリル化していないリヨセル単繊維(1.7dtex×4mm、コートルズ社製)を処理し、(A)平均繊維径1μm以下のフィブリル化リヨセル繊維と、(B)平均繊維径4μmの幹部から平均繊維径1μm以下の枝部が発生したフィブリル化リヨセル繊維の混合繊維を調製した。
(実施例51)
 半透膜塗布面層として、フィブリル化リヨセル繊維の混合繊維、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を0.5:69.5:30.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機で、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例52)
 半透膜塗布面層として、フィブリル化リヨセル繊維の混合繊維、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を10.0:60.0:30.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例53)
 半透膜塗布面層として、上記フィブリル化リヨセル繊維の混合繊維、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を20.0:50.0:30.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層15g/m、非塗布面層65g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例54)
 半透膜塗布面層として、フィブリル化リヨセル繊維の混合繊維、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を0.3:69.7:30.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例55)
 半透膜塗布面層として、上記フィブリル化リヨセル繊維の混合繊維、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を22.5:47.5:30.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで、非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層15g/m、非塗布面層65g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
(実施例56)
 半透膜塗布面層として、主体合成繊維(細径繊維、延伸ポリエステル系繊維、繊維径12.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、撹拌装置を有するストックタンクに貯蔵した。次いで非塗布面層として、主体合成繊維(太径繊維、延伸ポリエステル系繊維、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70.0:30.0の配合比率で水に混合分散し、半透膜塗布面層用の分散液とは別に、撹拌装置を有するストックタンクに貯蔵した。傾斜ワイヤー抄紙機と円網抄紙機とのコンビネーションマシンを用いて、半透膜塗布面層を傾斜ワイヤー抄紙機、非塗布面層を円網抄紙機で、乾燥質量で半透膜塗布面層20g/m、非塗布面層60g/mの抄き合わせ湿紙を形成した後、半透膜塗布面層が表面温度130℃のヤンキードライヤーに接触するように、熱圧乾燥し、抄き合わせ坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。
 実施例51~56で得られた半透膜支持体に対して、試験1、2、4、5,6の評価を行い、結果を表13に示した。
Figure JPOXMLDOC01-appb-T000013
 実施例51~56の半透膜支持体は、非塗布面層が主体合成繊維及びバインダー合成繊維を含んでいるため、非塗布面同士の接着性に優れていた。実施例56の半透膜支持体と比較して、実施例51~55の半透膜支持体は、半透膜塗布面層にフィブリル化リヨセル繊維が含まれているので、半透膜塗布面の平滑性が優れていた。また、半透膜の滲み込みが抑制されていた。実施例54の半透膜支持体は、ポリスルホン樹脂が半透膜支持体の非塗布面の極一部に滲み出ていたが、実施例56の半透膜支持体と比較すると良好であった。特に、半透膜塗布面層のフィブリル化リヨセル繊維の含有量が0.5~20.0質量%である実施例51~53の半透膜支持体では、半透膜の滲み込みが抑制されていると共に、半透膜接着性も優れていた。
(実施例57)
 主体合成繊維(延伸ポリエステル系繊維、伸び率48%、引張強さ0.41N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力980N/cm、加工速度25m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面をY面とし、その反対側の面をZ面とする。
(実施例58)
 主体合成繊維(延伸ポリエステル系繊維、伸び率23%、引張強さ0.75N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力780N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面をY面とし、その反対側の面をZ面とする。
(実施例59)
 主体合成繊維(延伸ポリエステル系繊維、伸び率80%、引張強さ0.51N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力780N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面をY面とし、その反対側の面をZ面とする。
(実施例60)
 主体合成繊維(延伸ポリエステル系繊維、伸び率60%、引張強さ0.36N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力980N/cm、加工速度25m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面をY面とし、その反対側の面をZ面とする。
(実施例61)
 主体合成繊維(延伸ポリエステル系繊維、伸び率120%、引張強さ0.31N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力780N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面をY面とし、その反対側の面をZ面とする。
(実施例62)
 主体合成繊維(延伸ポリエステル系繊維、伸び率140%、引張強さ0.26N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力780N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面をY面とし、その反対側の面をZ面とする。
(実施例63)
 主体合成繊維(延伸ポリエステル系繊維、伸び率30%、引張強さ0.44N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、さらに、ニップしていない120℃の加熱金属ロール2本をS字状に抱かせて巻取りを作製して、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面をY面とし、その反対側の面をZ面とする。
(実施例64)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、伸び率48%、引張強さ0.41N/tex、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、伸び率50%、引張強さ0.51N/tex、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面をY面とし、その反対側の面をZ面とする。
(実施例65)
 傾斜ワイヤー式抄紙機と円網抄紙機のコンビネーションマシンを用いて、2層構造のシートを製造した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、伸び率48%、引張強さ0.41N/tex、繊維径17.5μm、繊維長5mm、アスペクト比286)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、伸び率50%、引張強さ0.51N/tex、繊維径11.6μm、繊維長5mm、アスペクト比432)を30:30:40の配合比率で水に混合分散し、傾斜ワイヤー式抄紙機でZ面層の湿紙を形成した。主体合成繊維(太径繊維、延伸ポリエステル系繊維、伸び率50%、引張強さ0.51N/tex、繊維径11.6μm、繊維長5mm、アスペクト比432)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、伸び率45%、引張強さ0.41N/tex、繊維径8.6μm、繊維長5mm、アスペクト比583)を40:30:30の配合比率で水に混合分散し、円網抄紙機でY面層の湿紙を形成した後、二つの湿紙を抄き合わせ、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、Z面層とY面層の坪量比が1:1で、総坪量80g/mのシートを得た。
 得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で加工し、半透膜支持体を得た。なお、Y面がヤンキードライヤーに接するように熱圧乾燥した。
(比較例18)
 主体合成繊維(延伸ポリエステル系繊維、伸び率23%、引張強さ0.90N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力980N/cm、加工速度25m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面をY面とし、その反対側の面をZ面とする。
(比較例19)
 主体合成繊維(延伸ポリエステル系繊維、伸び率170%、引張強さ0.07N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工し、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面をY面とし、その反対側の面をZ面とする。
(比較例20)
 主体合成繊維(延伸ポリエステル系繊維、伸び率30%、引張強さ0.44N/tex、繊維径18.2μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径6.8μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mのシートを得た。得られたシートを、加熱金属ロールと加熱金属ロールの組み合わせのカレンダー装置を用いて、温度200℃、圧力785N/cm、加工速度20m/minの条件で、カレンダー装置でニップ後に、一方の加熱金属ロールを抱いて、一方の面がより加熱されるように加工した後に、ニップしていない120℃の加熱金属ロール2本をS字状に抱かせて強いテンションで引っ張りながら巻取りを作製して、半透膜支持体を得た。なお、ヤンキードライヤーに接しない面を抱いた金属ロール面に接するように加工し、抱いた金属ロール面に接した面をY面とし、その反対側の面をZ面とする。
 主体合成繊維の伸び率及び引張強さは、試験10及び11の方法で測定した。
試験10(主体合成繊維の伸び率)
 JIS L1013 2010に準じ、主体合成繊維の伸び率を測定した。
試験11(主体合成繊維の引張強さ)
 JIS L1013 2010に準じ、主体合成繊維の引張強さを測定した。
 実施例57~65及び比較例18~20で得られた半透膜支持体に対して、以下の評価を行い、結果を表14に示した。
試験2(平滑性)
 JIS P 8119に準じ、ベック平滑度試験機を用いて測定した。
試験12(5%伸長時の平均裂断長)
 半透膜支持体から縦×横=15mm×250mmの試験片を採取し、その試験片を用いて、JIS P 8113(1976)に準拠して、2個の掴み具の間隔を180mmとして、その縦方向及び横方向の引張強さを測定し、その5%伸長時に対応する荷重を読み裂断長を求めた。次いで、縦方向と横方向の裂断長の平均値{(縦方向の5%裂断長+横方向の5%裂断長)/2}を求めて、不織布の平均裂断長(5%伸長時)とした(単位:km)。半透膜支持体の測定箇所は、半透膜支持体の幅が1000mmを超えた場合、横方向で3箇所(右、中央、左)から採取し、各々の縦方向、横方向の裂断長を測定し、この3箇所全ての縦横平均値を平均裂断長(5%伸長時)とした。半透膜支持体の幅が500~1000mmの場合、横方向で2分割して2箇所(右側の中央、左側の中央)から採取し、各々の縦方向、横方向の裂断長を測定し、この2箇所全ての縦横平均値を平均裂断長(5%伸長時)とした。半透膜支持体の幅が500mm以下の場合は中央部の縦横平均値とした。
試験13(加熱寸法変化率)
 半透膜支持体を、縦方向200mm、横方向1000mmの長方形に裁断し、横方向の3箇所に印を付け、幅を0.1mm単位で測定しておく。寸法測定後の半透膜支持体を90℃の湯浴に10分間浸した後に水分を拭き取り、再度、同一の3箇所の幅を0.1mm単位で測定する。90℃湯浴に浸した前後の寸法変化量を算出し、湯浴に浸す前の寸法に対する加熱寸法変化率を求めた。
試験14(熱圧加工時の状況)
 不織布の熱圧加工に加熱ロール出口での断紙やシワの発生を確認した。断紙やシワの発生が無かった場合、「○」とした。
試験15(半透膜塗工時のシワ)
 半透膜支持体への半透膜塗工工程において、ポリスルホン(SIGMA−ALDRICH Corporation製、重量平均分子量M<35,000、数平均分子量M<16,000、商品番号428302)のDMF溶液(濃度18質量%、温度20℃)をY面又はZ面に塗布後、20℃の純水に浸してポリスルホンを凝固させた後、85℃湯浴での洗浄後のシワの発生状況を確認した。
試験16(半透膜滲み込み)
 一定のクリアランスを有する定速塗工装置(商品名:Automatic Film Applicator、安田精機社製)を用いて、半透膜支持体の塗布面にポリスルホン(SIGMA−ALDRICH Corporation製、重量平均分子量M<35,000、数平均分子量M<16,000、商品番号428302)のDMF溶液(濃度:18%)を塗工し、水洗、乾燥を行い、Y面又はZ面にポリスルホン膜を形成させて半透膜を作製し、半透膜の断面SEM写真を撮影して、ポリスルホンの半透膜支持体への滲み込み度合いを評価した。
◎:ポリスルホンが半透膜支持体の中心付近までしか滲み込んでいない。非常に良好なレベル。
○:ポリスルホンが半透膜支持体の非塗布面に滲み出ていない。良好なレベル。
△:ポリスルホンが半透膜支持体の非塗布面に一部滲み出ている。実用上、使用可能レベル。
×:ポリスルホンが半透膜支持体の非塗布面に滲み出ている。実用上、使用不可レベル。
試験17(半透膜接着性)
 試験16で作製した半透膜に関して、ポリスルホン樹脂からなる半透膜と半透膜支持体間の接着度合いを、剥離するときの抵抗度合いで判断した。
◎:半透膜と半透膜支持体の接着性が非常に高く、剥離できない。非常に良好なレベル。
○:部分的に剥離しやすい所が存在する。良好なレベル。
△:半透膜と半透膜支持体とが接着はしているが、全体的に剥離しやすい。実用上、下限レベル。
×:半透膜塗工後の水洗又は乾燥工程で剥離が発生する。使用不可レベル。
試験18(非塗布面接着性)
 試験16で半透膜を作製した半透膜支持体の半透膜が塗工されていない面(非塗布面)同士の間に、加温して溶融させた酢酸ビニル系接着剤を塗布して、直ぐに加圧して接着させた。接着後、サンプルを幅25mm、長さ200mmに裁断し、引張試験機(商品名:STA−1150テンシロン引張試験機、オリエンテック社製)を使用し、剥離角度180度、剥離速度100mm/minで接着部の剥離テストを行い、非塗布面接着性を評価した。
◎:剥離強度が極めて高く、半透膜支持体層内部で剥離が起こっている。
○:剥離強度が高く、接着剤と半透膜支持体間で部分的に剥離が起こっているが、大部分の剥離は半透膜支持体層内部で剥離が起こっている。
△:剥離強度がやや高く、接着剤と半透膜支持体間での剥離が起こっているが、半透膜支持体層内部でも剥離が確認される。実用上、下限レベル。
×:剥離強度が低く、全体的に接着剤と半透膜支持体の間で剥離が起こっている。使用不可レベル。
Figure JPOXMLDOC01-appb-T000014
 実施例57~65の半透膜支持体は、平均裂断長(5%伸長時)が4.0km未満であり、加熱寸法変化率が−0.3~1.0%であり、熱圧加工時の断紙や収縮によるシワの発生がなかった。半透膜塗工時も、実施例57~61、64及び65ではシワの発生がなく、実施例62~63では僅かにシワの発生があったが、実用レベルであった。比較例18の半透膜支持体は、平均裂断長(5%伸長時)が4.0km以上で、繊維の引張強さが0.90N/texと高く、平均裂断長(5%伸長時)が高いものであり、熱圧加工の際に、加熱ロール出口で断紙が発生した。比較例19の半透膜支持体は、加熱寸法変化率が−0.3%未満で、繊維の引張強さが0.07N/texと弱く、繊維の伸び率が170%と高く、熱圧加工の際に幅収縮が大きく、エッジにシワが発生した。また、半透膜塗工時の湯洗浄工程でエッジ部がカールし、シワが発生した。比較例20の半透膜支持体は、平均裂断長(5%伸長時)が4.0km以上と高く、加熱寸法変化率も1.0%を超えていたことから、半透膜塗工時の湯洗浄工程において、横方向全体でカールし、シワが発生した。
 実施例57、59~62、64、比較例19、20では、平滑性の高いY面に半透膜を塗工した場合の半透膜の滲み込みは、Z面に半透膜を塗工した場合よりも良好となった。また、実施例61、62、比較例19では、平滑性の高いY面に半透膜を塗工した場合の非塗布面の接着性は、Z面に半透膜を塗工した場合よりも良好となった。
(実施例66)
 主体合成繊維(細径繊維、伸び率60%、引張強さ0.31N/tex、繊維径7.9μm、延伸ポリエステル系繊維)主体合成繊維(太径繊維、伸び率50%、引張強さ0.51N/tex、繊維径12.1μm、延伸ポリエステル系繊維)を25質量%、主体合成繊維(太径繊維、伸び率48%、引張強さ0.41N/tex、繊維径17.5μmの延伸ポリエステル系繊維を20質量%、バインダー合成繊維(未延伸ポリエステル系繊維、融点230℃)を25:25:20:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mの繊維基材を得た。繊維長はすべて5mmである。ヤンキードライヤーに接した面を半透膜塗布面とした。
 上下共に誘導発熱方式のジャケットロールからなる金属ロールの組み合わせを有するカレンダー装置で、両方の金属ロールの表面温度を200℃とし、ニップ圧力700N/cm、加工速度20m/minの条件で、得られた繊維基材に熱圧加工を行い、半透膜支持体を得た。
(実施例67)
 金属ロールの表面温度を190℃とした以外は、実施例66と同様の方法で、半透膜支持体を得た。
(実施例68)
 金属ロールの表面温度を180℃とした以外は、実施例66と同様の方法で、半透膜支持体を得た。
(実施例69)
 金属ロールの表面温度を230℃とした以外は、実施例66と同様の方法で、半透膜支持体を得た。
(実施例70)
 金属ロールの表面温度を240℃とした以外は、実施例66と同様の方法で、半透膜支持体を得た。
(実施例71)
 バインダー合成繊維として、融点260℃の未延伸ポリエステル系バインダー合成繊維30質量%を使用し、誘導発熱方式のジャケットロールからなる金属ロールの表面温度を230℃とした以外は、実施例66と同様の方法で、半透膜支持体を得た。
(実施例72)
 金属ロールの表面温度を220℃とした以外は、実施例71と同様の方法で、半透膜支持体を得た。
(実施例73)
 金属ロールの表面温度を210℃とした以外は、実施例71と同様の方法で、半透膜支持体を得た。
(実施例74)
 上下共に誘導発熱方式のジャケットロールからなる金属ロールの代わりに、上下共に誘導発熱方式の金属ロールを使用し、その表面温度を200℃とした以外は、実施例66と同様の方法で、半透膜支持体を得た。
(実施例75)
 上下共に誘導発熱方式のジャケットロールからなる金属ロールの代わりに、上下共にオイル循環式のジャケットロールを使用し、その表面温度を200℃とした以外は、実施例66と同様の方法で、半透膜支持体を得た。
(実施例76)
 上下共に誘導発熱方式のジャケットロールからなる金属ロールの代わりに、上下共にオイル循環式の金属ロールを使用し、その表面温度を160℃とした以外は、実施例66と同様の方法で、半透膜支持体を得た。
(実施例77)
 金属ロールの表面温度を250℃とした以外は、実施例76と同様の方法で、半透膜支持体を得た。
(実施例78)
 金属ロールの表面温度を170℃とした以外は、実施例66と同様の方法で、半透膜支持体を得た。
(実施例79)
 金属ロールの表面温度を250℃とした以外は、実施例66と同様の方法で、半透膜支持体を得た。
(実施例80)
 上下共に誘導発熱方式のジャケットロールからなる金属ロールの代わりに、上下共にロール内部に埋設された複数の電熱線により加熱する方式の金属ロールを使用し、その表面温度を170℃とした以外は、実施例66と同様の方法で、半透膜支持体を得た。
 実施例66~80で得られた半透膜支持体に対して、試験12、13、19及び20の評価を行い、結果を表15に示した。
試験19(通気性プロファイル)
 1m幅で作成した半透膜支持体をJIS L1079に従い、通気度計(KES−F8−AP1:カトーテック株式会社製)で幅方向5cmおきに20点、流れ方向で2m下流の幅方向5cmおきに20点、合計40点の通気度[cc/cm・sec]を測定し、最大値及び最小値の差を半透膜支持体の通気性プロファイルの指標とした。1.0以下が許容範囲である。
試験20(毛羽立ち)
 1m幅で作製した半透膜支持体の幅方向で中央部の30cmを断裁し、半透膜塗布面表面で山折にした後、折り目を付け、折り目の上にステンレス製の直径5cm、長さ40cmの円柱状ロールを転がし、折り目に発生した繊維の毛羽立ち本数を計測した。測定はn=4で行い、平均値を示す。
0~10本:毛羽立ちが少なく、非常に良好なレベル。
11~20本:良好なレベル。
21~30本:実用上、下限レベル。
31本以上:使用不可レベル。
Figure JPOXMLDOC01-appb-T000015
 実施例66~73の半透膜支持体は、誘導発熱方式のジャケットロールからなる金属ロールを使用し、バインダー合成繊維の融点に対して−50℃~+10℃の表面温度を有するロールを半透膜塗布面に接触させて、熱圧加工が行われているため、毛羽立ちが少なく、半透膜支持体の通気性プロファイルも良好で、実用上使用可能なレベルを達成した。誘導発熱方式のジャケットロールからなる金属ロールを使用した実施例66と誘導発熱方式の金属ロールを使用した実施例74を比較すると、実施例66の方が、通気性プロファイル及び毛羽立ちの評価結果が良好であった。誘導発熱方式のジャケットロールからなる金属ロールを使用した実施例66とオイル循環式のジャケットロールからなる金属ロールを使用した実施例75を比較すると、実施例66の方が、通気性プロファイル及び毛羽立ちの評価結果が良好であった。
 オイル循環式の金属ロールを使用し、バインダー合成繊維の融点に対して−70℃の表面温度を有するロールを半透膜塗布面に接触させて、熱圧加工が行われている実施例76では、毛羽立ちが多く、通気性プロファイルも悪化していた。オイル循環式の金属ロールを使用し、バインダー合成繊維の融点に対して+20℃の表面温度を有するロールを半透膜塗布面に接触させて、熱圧加工が行われている実施例77では、半透膜支持体が金属ロールに貼り付いたため、通気性プロファイルが悪化していた。
 誘導発熱方式のジャケットロールからなる金属ロールを使用し、バインダー合成繊維の融点に対して−60℃の表面温度を有するロールを半透膜塗布面に接触させて、熱圧加工が行われている実施例78では、毛羽立ちが発生し、実用上下限レベルであった。誘導発熱方式のジャケットロールからなる金属ロールを使用し、バインダー合成繊維の融点に対して+20℃の表面温度を有するロールを半透膜塗布面に接触させて、熱圧加工が行われている実施例79では、毛羽立ちが発生し、半透膜支持体が金属ロールに貼り付いたため、通気性プロファイルが悪化していた。電熱線により加熱する方式の金属ロールを使用し、バインダー合成繊維の融点に対して−60℃の表面温度を有するロールを半透膜塗布面に接触させて、熱圧加工が行われている実施例80では、毛羽立ちが多く、半透膜支持体の通気性プロファイルも悪化していた。
(実施例81)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、伸び率55%、引張強さ0.38N/tex、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維、(細径繊維、延伸ポリエステル系繊維、伸び率48%、引張強さ0.35N/tex、繊維径11.6μm、繊維長5mm)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mの繊維基材(シート)の巻取りを作製した。
 繊維基材の巻取りを巻き出し装置に設置し、ヤンキードライヤーによる熱圧乾燥から20分後に、繊維基材を、加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力1000N/cm)、加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力800N/cm)が直列に配列されている装置を用いて、熱圧加工速度30m/min(繊維基材が第一の熱圧ロールニップを通過後12秒後に第二の熱圧ロールニップを通過)の条件で加工し、半透膜支持体を得た。なお、第二の熱圧ロールニップの加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例82)
 ヤンキードライヤーによる熱圧乾燥から20分後に、加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力1000N/cm)、加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力800N/cm)が直列に配列されている装置を用いて、熱圧加工速度10m/min(繊維基材が第一の熱圧ロールニップを通過後36秒後に第二の熱圧ロールニップを通過)の条件で加工した以外は、実施例81と同様の方法で、半透膜支持体を得た。なお、第二の熱圧ロールニップの加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例83)
 ヤンキードライヤーによる熱圧乾燥から20分後に、加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力1000N/cm)、加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力800N/cm)が直列に配列されている装置を用いて、第二の熱圧ロールニップの位置を後方に移動して、熱圧加工速度30m/min(繊維基材が第一の熱圧ロールニップを通過後60秒後に第二の熱圧ロールニップを通過)の条件で加工した以外は、実施例81と同様の方法で、半透膜支持体を得た。なお、第二の熱圧ロールニップの加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例84)
 ヤンキドライヤーによる熱圧乾燥から20分後に、加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力1000N/cm)、紙製造に使われているスーパーカレンダーのように、上から順にコットンロール(加熱なし)と加熱金属ロール(200℃)と加熱金属ロール(200℃)が垂直方向に3本組み合わされたカレンダー装置(コットンロールと加熱金属ロールの第二ニップ圧、加熱金属ロールと加熱金属ロールの第三ニップ圧力は共に1000N/cm)が直列に配列されている装置を用いて、加工速度10m/min(繊維基材が第一の熱圧ロールニップを通過後36秒後に第二の熱圧ロールニップを通過し、第二の熱圧ロールニップを通過後、上から2本目(真ん中)の加熱金属ロールに添わせ、6秒後に第三の熱圧ロールニップを通過)の条件で加工した以外は、実施例81と同様の方法で、半透膜支持体を得た。なお、第二の熱圧ロールニップ及び第三の熱圧ロールニップ時に、上から2本目(真ん中)の加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例85)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、伸び率40%、引張強さ0.55N/tex、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、伸び率42%、引張強さ0.45N/tex、繊維径8.6μm、繊維長5mm)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mの繊維基材(シート)の巻取りを作製した。
 得られた繊維基材の巻取りを巻き出し装置に設置し、ヤンキードライヤーによる熱圧乾燥から20分後に、繊維基材を、加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力1000N/cm)、加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力800N/cm)が直列に配列されている装置を用いて、熱圧加工速度30m/min(繊維基材が第一の熱圧ロールニップを通過後12秒後に第二の熱圧ロールニップを通過)の条件で加工し、半透膜支持体を得た。なお、第二の熱圧ロールニップの加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例86)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、伸び率45%、引張強さ0.52N/tex、繊維径24.7μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維(細径繊維、延伸ポリエステル系繊維、伸び率50%、引張強さ0.38N/tex、繊維径17.5μm、繊維長5mm)を35:30:35の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mの繊維基材(シート)の巻取りを作製した。
 得られた繊維基材の巻取りを巻き出し装置に設置し、ヤンキドライヤーによる熱圧乾燥から20分後に、繊維基材を、加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力1000N/cm)、加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力800N/cm)が直列に配列されている装置を用いて、熱圧加工速度10m/min(繊維基材が第一の熱圧ロールニップを通過後36秒後に第二の熱圧ロールニップを通過)の条件で加工し、半透膜支持体を得た。なお、第二の熱圧ロールニップの金属ロール面に接した面を半透膜塗布面とした。
(実施例87)
 ヤンキドライヤーによる熱圧乾燥から20分後に、紙製造に使われているスーパーカレンダーのように、上から順にコットンロール(加熱なし)と加熱金属ロール(200℃)と加熱金属ロール(200℃)が垂直方向に3本組み合わされたカレンダー装置(コットンロールと加熱金属ロールの第一ニップ圧、加熱金属ロールと加熱金属ロールの第二ニップ圧力は共に1000N/cm)を用いて、加工速度30m/min(繊維基材が第一の熱圧ロールニップを通過後、上から2本目(真ん中)の加熱金属ロールに添わせ、2秒後に第二の熱圧ロールニップを通過)の条件で加工した以外は、実施例81と同様の方法で、半透膜支持体を得た。なお、上から2本目(真ん中)の加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例88)
 ヤンキドライヤーによる熱圧乾燥から20分後に、加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置を用いて、ロールニップ圧力1000N/cm、熱圧加工速度30m/minの条件で加工し、巻き上げた(1パス目)後、10分後に1パス加工品を巻きだして、加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置を用いて、ロールニップ圧力800N/cm、熱圧加工速度30m/minの条件で加工(2パス目)した以外は、実施例81と同様の方法で、半透膜支持体を得た。なお、2パス目に加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例89)
 ヤンキドライヤーによる熱圧乾燥から20分後に、加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力1000N/cm)、加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力800N/cm)が直列に配列されている装置を用いて、第二の熱圧ロールニップの位置を後方に移動して、熱圧加工速度30m/min(繊維基材が第一の熱圧ロールニップを通過後70秒後に第二の熱圧ロールニップを通過)の条件で加工した以外は、実施例81と同様の方法で、半透膜支持体を得た。なお、第二の熱圧ロールニップの加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例90)
 主体合成繊維(延伸ポリエステル系繊維、伸び率63%、引張強さ0.47N/tex、繊維径24.7μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)を70:30の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mの繊維基材(シート)の巻取りを作製した。
 得られた繊維基材の巻取りを巻き出し装置に設置し、ヤンキードライヤーによる熱圧乾燥から20分後に、繊維基材を、紙製造に使われているスーパーカレンダーのように、上から順にコットンロール(加熱なし)と加熱金属ロール(200℃)と加熱金属ロール(200℃)が垂直方向に3本組み合わされたカレンダー装置(コットンロールと加熱金属ロールの第一ニップ圧、加熱金属ロールと加熱金属ロールの第二ニップ圧力は共に1000N/cm)を用いて、加工速度30m/min(繊維基材が第一の熱圧ロールニップを通過後、上から2本目(真ん中)の加熱金属ロールに添わせ、2秒後に第二の熱圧ロールニップを通過)の条件で加工し、半透膜支持体を得た。なお、上から2本目(真ん中)の加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例91)
 ヤンキードライヤーによる熱圧乾燥から20分後に、加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力1000N/cm)、加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力800N/cm)が直列に配列されている装置を用いて、熱圧加工速度30m/min(繊維基材が第一の熱圧ロールニップを通過後12秒後に第二の熱圧ロールニップを通過)の条件で加工した以外は、実施例90と同様の方法で、半透膜支持体を得た。なお、第二の熱圧ロールニップの加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例92)
 ヤンキドライヤーによる熱圧乾燥から20分後に、繊維基材を、加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置を用いて、ロールニップ圧力1000N/cm、加工速度30m/minの条件で加工し巻き上げた(1パス目)後、10分後に1パス加工品を巻きだして加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置を用いて、ロールニップ圧力800N/cm、加工速度30m/minの条件で加工(2パス目)した以外は、実施例90と同様の方法で、半透膜支持体を得た。なお、2パス目に加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例93)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、伸び率55%、引張強さ0.38N/tex、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維、(細径繊維、延伸ポリエステル系繊維、伸び率48%、引張強さ0.35N/tex、繊維径11.6μm、繊維長5mm)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mの繊維基材を得た後、繊維基材がヤンキードライヤーから離れて90秒後に、連続して加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力1000N/cm)、加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力800N/cm)が直列に配列されている装置を用いて、熱圧加工速度30m/min(繊維基材が第一の熱圧ロールニップを通過後12秒後に第二の熱圧ロールニップを通過)の条件で加工し、半透膜支持体を得た。なお、第二の熱圧ロールニップの加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例94)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、伸び率55%、引張強さ0.38N/tex、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維、(細径繊維、延伸ポリエステル系繊維、伸び率48%、引張強さ0.35N/tex、繊維径11.6μm、繊維長5mm)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mの繊維基材を得た後、繊維基材がヤンキードライヤーから離れて270秒後に、連続して加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力1000N/cm)、加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力800N/cm)が直列に配列されている装置を用いて、熱圧加工速度10m/min(繊維基材が第一の熱圧ロールニップを通過後12秒後に第二の熱圧ロールニップを通過)の条件で加工し、半透膜支持体を得た。なお、第二の熱圧ロールニップの加熱金属ロール面に接した面を半透膜塗布面とした。
(実施例95)
 主体合成繊維(太径繊維、延伸ポリエステル系繊維、伸び率55%、引張強さ0.38N/tex、繊維径17.5μm、繊維長5mm)、バインダー合成繊維(未延伸ポリエステル系繊維、繊維径10.5μm、繊維長5mm、融点230℃)、主体合成繊維、(細径繊維、延伸ポリエステル系繊維、伸び率48%、引張強さ0.35N/tex、繊維径11.6μm、繊維長5mm)を30:30:40の配合比率で水に混合分散し、円網抄紙機で湿紙を形成した後、表面温度130℃のヤンキードライヤーにて熱圧乾燥し、坪量80g/mの繊維基材を得た後、繊維基材がヤンキードライヤーから離れて600秒後に、連続して加熱金属ロール(200℃)と加熱金属ロール(200℃)の組み合わせのカレンダー装置(第一の熱圧ロールニップ、ロールニップ圧力1000N/cm)、加熱金属ロール(200℃)とコットンロール(常温)の組み合わせのカレンダー装置(第二の熱圧ロールニップ、ロールニップ圧力800N/cm)が直列に配列されている装置を用いて、熱圧加工速度4.5m/min(繊維基材が第一の熱圧ロールニップを通過後12秒後に第二の熱圧ロールニップを通過)の条件で加工し、半透膜支持体を得た。なお、第二の熱圧ロールニップの加熱金属ロール面に接した面を半透膜塗布面とした。
 実施例81~95で得られた半透膜支持体に対して、試験1、2、4、5、6、12、13及び20の評価を行い、結果を表16に示した。表16の「通過時間」は、第一の熱圧ロールニップと第二の熱圧ロールニップとの間の通過時間である。
Figure JPOXMLDOC01-appb-T000016
 実施例81~87の半透膜支持体は、半透膜滲み込み、半透膜接着性及び非塗布面接着性の評価において、実用上使用可能なレベルを達成すると共に、半透膜塗布面の繊維毛羽立ちも良好であった。実施例81と実施例85の比較から、主体合成繊維として、繊維径10.0μm以下の細径繊維を含有している実施例85では、半透膜滲み込みの評価結果が優れていた。また、実施例82と実施例86の比較から、主体合成繊維の平均繊維径が20.0μm以下である実施例82では、半透膜滲み込みの評価結果が優れていると共に、半透膜塗布面の繊維毛羽立ちも抑制されていた。実施例87の半透膜支持体は、実施例81及び実施例83と比較して、第一の熱圧ロールニップを出てから第二の熱圧ロールでニップまでの時間が短いことから、毛羽立ちの評価が良かった。
 これに対し、実施例88及び実施例89の半透膜支持体は、第一の熱圧ロールニップを出てから第二の熱圧ロールでニップまでの時間が60秒を超えているため、半透膜塗布面の毛羽立ちが、実施例81~87と比較して、劣るものであった。また、実施例90及び実施例91の半透膜支持体は、第一の熱圧ロールニップを出てから第二の熱圧ロールでニップまでの時間が60秒以内であったにもかかわらず、主体合成繊維を1種しか含有していないため、平滑性が低く、ポリスルホン樹脂が半透膜支持体の非塗布面に一部滲み出ていた。実施例92の半透膜支持体は、実施例90及び91の半透膜支持体と同じ繊維配合であるが、第一の熱圧ロールニップを出てから、10分後に第二の熱圧ロールでニップしているため、実施例90及び91の半透膜支持体よりも半透膜の非塗布面への滲み出しが多く、毛羽立ちも多かった。
 実施例93~95の半透膜支持体は、湿式抄紙工程で乾燥させた後に、オンラインで10分以内に熱圧加工を行っているために、毛羽立ちが実施例81の半透膜支持体よりも少なく、良好であった。
 本発明の半透膜支持体、スパイラル型半透膜エレメント及び半透膜支持体の製造方法は、水の浄化、食品の濃縮、廃水処理、海水の淡水化、バクテリア・酵母・ウイルスなどの微生物の分離、血液濾過に代表される医療用、半導体洗浄用の超純水の製造等分野で、使用することができる。

Claims (25)

  1.  繊維径の異なる2種以上の主体合成繊維とバインダー合成繊維を含有してなり、かつ、半透膜塗布面と非塗布面との平滑性の比が5.0:1.0~1.1:1.0である不織布からなることを特徴とする半透膜支持体。
  2.  主体合成繊維の平均繊維径が20.0μm以下である請求項1記載の半透膜支持体。
  3.  全主体合成繊維の繊維径が20.0μm以下である請求項1又は2記載の半透膜支持体。
  4.  主体合成繊維として、繊維径10.0μm以下の繊維を少なくとも1種含有してなる請求項1~3のいずれかに記載の半透膜支持体。
  5.  主体合成繊維として、アスペクト比が200~1000であり、繊維径が20.0μm以下の太径繊維及び太径繊維より繊維径が細く、アスペクト比が200~2000の細径繊維を含有してなる請求項1~4のいずれかに記載の半透膜支持体。
  6.  主体合成繊維とバインダー合成繊維の繊維径が異なる請求項1~5のいずれかに記載の半透膜支持体。
  7.  さらに、フィブリル化有機繊維を含有してなる請求項1~6のいずれかに記載の半透膜支持体。
  8.  不織布が多層構造である請求項1~7のいずれかに記載の半透膜支持体。
  9.  半透膜塗布面層に含まれる主体合成繊維の平均繊維径が、非塗布面層に含まれる主体合成繊維の平均繊維径よりも小さい請求項8記載の半透膜支持体。
  10.  半透膜塗布面表面の算術平均粗さ(Ra)が5.0~15.0μmである請求項1~9のいずれかに記載の半透膜支持体。
  11.  半透膜塗布面表面の十点平均粗さ(Rz)が150μm以下である請求項1~10のいずれかに記載の半透膜支持体。
  12.  半透膜塗布面表面の25℃−60%RHにおける、固形分濃度15質量%でn−メチルピロリドンに溶解したポリスルホン樹脂溶液を使用したブリストーテスタでの吸収係数が5~100ml/m・msec1/2である請求項1~11のいずれかに記載の半透膜支持体。
  13.  半透膜塗布面表面の25℃−60%RHにおける、固形分濃度15質量%でn−メチルピロリドンに溶解したポリスルホン樹脂溶液を使用したブリストーテスタでの接触時間0.2secにおける動的液体転移量が5~30ml/mである請求項1~12のいずれかに記載の半透膜支持体。
  14.  主体合成繊維とバインダー合成繊維とを含有してなり、5%伸長時の縦方向(MD)及び横方向(CD)の裂断長の平均値が4.0km未満であり、かつ、横方向(CD)の加熱寸法変化率が−0.3~+1.0%である不織布からなることを特徴とする半透膜支持体。
  15.  半透膜塗布面の平滑性が、非塗布面の平滑性よりも高い請求項14記載の半透膜支持体。
  16.  主体合成繊維の伸び率(JIS L1013 2010)が25~150%であり、主体合成繊維の引張り強さが0.08~0.8N/texである請求項14又は15記載の半透膜支持体。
  17.  請求項1~16のいずれかに記載の半透膜支持体を用いてなるスパイラル型半透膜エレメント。
  18.  請求項1~16のいずれかに記載の半透膜支持体の製造方法であって、長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機の群から選ばれる1種の抄紙機によって製造された単層の湿紙又は該群から選ばれる同種若しくは異種の抄紙機を複数組み合わせたコンビネーション抄紙機によって製造された多層構造の湿紙を熱ロールに密着させて熱圧乾燥させてシートを作製した後、該シートを熱圧加工することを特徴とする半透膜支持体の製造方法。
  19.  熱圧加工に用いるロールが、誘導発熱方式の金属ロールである請求項18記載の半透膜支持体の製造方法。
  20.  熱圧加工に用いるロールが、ジャケットロールである請求項18または19記載の半透膜支持体の製造方法。
  21.  熱圧加工において、バインダー合成繊維の融点に対して−50℃~+10℃の表面温度を有するロールを半透膜塗布面に接触させる請求項18~20のいずれかに記載の半透膜支持体の製造方法。
  22.  熱圧加工が、シートを第一の熱圧ロールニップ及び第二の熱圧ロールニップに通過させる工程を含有し、第一の熱圧ロールニップを通過後60秒以内に第二の熱圧ロールニップを通過させる請求項18~21のいずれか記載の半透膜支持体の製造方法。
  23.  熱圧加工が、シートを第一の熱圧ロールニップ及び第二の圧ロールニップに通過させる工程を含み、さらに、第一の熱圧ロールニップと第二の熱圧ロールニップとの間に、加熱装置でシートを加熱する工程を含む請求項18~22のいずれかに記載の半透膜支持体の製造方法。
  24.  加熱装置がロール状加熱装置である請求項23記載の半透膜支持体の製造方法。
  25.  長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機の群から選ばれる1種の抄紙機によって製造された単層の湿紙又は該群から選ばれる同種若しくは異種の抄紙機を複数組み合わせたコンビネーション抄紙機によって製造された多層構造の湿紙を熱ロールに密着させて熱圧乾燥させてシートを作製した後、該シートを10分以内に熱圧加工することを特徴とする請求項18記載の半透膜支持体の製造方法。
PCT/JP2010/068791 2009-10-21 2010-10-18 半透膜支持体、スパイラル型半透膜エレメント及び半透膜支持体の製造方法 WO2011049231A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011537329A JP5789193B2 (ja) 2009-10-21 2010-10-18 半透膜支持体、スパイラル型半透膜エレメント及び半透膜支持体の製造方法
US13/502,881 US20120219756A1 (en) 2009-10-21 2010-10-18 Semipermeable membrane supporting body, spiral-wound semipermeable membrane element, and method for producing semipermeable membrane supporting body
KR1020127010046A KR101757491B1 (ko) 2009-10-21 2010-10-18 반투막 지지체, 스파이럴형 반투막 요소 및 반투막 지지체의 제조 방법
CN201080047695.9A CN102574070B (zh) 2009-10-21 2010-10-18 半透膜支撑体、半透膜、螺旋型半透膜元件及半透膜支撑体的制造方法
EP10825079.6A EP2492001A4 (en) 2009-10-21 2010-10-18 SEMI-PERMEABLE MEMBRANE SUPPORTING BODY, SPIRAL-WRINKLE SEMI-PERMEABLE MEMBRANE MEMBER, AND METHOD FOR PRODUCING SEMI-PERMEABLE MEMBRANE SUPPORTING BODY

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2009242112 2009-10-21
JP2009-242112 2009-10-21
JP2010-013072 2010-01-25
JP2010-013073 2010-01-25
JP2010013074 2010-01-25
JP2010013072 2010-01-25
JP2010013073 2010-01-25
JP2010-013074 2010-01-25
JP2010-044424 2010-03-01
JP2010044424 2010-03-01
JP2010047271 2010-03-04
JP2010-047271 2010-03-04
JP2010-064625 2010-03-19
JP2010064625 2010-03-19
JP2010158390 2010-07-13
JP2010-158390 2010-07-13
JP2010-165203 2010-07-22
JP2010165203 2010-07-22
JP2010179989 2010-08-11
JP2010-179989 2010-08-11

Publications (1)

Publication Number Publication Date
WO2011049231A1 true WO2011049231A1 (ja) 2011-04-28

Family

ID=43900452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068791 WO2011049231A1 (ja) 2009-10-21 2010-10-18 半透膜支持体、スパイラル型半透膜エレメント及び半透膜支持体の製造方法

Country Status (6)

Country Link
US (1) US20120219756A1 (ja)
EP (1) EP2492001A4 (ja)
JP (1) JP5789193B2 (ja)
KR (1) KR101757491B1 (ja)
CN (1) CN102574070B (ja)
WO (1) WO2011049231A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167608A (ja) * 2010-02-17 2011-09-01 Mitsubishi Paper Mills Ltd 半透膜支持体
JP2012161725A (ja) * 2011-02-04 2012-08-30 Daio Paper Corp 半透膜支持体、水処理用半透膜、および半透膜支持体の製造方法
JP2012243993A (ja) * 2011-05-20 2012-12-10 Asahi Kasei Fibers Corp ノイズ吸収布帛
JP2013139030A (ja) * 2011-12-08 2013-07-18 Mitsubishi Paper Mills Ltd 半透膜支持体及び半透膜支持体の製造方法
WO2013108722A1 (ja) 2012-01-16 2013-07-25 北越紀州製紙株式会社 半透膜支持体用不織布
WO2013115149A1 (ja) 2012-01-30 2013-08-08 北越紀州製紙株式会社 半透膜支持体用不織布
JP2013169520A (ja) * 2012-02-22 2013-09-02 Mitsubishi Paper Mills Ltd 半透膜支持体
WO2013129141A1 (ja) * 2012-03-01 2013-09-06 北越紀州製紙株式会社 半透膜支持体用不織布及びその製造方法
JP2013180294A (ja) * 2012-11-30 2013-09-12 Hokuetsu Kishu Paper Co Ltd 半透膜支持体用不織布及びその製造方法
JP2013188712A (ja) * 2012-03-14 2013-09-26 Mitsubishi Paper Mills Ltd 半透膜支持体
JP2013188738A (ja) * 2012-02-13 2013-09-26 Mitsubishi Paper Mills Ltd 半透膜支持体及び半透膜支持体の製造方法
JP2013192967A (ja) * 2012-03-15 2013-09-30 Mitsubishi Paper Mills Ltd 半透膜支持体
JP2014069144A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 酸性ガス分離用モジュール、及び酸性ガス分離用モジュールの製造方法
JP2014128769A (ja) * 2012-12-28 2014-07-10 Daio Paper Corp 半透膜支持体、半透膜支持体の製造方法及び半透膜
JP2014151238A (ja) * 2013-02-05 2014-08-25 Hokuetsu Kishu Paper Co Ltd 半透膜支持体用不織布
JP2015073946A (ja) * 2013-10-09 2015-04-20 帝人株式会社 分離膜用不織布および分離膜支持体
JP2015085277A (ja) * 2013-10-31 2015-05-07 帝人株式会社 分離膜用不織布および分離膜支持体
JP2016019970A (ja) * 2014-06-18 2016-02-04 キヤノン株式会社 多孔質膜
JP2016019971A (ja) * 2014-06-18 2016-02-04 キヤノン株式会社 多孔質膜
JP2016019972A (ja) * 2014-06-18 2016-02-04 キヤノン株式会社 多孔質膜
JP2017133133A (ja) * 2016-01-29 2017-08-03 東レ株式会社 基材用不織布およびその製造方法
JP2018023955A (ja) * 2016-08-12 2018-02-15 セーレン株式会社 積層体およびこれを備える膜構造体
JP2018047455A (ja) * 2016-09-16 2018-03-29 日東電工株式会社 スパイラル型膜エレメント
WO2018174224A1 (ja) 2017-03-24 2018-09-27 三菱製紙株式会社 半透膜支持体
WO2020145240A1 (ja) * 2019-01-09 2020-07-16 三菱製紙株式会社 半透膜支持体及び半透膜支持体の製造方法
JP2022101145A (ja) * 2020-12-24 2022-07-06 北越コーポレーション株式会社 半透膜支持体用湿式不織布及びその製造方法
JP2022101144A (ja) * 2020-12-24 2022-07-06 北越コーポレーション株式会社 半透膜支持体用湿式不織布及びその製造方法
WO2022181195A1 (ja) * 2021-02-24 2022-09-01 国立研究開発法人物質・材料研究機構 分離膜用不織布及びその製造方法
JP2022552913A (ja) * 2019-12-30 2022-12-20 シェンチェン シニア テクノロジー マテリアル カンパニー リミテッド 湿式不織布、その作製方法および湿式不織布を含む水処理膜
JP7469902B2 (ja) 2020-02-19 2024-04-17 大王製紙株式会社 水処理用不織布シート及びその製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
US20120302120A1 (en) * 2011-04-07 2012-11-29 Eastman Chemical Company Short cut microfibers
CN103938337A (zh) * 2013-01-18 2014-07-23 东丽纤维研究所(中国)有限公司 一种水电解槽用隔膜布及其生产方法
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
CN103432912B (zh) * 2013-08-02 2016-08-10 中国海诚工程科技股份有限公司 一种半透膜的复合支撑材及其制造方法
EP3051014B1 (en) * 2013-09-26 2019-09-18 Toray Industries, Inc. Non-woven fabric, separation membrane support, separation membrane, fluid separation element, and method for manufacturing non-woven fabric
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
CN107913606B (zh) * 2017-10-24 2020-07-28 浙江福斯特新材料研究院有限公司 一种半透膜支撑材料及其制备方法
KR102013810B1 (ko) * 2018-02-22 2019-08-23 국일제지 주식회사 습식공정을 이용한 수처리 필터용 분리막 지지체 제조방법 및 이에 따라 제조된 분리막 지지체
KR102218062B1 (ko) 2018-10-18 2021-02-19 주식회사 엘지화학 불소계 수지 다공성 막 및 이의 제조방법
CN110453377B (zh) * 2019-08-20 2021-10-19 浙江福斯特新材料研究院有限公司 支撑材料和半透膜复合材料
GB201912462D0 (en) * 2019-08-30 2019-10-16 Fujifilm Mfg Europe Bv Gas seperation elements and modules
US20210308630A1 (en) * 2020-04-07 2021-10-07 Ralph Aaron Bauer Support for Nano-Thickness Membranes
CN111663246B (zh) * 2020-06-11 2021-11-02 前沿新材料研究院(深圳)有限公司 一种圆网无纺布及有机水处理膜
CN112742217B (zh) * 2020-12-14 2022-10-18 宁波日新恒力科技有限公司 一种半透膜支撑体
US20220193587A1 (en) * 2020-12-18 2022-06-23 Hollingsworth & Vose Company Filter media comprising fibrillated fibers and glass fibers

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238103A (ja) 1984-05-10 1985-11-27 Awa Seishi Kk 分離膜支持体
JPS60251904A (ja) 1984-05-25 1985-12-12 Daicel Chem Ind Ltd 分離膜用支持布
US5026456A (en) 1990-06-14 1991-06-25 E. I. Du Pont De Nemours And Company Aramid papers containing aramid paper pulp
JPH10225630A (ja) 1997-02-13 1998-08-25 Miki Tokushu Seishi Kk 半透膜支持体
US5833807A (en) 1997-04-17 1998-11-10 E. I. Du Pont De Nemours And Company Aramid dispersions and aramid sheets of increased uniformity
US5851355A (en) 1996-11-27 1998-12-22 Bba Nonwovens Simpsonville, Inc. Reverse osmosis support substrate and method for its manufacture
JPH11347383A (ja) 1998-06-05 1999-12-21 Daio Paper Corp 分離膜支持体およびその製造方法
WO2000009246A1 (fr) 1997-02-13 2000-02-24 Miki Tokushu Paper Mfg. Co., Ltd. Support pour membrane semi-permeable
US6156680A (en) 1998-12-23 2000-12-05 Bba Nonwovens Simpsonville, Inc. Reverse osmosis support substrate and method for its manufacture
JP2001079368A (ja) 1999-09-20 2001-03-27 Hour Seishi Kk 分離膜支持体とその製造方法
JP2001252543A (ja) 2000-03-10 2001-09-18 Toray Ind Inc 逆浸透複合膜
JP2002095937A (ja) 2000-09-22 2002-04-02 Hour Seishi Kk 半透膜支持体およびその製造方法
WO2003049843A1 (fr) 2001-12-10 2003-06-19 Toray Industries, Inc. Membrane de separation
JP2003245530A (ja) 2001-12-10 2003-09-02 Toray Ind Inc 分離膜
JP2006241631A (ja) * 2005-03-03 2006-09-14 Solotex Corp 薄葉紙
JP2008238147A (ja) 2007-03-29 2008-10-09 Hokuetsu Paper Mills Ltd 半透膜支持体
WO2009017086A1 (ja) * 2007-07-31 2009-02-05 Toray Industries, Inc. 分離膜支持体およびその製造方法
JP2009061373A (ja) * 2007-09-05 2009-03-26 Toray Ind Inc 分離膜支持体
JP2009178915A (ja) 2008-01-30 2009-08-13 Tokushu Paper Mfg Co Ltd シート状物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222506A (ja) * 1985-03-29 1986-10-03 Japan Vilene Co Ltd 半透膜支持体及びその製造方法
JP3430783B2 (ja) * 1996-04-11 2003-07-28 東レ株式会社 液体分離素子、装置および処理方法
US7051883B2 (en) * 2003-07-07 2006-05-30 Reemay, Inc. Wetlaid-spunbond laminate membrane support
WO2008130019A1 (ja) * 2007-04-17 2008-10-30 Teijin Fibers Limited 湿式不織布およびフィルター
US8998974B2 (en) * 2007-12-17 2015-04-07 Cook Medical Technologies Llc Woven fabric with carbon nanotube strands

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238103A (ja) 1984-05-10 1985-11-27 Awa Seishi Kk 分離膜支持体
JPS60251904A (ja) 1984-05-25 1985-12-12 Daicel Chem Ind Ltd 分離膜用支持布
US5026456A (en) 1990-06-14 1991-06-25 E. I. Du Pont De Nemours And Company Aramid papers containing aramid paper pulp
US5851355A (en) 1996-11-27 1998-12-22 Bba Nonwovens Simpsonville, Inc. Reverse osmosis support substrate and method for its manufacture
JPH10225630A (ja) 1997-02-13 1998-08-25 Miki Tokushu Seishi Kk 半透膜支持体
WO2000009246A1 (fr) 1997-02-13 2000-02-24 Miki Tokushu Paper Mfg. Co., Ltd. Support pour membrane semi-permeable
EP1044719A1 (en) 1997-02-13 2000-10-18 Miki Tokushu Paper Mfg. Co., Ltd. Support for semipermeable membrane
US5833807A (en) 1997-04-17 1998-11-10 E. I. Du Pont De Nemours And Company Aramid dispersions and aramid sheets of increased uniformity
JPH11347383A (ja) 1998-06-05 1999-12-21 Daio Paper Corp 分離膜支持体およびその製造方法
US6156680A (en) 1998-12-23 2000-12-05 Bba Nonwovens Simpsonville, Inc. Reverse osmosis support substrate and method for its manufacture
JP2001079368A (ja) 1999-09-20 2001-03-27 Hour Seishi Kk 分離膜支持体とその製造方法
US20050176330A1 (en) 1999-09-20 2005-08-11 Yoshitsugu Hama Laminated material of segregating membrane and segregating membrane supporting material, and its method of manufacture
JP2001252543A (ja) 2000-03-10 2001-09-18 Toray Ind Inc 逆浸透複合膜
JP2002095937A (ja) 2000-09-22 2002-04-02 Hour Seishi Kk 半透膜支持体およびその製造方法
US20020056535A1 (en) 2000-09-22 2002-05-16 Yoshitsugu Hama Semipermeable membrane support and process of preparation thereof
WO2003049843A1 (fr) 2001-12-10 2003-06-19 Toray Industries, Inc. Membrane de separation
JP2003245530A (ja) 2001-12-10 2003-09-02 Toray Ind Inc 分離膜
US20050087070A1 (en) 2001-12-10 2005-04-28 Yoshifumi Odaka Separation membrane
JP2006241631A (ja) * 2005-03-03 2006-09-14 Solotex Corp 薄葉紙
JP2008238147A (ja) 2007-03-29 2008-10-09 Hokuetsu Paper Mills Ltd 半透膜支持体
WO2009017086A1 (ja) * 2007-07-31 2009-02-05 Toray Industries, Inc. 分離膜支持体およびその製造方法
JP2009061373A (ja) * 2007-09-05 2009-03-26 Toray Ind Inc 分離膜支持体
JP2009178915A (ja) 2008-01-30 2009-08-13 Tokushu Paper Mfg Co Ltd シート状物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"New Experimental Chemical Course", vol. 9, CHEMICAL SOCIETY OF JAPAN, MARUZEN CO., LTD., pages: 969 - 998
See also references of EP2492001A4

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167608A (ja) * 2010-02-17 2011-09-01 Mitsubishi Paper Mills Ltd 半透膜支持体
JP2012161725A (ja) * 2011-02-04 2012-08-30 Daio Paper Corp 半透膜支持体、水処理用半透膜、および半透膜支持体の製造方法
JP2012243993A (ja) * 2011-05-20 2012-12-10 Asahi Kasei Fibers Corp ノイズ吸収布帛
JP2013139030A (ja) * 2011-12-08 2013-07-18 Mitsubishi Paper Mills Ltd 半透膜支持体及び半透膜支持体の製造方法
WO2013108722A1 (ja) 2012-01-16 2013-07-25 北越紀州製紙株式会社 半透膜支持体用不織布
JP2013144283A (ja) * 2012-01-16 2013-07-25 Hokuetsu Kishu Paper Co Ltd 半透膜支持体用不織布
US9889411B2 (en) 2012-01-16 2018-02-13 Hokuetsu Kishu Paper Co., Ltd. Nonwoven fabric for semipermeable membrane support
WO2013115149A1 (ja) 2012-01-30 2013-08-08 北越紀州製紙株式会社 半透膜支持体用不織布
JP2013154304A (ja) * 2012-01-30 2013-08-15 Hokuetsu Kishu Paper Co Ltd 半透膜支持体用不織布
CN104093479A (zh) * 2012-01-30 2014-10-08 北越纪州制纸株式会社 半透膜支撑体用无纺织物
US20140342626A1 (en) * 2012-01-30 2014-11-20 Hokuetsu Kishu Paper Co., Ltd. Non-woven fabric for semipermeable membrane support
JP2013188738A (ja) * 2012-02-13 2013-09-26 Mitsubishi Paper Mills Ltd 半透膜支持体及び半透膜支持体の製造方法
JP2013169520A (ja) * 2012-02-22 2013-09-02 Mitsubishi Paper Mills Ltd 半透膜支持体
JP2013180236A (ja) * 2012-03-01 2013-09-12 Hokuetsu Kishu Paper Co Ltd 半透膜支持体用不織布及びその製造方法
KR101624443B1 (ko) * 2012-03-01 2016-05-25 호쿠에츠 기슈 세이시 가부시키가이샤 반투막 지지체용 부직포 및 그의 제조 방법
WO2013129141A1 (ja) * 2012-03-01 2013-09-06 北越紀州製紙株式会社 半透膜支持体用不織布及びその製造方法
CN104125857A (zh) * 2012-03-01 2014-10-29 北越纪州制纸株式会社 半透膜支撑体用无纺布及其制造方法
JP2013188712A (ja) * 2012-03-14 2013-09-26 Mitsubishi Paper Mills Ltd 半透膜支持体
JP2013192967A (ja) * 2012-03-15 2013-09-30 Mitsubishi Paper Mills Ltd 半透膜支持体
US9440191B2 (en) 2012-09-28 2016-09-13 Fujifilm Corporation Acidic gas separation module, and method for manufacturing acidic gas separation module
JP2014069144A (ja) * 2012-09-28 2014-04-21 Fujifilm Corp 酸性ガス分離用モジュール、及び酸性ガス分離用モジュールの製造方法
JP2013180294A (ja) * 2012-11-30 2013-09-12 Hokuetsu Kishu Paper Co Ltd 半透膜支持体用不織布及びその製造方法
JP2014128769A (ja) * 2012-12-28 2014-07-10 Daio Paper Corp 半透膜支持体、半透膜支持体の製造方法及び半透膜
JP2014151238A (ja) * 2013-02-05 2014-08-25 Hokuetsu Kishu Paper Co Ltd 半透膜支持体用不織布
JP2015073946A (ja) * 2013-10-09 2015-04-20 帝人株式会社 分離膜用不織布および分離膜支持体
JP2015085277A (ja) * 2013-10-31 2015-05-07 帝人株式会社 分離膜用不織布および分離膜支持体
JP2016019970A (ja) * 2014-06-18 2016-02-04 キヤノン株式会社 多孔質膜
JP2016019971A (ja) * 2014-06-18 2016-02-04 キヤノン株式会社 多孔質膜
JP2016019972A (ja) * 2014-06-18 2016-02-04 キヤノン株式会社 多孔質膜
JP2017133133A (ja) * 2016-01-29 2017-08-03 東レ株式会社 基材用不織布およびその製造方法
JP2018023955A (ja) * 2016-08-12 2018-02-15 セーレン株式会社 積層体およびこれを備える膜構造体
US11433356B2 (en) 2016-09-16 2022-09-06 Nitto Denko Corporation Spiral membrane element
JP7089352B2 (ja) 2016-09-16 2022-06-22 日東電工株式会社 スパイラル型膜エレメント
JP2018047455A (ja) * 2016-09-16 2018-03-29 日東電工株式会社 スパイラル型膜エレメント
JP2022107809A (ja) * 2017-03-24 2022-07-22 三菱製紙株式会社 半透膜支持体
JP2021119006A (ja) * 2017-03-24 2021-08-12 三菱製紙株式会社 半透膜支持体
JPWO2018174224A1 (ja) * 2017-03-24 2020-01-23 三菱製紙株式会社 半透膜支持体
US11998879B2 (en) 2017-03-24 2024-06-04 Mitsubishi Paper Mills Limited Semipermeable membrane support
JP2023009107A (ja) * 2017-03-24 2023-01-19 三菱製紙株式会社 半透膜支持体の製造方法
JP7464655B2 (ja) 2017-03-24 2024-04-09 三菱製紙株式会社 半透膜支持体
JP7371056B2 (ja) 2017-03-24 2023-10-30 三菱製紙株式会社 半透膜支持体
KR20190127715A (ko) 2017-03-24 2019-11-13 미쓰비시 세이시 가부시키가이샤 반투막 지지체
WO2018174224A1 (ja) 2017-03-24 2018-09-27 三菱製紙株式会社 半透膜支持体
WO2020145240A1 (ja) * 2019-01-09 2020-07-16 三菱製紙株式会社 半透膜支持体及び半透膜支持体の製造方法
JPWO2020145240A1 (ja) * 2019-01-09 2021-11-18 三菱製紙株式会社 半透膜支持体及び半透膜支持体の製造方法
JP7500436B2 (ja) 2019-01-09 2024-06-17 三菱製紙株式会社 半透膜支持体及び半透膜支持体の製造方法
JP7325643B2 (ja) 2019-12-30 2023-08-14 シェンチェン シニア テクノロジー マテリアル カンパニー リミテッド 湿式不織布、その作製方法および湿式不織布を含む水処理膜
JP2022552913A (ja) * 2019-12-30 2022-12-20 シェンチェン シニア テクノロジー マテリアル カンパニー リミテッド 湿式不織布、その作製方法および湿式不織布を含む水処理膜
JP7469902B2 (ja) 2020-02-19 2024-04-17 大王製紙株式会社 水処理用不織布シート及びその製造方法
JP2022101144A (ja) * 2020-12-24 2022-07-06 北越コーポレーション株式会社 半透膜支持体用湿式不織布及びその製造方法
JP2022101145A (ja) * 2020-12-24 2022-07-06 北越コーポレーション株式会社 半透膜支持体用湿式不織布及びその製造方法
JP7504020B2 (ja) 2020-12-24 2024-06-21 北越コーポレーション株式会社 半透膜支持体用湿式不織布及びその製造方法
JPWO2022181195A1 (ja) * 2021-02-24 2022-09-01
WO2022181195A1 (ja) * 2021-02-24 2022-09-01 国立研究開発法人物質・材料研究機構 分離膜用不織布及びその製造方法
JP7474431B2 (ja) 2021-02-24 2024-04-25 国立研究開発法人物質・材料研究機構 分離膜用不織布及びその製造方法

Also Published As

Publication number Publication date
JPWO2011049231A1 (ja) 2013-03-14
EP2492001A4 (en) 2014-07-09
KR101757491B1 (ko) 2017-07-12
EP2492001A1 (en) 2012-08-29
JP5789193B2 (ja) 2015-10-07
US20120219756A1 (en) 2012-08-30
CN102574070A (zh) 2012-07-11
CN102574070B (zh) 2017-04-05
KR20120095877A (ko) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5789193B2 (ja) 半透膜支持体、スパイラル型半透膜エレメント及び半透膜支持体の製造方法
JP5902886B2 (ja) 半透膜支持体の製造方法
JP3153487B2 (ja) 半透膜支持体
JP2013220382A (ja) 半透膜支持体
CN102188910B (zh) 半透膜支撑体及半透膜支撑体的制造方法
JP2012101213A (ja) 半透膜支持体
JP2017104840A (ja) 半透膜支持体及びその製造方法
JP7371056B2 (ja) 半透膜支持体
JP2008238147A (ja) 半透膜支持体
JP2016140785A (ja) 半透膜支持体
JP6625916B2 (ja) 半透膜支持体
JP2012106177A (ja) 半透膜支持体
WO2013108722A1 (ja) 半透膜支持体用不織布
JP2014100625A (ja) 半透膜支持体及びその製造方法
JP2015058411A (ja) 半透膜支持体
JP2020163321A (ja) 膜分離活性汚泥処理用半透膜用支持体及び濾過膜
JP5809583B2 (ja) 半透膜支持体
JP2012250223A (ja) 半透膜支持体
JP2015058409A (ja) 半透膜支持体
JP2013139030A (ja) 半透膜支持体及び半透膜支持体の製造方法
JP6018514B2 (ja) 半透膜支持体の製造方法
JP5809588B2 (ja) 半透膜支持体
JP2021053595A (ja) 半透膜支持体
WO2022210316A1 (ja) 半透膜支持体及び半透膜支持体の製造方法
JP2021146248A (ja) 半透膜支持体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047695.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537329

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127010046

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010825079

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13502881

Country of ref document: US