WO2011033815A1 - 有機熱伝導性添加剤、樹脂組成物および硬化物 - Google Patents

有機熱伝導性添加剤、樹脂組成物および硬化物 Download PDF

Info

Publication number
WO2011033815A1
WO2011033815A1 PCT/JP2010/057390 JP2010057390W WO2011033815A1 WO 2011033815 A1 WO2011033815 A1 WO 2011033815A1 JP 2010057390 W JP2010057390 W JP 2010057390W WO 2011033815 A1 WO2011033815 A1 WO 2011033815A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
thermoplastic resin
liquid crystalline
crystalline thermoplastic
thermal conductivity
Prior art date
Application number
PCT/JP2010/057390
Other languages
English (en)
French (fr)
Inventor
秀輔 吉原
一昭 松本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN2010800407785A priority Critical patent/CN102498149B/zh
Priority to EP10816928.5A priority patent/EP2479202B1/en
Priority to KR1020127008732A priority patent/KR101717449B1/ko
Priority to JP2011531816A priority patent/JP6133012B2/ja
Priority to US13/395,914 priority patent/US20120175549A1/en
Publication of WO2011033815A1 publication Critical patent/WO2011033815A1/ja
Priority to US14/507,156 priority patent/US9234095B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material

Definitions

  • the present invention relates to a novel organic thermal conductive additive that has excellent thermal conductivity and can impart thermal conductivity to plastics. Specifically, unlike inorganic heat conductive fillers such as ceramics, metals, and carbon materials, it is an organic polymer, but it can be given thermal conductivity by adding it to plastics.
  • the present invention relates to an organic thermally conductive additive that can be reduced in weight without deteriorating mold wear and electrical insulation, and has good moldability of the composition.
  • thermoplastic resin composition When a thermoplastic resin composition is used in various applications such as personal computers and display housings, electronic device materials, automotive interiors and exteriors, plastic is generated because it has lower thermal conductivity than inorganic materials such as metal materials. Difficult to escape heat can be a problem. In order to solve such problems, attempts have been widely made to obtain a high thermal conductive resin composition by blending a large amount of a high thermal conductive inorganic substance in a thermoplastic resin. As the high thermal conductivity inorganic compound, it is necessary to blend a high thermal conductivity inorganic material such as graphite, carbon fiber, alumina, boron nitride, etc. into the resin with a high content of usually 30% by volume or more, and further 50% by volume or more. There is.
  • thermosetting resin excellent in the thermal conductivity of a single resin for example, an epoxy resin described in Patent Document 1 or Patent Document 2 or a bismaleimide resin described in Patent Document 3 has been reported.
  • these resins exhibit thermosetting properties, they do not melt even at the molding process temperature of the resin, and cannot meet the problem of improving the molding processability of the resin composition.
  • thermoplastic resins there are research examples that give high thermal conductivity in a specific direction by adopting special molding methods such as stretching and magnetic field orientation during injection molding, but these technologies add organic thermal conductivity It cannot be applied as an agent.
  • An object of the present invention is to provide an organic thermal conductive additive in which a single resin is excellent in thermal conductivity, easy to manufacture, and exhibits thermoplasticity.
  • the present inventor has found that a liquid crystalline thermoplastic resin having a specific structure and excellent thermal conductivity as a single resin has good characteristics as an organic thermal conductive additive. It came.
  • the organic heat conductive additive of this invention has the following structures.
  • the main chain is mainly composed of repeating units represented by the following general formula (1), mainly has a chain structure, and the thermal conductivity of the resin alone is 0.45 W / (m ⁇ K) or more.
  • the liquid crystalline thermoplastic resin of the present invention exhibits high thermal conductivity with a single resin, unlike inorganic thermal conductive fillers such as ceramics, metals and carbon materials, it is an organic polymer, but it can be added to plastics to achieve thermal conductivity. Addition of organic thermal conductivity, such as adding a large amount to a resin, reducing the mold wear and electrical insulation of the composition without reducing its weight and improving the moldability of the composition. Useful as an agent.
  • the liquid crystalline thermoplastic resin in the organic thermal conductive additive of the present invention is characterized in that the main chain is mainly composed of a repeating unit represented by the following general formula (1) and mainly has a chain structure. . -M-Sp- . . . (1) (In the formula, M represents a mesogenic group, and Sp represents a spacer.)
  • the term “mainly” as used in the present invention means that the amount of the general formula (1) contained in the main chain of the molecular chain is 50 mol% or more, preferably 70 mol% or more, and more preferably 90 mol%, based on all structural units. % Or more, and most preferably essentially 100 mol%. When it is less than 50 mol%, the crystallinity of the resin is lowered, and the thermal conductivity may be lowered.
  • the resin of the present invention has extremely high symmetry and has a structure in which a rigid straight chain is bound by a bent chain, so that the molecular orientation is high, the formed higher order structure is dense, and has excellent thermal conductivity.
  • the thermal conductivity of the liquid crystalline thermoplastic resin in the organic thermal conductive additive of the present invention is usually 0.45 W / (m ⁇ K) or more, preferably 0.6 W / (m ⁇ K) or more.
  • the upper limit of the thermal conductivity is not particularly limited and is preferably as high as possible. Generally, values of 30 W / (m ⁇ K) or less, and further 10 W / (m ⁇ K) or less can be exemplified.
  • thermoplastic resin that does not have a repeating structure of units composed of a mesogenic group and a spacer is not preferable because it generally has a low thermal conductivity.
  • the liquid crystalline thermoplastic resin in the organic thermal conductive additive of the present invention is preferably a liquid crystalline thermoplastic resin having a thermal conductivity of 0.45 W / (m ⁇ K) or more as a single resin.
  • a specific method for measuring the thermal conductivity there is a method in which a sample made of a liquid crystalline thermoplastic resin in a disc shape having a thickness of 6 mm ⁇ 20 mm ⁇ is measured by a hot disk method.
  • the mesogenic group contained in the liquid crystalline thermoplastic resin in the organic thermal conductive additive of the present invention means a rigid and highly oriented substituent.
  • Preferred mesogenic groups include the following general formula: -A 1 -xA 2- (A 1 and A 2 each independently represent a substituent selected from an aromatic group, a condensed aromatic group, an alicyclic group, and an alicyclic heterocyclic group.
  • a 1 and A 2 each independently represent a hydrocarbon group having a benzene ring having 6 to 12 carbon atoms, a hydrocarbon group having a naphthalene ring having 10 to 20 carbon atoms, or a biphenyl structure having 12 to 24 carbon atoms.
  • a 1 and A 2 are each independently a hydrocarbon group having 1 or 2 benzene rings, a hydrocarbon group having 1 or 2 naphthalene rings, a hydrocarbon group having 1 or 2 biphenyl structure, 2 A hydrocarbon group having three, three, four, five or six benzene rings, a hydrocarbon group having a condensed aromatic group having 12 to 36 carbon atoms, or an alicyclic heterocyclic group having 4 to 36 carbon atoms It is preferable that it is selected from.
  • a 1 and A 2 include phenylene, biphenylene, naphthylene, anthracenylene, cyclohexyl, pyridyl, pyrimidyl, thiophenylene, and the like. These may be unsubstituted or may be a derivative having a substituent such as an aliphatic hydrocarbon group, a halogen group, a cyano group, or a nitro group.
  • mesogenic groups include biphenyl, terphenyl, quarterphenyl, stilbene, diphenyl ether, 1,2-diphenylethylene, diphenylacetylene, benzophenone, phenylbenzoate, phenylbenzamide, azobenzene, 2-naphthoate, phenyl-2-naphthoate, and Examples thereof include a divalent group having a structure in which two hydrogen atoms are removed from these derivatives. Of these, a direct bond is preferable, and a mesogenic group represented by the following general formula (3) is more preferable.
  • This mesogenic group is rigid and highly oriented due to its structure, and is easily available or synthesized. Specific examples include biphenyl, terphenyl, and quarterphenyl.
  • the mesogenic group contained in the resin may contain a crosslinkable substituent.
  • the spacer contained in the liquid crystalline thermoplastic resin in the organic thermal conductive additive means a flexible molecular chain.
  • the number of main chain atoms of the spacer of the liquid crystalline thermoplastic resin is preferably 4 to 28, more preferably 6 to 24, and still more preferably 8 to 20 (here, the number of main chain atoms of 4 is, for example, (Refers to the structure “—C—C—C—C—”).
  • the molecular structure of the liquid crystalline thermoplastic resin has sufficient flexibility, and high crystallinity and good thermal conductivity are preferable.
  • the type of atoms constituting the main chain of the spacer is not particularly limited, and any type can be used, but at least one type of atom selected from C, H, O, S, and N is preferred.
  • R represents a divalent substituent which may contain a branch having 2 to 20 main chain atoms.
  • R is usually a chain saturated hydrocarbon group having 2 to 20 carbon atoms, a saturated hydrocarbon group containing 1 to 3 ring structures having 2 to 20 carbon atoms, or 1 having 2 to 20 carbon atoms.
  • R is preferably a straight-chain aliphatic hydrocarbon chain that does not contain a branch.
  • R may be saturated or unsaturated, but is preferably a saturated aliphatic hydrocarbon chain because the liquid crystalline thermoplastic resin has appropriate flexibility.
  • the unit exceeding 50% by weight is preferably a saturated aliphatic hydrocarbon chain, and most preferably it does not contain an unsaturated bond.
  • R preferably has 2 to 20 carbon atoms, more preferably 4 to 18 carbon atoms, and even more preferably 6 to 16 carbon atoms.
  • R is preferably a straight-chain saturated aliphatic hydrocarbon having these carbon numbers, and among them, the number of carbons is even. Is preferred. In the case of an even number, since the mesogenic groups are arranged more regularly, the thermal conductivity tends to be high.
  • R is at least one selected from — (CH 2 ) 8 —, — (CH 2 ) 10 —, and — (CH 2 ) 12 — from the viewpoint of obtaining a resin having excellent thermal conductivity.
  • y and z are groups for bonding the substituent R to the mesogenic group.
  • spacers having such a group —CO—O—R—O—CO— and —O—CO—R—CO—O— are preferable from the viewpoint of obtaining a resin having excellent thermal conductivity, O—CO—R—CO—O— is particularly preferred.
  • repeating unit constituting the main chain of the liquid crystalline thermoplastic resin used in the organic thermal conductive additive of the present invention the following are preferable. 1. -A 1 -xA 2 -yRz- 2. A combination of a mesogenic group represented by the general formula (3) and a spacer represented by -yRz-.
  • the number average molecular weight of the liquid crystalline thermoplastic resin in the organic thermal conductive additive of the present invention is based on polystyrene, and the liquid crystalline thermoplastic resin used in the present invention is a 1: 2 Vol ratio of p-chlorophenol and o-dichlorobenzene. It is a value that can be measured by GPC at 80 ° C. using a solution prepared by dissolving in a mixed solvent to a concentration of 0.25 wt%.
  • the number average molecular weight of the liquid crystalline thermoplastic resin used in the present invention is preferably 3000 to 40000, more preferably 5000 to 30000, and most preferably 7000 to 20000. When the number average molecular weight is within these ranges, even if the resin has the same primary structure, the thermal conductivity is increased. Therefore, when the preferred number average molecular weight is less than 3000 or greater than 40000, the resin having the same primary structure is used. In some cases, the thermal conductivity may be less than 0.45 W / (m ⁇ K).
  • the liquid crystalline thermoplastic resin used as the organic thermal conductive additive of the present invention preferably contains lamellar crystals.
  • the amount of lamellar crystals can be used as an index of crystallinity. The more lamellar crystals, the higher the crystallinity.
  • the lamellar crystal corresponds to a plate-like crystal in which long chain molecules are folded and arranged in parallel. Whether or not such crystals exist in the resin can be easily determined by observation with a transmission electron microscope (TEM) or X-ray diffraction.
  • TEM transmission electron microscope
  • the ratio of lamellar crystals forming the continuous phase can be calculated by directly observing a sample stained with RuO 4 with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • a sample for TEM observation a part of a molded sample having a thickness of 6 mm ⁇ 20 mm ⁇ is cut out, stained with RuO 4, and then an ultrathin section having a thickness of 0.1 ⁇ m prepared by a microtome is used. It shall be.
  • the prepared slice is observed with a TEM at an accelerating voltage of 100 kV, and a lamellar crystal region can be determined from the obtained 40,000-fold scale photograph (20 cm ⁇ 25 cm).
  • the boundary of the region can be determined by using the lamellar crystal region as a region where periodic contrast exists.
  • the ratio of the lamella crystals is calculated as a ratio of the lamella crystal region to the entire area of the photograph. Moreover, in order for resin itself to have high thermal conductivity, it is preferable that the ratio of a lamellar crystal is 10 Vol% or more.
  • the ratio of lamellar crystals is more preferably 20 Vol% or more, further preferably 30 Vol% or more, and particularly preferably 40 Vol% or more.
  • the liquid crystalline thermoplastic resin of the present invention preferably contains crystals.
  • the crystallinity of the liquid crystalline thermoplastic resin is preferably 7% or more.
  • the degree of crystallinity is more preferably 14% or more, further preferably 21% or more, and particularly preferably 28% or more.
  • the density of the resin itself is preferably 1.1 g / cm 3 or more, more preferably 1.13 g / cm 3 or more. It is preferably 1.16 g / cm 3 or more.
  • a high resin density means that the content of lamellar crystals is high, that is, the degree of crystallinity is high.
  • the liquid crystalline thermoplastic resin used in the present invention preferably has an isotropic high thermal conductivity.
  • a method for measuring whether or not the thermal conductivity is isotropic for example, a sample in which a thermoplastic resin is made into a disk shape having a thickness of 1 mm ⁇ 25.4 mm ⁇ , the thickness direction by the Xe flash method, A method of separately measuring the thermal conductivity in the plane direction is mentioned.
  • the thermal conductivity of the thermoplastic resin according to the present invention is isotropically high, and the thermal conductivity in the thickness direction and the plane direction measured by the above measurement method is 0.3 W / (m ⁇ K) or more. is there.
  • the organic heat conductive additive of the present invention may be produced by any known method. From the viewpoint that the control of the structure is simple, a method of reacting a compound having a reactive functional group at both ends of the mesogenic group with a compound having a reactive functional group at both ends of the substituent R is preferable.
  • a reactive functional group known groups such as a hydroxyl group, a carboxyl group, an alkoxy group, an amino group, a vinyl group, an epoxy group, and a cyano group can be used, and the conditions for reacting these are not particularly limited.
  • a compound having a hydroxyl group at both ends of the mesogenic group and a compound having a carboxyl group at both ends of the substituent R, or a compound having a carboxyl group at both ends of the mesogenic group and the substituent R A production method in which a compound having a hydroxyl group at both ends is reacted is preferred.
  • thermoplastic resin comprising a compound having a hydroxyl group at both ends of a mesogenic group and a compound having a carboxyl group at both ends of the substituent R is as follows.
  • a method in which a fatty acid is individually or collectively converted into an acetate ester and then subjected to a deacetic acid polycondensation reaction with a compound having a carboxyl group at both ends of the substituent R in another reaction tank or the same reaction tank. Can be mentioned.
  • the polycondensation reaction is preferably carried out in the substantial absence of a solvent.
  • the reaction temperature is usually 200 to 350 ° C., more preferably 230 to 330 ° C., particularly preferably 250 to 300 ° C. Further, it is preferably carried out in the presence of an inert gas such as nitrogen and under normal pressure or reduced pressure for 0.5 to 5 hours. If the reaction temperature is too low, the reaction proceeds slowly, and if it is too high, side reactions such as decomposition tend to occur.
  • a multi-stage reaction temperature may be employed, and in some cases, the reaction product can be withdrawn in a molten state and recovered as soon as the temperature rises or reaches the maximum temperature.
  • the obtained liquid crystalline thermoplastic resin may be used as it is, or it may be subjected to solid phase polymerization in order to remove unreacted raw materials or to increase physical properties.
  • the obtained liquid crystalline thermoplastic resin is mechanically pulverized into particles having a particle size of 3 mm or less, preferably 1 mm or less, and in a solid state, nitrogen or the like is not used at 250 to 350 ° C.
  • the treatment is preferably carried out in an active gas atmosphere or under reduced pressure for 1 to 20 hours. If the particle size of the polymer particles is 3 mm or more, the treatment is not sufficient, and problems with physical properties are caused, which is not preferable. It is preferable to select the treatment temperature and the rate of temperature increase during solid-phase polymerization so that the liquid crystalline thermoplastic resin particles do not cause fusion.
  • Examples of the lower fatty acid anhydride used in the production of the organic thermal conductive additive of the present invention include lower fatty acid anhydrides having 2 to 5 carbon atoms, such as acetic anhydride, propionic anhydride, monochloroacetic anhydride, anhydrous Dichloroacetic acid, trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, etc.
  • lower fatty acid anhydrides having 2 to 5 carbon atoms such as acetic anhydride, propionic anhydride, monochloroacetic anhydride, anhydrous Dichloroacetic acid, trichloroacetic anhydride, monobromoacetic anhydride
  • acetic anhydride, propionic anhydride, and trichloroacetic anhydride are particularly preferably used.
  • the amount of the lower fatty acid anhydride used is 1.01 to 1.50 times equivalent, preferably 1.02 to 1.2 times equivalent to the total of the hydroxyl groups of the mesogenic groups used.
  • other production methods for reacting a compound having a carboxyl group at both ends of a mesogenic group with a compound having a hydroxyl group at both ends of the substituent R see, for example, JP-A-2-258864.
  • the terminal structure of the liquid crystalline thermoplastic resin of the present invention is not particularly limited, but from the viewpoint that a resin suitable for a thermal conductivity-imparting agent such as little coloring can be obtained, a hydroxyl group, a carboxyl group, an ester group, an acyl group
  • the end is preferably sealed with an alkoxy group or the like.
  • the terminal has a highly reactive functional group such as an epoxy group or a maleimide group, the resin becomes thermosetting and the injection moldability may be impaired.
  • the liquid crystalline thermoplastic resin of the present invention may be copolymerized with other monomers to such an extent that the effect is not lost.
  • aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines, aromatic diamines, aromatic aminocarboxylic acids or caprolactams, caprolactones, aliphatic dicarboxylic acids, aliphatic diols, aliphatic diamines examples include alicyclic dicarboxylic acids, and alicyclic diols, aromatic mercaptocarboxylic acids, aromatic dithiols, and aromatic mercaptophenols.
  • aromatic hydroxycarboxylic acid examples include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-5-naphthoic acid, 2-hydroxy -7-naphthoic acid, 2-hydroxy-3-naphthoic acid, 4'-hydroxyphenyl-4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4'-hydroxyphenyl-3-benzoic acid and their Examples thereof include alkyl, alkoxy, and halogen-substituted products.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-dicarboxybiphenyl, 3 , 4′-dicarboxybiphenyl, 4,4 ′′ -dicarboxyterphenyl, bis (4-carboxyphenyl) ether, bis (4-carboxyphenoxy) butane, bis (4-carboxyphenyl) ethane, bis (3- Carboxyphenyl) ether and bis (3-carboxyphenyl) ethane and the like, alkyl, alkoxy or halogen substituted products thereof.
  • aromatic diol examples include hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 3,3′-dihydroxybiphenyl, and 3,4′-dihydroxybiphenyl.
  • aromatic hydroxyamine examples include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 4-amino-1-naphthol, 4-amino- 4'-hydroxybiphenyl, 4-amino-4'-hydroxybiphenyl ether, 4-amino-4'-hydroxybiphenylmethane, 4-amino-4'-hydroxybiphenyl sulfide and 2,2'-diaminobinaphthyl and their alkyls , Alkoxy or halogen-substituted products.
  • aromatic diamine and aromatic aminocarboxylic acid include 1,4-phenylenediamine, 1,3-phenylenediamine, N-methyl-1,4-phenylenediamine, N, N′-dimethyl-1,4. -Phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminobiphenylsulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminobiphenoxyethane 4,4′-diaminobiphenylmethane (methylenedianiline), 4,4′-diaminobiphenyl ether (oxydianiline), 4-aminobenzoic acid, 3-aminobenzoic acid, 6-amino-2-naphthoic acid and 7-amino-2-naphthoic acid and alkyl, alkoxy or halogen substituted products thereof And
  • aliphatic dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, fumaric acid, maleic acid Etc.
  • aliphatic diamine examples include 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,6-hexamethylenediamine, 1,8-octanediamine, 1,9- Nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine and the like can be mentioned.
  • alicyclic dicarboxylic acid examples include hexahydroterephthalic acid, trans-1,4-cyclohexanediol, cis-1,4-cyclohexanediol, and trans-1,4-cyclohexane.
  • aromatic mercaptocarboxylic acid, aromatic dithiol and aromatic mercaptophenol include 4-mercaptobenzoic acid, 2-mercapto-6-naphthoic acid, 2-mercapto-7-naphthoic acid, benzene-1,4- Dithiol, benzene-1,3-dithiol, 2,6-naphthalene-dithiol, 2,7-naphthalene-dithiol, 4-mercaptophenol, 3-mercaptophenol, 6-mercapto-2-hydroxynaphthalene, 7-mercapto-2 -Hydroxynaphthalene and the like, as well as reactive derivatives thereof.
  • the organic heat conductive additive of the present invention contains 1 to 10,000 parts by weight of the organic heat conductive additive (A) with respect to 100 parts by weight of the organic polymer (B). Thermal conductivity can be imparted to B).
  • a thermoplastic resin or a thermosetting resin can be preferably used.
  • a thermoplastic resin and a thermosetting resin can be used in combination.
  • the organic polymer (B) may be a synthetic resin or a resin existing in nature.
  • thermosetting resin When a thermosetting resin is used as the organic polymer (B) of the present invention, there is no particular limitation, and one or two or more kinds of various thermosetting resins that are well known are optionally selected. It is possible to select and use in combination.
  • thermosetting resins include, but are not limited to, conventionally used epoxy resins, silicone resins, cyanate resins, phenol resins, polyimide resins, polyurethane resins, acrylic resins, urea resins, and modified resins thereof. It is not a thing.
  • thermoplastic resin composition As the organic polymer (B) of the present invention, various thermoplastic resins can be used.
  • Thermoplastic resins include aromatic vinyl resins such as polystyrene, vinyl cyanide resins such as polyacrylonitrile, chlorine resins such as polyvinyl chloride, polymethacrylate resins such as polymethyl methacrylate, and polyacrylic acid.
  • Ester resins polyolefin resins such as polyethylene, polypropylene and cyclic polyolefin resins, polyvinyl ester resins such as polyvinyl acetate, polyvinyl alcohol resins and their derivative resins, polymethacrylic acid resins and polyacrylic acid resins and these Metal salt resins, polyconjugated diene resins, polymers obtained by polymerizing maleic acid and fumaric acid and their derivatives, polymers obtained by polymerizing maleimide compounds, amorphous semi-aromatic polyesters and amorphous Wholly aromatic polyester Any amorphous polyester resin, crystalline polyester resin such as crystalline semi-aromatic polyester and crystalline wholly aromatic polyester, polyamide resin such as aliphatic polyamide, aliphatic-aromatic polyamide and wholly aromatic polyamide, Polycarbonate resin, polyurethane resin, polysulfone resin, polyalkylene oxide resin, cellulose resin, polyphenylene ether resin, polyphenylene sulfide resin
  • thermoplastic resins the fact that part or all of the resin is a thermoplastic resin having crystallinity or liquid crystallinity tends to increase the thermal conductivity of the obtained resin composition, It is preferable from the viewpoint that the conductive additive (A) is easily contained in the resin.
  • thermoplastic resins having crystallinity or liquid crystallinity are part of the resin such that only a specific block in the molecule of the block or graft copolymer resin is crystalline or liquid crystalline even if the entire resin is crystalline. Only may be crystalline or liquid crystalline. There is no particular limitation on the crystallinity of the resin.
  • the thermoplastic resin a polymer alloy of an amorphous resin and a crystalline or liquid crystalline resin can be used. There is no particular limitation on the crystallinity of the resin.
  • thermoplastic resins which are part or all of crystalline or liquid crystalline, can be crystallized, but can be used alone or molded under specific molding conditions. Some resins exhibit amorphous properties. When using such a resin, by adjusting the amount and method of addition of the organic thermal conductive additive (A), or by devising a molding method such as stretching or post-crystallization treatment In some cases, part or all of the resin can be crystallized.
  • thermoplastic resins having crystallinity or liquid crystallinity preferred resins include crystalline polyester resin, crystalline polyamide resin, polyphenylene sulfide resin, liquid crystal polymer, crystalline polyolefin resin, polyolefin block copolymer, etc.
  • preferred resins include crystalline polyester resin, crystalline polyamide resin, polyphenylene sulfide resin, liquid crystal polymer, crystalline polyolefin resin, polyolefin block copolymer, etc.
  • the present invention is not limited to these, and various crystalline resins and liquid crystalline resins can be used.
  • the crystalline polyester include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, poly1,4-cyclohexylenedimethylene terephthalate and polyethylene-1,2-bis ( Crystalline properties such as phenoxy) ethane-4,4'-dicarboxylate, polyethylene isophthalate / terephthalate, polybutylene terephthalate / isophthalate, polybutylene terephthalate / decane dicarboxylate and polycyclohexanedimethylene terephthalate / isophthalate Copolyester etc. are mentioned.
  • polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, and poly 1,4-cyclohexylene diene are used from the viewpoints of moldability and mechanical properties. It is preferable to use methylene terephthalate or the like.
  • the crystalline polyamide resin include, for example, ring-opening polymer of cyclic lactam, polycondensate of aminocarboxylic acid, polycondensate of dicarboxylic acid and diamine, and specifically nylon 6, nylon. 4, 6, Nylon 6, 6, Nylon 6, 10, Nylon 6, 12, Nylon 11, Nylon 12, and other aliphatic polyamides, poly (metaxylene adipamide), poly (hexamethylene terephthalamide), poly (hexa Methylene isophthalamide), polynonanemethylene terephthalamide, poly (tetramethylene isophthalamide), poly (methylpentamethylene terephthalamide) and other aliphatic-aromatic polyamides, and copolymers thereof.
  • the form of copolymerization may be either random or block, but is preferably a random copolymer from the viewpoint of moldability.
  • the liquid crystal polymer is a resin that can form an anisotropic molten phase, and preferably has an ester bond.
  • a liquid crystal composed of a structural unit selected from an aromatic oxycarbonyl unit, an aromatic dioxy unit, an aromatic and / or aliphatic dicarbonyl unit, an alkylenedioxy unit, etc., and forming an anisotropic melt phase
  • a liquid crystalline polyester amide composed of a structural unit selected from the structural unit and an aromatic iminocarbonyl unit, an aromatic diimino unit, an aromatic iminooxy unit, etc., and forming an anisotropic melt phase
  • a liquid crystalline polyester comprising a structural unit produced from p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, a structural unit produced from p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, Structural units generated from acids, aromatic dihydroxy compounds and / or aliphatic dicarboxylic acids Liqui
  • the crystalline polyolefin resin examples include polyethylene, polypropylene, polybutene, polyisobutylene, copolymers of these resins with various olefin compounds, and the like.
  • a block or graft copolymer of a crystalline resin and an amorphous resin can be used as the crystalline polyolefin resin.
  • specific examples of the block copolymer include SEPS resin, SIS resin, SEBS resin, SIBS resin, and the like.
  • Specific examples of the graft copolymer include resins described in Japanese Patent Publication “JP-A 2003-147032”.
  • a heat stabilizer such as a phenol-based stabilizer, a sulfur-based stabilizer, a phosphorus-based stabilizer, etc., alone or in two or more types It is preferable to add them together with the organic thermal conductive additive (A).
  • heat stabilizers, stabilization aids, lubricants, mold release agents, plasticizers, flame retardants, flame retardant aids, ultraviolet absorbers, light stabilizers, pigments, dyes are generally well known.
  • an antistatic agent, a conductivity imparting agent, a dispersant, a compatibilizing agent, an antibacterial agent and the like may be added alone or in combination of two or more in a range where the effects of the present invention are exhibited.
  • an inorganic filler (C) In order to make the organic heat conductive additive of this invention more highly heat conductive, you may add with an inorganic filler (C).
  • the amount of the inorganic filler (C) used is preferably 99: 1 to 30:70 by volume ratio of the organic heat conductive additive (A) and the inorganic filler (C), more preferably 90:10 to 40:60, particularly preferably 80:20 to 50:50. If the total volume of (A) and (C) is 100 and the amount of inorganic filler (C) used is less than 1, the effect of improving thermal conductivity may be small. Further, when the volume ratio of (A) to (C) is 30:70 to 0: 100, the mechanical properties may be lowered.
  • the inorganic filler (C) known fillers can be widely used.
  • the thermal conductivity of the inorganic filler (C) alone is not particularly limited, but is preferably 0.5 W / (m ⁇ K) or more, more preferably 1 W / (m ⁇ K) or more. From the viewpoint that the resulting composition is excellent in thermal conductivity, it is particularly preferable that the composition is a high thermal conductive inorganic compound having a single thermal conductivity of 10 W / (m ⁇ K) or more.
  • the thermal conductivity of the high thermal conductivity inorganic compound alone is preferably 12 W / (m ⁇ K) or more, more preferably 15 W / (m ⁇ K) or more, most preferably 20 W / (m ⁇ K) or more, particularly preferably. Is 30 W / (m ⁇ K) or more.
  • the upper limit of the thermal conductivity of the high thermal conductivity inorganic compound alone is not particularly limited, and is preferably as high as possible. Generally, it is 3000 W / (m ⁇ K) or less, more preferably 2500 W / (m ⁇ K) or less, Are preferably used.
  • a metal compound, a conductive carbon compound, or the like is preferably used as the highly thermally conductive inorganic compound.
  • conductive carbon materials such as graphite and carbon fibers, conductive metal powders obtained by atomizing various metals, conductive metal fibers obtained by processing various metals into fibers, soft magnetism
  • Highly thermally conductive inorganic compounds such as various ferrites such as ferrite and metal oxides such as zinc oxide can be preferably used.
  • the electrical insulating property indicates an electrical resistivity of 1 ⁇ ⁇ cm or more, preferably 10 ⁇ ⁇ cm or more, more preferably 10 5 ⁇ ⁇ cm or more, and further preferably 10 10 ⁇ ⁇ cm or more. It is preferable to use one having a thickness of cm or more, most preferably 10 13 ⁇ ⁇ cm or more. There is no particular restriction on the upper limit of the electrical resistivity, generally less 10 18 ⁇ ⁇ cm. It is preferable that the electrical insulation of the molded product obtained from the high thermal conductivity thermoplastic resin composition of the present invention is also in the above range.
  • highly thermally conductive inorganic compounds that exhibit electrical insulation include aluminum oxide, magnesium oxide, silicon oxide, beryllium oxide, copper oxide, cuprous oxide, and other metal oxides, boron nitride, and nitride
  • Metal nitrides such as aluminum and silicon nitride, metal carbides such as silicon carbide, metal carbonates such as magnesium carbonate, insulating carbon materials such as diamond, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, Can be illustrated. These can be used alone or in combination.
  • the shape of the high thermal conductivity inorganic compound can be applied in various shapes. For example, particles, fine particles, nanoparticles, aggregated particles, tubes, nanotubes, wires, rods, needles, plates, irregular shapes, rugby balls, hexahedrons, large particles and fine particles are combined Various shapes such as a composite particle shape, a liquid, etc. can be exemplified.
  • These high thermal conductivity inorganic compounds may be natural products or synthesized ones. In the case of a natural product, there are no particular limitations on the production area and the like, which can be selected as appropriate.
  • These high thermal conductive inorganic compounds may be used alone or in combination of two or more different shapes, average particle diameters, types, surface treatment agents, and the like.
  • These highly heat-conductive inorganic compounds have been surface-treated with various surface treatment agents such as a silane treatment agent in order to enhance the adhesion at the interface between the resin and the inorganic compound or to facilitate workability. Also good.
  • a surface treating agent For example, conventionally well-known things, such as a silane coupling agent and a titanate coupling agent, can be used.
  • an epoxy group-containing silane coupling agent such as epoxy silane
  • an amino group-containing silane coupling agent such as aminosilane, polyoxyethylene silane, and the like are preferable because they hardly reduce the physical properties of the resin.
  • the surface treatment method of the inorganic compound is not particularly limited, and a normal treatment method can be used.
  • the organic heat conductive additive of the present invention in addition to the high heat conductive inorganic compound, known inorganic fillers can be widely used depending on the purpose. Since the thermal conductivity of the single resin is high, the resin composition has a high thermal conductivity even if the thermal conductivity of the inorganic compound is relatively low, less than 10 W / (m ⁇ K).
  • inorganic fillers other than the high thermal conductivity inorganic compound include diatomaceous earth powder; basic magnesium silicate; calcined clay; fine powder silica; quartz powder; crystalline silica; kaolin; talc; antimony trioxide; Examples thereof include molybdenum sulfide; rock wool; ceramic fiber; inorganic fiber such as asbestos; and glass fillers such as glass fiber, glass powder, glass cloth, and fused silica.
  • these fillers for example, it is possible to improve favorable characteristics in applying a resin composition such as thermal conductivity, mechanical strength, or abrasion resistance.
  • organic fillers such as paper, pulp, wood, synthetic fibers such as polyamide fiber, aramid fiber, and boron fiber; resin powder such as polyolefin powder; can be used in combination.
  • any other component depending on the purpose for example, a reinforcing agent, a thickener, a release agent, a coupling agent, Flame retardants, flame retardants, pigments, colorants, other auxiliaries and the like can be added in combination as long as the effects of the present invention are not lost.
  • the amount of these additives used is generally in the range of 0 to 20 parts by weight with respect to 100 parts by weight of the organic thermal conductive additive.
  • the method for producing the liquid crystalline thermoplastic resin composition of the present invention is not particularly limited.
  • it can be produced by drying the above-described components, additives and the like and then melt-kneading them in a melt-kneader such as a single-screw or twin-screw extruder.
  • a melt-kneader such as a single-screw or twin-screw extruder.
  • a compounding component is a liquid, it can also manufacture by adding to a melt-kneader on the way using a liquid supply pump etc.
  • the organic thermal conductive additive of the present invention can be suitably used as an injection molded product, blow molded product, and extrusion molded product because of its excellent thermal conductivity and appearance of the molded product.
  • Blow molding, extrusion molding, and the like are suitable, but the usage method and molding method are not limited to these, and can be used in various forms. Examples of usage forms include various forms such as a resin film, a resin molded product, a resin foam, a paint and a coating agent.
  • thermoplastic resin composition obtained in the present invention is excellent in moldability, currently widely used molding machines for thermoplastic resins can be used, and even products having complex shapes can be molded. Is easy.
  • the organic thermally conductive additive of the present invention can be widely used in various applications such as electronic materials, magnetic materials, catalyst materials, structural materials, optical materials, medical materials, automotive materials, and building materials.
  • it has excellent properties such as excellent appearance of molded product and high thermal conductivity, so it is very useful as a resin material for heat dissipation and heat transfer.
  • the organic heat conductive additive of the present invention can be suitably used for injection molded products such as home appliances, OA equipment parts, AV equipment parts, automobile interior and exterior parts, and the like.
  • it can be suitably used as an exterior material in home appliances and office automation equipment that generate a lot of heat.
  • an electronic device having a heat source inside but difficult to be forcibly cooled by a fan or the like it is suitably used as an exterior material for these devices in order to dissipate the heat generated inside to the outside.
  • small or portable electronic devices such as portable computers such as notebook computers, PDAs, cellular phones, portable game machines, portable music players, portable TV / video devices, portable video cameras, etc. are preferable among these.
  • the organic heat conductive additive of the present invention has a good moldability because it can reduce the blending amount of the high heat conductive inorganic substance as compared with a conventionally well-known composition, and thus the component or housing in the above application. It has useful properties for body use.
  • the present invention further includes a resin composition containing the organic thermal conductive additive.
  • the resin composition according to the present invention contains the following (A) to (C), and the weight ratio of (A) to (B) is 10:90 to 90:10.
  • a liquid crystal whose main chain is mainly composed of repeating units represented by the following general formula (1), mainly has a chain structure, and has a thermal conductivity of 0.45 W / (m ⁇ K) or more as a single resin.
  • Thermoplastic resin, -M-Sp- . . . (1) In the formula, M represents a mesogenic group, and Sp represents a spacer.
  • C Inorganic filler
  • the component (A) is the liquid crystalline thermoplastic resin described above.
  • a component is the thermosetting resin and thermoplastic resin which were demonstrated above.
  • the component (C) is the inorganic filler described above.
  • the weight ratio of (A) to (B) is preferably 10:90 to 90:10, more preferably 15:85 to 80:20, and 20: More preferably, it is 80 to 70:30, and most preferably 25:75 to 60:40.
  • thermosetting resin is at least one selected from an epoxy resin, an acrylic curable resin, a guanamine resin, a diallyl phthalate resin, a phenol resin, a maleic acid resin, a melamine resin, a urea resin, a furan resin, an alkyd resin, and an unsaturated polyester resin. It is a kind of thermosetting resin.
  • the epoxy resin used in the present invention is a resin mainly composed of a polymer obtained by ring-opening reaction of a compound containing at least two epoxy rings in one molecule. Is a condensation product of epichlorohydrin and bisphenol A. Curing agents include amines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, metaphenylenediamine, and diaminophenylsulfone, acid anhydrides such as methylnadic acid anhydride and hexahydroacid anhydride, and urea. , Melamine, phenol resin and the like can also be used.
  • the epoxy resin includes an alicyclic epoxy resin, a brominated epoxy resin, an aliphatic epoxy resin, a polyfunctional epoxy resin, and the like.
  • the acrylic curable resin used in the present invention is a resin having a reactive group that can be thermally cured at both ends of the acrylic resin, and includes Kaneka XMAP RC-100C manufactured by Kaneka Corporation.
  • the guanamine resin used in the present invention is a resin mainly composed of a polymer obtained by addition condensation reaction of guanamines and aldehydes, and a resin composed of benzoguanamine and formaldehyde is generally used.
  • Guanamine resins include those co-reacted and co-condensed with urea, melamine, thiourea and the like, and etherified with butanol, methanol, and the like.
  • the diallyl phthalate resin used in the present invention is a curable homopolymer or copolymer having diallyl phthalate as a main component.
  • the monomer to be copolymerized include styrene, ⁇ -methylstyrene, acrylic acid ester, and methacrylic acid ester.
  • the phenol resin used in the present invention is a resin mainly composed of a polymer obtained by a condensation reaction of phenols and aldehydes, such as phenol, m-cresol, 3,5-xylenol, p-alkylphenol, resorcin and the like. Those consisting of formaldehyde are preferred.
  • the phenol resin can undergo a condensation reaction with a normal acidic catalyst or basic catalyst, and a curing agent such as hexamethylenetetramine, or a filler such as wood powder, pulp, or aggregate can be used as necessary.
  • the melamine resin used in the present invention is a resin mainly composed of a polymer obtained by addition condensation reaction of melamine and aldehydes, and formaldehyde is generally used as the aldehydes.
  • the melamine resin includes those co-condensed with urea or the like. Melamine resins are generally cured by heat, but a curing agent can be used if necessary.
  • the area resin used in the present invention is a resin mainly composed of a polymer obtained by a condensation reaction of urea and aldehydes, and formaldehyde is generally used as the aldehydes.
  • Urea resins also include those co-condensed with thiourea, melamine, phenol, and the like.
  • the melamine resin and urea resin can be mixed with cellulose or the like as required.
  • the furan resin that can be used in the present invention is a resin mainly composed of a furfuryl alcohol alone or a polymer obtained by a condensation reaction with formaldehyde.
  • furfuryl alcohol / furfural cocondensation resin furfuryl alcohol resin
  • furfuryl alcohol resin furfural.
  • -Phenolic co-condensation resins furfural / ketone co-condensation resins
  • furfuryl alcohol / urea copolymer resins furfuryl alcohol / phenol co-condensation resins, and the like.
  • the alkyd resin used in the present invention is a resin whose main component is a polymer obtained by a condensation reaction of a polybasic acid and a polyhydric alcohol, and as the polybasic acid, phthalic anhydride, sophthalic acid, maleic acid, fatty oil, Fatty acid, rosin, ester rosin and the like, and glycerin is generally used as the polyhydric alcohol.
  • thermosetting resin it is possible to use not only one kind of the thermosetting resin but also a combination of two or more kinds in some cases.
  • thermosetting resins such as unsaturated polyester and polyurethane.
  • composition of the present invention can be cured by a method such as heating, no heating, or ultraviolet irradiation in the presence or absence of a curing agent or a curing accelerator.
  • the present invention also includes the following 2) to 15).
  • R represents a divalent substituent which may contain a branch having 2 to 20 main chain atoms.
  • a resin composition comprising the following (A) to (C), wherein the weight ratio of (A) to (B) is 10:90 to 90:10.
  • A a liquid crystalline thermoplastic resin in which the main chain mainly consists of repeating units represented by the following general formula (1) and mainly has a chain structure; -M-Sp- . . . (1) (In the formula, M represents a mesogenic group, and Sp represents a spacer.)
  • (C) Inorganic filler 12) The resin composition according to 11), wherein the liquid crystalline thermoplastic resin as the component (A) contains 10 vol% or more lamellar crystals.
  • the present invention improves the thermal conductivity of the organic material using the above-described liquid crystalline thermoplastic resin of the present invention and the use of the above-described liquid crystalline thermoplastic resin of the present invention as an organic thermal conductive additive.
  • the present invention improves the thermal conductivity of the organic material using the above-described liquid crystalline thermoplastic resin of the present invention and the use of the above-described liquid crystalline thermoplastic resin of the present invention as an organic thermal conductive additive.
  • Naturally aspects such as methods may also be included.
  • thermoplastic resin and resin composition of the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to such examples.
  • Each reagent described below was a reagent manufactured by Wako Pure Chemical Industries, Ltd. unless otherwise specified.
  • Journal of Polymer Science: Polymer Physics Edition, Vol. 21, and 1119-1131 (1983) may be referred to.
  • ⁇ Ramella crystal ratio> A region of lamellar crystals was determined from a 40,000-fold scale (20 cm ⁇ 25 cm) photograph obtained by TEM observation. The boundary of the region was determined by setting the lamellar crystal region as a region having periodic contrast. Since the lamellar crystals are similarly distributed in the depth direction, the ratio of the lamellar crystals was calculated as the ratio of the lamellar crystal region to the entire area of the photograph.
  • a laser light absorbing spray (black guard spray FC-153 manufactured by Fine Chemical Japan) was applied to a sample surface of a disk-shaped sample having a thickness of 1 mm ⁇ 25.4 mm ⁇ , dried, and then Xe flash analyzer LFA447 Nanoflash manufactured by NETZSCH was used. The thermal conductivity in the thickness direction and in the plane direction was measured.
  • INJECTOR COMP 80 ° C.
  • COLUMN COMP 80 ° C.
  • PUMP / SOLVENT COMP 60 ° C.
  • Injection Volume 200 ⁇ l
  • flow rate 0.7 ml / min
  • GPC manufactured by Waters; 150-CV
  • GPC column an organic solvent-based GPC column, Shodex HT-804 (theoretical plate number: 18,000 or more, exclusion limit molecular weight: 400,000, particle size: 7 ⁇ m) was used, and two were connected in series.
  • Example 1 100 parts by weight of the organic thermal conductive additive (A1) synthesized in Production Example 1, 100 parts by weight of polyethylene terephthalate (Bell Polyester Products Belpet EFG-70) as the organic polymer (B), phenolic stabilizer AO-60 (manufactured by ADEKA Co., Ltd.) 0.2 parts by weight and phosphite stabilizer HP-10 (manufactured by ADEKA Co., Ltd.) 0.2 parts by weight were added and mixed with a Henschel mixer. Then, it was introduced from a hopper provided near the screw root of a KZW15-45 co-meshing twin screw extruder manufactured by Technobel. The set temperature was 200 ° C.
  • the obtained resin composition was molded into a disk-like sample having a thickness of 6 mm ⁇ 20 mm ⁇ with an injection molding machine, and the thermal conductivity was measured. As a result, the thermal conductivity was 0.78 W / (m ⁇ K).
  • Example 1 Evaluation was carried out in the same manner as in Example 1 except that only polyethylene terephthalate (Bell Polyester Products Belpet EFG-70) was used as the organic polymer (B) and no organic heat conductive additive (A) was used. As a result, the thermal conductivity was 0.21 W / (m ⁇ K).
  • Example 2 100 parts by weight of the organic thermal conductive additive (A1) synthesized in Production Example 1, 100 parts by weight of polyethylene terephthalate (Bell Polyester Products Belpet EFG-70) as the organic polymer (B), phenolic stabilizer AO-60 (manufactured by ADEKA) 0.2 parts by weight, phosphite stabilizer HP-10 (manufactured by ADEKA) 0.2 parts by weight, inorganic filler (C) nitriding Boron powder (PT110 manufactured by Momentive Performance Materials, single unit thermal conductivity 60 W / (m ⁇ K), volume average particle diameter 45 ⁇ m, electrical insulation, volume resistivity 10 14 ⁇ ⁇ cm) (h-BN) After adding 100 parts by weight and mixing with a Henschel mixer, it is installed near the screw root of a KZW15-45 in-direction meshing twin screw extruder manufactured by Technobel.
  • A1 organic thermal conductive additive synthesized in Production Example 1
  • B organic polyethylene terephthalate
  • the set temperature was 200 ° C. in the vicinity of the supply port, and the set temperature was sequentially increased, and the extruder screw tip temperature was set at 280 ° C.
  • a resin composition was obtained under these conditions.
  • the obtained resin composition was molded into a disk-like sample having a thickness of 6 mm ⁇ 20 mm ⁇ with an injection molding machine, and the thermal conductivity was measured. As a result, the thermal conductivity was 3.38 W / (m ⁇ K).
  • the organic thermal conductive additive of the present invention exhibits thermoplasticity unlike the conventionally known inorganic fillers, etc., so that the viscosity of the resin composition is not significantly improved and the density of the resin composition is also kept low. Can do. Further, the mold wear and electrical insulation properties of the composition are not lowered.
  • Such a composition can be used as a resin material for heat dissipation and heat transfer in various situations such as the electric / electronic industry field, the automobile field, etc., and can contribute to weight reduction of equipment and devices. Very useful to.
  • Example 3 90 parts by weight of the organic thermal conductive additive (A1) synthesized in Production Example 1, 10 parts by weight of nylon 6 (A1020BRL manufactured by Unitika Co., Ltd.) as the organic polymer (B), AO-50 (phenolic stabilizer) After 0.2 parts by weight (made by ADEKA Co., Ltd.) was added and mixed well, it was charged from a hopper provided near the screw root of a KZW15-45 co-meshing twin screw extruder made by Technobel. The set temperature was 200 ° C. in the vicinity of the supply port, and the set temperature was successively increased, and the extruder screw tip temperature was set to 260 ° C. A resin composition was obtained under these conditions. The obtained resin composition was molded into a disk-like sample having a thickness of 6 mm ⁇ 20 mm ⁇ with an injection molding machine, and the thermal conductivity was measured. As a result, the thermal conductivity was 0.96 W / (m ⁇ K).
  • Example 4 As a result of measuring the thermal conductivity in the same manner as in Example 3 except that (A1) was 70 parts by weight and (B) was 30 parts by weight, the thermal conductivity was 0.76 W / (m ⁇ K). It was.
  • Example 5 The thermal conductivity was measured in the same manner as in Example 3 except that (A1) was 50 parts by weight and (B) was 50 parts by weight. As a result, the thermal conductivity was 0.66 W / (m ⁇ K). It was.
  • Example 6 90 parts by weight of the organic thermal conductive additive (A2) synthesized in Production Example 2, a commercially available liquid crystal polymer (A-8100, Ueno Pharmaceutical Co., Ltd., melting point 219 ° C., coagulation temperature 173 ° C.) as the organic polymer (B) After adding 10 parts by weight and 0.2 part by weight of phenol stabilizer AO-50 (manufactured by ADEKA Co., Ltd.) and mixing well, near the screw root of a KZW15-45 co-meshing twin screw extruder made by Technobel It was introduced from the hopper provided. The set temperature was 200 ° C.
  • the obtained resin composition was molded into a disk-shaped sample having a thickness of 6 mm ⁇ 20 mm ⁇ with an injection molding machine, and the thermal conductivity was measured. As a result, the thermal conductivity was 0.95 W / (m ⁇ K).
  • Example 7 The thermal conductivity was measured in the same manner as in Example 6 except that (A2) was 70 parts by weight and (B) was 30 parts by weight. As a result, the thermal conductivity was 0.57 W / (m ⁇ K). It was.
  • Example 8 As a result of measuring the thermal conductivity in the same manner as in Example 6 except that (A2) was 50 parts by weight and (B) was 50 parts by weight, the thermal conductivity was 0.46 W / (m ⁇ K). It was.
  • Example 4 Evaluation was carried out in the same manner as in Example 6 except that only a commercially available liquid crystal polymer (A-8100 manufactured by Ueno Pharmaceutical Co., Ltd.) was used as the organic polymer (B), and no organic thermal conductive additive (A) was used. As a result, the thermal conductivity was 0.18 W / (m ⁇ K).
  • Example 9 100 parts by weight of the organic heat conductive additive (A1) powder synthesized in Production Example 1, 70 parts by weight of a commercially available epoxy resin (Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.) as an organic polymer (B), an epoxy curing agent ( 30 parts by weight of Japan Epoxy Resin Co., Ltd. ST-12) and 0.2 parts by weight of phenol stabilizer AO-50 (manufactured by ADEKA Co., Ltd.) were added and mixed well with a mixer at room temperature. The sample was filled in a disk-shaped metal mold of ⁇ 20 mm ⁇ and cured by heating at 150 ° C., and the thermal conductivity was measured. As a result, the thermal conductivity was 0.56 W / (m ⁇ K).
  • a commercially available epoxy resin (Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.)
  • an epoxy curing agent 30 parts by weight of Japan Epoxy Resin Co., Ltd. ST-12
  • phenol stabilizer AO-50 manufactured
  • Example 10 100 parts by weight of the organic thermal conductive additive (A1) powder synthesized in Production Example 1, 100 parts by weight of an acrylic curable resin (Kaneka XMAP RC-100C manufactured by Kaneka Corp.) as the organic polymer (B), a curing agent After adding 3 parts by weight (Nipa BW manufactured by NOF Corporation) and 0.2 parts by weight of phenol stabilizer AO-60 (manufactured by ADEKA Co., Ltd.) and mixing well with a mixer at room temperature, thickness 6 mm ⁇ The sample was filled into a 20 mm ⁇ disk-shaped mold and cured by heating at 150 ° C., and the thermal conductivity was measured. As a result, the thermal conductivity was 0.50 W / (m ⁇ K).
  • Example 11 In a closed reactor equipped with a reflux condenser, a thermometer, a nitrogen introduction tube and a stirring rod, 4,4′-dihydroxybiphenyl, sebacic acid and acetic anhydride were each in a molar ratio of 1: 1.05: 2.2. The mixture was charged at a rate, and antimony oxide was used as a catalyst, and the temperature was raised to the reflux temperature while stirring the contents while gently flowing nitrogen gas. After maintaining at reflux temperature for 5 hours, the reflux condenser was replaced with a Liebig condenser, and acetic acid was distilled off while the temperature was raised to 200 ° C. Further, the temperature was raised to 300 ° C.
  • Example 12 In a closed reactor equipped with a reflux condenser, a thermometer, a nitrogen introduction tube and a stirrer, 4,4′-dihydroxybiphenyl, sebacic acid, p-hydroxybenzoic acid and acetic anhydride were each in a molar ratio of 1: 1: The mixture was charged at a ratio of 3.5: 6, and the temperature was raised to the reflux temperature while stirring the contents while gently flowing nitrogen gas. After maintaining at reflux temperature for 5 hours, the reflux condenser was replaced with a Liebig condenser, and acetic acid was distilled off while the temperature was raised to 200 ° C. Further, the temperature was raised to 320 ° C.
  • thermoplastic resin is obtained by copolymerizing p-hydroxybenzoic acid with the polymer of Example 11 (thermoplastic resin).
  • Table A shows the injection molding conditions and various physical properties of the obtained molded articles for the resins of Examples 11 and 12.
  • thermoplastic resin according to this example has a thermal conductivity of 0.45 W / (m ⁇ K) or more as measured by the hot disk method and is very useful. it is obvious. Furthermore, as shown in Table 1, it can be seen that the thermoplastic resin according to the present example has high thermal conductivity in both the thickness direction and the surface direction. From the above, it is clear that the thermoplastic resin according to the present example has an isotropic high thermal conductivity not only in one direction.
  • Example 11 it can be seen that even with a resin having the same primary structure, the ratio of lamellar crystals and the degree of crystallinity change greatly due to the thermal history, and the thermal conductivity changes.
  • Example 13 4,4′-Dihydroxybiphenyl, sebacic acid, and acetic anhydride were charged into a closed reactor at a molar ratio of 1: 1.05: 2.1, respectively, and the pressure was maintained at 150 ° C. in a nitrogen gas atmosphere for 3 hours under normal pressure. An acetylation reaction was performed, and polycondensation was performed by heating to 280 ° C. at a temperature rising rate of 1 ° C./min. When the acetic acid distillate amount reached 90% of the theoretical acetic acid production amount, while maintaining the temperature, the pressure was reduced to 10 torr over about 20 minutes to carry out melt polymerization to a high molecular weight. One hour after the start of pressure reduction, the pressure was returned to normal pressure with an inert gas, and the produced polymer was taken out. Table 2 shows the molecular structure, and Table 3 shows the number average molecular weight and the thermal conductivity of the resin alone.
  • Example 14 and 15 Polymerization was conducted in the same manner except that the polymerization time from the start of decompression in Example 13 was 1.5 hours and 3 hours, respectively, and resins having different number average molecular weights were synthesized.
  • Table 2 shows the molecular structure
  • Table 3 shows the number average molecular weight and the thermal conductivity of the resin alone.
  • Example 16 to 18 Polymerization was carried out in the same manner except that sebacic acid in Examples 13 to 15 was changed to dodecanedioic acid, thereby synthesizing resins having different number average molecular weights.
  • Table 2 shows the molecular structure
  • Table 3 shows the number average molecular weight and the thermal conductivity of the resin alone.
  • Example 19 to 21 Resins having different number average molecular weights were synthesized in the same manner except that the sebacic acid of Examples 13 to 15 was changed to tetradecanedioic acid.
  • the molecular structure is shown in Table 2, and the thermal conductivity of the number average molecular weight resin alone is shown in Table 3.
  • Example 22 A polymerization reactor was charged with dimethyl 4,4′-biphenyldicarboxylate and 1,10-decanediol at a molar ratio of 1: 1.05, and TBT (tetrabutyl titanate) was used as a catalyst with respect to 1 mol of the structural unit of the polyester. After adding 5 ⁇ 10 ⁇ 4 mol and transesterifying at a temperature of 280 ° C. to distill methanol, a polycondensation reaction was carried out at 280 ° C. for 1.5 hours under a reduced pressure of 10 torr. Thereafter, the pressure was returned to normal pressure with an inert gas, and the produced polymer was taken out.
  • Table 2 shows the molecular structure
  • Table 3 shows the number average molecular weight and the thermal conductivity of the resin alone.
  • Example 23 Polymerization was carried out in the same manner except that 1,10-decanediol in Example 22 was changed to triethylene glycol.
  • Table 2 shows the molecular structure
  • Table 3 shows the number average molecular weight and the thermal conductivity of the resin alone.
  • Example 24 4-Acetoxybenzoic acid-4-acetoxyphenyl and dodecanedioic acid were charged into a closed reactor at a molar ratio of 1: 1.05, respectively, and heated at a rate of 1 ° C./min in a nitrogen gas atmosphere under normal pressure. Polycondensation was performed by heating to 280 ° C. When the acetic acid distillate amount reached 90% of the theoretical acetic acid production amount, while maintaining the temperature, the pressure was reduced to 10 torr over about 20 minutes to carry out melt polymerization to a high molecular weight. 1.5 hours after the start of decompression, the pressure was returned to normal pressure with an inert gas, and the produced polymer was taken out. Table 2 shows the molecular structure, and Table 3 shows the number average molecular weight and the thermal conductivity of the resin alone.
  • Example 25 4,4′-diacetoxyazoxybenzene and dodecanedioic acid were charged into the closed reactor at a molar ratio of 1: 1.05, respectively, and the temperature was increased at a rate of 1 ° C./min in a nitrogen gas atmosphere under normal pressure. Polycondensation was performed by heating to 280 ° C. When the acetic acid distillate amount reached 90% of the theoretical acetic acid production amount, while maintaining the temperature, the pressure was reduced to 10 torr over about 20 minutes to carry out melt polymerization to a high molecular weight. 1.5 hours after the start of decompression, the pressure was returned to normal pressure with an inert gas, and the produced polymer was taken out. Table 2 shows the molecular structure, and Table 3 shows the number average molecular weight and the thermal conductivity of the resin alone.
  • Example 26 and 27 Boron nitride powder which is a liquid crystalline thermoplastic resin synthesized in Example 17 and inorganic filler (PT110 manufactured by Momentive Performance Materials, single-unit thermal conductivity 60 W / (m ⁇ K), volume average particle diameter 45 ⁇ m, electricity Insulation and volume resistivity of 10 14 ⁇ ⁇ cm) (h-BN) mixed with the composition shown in Table E were prepared.
  • a phenol stabilizer AO-60 manufactured by ADEKA Co., Ltd.
  • Laboplast mill Toyo Seiki Seisakusho Co., Ltd. 30C150
  • the resin composition was molded into a disk-shaped sample having a thickness of 6 mm ⁇ 20 mm ⁇ with an injection molding machine, and the thermal conductivity was measured. The results are shown in Table 4.
  • Example 28 Natural scaly graphite powder as an inorganic filler (BF-250A manufactured by Chuetsu Graphite Co., Ltd., thermal conductivity 1200 W / (m ⁇ K) alone, volume average particle diameter 250 as a thermoplastic resin synthesized in Example 17 0.0 ⁇ m, conductivity) (GC) mixed with the composition shown in Table F was prepared.
  • a phenol stabilizer AO-60 manufactured by ADEKA Co., Ltd.
  • Laboplast mill Toyo Seiki Seisakusho Co., Ltd. 30C150
  • the resin composition was molded into a disk-shaped sample having a thickness of 6 mm ⁇ 20 mm ⁇ with an injection molding machine, and the thermal conductivity was measured. The results are shown in Table 4.
  • Example 29 100 parts by weight of the organic polymer shown in Table 5 below, the organic heat conductive additive (A1) in the amount (parts by weight) shown in Table 5, and 0.2 part by weight of AO-50 (manufactured by ADEKA Corporation)
  • this mixture was charged from a hopper provided in the vicinity of the screw root of a KZW15-45 same direction meshing twin screw extruder manufactured by Technobel, and a resin composition was obtained by twin screw extrusion.
  • the set temperature of the twin screw extruder was 200 ° C. in the vicinity of the supply port, the set temperature was sequentially increased, and the extruder screw tip temperature was set to the temperature shown in Table 5.
  • the obtained resin composition was molded into a disk-shaped sample having a thickness of 6 mm ⁇ 20 mm ⁇ with an injection molding machine.
  • Table 5 shows the measurement results of thermal conductivity.
  • excellent indicates that the thermal conductivity of the sample is significantly improved as compared with the organic polymer
  • good indicates that the thermal conductivity is slightly improved
  • no change indicates that the sample has little change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

 本発明の目的は、セラミック、金属、炭素材料などの無機熱伝導性フィラーと異なり有機高分子でありながら、プラスチックに添加することで熱伝導性を付与でき、樹脂に大量に添加しても組成物の金型磨耗性や電気絶縁性を低下させず軽量化も可能で、組成物の成形加工性も良好な、有機熱伝導性添加剤を提供することである。本発明の有機熱伝導性添加剤は、主鎖が主として下記一般式(1)で示される繰り返し単位からなり、主として鎖状の構造よりなり、樹脂単体での熱伝導率が0.45W/(m・K)以上である液晶性熱可塑性樹脂を用いたものである。 -M-Sp- ...(1) (式中、Mはメソゲン基、Spはスペーサーを示す。)

Description

有機熱伝導性添加剤、樹脂組成物および硬化物
 本発明は、熱伝導性に優れプラスチックに熱伝導性を付与することが可能な、新規有機熱伝導性添加剤に関する。詳しくは、セラミック、金属、炭素材料などの無機熱伝導性フィラーと異なり有機高分子でありながら、プラスチックに添加することで熱伝導性を付与でき、樹脂に大量に添加しても組成物の金型磨耗性や電気絶縁性を低下させず軽量化も可能で、組成物の成形加工性も良好な、有機熱伝導性添加剤に関するものである。
 熱可塑性樹脂組成物をパソコンやディスプレーの筐体、電子デバイス材料、自動車の内外装、など種々の用途に使用する際、プラスチックは金属材料など無機物と比較して熱伝導性が低いため、発生する熱を逃がし辛いことが問題になることがある。このような課題を解決するため、高熱伝導性無機物を大量に熱可塑性樹脂中に配合することで、高熱伝導性樹脂組成物を得ようとする試みが広くなされている。高熱伝導性無機化合物としては、グラファイト、炭素繊維、アルミナ、窒化ホウ素、等の高熱伝導性無機物を、通常は30体積%以上、さらには50体積%以上もの高含有量で樹脂中に配合する必要がある。しかしながら、無機物としてグラファイトや炭素繊維を大量に配合すると、樹脂の電気絶縁性が低下して導電性となってしまうため、電子機器用途では使用できる部位が限定されてしまうという課題がある。またアルミナなどのセラミックフィラーを大量に配合すると、フィラーの硬度が高いため、成形用材料などとして使用する際に金型を磨耗してしまううえ、フィラーの密度が高いために得られた組成物は高密度となり、電子機器などの軽量化が難しくなるという課題がある。さらには窒化ホウ素などの比較的低密度かつ低硬度なフィラーを使用する方法も提案されているが、このようなフィラーを用いたとしても、無機物を大量に添加する限り、無機物は樹脂の成形加工温度において溶融することが無いため、樹脂組成物の成形加工性が大幅に低下してしまうという課題は避けられない。
 このような問題点から、低密度、低硬度、電気絶縁性、などの特性を兼ね備え、かつ樹脂の成形加工温度で溶融し得るような有機熱伝導性添加剤の開発が強く要望されていた。
 樹脂単体の熱伝導性が優れた熱硬化性樹脂としては、例えば、特許文献1や特許文献2に記載のエポキシ樹脂、又は特許文献3に記載のビスマレイミド樹脂が報告されている。しかしながらこれらの樹脂は熱硬化性を示すため、樹脂の成形加工温度においても溶融することが無く、樹脂組成物の成形加工性改善という課題に対応することはできないものである。
 一方熱可塑性樹脂については、射出成形時に延伸や磁場配向など特殊な成形加工法を採用することで、特定方向に高熱伝導性を付与する研究例はあるものの、これらの技術は有機熱伝導性添加剤として応用できるものではない。
国際公開番号WO2002/094905号公報 国際公開番号WO2006/120993号公報 日本国公開特許公報「特開2007-224060号公報」
 本発明は、樹脂単体が熱伝導性に優れ、製造が容易で、かつ熱可塑性を示す、有機熱伝導性添加剤を提供することを目的とする。
 本発明者は、特定の構造を有し樹脂単体として優れた熱伝導性を示す液晶性熱可塑性樹脂が、有機熱伝導性添加剤として良好な特性を有していることを見出し、本発明に至った。
 即ち、本発明の有機熱伝導性添加剤は以下の構成を有する。
1)主鎖が主として下記一般式(1)で示される単位の繰り返し単位からなり、主として鎖状の構造よりなり、樹脂単体での熱伝導率が0.45W/(m・K)以上である液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
-M-Sp-         ...(1)
(式中、Mはメソゲン基、Spはスペーサーを示す。)
 本発明の液晶性熱可塑性樹脂は樹脂単体で高熱伝導性を示すため、セラミック、金属、炭素材料などの無機熱伝導性フィラーと異なり有機高分子でありながら、プラスチックに添加することで熱伝導性を付与でき、樹脂に大量に添加しても組成物の金型磨耗性や電気絶縁性を低下させず軽量化も可能で、組成物の成形加工性も良好となるなど、有機熱伝導性添加剤として有用である。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。
 本発明の有機熱伝導性添加剤における液晶性熱可塑性樹脂は、主鎖が主として下記一般式(1)で示される繰り返し単位からなり、主として鎖状の構造よりなることを特徴とするものである。
-M-Sp-          ...(1)
(式中、Mはメソゲン基、Spはスペーサーを示す。)
 本発明で言う主としてとは、分子鎖の主鎖中に含まれる一般式(1)の量について、全構成単位に対して50mol%以上であり、好ましくは70mol%以上であり、より好ましくは90mol%以上であり、最も好ましくは本質的に100mol%である。50mol%未満の場合は、樹脂の結晶化度が低くなり、熱伝導率が低くなる場合がある。
 本発明の樹脂は対称性が極めて高く、剛直鎖が屈曲鎖で結合された構造のため、分子の配向性が高く、形成される高次構造が緻密となり、優れた熱伝導性を有する。
 本発明の有機熱伝導性添加剤における液晶性熱可塑性樹脂の熱伝導率は、通常、0.45W/(m・K)以上であり、好ましくは0.6W/(m・K)以上、より好ましくは0.8W/(m・K)以上、さらに好ましくは1.0W/(m・K)以上、これより好ましくは1.2W/(m・K)以上、特に好ましくは1.3W/(m・K)以上である。熱伝導率の上限は特に制限されず、高ければ高いほど好ましいが、一般的には30W/(m・K)以下、さらには10W/(m・K)以下の値が例示できる。メソゲン基とスペーサーとからなる単位の繰り返し構造を全く有さない熱可塑性樹脂は、一般的に熱伝導率が低くなるため好ましくない。本発明の有機熱伝導性添加剤における液晶性熱可塑性樹脂は、樹脂単体での熱伝導率が0.45W/(m・K)以上の液晶性熱可塑性樹脂であることが好ましい。熱伝導率の具体的な測定方法としては、液晶性熱可塑性樹脂を厚み6mm×20mmφの円盤状としたサンプルを、ホットディスク法にて測定する方法が挙げられる。
 本発明の有機熱伝導性添加剤における液晶性熱可塑性樹脂に含まれるメソゲン基とは、剛直で配向性の高い置換基を意味する。好ましいメソゲン基としては、下記一般式:
-A-x-A
(AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環基、脂環式複素環基から選ばれる置換基を示す。xは結合子であり、直接結合、-CH-、-C(CH-、-O-、-S-、-CH-CH-、-C=C-、-C≡C-、-CO-、-CO-O-、-CO-NH-、-CH=N-、-CH=N-N=CH-、-N=N-または-N(O)=N-の群から選ばれる2価の置換基を示す。)で表される基が挙げられる。ここでA、Aは各々独立して、炭素数6~12のベンゼン環を有する炭化水素基、炭素数10~20のナフタレン環を有する炭化水素基、炭素数12~24のビフェニル構造を有する炭化水素基、炭素数12~36のベンゼン環を3個以上有する炭化水素基、炭素数12~36の縮合芳香族基を有する炭化水素基、炭素数4~36の脂環式複素環基から選択されるものであることが好ましい。
 ここでA、Aは各々独立して、1もしくは2のベンゼン環を有する炭化水素基、1または2のナフタレン環を有する炭化水素基、1もしくは2のビフェニル構造を有する炭化水素基、2、3、4、5もしくは6のベンゼン環を3個以上有する炭化水素基、炭素数12~36の縮合芳香族基を有する炭化水素基、または、炭素数4~36の脂環式複素環基から選択されるものであることが好ましい。
 A、Aの具体例としては、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、シクロヘキシル、ピリジル、ピリミジル、チオフェニレン等が挙げられる。また、これらは無置換であってもよく、脂肪族炭化水素基、ハロゲン基、シアノ基、ニトロ基などの置換基を有する誘導体であってもよい。
 これらのうち、結合子に相当するxの主鎖の原子数が偶数であるとメソゲン基の分子幅が小さく、結合の回転の自由度が少なく、結晶化率が高い傾向があり、樹脂単体の熱伝導率が向上し易く好ましい。すなわち直接結合、-CH-CH-、-C=C-、-C≡C-、-CO-O-、-CO-NH-、-CH=N-、-CH=N-N=CH-、-N=N-または-N(O)=N-の群から選ばれる2価の置換基が好ましい。
 メソゲン基の具体例として、ビフェニル、ターフェニル、クォーターフェニル、スチルベン、ジフェニルエーテル、1,2-ジフェニルエチレン、ジフェニルアセチレン、ベンゾフェノン、フェニルベンゾエート、フェニルベンズアミド、アゾベンゼン、2-ナフトエート、フェニル-2-ナフトエート、およびこれらの誘導体等から水素を2個除去した構造を持つ2価の基が挙げられる。中でも直接結合が好ましく、さらに好ましくは下記一般式(3)で表されるメソゲン基である。
Figure JPOXMLDOC01-appb-C000002
 このメソゲン基はその構造ゆえに剛直で配向性が高く、さらには入手または合成が容易である。具体的にはビフェニル、ターフェニル、クォーターフェニルを挙げることができる。
 有機熱伝導性添加剤を得るためには、樹脂に含まれるメソゲン基は、架橋性の置換基を含んでいてもよい。
 有機熱伝導性添加剤における液晶性熱可塑性樹脂に含まれるスペーサーとは、屈曲性分子鎖を意味する。液晶性熱可塑性樹脂のスペーサーの主鎖原子数は好ましくは4~28であり、より好ましくは6~24であり、さらに好ましくは8~20である(ここで主鎖原子数4とは、例えば「-C-C-C-C-」の構造をいう。)。スペーサーの主鎖原子数がこの範囲にあることにより、液晶性熱可塑性樹脂の分子構造が十分な屈曲性を有しつつ、結晶性が高く、熱伝導率が良好となるので好ましい。
 スペーサーの主鎖を構成する原子の種類は特に限定されず何でも使用できるが、好ましくはC、H、O、S、Nから選ばれる少なくとも1種の原子である。
 好ましいスペーサーとしては、下記一般式
-y-R-z-
(yおよびzは、各々独立して直接結合、-CH-、-C(CH-、-O-、-S-、-CH-CH-、-C=C-、-C≡C-、-CO-、-CO-O-、-CO-NH-、-CH=N-、-CH=N-N=CH-、-N=N-または-N(O)=N-の群から選ばれる2価の置換基を示す。Rは主鎖原子数2~20の分岐を含んでもよい2価の置換基を示す。)で表される基が挙げられる。ここでRは、通常、炭素原子数2~20の鎖状飽和炭化水素基、炭素原子数2~20の1~3個の環状構造を含む飽和炭化水素基、炭素原子数2~20の1~5個の不飽和基を有する炭化水素基、炭素原子数2~20の1~3個の芳香環を有する炭化水素基、および、炭素原子数2~20の1~5個の酸素原子を有するポリエーテル基から選択されるものである。
 スペーサーの具体例としては例えば脂肪族炭化水素鎖、ポリエーテル鎖等が挙げられる。Rは分岐を含まない直鎖の脂肪族炭化水素鎖であることが望ましい。また、Rは飽和でも不飽和でもよいが、液晶性熱可塑性樹脂が適度な屈曲性を有することから、飽和脂肪族炭化水素鎖であることが望ましい。全R中、その50重量%を越えるユニットが飽和脂肪族炭化水素鎖であることが好ましく、最も好ましくは、不飽和結合を含まないことが好ましい。
 Rの炭素数は2~20であることが好ましく、炭素数4~18であることがより好ましく、さらには炭素数6~16であることが好ましい。またメソゲン基が直線状につながり、結晶化度が低下しにくく、熱伝導率が確保できるので、Rはこれら炭素数の直鎖の飽和脂肪族炭化水素が好ましく、中でも炭素数は偶数であることが好ましい。偶数の場合、メソゲン基がより規則正しく配列するため、熱伝導率が高くなる傾向がある。
 特に熱伝導率が優れた樹脂が得られるという観点から、Rは-(CH-、-(CH10-、および-(CH12-から選ばれる少なくとも1種であることが好ましい。yおよびzは置換基Rをメソゲン基と結合するための基である。このような基を有するスペーサーの中でも、熱伝導率が優れた樹脂が得られるという観点から-CO-O-R-O-CO-および-O-CO-R-CO-O-が好ましく、-O-CO-R-CO-O-が特に好ましい。
 本発明の有機熱伝導性添加剤に用いる液晶性熱可塑性樹脂の主鎖を構成する繰り返し単位としては、以下のものが好ましい。
1.-A-x-A-y-R-z-
2.上記一般式(3)で表されるメソゲン基と、-y-R-z-で表わされるスペーサーの組合せ。
 本発明の有機熱伝導性添加剤における液晶性熱可塑性樹脂の数平均分子量は、ポリスチレンを標準とし、本発明に用いる液晶性熱可塑性樹脂をp-クロロフェノールとo-ジクロロベンゼンの1:2Vol比混合溶媒に0.25重量%濃度となるように溶解して調製した溶液を用いて、GPCにて80℃で測定することができる値である。
 本発明に用いる液晶性熱可塑性樹脂の数平均分子量は好ましくは3000~40000であり、より好ましくは5000~30000であり、最も好ましくは7000~20000である。数平均分子量がこれら範囲にある事により、同一の一次構造を有する樹脂であっても熱伝導率が高くなるので好ましい数平均分子量が3000未満または40000より大きい場合、同一の一次構造を有する樹脂であっても熱伝導率が0.45W/(m・K)未満になる場合がある。
 また本発明の有機熱伝導性添加剤として用いる液晶性熱可塑性樹脂は、ラメラ晶を含むものであることが好ましい。本発明の液晶性熱可塑性樹脂では、結晶化度の指標としてラメラ晶の量を用いることができる。ラメラ晶が多いほど結晶化度が高い。
 本発明でいうラメラ晶は、長い鎖状の分子が折り畳まれて平行に並び作られる板状結晶に相当する。このような結晶が樹脂中に存在するか否かは、透過型電子顕微鏡(TEM)観察またはX線回折によって容易に判別することができる。
 該連続相を成すラメラ晶の割合は、RuOで染色した試料を透過型電子顕微鏡(TEM)により直接観察することで算出することができる。具体的な方法として、TEM観察用の試料は、成形した厚み6mm×20mmφのサンプルの一部を切り出し、RuOにて染色した後、ミクロトームにて作成した0.1μm厚の超薄切片を使用するものとする。作成した切片を加速電圧100kVでTEMにて観察し、得られた4万倍スケールの写真(20cm×25cm)から、ラメラ晶の領域を決定することができる。領域の境界は、ラメラ晶領域を周期的なコントラストの存在する領域とし、決定できる。ラメラ晶は深さ方向にも同様に分布していることから、ラメラ晶の割合は写真の全体の面積に対するラメラ晶領域の割合として算出するものとする。また、樹脂自体が高熱伝導性を有するためにはラメラ晶の割合が10Vol%以上であることが好ましい。ラメラ晶の割合は、20Vol%以上であることがより好ましく、30Vol%以上であることがさらに好ましく、さらには40Vol%以上であることが特に好ましい。
 また本発明の液晶性熱可塑性樹脂は、結晶を含むものであることが好ましい。本発明では、液晶性熱可塑性樹脂中のラメラ晶の割合から、以下の計算式により結晶化度を求めることができる。
結晶化度(%)= ラメラ晶の割合(Vol%)× 0.7
樹脂自体が高熱伝導性を有するためには、液晶性熱可塑性樹脂の結晶化度が7%以上であることが好ましい。結晶化度は、14%以上であることがより好ましく、21%以上であることがさらに好ましく、28%以上であることが特に好ましい。
 また本発明の液晶性熱可塑性樹脂が高熱伝導性を発揮するためには、樹脂自体の密度が1.1g/cm以上であることが好ましく、1.13g/cm以上であることがより好ましく、1.16g/cm以上であることが特に好ましい。樹脂密度が大きいということは、ラメラ晶の含有率が高いこと、すなわち結晶化度が高いことを意味している。
 また本発明で使用する液晶性熱可塑性樹脂は、熱伝導率が等方的に高いことが好ましい。熱伝導率が等方的であるか否かを測定する方法としては、例えば、熱可塑性樹脂を厚み1mm×25.4mmφの円盤状としたサンプルに対して、Xeフラッシュ法にて厚さ方向、面方向の熱伝導率を別々に測定する方法が挙げられる。本発明に係る熱可塑性樹脂の熱伝導率は等方的に高く、上記の測定方法にて測定された、厚さ方向、面方向の熱伝導率は0.3W/(m・K)以上である。
 本発明の有機熱伝導性添加剤は、公知のいかなる方法で製造されても構わない。構造の制御が簡便であるという観点から、メソゲン基の両末端に反応性官能基を有する化合物と、置換基Rの両末端に反応性官能基を有する化合物とを反応させて製造する方法が好ましい。このような反応性官能基としては水酸基、カルボキシル基、アルコキシ基、アミノ基、ビニル基、エポキシ基、シアノ基、など公知のものを使用でき、これらを反応させる条件もとくに限定されない。合成の簡便さという観点からは、メソゲン基の両末端に水酸基を有する化合物と置換基Rの両末端にカルボキシル基を有する化合物、またはメソゲン基の両末端にカルボキシル基を有する化合物と置換基Rの両末端に水酸基を有する化合物を反応させる製造方法が好ましい。
 メソゲン基の両末端に水酸基を有する化合物と置換基Rの両末端にカルボキシル基を有する化合物からなる熱可塑性樹脂の製造方法の一例としては、両末端に水酸基を有するメソゲン基を無水酢酸等の低級脂肪酸を用いてそれぞれ個別に、または一括して酢酸エステルとした後、別の反応槽または同一の反応槽で、置換基Rの両末端にカルボキシル基を有する化合物と脱酢酸重縮合反応させる方法が挙げられる。
 重縮合反応は、実質的に溶媒の存在しない状態で行われることが好ましい。反応温度としては、通常200~350℃、さらには230~330℃、特には250~300℃の温度で行われることが好ましい。また、窒素等の不活性ガスの存在下、常圧または減圧下に、0.5~5時間行われることが好ましい。反応温度が低すぎると反応の進行は遅く、高すぎる場合は分解等の副反応が起こり易い。
 また、多段階の反応温度を採用してもかまわないし、場合により昇温中あるいは最高温度に達したらすぐに反応生成物を溶融状態で抜き出し、回収することもできる。得られた液晶性熱可塑性樹脂はそのままでも使用してもよいし、未反応原料を除去する、または、物性をあげる意味から固相重合を行なうこともできる。
 固相重合を行なう場合には、得られた液晶性熱可塑性樹脂を3mm以下好ましくは1mm以下の粒径の粒子に機械的に粉砕し、固相状態のまま250~350℃で窒素等の不活性ガス雰囲気下、または減圧下に1~20時間処理することが好ましい。ポリマー粒子の粒径が3mm以上になると、処理が十分でなく、物性上の問題を生じるため好ましくない。固相重合時の処理温度や昇温速度は、液晶性熱可塑性樹脂粒子が融着を起こさないように選ぶことが好ましい。
 本発明の有機熱伝導性添加剤の製造に用いられる低級脂肪酸の酸無水物としては、炭素数2~5個の低級脂肪酸の酸無水物、たとえば無水酢酸、無水プロピオン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロム酢酸、無水ジブロム酢酸、無水トリブロム酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸等が挙げられるが、無水酢酸、無水プロピオン酸、無水トリクロル酢酸が特に好適に用いられる。低級脂肪酸の酸無水物の使用量は、用いるメソゲン基が有する水酸基の合計に対し1.01~1.50倍当量、好ましくは1.02~1.2倍当量である。その他メソゲン基の両末端にカルボキシル基を有する化合物と置換基Rの両末端に水酸基を有する化合物を反応させる製造方法については例えば、日本国公開特許公報「特開平2-258864号公報」に記載のように4,4’-ビフェニルジカルボン酸ジメチルと脂肪族ジオールを溶融重合する方法が挙げられる。
 本発明の液晶性熱可塑性樹脂の末端の構造はとくに限定されないが、着色が少ないなど熱伝導性付与剤に適した樹脂が得られると言う観点からは、水酸基、カルボキシル基、エステル基、アシル基、アルコキシ基などで末端が封止されていることが好ましい。末端にエポキシ基、マレイミド基などの反応性が高い官能基を有する場合は、樹脂が熱硬化性となり、射出成形性が損なわれることがある。
 本発明の液晶性熱可塑性樹脂は、その効果の発揮を失わない程度に他のモノマーを共重合して構わない。例えば芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン、芳香族ジアミン、芳香族アミノカルボン酸またはカプロラクタム類、カプロラクトン類、脂肪族ジカルボン酸、脂肪族ジオール、脂肪族ジアミン、脂環族ジカルボン酸、および脂環族ジオール、芳香族メルカプトカルボン酸、芳香族ジチオールおよび芳香族メルカプトフェノールが挙げられる。
 芳香族ヒドロキシカルボン酸の具体例としては、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、2-ヒドロキシ-5-ナフトエ酸、2-ヒドロキシ-7-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸、4’-ヒドロキシフェニル-4-安息香酸、3’-ヒドロキシフェニル-4-安息香酸、4’-ヒドロキシフェニル-3-安息香酸およびそれらのアルキル、アルコキシまたはハロゲン置換体などが挙げられる。
 芳香族ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ジカルボキシビフェニル、3,4’-ジカルボキシビフェニル、4,4’’-ジカルボキシターフェニル、ビス(4-カルボキシフェニル)エーテル、ビス(4-カルボキシフェノキシ)ブタン、ビス(4-カルボキシフェニル)エタン、ビス(3-カルボキシフェニル)エーテルおよびビス(3-カルボキシフェニル)エタン等、これらのアルキル、アルコキシまたはハロゲン置換体などが挙げられる。
 芳香族ジオールの具体例としては、例えばハイドロキノン、レゾルシン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェノールエーテル、ビス(4-ヒドロキシフェニル)エタンおよび2,2’-ジヒドロキシビナフチル等、およびこれらのアルキル、アルコキシまたはハロゲン置換体などが挙げられる。
 芳香族ヒドロキシアミンの具体例としては、4-アミノフェノール、N-メチル-4-アミノフェノール、3-アミノフェノール、3-メチル-4-アミノフェノール、4-アミノ-1-ナフトール、4-アミノ-4’-ヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニルエーテル、4-アミノ-4’-ヒドロキシビフェニルメタン、4-アミノ-4’-ヒドロキシビフェニルスルフィドおよび2,2’-ジアミノビナフチルおよびこれらのアルキル、アルコキシまたはハロゲン置換体などが挙げられる。
 芳香族ジアミンおよび芳香族アミノカルボン酸の具体例としては、1,4-フェニレンジアミン、1,3-フェニレンジアミン、N-メチル-1,4-フェニレンジアミン、N,N’-ジメチル-1,4-フェニレンジアミン、4,4’-ジアミノフェニルスルフィド(チオジアニリン)、4,4’-ジアミノビフェニルスルホン、2,5-ジアミノトルエン、4,4’-エチレンジアニリン、4,4’-ジアミノビフェノキシエタン、4,4’-ジアミノビフェニルメタン(メチレンジアニリン)、4,4’-ジアミノビフェニルエーテル(オキシジアニリン)、4-アミノ安息香酸、3-アミノ安息香酸、6-アミノ-2-ナフトエ酸および7-アミノ-2-ナフトエ酸およびこれらのアルキル、アルコキシまたはハロゲン置換体などが挙げられる。
 脂肪族ジカルボン酸の具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、フマル酸、マレイン酸などが挙げられる。
 脂肪族ジアミンの具体例としては、1,2-エチレンジアミン、1,3-トリメチレンジアミン、1,4-テトラメチレンジアミン、1,6-ヘキサメチレンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、および1,12-ドデカンジアミンなどが挙げられる。
 脂環族ジカルボン酸、脂肪族ジオールおよび脂環族ジオールの具体例としては、ヘキサヒドロテレフタル酸、トランス-1,4-シクロヘキサンジオール、シス-1,4-シクロヘキサンジオール、トランス-1,4-シクロヘキサンジメタノール、シス-1,4-シクロヘキサンジメタノール、トランス-1,3-シクロヘキサンジオール、シス-1,2-シクロヘキサンジオール、トランス-1,3-シクロヘキサンジメタノール、エチレングリコール、プロピレングリコール、ブチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ネオペンチルグリコールなどの直鎖状または分鎖状脂肪族ジオールなど、ならびにそれらの反応性誘導体が挙げられる。
 芳香族メルカプトカルボン酸、芳香族ジチオールおよび芳香族メルカプトフェノールの具体例としては、4-メルカプト安息香酸、2-メルカプト-6-ナフトエ酸、2-メルカプト-7-ナフトエ酸、ベンゼン-1,4-ジチオール、ベンゼン-1,3-ジチオール、2,6-ナフタレン-ジチオール、2,7-ナフタレン-ジチオール、4-メルカプトフェノール、3-メルカプトフェノール、6-メルカプト-2-ヒドロキシナフタレン、7-メルカプト-2-ヒドロキシナフタレンなど、ならびにそれらの反応性誘導体が挙げられる。
 本発明の有機熱伝導性添加剤は、有機熱伝導性添加剤(A)を、有機重合体(B)100重量部に対し1~10000重量部添加して含有させることで、有機重合体(B)に対して熱伝導性を付与し得るものである。有機重合体(B)としては熱可塑性樹脂や熱硬化性樹脂を好ましく使用することができる。熱可塑性樹脂と熱硬化性樹脂とを併用することもできる。有機重合体(B)は合成樹脂であっても自然界に存在する樹脂であってもよい。
 <熱硬化性樹脂>
 本発明の有機重合体(B)として熱硬化性樹脂を用いる場合には、特に制限は無く、広く知られた各種熱硬化性樹脂の中から必要に応じて1種または2種以上を任意の組み合わせで選択して用いる事が可能である。熱硬化性樹脂としては例えば従来用いられるエポキシ樹脂、シリコーン樹脂、シアナート樹脂、フェノール樹脂、ポリイミド樹脂、ポリウレタン樹脂、アクリル樹脂、ユリア樹脂およびこれらの変性樹脂、等が例示されるがこれに限定されるものではない。
 <熱可塑性樹脂>
 本発明の有機重合体(B)として熱可塑性樹脂組成物を用いる場合には、各種熱可塑性樹脂を用いることができる。
 熱可塑性樹脂としては、ポリスチレンなどの芳香族ビニル系樹脂、ポリアクリロニトリルなどのシアン化ビニル系樹脂、ポリ塩化ビニルなどの塩素系樹脂、ポリメチルメタクリレート等のポリメタアクリル酸エステル系樹脂やポリアクリル酸エステル系樹脂、ポリエチレンやポリプロピレンや環状ポリオレフィン樹脂等のポリオレフィン系樹脂、ポリ酢酸ビニルなどのポリビニルエステル系樹脂、ポリビニルアルコール系樹脂及びこれらの誘導体樹脂、ポリメタクリル酸系樹脂やポリアクリル酸系樹脂及びこれらの金属塩系樹脂、ポリ共役ジエン系樹脂、マレイン酸やフマル酸及びこれらの誘導体を重合して得られるポリマー、マレイミド系化合物を重合して得られるポリマー、非晶性半芳香族ポリエステルや非晶性全芳香族ポリエステルなどの非晶性ポリエステル系樹脂、結晶性半芳香族ポリエステルや結晶性全芳香族ポリエステルなどの結晶性ポリエステル系樹脂、脂肪族ポリアミドや脂肪族-芳香族ポリアミドや全芳香族ポリアミドなどのポリアミド系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、ポリスルホン系樹脂、ポリアルキレンオキシド系樹脂、セルロース系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂、ポリケトン系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリエーテルイミド系樹脂、ポリエーテルケトン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリビニルエーテル系樹脂、フェノキシ系樹脂、フッ素系樹脂、シリコーン系樹脂、液晶ポリマー、及びこれら例示されたポリマーのランダム・ブロック・グラフト共重合体、などが挙げられる。これら熱可塑性樹脂は、それぞれ単独で、あるいは2種以上の複数を組み合わせて用いることができる。2種以上の樹脂を組み合わせて用いる場合には、必要に応じて相溶化剤などを添加して用いることもできる。これら熱可塑性樹脂(A)は、目的に応じて適宜使い分ければよい。
 これら熱可塑性樹脂の中でも、樹脂の一部あるいは全部が結晶性あるいは液晶性を有する熱可塑性樹脂であることが、得られた樹脂組成物の熱伝導率が高くなる傾向がある点や、有機熱伝導性添加剤(A)を樹脂中に含有させることが容易である点から好ましい。これら結晶性あるいは液晶性を有する熱可塑性樹脂は、樹脂全体が結晶性であっても、ブロックあるいはグラフト共重合体樹脂の分子中における特定ブロックのみが結晶性や液晶性であるなど樹脂の一部のみが結晶性あるいは液晶性であってもよい。樹脂の結晶化度には特に制限はない。また熱可塑性樹脂として、非晶性樹脂と結晶性あるいは液晶性樹脂とのポリマーアロイを用いることもできる。樹脂の結晶化度には特に制限はない。
 樹脂の一部あるいは全部が結晶性あるいは液晶性を有する熱可塑性樹脂の中には、結晶化させることが可能であっても、単独で用いたり特性の成形加工条件で成形したりすることにより場合によっては非晶性を示す樹脂もある。このような樹脂を用いる場合には、有機熱伝導性添加剤(A)の添加量や添加方法を調整したり、延伸処理や後結晶化処理をするなど成形加工方法を工夫したりすることにより、樹脂の一部あるいは全体を結晶化させることができる場合もある。
 結晶性あるいは液晶性を有する熱可塑性樹脂の中でも好ましい樹脂として、結晶性ポリエステル系樹脂、結晶性ポリアミド系樹脂、ポリフェニレンスルフィド系樹脂、液晶ポリマー、結晶性ポリオレフィン系樹脂、ポリオレフィン系ブロック共重合体、等を例示することができるが、これらに限らず各種の結晶性樹脂や液晶性樹脂を用いることができる。
 結晶性ポリエステルの具体例としてはポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンナフタレート、ポリ1,4-シクロヘキシレンジメチレンテレフタレートおよびポリエチレン-1,2-ビス(フェノキシ)エタン-4,4’-ジカルボキシレートなどのほか、ポリエチレンイソフタレート/テレフタレート、ポリブチレンテレフタレート/イソフタレート、ポリブチレンテレフタレート/デカンジカルボキシレートおよびポリシクロヘキサンジメチレンテレフタレート/イソフタレートなどの結晶性共重合ポリエステル等が挙げられる。
 これら結晶性ポリエステルの中でも、成形加工性や機械的特性などの観点から、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンナフタレート、ポリ1,4-シクロヘキシレンジメチレンテレフタレート、等を用いることが好ましい。
 結晶性ポリアミド系樹脂の具体例としては、例えば環状ラクタムの開環重合物、アミノカルボン酸の重縮合物、ジカルボン酸とジアミンとの重縮合物などが挙げられ、具体的にはナイロン6、ナイロン4・6、ナイロン6・6、ナイロン6・10、ナイロン6・12、ナイロン11、ナイロン12などの脂肪族ポリアミド、ポリ(メタキシレンアジパミド)、ポリ(ヘキサメチレンテレフタルアミド)、ポリ(ヘキサメチレンイソフタルアミド)、ポリノナンメチレンテレフタルアミド、ポリ(テトラメチレンイソフタルアミド)、ポリ(メチルペンタメチレンテレフタルアミド)などの脂肪族-芳香族ポリアミド、およびこれらの共重合体が挙げられ、共重合体として例えばナイロン6/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6・6/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ナイロン6・6/ポリ(ヘキサメチレンイソフタルアミド)、ポリ(ヘキサメチレンイソフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ポリ(ヘキサメチレンイソフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン12/ポリ(ヘキサメチレンテレフタルアミド)、ポリ(メチルペンタメチレンテレフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)などを挙げることができる。なお、共重合の形態としてはランダム、ブロックいずれでもよいが、成形加工性の点からランダム共重合体であることが好ましい。
 結晶性ポリアミド系樹脂の中でも、成形加工性や機械的特性などの観点から、ナイロン6、ナイロン6・6、ナイロン12、ナイロン4・6、ポリノナンメチレンテレフタルアミド、ナイロン6/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン66/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ナイロン6・6/ポリ(ヘキサメチレンイソフタルアミド)、ポリ(ヘキサメチレンイソフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ポリ(ヘキサメチレンイソフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン12/ポリ(ヘキサメチレンテレフタルアミド)、ナイロン6/ナイロン6・6/ポリ(ヘキサメチレンイソフタルアミド)、ポリ(メチルペンタメチレンテレフタルアミド)/ポリ(ヘキサメチレンテレフタルアミド)などのポリアミド、等を用いることが好ましい。
 液晶ポリマーとは異方性溶融相を形成し得る樹脂であり、エステル結合を有するものが好ましい。具体的には芳香族オキシカルボニル単位、芳香族ジオキシ単位、芳香族および/または脂肪族ジカルボニル単位、アルキレンジオキシ単位などから選ばれた構造単位からなり、かつ異方性溶融相を形成する液晶性ポリエステル、あるいは、上記構造単位と芳香族イミノカルボニル単位、芳香族ジイミノ単位、芳香族イミノオキシ単位などから選ばれた構造単位からなり、かつ異方性溶融相を形成する液晶性ポリエステルアミドなどが挙げられ、具体的には、p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸から生成した構造単位からなる液晶性ポリエステル、p-ヒドロキシ安息香酸から生成した構造単位、6-ヒドロキシ-2-ナフトエ酸から生成した構造単位、芳香族ジヒドロキシ化合物および/または脂肪族ジカルボン酸から生成した構造単位からなる液晶性ポリエステル、p-ヒドロキシ安息香酸から生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸および/またはアジピン酸、セバシン酸等の脂肪族ジカルボン酸から生成した構造単位からなる液晶性ポリエステル、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、テレフタル酸から生成した構造単位からなる液晶性ポリエステル、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、テレフタル酸およびイソフタル酸から生成した構造単位からなる液晶性ポリエステル、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、テレフタル酸および/またはアジピン酸、セバシン酸等の脂肪族ジカルボンから生成した構造単位からなる液晶性ポリエステル、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、芳香族ジヒドロキシ化合物から生成した構造単位、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸から生成した構造単位からなる液晶性ポリエステルなど、また液晶性ポリエステルアミドとしては、芳香族オキシカルボニル単位、芳香族ジオキシ単位、芳香族および/または脂肪族ジカルボニル単位、アルキレンジオキシ単位などから選ばれた構造単位以外にさらにp-アミノフェノールから生成したp-イミノフェノキシ単位を含有した異方性溶融相を形成するポリエステルアミドである。
 結晶性ポリオレフィン系樹脂の具体例としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリイソブチレン、これら樹脂と各種オレフィン系化合物との共重合体、等が挙げられる。また結晶性ポリオレフィン系樹脂として、結晶性樹脂と非晶性樹脂とのブロックあるいはグラフトコポリマーを用いることもできる。このような樹脂のうち、ブロックコポリマーの具体例としては、SEPS樹脂、SIS樹脂、SEBS樹脂、SIBS樹脂、等が挙げられる。またグラフトコポリマーの具体例としては、日本国公開特許公報「特開2003-147032号公報」記載の樹脂等が例示される。
 <安定剤>
 本発明の有機熱伝導性添加剤(A)をより高性能なものにするため、フェノール系安定剤、イオウ系安定剤、リン系安定剤等の熱安定剤等を、単独又は2種類以上にて組合せて、有機熱伝導性添加剤(A)とともに添加することが好ましい。更に必要に応じて、一般に良く知られている、熱安定剤、安定化助剤、滑剤、離型剤、可塑剤、難燃剤、難燃助剤、紫外線吸収剤、光安定剤、顔料、染料、帯電防止剤、導電性付与剤、分散剤、相溶化剤、抗菌剤等を、単独又は2種類以上を組合せて、本発明の効果を奏する範囲で添加してもよい。
 <無機充填剤>
 本発明の有機熱伝導性添加剤をより高熱伝導性とするため、無機充填剤(C)とともに添加してもよい。無機充填剤(C)の使用量は、好ましくは有機熱伝導性添加剤(A)と無機充填剤(C)の体積比で99:1~30:70であり、より好ましくは90:10~40:60であり、特に好ましくは80:20~50:50である。(A)と(C)の総体積を100として、無機充填剤(C)の使用量が1未満では熱伝導率向上効果が小さい場合がある。また、(A)と(C)の体積比が30:70~0:100では機械物性が低下することがある。
 無機充填剤(C)としては、公知の充填剤を広く使用できる。無機充填剤(C)単体での熱伝導率は特に限定が無いが、好ましくは0.5W/(m・K)以上、より好ましくは1W/(m・K)以上のものである。得られる組成物が熱伝導性に優れるという観点からは、単体での熱伝導率が10W/(m・K)以上の高熱伝導性無機化合物であることが特に好ましい。高熱伝導性無機化合物単体での熱伝導率は、好ましくは12W/(m・K)以上、さらに好ましくは15W/(m・K)以上、最も好ましくは20W/(m・K)以上、特に好ましくは30W/(m・K)以上のものが用いられる。高熱伝導性無機化合物単体での熱伝導率の上限は特に制限されず、高ければ高いほど好ましいが、一般的には3000W/(m・K)以下、さらには2500W/(m・K)以下、のものが好ましく用いられる。
 成形体として特に電気絶縁性が要求されない用途に用いる場合には、高熱伝導性無機化合物としては金属系化合物や導電性炭素化合物等が好ましく用いられる。これらの中でも、熱伝導性に優れることから、グラファイト、炭素繊維、等の導電性炭素材料、各種金属を微粒子化した導電性金属粉、各種金属を繊維状に加工した導電性金属繊維、軟磁性フェライト等の各種フェライト類、酸化亜鉛、等の金属酸化物、等の高熱伝導性無機化合物を好ましく用いることができる。
 成形体として電気絶縁性が要求される用途に用いる場合には、高熱伝導性無機化合物としては電気絶縁性を示す化合物が好ましく用いられる。電気絶縁性とは具体的には、電気抵抗率1Ω・cm以上のものを示すこととするが、好ましくは10Ω・cm以上、より好ましくは10Ω・cm以上、さらに好ましくは1010Ω・cm以上、最も好ましくは1013Ω・cm以上のものを用いるのが好ましい。電気抵抗率の上限には特に制限は無いが、一般的には1018Ω・cm以下である。本発明の高熱伝導性熱可塑性樹脂組成物から得られる成形体の電気絶縁性も上記範囲にあることが好ましい。
 高熱伝導性無機化合物のうち、電気絶縁性を示す化合物としては具体的には、酸化アルミニウム、酸化マグネシウム、酸化ケイ素、酸化ベリリウム、酸化銅、亜酸化銅、等の金属酸化物、窒化ホウ素、窒化アルミニウム、窒化ケイ素、等の金属窒化物、炭化ケイ素等の金属炭化物、炭酸マグネシウムなどの金属炭酸塩、ダイヤモンド、等の絶縁性炭素材料、水酸化アルミニウム、水酸化マグネシウム、等の金属水酸化物、を例示することができる。これらは単独あるいは複数種類を組み合わせて用いることができる。
 高熱伝導性無機化合物の形状については、種々の形状のものを適応可能である。例えば粒子状、微粒子状、ナノ粒子、凝集粒子状、チューブ状、ナノチューブ状、ワイヤ状、ロッド状、針状、板状、不定形、ラグビーボール状、六面体状、大粒子と微小粒子とが複合化した複合粒子状、液体、等種々の形状を例示することができる。またこれら高熱伝導性無機化合物は天然物であってもよいし、合成されたものであってもよい。天然物の場合、産地等には特に限定はなく、適宜選択することができる。これら高熱伝導性無機化合物は、1種類のみを単独で用いてもよいし、形状、平均粒子径、種類、表面処理剤等が異なる2種以上を併用してもよい。
 これら高熱伝導性無機化合物は、樹脂と無機化合物との界面の接着性を高めたり、作業性を容易にしたりするため、シラン処理剤等の各種表面処理剤で表面処理がなされたものであってもよい。表面処理剤としては特に限定されず、例えばシランカップリング剤、チタネートカップリング剤、等従来公知のものを使用することができる。中でもエポキシシラン等のエポキシ基含有シランカップリング剤、及び、アミノシラン等のアミノ基含有シランカップリング剤、ポリオキシエチレンシラン、等が樹脂の物性を低下させることが少ないため好ましい。無機化合物の表面処理方法としては特に限定されず、通常の処理方法を利用できる。
 本発明の有機熱伝導性添加剤には、前記の高熱伝導性無機化合物以外にも、その目的に応じて公知の無機充填剤を広く使用できる。樹脂単体の熱伝導率が高いために、無機化合物の熱伝導率が10W/(m・K)未満と比較的低くても、樹脂組成物として高い熱伝導率を有する。高熱伝導性無機化合物以外の無機充填剤としては、例えばケイソウ土粉;塩基性ケイ酸マグネシウム;焼成クレイ;微粉末シリカ;石英粉末;結晶シリカ;カオリン;タルク;三酸化アンチモン;微粉末マイカ;二硫化モリブデン;ロックウール;セラミック繊維;アスベストなどの無機質繊維;およびガラス繊維、ガラスパウダー、ガラスクロス、溶融シリカ等ガラス製充填剤が挙げられる。これら充填剤を用いることで、例えば熱伝導性、機械強度、または耐摩耗性など樹脂組成物を応用する上で好ましい特性を向上させることが可能となる。さらに必要に応じて紙、パルプ、木料;ポリアミド繊維、アラミド繊維、ボロン繊維などの合成繊維;ポリオレフィン粉末等の樹脂粉末;などの有機充填剤を併用して配合することができる。
 本発明の有機熱伝導性添加剤には、上記樹脂や充填剤以外の添加剤として、さらに目的に応じて他のいかなる成分、例えば、補強剤、増粘剤、離型剤、カップリング剤、難燃剤、耐炎剤、顔料、着色剤、その他の助剤等を本発明の効果を失わない範囲で、併用添加することができる。これらの添加剤の使用量は一般的には、有機熱伝導性添加剤100重量部に対し、合計で0~20重量部の範囲である。
 本発明の液晶性熱可塑性樹脂組成物の製造方法としては特に限定されるものではない。例えば、上述した成分や添加剤等を乾燥させた後、単軸、2軸等の押出機のような溶融混練機にて溶融混練することにより製造することができる。また、配合成分が液体である場合は、液体供給ポンプ等を用いて溶融混練機に途中添加して製造することもできる。
 本発明の有機熱伝導性添加剤は、その優れた熱伝導性と成形品外観とから、射出成形品、ブロー成形品、押出成形品として好適に使用可能であり、成形加工方法としては射出成形、ブロー成形、押出成形などが適しているが、使用方法や成形加工方法はこれらに限定されるものではなく、さまざまな形態で使用することができる。使用形態としては、樹脂フィルム、樹脂成形品、樹脂発泡体、塗料やコーティング剤、等さまざまな形態を例示することができる。
 成形加工法としては例えば、射出成形、押出成形、真空成形、プレス成形、カレンダー成形等が利用できる。本発明で得られた高熱伝導性熱可塑性樹脂組成物は成形性に優れるため、現在広く用いられている熱可塑性樹脂用成形機が使用可能であり、複雑形状を有する製品などであっても成形が容易である。
 本発明の有機熱伝導性添加剤は、電子材料、磁性材料、触媒材料、構造体材料、光学材料、医療材料、自動車材料、建築材料、等の各種の用途に幅広く用いることが可能である。特に優れた成形品外観、高熱伝導性、という優れた特性を併せ持つことから、放熱・伝熱用樹脂材料として、非常に有用である。
 本発明の有機熱伝導性添加剤は、家電、OA機器部品、AV機器部品、自動車内外装部品、等の射出成形品等に好適に使用することができる。特に多くの熱を発する家電製品やOA機器において、外装材料として好適に用いることができる。さらには発熱源を内部に有するがファン等による強制冷却が困難な電子機器において、内部で発生する熱を外部へ放熱するために、これらの機器の外装材として好適に用いられる。これらの中でも好ましい装置として、ノートパソコンなどの携帯型コンピューター、PDA、携帯電話、携帯ゲーム機、携帯型音楽プレーヤー、携帯型TV/ビデオ機器、携帯型ビデオカメラ、等の小型あるいは携帯型電子機器類の筐体、ハウジング、外装材用樹脂として非常に有用である。また自動車や電車等におけるバッテリー周辺用樹脂、家電機器の携帯バッテリー用樹脂、ブレーカー等の配電部品用樹脂、モーター等の封止用材料、としても非常に有用に用いることができる。
 本発明の有機熱伝導性添加剤は従来良く知られている組成物に比べて、高熱伝導性無機物の配合量を減らすことができるため成形加工性が良好であり、上記の用途における部品あるいは筐体用として有用な特性を有するものである。
 <組成物>
 上記に加えて、さらに本発明には、上記有機熱伝導性添加剤を含有する樹脂組成物も含まれる。
 すなわち本発明に係る樹脂組成物は、以下の(A)~(C)を含有し、(A)と(B)の重量比が10:90~90:10である。
(A)主鎖が主として下記一般式(1)で示される繰り返し単位からなり、主として鎖状の構造よりなり、樹脂単体での熱伝導率が0.45W/(m・K)以上である液晶性熱可塑性樹脂、
-M-Sp-         ...(1)
(式中、Mはメソゲン基、Spはスペーサーを示す。)
(B)上記(A)以外の熱可塑性樹脂、
(C)無機充填剤
 ここで(A)成分は、上記で説明した液晶性熱可塑性樹脂である。
(B)成分は、上記で説明した熱硬化性樹脂および熱可塑性樹脂である。(C)成分は、上記で説明した無機充填剤である。
 本発明の樹脂組成物においては、(A)と(B)の重量比が10:90~90:10であることが好ましいが、15:85~80:20であることがより好ましく、20:80~70:30であることがさらに好ましく、25:75~60:40であることが最も好ましい。
 また本発明は、(B)成分が熱硬化性樹脂である上記組成物から得られた硬化物でもある。熱硬化性樹脂は、エポキシ樹脂、アクリル系硬化性樹脂、グアナミン樹脂、ジアリルフタレート樹脂、フェノール樹脂、マレイン酸樹脂、メラミン樹脂、ユリア樹脂、フラン樹脂、アルキッド樹脂、不飽和ポリエステル樹脂から選ばれる少なくとも1種の熱硬化性樹脂である。
 本発明で用いるエポキシ樹脂は、一分子中に少なくとも2個以上のエポキシ環を含んでいる化合物を開環反応させて得られる重合体を主成分とする樹脂で、該化合物の一般的なものとしてはエピクロルヒドリンとビスフェノールAとの縮合生成物が挙げられる。硬化剤としては、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、メタフェニレンジアミン、ジアミノフエニルスルホンなどのアミン類、メチルナジック酸無水物、ヘキサヒドロ酸無水物などの酸無水物の他、ユリア、メラミン、フェノール樹脂なども用いることができる。その他、エポキシ樹脂には、脂環式エポキシ樹脂、臭素化エポキシ樹脂、脂肪族エポキシ樹脂、多官能性エポキシ樹脂なども含まれる。
 本発明で用いるアクリル系硬化性樹脂は、アクリル樹脂の両末端に熱硬化し得る反応性基を有する樹脂であり、(株)カネカ製カネカXMAP RC-100Cなどが含まれる。
 本発明で用いるグアナミン樹脂は、グアナミン類とアルデヒド類との付加縮合反応によって得られる重合体を主成分とする樹脂で、ベンゾグアナミンとホルムアルデヒドから成るものが一般的なものとして挙げられる。又、グアナミン樹脂にはユリア、メラミン、チオユリアなどと共反応、共縮合させたもの、ブタノール、メタノールなどでエーテル化したものも含まれる。
 本発明で用いるジアリルフタレート樹脂は、ジアリルフタレートを主成分とする硬化性のホモ重合体又は共重合体である。共重合させるモノマーとしては、スチレン、α-メチルスチレン、アクリル酸エステル、メタクリル酸エステルなどが挙げられる。
 本発明で用いるフェノール樹脂は、フェノール類とアルデヒド類との縮合反応によって得られる重合体を主成分とする樹脂であり、フェノール、m-クレゾール、3,5-キシレノール、p-アルキルフェノール、レゾルシンなどと、ホルムアルデヒドから成るものが好適である。フェノール樹脂は通常の酸性触媒又は塩基性触媒により縮合反応でき、必要に応じてヘキサメチレンテトラミンなどの硬化剤、木粉、パルプ、骨材等の充てん剤を用いることもできる。 
 本発明で使用するメラミン樹脂は、メラミンとアルデヒド類との付加縮合反応によって得られる重合体を主成分とする樹脂で、アルデヒド類としてはホルムアルデヒドが一般に用いられる。又、メラミン樹脂には、尿素等と共縮合したものも含まれる。メラミン樹脂は一般に熱により硬化されるが、必要に応じて硬化剤を使うことも可能である。
 本発明で使用するエリア樹脂は、尿素とアルデヒド類との縮合反応によって得られる重合体を主成分とする樹脂で、アルデヒド類としてはホルムアルデヒドが一般に用いられる。又、ユリア系樹脂にはチオ尿素、メラミン、フェノールなどと共縮合したものも含まれる。上記メラミン樹脂及びユリア樹脂は必要に応じてセルロース等を混在させることもできる。
 本発明で用い得るフラン樹脂は、フルフリルアルコール単独またはホルムアルデヒドとの縮合反応によって得られる重合体を主成分とする樹脂であり、例えば、フルフリルアルコール・フルフラール共縮合樹脂、フルフリルアルコール樹脂、フルフラール・フエノール共縮合樹脂、フルフラール・ケトン共縮合樹脂、フルフリルアルコール・尿素共重合樹脂、フルフリルアルコール・フエノール共縮合樹脂などが挙げられる。
 本発明で用いるアルキッド樹脂は、多塩基酸と多価アルコールとの縮合反応によって得られる重合体を主成分とする樹脂で、多塩基酸としては無水フタル酸、ソフタル酸、マレイン酸、脂肪油、脂肪酸、ロジン、エステルロジンなどが、また多価アルコールとしてはグリセリンが一般に用いられる。
 本発明においては、上記熱硬化性樹脂の1種だけでなく、場合によっては2種以上を組み合わせて使用することも可能である。その他、不飽和ポリエステル、ポリウレタンなどの熱硬化性樹脂と併用することもまた可能である。
 本発明の組成物の硬化は、硬化剤あるいは硬化促進剤の存在下もしくは不存在下に、加熱あるいは無加熱、もしくは紫外線照射などの方法によって行うことが可能である。
 また、本発明には、以下の2)~15)も含まれる。
2)前記液晶性熱可塑性樹脂が主として下記一般式(2)で示される単位の繰り返し単位からなる、1)に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
-A-x-A-y-R-z-   ...(2)
(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環基、脂環式複素環基から選ばれる置換基を示す。x、yおよびzは、各々独立して直接結合、-CH-、-C(CH-、-O-、-S-、-CH-CH-、-C=C-、-C≡C-、-CO-、-CO-O-、-CO-NH-、-CH=N-、-CH=N-N=CH-、-N=N-または-N(O)=N-の群から選ばれる2価の置換基を示す。Rは主鎖原子数2~20の分岐を含んでもよい2価の置換基を示す。)
3)前記液晶性熱可塑性樹脂の-A-x-A-に相当する部分が下記一般式(3)で表されるメソゲン基であることを特徴とする、2)に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
Figure JPOXMLDOC01-appb-C000003
4)前記液晶性熱可塑性樹脂のRに相当する部分が直鎖の脂肪族炭化水素鎖である、2)または3)に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
5)前記液晶性熱可塑性樹脂のRに相当する部分の炭素数が偶数である4)に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
6)前記液晶性熱可塑性樹脂のRが-(CH-、-(CH10-、および-(CH12-から選ばれる少なくとも1種であり、かつ数平均分子量が3000~40000である、4)に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
7)前記液晶性熱可塑性樹脂の-y-R-z-が-O-CO-R-CO-O-である、2)に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
8)1)~7)のいずれか一項に記載の液晶性熱可塑性樹脂(A)を、有機重合体(B)100重量部に対し1~10000重量部添加することを特徴とする、有機熱伝導性添加剤含有樹脂組成物。
9)前記液晶性熱可塑性樹脂が10Vol%以上のラメラ晶を含むものである1)に記載の有機熱伝導性添加剤。
10)前記液晶性熱可塑性樹脂の結晶化度が7Vol%以上である1)に記載の有機熱伝導性添加剤。
11)以下の(A)~(C)を含有し、(A)と(B)の重量比が10:90~90:10である樹脂組成物。
(A)主鎖が主として下記一般式(1)で示される繰り返し単位からなり、主として鎖状の構造よりなる液晶性熱可塑性樹脂、
-M-Sp-         ...(1)
(式中、Mはメソゲン基、Spはスペーサーを示す。)
(B)上記(A)以外の熱可塑性樹脂、
(C)無機充填剤
12)(A)成分である液晶性熱可塑性樹脂が、10Vol%以上のラメラ晶を含むものである11)に記載の樹脂組成物。
13)(A)成分である液晶性熱可塑性樹脂が、結晶化度が7Vol%以上のものである11)に記載の樹脂組成物。
14)以下の(A)~(C)を含有する樹脂組成物。
(A)主鎖が主として下記一般式(1)で示される繰り返し単位からなり、主として鎖状の構造よりなる液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤、
-M-Sp-         ...(1)
(式中、Mはメソゲン基、Spはスペーサーを示す。)
(B)熱硬化性樹脂
(C)無機充填剤
15)上記14)の樹脂組成物から得られた硬化物。
 また、本発明には、上述した本発明の液晶性熱可塑性樹脂の有機熱伝導性添加剤としての使用、および上述した本発明の液晶性熱可塑性樹脂を用いる有機材料の熱伝導性を向上させる方法といった態様も当然に包含され得る。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 次に、本発明の熱可塑性樹脂および樹脂組成物について、実施例および比較例を挙げさらに詳細に説明するが、本発明はかかる実施例のみに制限されるものではない。なお、以下に記載する各試薬は特に特記しない限り和光純薬工業株式会社製の試薬を用いた。また、熱可塑性樹脂を製造するため、Journal of Polymer Science: Polymer Physics Edition, Vol. 21, 1119-1131(1983) を参照してもよい。
 〔評価方法〕
 <熱物性測定>
 示唆走査熱量分析(島津製作所;Shimadzu DSC-50)、昇温速度:10℃/min で測定し、吸熱のピークトップの温度を融点とした。
 <試験片成形>
 得られた各サンプルを乾燥した後、射出成形機にて熱伝導率測定用に厚み6mm×20mmφのサンプルを成形した。また薄肉成形体の熱伝導率の異方性を確認するために厚み1mm×25.4mmφの円盤状サンプルを成形した。
 <TEM観察>
 成形した厚み6mm×20mmφのサンプルの一部を切り出し、RuOにて染色したのち、ミクロトームにて0.1μm厚の超薄切片を作成した。作成した切片を加速電圧100kVのTEMにて観察した。
 <ラメラ晶の割合>
 TEM観察により得られた4万倍スケール(20cm×25cm)の写真から、ラメラ晶の領域を決定した。領域の境界はラメラ晶領域を周期的なコントラストの存在する領域とし、決定した。ラメラ晶は深さ方向にも同様に分布していることから、ラメラ晶の割合は写真の全体の面積に対するラメラ晶領域の割合として算出した。
 <結晶化度>
 結晶化度は、上記ラメラ晶の割合から、以下の計算式により求めた。
結晶化度(%)= ラメラ晶の割合(Vol%)× 0.7
 <熱伝導率>
 厚み6mm×20mmφのサンプルにて、京都電子工業製ホットディスク法熱伝導率測定装置で4φのセンサーを用い、熱伝導率を測定した。該方法により測定された熱伝導率は、熱伝導の方向に対する異方性を平均化した値である。また、厚み1mm×25.4mmφの円盤状サンプルのサンプル表面にレーザー光吸収用スプレー(ファインケミカルジャパン製ブラックガードスプレーFC-153)を塗布し乾燥させた後、XeフラッシュアナライザーであるNETZSCH製LFA447Nanoflashを用い、厚み方向及び面方向の熱伝導率を測定した。
 <密度>
 厚み6mm×20mmφの円盤状サンプルを用いて、水中置換法にて密度を測定した。
 <数平均分子量測定>
 本発明の熱可塑性樹脂をp-クロロフェノールとo-ジクロロベンゼンの1:2(Vol比)混合溶媒に0.25重量%濃度となるように溶解して試料を調製した。標準物質はポリスチレン〔(株)ケムコ販売品、分子量(Mw/Mn):390,000(1.06)、200,000(1.06)、65,000(1.06)、30,000(1.06)、3,350(1.10)、1,241(1.07) 〕とし、同様の試料溶液を調製した。高温GPC((株)Waters製;150-CV)にてINJECTOR COMP:80℃、COLUMN COMP:80℃、PUMP/SOLVENT COMP:60℃、Injection Volume:200μl、流速0.7ml/min、の条件で測定した。検出器としては、示差屈折計(RI)を使用した。
 GPCカラムには有機溶媒系GPC用カラムのShodex製HT-804(理論段数18,000以上、排除限界分子量400,000、粒径7μm)を使用し、2本直列に連結して使用した。
 〔製造例1〕
 4,4’-ジヒドロキシビフェニル、テトラデカン二酸、無水酢酸をモル比でそれぞれ1:1.05:2.1の割合で密閉型反応器に仕込み、常圧下、窒素ガス雰囲気で150℃にて3時間アセチル化反応を行い、1℃/minの昇温速度で265℃まで加熱し重縮合を行った。酢酸の留出量が理論酢酸生成量の90%に到達した時点で引き続きその温度を保ったまま、約20分かけて1.0torrに減圧し、高分子量まで溶融重合を行った。減圧開始から1時間後、不活性ガスで常圧に戻し、生成したポリマーを取り出した。得られたポリマーをp-クロロフェノールとo-ジクロロベンゼンの1:2Vol比混合溶媒に0.25重量%濃度となるように溶解して、高温GPC((株)Waters製;150-CV)にてINJECTOR COMP:80℃、COLUMN COMP:80℃、PUMP/SOLVENT COMP:60℃、Injection Volume:200μl、の条件で、ポリスチレンを標準物質としてGPC測定した。結果、数平均分子量は8500、重量平均分子量は18800であった。
 また得られたポリマーを240℃にて30mmφ×2.5mm厚みの円柱状試験片を2個プレス成形し、京都電子工業製ホットディスク法熱伝導率測定装置で4φのセンサーにて熱伝導率を測定した結果、熱伝導率は1.36W/(m・K)であった。
こうして得られたポリマーを、有機熱伝導性添加剤(A1)として用いた。
 〔製造例2〕
 4,4’-ジヒドロキシビフェニル、ドデカン二酸、無水酢酸をモル比でそれぞれ1:1.05:2.1の割合で密閉型反応器に仕込み、常圧下、窒素ガス雰囲気で150℃にて3時間アセチル化反応を行い、1℃/minの昇温速度で260℃まで加熱し重縮合を行った。酢酸の留出量が理論酢酸生成量の90%に到達した時点で引き続きその温度を保ったまま、約20分かけて1.0torrに減圧し、高分子量まで溶融重合を行った。減圧開始から1時間後、不活性ガスで常圧に戻し、生成したポリマーを取り出した。得られたポリマーをp-クロロフェノールとo-ジクロロベンゼンの1:2Vol比混合溶媒に0.25重量%濃度となるように溶解して、高温GPC((株)Waters製;150-CV)にてINJECTOR COMP:80℃、COLUMN COMP:80℃、PUMP/SOLVENT COMP:60℃、Injection Volume:200μl、の条件で、ポリスチレンを標準物質としてGPC測定した。結果、数平均分子量は9050、重量平均分子量は25100であった。
 また得られたポリマーを230℃にて30mmφ×2.5mm厚みの円柱状試験片を2個プレス成形し、京都電子工業製ホットディスク法熱伝導率測定装置で4φのセンサーにて熱伝導率を測定した結果、熱伝導率は1.24W/(m・K)であった。
こうして得られたポリマーを、有機熱伝導性添加剤(A2)として用いた。
 〔評価方法〕
 熱伝導率:得られた成形品から30mmφ×2.5mm厚みの円柱状試験片を2個切り出し、京都電子工業製ホットディスク法熱伝導率測定装置で4φのセンサーにて熱伝導率を測定した。
 〔実施例1〕
 製造例1で合成した有機熱伝導性添加剤(A1)100重量部、有機重合体(B)としてポリエチレンテレフタレート((株)ベルポリエステルプロダクツ製ベルペットEFG-70)100重量部、フェノール系安定剤であるAO-60((株)ADEKA製)0.2重量部、ホスファイト系安定剤であるHP-10((株)ADEKA製)0.2重量部を加え、ヘンシェルミキサーにて混合した後、テクノベル製KZW15-45同方向噛み合い型二軸押出機のスクリュー根本付近に設けられたホッパーより投入した。設定温度は供給口近傍が200℃で、順次設定温度を上昇させ、押出機スクリュー先端部温度を270℃に設定した。本条件にて樹脂組成物を得た。得られた樹脂組成物を射出成形機にて厚み6mm×20mmφの円板状サンプルに成形し、熱伝導率を測定した結果、熱伝導率:0.78W/(m・K)であった。
 〔比較例1〕
 有機重合体(B)としてポリエチレンテレフタレート((株)ベルポリエステルプロダクツ製ベルペットEFG-70)のみを用い、有機熱伝導性添加剤(A)を用いなかった以外は実施例1と同様に評価を行った結果、熱伝導率は0.21W/(m・K)であった。
 〔実施例2〕
 製造例1で合成した有機熱伝導性添加剤(A1)100重量部、有機重合体(B)としてポリエチレンテレフタレート((株)ベルポリエステルプロダクツ製ベルペットEFG-70)100重量部、フェノール系安定剤であるAO-60((株)ADEKA製)0.2重量部、ホスファイト系安定剤であるHP-10((株)ADEKA製)0.2重量部、無機充填剤(C)である窒化ホウ素粉末(モメンティブパフォーマンスマテリアルズ社製PT110、単体での熱伝導率60W/(m・K)、体積平均粒子径45μm、電気絶縁性、体積固有抵抗1014Ω・cm)(h-BN)を100重量部加え、ヘンシェルミキサーにて混合した後、テクノベル製KZW15-45同方向噛み合い型二軸押出機のスクリュー根本付近に設けられたホッパーより投入した。設定温度は供給口近傍が200℃で、順次設定温度を上昇させ、押出機スクリュー先端部温度を280℃に設定した。本条件にて樹脂組成物を得た。得られた樹脂組成物を射出成形機にて厚み6mm×20mmφの円板状サンプルに成形し、熱伝導率を測定した結果、熱伝導率:3.38W/(m・K)であった。
 〔比較例2〕
 熱可塑性樹脂としてポリエチレンテレフタレート((株)ベルポリエステルプロダクツ製ベルペットEFG-70)のみを用い、有機熱伝導性添加剤(A)を用いなかった以外は実施例2と同様に評価を行った結果、熱伝導率は1.05W/(m・K)であった。
 以上示したとおり、本発明の有機熱伝導性添加剤を有機重合体に添加することで、有機重合体の熱伝導率を向上させることが可能である。本発明の有機熱伝導性添加剤はこれまで知られている無機フィラーなどと異なり熱可塑性を示すので、樹脂組成物の粘度をあまり向上させる事が無く、かつ樹脂組成物の密度も低く抑えることができる。また組成物の金型磨耗性や電気絶縁性を低下させることもない。このような組成物は電気・電子工業分野、自動車分野、等さまざまな状況で放熱・伝熱用樹脂材料として用いることが可能で、機器や装置の軽量化にも貢献し得ることから、工業的に非常に有用である。
 〔実施例3〕
 製造例1で合成した有機熱伝導性添加剤(A1)90重量部、有機重合体(B)としてナイロン6(ユニチカ(株)製A1020BRL)10重量部、フェノール系安定剤であるAO-50((株)ADEKA製)0.2重量部を加え良く混合した後、テクノベル製KZW15-45同方向噛み合い型二軸押出機のスクリュー根本付近に設けられたホッパーより投入した。設定温度は供給口近傍が200℃で、順次設定温度を上昇させ、押出機スクリュー先端部温度を260℃に設定した。本条件にて樹脂組成物を得た。得られた樹脂組成物を射出成形機にて厚み6mm×20mmφの円板状サンプルに成形し、熱伝導率を測定した結果、熱伝導率:0.96W/(m・K)であった。
 〔実施例4〕
 (A1)を70重量部、(B)を30重量部とした以外は実施例3と同様にして、熱伝導率を測定した結果、熱伝導率:0.76W/(m・K)であった。
 〔実施例5〕
 (A1)を50重量部、(B)を50重量部とした以外は実施例3と同様にして、熱伝導率を測定した結果、熱伝導率:0.66W/(m・K)であった。
 〔比較例3〕
 有機重合体(B)としてナイロン6(ユニチカ(株)製A1020BRL)のみを用い、有機熱伝導性添加剤(A)を用いなかった以外は実施例3と同様に評価を行った結果、熱伝導率は0.22W/(m・K)であった。
 〔実施例6〕
 製造例2で合成した有機熱伝導性添加剤(A2)90重量部、有機重合体(B)として市販の液晶ポリマー(上野製薬(株)製A-8100、融点219℃、凝固温度173℃)10重量部、フェノール系安定剤であるAO-50((株)ADEKA製)0.2重量部を加え良く混合した後、テクノベル製KZW15-45同方向噛み合い型二軸押出機のスクリュー根本付近に設けられたホッパーより投入した。設定温度は供給口近傍が200℃で、順次設定温度を上昇させ、押出機スクリュー先端部温度を260℃に設定した。本条件にて樹脂組成物を得た。得られた樹脂組成物を射出成形機にて厚み6mm×20mmφの円板状サンプルに成形し、熱伝導率を測定した結果、熱伝導率:0.95W/(m・K)であった。
 〔実施例7〕
 (A2)を70重量部、(B)を30重量部とした以外は実施例6と同様にして、熱伝導率を測定した結果、熱伝導率:0.57W/(m・K)であった。
 〔実施例8〕
 (A2)を50重量部、(B)を50重量部とした以外は実施例6と同様にして、熱伝導率を測定した結果、熱伝導率:0.46W/(m・K)であった。
 〔比較例4〕
 有機重合体(B)として市販の液晶ポリマー(上野製薬(株)製A-8100)のみを用い、有機熱伝導性添加剤(A)を用いなかった以外は実施例6と同様に評価を行った結果、熱伝導率は0.18W/(m・K)であった。
 〔実施例9〕
 製造例1で合成した有機熱伝導性添加剤(A1)粉末100重量部、有機重合体(B)として市販のエポキシ樹脂(ジャパンエポキシレジン(株)製エピコート828)70重量部、エポキシ硬化剤(ジャパンエポキシレジン(株)製ST-12)30重量部、フェノール系安定剤であるAO-50((株)ADEKA製)0.2重量部を加え室温でミキサーにて良く混合した後、厚み6mm×20mmφの円板状金型に充填し150℃で加熱硬化させてサンプルを成形し、熱伝導率を測定した結果、熱伝導率:0.56W/(m・K)であった。
 〔比較例5〕
 有機重合体(B)として市販のエポキシ樹脂(市販のエポキシ樹脂(ジャパンエポキシレジン(株)製エピコート828)70重量部、エポキシ硬化剤(ジャパンエポキシレジン(株)製ST-12)30重量部のみを用い、有機熱伝導性添加剤(A)を用いなかった以外は実施例9と同様に評価を行った結果、熱伝導率は0.19W/(m・K)であった。
 〔実施例10〕
 製造例1で合成した有機熱伝導性添加剤(A1)粉末100重量部、有機重合体(B)としてアクリル系硬化性樹脂((株)カネカ製カネカXMAP RC-100C)100重量部、硬化剤(日油(株)製ナイパーBW)3重量部、フェノール系安定剤であるAO-60((株)ADEKA製)0.2重量部を加え室温でミキサーにて良く混合した後、厚み6mm×20mmφの円板状金型に充填し150℃で加熱硬化させてサンプルを成形し、熱伝導率を測定した結果、熱伝導率:0.50W/(m・K)であった。
 〔比較例6〕
 有機重合体(B)としてアクリル系硬化性樹脂((株)カネカ製カネカXMAP RC-100C)100重量部、硬化剤(日油(株)製ナイパーBW)3重量部、のみを用い、有機熱伝導性添加剤(A)を用いなかった以外は実施例10と同様に評価を行った結果、熱伝導率は0.18W/(m・K)であった。
 〔実施例11〕
 還流冷却器、温度計、窒素導入管および攪拌棒を備え付けた密閉型反応器に、4,4'-ジヒドロキシビフェニル、セバシン酸および無水酢酸をモル比でそれぞれ1:1.05:2.2の割合で仕込み、酸化アンチモンを触媒とし、窒素ガスを緩やかに流しながら、内容物を攪拌しつつ還流温度まで昇温した。還流温度にて5時間保温したのち、還流冷却器をリービッヒ冷却器と交換し、さらに200℃まで昇温しながら酢酸を留去した。さらに1℃/分の速度で300℃まで昇温し、300℃で生じる酢酸を留去しながら1時間30分重合させた。酢酸の留出量が理論酢酸生成量の90%に到達した時点で引き続きその温度を保ったまま、約20分かけて0.5torr以下に減圧し、高分子量まで溶融重合を行った。1時間後、不活性ガスで常圧に戻し、生成したポリマーを取り出した。得られたポリマーを230℃にて溶融し、射出成形にて厚み6mm×20mmφのサンプルを得た。また、230℃にて溶融し、射出成形にて厚み1mm×25.4mmφの円盤状サンプルを得た。
 〔実施例12〕
 還流冷却器、温度計、窒素導入管および攪拌棒を備え付けた密閉型反応器に、4,4'-ジヒドロキシビフェニル、セバシン酸、p-ヒドロキシ安息香酸および無水酢酸をモル比でそれぞれ1:1:3.5:6の割合で仕込み、窒素ガスを緩やかに流しながら、内容物を攪拌しつつ還流温度まで昇温した。還流温度で5時間保温した後、還流冷却器をリービッヒ冷却器と交換し、さらに200℃まで昇温しながら酢酸を留去した。さらに1℃/分の速度で320℃まで昇温し、320℃で生じる酢酸を留去しながら1時間30分重合させた。酢酸の留出量が理論酢酸生成量の90%に到達した時点で引き続きその温度を保ったまま、約20分かけて0.5torr以下に減圧し、高分子量まで溶融重合を行った。1時間後、不活性ガスで常圧に戻し、生成したポリマーを取り出した。得られたポリマーを230℃にて溶融し、射出成形にて厚み6mm×20mmφのサンプルおよび厚み1mm×25.4mmφの円盤状サンプルを得た。当該ポリマー(熱可塑性樹脂)は、実施例11のポリマー(熱可塑性樹脂)にp-ヒドロキシ安息香酸を共重合したものである。
 実施例11、12の樹脂について、射出成形条件および得られた成形体の各種物性を表Aに示す。
Figure JPOXMLDOC01-appb-T000004
 上記表1に示されるように、本実施例に係る熱可塑性樹脂は、ホットディスク法により測定される熱伝導率が0.45W/(m・K)以上であり、非常に有用であることが明らかである。さらに、表1に示すように、本実施例に係る熱可塑性樹脂は、厚み方向、面方向の両方向において高い熱伝導性を有していることが分かる。以上のことから、本実施例に係る熱可塑性樹脂は、熱伝導率が一方向だけでなく、等方的に高いことが明白である。
 また、実施例11より、同一の一次構造を有する樹脂でも、その熱履歴によって、ラメラ晶の割合や結晶化度は大きく変化し、熱伝導率が変化することがわかる。
 〔実施例13〕
 4,4’-ジヒドロキシビフェニル、セバシン酸、無水酢酸をモル比にてそれぞれ1:1.05:2.1の割合で密閉型反応器に仕込み、常圧下、窒素ガス雰囲気で150℃にて3hアセチル化反応を行い、1℃/minの昇温速度で280℃まで加熱して重縮合を行った。酢酸の留出量が理論酢酸生成量の90%に到達した時点で引き続きその温度を保ったまま、約20分かけて10torrに減圧し、高分子量まで溶融重合を行った。減圧開始から1時間後、不活性ガスで常圧に戻し、生成したポリマーを取り出した。分子構造を表2に、数平均分子量、樹脂単体の熱伝導率を表3に示す。
 〔実施例14、15〕
 実施例13の減圧開始からの重合時間をそれぞれ1.5時間、3時間にした以外は同様に重合し、数平均分子量の違う樹脂を合成した。分子構造を表2に、数平均分子量、樹脂単体の熱伝導率を表3に示す。
 〔実施例16~18〕
 実施例13~15のセバシン酸をドデカン二酸にした以外はそれぞれ同様に重合し、数平均分子量の違う樹脂を合成した。分子構造を表2に、数平均分子量、樹脂単体の熱伝導率を表3に示す。
 〔実施例19~21〕
 実施例13~15のセバシン酸をテトラデカン二酸にした以外はそれぞれ同様に重合し、数平均分子量の違う樹脂を合成した。分子構造を表2に、数平均分子量樹脂単体の熱伝導率を表3に示す。
 〔実施例22〕
 重合反応装置に4,4’-ビフェニルジカルボン酸ジメチルと1,10-デカンジオールとを1:1.05のモル比で仕込み、触媒としてTBT(テトラブチルチタネート)をポリエステルの構成単位1モルに対し5×10-4モル添加し、280℃の温度でエステル交換反応させてメタノールを留出させた後、10torrの減圧下、280℃で1.5時間重縮合反応を行った。そののち不活性ガスで常圧に戻し、生成したポリマーを取り出した。分子構造を表2に、数平均分子量、樹脂単体の熱伝導率を表3に示す。
 〔実施例23〕
 実施例22の1,10-デカンジオールをトリエチレングリコールに変更した以外は同様に重合した。分子構造を表2に、数平均分子量、樹脂単体の熱伝導率を表3に示す。
 〔実施例24〕
 4-アセトキシ安息香酸-4-アセトキシフェニル、ドデカン二酸をモル比でそれぞれ1:1.05の割合で密閉型反応器に仕込み、常圧下、窒素ガス雰囲気で1℃/minの昇温速度で280℃まで加熱し重縮合を行った。酢酸の留出量が理論酢酸生成量の90%に到達した時点で引き続きその温度を保ったまま、約20分かけて10torrに減圧し、高分子量まで溶融重合を行った。減圧開始から1.5時間後、不活性ガスで常圧に戻し、生成したポリマーを取り出した。分子構造を表2に、数平均分子量、樹脂単体の熱伝導率を表3に示す。
 〔実施例25〕
 4,4’-ジアセトキシアゾキシベンゼン、ドデカン二酸をモル比でそれぞれ1:1.05の割合で密閉型反応器に仕込み、常圧下、窒素ガス雰囲気で1℃/minの昇温速度で280℃まで加熱し重縮合を行った。酢酸の留出量が理論酢酸生成量の90%に到達した時点で引き続きその温度を保ったまま、約20分かけて10torrに減圧し、高分子量まで溶融重合を行った。減圧開始から1.5時間後、不活性ガスで常圧に戻し、生成したポリマーを取り出した。分子構造を表2に、数平均分子量、樹脂単体の熱伝導率を表3に示す。
 〔実施例26、27〕
 実施例17で合成した液晶性熱可塑性樹脂および無機充填剤である窒化ホウ素粉末(モメンティブパフォーマンスマテリアルズ社製PT110、単体での熱伝導率60W/(m・K)、体積平均粒子径45μm、電気絶縁性、体積固有抵抗1014Ω・cm)(h-BN)を表Eの組成で混合したものを準備した。これにフェノール系安定剤であるAO-60((株)ADEKA製)を熱可塑性樹脂100重量部に対して0.2重量部加え、ラボプラストミル((株)東洋精機製作所製 30C150)にて250℃、7分の条件で溶融混合し、評価用樹脂組成物を得た。上記樹脂組成物を射出成形機にて厚み6mm×20mmφの円盤状サンプルに成形し、熱伝導率を測定した。結果を表4に示す。
 〔実施例28〕
 実施例17で合成した熱可塑性樹脂に無機充填剤である天然鱗片状黒鉛粉末(中越黒鉛(株)製BF-250A、単体での熱伝導率1200W/(m・K)、体積平均粒子径250.0μm、導電性)(GC)を表Fの組成で混合したものを準備した。これにフェノール系安定剤であるAO-60((株)ADEKA製)を熱可塑性樹脂100重量部に対して0.2重量部加え、ラボプラストミル((株)東洋精機製作所製 30C150)にて250℃、7分の条件で溶融混合し、評価用樹脂組成物を得た。上記樹脂組成物を射出成形機にて厚み6mm×20mmφの円盤状サンプルに成形し、熱伝導率を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 〔実施例29〕~〔実施例52〕
 以下の表5に示す有機重合体100重量部、表5に示す量(重量部)の有機熱伝導性添加剤(A1)、およびAO-50((株)ADEKA製)0.2重量部を混合した後、この混合物をテクノベル製KZW15-45同方向噛み合い型二軸押出機のスクリュー根本付近に設けられたホッパーより投入し、二軸押出しにより樹脂組成物を得た。このとき二軸押出機の設定温度は、供給口近傍が200℃で、順次設定温度を上昇させ、押出機スクリュー先端部温度を表5に示す温度とした。得られた樹脂組成物を射出成形機にて厚み6mm×20mmφの円板状サンプルに成形した。熱伝導率の測定結果を表5に示す。表5では、有機重合体と比べてサンプルの熱伝導率が大幅に向上した場合を「優」、少し向上した場合を「良」、ほとんど変化しない場合を「変化なし」で表した。
Figure JPOXMLDOC01-appb-T000008

Claims (15)

  1.  主鎖が主として下記一般式(1)で示される単位の繰り返し単位からなり、主として鎖状の構造よりなり、樹脂単体での熱伝導率が0.45W/(m・K)以上である液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
    -M-Sp-         ...(1)
    (式中、Mはメソゲン基、Spはスペーサーを示す。)
  2.  前記液晶性熱可塑性樹脂が主として下記一般式(2)で示される単位の繰り返し単位からなる、請求項1に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
    -A-x-A-y-R-z-   ...(2)
    (式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環基、脂環式複素環基から選ばれる置換基を示す。x、yおよびzは、各々独立して直接結合、-CH-、-C(CH-、-O-、-S-、-CH-CH-、-C=C-、-C≡C-、-CO-、-CO-O-、-CO-NH-、-CH=N-、-CH=N-N=CH-、-N=N-または-N(O)=N-の群から選ばれる2価の置換基を示す。Rは主鎖原子数2~20の分岐を含んでもよい2価の置換基を示す。)
  3.  前記液晶性熱可塑性樹脂の-A-x-A-に相当する部分が下記一般式(3)で表されるメソゲン基であることを特徴とする、請求項2に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
    Figure JPOXMLDOC01-appb-C000001
  4.  前記液晶性熱可塑性樹脂のRに相当する部分が直鎖の脂肪族炭化水素鎖である、請求項2または3に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
  5.  前記液晶性熱可塑性樹脂のRに相当する部分の炭素数が偶数である請求項4に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
  6.  前記液晶性熱可塑性樹脂のRが-(CH-、-(CH10-、および-(CH12-から選ばれる少なくとも1種であり、数平均分子量が3000~40000である請求項4に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
  7.  前記液晶性熱可塑性樹脂の-y-R-z-が-O-CO-R-CO-O-である、請求項2に記載の液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤。
  8.  請求項1~請求項7のいずれか一項に記載の液晶性熱可塑性樹脂(A)を、有機重合体(B)100重量部に対し1~10000重量部添加することを特徴とする、有機熱伝導性添加剤含有樹脂組成物。
  9.  前記液晶性熱可塑性樹脂が10Vol%以上のラメラ晶を含むものである請求項1に記載の有機熱伝導性添加剤。
  10.  前記液晶性熱可塑性樹脂の結晶化度が7Vol%以上である請求項1に記載の有機熱伝導性添加剤。
  11.  以下の(A)~(C)を含有し、(A)と(B)の重量比が10:90~90:10である樹脂組成物。
    (A)主鎖が主として下記一般式(1)で示される繰り返し単位からなり、主として鎖状の構造よりなる液晶性熱可塑性樹脂、
    -M-Sp-         ...(1)
    (式中、Mはメソゲン基、Spはスペーサーを示す。)
    (B)上記(A)以外の熱可塑性樹脂、
    (C)無機充填剤
  12.  (A)成分である液晶性熱可塑性樹脂が、10Vol%以上のラメラ晶を含むものである請求項11に記載の樹脂組成物。
  13.  (A)成分である液晶性熱可塑性樹脂が、結晶化度が7Vol%以上のものである請求項11に記載の樹脂組成物。
  14.  以下の(A)~(C)を含有する樹脂組成物。
    (A)主鎖が主として下記一般式(1)で示される繰り返し単位からなり、主として鎖状の構造よりなる液晶性熱可塑性樹脂を用いた、有機熱伝導性添加剤、
    -M-Sp-         ...(1)
    (式中、Mはメソゲン基、Spはスペーサーを示す。)
    (B)熱硬化性樹脂
    (C)無機充填剤
  15.  請求項14の樹脂組成物から得られた硬化物。
PCT/JP2010/057390 2009-09-16 2010-04-26 有機熱伝導性添加剤、樹脂組成物および硬化物 WO2011033815A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2010800407785A CN102498149B (zh) 2009-09-16 2010-04-26 有机导热性添加剂、树脂组合物及硬化物
EP10816928.5A EP2479202B1 (en) 2009-09-16 2010-04-26 Thermally-conductive organic additive, resin composition, and cured product
KR1020127008732A KR101717449B1 (ko) 2009-09-16 2010-04-26 유기 열전도성 첨가제,수지 조성물,및 경화제
JP2011531816A JP6133012B2 (ja) 2009-09-16 2010-04-26 有機熱伝導性添加剤、樹脂組成物および硬化物
US13/395,914 US20120175549A1 (en) 2009-09-16 2010-04-26 Thermally-conductive organic additive, resin composition, and cured product
US14/507,156 US9234095B2 (en) 2009-09-16 2014-10-06 Thermally-conductive organic additive, resin composition, and cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009213907 2009-09-16
JP2009-213907 2009-09-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/395,914 A-371-Of-International US20120175549A1 (en) 2009-09-16 2010-04-26 Thermally-conductive organic additive, resin composition, and cured product
US14/507,156 Division US9234095B2 (en) 2009-09-16 2014-10-06 Thermally-conductive organic additive, resin composition, and cured product

Publications (1)

Publication Number Publication Date
WO2011033815A1 true WO2011033815A1 (ja) 2011-03-24

Family

ID=43758428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057390 WO2011033815A1 (ja) 2009-09-16 2010-04-26 有機熱伝導性添加剤、樹脂組成物および硬化物

Country Status (6)

Country Link
US (2) US20120175549A1 (ja)
EP (1) EP2479202B1 (ja)
JP (2) JP6133012B2 (ja)
KR (1) KR101717449B1 (ja)
CN (1) CN102498149B (ja)
WO (1) WO2011033815A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132390A1 (ja) * 2010-04-19 2011-10-27 株式会社カネカ 高熱伝導性熱可塑性樹脂
WO2011132389A1 (ja) * 2010-04-19 2011-10-27 株式会社カネカ 高熱伝導性熱可塑性樹脂
JP2013087196A (ja) * 2011-10-18 2013-05-13 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
JP2013224388A (ja) * 2012-04-23 2013-10-31 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
US8946335B2 (en) 2008-10-30 2015-02-03 Kaneka Corporation Highly thermally conductive thermoplastic resin composition and thermoplastic resin
US9234095B2 (en) 2009-09-16 2016-01-12 Kaneka Corporation Thermally-conductive organic additive, resin composition, and cured product
WO2017111115A1 (ja) * 2015-12-24 2017-06-29 株式会社カネカ 樹脂組成物およびそれを用いた半硬化性熱伝導フィルムおよび回路基板および接着シート
US10253178B2 (en) 2014-10-03 2019-04-09 Kaneka Corporation Flowability improver for polycarbonate and polyarylate, polycarbonate resin composition, polyarylate resin composition, and molded article thereof
WO2020080319A1 (ja) * 2018-10-18 2020-04-23 株式会社オートネットワーク技術研究所 熱伝導性材料
JP2021504210A (ja) * 2017-11-24 2021-02-15 アルケマ フランス 電気またはハイブリッド自動車両のバッテリーを冷却および/または加熱するためのデバイス
US20220016828A1 (en) * 2012-11-21 2022-01-20 Stratasys, Inc. Method for printing three-dimensional parts with cyrstallization kinetics control
WO2022107624A1 (ja) * 2020-11-20 2022-05-27 日鉄ケミカル&マテリアル株式会社 ポリ(ビニルベンジル)エーテル化合物、硬化性樹脂組成物、硬化物、硬化性複合材料、複合材料硬化物、積層体、樹脂付き金属箔、及びポリ(ビニルベンジル)エーテル化合物の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129805A1 (ko) * 2013-02-21 2014-08-28 제일모직주식회사 열전도성 수지 조성물
JP6413249B2 (ja) * 2014-02-03 2018-10-31 住友ベークライト株式会社 熱伝導性シートおよび半導体装置
NL2012988B1 (en) * 2014-06-12 2016-07-04 Olympic Holding B V Thermal conductive high modules organic polymeric fibers.
CN106661191B (zh) * 2014-08-27 2019-06-18 捷恩智株式会社 放热构件用组合物、放热构件、电子装置、放热构件的制造方法
EP3960771A1 (en) * 2014-11-12 2022-03-02 Renmatix, Inc. Method of coalescing a substance
CN105062000A (zh) * 2015-08-06 2015-11-18 殷姝媛 一种高导热性能高分子复合材料的制备方法
TWI558740B (zh) 2015-12-07 2016-11-21 財團法人工業技術研究院 導熱樹脂及包含該導熱樹脂之熱界面材料
CN105670646B (zh) * 2015-12-29 2018-07-17 东南大学 高导热主链尾接型液晶高分子膜材料及其制备方法
JP7088542B2 (ja) * 2017-06-02 2022-06-21 北川工業株式会社 熱伝導材用組成物、及び熱伝導材
JPWO2019244531A1 (ja) * 2018-06-21 2021-07-08 株式会社Adeka 表面処理窒化アルミニウムの製造方法、表面処理窒化アルミニウム、樹脂組成物、及び硬化物
JP7165647B2 (ja) * 2019-12-26 2022-11-04 信越化学工業株式会社 熱伝導性シリコーン樹脂組成物

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258864A (ja) 1989-03-31 1990-10-19 Polyplastics Co ポリアルキレンアリレート樹脂組成物
JPH08143653A (ja) * 1994-11-21 1996-06-04 Polyplastics Co 共重合ポリエステル及びポリエステル樹脂組成物
JP2000080257A (ja) * 1998-09-03 2000-03-21 Polyplastics Co ポリエステル樹脂組成物
JP2002284864A (ja) * 2001-03-26 2002-10-03 Osaka Gas Co Ltd 低温用成形材料
WO2002094905A1 (fr) 2001-05-18 2002-11-28 Hitachi, Ltd. Produit durci de resine thermodurcissable
JP2002371129A (ja) * 2001-06-14 2002-12-26 Fuji Xerox Co Ltd 高分子化合物及びその製造方法、成形体及びその製造方法
JP2003147032A (ja) 2001-08-31 2003-05-21 Kanegafuchi Chem Ind Co Ltd 後周期遷移金属錯体系の配位重合触媒によるポリオレフィン系グラフト共重合体とその製造方法
JP2003246923A (ja) * 2002-02-25 2003-09-05 Sumitomo Chem Co Ltd コネクター用液晶性ポリエステル樹脂組成物
WO2006120993A1 (ja) 2005-05-10 2006-11-16 Nippon Steel Chemical Co., Ltd. エポキシ樹脂組成物および硬化物
JP2007224060A (ja) 2006-02-21 2007-09-06 Mitsui Chemicals Inc 放熱材料
JP2009091440A (ja) * 2007-10-05 2009-04-30 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
WO2010050202A1 (ja) * 2008-10-30 2010-05-06 株式会社カネカ 高熱伝導性の熱可塑性樹脂組成物及び熱可塑性樹脂

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617371A (en) * 1982-11-29 1986-10-14 Alexandre Blumstein Novel polymeric liquid crystals and methods for their preparation
US4539386A (en) 1983-07-27 1985-09-03 Celanese Corporation Process for forming thermally stable thermotropic liquid crystalline polyesters of predetermined chain length
JPS61296068A (ja) 1985-06-20 1986-12-26 シ−メンス、アクチエンゲゼルシヤフト プラスチツクコンパウンド
JPS6322865A (ja) * 1986-04-11 1988-01-30 ザ・ボ−ド オブ トラスティ−ズ オブ ザ ユニヴァ−シティ オブ イリノイ 電気特性および磁気特性を改良した重合体
JP2517568B2 (ja) 1986-11-13 1996-07-24 ポリプラスチックス株式会社 分子鎖末端が封止された液晶性コポリエステル
US5218045A (en) * 1987-03-27 1993-06-08 North Dakota State University Coating binders comprising liquid crystalline enhanced polymers
US4837407A (en) 1987-03-30 1989-06-06 Aisin Seiki Company, Ltd. Plastic electrically insulating substrates for wiring circuit boards and a method of manufacturing thereof
JPS63295620A (ja) * 1987-05-27 1988-12-02 Mitsubishi Electric Corp 半導体封止用エポキシ樹脂組成物
IT1222099B (it) 1987-07-23 1990-08-31 Montedison Spa Poliesteri del 4,4' diidrossibicicloesile
JPH01221469A (ja) * 1988-02-29 1989-09-04 Nippon Paint Co Ltd 粉体塗料用樹脂組成物
US5306806A (en) * 1987-10-12 1994-04-26 Nippon Paint Co., Ltd. Thermosetting polyester resin and powder coating resinous composition containing the same
JPH0198619A (ja) * 1987-10-12 1989-04-17 Nippon Paint Co Ltd 熱硬化性ポリエステル樹脂組成物
JPH0198618A (ja) * 1987-10-12 1989-04-17 Nippon Paint Co Ltd 熱硬化性ポリエステル樹脂組成物
JPH01149303A (ja) 1987-12-04 1989-06-12 Nippon Telegr & Teleph Corp <Ntt> 垂直配向分子絶縁層の作製方法
JPH0768457B2 (ja) * 1987-12-25 1995-07-26 ポリプラスチックス株式会社 スメクチック液晶を含む樹脂組成物
JPH025307A (ja) 1988-06-24 1990-01-10 Nippon Telegr & Teleph Corp <Ntt> 垂直配向高分子絶縁導体
JPH0228352A (ja) 1988-07-18 1990-01-30 Nippon Telegr & Teleph Corp <Ntt> Icチップ搭載用配線板
JPH02127438A (ja) 1988-11-08 1990-05-16 Nippon Telegr & Teleph Corp <Ntt> 垂直配向ポリイミド膜
JP2741547B2 (ja) * 1988-12-30 1998-04-22 キヤノン株式会社 主鎖型カイラルスメクチック高分子液晶、高分子液晶組成物および高分子液晶素子
JPH04249528A (ja) 1990-12-29 1992-09-04 Kawasaki Steel Corp 溶融安定性に優れた液晶ポリエステル、液晶ポリエステルアミドおよびそれらの製造方法
US5138022A (en) 1991-08-01 1992-08-11 The Dow Chemical Company Thermoplastic polyesters containing biphenylene linkages
US5216073A (en) * 1992-07-01 1993-06-01 Hoechst Celanese Corp. Thermoset LCP blends
DE4226994A1 (de) 1992-08-14 1994-02-17 Siemens Ag Anisotrope Polymere
IT1263962B (it) * 1993-02-24 1996-09-05 Eniricerche Spa Composizione di elastomeri fluorurati e polimeri liquido cristallini
JP2535756B2 (ja) 1993-04-16 1996-09-18 工業技術院長 ビフェニルジカルボン酸ポリエステル類の製造方法
JP3526929B2 (ja) * 1994-11-15 2004-05-17 京セラミタ株式会社 ペルフルオロシクロペンテン誘導体、フォトクロミック材料及び光記録媒体
JP2001523892A (ja) * 1997-11-13 2001-11-27 ビーピー・アモコ・コーポレーション 熱管理デバイス
EP0944098B1 (en) * 1998-03-19 2005-06-01 Hitachi, Ltd. Thermally conductive electrical insulating composition
US6576718B1 (en) 1999-10-05 2003-06-10 General Electric Company Powder coating of thermosetting resin(s) and poly(phenylene ethers(s))
US6369157B1 (en) 2000-01-21 2002-04-09 Cyclics Corporation Blend material including macrocyclic polyester oligomers and processes for polymerizing the same
US6420047B2 (en) 2000-01-21 2002-07-16 Cyclics Corporation Macrocyclic polyester oligomers and processes for polymerizing the same
JP2003268070A (ja) 2002-03-18 2003-09-25 Hitachi Ltd 熱硬化性樹脂硬化物
JP2004149722A (ja) * 2002-10-31 2004-05-27 Polymatech Co Ltd 熱伝導性高分子成形体
JP4249528B2 (ja) 2003-04-10 2009-04-02 共和機械株式会社 鶏卵搬送保持具洗浄装置
JP4414674B2 (ja) 2003-05-07 2010-02-10 ポリマテック株式会社 熱伝導性エポキシ樹脂成形体及びその製造方法
JP2007215280A (ja) * 2006-02-08 2007-08-23 Nissan Motor Co Ltd 絶縁シート、絶縁シートを有するステータの製造方法及びモータ
WO2007125956A1 (ja) 2006-04-26 2007-11-08 Sekisui Chemical Co., Ltd. 光半導体用熱硬化性組成物、光半導体素子用ダイボンド材、光半導体素子用アンダーフィル材、光半導体素子用封止剤及び光半導体素子
JP2008050555A (ja) * 2006-07-24 2008-03-06 Sumitomo Chemical Co Ltd 熱伝導性樹脂組成物およびその用途
JP2008034725A (ja) * 2006-07-31 2008-02-14 Shin Etsu Polymer Co Ltd 放熱性に優れる配線板の製造方法
DE102006057837A1 (de) * 2006-12-08 2008-06-19 Evonik Degussa Gmbh Lagerstabile Pulverlackzusammensetzungen basierend auf säuregruppenhaltigen Polyestern, ihre Herstellung und ihre Verwendung für trübungsarme und flexible Pulverlacke
JP2008150525A (ja) 2006-12-19 2008-07-03 Polymatech Co Ltd 熱伝導性高分子成形体及びその製造方法
JP2008169265A (ja) * 2007-01-10 2008-07-24 Kaneka Corp 電気絶縁性高熱伝導性熱可塑性樹脂組成物及び高熱伝導性成形体
EP2594668B1 (en) 2007-02-28 2015-01-07 Toray Industries, Inc. Liquid crystalline polyester fiber
US20080242772A1 (en) * 2007-03-27 2008-10-02 Toyoda Gosei Co. Ltd Low electric conductivity high heat radiation polymeric composition and molded body
WO2008130958A1 (en) 2007-04-17 2008-10-30 Henkel Ag & Co. Kgaa Thermally-conductive compositions
JP5297639B2 (ja) * 2007-11-28 2013-09-25 ポリプラスチックス株式会社 熱伝導性樹脂組成物
JP5155769B2 (ja) 2008-08-07 2013-03-06 ポリプラスチックス株式会社 全芳香族ポリエステル及びポリエステル樹脂組成物
JP5019272B2 (ja) 2008-09-30 2012-09-05 Tdk株式会社 エポキシプレポリマー、並びに、これを用いたエポキシ樹脂組成物、硬化物、半硬化物、プリプレグ及び複合基板
JP5366533B2 (ja) 2008-12-25 2013-12-11 株式会社カネカ 熱可塑性樹脂組成物
JP5684999B2 (ja) 2009-08-06 2015-03-18 株式会社カネカ ブロー成形用高熱伝導性熱可塑性樹脂組成物
JP5680873B2 (ja) 2009-08-20 2015-03-04 株式会社カネカ 高熱伝導性熱可塑性樹脂および熱可塑性樹脂成形体
JP5542513B2 (ja) 2009-09-16 2014-07-09 株式会社カネカ 押出成形用高熱伝導性熱可塑性樹脂組成物
JP5542514B2 (ja) 2009-09-16 2014-07-09 株式会社カネカ 高熱伝導性熱可塑性樹脂組成物
JP6133012B2 (ja) 2009-09-16 2017-05-24 株式会社カネカ 有機熱伝導性添加剤、樹脂組成物および硬化物
JP5490604B2 (ja) 2009-09-18 2014-05-14 株式会社カネカ 熱可塑性樹脂組成物および放熱・伝熱用樹脂材料

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258864A (ja) 1989-03-31 1990-10-19 Polyplastics Co ポリアルキレンアリレート樹脂組成物
JPH08143653A (ja) * 1994-11-21 1996-06-04 Polyplastics Co 共重合ポリエステル及びポリエステル樹脂組成物
JP2000080257A (ja) * 1998-09-03 2000-03-21 Polyplastics Co ポリエステル樹脂組成物
JP2002284864A (ja) * 2001-03-26 2002-10-03 Osaka Gas Co Ltd 低温用成形材料
WO2002094905A1 (fr) 2001-05-18 2002-11-28 Hitachi, Ltd. Produit durci de resine thermodurcissable
JP2002371129A (ja) * 2001-06-14 2002-12-26 Fuji Xerox Co Ltd 高分子化合物及びその製造方法、成形体及びその製造方法
JP2003147032A (ja) 2001-08-31 2003-05-21 Kanegafuchi Chem Ind Co Ltd 後周期遷移金属錯体系の配位重合触媒によるポリオレフィン系グラフト共重合体とその製造方法
JP2003246923A (ja) * 2002-02-25 2003-09-05 Sumitomo Chem Co Ltd コネクター用液晶性ポリエステル樹脂組成物
WO2006120993A1 (ja) 2005-05-10 2006-11-16 Nippon Steel Chemical Co., Ltd. エポキシ樹脂組成物および硬化物
JP2007224060A (ja) 2006-02-21 2007-09-06 Mitsui Chemicals Inc 放熱材料
JP2009091440A (ja) * 2007-10-05 2009-04-30 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
WO2010050202A1 (ja) * 2008-10-30 2010-05-06 株式会社カネカ 高熱伝導性の熱可塑性樹脂組成物及び熱可塑性樹脂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POLYMER SCIENCE: POLYMER PHYSICS EDITION, vol. 21, 1983, pages 1119 - 1131
See also references of EP2479202A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946335B2 (en) 2008-10-30 2015-02-03 Kaneka Corporation Highly thermally conductive thermoplastic resin composition and thermoplastic resin
US9234095B2 (en) 2009-09-16 2016-01-12 Kaneka Corporation Thermally-conductive organic additive, resin composition, and cured product
JP5941840B2 (ja) * 2010-04-19 2016-06-29 株式会社カネカ 高熱伝導性熱可塑性樹脂
US8637630B2 (en) 2010-04-19 2014-01-28 Kaneka Corporation Thermoplastic resin with high thermal conductivity
US8921507B2 (en) 2010-04-19 2014-12-30 Kaneka Corporation Thermoplastic resin with high thermal conductivity
WO2011132389A1 (ja) * 2010-04-19 2011-10-27 株式会社カネカ 高熱伝導性熱可塑性樹脂
WO2011132390A1 (ja) * 2010-04-19 2011-10-27 株式会社カネカ 高熱伝導性熱可塑性樹脂
JP2013087196A (ja) * 2011-10-18 2013-05-13 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
JP2013224388A (ja) * 2012-04-23 2013-10-31 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
US20220016828A1 (en) * 2012-11-21 2022-01-20 Stratasys, Inc. Method for printing three-dimensional parts with cyrstallization kinetics control
US12064917B2 (en) * 2012-11-21 2024-08-20 Stratasys, Inc. Method for printing three-dimensional parts with cyrstallization kinetics control
US10253178B2 (en) 2014-10-03 2019-04-09 Kaneka Corporation Flowability improver for polycarbonate and polyarylate, polycarbonate resin composition, polyarylate resin composition, and molded article thereof
CN108291076A (zh) * 2015-12-24 2018-07-17 株式会社钟化 树脂组合物、使用了其的半固化性热传导膜、电路基板和粘接片
JPWO2017111115A1 (ja) * 2015-12-24 2018-08-16 株式会社カネカ 樹脂組成物およびそれを用いた半硬化性熱伝導フィルムおよび回路基板および接着シート
WO2017111115A1 (ja) * 2015-12-24 2017-06-29 株式会社カネカ 樹脂組成物およびそれを用いた半硬化性熱伝導フィルムおよび回路基板および接着シート
JP2021504210A (ja) * 2017-11-24 2021-02-15 アルケマ フランス 電気またはハイブリッド自動車両のバッテリーを冷却および/または加熱するためのデバイス
JP7465209B2 (ja) 2017-11-24 2024-04-10 アルケマ フランス 電気またはハイブリッド自動車両のバッテリーを冷却および/または加熱するためのデバイス
WO2020080319A1 (ja) * 2018-10-18 2020-04-23 株式会社オートネットワーク技術研究所 熱伝導性材料
WO2022107624A1 (ja) * 2020-11-20 2022-05-27 日鉄ケミカル&マテリアル株式会社 ポリ(ビニルベンジル)エーテル化合物、硬化性樹脂組成物、硬化物、硬化性複合材料、複合材料硬化物、積層体、樹脂付き金属箔、及びポリ(ビニルベンジル)エーテル化合物の製造方法

Also Published As

Publication number Publication date
JP6193340B2 (ja) 2017-09-06
US20150025188A1 (en) 2015-01-22
EP2479202A1 (en) 2012-07-25
KR20120080192A (ko) 2012-07-16
JP2016047934A (ja) 2016-04-07
CN102498149A (zh) 2012-06-13
JP6133012B2 (ja) 2017-05-24
KR101717449B1 (ko) 2017-03-17
CN102498149B (zh) 2013-11-27
US20120175549A1 (en) 2012-07-12
JPWO2011033815A1 (ja) 2013-02-07
EP2479202B1 (en) 2019-02-13
US9234095B2 (en) 2016-01-12
EP2479202A4 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6193340B2 (ja) 有機熱伝導性添加剤、樹脂組成物および硬化物を使用するプラスチックに熱伝導性を付与するための方法
JP5941840B2 (ja) 高熱伝導性熱可塑性樹脂
JP5731199B2 (ja) 高熱伝導性の熱可塑性樹脂組成物及び熱可塑性樹脂の成形物
JP5490604B2 (ja) 熱可塑性樹脂組成物および放熱・伝熱用樹脂材料
JP5542513B2 (ja) 押出成形用高熱伝導性熱可塑性樹脂組成物
JP6117178B2 (ja) 熱伝導性樹脂成形体および当該熱伝導性樹脂成形体の製造方法
JP5684999B2 (ja) ブロー成形用高熱伝導性熱可塑性樹脂組成物
WO2015083523A1 (ja) 高熱伝導性樹脂組成物、それを含有する放熱・伝熱用樹脂材料および熱伝導膜
JP5476203B2 (ja) 高熱伝導性熱可塑性樹脂組成物
JP5468975B2 (ja) 高熱伝導性熱可塑性樹脂製ヒートシンク
JP5757940B2 (ja) 高熱伝導性熱可塑性樹脂
JP5680873B2 (ja) 高熱伝導性熱可塑性樹脂および熱可塑性樹脂成形体
JP5689612B2 (ja) 高熱伝導性硬化性樹脂および硬化性樹脂組成物
JP5646874B2 (ja) 難燃性高熱伝導性熱可塑性樹脂組成物
JP5525322B2 (ja) 高熱伝導性熱可塑性樹脂組成物
JP5795866B2 (ja) 高熱伝導性熱可塑性液晶樹脂および樹脂組成物の成形方法
JP6101501B2 (ja) 高熱伝導性熱可塑性樹脂組成物、及び高熱伝導性熱可塑性樹脂の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040778.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531816

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13395914

Country of ref document: US

Ref document number: 2347/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010816928

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127008732

Country of ref document: KR

Kind code of ref document: A