WO2010107109A1 - 抗体定常領域改変体 - Google Patents

抗体定常領域改変体 Download PDF

Info

Publication number
WO2010107109A1
WO2010107109A1 PCT/JP2010/054767 JP2010054767W WO2010107109A1 WO 2010107109 A1 WO2010107109 A1 WO 2010107109A1 JP 2010054767 W JP2010054767 W JP 2010054767W WO 2010107109 A1 WO2010107109 A1 WO 2010107109A1
Authority
WO
WIPO (PCT)
Prior art keywords
constant region
amino acid
antibody
cys
chain constant
Prior art date
Application number
PCT/JP2010/054767
Other languages
English (en)
French (fr)
Inventor
智之 井川
太一 倉持
敦彦 前田
宙丈 白岩
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Priority to EP19180309.7A priority Critical patent/EP3674317A1/en
Priority to EP10753600A priority patent/EP2409990A4/en
Priority to US13/257,145 priority patent/US20120071634A1/en
Priority to JP2011504892A priority patent/JP5787446B2/ja
Publication of WO2010107109A1 publication Critical patent/WO2010107109A1/ja
Priority to US14/680,250 priority patent/US10253091B2/en
Priority to US16/298,032 priority patent/US20190211081A1/en
Priority to US17/530,542 priority patent/US20220064264A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2875Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/528CH4 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/71Decreased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/72Increased effector function due to an Fc-modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Definitions

  • the present invention relates to an antibody constant region having a modified amino acid sequence and an antibody containing the constant region.
  • Antibodies are attracting attention as pharmaceuticals because of their high stability in plasma (blood) and few side effects. Among them, many IgG-type antibody drugs are on the market, and many antibody drugs have been developed (Non-patent Documents 1 and 2).
  • IgG1 subclass antibodies Most of the antibody drugs currently on the market are IgG1 subclass antibodies.
  • An IgG1-type antibody can bind to an Fc ⁇ receptor and can exhibit ADCC activity, and is considered useful in the case of an anti-cancer antibody drug.
  • binding to the Fc ⁇ receptor which is important for effector functions such as ADCC of the Fc region, is excluded because it may cause unwanted side effects. It is desirable to do this (Non-Patent Document 3).
  • Fc ⁇ receptor is expressed in antigen-presenting cells, molecules that bind to Fc ⁇ receptor are more likely to be presented with antigen, and immunogenicity is enhanced by binding proteins and peptides to the Fc part of IgG1.
  • Non-Patent Document 4 Patent Document 1
  • interaction between the Fc portion of the antibody and the Fc ⁇ receptor is considered (Non-patent Document 5).
  • binding to Fc ⁇ receptor is considered to be unfavorable in antibody drugs intended to neutralize the biological action of antigen.
  • Non-patent Document 6 a method of reducing the IgG antibody subtype from IgG1 to IgG2 or IgG4 can be considered.
  • a method for completely eliminating the binding to the Fc ⁇ receptor a method of introducing an artificial modification into the Fc region has been reported.
  • anti-CD3 antibody and anti-CD4 antibody cause side effects due to the effector function of the antibody. Therefore, clinical trials of Fc ⁇ receptor non-binding anti-CD3 and anti-CD4 antibodies in which amino acid mutations (Non-patent Documents 3 and 7) that do not exist in the wild-type sequence are introduced into the Fc ⁇ receptor-binding portion of the Fc region are currently being conducted.
  • Non-Patent Documents 5 and 8 it is possible to prepare an Fc ⁇ receptor non-binding antibody by making the IgG1 Fc ⁇ R binding site (EU numbering: 233, 234, 235, 236, 327, 330, 331) an IgG2 and IgG4 sequence.
  • any of these molecules has emerged a new peptide sequence of 9 to 12 amino acids that can be a T-cell epitope peptide that does not exist in nature, and is considered to be an immunogenic risk.
  • Non-patent Documents 14 and 15 As a method for increasing the plasma half-life of an antibody, amino acid substitutions in the constant region have been reported (Non-patent Documents 14 and 15), but a sequence that does not naturally exist in the constant region from the viewpoint of immunogenicity risk. It is considered undesirable to introduce.
  • the physical properties, especially the homogeneity, of the protein is extremely important.
  • heterogeneity derived from a disulfide bond in the hinge region has been reported (Non-Patent Document 10, Non-Patent Document 16, Non-Patent Document 17, Non-Patent Document 18, Patent Document 3). It is difficult to manufacture a large amount as a pharmaceutical while maintaining the heterogeneity of the target substance / related substance derived from this. It is desirable that an antibody molecule to be developed as a pharmaceutical is a single substance as much as possible.
  • the difference in heterogeneity between production can be understood as, for example, the difference in heterogeneity between production lots.
  • the heterogeneity in the production lot can be quantitatively evaluated by measuring the diversity of the structure and molecular weight of the produced antibody molecule.
  • the constant region of an antibody drug that is intended to neutralize antigen resolves all of stability, C-terminal heterogeneity, immunogenicity (antigenicity), blood dynamics and hinge region heterogeneity.
  • a constant region sequence is preferred.
  • a constant region having superior blood kinetics than a natural constant region such as IgG1 and having no hinge region heterogeneity is considered to be very useful as a constant region of an antibody drug.
  • Prior art document information related to the invention of the present application is shown below.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a constant region capable of conferring desirable properties as a pharmaceutical to an antibody by modifying amino acids in the antibody constant region, and the constant region.
  • the object is to provide an antibody comprising a region and a variable region.
  • the present inventors have aimed to create an antibody constant region with improved homogeneity (C-terminal, hinge region), immunogenicity, stability and pharmacokinetics by modifying the amino acid sequence of the antibody constant region. , Earnest research. As a result, the inventors have succeeded in producing antibody constant regions with improved homogeneity, immunogenicity, pharmacokinetics and stability. Furthermore, the present inventors have succeeded in producing an antibody constant region in which the binding to the Fc ⁇ receptor is reduced by further modifying the amino acid based on the constant region.
  • the constant region of the antibody is an excellent constant region that has better pharmacokinetics than the natural IgG1 constant region and improved heterogeneity of the hinge region.
  • the present invention has improved safety, immunogenicity risk, physical properties (stability, uniformity) by modifying the amino acid sequence of the constant region of an antibody, and further improved pharmacokinetics, hinge region heterogeneity
  • the present invention relates to an antibody constant region having an antibody, an antibody comprising the antibody constant region, a pharmaceutical composition comprising the antibody, and a method for producing them. More specifically, the following [1] to [19] are provided.
  • a human ⁇ chain constant region without Cys at position 107 [11] A human kappa chain constant region having at least one Cys at the 102nd to 106th positions and no Cys at the 107th position, [12] The human ⁇ chain constant region according to any one of [9] to [11], wherein at least one of the first to 106th amino acids is deleted in the amino acid sequence of SEQ ID NO: 32, [13] The human ⁇ chain constant region according to [12], wherein at least one of the amino acids at positions 102 to 106 is deleted, [14] The human ⁇ chain constant region according to [13], wherein the 105th amino acid is deleted, [15] The human ⁇ chain constant region according to [13], wherein the 106th amino acid is deleted, [16] The human ⁇ chain constant region according to [9], wherein at least one of the 102nd to 106th amino acids is substituted with Cys; [17] At least one of the 102nd to 106th amino acids is substituted with Cys
  • a constant region capable of imparting desirable properties as a pharmaceutical preparation to an antibody is provided.
  • the constant region of the present invention can improve the following properties of the antibody to a state suitable for a pharmaceutical preparation by modifying the amino acid sequence.
  • Decreased antibody heterogeneity The polypeptide obtained by expressing DNA encoding a certain amino acid sequence should theoretically be a homogeneous polypeptide molecule consisting of the same amino acid sequence. However, when DNA encoding the antibody is expressed in a suitable host, in fact, different polypeptides having different structures may be produced due to various factors. In the production of antibodies, it can be said that an antibody population composed of many different polypeptides has high heterogeneity.
  • the cause of heterogeneity is removed by modification of the amino acid sequence. Therefore, an antibody with low heterogeneity can be produced by constructing an antibody with the constant region of the present invention. That is, high homogeneity of the antibody can be maintained by introducing the modification provided by the present invention into the heavy chain constant region of the antibody. Keeping antibody heterogeneity low means improving heterogeneity and is an important issue in maintaining the quality of pharmaceuticals. Therefore, the constant region of the present invention contributes to the maintenance of the quality of pharmaceuticals including antibodies.
  • the present invention contributes to improvement of antibody pharmacokinetics. Specifically, when a specific amino acid residue is modified in the constant region of the antibody of the present invention, the blood concentration of the antibody composed of the constant region is compared with that in which the amino acid sequence is not modified. And maintained for a long time. Maintaining the blood concentration as long as possible means that when the antibody is administered as a pharmaceutical, the therapeutic effect can be maintained over a long period of time with a smaller amount of antibody. Alternatively, the number of administrations can be reduced by increasing the administration interval of the antibody.
  • the vertical axis represents absorbance at 280 nm
  • the horizontal axis represents elution time (minutes).
  • Is the detail of IgG type antibody and its hinge region peripheral structure (the arrangement of the heavy chain (H chain), the light chain (L chain) and the disulfide bond between them). Is).
  • H chain heavy chain
  • L chain light chain
  • Is the pattern of the expected disulfide bond around the hinge region of constant region IgG1-k0 and IgG2-k0.
  • Various disulfide bond patterns conceivable in IgG2-k0 are indicated by dotted lines.
  • IgG1-k0 and IgG4-k0 have different disulfide bond patterns connecting the H and L chains. It is a figure which shows the pattern of the expected disulfide bond around the hinge region of constant region SC-k0 and CS-k0. The various disulfide bond patterns considered in SC-k0 and CS-k0 are shown by dotted lines. It is a figure which shows the pattern of the expected disulfide bond around the hinge region of constant region SKSC-k0 and M58-k0.
  • the vertical axis represents absorbance at 280 nm
  • the horizontal axis represents elution time (minutes). It is a figure which showed the plasma concentration transition of the antibody when IL6R H0-IgG1 / L0-k0 and IL6R H0-M58 / L0-k0 are administered to human FcRn transgenic mice at 1 mg / kg.
  • the vertical axis represents the plasma concentration of antibody ( ⁇ g / mL), and the horizontal axis represents the elapsed time (days) after administration.
  • the administered antibodies were IL6R H0-IgG1 / L0-k0 ( ⁇ ; an antibody whose constant region was not altered) and IL6R H0-M58 / L0-k0 ( ⁇ ; an antibody whose constant region was altered). It is a figure which shows the pattern of the expected disulfide bond around the hinge region of constant region M58-k0 and M66-k0.
  • Human FcRn transgenic mice showed changes in plasma antibody concentrations when IL6R H0-IgG1 / L0-k0, IL6R H0-M58 / L0-k0, and IL6R H0-M66 / L0-k0 were administered at 1 mg / kg.
  • the vertical axis represents the plasma concentration of antibody ( ⁇ g / mL), and the horizontal axis represents the elapsed time (days) after administration.
  • the administered antibodies were IL6R H0-IgG1 / L0-k0 ( ⁇ ; antibody without constant region modification), IL6R H0-M58 / L0-k0 ( ⁇ ; antibody with constant region modification), and IL6R H0 -M66 / L0-k0 ( ⁇ ; antibody with constant region modified).
  • IL6R H0-IgG1 / L0-k0, IL6R H0-IgG2 / L0-k0, IL6R H0-M58 / L0-k0 and IL6R H0-M66 / L0-k0 are derived from cross-linking of disulfide bonds by cation exchange chromatography. It is the figure which showed the result of having evaluated heterogeneity. In the figure, the vertical axis represents absorbance at 280 nm, and the horizontal axis represents elution time (minutes). It is a figure which shows the pattern of two types of disulfide bonds estimated in constant region M66-k0.
  • IL6R H0-IgG1 / L0-k0 IL6R H0-IgG2 / L0-k0
  • IL6R H0-M58 / L0-k0 IL6R H0-M66 / L0-k0
  • IL6R H0-M66 / L0-k3 IL6R H0-M66 / It is the figure which showed the result of having evaluated the heterogeneity derived from crossing of a disulfide bond by cation exchange chromatography of L0-k4.
  • the vertical axis represents absorbance at 280 nm
  • the horizontal axis represents elution time (minutes).
  • FIG. 3 shows the binding of H0-IgG1 / L0-k0, H0-IgG2 / L0-k0, and H0-M106 / L0-k3 to various Fc ⁇ receptors.
  • IL6RnH0-M66 / L0-k0, IL6R H0-M66 / L0-k3, IL6R H0-M106 / L0-k3 and IL6R H0-IgG2 / L0-k3 were administered to human FcRn transgenic mice at 1 mg / kg It is the figure which showed the plasma concentration transition of an antibody.
  • the vertical axis represents the plasma concentration of antibody ( ⁇ g / mL), and the horizontal axis represents the elapsed time (days) after administration.
  • the present invention provides an antibody constant region having a modified amino acid sequence, an antibody containing the constant region, a pharmaceutical composition containing the antibody, and a method for producing them.
  • the IgG1, IgG2, IgG3, and IgG4 type constant regions exist in the heavy chain constant region of the antibody.
  • the heavy chain constant region is preferably a human heavy chain constant region.
  • the human IgG2 constant region is particularly preferable.
  • the amino acid sequence of the human IgG2 constant region is known (SEQ ID NO: 24).
  • SEQ ID NO: 24 The amino acid sequence of the human IgG2 constant region.
  • a human IgG2 constant region a plurality of allotype sequences by gene polymorphism are described in Sequences of proteins of immunological interest, NIH Publication No.91-3242, but any of them may be used in the present invention.
  • ⁇ chain and ⁇ chain type constant regions exist in the light chain constant region of the antibody.
  • the light chain constant region is a human light chain constant region.
  • the human ⁇ chain constant region is preferred.
  • the amino acid sequence of the human ⁇ chain constant region is known (SEQ ID NO: 32).
  • SEQ ID NO: 32 The amino acid sequence of the human ⁇ chain constant region.
  • human ⁇ chain constant region and human ⁇ chain constant region a plurality of allotype sequences due to genetic polymorphism are described in Sequences of proteins of immunological interest, NIH Publication No.91-3242. It may be.
  • the antibody constant region in which the amino acid of the present invention is altered may contain other amino acid alterations and modifications as long as it contains the amino acid alteration of the present invention.
  • any of the constant regions containing the following modifications are included in the present invention.
  • a modification according to the present invention is introduced into the amino acid sequence of SEQ ID NO: 24 (human IgG2 constant region).
  • the modification based on the present invention is introduced into the amino acid sequence of the modified SEQ ID NO: 24 (human IgG2 constant region).
  • a modification according to the present invention is introduced into the amino acid sequence of SEQ ID NO: 24 (human IgG2 constant region), and additional modifications are also introduced.
  • constant regions containing the following modifications are also included in the present invention.
  • a modification according to the present invention is introduced into the amino acid sequence of SEQ ID NO: 32 (human ⁇ chain constant region).
  • the modification according to the present invention is introduced into the amino acid sequence of the modified SEQ ID NO: 32 (human ⁇ chain constant region).
  • Modifications according to the present invention are introduced into the amino acid sequence of SEQ ID NO: 32 (human ⁇ chain constant region), and additional modifications are also introduced.
  • the structure of the sugar chain to be bound may be any structure.
  • the 297th sugar chain of EU numbering may have any sugar chain structure (preferably a fucosylated sugar chain), or a sugar chain may not be bound (for example, by producing it in E. coli). Possible).
  • the present invention provides heavy chain constant regions with improved stability, heterogeneity, immunogenicity and / or pharmacokinetics.
  • the present invention also provides an antibody comprising the heavy chain constant region.
  • the heavy chain constant region (IgG2 constant region) having the amino acid sequence set forth in SEQ ID NO: 24, the 14th (EU numbering 131st) Cys, the 16th (EU numbering 133rd) Arg, 103 20th (EU numbering 220th) Cys, 20th (EU numbering 137th) Glu, 21st (EU numbering 138th) Ser, 147th (EU numbering 268th) His, 234th (EU numbering 355th) ) Arg and 298th (EU numbering 419th) Gln are substituted with other amino acids to provide a heavy chain constant region and an antibody comprising the heavy chain constant region.
  • the amino acid after substitution is not particularly limited, but the 14th Cys is Ser, the 16th Arg is Lys, the 103rd Cys is Ser, the 20th Glu is Gly, the 21st Ser is Gly, It is preferable that the 147th His is replaced with Gln, the 234th Arg is replaced with Gln, and the 298th Gln is replaced with Glu.
  • substitutions can improve antibody stability, immunogenicity and / or pharmacokinetics.
  • the heavy chain constant region provided by the present invention only needs to have at least the amino acid substitution described above, and at the same time, other amino acid alterations (substitution, deletion, addition and / or insertion, etc.) and modifications have been made. Good.
  • the present invention provides a heavy chain constant region with reduced binding to the Fc ⁇ receptor by further adding an amino acid substitution to the above heavy chain constant region.
  • the present invention also provides an antibody comprising the heavy chain constant region. More specifically, in the heavy chain constant region (IgG2 constant region) having the amino acid sequence set forth in SEQ ID NO: 24, the 14th (EU numbering 131st) Cys, the 16th (EU numbering 133rd) Arg, 103rd (EU numbering 220th) Cys, 20th (EU numbering 137th) Glu, 21st (EU numbering 138th) Ser, 147th (EU numbering 268th) His, 234th (EU numbering 355) ) Arg, 298th (EU numbering 419th) Gln, 209th (EU numbering 330th) Ala, 210th (EU numbering 331th) Pro, 218th (EU numbering 339th) Thr etc.
  • a heavy chain constant region having an amino acid sequence substituted with the
  • the amino acid after substitution is not particularly limited, but the 14th Cys is Ser, the 16th Arg is Lys, the 103rd Cys is Ser, the 20th Glu is Gly, the 21st Ser is Gly, 147th His is replaced with Gln, 234th Arg is replaced with Gln, 298th Gln is replaced with Glu, 209th Ala is replaced with Ser, 210th Pro is replaced with Ser, and 218th Thr is replaced with Ala. Is preferred.
  • substitutions can improve antibody stability, heterogeneity, immunogenicity, safety and / or pharmacokinetics.
  • the heavy chain constant region provided by the present invention only needs to have at least the amino acid substitution described above, and at the same time, other amino acid alterations (substitution, deletion, addition and / or insertion, etc.) and modifications have been made. Good.
  • the present invention provides a heavy chain constant region having an amino acid sequence further deleted of 325th (EU numbering 446th) Gly and 326th (EU numbering 447th) Lys in any of the heavy chain constant regions described above, And an antibody comprising the heavy chain constant region. It is possible to improve C-terminal heterogeneity by deleting these amino acids.
  • heavy chain constant regions have reduced Fc ⁇ receptor binding activity, reduced immunogenicity risk, reduced hinge region heterogeneity, reduced C-terminal heterogeneity, and / or improved pharmacokinetics. Optimized heavy chain constant region with properties.
  • an amino acid modification for further improving the stability in acidity may be added.
  • amino acid modification for improving the stability in acidity for example, in the IgG2 constant region having the amino acid sequence set forth in SEQ ID NO: 24, Met at position 276 (EU numbering 397)
  • the modification include substitution with an amino acid.
  • Other amino acids are not particularly limited, but are preferably Val.
  • the Met at the 276th position is another amino acid, whereby the stability of the antibody under acidic conditions can be improved.
  • the present invention provides a light chain constant region that can be used to improve the heterogeneity of the hinge region.
  • the present invention also provides an antibody comprising the light chain constant region.
  • the present invention provides a human ⁇ chain constant region in which at least one Cys is present at positions 102 to 106 in the human ⁇ chain constant region, and an antibody comprising the human ⁇ chain constant region.
  • the presence of at least one Cys at positions 102 to 106 means that at least one Cys at positions 102 to Phe to 106 is Glu. It means that Cys exists.
  • the number of Cys contained in positions 102 to 106 of the human ⁇ chain is not particularly limited, but it is 5 or less, preferably 3 or less, more preferably 2 or less, and even more preferably 1.
  • the position where Cys is present is not particularly limited, but is preferably 104th, 105th or 106th, more preferably 105th or 106th, and particularly preferably 106th.
  • the number of amino acids contained in the constant region is not particularly limited, but is preferably 102 amino acids to 107 amino acids, Preferably they are 105 amino acids to 106 amino acids, more preferably 106 amino acids.
  • a method for producing a human ⁇ chain constant region in which at least one Cys is present at positions 102 to 106 is not particularly limited, and examples thereof include the following methods. It is also possible to combine the following insertions, substitutions and deletions. -Insert at least one Cys at positions 102-106-Replace at least one of amino acids 102-106 with Cys-Delete 1-5 amino acids from amino acids 1-106
  • the present invention provides a human ⁇ chain constant region having no Cys at position 107 in the human ⁇ chain constant region, and an antibody comprising the human ⁇ chain constant region.
  • the human ⁇ chain having the amino acid sequence set forth in SEQ ID NO: 32 the absence of Cys at the 107th position means that the 107th Cys is deleted or another amino acid substituted by another amino acid. Is inserted, or moved to another position.
  • a preferred human ⁇ chain constant region includes a human ⁇ chain constant region in which Cys 107 is deleted, moved to another position, or substituted with another amino acid.
  • the human ⁇ chain constant region of the present invention in the human ⁇ chain constant region, at least one Cys is present at positions 102 to 106 and Cys is not present at the 107th position. Can be mentioned.
  • a human ⁇ chain constant region lacking at least one of the first to 106th amino acids
  • a human ⁇ chain constant region having the amino acid sequence set forth in SEQ ID NO: 32 when the 106th Glu is deleted, the 107th Cys moves to the 106th, so that the 106th Cys exists, The 107th human ⁇ chain constant region without Cys.
  • the site where the amino acid is deleted is not particularly limited, but at least one of the 102nd to 106th amino acids is preferably deleted, and the 105th or 106th amino acid is more preferably deleted.
  • the number of amino acids to be deleted is not particularly limited, and usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1 amino acid can be deleted.
  • human ⁇ chain constant region examples include a human ⁇ chain constant region lacking the 105th amino acid, or a human ⁇ chain constant region lacking the 106th amino acid.
  • human ⁇ in which at least one of the 102nd to 106th amino acids is substituted with Cys and the 107th Cys is deleted or substituted with another amino acid Mention may be made of the chain constant region.
  • the number of amino acids substituted with Cys is not particularly limited, but is usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1.
  • the site substituted with Cys is not particularly limited, but preferred substitution sites include 105th and 106th.
  • a human ⁇ chain constant region examples include a human ⁇ chain constant region in which the 105th Gly is substituted with Cys and the 107th Cys is deleted or substituted with another amino acid, or the 106th Glu is Mention may be made of the human ⁇ chain constant region substituted with Cys and with the 107th Cys deleted or substituted with another amino acid.
  • the human ⁇ chain constant region of the present invention the human ⁇ chain constant region having the amino acid sequence of SEQ ID NO: 33 (k3) or the human ⁇ chain constant having the amino acid sequence of SEQ ID NO: 34 (k4) An area can be mentioned.
  • the human ⁇ chain constant region of the present invention may be modified with other amino acids in addition to the above-mentioned amino acid modifications. As long as the above-described amino acid alteration is performed, human ⁇ chain constant regions in which other amino acid alterations or modifications are further included in the human ⁇ chain constant region of the present invention.
  • the heterogeneity of the hinge region can be reduced by using the human ⁇ chain constant region of the present invention.
  • the heavy chain constant region having the amino acid sequence of SEQ ID NO: 30 (M66) or SEQ ID NO: 31 (M106) only one of EU numbering 219 or EU numbering 220 is Cys. It is effective to combine a normal region (for example, a heavy chain constant region in which only EU numbering 219 is Cys) and a ⁇ chain constant region of the present invention.
  • the present invention provides a light chain constant region that can be used to improve the heterogeneity of the hinge region.
  • the present invention also provides an antibody comprising the light chain constant region.
  • a human ⁇ chain constant region in which at least one Cys is present at positions 99 to 103, and an antibody comprising the human ⁇ chain constant region.
  • the presence of at least one Cys at the 99th to 103rd positions means that at least one Cys at the 99th Val to 103rd Glu position. Means that Cys exists.
  • the number of Cys contained in the 99th to 103rd positions of the human ⁇ chain is not particularly limited, but is 5 or less, preferably 3 or less, more preferably 2 or less, and even more preferably 1.
  • the position where Cys is present is not particularly limited, but is preferably 101st, 102nd or 103rd, more preferably 102nd or 103rd, and particularly preferably 103rd.
  • the number of amino acids contained in the constant region is not particularly limited, but is preferably 100 amino acids to 103 amino acids,
  • the amino acid is preferably 102 to 103 amino acids, more preferably 103 amino acids.
  • the method for producing a human ⁇ chain constant region in which at least one Cys is present at the 99th to 103rd positions is not particularly limited, and examples thereof include the following methods. It is also possible to combine the following insertions, substitutions and deletions. Insert at least one Cys at positions 99 to 103. Replace at least one of amino acids 99 to 103 with Cys. Delete 1 to 5 amino acids from amino acids 1 to 103.
  • the present invention provides a human ⁇ chain constant region having no Cys at the 104th position in the human ⁇ chain constant region, and an antibody comprising the human ⁇ chain constant region.
  • the absence of Cys at the 104th position means that the 104th Cys has been deleted or another amino acid substituted by another amino acid. Is inserted, or moved to another position.
  • Preferred human ⁇ chain constant regions include human ⁇ chain constant regions in which the 104th Cys is deleted, moved to another position, or substituted with another amino acid.
  • the human ⁇ chain constant region of the present invention in the human ⁇ chain constant region, at least one Cys is present at positions 99 to 103 and Cys is not present at position 104. Can be mentioned.
  • a human ⁇ chain constant region lacking at least one of amino acids 1 to 103 can be mentioned.
  • a human ⁇ chain constant region having the amino acid sequence set forth in SEQ ID NO: 37 when the 103rd Glu is deleted, the 104th Cys moves to the 103rd, so the Cys is present at the 103rd, 104th human ⁇ chain constant region without Cys.
  • the site where the amino acid is deleted is not particularly limited, but at least one of the 99th to 103rd amino acids is preferably deleted, and the 102nd or 103rd amino acid is more preferably deleted.
  • the number of amino acids to be deleted is not particularly limited, and usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1 amino acid can be deleted.
  • a human ⁇ chain constant region lacking the 102nd amino acid or a human ⁇ chain constant region lacking the 103rd amino acid.
  • human ⁇ in which at least one of the 99th to 103rd amino acids is substituted with Cys and the 104th Cys is deleted or substituted with another amino acid. Mention may be made of the chain constant region.
  • the number of amino acids substituted with Cys is not particularly limited, but is usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1.
  • the site to be substituted with Cys is not particularly limited, but preferred substitution sites include the 102nd and 103rd positions.
  • a human ⁇ chain constant region examples include a human ⁇ chain constant region in which the 102nd Thr is substituted with Cys and the 104th Cys is deleted or substituted with another amino acid, or the 103rd Glu And human ⁇ chain constant region in which Cys is substituted with Cys and Cys at position 104 is deleted or substituted with another amino acid.
  • Specific examples of the human ⁇ chain constant region of the present invention include a human ⁇ chain constant region having the amino acid sequence of SEQ ID NO: 38 or a human ⁇ chain constant region having the amino acid sequence of SEQ ID NO: 39. .
  • the human ⁇ chain constant region of the present invention may be subjected to other amino acid modifications in addition to the amino acid modifications described above. As long as the above-described amino acid alteration is performed, human ⁇ chain constant regions in which other amino acid alterations or modifications are performed are also included in the human ⁇ chain constant region of the present invention.
  • the heavy chain constant region in which only one of EU numbering 219 or EU numbering 220 is Cys as in the heavy chain constant region having the sequence of SEQ ID NO: 30 (M66) or SEQ ID NO: 31 (M106) It is effective to combine (for example, the heavy chain constant region in which only EU numbering 219 is Cys) with the human ⁇ chain constant region of the present invention.
  • the reason why the heterogeneity of the hinge region is reduced by using the human ⁇ chain constant region or the human ⁇ chain constant region of the present invention is, for example, ⁇ chain as an example. It is also possible to think as follows.
  • the cysteine at the 107th position of the human kappa chain constant region can form a disulfide bond with both of the cysteines at the 219th EU numbering of the two H chains contained in the antibody. It is considered that the heterogeneity of the hinge region occurs due to the presence of these two types of disulfide bonds.
  • the position of the cysteine to the N-terminal side as in the human ⁇ chain constant region of the present invention by moving the position of the cysteine to the N-terminal side as in the human ⁇ chain constant region of the present invention, the distance between this cysteine and the 219th cysteine of the EU numbering of one H chain is increased.
  • a disulfide bond can be formed only with the 219th cysteine of the EU numbering 219 present in one H chain of the chains.
  • the heterogeneity of the hinge region is considered to decrease (see FIG. 16). That is, it is considered that the heterogeneity of the hinge region can be reduced by increasing the distance between the cysteine of the human kappa chain constant region and the one of the H chain EU numbering 219th cysteine. It is considered that the heterogeneity of the hinge region can be reduced by increasing the distance from one H chain EU numbering 219th cysteine in the human ⁇ chain constant region by the same method.
  • the modification of the light chain constant region of the present invention can also target a light chain constant region derived from a non-human animal.
  • light chain constant regions derived from animals other than humans include mouse antibody ⁇ chain constant region (SEQ ID NO: 40), rat antibody ⁇ chain constant region (SEQ ID NO: 41), and rabbit (rabbit) antibody ⁇ . Examples thereof include, but are not limited to, a chain constant region (SEQ ID NO: 42 or SEQ ID NO: 43).
  • the present invention provides a mouse ⁇ chain constant region or a rat ⁇ chain constant region in which at least one Cys is present at positions 102 to 106 in a mouse antibody ⁇ chain constant region or a rat antibody ⁇ chain constant region, and An antibody comprising the constant region is provided.
  • a mouse ⁇ chain constant region having the amino acid sequence set forth in SEQ ID NO: 40 or a rat ⁇ chain constant region having the amino acid sequence set forth in SEQ ID NO: 41 at least one Cys is present at positions 102 to 106.
  • Existence means that at least one Cys exists at the position of the 102nd Phe to the 106th Glu.
  • the present invention also includes a rabbit ⁇ chain constant region having at least one Cys at positions 99 to 103 in the ⁇ chain constant region (SEQ ID NO: 42) of the rabbit antibody, and the rabbit ⁇ chain constant region.
  • An antibody is provided.
  • the rabbit ⁇ chain having the amino acid sequence set forth in SEQ ID NO: 42 at least Cys is present at the 99th to 103rd positions. At least one Cys is present at the 99th Phe to 103rd Asp positions. It means to exist.
  • the present invention also includes a rabbit ⁇ chain constant region having at least one Cys at positions 101 to 105 in the ⁇ chain constant region (SEQ ID NO: 43) of the rabbit antibody, and the rabbit ⁇ chain constant region.
  • An antibody is provided.
  • the rabbit ⁇ chain having the amino acid sequence set forth in SEQ ID NO: 43 at least Cys is present at the 101st to 105th positions.
  • At least one Cys is present at the 101st Phe to 105th Asp positions. It means to exist.
  • the number of Cys contained in the 101st to 105th of No. 43) is not particularly limited, but is 5 or less, preferably 3 or less, more preferably 2 or less, and even more preferably 1.
  • the position where Cys is present is not particularly limited.
  • mouse ⁇ chain constant region or rat ⁇ chain constant region it is preferably 104th, 105th or 106th, more preferably 105th or 106th.
  • the 106th is particularly preferable.
  • the rabbit kappa chain constant region SEQ ID NO: 42
  • it is preferably the 101st, 102nd or 103rd, more preferably the 102nd or 103rd, and particularly preferably the 103rd.
  • rabbit kappa chain constant region (SEQ ID NO: 43) it is preferably the 103rd, 104th or 105th, more preferably the 104th or 105th, and particularly preferably the 105th.
  • the number of amino acids contained in the constant region is not particularly limited. 105 amino acids to 106 amino acids, more preferably 106 amino acids.
  • the rabbit ⁇ chain constant region SEQ ID NO: 42
  • it is preferably 99 to 104 amino acids, more preferably 102 to 103 amino acids, and still more preferably 103 amino acids.
  • the rabbit ⁇ chain constant region SEQ ID NO: 43
  • it is preferably 101 to 106 amino acids, more preferably 104 to 105 amino acids, and even more preferably 105 amino acids.
  • the method for producing a mouse or rat kappa chain constant region having at least one Cys at positions 102 to 106 is not particularly limited, and examples thereof include the following methods. It is also possible to combine the following insertions, substitutions and deletions. -Insert at least one Cys at positions 102-106-Replace at least one of amino acids 102-106 with Cys-Delete 1-5 amino acids from amino acids 1-106
  • a method for producing a rabbit ⁇ chain constant region in which at least one Cys is present at the 99th to 103rd positions is not particularly limited, and examples thereof include the following methods. It is also possible to combine the following insertions, substitutions and deletions. -Insert at least one Cys at positions 99-103-Replace at least one of amino acids 99-103 with Cys-Delete 1-5 amino acids from amino acids 1-103
  • a method for producing a rabbit ⁇ chain constant region in which at least one Cys is present at the 101st to 105th positions is not particularly limited, and examples thereof include the following methods. It is also possible to combine the following insertions, substitutions and deletions. -Insert at least one Cys at positions 101-105-Replace at least one of amino acids 101-105 with Cys-Delete 1-5 amino acids from amino acids 1-105
  • the present invention provides a mouse ⁇ chain constant region or a rat ⁇ chain constant region in which no Cys is present at position 107 in the mouse ⁇ chain constant region or the rat ⁇ chain constant region, and an antibody comprising the ⁇ chain constant region.
  • an antibody comprising the ⁇ chain constant region.
  • the absence of Cys at the 107th position This means that Cys is deleted, substituted with another amino acid, inserted with another amino acid, or moved to another position.
  • a preferable ⁇ chain constant region includes a ⁇ chain constant region in which the 107th Cys is deleted, moved to another position, or substituted with another amino acid.
  • Preferred embodiments of the ⁇ chain constant region of the present invention include a ⁇ chain constant region in which at least one Cys is present at positions 102 to 106 and Cys is not present at position 107 in the ⁇ chain constant region. Can do.
  • Preferable examples of such a ⁇ chain constant region include, for example, a ⁇ chain constant region lacking at least one of the first to 106th amino acids.
  • 107 is a kappa chain constant region where Cys is not present.
  • the site where the amino acid is deleted is not particularly limited, but at least one of the 102nd to 106th amino acids is preferably deleted, and the 105th or 106th amino acid is more preferably deleted.
  • the number of amino acids to be deleted is not particularly limited, and usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1 amino acid can be deleted.
  • ⁇ chain constant region examples include a ⁇ chain constant region in which the 105th amino acid is deleted or a ⁇ chain constant region in which the 106th amino acid is deleted.
  • a ⁇ chain constant region in which the 105th amino acid is deleted or a ⁇ chain constant region in which the 106th amino acid is deleted.
  • the mouse ⁇ chain constant region or rat ⁇ chain constant region in which Cys is not present at the 107th position at least one of the 102nd to 106th amino acids is substituted with Cys, and 107 Mention may be made of the kappa chain constant region in which the second Cys is deleted or substituted with another amino acid.
  • the number of amino acids substituted with Cys is not particularly limited, but is usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1.
  • the site substituted with Cys is not particularly limited, but preferred substitution sites include the 105th and 106th positions.
  • a kappa chain constant region human kappa chain constant region in which the 105th Asn is substituted with Cys and the 107th Cys is deleted or substituted with another amino acid, or the 106th Glu is A ⁇ chain constant region in which Cys is substituted and 107th Cys is deleted or substituted with another amino acid can be mentioned.
  • the mouse ⁇ chain constant region or rat ⁇ chain constant region of the present invention may be subjected to other amino acid modifications in addition to the amino acid modifications described above. As long as the above-described amino acid alteration is performed, the ⁇ chain constant region in which other amino acid alterations or modifications are further included in the ⁇ chain constant region of the present invention.
  • the present invention provides a rabbit ⁇ chain constant region having no Cys at the 104th position in the rabbit ⁇ chain constant region (SEQ ID NO: 42), and an antibody comprising the ⁇ chain constant region.
  • the absence of Cys at the 104th position means that the 104th Cys is deleted or substituted with another amino acid.
  • a preferable ⁇ chain constant region includes a ⁇ chain constant region in which the 104th Cys is deleted, moved to another position, or substituted with another amino acid.
  • a preferred embodiment of the ⁇ chain constant region of the present invention is a ⁇ chain constant region in which at least one Cys is present at positions 99 to 103 and Cys is not present at position 104 in the ⁇ chain constant region. Can do.
  • Preferable examples of such a ⁇ chain constant region include, for example, a ⁇ chain constant region lacking at least one of the first to 103rd amino acids.
  • a ⁇ chain constant region having the amino acid sequence set forth in SEQ ID NO: 42 when the 103rd Asp is deleted, the 104th Cys moves to the 103rd, so the 103rd Cys exists, Second, it is a kappa chain constant region without Cys.
  • the site where the amino acid is deleted is not particularly limited, but at least one of the 99th to 103rd amino acids is preferably deleted, and the 102nd or 103rd amino acid is more preferably deleted.
  • the number of amino acids to be deleted is not particularly limited, and usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1 amino acid can be deleted.
  • Preferable examples of such a ⁇ chain constant region include a ⁇ chain constant region in which the 102nd amino acid is deleted or a ⁇ chain constant region in which the 103rd amino acid is deleted.
  • the kappa chain constant region where Cys is not present at the 104th position, at least one of the 99th to 103rd amino acids is substituted with Cys, and the 104th Cys is deleted or Mention may be made of the kappa chain constant region substituted with other amino acids.
  • the number of amino acids substituted with Cys is not particularly limited, but is usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1.
  • the site substituted with Cys is not particularly limited, but preferred substitution sites include the 102nd and 103rd sites.
  • Preferred examples of such a kappa chain constant region include human kappa chain constant region in which the 102nd Gly is substituted with Cys and the 104th Cys is deleted or substituted with another amino acid, or the 103rd Asp is A ⁇ chain constant region in which Cys is substituted and Cys at position 104 is deleted or substituted with another amino acid can be mentioned.
  • the rabbit ⁇ chain constant region of the present invention may be subjected to other amino acid modifications in addition to the amino acid modifications described above. As long as the above-described amino acid alteration is performed, the ⁇ chain constant region in which other amino acid alterations or modifications are further included in the ⁇ chain constant region of the present invention.
  • the present invention provides a rabbit ⁇ chain constant region having no Cys at position 106 in the rabbit ⁇ chain constant region (SEQ ID NO: 43), and an antibody comprising the ⁇ chain constant region.
  • the absence of Cys at the 106th position means that the 106th Cys is deleted or substituted with another amino acid.
  • a preferable ⁇ chain constant region includes a ⁇ chain constant region in which the 106th Cys is deleted, moved to another position, or substituted with another amino acid.
  • Preferred embodiments of the ⁇ chain constant region of the present invention include a ⁇ chain constant region in which at least one Cys is present at positions 101 to 105 and Cys is not present at position 106 in the ⁇ chain constant region. Can do.
  • a ⁇ chain constant region for example, a ⁇ chain constant region lacking at least one of the first to 105th amino acids can be mentioned.
  • the kappa chain constant region having the amino acid sequence set forth in SEQ ID NO: 43 when the 105th Asp is deleted, the 106th Cys moves to the 105th, so the 105th Cys exists, Second, it is a kappa chain constant region without Cys.
  • the site where the amino acid is deleted is not particularly limited, but at least one of the 101st to 105th amino acids is preferably deleted, and the 104th or 105th amino acid is more preferably deleted.
  • the number of amino acids to be deleted is not particularly limited, and usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1 amino acid can be deleted.
  • Preferable examples of such a ⁇ chain constant region include a ⁇ chain constant region in which the 104th amino acid is deleted or a ⁇ chain constant region in which the 105th amino acid is deleted.
  • the 101st to 105th amino acids is substituted with Cys and the 106th Cys is deleted or Mention may be made of the kappa chain constant region substituted with other amino acids.
  • the number of amino acids substituted with Cys is not particularly limited, but is usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1.
  • the site substituted for Cys is not particularly limited, but preferred substitution sites include the 104th and 105th sites.
  • Preferred examples of such a kappa chain constant region include human kappa chain constant region in which the 104th Gly is substituted with Cys and the 106th Cys is deleted or substituted with another amino acid, or the 105th Asp is Cys. And the kappa chain constant region in which the 106th Cys is deleted or replaced with another amino acid.
  • the rabbit ⁇ chain constant region of the present invention may be subjected to other amino acid modifications in addition to the amino acid modifications described above. As long as the above-described amino acid alteration is performed, the ⁇ chain constant region in which other amino acid alterations or modifications are further included in the ⁇ chain constant region of the present invention.
  • the present invention provides an antibody comprising a heavy chain constant region having any of the amino acid modifications described above.
  • the present invention also provides an antibody comprising a light chain constant region having any of the amino acid modifications described above.
  • the present invention provides an antibody comprising a heavy chain constant region having any of the amino acid modifications described above and a light chain constant region having any of the above amino acid modifications.
  • the amino acid modification in the antibody of the present invention includes all modifications identifiable from the description in the present specification and combinations thereof.
  • the present invention provides an antibody comprising a light chain comprising a light chain constant region having any of the amino acid modifications described above, and a heavy chain constant region in which at least one Cys is substituted with another amino acid.
  • the heavy chain constant region is not particularly limited, but is preferably an IgG2 constant region.
  • the substituted His is not particularly limited.
  • EU numbering 131 SEQ ID NO: 24, 14th
  • EU numbering 219 SEQ ID NO: 24, 102
  • EU A constant region in which at least one of Cys of numbering 220 SEQ ID NO: 24, position 103 is substituted with another amino acid can be mentioned.
  • the combination is not particularly limited, and examples include a combination of EU numbering 131 and EU numbering 219, a combination of EU numbering 131 and EU numbering 220, and the like.
  • the present invention relates to a light chain comprising a light chain constant region having any of the amino acid modifications described above, and EU numbering 219 (position 102 of SEQ ID NO: 24) is Cys, and EU numbering 220 (SEQ ID NO: An antibody comprising a heavy chain comprising a heavy chain constant region wherein 24 (103) is not Cys is provided.
  • the heavy chain constant region is not particularly limited, but is preferably an IgG2 constant region, more preferably M66 or M106.
  • the antibody constant region may have one or more amino acids (for example, within 20 amino acids, within 10 amino acids, etc.) substituted, deleted, added and / or inserted.
  • the variable region constituting the antibody of the present invention can be a variable region that recognizes any antigen.
  • variable region in the present invention a variable region of an antibody having an antigen neutralizing action can be shown.
  • a variable region of an antibody having a neutralizing action of IL6 receptor, IL31 receptor, or RANKL can be used as a variable region constituting the antibody of the present invention.
  • the type of antigen and the origin of the antibody are not limited, and any antibody may be used.
  • the origin of the antibody is not particularly limited, and examples thereof include a human antibody, a mouse antibody, a rat antibody, and a rabbit antibody.
  • the antibody of the present invention may be a chimeric antibody, a humanized antibody, a fully humanized antibody or the like.
  • a preferred embodiment of the antibody of the present invention includes a humanized antibody.
  • the antibody molecule of the present invention usually comprises a heavy chain and a light chain.
  • the heavy chain can contain variable regions in addition to constant regions.
  • the variable region can include variable regions derived not only from humans but also from animal species other than humans.
  • CDRs can be transplanted from variable regions derived from non-human species such as mice to humanize the variable regions.
  • Antibody molecules composed of heavy and light chains can also be oligomers. Specifically, it may be a monomer, a dimer, or a higher oligomer.
  • the above-mentioned antibody constant region can be combined with various molecules such as physiologically active peptides and antigen-binding peptides to form a fusion protein.
  • the antibody of the present invention includes a modified product as long as the antibody includes any of the constant regions described above.
  • modified antibodies include, for example, antibodies bound to various molecules such as polyethylene glycol (PEG) and cytotoxic substances.
  • PEG polyethylene glycol
  • cytotoxic substances such as a modified antibody can be obtained by chemically modifying the antibody of the present invention. Methods for modifying antibodies have already been established in this field.
  • the antibody of the present invention may be a bispecific antibody.
  • Bispecific antibody refers to an antibody having variable regions that recognize different epitopes in the same antibody molecule, but the epitope may exist in different molecules or in the same molecule. It may be.
  • the above-described antibody constant region can be used as a constant region of an antibody against an arbitrary antigen, and the antigen is not particularly limited.
  • the antibody of the present invention can be prepared by methods known to those skilled in the art. For example, as a method of substituting one or more amino acid residues with another amino acid of interest or a method of deleting one or more amino acid residues, for example, site-directed mutagenesis (Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M.agawa (1995) An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis. Gene 152, 271-275, Zoller, MJ, and Smith, 1983 Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors.Methods Enzymol.
  • an antibody that binds to a target antigen is obtained by a method well known to those skilled in the art. If the obtained antibody is a non-human animal antibody, it can be humanized. The binding activity of the antibody can be measured by methods known to those skilled in the art. Then one or more amino acid residues in the constant region of the antibody are substituted or deleted with other amino acids of interest.
  • the present invention relates to a method for producing an antibody in which the amino acid residues in the heavy chain constant region and / or the light chain constant region are modified, comprising the following steps (a) and (b): (A) A heavy chain in which one or more amino acid residues in the constant region are substituted or deleted with other amino acids of interest and / or one or more amino acid residues in the constant region are substituted with other amino acids of interest Alternatively, the step of expressing the DNA encoding the deleted light chain (b) the step of recovering the expression product of step (a) Examples of the modification of the amino acid residues in the heavy chain constant region include, but are not limited to, Not.
  • the 14th (EU numbering 131) Cys is Ser
  • the 16th (EU numbering 133th) Arg is Lys
  • the 103rd (EU numbering) 220th) Cys to Ser 20th (EU numbering 137th) Glu to Gly, 21st (EU numbering 138th) Ser to Gly, 147th (EU numbering 268th) His to Gln
  • the 234th (EU numbering 355th) Arg is replaced with Gln
  • the 298th (EU numbering 419th) Gln is replaced with Glu.
  • substitutions can produce antibodies with improved stability, antibodies with improved immunogenicity and / or pharmacokinetics.
  • the 14th (EU numbering 131) Cys is Ser
  • the 16th (EU numbering 133th) Arg is Lys
  • the 103rd (EU numbering) 220th) Cys to Ser 20th (EU numbering 137th) Glu to Gly, 21st (EU numbering 138th) Ser to Gly, 147th (EU numbering 268th) His to Gln 234th (EU numbering 355th) Arg to Gln, 298th (EU numbering 419th) Gln to Glu
  • 210th (EU numbering 331th) ) Pro is replaced with Ser
  • 218th (EU numbering 339th) Thr is replaced with Ala.
  • Examples of the modification of amino acid residues in the light chain constant region include, but are not limited to, the following. The following modifications can reduce the heterogeneity of the hinge region.
  • human ⁇ chain constant region amino acid sequence of SEQ ID NO: 32
  • mouse ⁇ chain constant region amino acid sequence of SEQ ID NO: 40
  • rat ⁇ chain constant region amino acid sequence of SEQ ID NO: 41
  • Amino acids are substituted or deleted so that at least one Cys is present from the 106th position to the 106th position.
  • human ⁇ chain constant region (amino acid sequence of SEQ ID NO: 32), mouse ⁇ chain constant region (amino acid sequence of SEQ ID NO: 40) or rat ⁇ chain constant region (amino acid sequence of SEQ ID NO: 41), 102 At least one amino acid from position 106 to position 106 is deleted.
  • human ⁇ chain constant region (amino acid sequence of SEQ ID NO: 32), mouse ⁇ chain constant region (amino acid sequence of SEQ ID NO: 40) or rat ⁇ chain constant region (amino acid sequence of SEQ ID NO: 41), 105 The second amino acid is deleted.
  • the 103rd amino acid is deleted in the human ⁇ chain constant region (amino acid sequence of SEQ ID NO: 37) or the rabbit ⁇ chain constant region (amino acid sequence of SEQ ID NO: 42).
  • the human ⁇ chain constant region (amino acid sequence of SEQ ID NO: 37) or rabbit ⁇ chain constant region (amino acid sequence of SEQ ID NO: 42) at least one of the 99th to 103rd amino acids is substituted with Cys. .
  • the present invention also encodes a polynucleotide encoding an antibody heavy chain comprising a heavy chain constant region having an amino acid modification of the present invention and / or an antibody light chain comprising a light chain constant region having an amino acid modification of the present invention.
  • a method for producing an antibody comprising culturing a host cell containing a vector into which a polynucleotide has been introduced. More specifically, the present invention provides a method for producing an antibody comprising a heavy chain constant region having an amino acid modification of the present invention and / or a light chain constant region having an amino acid modification of the present invention, comprising the following steps.
  • A a polynucleotide encoding an antibody heavy chain comprising a heavy chain constant region having an amino acid modification of the present invention and / or a gene encoding an antibody light chain comprising a light chain constant region having an amino acid modification of the present invention; Culturing a host cell containing the introduced vector; (B) obtaining an antibody heavy chain and / or antibody light chain encoded by the gene;
  • amino acid modifications in the heavy chain constant region include, but are not limited to, amino acid substitutions and amino acid deletions described in (1) to (3) above.
  • Examples of the amino acid modification of the light chain constant region include, but are not limited to, the amino acid substitutions and amino acid deletions described in (1) to (27) above.
  • an antibody of the present invention first, a DNA encoding the heavy chain of an antibody, wherein a heavy chain in which one or a plurality of amino acid residues in the constant region are substituted or deleted by another amino acid of interest is obtained.
  • Heavy chain in which one or more amino acid residues in the constant region are substituted or deleted with other amino acids of interest and / or one or more amino acid residues in the constant region are substituted or deleted with other amino acids of interest DNA encoding a light chain is obtained, for example, by obtaining a constant region portion of DNA encoding a wild-type heavy chain and / or light chain, and a codon encoding a specific amino acid in the constant region is the other target It can be obtained by introducing appropriate substitutions to encode amino acids.
  • a DNA encoding a protein in which one or a plurality of amino acid residues in the constant region of the wild-type heavy chain is substituted or deleted for the other amino acid of interest is designed in advance, and the DNA is chemically synthesized.
  • amino acid substitutions and deletions include, but are not limited to, substitutions and deletions described herein.
  • DNA encoding the light chain can be produced separately in partial DNA. Examples of combinations of partial DNAs include DNA encoding a variable region and DNA encoding a constant region, or DNA encoding a Fab region and DNA encoding an Fc region, but are not limited to these combinations. is not.
  • DNA encoding a heavy chain variable region is incorporated into an expression vector together with DNA encoding a heavy chain constant region to construct a heavy chain expression vector.
  • a DNA encoding a light chain variable region is incorporated into an expression vector together with DNA encoding a light chain constant region to construct a light chain expression vector.
  • expression vectors include, but are not limited to, SV40 virus-based vectors, EB virus-based vectors, BPV (papilloma virus) based vectors, and the like.
  • the host cell is cotransformed with the antibody expression vector prepared by the above method.
  • host cells include microorganisms such as Escherichia coli, yeast and Bacillus subtilis, and animals and plants (Nature Biotechnology 25, 563-565 (2007), NatureNBiotechnology 16). , 773-777 (1998), Biochemical and Biophysical Research Communications 255, 444-450 (1999), Nature Biotechnology 23, 1159-1169 (2005), Journal of Virology 75, 2803-2809 (2001), Biochemical and Biophysical Research Communications 308, 94-100-100 (2003)).
  • human fetal kidney cancer cell-derived HEK298H cells are used.
  • the lipofectin method (RWMalone et al., Proc.Natl.Acad.Sci.USA 86,6077 (1989), PLFelgner et al., Proc.Natl.Acad.Sci.USA 84,7413 ( 1987), electroporation method, calcium phosphate method (FL GrahamGra & AJvan der Eb, Virology 52,456-467 (1973)), DEAE-Dextran method and the like are preferably used.
  • the expression product is then collected.
  • the expression product can be collected, for example, by culturing the transformant and then separating and purifying the antibody from the cells of the transformant or from the culture solution.
  • methods such as centrifugation, ammonium sulfate fractionation, salting out, ultrafiltration, 1q, FcRn, protein A, protein G column, affinity chromatography, ion exchange chromatography, and gel filtration chromatography are used. It can carry out in combination as appropriate.
  • the present invention provides an antibody produced as described above. That is, the present invention relates to an antibody that can be produced by the following steps. (a) expressing in a host cell DNA encoding the heavy chain and light chain of an antibody comprising a variable region and a constant region; and (b) recovering the antibody expressed in (a);
  • the amino acid sequences of the heavy chain and light chain constant regions are the above-described constant regions provided by the present invention.
  • the constant region of the heavy chain consists of the amino acid sequence shown in SEQ ID NOs: 24, 26 to 31, for example. If a DNA consisting of a base sequence encoding this amino acid sequence is linked to a DNA encoding a heavy chain variable region, it can be used as a DNA encoding an antibody heavy chain.
  • the constant region of the light chain is composed of the amino acid sequences shown in SEQ ID NOs: 32-34 and 37-39, for example. If a DNA consisting of a base sequence encoding this amino acid sequence is linked to a DNA encoding a variable region, it can be used as a DNA encoding the heavy chain of an antibody.
  • variable region constituting the antibody of the present invention can be a variable region that recognizes an arbitrary antigen.
  • variable region which comprises the antibody of this invention is not specifically limited, For example, the following variable regions can be illustrated.
  • variable region of the heavy chain includes a variable region having CDR1, CDR2, and CDR3 in the heavy chain of the humanized antibody having the amino acid sequence shown in SEQ ID NO: 5. It is done.
  • the light chain variable region include a variable region having CDR1, CDR2, and CDR3 in the light chain of a humanized antibody having the amino acid sequence shown in SEQ ID NO: 2.
  • variable region having CDR1, CDR2, and CDR3 in the heavy chain of a humanized antibody having the amino acid sequence shown in SEQ ID NO: 13 can be mentioned as the variable region of the heavy chain. It is done.
  • the light chain variable region include a variable region having CDR1, CDR2, and CDR3 in the light chain of a humanized antibody having the amino acid sequence shown in SEQ ID NO: 12.
  • examples of the heavy chain variable region include variable regions having CDR1, CDR2, and CDR3 in the heavy chain of a humanized antibody having the amino acid sequence shown in SEQ ID NO: 17.
  • examples of the light chain variable region include a variable region having CDR1, CDR2, and CDR3 in the light chain of a humanized antibody having the amino acid sequence shown in SEQ ID NO: 16.
  • the antigen binding activity of the amino acid sequences constituting the heavy chain variable region and the light chain variable region is maintained, alteration and / or modification of one or more amino acid residues is allowed.
  • the number of amino acid residues allowed to be modified in the variable region is usually 1 to 10, for example 1 to 5, preferably 1 or 2 amino acids.
  • modification of pyroglutamic acid by pyroglutamylation of N-terminal glutamine of the variable region is a modification well known to those skilled in the art.
  • the antibody of the present invention includes a variable region in which the N-terminus of its heavy chain is modified with pyroglutamic acid when it is glutamine.
  • the modifications of the present invention include the above amino acid substitution, deletion, addition and / or insertion, and combinations thereof.
  • the present invention provides a gene encoding the constant region of an antibody having the amino acid modification of the present invention.
  • the gene encoding the constant region of the present invention may be any gene such as DNA or RNA.
  • the present invention provides a vector containing the gene.
  • the type of vector can be appropriately selected by those skilled in the art depending on the host cell into which the vector is introduced. For example, the above-described vectors can be used.
  • the present invention relates to a host cell transformed with the vector.
  • the host cell can be appropriately selected by those skilled in the art.
  • the above-described host cell can be used.
  • the present invention relates to a method for producing a constant region of the present invention, comprising a step of culturing the host cell and recovering the expressed constant region of the present invention.
  • the present invention also relates to a method for improving the function of an antibody, comprising a step of modifying an amino acid of the human IgG2 constant region described in SEQ ID NO: 24.
  • the present invention also relates to an antibody produced by a method comprising the step. Examples of the improvement in antibody function include, but are not limited to, improvement of antibody stability, reduction of immunogenicity, and improvement of pharmacokinetics.
  • the method of the present invention includes the following steps (a) to (h).
  • the amino acid after substitution is not particularly limited, but the 14th Cys is Ser, the 16th Arg is Lys, the 103rd Cys is Ser, the 20th Glu is Gly, the 21st Ser is Gly, It is preferable that the 147th His is replaced with Gln, the 234th Arg is replaced with Gln, and the 298th Gln is replaced with Glu.
  • the method of the present invention may include other amino acid alterations (substitutions, deletions, additions and / or insertions), modifications, and other steps as long as the above steps are included.
  • the method for altering or modifying the amino acid is not particularly limited, and for example, it can be carried out by the above-mentioned site-directed mutagenesis method or the method described in the examples.
  • the method of the present invention in addition to the steps described above, reduces C-terminal heterogeneity by: Deleting 325th (EU numbering 446th) Gly and 326th (EU numbering 447th) Lys; May further be included.
  • the present invention also relates to a method for improving the function of an antibody, comprising a step of modifying an amino acid of the human IgG2 constant region described in SEQ ID NO: 24.
  • the present invention also relates to an antibody produced by a method comprising the step. Examples of the improvement in antibody function include, but are not limited to, improvement of antibody stability, reduction of immunogenicity, improvement of safety, improvement of pharmacokinetics, and the like.
  • the method of the present invention includes the following steps (a) to (k).
  • the amino acid after substitution is not particularly limited, but the 14th Cys is Ser, the 16th Arg is Lys, the 103rd Cys is Ser, the 20th Glu is Gly, the 21st Ser is Gly, 147th His is replaced with Gln, 234th Arg is replaced with Gln, 298th Gln is replaced with Glu, 209th Ala is replaced with Ser, 210th Pro is replaced with Ser, and 218th Thr is replaced with Ala. Is preferred.
  • the method of the present invention may include other amino acid alterations (substitutions, deletions, additions and / or insertions), modifications, and other steps as long as the above steps are included.
  • the method of altering or modifying amino acids is not particularly limited, and can be performed by, for example, the above-described site-directed mutagenesis method or the method described in the examples.
  • the method of the present invention in addition to the steps described above, reduces C-terminal heterogeneity by: Deleting 325th (EU numbering 446th) Gly and 326th (EU numbering 447th) Lys; May further be included.
  • the present invention relates to a method for improving blood pharmacokinetics (pharmacokinetics) of an antibody by controlling (or modifying) the disulfide bond pattern of the antibody constant region.
  • the antibody constant region is not particularly limited, but it is preferable to control the disulfide bond pattern between the antibody light chain constant region ( ⁇ chain constant region or ⁇ chain constant region) and the IgG2 constant region.
  • the present invention relates to a method for improving the pharmacokinetics of an antibody, comprising the step of specifically forming a disulfide bond between Cys of heavy chain constant region EU numbering 219 and Cys of the light chain C-terminal region. .
  • a disulfide bond is not formed between Cys in the heavy chain constant region EU numbering 220 and Cys in the light chain C-terminal region.
  • not all antibodies need to form a disulfide bond between Cys of heavy chain EU numbering 219 and Cys of the light chain C-terminal region, for example, 80% or more, preferably 90% or more, More preferably, 95% or more, and even more preferably 99% or more of the antibody only needs to form a disulfide bond between Cys of heavy chain EU numbering 219 and Cys of the light chain C-terminal region.
  • the step of forming a disulfide bond between Cys of heavy chain EU numbering 219 and Cys of the light chain C-terminal region may be performed by any method, for example, heavy chain EU numbering 220 (position 103 of SEQ ID NO: 24). ) By substituting Cys with other amino acids. By substituting 220 Cys of the heavy chain EU numbering with another amino acid, a disulfide bond is not formed between Cys present at the light chain C terminus and the heavy chain EU numbering 220. A disulfide bond is formed between Cys present and Cys of heavy chain EU numbering 219 (position 102 of SEQ ID NO: 24).
  • the 131st Cys of EU numbering may be substituted with another amino acid.
  • the amino acid after substitution is not particularly limited, but can be substituted with, for example, Ser.
  • Cys in the light chain C-terminal region is usually, for example, in the human ⁇ chain constant region, the 102nd to 106th positions (for example, the 102nd to 106th human ⁇ chain constant regions described in SEQ ID NO: 32). Cys existing in the 104th to 106th regions, and preferably Cys existing in the 104th region.
  • Cys present in the 99th to 105th region for example, the 99th to 105th human ⁇ chain constant region described in SEQ ID NO: 37
  • IgG2 constant region used in the method of the present invention one or more (for example, within 20 amino acids, within 10 amino acids, etc.) of the amino acid sequence of SEQ ID NO: 24 has been deleted, substituted, added and / or It may be inserted.
  • IgG2 used in the method of the present invention can include modifications or combinations thereof that can be identified from the description in the present specification.
  • the human ⁇ chain constant region used in the method of the present invention has one or more (for example, within 20 amino acids, within 10 amino acids, etc.) of the amino acid sequence of SEQ ID NO: 32 deleted or substituted, It may be added and / or inserted.
  • the human ⁇ chain constant region used in the method of the present invention has one or more (for example, within 20 amino acids, within 10 amino acids, etc.) of the amino acid sequence of SEQ ID NO: 37 deleted or substituted, It may be added and / or inserted.
  • the human ⁇ chain constant region and the human ⁇ chain constant region used in the method of the present invention can include modifications or combinations that can be identified from the description in the present specification.
  • an antibody in which a disulfide bond is formed between Cys of heavy chain constant region EU numbering 219 and Cys of the light chain C-terminal region is expressed between Cys of heavy chain constant region EU numbering 220 and Cys of the light chain C-terminal region. It was found that the pharmacokinetics was higher than that of the antibody in which a disulfide bond was formed. Accordingly, the present invention provides an antibody with improved pharmacokinetics by forming a disulfide bond between Cys of heavy chain constant region EU numbering 219 and Cys of the light chain C-terminal region.
  • the method of the present invention is useful for preparing an antibody having high pharmacokinetics, which is excellent as a pharmaceutical product.
  • the present invention also relates to the human ⁇ constant region described in SEQ ID NO: 32, the mouse ⁇ chain constant region described in SEQ ID NO: 40, or the rat ⁇ chain constant region described in SEQ ID NO: 41. It relates to a method for reducing the heterogeneity of a hinge region comprising the step of introducing at least one Cys.
  • the present invention also relates to an antibody produced by a method comprising the step.
  • the introduction of at least one Cys at the 102nd to 106th positions means that at least one Cys exists at the 102nd to 106th positions of the human ⁇ chain constant region.
  • the present invention eliminates the 107th Cys in the human ⁇ constant region described in SEQ ID NO: 32, the mouse ⁇ chain constant region described in SEQ ID NO: 40, or the rat ⁇ chain constant region described in SEQ ID NO: 41.
  • the present invention relates to a method for reducing the heterogeneity of a hinge region including a step of (deleting).
  • the present invention also relates to an antibody produced by a method comprising the step.
  • the elimination of 107th Cys means that Cys does not exist at the 107th position of the human ⁇ chain constant region.
  • the present invention relates to a human ⁇ chain constant region described in SEQ ID NO: 32, a mouse ⁇ chain constant region described in SEQ ID NO: 40, or a rat ⁇ chain constant region described in SEQ ID NO: 41.
  • the present invention also relates to an antibody produced by a method comprising the step.
  • the step of introducing at least one Cys at the 102nd to 106th positions and the step of eliminating the 107th Cys may be performed in a single step.
  • the number of Cys to be introduced is not particularly limited, but is 5 or less, preferably 3 or less, more preferably 2 or less, and even more preferably 1. is there.
  • the position at which Cys is introduced is not particularly limited, but is preferably 104th, 105th or 106th, more preferably 105th or 106th, and particularly preferably 106th.
  • step of eliminating the 107th Cys include the following steps.
  • the step of deleting the 107th Cys The step of replacing the 107th Cys with another amino acid
  • the step of inserting another amino acid at the 107th position The deletion of at least one of the first to 106th amino acids To move 107th Cys to another position
  • the method of the present invention in the human ⁇ chain constant region described in SEQ ID NO: 32, the mouse ⁇ chain constant region described in SEQ ID NO: 40, or the rat ⁇ chain constant region described in SEQ ID NO: 41, (a) the 102nd position A method of reducing the heterogeneity of the hinge region, a method of enhancing the binding to FcRn), which comprises a step of introducing at least one Cys at the 106th place, and (b) a step of eliminating the 107th Cys.
  • Examples include a step of deleting 1 to 5 amino acids in amino acids 1 to 106 of the human ⁇ chain constant region.
  • the 107th Cys moves from the 102nd to the 106th, so the step of introducing at least one Cys into the 102nd to 106th and the 107th Cys It is possible to perform the process of eliminating simultaneously.
  • the site where the amino acid is deleted is not particularly limited, but at least one of the 102nd to 106th amino acids is preferably deleted, and the 105th or 106th amino acid is more preferably deleted. Further, the number of amino acids to be deleted is not particularly limited, and usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1 amino acid can be deleted.
  • the number of amino acids substituted with Cys is not particularly limited, but is usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1.
  • the site substituted with Cys is not particularly limited, but preferred substitution sites include the 105th and 106th positions.
  • the present invention also includes the step of introducing at least one Cys at positions 99 to 103 in the human ⁇ constant region set forth in SEQ ID NO: 37 or the rabbit ⁇ chain constant region set forth in SEQ ID NO: 42.
  • the present invention relates to a method for reducing heterogeneity.
  • the present invention also relates to an antibody produced by a method comprising the step.
  • introduction of at least one Cys at positions 99 to 103 means that at least one Cys is present at positions 99 to 103 in the human ⁇ chain constant region.
  • the present invention relates to a heterogenei of the hinge region comprising a step of eliminating (deleting) the 104th Cys in the human ⁇ constant region set forth in SEQ ID NO: 37 or the rabbit ⁇ chain constant region set forth in SEQ ID NO: 42. It relates to a method for reducing tees.
  • the present invention also relates to an antibody produced by a method comprising the step.
  • the disappearance of the 104th Cys means that Cys does not exist at the 104th position of the human ⁇ chain constant region.
  • the present invention relates to a human ⁇ chain constant region set forth in SEQ ID NO: 37 or a rabbit ⁇ chain constant region set forth in SEQ ID NO: 42.
  • the step of introducing at least one Cys at the 99th to 103rd and the step of eliminating the 104th Cys may be performed in a single step.
  • the number of Cys to be introduced is not particularly limited, but it is 5 or less, preferably 3 or less, more preferably 2 or less, and even more preferably 1. is there.
  • the position at which Cys is introduced is not particularly limited, but is preferably 101st, 102nd or 103rd, more preferably 102nd or 103rd, and particularly preferably 103rd.
  • step of eliminating the 104th Cys include the following steps, but are not limited thereto. ⁇ Deleting the 104th Cys ⁇ Substituting the 104th Cys with another amino acid ⁇ Inserting another amino acid at the 104th position ⁇ Deleting at least one of the 1st to 103rd amino acids To move 105th Cys to another position
  • the step of introducing at least one Cys into the 99th to the 103rd and the 104th Cys It is possible to simultaneously perform the disappearing step.
  • the site at which the amino acid is deleted is not particularly limited, but at least one of the 99th to 103rd amino acids is preferably deleted, and more preferably the 102nd or 103rd amino acid is deleted. Further, the number of amino acids to be deleted is not particularly limited, and usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1 amino acid can be deleted.
  • the number of amino acids substituted with Cys is not particularly limited, but is usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1.
  • the site substituted with Cys is not particularly limited, but preferred substitution sites include the 102nd and 103rd sites.
  • steps include, but are not limited to, the following for human ⁇ chain constant regions.
  • the rabbit ⁇ chain constant region described in SEQ ID NO: 42 the following can be mentioned, but the invention is not limited thereto.
  • the present invention also relates to a method for reducing heterogeneity of the hinge region, comprising the step of introducing at least one Cys at positions 101 to 105 in the rabbit ⁇ chain constant region set forth in SEQ ID NO: 43.
  • the present invention also relates to an antibody produced by a method comprising the step.
  • introduction of at least one Cys at positions 101 to 105 means that at least one Cys is present at positions 101 to 105 of the rat ⁇ chain constant region.
  • the present invention relates to a method for reducing the heterogeneity of the hinge region, comprising the step of eliminating (deleting) the 106th Cys in the rabbit ⁇ chain constant region described in SEQ ID NO: 43.
  • the present invention also relates to an antibody produced by a method comprising the step.
  • the disappearance of 106th Cys means that Cys is not present at the 106th position of the rat ⁇ chain constant region.
  • the present invention relates to a rabbit kappa chain constant region set forth in SEQ ID NO: 43, (a) introducing at least one Cys into the 101st to 105th; and (b) It relates to a method for reducing the heterogeneity of the hinge region, comprising a step of eliminating 106th Cys.
  • the step of introducing at least one Cys from the 101st to the 105th and the step of eliminating the 106th Cys may be performed in a single step.
  • the number of Cys to be introduced is not particularly limited, but it is 5 or less, preferably 3 or less, more preferably 2 or less, and even more preferably 1. is there.
  • the position at which Cys is introduced is not particularly limited, but is preferably the 103rd, 104th, or 105th position, more preferably the 104th or 105th position, and particularly preferably the 105th position.
  • Specific examples of the process of eliminating the 106th Cys include, but are not limited to, the following processes. ⁇ Deleting the 106th Cys ⁇ Substituting the 106th Cys with another amino acid ⁇ Inserting another amino acid at the 106th position ⁇ Deleting at least one of the 1st to 105th amino acids To move 106th Cys to another position
  • the method of the present invention in the rabbit ⁇ chain constant region described in SEQ ID NO: 43, (a) a step of introducing at least one Cys at the 101st to 105th positions, and (b) a step of eliminating the 106th Cys.
  • a preferred embodiment of the method for reducing the heterogeneity of the hinge region including, for example, Examples thereof include a method comprising a step of deleting 1 to 5 amino acids in amino acids 1 to 105 of the rabbit ⁇ chain constant region.
  • the step of introducing at least one Cys into the 101st to the 105th and the 106th Cys It is possible to simultaneously perform the disappearing step.
  • the site where the amino acid is deleted is not particularly limited, but at least one of the 101st to 105th amino acids is preferably deleted, and more preferably the 104th or 105th amino acid is deleted. Further, the number of amino acids to be deleted is not particularly limited, and usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1 amino acid can be deleted.
  • the number of amino acids substituted with Cys is not particularly limited, but is usually 1 to 5, preferably 1 to 3, more preferably 1 or 2, and more preferably 1.
  • the site substituted for Cys is not particularly limited, but preferred substitution sites include the 104th and 105th sites.
  • steps include, but are not limited to, the following. (a) replacing 104th Gly or 105th Asp with Cys; (b) A step of replacing the 106th Cys with a deletion or another amino acid
  • the method of the present invention may further include other steps, for example, a step of modifying (substitution, deletion, addition and / or insertion) or modification of other amino acids.
  • the present invention provides a pharmaceutical composition comprising the antibody of the present invention or the constant region of the present invention. Further, according to the present invention, the ratio of antibodies in which a disulfide bond is formed between Cys of the heavy chain constant region EU numbering 219 and Cys of the light chain C-terminal region is 80% or more, preferably 90% or more, more preferably 95 %, More preferably 99% or more of the antibody pharmaceutical composition.
  • the pharmaceutical composition of the present invention can be formulated by a known method by introducing a pharmaceutically acceptable carrier in addition to the antibody or constant region. For example, it can be used parenterally in the form of a sterile solution with water or other pharmaceutically acceptable liquid, or an injection of suspension.
  • a pharmacologically acceptable carrier or medium specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative It is conceivable to prepare a pharmaceutical preparation by combining with a binder or the like as appropriate and mixing in a unit dosage form generally required for pharmaceutical practice. The amount of active ingredients in these preparations is such that an appropriate volume within the indicated range can be obtained.
  • a sterile composition for injection can be formulated in accordance with normal pharmaceutical practice using a vehicle such as distilled water for injection.
  • Aqueous solutions for injection include, for example, isotonic solutions containing physiological saline, glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol and sodium chloride, and suitable solubilizers such as You may use together with alcohol, specifically ethanol, polyalcohol, for example, propylene glycol, polyethylene glycol, nonionic surfactant, for example, polysorbate 80 (TM), HCO-50.
  • isotonic solutions containing physiological saline glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol and sodium chloride, and suitable solubilizers such as You may use together with alcohol, specifically ethanol, polyalcohol, for example, propylene glycol, polyethylene glycol, nonionic surfactant, for example, polysorbate 80 (TM), HCO-50.
  • alcohol specifically ethanol, polyalcohol, for example, propylene glycol, polyethylene glycol, nonionic surfactant
  • oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent.
  • oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent.
  • buffer for example, phosphate buffer, sodium acetate buffer, a soothing agent, for example, procaine hydrochloride, stabilizer, for example, benzyl alcohol, phenol, antioxidant.
  • the prepared injection solution is usually filled into a suitable ampoule.
  • Administration is preferably parenteral administration, and specific examples include injection, nasal administration, pulmonary administration, and transdermal administration.
  • injection form it can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, or the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dosage of the pharmaceutical composition containing the antibody or the polynucleotide encoding the antibody can be selected, for example, in the range of 0.0001 mg to 1000 mg per kg body weight. Alternatively, for example, the dose can be selected in the range of 0.001 to 100,000 mg / body per patient, but is not necessarily limited to these values.
  • the dose and administration method vary depending on the weight, age, symptoms, etc. of the patient, but can be appropriately selected by those skilled in the art.
  • Example 1 Improvement of C-terminal heterogeneity of IgG molecules Expression vector construction of H chain C-terminal ⁇ GK antibody
  • a heterogeneity of IgG antibody H chain C-terminal sequence deletion of lysine residue of C-terminal amino acid and C due to deletion of both glycine and lysine of C-terminal 2 amino acids Amidation of the terminal carboxyl group has been reported (Anal Biochem. 2007 Jan 1; 360 (1): 75-83.).
  • the main component of TOCILIZUMAB which is an anti-IL-6 receptor antibody, is a sequence in which the lysine of the C-terminal amino acid present on the base sequence is deleted by post-translational modification.
  • Amidated subcomponents of the C-terminal carboxyl group due to both deletions also exist as heterogeneity. Since it is not easy to manufacture in large quantities as pharmaceuticals while maintaining the difference between the heterogeneity of the target substance / related substance, it is not easy and leads to an increase in cost. In developing antibodies as pharmaceuticals, it is desirable that these heterogeneities be reduced. Therefore, it is desirable that there is no H chain C-terminal heterogeneity when developing as a pharmaceutical product.
  • the C-terminal amino acid was modified for the purpose of reducing the heterogeneity of the C-terminal amino acid. Specifically, the C-terminal lysine and glycine of the H chain constant region of natural IgG1 were previously deleted in the base sequence. It was examined whether or not the amidation of the C-terminal amino group can be suppressed by the deletion of glycine and lysine at the C-terminal two amino acids.
  • TOCILIZUMAB (hereinafter abbreviated as IL6R H0 / L0-IgG1) consisting of H0-IgG1 (amino acid sequence number: 1) as the H chain and L0-k0 (amino acid sequence number: 2) as the L chain.
  • IL6R H0 / L0-IgG1 amino acid sequence number: 1
  • L0-k0 amino acid sequence number: 2
  • a nucleotide sequence encoding the Ly at the 447th EU numbering and / or the Gly at the 446th EU numbering was introduced with a mutation using this as a stop codon.
  • H0-IgG1 ⁇ K amino acid SEQ ID NO: 3 which is an H chain of an antibody in which the C-terminal one amino acid lysine (EU numbering 447) has been deleted in advance
  • the C-terminal two amino acid glycine EU numbering 446
  • An expression vector for H0-IgG1 ⁇ GK amino acid SEQ ID NO: 4
  • an H chain of an antibody in which lysine was previously deleted, was prepared.
  • IL6R H0-IgG1 / L0-k0 consisting of H0-IgG1 (amino acid sequence number: 1) as the H chain, L0-k0 (amino acid sequence number: 2) as the L chain, and H0-IgG1 ⁇ K (amino acid sequence number: 3) as the H chain ), IL6R H0-IgG1 ⁇ K / L0-k0 consisting of L0-k0 (amino acid sequence number: 2) as the L chain, H0-IgG1 ⁇ GK-k0 (amino acid sequence number: 4) as the H chain, and L0-k0 as the L chain Expression and purification of IL6R H0-IgG1 ⁇ GK / L0-k0 consisting of (amino acid sequence number: 2) was carried out by the method described in Reference Example 1.
  • 1 shows the results of evaluation by purified cation exchange chromatography using purified IL6R H0-IgG1 / L0-k0, IL6R H0-IgG1 ⁇ K / L0-k0, and IL6R H0-IgG1 ⁇ GK / L0-k0.
  • Example 2 A novel constant region that reduces heterogeneity while maintaining the stability of natural IgG2
  • the constant region (isotype) of IgG1 having effector function is preferable, but the function of target antigen is In the case of an antibody drug that neutralizes or an antibody drug that binds to a target cell but needs to avoid being killed, binding to the Fc ⁇ receptor is not preferred.
  • IgG2 was considered preferable to IgG4 from the viewpoints of the binding of each and the pharmacokinetics of each isotype (Nat Biotechnol. 2007 Dec; 25 (12): 1369-72).
  • the physical properties of the protein, especially homogeneity and stability, are extremely important, and the IgG2 isotype has a large amount of heterogeneity due to the crossing of disulfide bonds in the hinge region.
  • IL6R H0-IgG1 / L0-k0 with the constant region of natural IgG1 and IL6R H0-IgG2 / L0-k0 with the constant region of natural IgG2 were prepared, and the heterogeneity of both was evaluated. .
  • IL6R H0-IgG1 / L0-k0 consisting of IL6R H0-IgG1 (amino acid SEQ ID NO: 1) as the H chain prepared in Example 1 and IL6R L0-k0 (amino acid SEQ ID NO: 2) as the L chain, and the H chain constant Expression and purification of IL6RIgGH0-IgG2 / L0-k0 from IL6R H0-IgG2 (amino acid sequence number: 5) as the heavy chain converted from IgG2 to the normal region and IL6R L0-k0 (amino acid sequence number: 2) as the L chain
  • the method described in Reference Example 1 was performed.
  • IL6R H0-IgG2 / L0-k0 having a constant region of natural IgG2 has a plurality of peaks, and has a constant region of natural IgG1 consisting of only a single main peak. It was found that the heterogeneity was significantly higher than that of IL6R6H0-IgG1 / L0-k0.
  • FIG. 1 Details of the structure around the hinge region of an IgG type antibody are shown in FIG.
  • the H chain and L chain (or two H chains) are disulfide bonded in the vicinity of the hinge region.
  • This disulfide bond pattern varies depending on the isotype of the IgG type antibody as described below. Since the disulfide bond in the hinge region of natural IgG1 has a single pattern as shown in FIG. 4, there is no heterogeneity derived from the disulfide bond, and as a nearly single main peak in cation exchange chromatography. It is thought that it eluted. On the other hand, in the disulfide bond in the hinge region of native IgG2, as shown in FIG.
  • native IgG2 has two cysteines in the hinge region (EU numbering 219th and 220th). As the cysteines adjacent to the two cysteines in this hinge region, the EU numbering cysteine at the CH1 domain of the H chain and the cysteine at the C terminal of the L chain, and 2 of the same hinge region of the partner H chain to be dimerized There are two cysteines. Therefore, a total of 8 cysteines are adjacent to the hinge region of IgG2 when H2L2 is associated. As a result, natural IgG2 has various heterogeneities due to crossing of disulfide bonds, and it is considered that the heterogeneity is extremely high.
  • H chain EU numbering 220th cysteine and L chain of H chain constant region sequence of IgG1 (amino acid SEQ ID NO: 23) Cysteine 214 (see Sequences of proteins of immunological interest, numbering in NIH Publication No.91-3242) is disulfide bonded (Nat Biotechnol. 2007 Dec; 25 (12): 1369-72, Anal Chem. 2008 Mar 15; 80 (6): 2001-9.).
  • the H chain EU numbering of the IgG4 H chain constant region sequence is the 131st cysteine and the 214th L chain ((Sequences of proteins of immunological interest, NIH Publication No.91). Cysteine is disulfide linked (see Nat Biotechnol. 2007 Dec; 25 (12): 1369-72, Protein Sci. 1997 Feb; 6 (2): 407-15.).
  • the disulfide bond pattern connecting the H chain and the L chain is different between the natural IgG1 and the natural IgG4, and the disulfide bond pattern between the natural IgG1 and the natural IgG4 is shown in FIG.
  • IL6R H0-IgG1 / L0-k0 consisting of IL6R H0-IgG1 (amino acid SEQ ID NO: 1) as the H chain prepared in Example 1 and IL6R L0-k0 (amino acid SEQ ID NO: 2) as the L chain, and the H chain constant Expression and purification of IL6R H0-IgG4 / L0-k0 from IL6R H0-IgG4 (amino acid SEQ ID NO: 6) as the H chain converted from IgG4 to the normal region and IL6R L0-k0 (amino acid SEQ ID NO: 2) as the L chain
  • the method described in Reference Example 1 was performed.
  • Tm value thermal denaturation intermediate temperature
  • DSC differential scanning calorimetry
  • Dialyze (EasySEP, TOMY) the purified IL6R H0-IgG1 / L0-k0 and IL6R H0-IgG4 / L0-k0 against a solution of 20 mM sodium acetate, 150 mM NaCl, pH 6.0 to obtain about 0.1 mg / mL.
  • DSC measurement was performed at a protein heating rate from 40 ° C. to 100 ° C. at a rate of 1 ° C./min.
  • the Tm value of the Fab part was calculated based on the obtained DSC denaturation curve and shown in Table 1. This shows that IgG1 has a higher Tm value in the Fab part than IgG4.
  • Tm This difference in Tm is thought to be due to the difference in the disulfide bond pattern connecting the H and L chains, and the H chain EU numbering 131st cysteine and L chain 214th ( Sequences of proteins of immunological interest, see NIH Publication No.91-3242 numbering)) is disulfide-bonded, H chain EU numbering 220th cysteine and L chain 214th (Sequences of proteins of immunological interest, NIH Publication No.91-3242 (see numbering)) showed a significant reduction in thermal stability compared to the disulfide bond of cysteine.
  • EU numbering of H chain constant region sequence of natural IgG2 (amino acid number: 24) SC (SEQ ID NO: 26), which is an H chain constant region in which 219th cysteine is changed to serine
  • EU numbering CS (SEQ ID NO: 27), which is an H chain constant region in which the 220th cysteine is altered to serine
  • SC and CS as shown in FIG. 6, the disulfide bond pattern of natural IgG2 is not a single pattern, and a plurality of patterns are conceivable.
  • cysteine is not desirable because disulfide bond reduces stability There is a pattern of disulfide bonds.
  • the H chain EU numbering is further performed with respect to SC (SEQ ID NO: 26) as an H chain constant region that does not take a disulfide bond pattern that reduces stability but forms a single disulfide bond pattern.
  • SC SEQ ID NO: 26
  • SKSC SEQ ID NO: 28
  • 137th glutamic acid in the heavy chain EU numbering was changed to glycine
  • the 138th serine was changed to glycine
  • the 268th histidine was changed to glutamine.
  • H-chain constant region 355th arginine is modified to glutamine, 419th glutamine is modified to glutamic acid, and the C-terminal lysine and glycine of the H-chain constant region are deleted beforehand in order to avoid heterogeneity at the H-chain C-terminus M58 (SEQ ID NO: 29) was considered. As shown in FIG. 7, these H chain constant regions SKSC and M58 were considered to form a single disulfide bond pattern without taking a disulfide bond pattern that reduces stability.
  • IL6R H0-SC amino acid sequence number: 7
  • IL6R H0-CS amino acid sequence number: 8
  • IL6R H0-SKSC amino acid sequence number: 9
  • IL6R H0-M58 amino acid sequence number: 10
  • IL6R L0-k0 amino acid SEQ ID NO: 2
  • Expression and purification of IL6RILH0-SC / L0-k0, IL6R H0-CS / L0-k0, IL6R H0-SKSC / L0-k0 and IL6R H0-M58 / L0-k0 are described in Reference Example 1. The method was carried out.
  • the heterogeneity was increased by converting the heavy chain constant region from IgG1 to IgG2, but the heterogeneity was greatly reduced by converting the heavy chain constant region to SKSC and M58. It was done.
  • the H chain constant region was set to SC, heterogeneity was reduced in the same way as when the H chain constant region was set to SKSC, but when the H chain constant region was set to CS, the heterogeneity was sufficiently improved. I did not.
  • IL6R H0-IgG1 / L0-k0 IL6R H0-IgG2 / L0-k0
  • natural IgG2 variants IL6R H0-SC / L0-k0, IL6R H0-CS / L0-k0, IL6R H0-SKSC /
  • Tm value thermal denaturation intermediate temperature
  • the purified antibody is dialyzed (EasySEP, TOMY) against a solution of 20 mM sodium acetate, 150 mM NaCl, pH 6.0, and the protein concentration is increased from 40 ° C to 100 ° C at 1 ° C / min at a protein concentration of about 0.1 mg / mL.
  • DSC measurement was performed at a temperature rate. The resulting DSC denaturation curve is shown in FIG. 9, and the Tm value of the Fab portion is shown in Table 2 below.
  • Tm value of the Fab part of IL6R H0-IgG1 / L0-k0 and IL6R H0-IgG2 / L0-k0WT-IgG1 was about the same, about 94 ° C (IgG2 was about 1 ° C lower), IL6R H0-SC / L0-k0 and IL6R H0-CS / L0-k0 have a Tm value of about 86 ° C, which is significantly higher than that of IL6R H0-IgG1 / L0-k0 and IL6R H0-IgG2 / L0-k0. The value was decreasing.
  • IL6R H0-SKSC / L0-k0 and IL6R H0-M58 / L0-k0 have Tm values of about 94 ° C, which is almost equivalent to IL6R H0-IgG1 / L0-k0 and IL6R H0-IgG2 / L0-k0. there were.
  • IL6R H0-IgG1 / L0-k0 the denatured peaks in the Fab portion of IL6R H0-IgG1 / L0-k0, IL6R H0-SKSC / L0-k0, IL6R H0-M58 / L0-k0 were sharp and single.
  • IL6R H0-SC / L0-k0 and IL6R H0-CS / L0-k0 have a broader denaturation peak in the Fab part and IL6R H0-IgG2 / L0-k0 has a Fab part.
  • a shoulder peak was observed on the low temperature side of the modified peak.
  • the DSC denaturation peak usually shows a sharp denaturation peak in the case of a single component, but it is considered that the denaturation peak becomes broad when there are multiple components having different Tm (that is, heterogeneity). That is, there are a plurality of components in the heavy chain constant regions IgG2, SC and CS, and it was suggested that the heterogeneity of natural IgG2 may not be sufficiently reduced in SC and CS. Therefore, it is considered that the heterogeneity of wild type IgG2 involves not only the 219th and 220th cysteines in the H chain EU numbering of the hinge region but also the 131st cysteine of the H1 chain EU numbering in the CH1 domain.
  • SC and CS which are H chain constant regions in which only the cysteine of the hinge part is replaced with serine, are heterogeneity and stability viewpoints as H chain constant regions with reduced heterogeneity derived from the hinge region of IgG2.
  • the 131st cysteine in the H chain EU numbering present in the CH1 domain is substituted with serine for the first time while maintaining the same stability as IgG2, while maintaining heterogeneity. It has been found that tees can be significantly reduced.
  • Anti-IL-6 receptor antibody IL31R H0-IgG1 / L0-k0 (heavy chain) as an antibody other than anti-IL-6 receptor antibody, improving the heterogeneity of natural IgG2 mutant (M58-k0) in various antibodies Amino acid sequence SEQ ID NO: 11, L chain amino acid sequence SEQ ID NO: 12), RANKL H0-IgG1 / L0-k0 which is an anti-RANKL antibody (H chain amino acid sequence SEQ ID NO: 15, L chain amino acid sequence SEQ ID NO: 16), It was used.
  • IL31R H0-IgG2 / L0-k0 H chain amino acid sequence SEQ ID NO: 13, L chain amino acid sequence SEQ ID NO: 12
  • RANKL H0-IgG2 in which the H chain constant region was converted from IgG1 to IgG2 for each antibody / L0-k0 (H chain amino acid sequence SEQ ID NO: 17, L chain amino acid sequence SEQ ID NO: 16)
  • IL31R H0-M58 / L0-k0 H chain amino acid sequence sequence sequence
  • L chain amino acid sequence SEQ ID NO: 12 L chain amino acid sequence SEQ ID NO: 12
  • RANKL H0-M58 / L0-k0 H chain amino acid sequence SEQ ID NO: 18, L chain amino acid sequence SEQ ID NO: 16
  • the same method as described above was used, and the results of evaluation by cation exchange chromatography (IEC) are shown in FIG.
  • IEC cation exchange chromatography
  • the antibody sequence and antigen type of the variable region can be changed. Nevertheless, it was shown that heterogeneity derived from native IgG2 can be reduced.
  • IgG1, IgG2, IgG3, and IgG4 isotypes are known as IgG type antibodies.
  • the plasma half-life in these humans is about 36 days for IgG1, IgG2, about 29 days for IgG3, and 16 for IgG4.
  • IgG1 and IgG2 are considered to have the longest retention in plasma.
  • antibody drug isotypes are IgG1, IgG2, and IgG4.
  • the binding to the above-mentioned human FcRn is improved by modifying the sequence of the constant region of IgG. (J Biol Chem. 2007 Jan 19; 282 (3): 1709-17, J Immunol. 2006 Jan 1; 176 (1): 346-56).
  • IL6R H0-IgG1 / L0-k0 and IL6R H0-M58 / L0-k0 were each diluted with a running buffer containing 0.02% Tween20 and injected to bind the antibody to the chip, and then human FcRn was injected. The binding of human FcRn to the antibody was evaluated.
  • IL6R H0-IgG1 / L0-k0 and IL6R H0-M58 / L0-k0 were each administered once intravenously at a dose of 1 mg / kg to mice, and blood was collected in a timely manner. The collected blood was immediately centrifuged at 4 ° C. and 15,000 rpm for 15 minutes to obtain plasma. The separated plasma was stored in a freezer set to ⁇ 20 ° C. or lower until measurement was performed. Plasma concentration was measured using ELISA (see Reference Example 3).
  • IL31R H0-IgG1 / L0-k0 which is an anti-IL-31 receptor antibody (H chain amino acid sequence SEQ ID NO: 11, L chain amino acid sequence SEQ ID NO: 12), anti-RANKL antibody RANKL H0-IgG1 / L0-k0 (H chain amino acid sequence SEQ ID NO: 15, L chain amino acid sequence SEQ ID NO: 16) was used.
  • IL31R H0-M58 / L0-k0 H chain amino acid sequence SEQ ID NO: 14, L chain amino acid sequence SEQ ID NO: 12
  • RANKL H0-M58 in which the H chain constant region was converted from IgG1 to M58 for each antibody / L0-k0 H chain amino acid sequence SEQ ID NO: 18, L chain amino acid sequence SEQ ID NO: 16
  • Table 4 The results are shown in Table 4.
  • the anti-IL-31 receptor antibody and the anti-RANKL antibody can bind to human FcRn in the same manner as the anti-IL-6 receptor antibody by converting the heavy chain constant region from IgG1 to M58.
  • the pharmacokinetics in humans may be improved by converting the heavy chain constant region from IgG1 to M58 regardless of the antibody sequence of the variable region and the type of antigen.
  • Example 4 Novel constant region M66-k0 with further improved pharmacokinetics of M58-k0 Preparation of novel constant region M66-k0
  • Example 2 it was shown that the pattern of disulfide bonds in the hinge region of IgG molecules is large and affects heterogeneity and stability. It was shown that normal region M58 has better pharmacokinetics than IgG1. Therefore, we examined whether it is possible to create a new constant region that shows better pharmacokinetics than M58 by further optimizing the disulfide bond pattern in the hinge region.
  • cysteine of interest “NIH” Publication No. 91-3242) forms a disulfide bond.
  • the cysteine of the H chain EU numbering 131st cysteine and the L chain 214th cysteine are disulfides. When a bond is formed, the stability is greatly reduced.
  • Reference Example 1 describes the expression and purification of IL6R H0-M66 / L0-k0 consisting of IL6R H0-M66 (amino acid sequence number: 19) as the H chain and IL6R L0-k0 (amino acid sequence number: 2) as the L chain. The method was carried out.
  • human FcRn transgenic mice (B6.mFcRn-/-. HFcRn Tg line 276 + / + Evaluation of pharmacokinetics of IL6R H0-IgG1 / L0-k0, IL6R H0-M58 / L0-k0 and IL6R H0-M66 / L0-k0 using mice, Jackson Laboratories).
  • IL6R H0-IgG1 / L0-k0 As shown in FIG. 13, as a result of evaluation of plasma retention in human FcRn transgenic mice of IL6R H0-IgG1 / L0-k0, IL6R H0-M58 / L0-k0 and IL6R H0-M66 / L0-k0, IL6R H0-M66 / L0 -k0 was confirmed to have improved pharmacokinetics compared to IL6R H0-M58 / L0-k0.
  • H chain EU numbering 219th and H chain EU numbering 220th are IL6R H0-M58 / L0-k0 and serine
  • IL6R / H0-M66 / L0 -k0 is cysteine and serine, respectively.
  • the position of disulfide bond at the L chain 214th position (see Sequences of proteins of immunological interest, NIH Publication No.91-3242 numbering) and IL6R H0-M58 / L0-k0 is the 220th H chain EU numbering
  • the H chain EU numbering is 219th, and both have different positions of disulfide bonds.
  • Tm value thermal denaturation intermediate temperature
  • DSC differential scanning calorimetry
  • IL6R H0-M66 / L0-k0 was found to have a Tm value equivalent to H0-M58 / L0-k0.
  • H chain constant region M66 amino acid SEQ ID NO: 30
  • the pharmacokinetics is reduced without lowering the stability as compared with M58 (SEQ ID NO: 29). It has been found that it can.
  • FIG. 14 shows the result of evaluation by cation exchange chromatography of -M66 / L0-k0.
  • M58 is H chain EU numbering 219th and 220th are serine and cysteine, respectively, while M66 is 219th and 220th are cysteine and serine, respectively. This slight difference greatly improved the pharmacokinetics of M66 over M58. On the other hand, however, a new peak not observed in M58 was observed as a heterogeneity in M66, and it was found that a two-component heterogeneity (isoform) exists in M66.
  • Example 5 Novel constant regions M66-k3 and M66-k4 in which heterogeneity of M66-k0 is improved by mutation of the light chain constant region Production of novel constant regions M66-k3 and M66-k4 The heterogeneity (two types of components) of IL6R H0-M66 / L0 confirmed in Example 4 is due to the difference in the disulfide bond pattern between the H and L chains. It was thought to be formed.
  • the cysteine (the 107th position in k0 of amino acid sequence number 32) of the 214th (refer to the numbering of Sequences of proteins of immunological interest, NIH Publication No.91-3242) of the C terminal of the L chain (k0 amino acid sequence number: 32) Cysteine) can form a disulfide bond with the 219th cysteine of the H chain EU numbering of both H chains, and thus two types of components showing two types of disulfide bond patterns shown in FIG. 15 are detected. It was. Therefore, in order to reduce heterogeneity (so that only one kind of component is generated), as shown in FIG. 16, the cysteine of the L chain has the 219th position of the H chain EU numbering of either H chain.
  • k3 amino acid sequence number: 33
  • k4 amino acid sequence number: 34
  • expression vectors for IL6R L0-k3 (amino acid SEQ ID NO: 21) having k3 as the L chain constant region and IL6R L0-k4 (amino acid SEQ ID NO: 22) having k4 were prepared according to the method of Reference Example 1.
  • IL6R H0-M66 amino acid sequence number: 19
  • IL6R H0-M66 / L0-k3 consisting of IL6R L0-k3 (amino acid sequence number: 21) as L chain
  • IL6R H0-M66 amino acid as H chain
  • the expression and purification of IL6R H0-M66 / L0-k4 consisting of SEQ ID NO: 19) and IL6R L0-k4 (amino acid SEQ ID NO: 22) as the L chain was carried out by the method described in Reference Example 1.
  • FIG. 17 shows the results of cation exchange chromatography evaluation of k0, IL6R H0-M66 / L0-k0, IL6R H0-M66 / L0-k3, and IL6R H0-M66 / L0-k4.
  • the 104th arginine of the natural L chain constant region k0 (amino acid sequence number: 32)
  • a method in which glutamic acid is substituted with cysteine and 107th cysteine is substituted with an amino acid other than cysteine can be considered.
  • the ⁇ chain (k0, amino acid SEQ ID NO: 32) is used as the human L chain constant region, but the same method can be applied to the constant region of ⁇ chain (amino acid SEQ ID NO: 37). I think there is.
  • the constant region of the ⁇ chain there is a cysteine at position 104 in amino acid SEQ ID NO: 37 (position 214 in the numbering of Sequences of proteins of immunological interest, NIH Publication No.91-3242).
  • the 103rd glutamic acid is substituted with cysteine, and the 104th cysteine is substituted with an amino acid other than cysteine.
  • the mobile phase is allowed to flow for 5 minutes to allow each variant from human FcRn to flow. Dissociation was observed. All measurements were carried out at 25 ° C., and the mobile phase used was 10 mM Cit pH 6.0, 150 mM NaCl, and 0.05% Tween 20.
  • the binding rate constant ka (1 / Ms) and the dissociation rate constant kd (1 / s) are calculated for the binding phase of the obtained sensorgram for 3 minutes.
  • the dissociation constant KD (M) was calculated based on the values shown in Table 6.
  • Tm value thermal denaturation intermediate temperature
  • IL6R H0-IgG1 / L0-k0 IL6R, H0-M66 / L0-k0, IL6R H0-M66 / L0-k3 and IL6R H0-M66 / L0-k4 in 20 mM sodium acetate, 150 mM NaCl, pH 6.0 Then, dialysis (EasySEP, TOMY) was performed, and DSC measurement was performed at a protein concentration of about 0.1 mg / mL from 40 ° C. to 100 ° C. at a heating rate of 1 ° C./min. The Tm value of the Fab portion was calculated based on the obtained DSC denaturation curve and shown in Table 7.
  • IL6RILH0-M66 / L0-k3 and IL6R H0-M66 / L0-k4 were found to have a Tm value equivalent to H0-M66 / L0-k0.
  • k3 amino acid sequence number: 33
  • k4 amino acid sequence number: 34
  • H0-M66 / L0-k0 in which H chain EU numbering 219 and L chain 214 (see Sequences of proteins of immunological interest, NIH Publication No.91-3242 numbering) form disulfide bonds is shown in Fig. As shown in FIG. 14, it is shown that two isoforms exist, and these two components are considered to have two disulfide bond patterns shown in FIG. 15, and the H chain EU numbering 137th and the H chain EU It was found that the heterogeneity derived from natural IgG2 cannot be completely avoided by simply substituting the number 220 cysteine with serine.
  • H0-M66 / L0-k3 or H0-M66 / L0-k4 with the C-terminal cysteine position of the L chain constant region moved, heterogeneity derived from the disulfide bond of natural IgG2 was first introduced. It has been found that it can be avoided. H0-M66 / L0-k3 does not have a decreased stability and binding to human FcRn compared to H0-M66 / L0-k0, and further, the ⁇ GK of the H chain C-terminus shown in Example 1 was modified. Since heterogeneity derived from the H chain C terminus was also avoided, M66 / k3 or M66 / k4 was considered to be extremely useful as the H chain / L chain constant region of the antibody.
  • Example 6 M106-k3 with reduced binding of M66-k3 to Fc ⁇ receptor Generation of a novel constant region M106-k3
  • an effector function such as ADCC possessed by the Fc region is not necessary, and therefore binding to the Fc ⁇ receptor is unnecessary.
  • binding to the Fc ⁇ receptor may be undesirable (Nat Rev Drug Discov. 2007 Jan; 6 (1): 75-92., Ann Hematol. 1998 Jun; 76 ( 6): 231-48.).
  • humanized anti-IL-6 receptor IgG1 antibody TOCILIZUMAB specifically binds to IL-6 receptor and neutralizes its biological action to treat IL-6 related diseases such as rheumatoid arthritis It can be used as a drug and does not require binding to the Fc ⁇ receptor.
  • IgG1 Fc ⁇ R binding sites are IgG2 (EU numbering: 233, 234, 235, 236) and IgG4 (EU numbering: 327, 330, It has been reported that an Fc ⁇ receptor non-binding antibody can be prepared by using the 331st sequence (US20050261229A1).
  • IgG4 is EU numbering: the amino acid at position 339 is alanine, whereas IgG2 is threonine, so EU numbering: it is not naturally present by simply changing the amino acid at position 330 or 331 to the IgG4 sequence. A new peptide sequence of 9 amino acids that can become a T-cell epitope peptide appears, resulting in an immunogenicity risk.
  • IgG2 EU numbering it was possible to prevent the appearance of a new peptide sequence by modifying the 339th Thr to Ala.
  • IL6R H0-M106 amino acid SEQ ID NO: 20 expression vector having M106 as the heavy chain constant region
  • IL6R H0-M106 amino acid sequence number: 20
  • IL6R H0-M106 / L0-k0 consisting of IL6R L0-k0 (amino acid sequence number: 2) as the L chain
  • IL6R H0-M106 amino acid sequence
  • IL6R H0-M106 / L0-k3 consisting of IL6R L0-k3 (amino acid sequence number: 21) as the L chain
  • IL6R H0-M106 amino acid sequence number: 20
  • IL6RL0 as the L chain
  • Expression and purification of IL6R H0-M106 / L0-k4 consisting of -k4 (amino acid sequence number: 22) was carried out by the method described in Reference Example 1.
  • H0-M106 / L0-k0 the two peaks were single peaks, whereas in H0-M106 / L0-k3 and H0-M106 / L0-k4 As for H0-M66 / L0-k3 and H0-M66 / L0-k4, a single peak was observed.
  • H0-M106 / L0-k3 and H0-M106 / L0-k4 As for H0-M66 / L0-k3 and H0-M66 / L0-k4, a single peak was observed.
  • H chain constant region variant M106 as in the H chain constant region variant M66, by shortening the length of the peptide chain near the C terminal of the L chain, the position of the cysteine at the C chain of the L chain is determined. It was found that disulfide bonds can be formed only with the 219th H chain EU numbering of one H chain, and the heterogeneity can be reduced.
  • Hc-IgG1 / L0-k0, H0-IgG2 / L0-k0, H0-M106 / L0-k3 were captured by Protein L on the sensor chip, and Fc ⁇ RI diluted to 10 ⁇ g / mL with running buffer and running buffer.
  • Fc ⁇ RIIa and Fc ⁇ RIIIa (R & D systems) interacted as analytes.
  • correction was performed to consider the amount of each antibody captured by Protein L to be constant.
  • the value obtained by subtracting the binding amount when only the running buffer interacts from the binding amount of each human Fc ⁇ receptor to each antibody is divided by the capture amount of each antibody, and the obtained value is obtained.
  • the value multiplied by 100 was designated as Normalized response.
  • FIG. 19 shows the result of comparing the strength of binding between each antibody and each human Fc ⁇ receptor using Normalized Response. From this result, the binding ability of H0-M106 / L0-k3 to various activated Fc ⁇ receptors is significantly weaker than that of naturally occurring IgG1, and further weaker than that of H0-IgG2 / L0-k0. It was also revealed that the binding of -k3 to Fc ⁇ receptor is weaker than that of native IgG2. Therefore, by using H0-M106 / L0-k3, the immunogenicity risk derived from APC uptake through Fc ⁇ receptor and the side effects derived from effector functions such as ADCC are reduced compared to natural IgG2. It is considered possible.
  • Example 7 Cation exchange chromatography analysis of IgG2-k3 IL6R H0-IgG2 consisting of IL6R H0-IgG2 (amino acid SEQ ID NO: 5) as the H chain and IL6R L0-k3 (amino acid SEQ ID NO: 21) as the L chain Expression / purification of / L0-k3 was carried out by the method described in Reference Example 1. Using the method described in Example 2, the results of cation exchange chromatography evaluation of IL6R H0-IgG1 / L0-k0 and IL6R H0-IgG2 / L0-k0 and IL6R H0-IgG2 / L0-k3 were as follows. This is shown in FIG.
  • heterogeneity was observed in IgG2-k0, but heterogeneity was reduced in IgG2-k3.
  • IgG2-k0 which is a natural IgG2
  • has multiple disulfide bond patterns so heterogeneity is observed, but by shortening the length of the peptide chain near the C terminus of the L chain, the cysteine at the C terminus of the L chain It has been found that heterogeneity can be reduced simply by moving the position to the N-terminal side (IgG2-k3).
  • Example 8 Comparison of pharmacokinetics of IgG1-k0, M66-k0, M66-k3, M106-k3, IgG2-k3 in human FcRn transgenic mice
  • human FcRn transgenic mice B6 IL6R H0-IgG1 / L0-k0, IL6R H0-M66 / L0-k0, IL6R H0-M66 / L0-k3, IL6R H0 using .mFcRn-/-.
  • IL6R H0-M66 / L0-k3 The pharmacokinetics of -M106 / L0-k3 and IL6R H0-IgG2 / L0-k3 were evaluated. Evaluation of IL6R H0-M66 / L0-k0, IL6R H0-M66 / L0-k3, IL6R H0-M106 / L0-k3 and IL6R H0-IgG2 / L0-k3 in human FcRn transgenic mice As a result, as shown in FIG. 21, IL6R H0-M66 / L0-k3 was confirmed to have improved pharmacokinetics as compared to IL6R H0-M66 / L0-k0.
  • the L chain constant region k3 (amino acid SEQ ID NO: 33) is an L chain from which the 106th glutamic acid of the natural L chain constant region k0 (amino acid SEQ ID NO: 32) has been deleted. Therefore, it was considered that the plasma retention was improved by substituting L0-k3. Since FcRn binds to the Fc portion of the heavy chain constant region, it is generally considered that the light chain constant region does not affect the pharmacokinetics of the antibody. In fact, in human FcRn transgenic mice, There is no report that the pharmacokinetics was improved by amino acid substitution.
  • HEK293H strain derived from human fetal kidney cancer cells is suspended in DMEM medium (Invitrogen) containing 10% Fetal Bovine Serum (Invitrogen), and a dish for adhering cells (diameter 10) at a cell density of 5-6 ⁇ 105 cells / mL. cm, CORNING) 10 mL to each dish. Cultivate overnight in a CO2 incubator (37 ° C, 5% CO2). Remove the medium by suction, and add 6.9 mL of CHO-S-SFM-II (Invitrogen) medium. Added. The prepared plasmid was introduced into cells by the lipofection method.
  • the cells are removed by centrifugation (approximately 2000 g, 5 minutes, room temperature), and further sterilized through a 0.22 ⁇ m filter MILLEX (R) -GV (Millipore). Got.
  • the antibody was purified from the obtained culture supernatant by a method known to those skilled in the art using rProtein A Sepharose TM Fast Flow (Amersham Biosciences). The purified antibody concentration was determined by measuring the absorbance at 280 nm using a spectrophotometer. The antibody concentration was calculated from the obtained value using the extinction coefficient calculated by the PACE method (Protein Science 1995; 4: 2411-2423).
  • FcRn is a complex of FcRn and ⁇ 2-microglobulin. Oligo DNA primers were prepared based on the published human FcRn gene sequence (J. Exp. Med. 180 (6), 2377-2381 (1994)). A human cDNA (Human Placenta Marathon-Ready cDNA, Clontech) was used as a template, and a DNA fragment encoding the full length of the gene was prepared by PCR using the prepared primer.
  • a DNA fragment encoding an extracellular region (Met1-Leu290) including a signal region was amplified by PCR and inserted into an animal cell expression vector (human FcRn amino acid SEQ ID NO: 35).
  • oligo DNA primers were prepared based on the published human ⁇ 2-microglobulin gene sequence (Proc. Natl. Acad. Sci. USA 99 (26), 16899-16903 (2002)).
  • a human cDNA Human-Placenta Marathon-Ready cDNA, CLONTECH
  • a DNA fragment encoding the full length of the gene was prepared by PCR using the prepared primer.
  • the DNA fragment encoding ⁇ 2-microglobulin full length (Met1-Met119) including the signal region was amplified by PCR and inserted into an animal cell expression vector (human ⁇ 2-microglobulin amino acid sequence SEQ ID NO: : 36).
  • Soluble human FcRn was expressed by the following procedure.
  • the prepared human FcRn and human ⁇ 2-microglobulin plasmids were introduced into cells of the human fetal kidney cancer cell-derived HEK293H strain (Invitrogen) by the lipofection method using 10% Fetal Bovine Serum (Invitrogen).
  • purification was performed using IgG ⁇ Sepharose 6 Fast Flow (Amersham Biosciences) according to the method of (J Immunol. 2002 Nov 1; 169 (9): 5171-80.). Thereafter, purification was performed using HiTrap Q HP (GE Healthcare).
  • the present invention is useful for producing an antibody to be administered to a living body as a pharmaceutical product. More specifically, an antibody comprising a constant region of the present invention is advantageous in maintaining the quality of a pharmaceutical because of its low heterogeneity.
  • an antibody containing the constant region of the present invention is used as a pharmaceutical, a homogeneous antibody can be stably supplied.
  • TOCILIZUMAB generator name
  • TOCILIZUMAB which is an antibody against the IL6 receptor
  • the present invention also provides an antibody with improved pharmacokinetics by modifying the amino acid sequence of the constant region.
  • Antibodies with improved pharmacokinetics according to the present invention remain active in the body for longer periods of time.
  • TOCILIZUMAB generic name
  • the constant region provided by the present invention by replacing the constant region of TOCILIZUMAB (generic name), which is an antibody against the IL6 receptor, with the constant region provided by the present invention, its pharmacokinetics are improved and the action concentration in vivo is maintained for a longer period of time.
  • TOCILIZUMAB genetic name

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明者らは、アミノ酸配列の改変によって、特に医薬品としての好ましい性状を抗体に付与することができる定常領域の提供に成功した。本発明によってもたらされた定常領域の改変体は、抗体の製造に応用することによって、ヘテロジェニティーを著しく改善する。すなわち、抗体の重鎖定常領域、及び軽鎖定常領域に本発明によって提供された改変を導入することによって、抗体の均質性を高く維持することができる。より具体的には、抗体分子の重鎖における-SS-結合の掛け違いに起因する均質性の低下を防ぐことができる。更に本発明の好ましい態様においては、抗体定常領域のC末端の欠損に起因する均質性の低下や、抗体の薬物動態も改善することができる。

Description

抗体定常領域改変体
 本発明は、アミノ酸配列が改変された抗体定常領域および該定常領域を含む抗体に関する。
 抗体は血漿中(血中)での安定性が高く、副作用も少ないことから医薬品として注目されている。中でもIgG型の抗体医薬は多数上市されており、現在も数多くの抗体医薬が開発されている(非特許文献1、非特許文献2)。
 現在上市されている抗体医薬のほとんどがIgG1サブクラスの抗体である。IgG1タイプの抗体はFcγレセプターに結合可能であり、ADCC活性を発揮することが可能であり、抗ガン抗体医薬の場合は有用であると考えられている。しかし、抗原の生物学的作用を中和することが目的の抗体医薬においてはFc領域のADCC等のエフェクター機能に重要なFcγレセプターへの結合は不要な副作用を惹起する可能性があることから排除することが望ましい(非特許文献3)。さらに、Fcγレセプターは抗原提示細胞に発現していることから、Fcγレセプターに結合する分子は抗原提示されやすくなり、IgG1のFc部分にタンパク質やペプチドを結合することによって免疫原性が増強する(させることが可能である)ことが報告されている(非特許文献4、特許文献1)。またTGN1412のPhaseI臨床試験で見られた重大な副作用の原因の一つとして、抗体のFc部分とFcγレセプターの相互作用が考えられている(非特許文献5)。このように、副作用や免疫原性の点から考えると、抗原の生物学的作用を中和することが目的の抗体医薬においてはFcγレセプターへの結合は好ましくないと考えられる。
 Fcγレセプターへの結合を完全に無くすことは出来ないが低下させる方法としては、IgG抗体のサブタイプをIgG1からIgG2あるいはIgG4に変える方法が考えられる(非特許文献6)。Fcγレセプターへの結合を完全に無くす方法としては、人工的な改変をFc領域に導入する方法が報告されている。例えば、抗CD3抗体や抗CD4抗体は抗体のエフェクター機能が副作用を惹起する。そこで、Fc領域のFcγレセプター結合部分に野生型配列には存在しないアミノ酸変異(非特許文献3、7)を導入したFcγレセプター非結合型の抗CD3抗体や抗CD4抗体の臨床試験が現在行われている(非特許文献5、8)。また、IgG1のFcγR結合部位(EUナンバリング:233、234、235、236、327、330、331番目)をIgG2およびIgG4の配列にすることでFcγレセプター非結合型抗体を作製することが可能である(非特許文献9、特許文献2)。しかしながら、これらの分子はいずれも天然には存在しないT-cellエピトープペプチドとなりうる9~12アミノ酸の新しいペプチド配列が出現しており、免疫原性のリスクが考えられる。このような課題を解決したFcγレセプター非結合型抗体の報告はこれまでにない。
 また、抗体のC末端配列のヘテロジェニティーとして、C末端アミノ酸のリジン残基の欠損、および、C末端の2アミノ酸のグリシン、リジンの欠損によるC末端アミノ基のアミド化が報告されており(非特許文献12)、医薬品として開発する上にはこれらのヘテロジェニティーは存在しないことが望ましい。
 さらに、一般的に皮下投与製剤は高濃度製剤である必要があるのに対して、IgGタイプの抗体製剤の場合、安定性等の点から一般的には100mg/mL程度の製剤が限度であると考えられており(非特許文献13)、高濃度での安定性の確保が課題であった。しかしながら、これまでに定常領域にアミノ酸置換を導入することによって高濃度におけるIgGの安定性を改善させた報告はない。一方、抗体を高濃度にするかわりに、抗体の血中動態を改善することにより、投与量自体を少なくする方法も考えられる。抗体の血漿中半減期を長くする方法として、定常領域のアミノ酸置換が報告されている(非特許文献14、非特許文献15)が、免疫原性リスクの観点から定常領域に天然に存在しない配列を導入することは好ましくないと考えられる。
 また、抗体を医薬品として開発するにあたり、そのタンパク質の物性、中でも均一性は極めて重要である。IgG2のサブタイプは、ヒンジ領域のジスルフィド結合に由来するヘテロジェニティーが報告されている(非特許文献10、非特許文献16、非特許文献17、非特許文献18、特許文献3)。これに由来する目的物質/関連物質のヘテロジェニティーの製造間差を維持しつつ医薬品として大量に製造することは難しい。医薬品として開発する抗体分子は、可能な限り単一物質であることが望まれる。本発明において、ヘテロジェニティーの製造間差とは、たとえば製造ロット間のヘテロジェニティーの相違と理解することができる。製造ロットにおけるヘテロジェニティーは、製造された抗体分子の構造や分子量の多様性を測定することによって定量的に評価することができる。
 このように抗原を中和することが目的の抗体医薬の定常領域は、安定性、C末端ヘテロジェニティー、免疫原性(抗原性)、血中動態、ヒンジ領域のヘテロジェニティーの全てを解決した定常領域配列が望ましい。特に、IgG1などの天然の定常領域よりも優れた血中動態を有し、かつヒンジ領域のヘテロジェニティーが存在しない定常領域は抗体医薬品の定常領域として非常に有用であると考えられる。しかしながら、これらの条件を全て満たす定常領域改変体の報告はこれまでにない。従って、これらの課題を改善させた抗体の定常領域が望まれていた。
 尚、本出願の発明に関連する先行技術文献情報を以下に示す。
Monoclonal antibody successes in the clinic, Janice M Reichert, Clark J Rosensweig, Laura B Faden & Matthew C Dewitz, Nature Biotechnology 23, 1073 - 1078 (2005) Pavlou AK, Belsey MJ., The therapeutic antibodies market to 2008., Eur J Pharm Biopharm. 2005 Apr;59(3):389-96. Reddy MP, Kinney CA, Chaikin MA, Payne A, Fishman-Lobell J, Tsui P, Dal Monte PR, Doyle ML, Brigham-Burke MR, Anderson D, Reff M, Newman R, Hanna N, Sweet RW, Truneh A. Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. J Immunol. 2000 Feb 15;164(4):1925-33. Guyre PM, Graziano RF, Goldstein J, Wallace PK, Morganelli PM, Wardwell K, Howell AL. Increased potency of Fc-receptor-targeted antigens. Cancer Immunol Immunother. 1997 Nov-Dec;45(3-4):146-8. Strand V, Kimberly R, Isaacs JD. Biologic therapies in rheumatology: lessons learned, future directions. Nat Rev Drug Discov. 2007 Jan;6(1):75-92. Gessner JE, Heiken H, Tamm A, Schmidt RE. The IgG Fc receptor family. Ann Hematol. 1998 Jun;76(6):231-48. Cole MS, Anasetti C, Tso JY. Human IgG2 variants of chimeric anti-CD3 are nonmitogenic to T cells. J Immunol. 1997 Oct 1;159(7):3613-21. Chau LA, Tso JY, Melrose J, Madrenas J. HuM291(Nuvion), a humanized Fc receptor-nonbinding antibody against CD3, anergizes peripheral blood T cells as partial agonist of the T cell receptor.Transplantation. 2001 Apr 15;71(7):941-50. Armour KL, Clark MR, Hadley AG, Williamson LM., Recombinant human IgG molecules lacking Fcgamma receptor I binding and monocyte triggering activities. Eur J Immunol. 1999 Aug;29(8):2613-24. Chu GC, Chelius D, Xiao G, Khor HK, Coulibaly S, Bondarenko PV. Accumulation of Succinimide in a Recombinant Monoclonal Antibody in Mildly Acidic Buffers Under Elevated Temperatures. Pharm Res. 2007 Mar 24; 24(6):1145-56 A.J. Cordoba, B.J. Shyong, D. Breen, R.J. Harris, Nonenzymatic hinge region fragmentation of antibodies in solution, J. Chromatogr., B, Anal. Technol. Biomed. Life Sci. 818 (2005) 115-121. Johnson KA, Paisley-Flango K, Tangarone BS, Porter TJ, Rouse JC. Cation exchange-HPLC and mass spectrometry reveal C-terminal amidation of an IgG1 heavy chain. Anal Biochem. 2007 Jan 1;360(1):75-83. Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations.J Pharm Sci. 2004 Jun;93(6):1390-402. Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N., An engineered human IgG1 antibody with longer serum half-life., J Immunol. 2006 Jan 1;176(1):346-56. Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ, Ward ES., Increasing the serum persistence of an IgG fragment by random mutagenesis., Nat Biotechnol. 1997 Jul;15(7):637-40. Wypych J, Li M, Guo A, Zhang Z, Martinez T, Allen MJ, Fodor S, Kelner DN, Flynn GC, Liu YD, Bondarenko PV, Ricci MS, Dillon TM, Balland A., Human IgG2 antibodies display disulfide-mediated structural isoforms., J Biol Chem. 2008 Jun 6;283(23):16194-205. Dillon TM, Ricci MS, Vezina C, Flynn GC, Liu YD, Rehder DS, Plant M, Henkle B, Li Y, Deechongkit S, Varnum B, Wypych J, Balland A, Bondarenko PV., Structural and functional characterization of disulfide isoforms of the human IgG2 subclass., J Biol Chem. 2008 Jun 6;283(23):16206-15. Martinez T, Guo A, Allen MJ, Han M, Pace D, Jones J, Gillespie R, Ketchem RR, Zhang Y, Balland A., Disulfide connectivity of human immunoglobulin G2 structural isoforms., Biochemistry. 2008 Jul 15;47(28):7496-508
US 20050261229A1 WO 99/58572 US 2006/0194280
 本発明はこのような状況に鑑みて為されたものであり、その目的は、抗体定常領域のアミノ酸を改変することにより、医薬品として望ましい性状を抗体に付与することができる定常領域、並びに当該定常領域と可変領域とを含む抗体を提供することにある。
 本発明者らは、抗体の定常領域のアミノ酸配列を改変することで、均一性(C末端、ヒンジ領域)、免疫原性、安定性および薬物動態が改善された抗体定常領域の創製に向けて、鋭意研究を行った。その結果、本発明者らは、均一性、免疫原性、薬物動態および安定性が改善された抗体定常領域の作製に成功した。さらに、本発明者らは、当該定常領域を基にさらにアミノ酸を改変することによりFcγレセプターへの結合を低下させた抗体定常領域の作製に成功した。当該抗体の定常領域は天然のIgG1定常領域よりも薬物動態が優れ、かつヒンジ領域のヘテロジェニティーも改善された優れた定常領域である。
 本発明は、抗体の定常領域のアミノ酸配列の改変により、より優れた安全性・免疫原性リスク・物性(安定性、均一性)を有し、さらにより優れた薬物動態、ヒンジ領域ヘテロジェニティーを有する抗体定常領域、該抗体定常領域を含む抗体、該抗体を含む医薬組成物、並びに、それらの製造方法に関する。より具体的には、下記〔1〕~〔19〕を提供するものである。
〔1〕配列番号:24(IgG2定常領域)のアミノ酸配列において、14番目(EUナンバリング131番目)のCys、16番目(EUナンバリング133番目)のArg、103番目(EUナンバリング220番目)のCys、20番目(EUナンバリング137番目)のGlu、21番目(EUナンバリング138番目)のSer、147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArgおよび298番目(EUナンバリング419番目)のGlnが他のアミノ酸に置換されたアミノ酸配列を有する抗体定常領域、
〔2〕14番目のCysはSerに、16番目のArgはLysに、103番目のCysはSerに、20番目のGluはGlyに、21番目のSerはGlyに、147番目のHisはGlnに、234番目のArgはGlnに、298番目のGlnはGluに置換されることを特徴とする〔1〕に記載の抗体定常領域、
〔3〕325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysがさらに欠損したアミノ酸配列を有する〔1〕又は〔2〕に記載の抗体定常領域、
〔4〕配列番号:24(IgG2定常領域)のアミノ酸配列において、14番目(EUナンバリング131番目)のCys、16番目(EUナンバリング133番目)のArg、103番目(EUナンバリング220番目)のCys、20番目(EUナンバリング137番目)のGlu、21番目(EUナンバリング138番目)のSer、147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArg、298番目(EUナンバリング419番目)のGln、209番目(EUナンバリング330番目)のAla、210番目(EUナンバリング331番目)のPro、218番目(EUナンバリング339番目)のThrが他のアミノ酸に置換されたアミノ酸配列を有する抗体定常領域、
〔5〕14番目のCysはSerに、16番目のArgはLysに、103番目のCysはSerに、20番目のGluはGlyに、21番目のSerはGlyに、147番目のHisはGlnに、234番目のArgはGlnに、298番目のGlnはGluに、209番目のAlaはSerに、210番目のProはSerに、218番目のThrはAlaに置換されることを特徴とする〔4〕に記載の抗体定常領域、
〔6〕325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysがさらに欠損したアミノ酸配列を有する〔4〕又は〔5〕に記載の抗体定常領域、
〔7〕〔1〕~〔6〕いずれかに記載の定常領域を有する抗体、
〔8〕〔7〕に記載の抗体を含む医薬組成物、
〔9〕102番目~106番目に少なくとも1つのCysが存在するヒトκ鎖定常領域。
〔10〕107番目の位置にCysが存在しないヒトκ鎖定常領域、
〔11〕102番目~106番目に少なくとも1つのCysが存在し、かつ107番目の位置にCysが存在しないヒトκ鎖定常領域、
〔12〕配列番号:32のアミノ酸配列において、1番目~106番目のアミノ酸の少なくとも1つが欠損していることを特徴とする〔9〕~〔11〕いずれかに記載のヒトκ鎖定常領域、
〔13〕102番目~106番目のアミノ酸の少なくとも1つが欠損していることを特徴とする〔12〕に記載のヒトκ鎖定常領域、
〔14〕105番目のアミノ酸が欠損していることを特徴とする〔13〕に記載のヒトκ鎖定常領域、
〔15〕106番目のアミノ酸が欠損していることを特徴とする〔13〕に記載のヒトκ鎖定常領域、
〔16〕102番目~106番目のアミノ酸の少なくとも1つがCysに置換されていることを特徴とする〔9〕に記載のヒトκ鎖定常領域、
〔17〕102番目~106番目のアミノ酸の少なくとも1つがCysに置換され、かつ107番目のCysが他のアミノ酸に置換されている又は欠損していることを特徴とする〔9〕~〔11〕いずれかに記載のヒトκ鎖定常領域、
〔18〕〔9〕~〔17〕いずれかに記載のヒトκ鎖定常領域を有する抗体、
〔19〕〔18〕に記載の抗体を含む医薬組成物、
〔20〕〔1〕~〔6〕いずれかに記載の重鎖定常領域および〔9〕~〔17〕いずれかに記載の軽鎖定常領域を含む抗体、
〔21〕〔20〕に記載の抗体を含む医薬組成物。
 本発明によって、抗体に医薬品製剤として望ましい性状を付与することができる定常領域が提供された。本発明の定常領域は、そのアミノ酸配列の改変によって、抗体の次のような性状を医薬品製剤に好適な状態に改善することができる。
*抗体のヘテロジェニティーの低下:
 あるアミノ酸配列をコードするDNAを発現させることによって得られるポリペプチドは、理論上は同じアミノ酸配列からなる均質なポリペプチド分子となるはずである。しかし抗体をコードするDNAを適当な宿主で発現させた場合、実際には、種々の要因によって構造の異なる異質なポリペプチドが生成することがある。抗体の製造においては、多くの異質なポリペプチドからなる抗体集団は、ヘテロジェニティーが高いと言うことができる。本発明の定常領域は、ヘテロジェニティーの原因がアミノ酸配列の改変によって除かれている。したがって、本発明の定常領域で抗体を構成することによって、ヘテロジェニティーの低い抗体を製造することができる。すなわち、抗体の重鎖定常領域に本発明によって提供された改変を導入することによって、抗体の均質性を高く維持することができる。抗体のヘテロジェニティーを低く抑えるとは、ヘテロジェニティーを改善することを意味し、医薬品の品質の維持において重要な課題である。したがって、本発明の定常領域は、抗体を含む医薬品の品質の維持に貢献する。
*薬物動態の向上:
 本発明は、好ましい態様において、抗体の薬物動態の向上に貢献する。具体的には、本発明における抗体の定常領域に、特定のアミノ酸残基の改変を加えたとき、当該定常領域で構成された抗体の血中濃度は、アミノ酸配列を改変していないものと比較して長い時間にわたって維持される。血中濃度をできるだけ長期間維持することは、抗体を医薬品として投与するときに、より少量の抗体で長期にわたって治療効果を維持できることを意味する。あるいは、抗体の投与間隔をより広くして、投与回数を少なくできる。
IL6R H0-IgG1/L0-k0、IL6R H0-IgG1ΔK/L0-k0およびIL6R H0-IgG1ΔGK/L0-k0を陽イオン交換クロマトグラフィーによりC末端に由来するヘテロジェニティーの評価を行った結果を示した図である。図中、縦軸は280nmにおける吸光度を、横軸は溶出時間(分)である。 IL6R H0-IgG1/L0-k0とIL6R H0-IgG2/L0-k0を陽イオン交換クロマトグラフィーによりジスルフィド結合に由来するヘテロジェニティーの評価を行った結果を示した図である。図中、縦軸は280nmにおける吸光度を、横軸は溶出時間(分)である。 IgGタイプ抗体とそのヒンジ領域周辺構造(重鎖(H鎖)、軽鎖(L鎖)の配置とそれらの間のジスルフィド結合)の詳細を示した図である(詳細図はIgG1-k0の図である)。 定常領域IgG1-k0とIgG2-k0のヒンジ領域周辺の予想されるジスルフィド結合のパターンを示す図である。IgG2-k0において考えられる様々なジスルフィド結合パターンを点線で示した。 定常領域IgG1-k0とIgG4-k0のヒンジ領域周辺の予想されるジスルフィド結合のパターンを示す図である。IgG1-k0とIgG4-k0とでは、H鎖とL鎖を結ぶジスルフィド結合のパターンが異なる。 定常領域SC-k0とCS-k0のヒンジ領域周辺の予想されるジスルフィド結合のパターンを示す図である。SC-k0とCS-k0において考えられる様々なジスルフィド結合パターンを点線で示した。 定常領域SKSC-k0とM58-k0のヒンジ領域周辺の予想されるジスルフィド結合のパターンを示す図である。 IL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、IL6R H0-SC/L0-k0、IL6R H0-CS/L0-k0、IL6R H0-SKSC/L0-k0およびIL6R H0-M58/L0-k0を陽イオン交換クロマトグラフィーによりジスルフィド結合の掛け違いに由来するヘテロジェニティーの評価を行った結果を示した図である。図中、縦軸は280nmにおける吸光度を、横軸は溶出時間(分)である。 IL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、IL6R H0-SC/L0-k0、IL6R H0-CS/L0-k0、IL6R H0-SKSC/L0-k0およびIL6R H0-M58/L0-k0を示差走査型熱量測定(DSC)により測定した変性曲線を示した図である。 抗IL-6レセプター抗体、抗IL-31レセプター抗体および抗RANKL抗体においてIgG2-k0からM58-k0に定常領域を変換することでヘテロジェニティーが大幅に改善することを示す図である。図中、縦軸は280nmにおける吸光度を、横軸は溶出時間(分)である。 ヒトFcRnトランスジェニックマウスにIL6R H0-IgG1/L0-k0とIL6R H0-M58/L0-k0を1mg/kgで投与したときの抗体の血漿中濃度推移を示した図である。図中、縦軸は抗体の血漿中濃度(μg/mL)、横軸は投与後の経過時間(日)である。投与された抗体は、IL6R H0-IgG1/L0-k0(◆;定常領域を改変していない抗体)、およびIL6R H0-M58/L0-k0(◇;定常領域が改変された抗体)である。 定常領域M58-k0とM66-k0のヒンジ領域周辺の予想されるジスルフィド結合のパターンを示す図である。 ヒトFcRnトランスジェニックマウスにIL6R H0-IgG1/L0-k0、IL6R H0-M58/L0-k0およびIL6R H0-M66/L0-k0を1mg/kgで投与したときの抗体の血漿中濃度推移を示した図である。図中、縦軸は抗体の血漿中濃度(μg/mL)、横軸は投与後の経過時間(日)である。投与された抗体は、IL6R H0-IgG1/L0-k0(◆;定常領域を改変していない抗体)、IL6R H0-M58/L0-k0(◇;定常領域が改変された抗体)、およびIL6R H0-M66/L0-k0(●;定常領域が改変された抗体)である。 IL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、IL6R H0-M58/L0-k0およびIL6R H0-M66/L0-k0を陽イオン交換クロマトグラフィーによりジスルフィド結合の掛け違いに由来するヘテロジェニティーの評価を行った結果を示した図である。図中、縦軸は280nmにおける吸光度を、横軸は溶出時間(分)である。 定常領域M66-k0において予想された2種類のジスルフィド結合のパターンを示す図である。 定常領域M66-k0、M66-k3およびM66-k4の予想されるヒンジ領域周辺のジスルフィド結合のパターンを示す図である。M66で認められた2つのピークに相当するジスルフィド結合を点線で示した。 IL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、IL6R H0-M58/L0-k0、IL6R H0-M66/L0-k0、IL6R H0-M66/L0-k3およびIL6R H0-M66/L0-k4を陽イオン交換クロマトグラフィーによりジスルフィド結合の掛け違いに由来するヘテロジェニティーの評価を行った結果を示した図である。図中、縦軸は280nmにおける吸光度を、横軸は溶出時間(分)である。 IL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、IL6R H0-M106/L0-k0、IL6R H0-M106/L0-k3およびIL6R H0-M106/L0-k4を陽イオン交換クロマトグラフィーによりジスルフィド結合の掛け違いに由来するヘテロジェニティーの評価を行った結果を示した図である。図中、縦軸は280nmにおける吸光度を、横軸は溶出時間(分)である。 H0-IgG1/L0-k0、H0-IgG2/L0-k0、H0-M106/L0-k3の各種Fcγレセプターへの結合を示す図である。 IL6R H0-IgG1/L0-k0とIL6R H0-IgG2/L0-k0とIL6R H0-IgG2/L0-k3を陽イオン交換クロマトグラフィーによりジスルフィド結合の掛け違いに由来するヘテロジェニティーの評価を行った結果を示した図である。図中、縦軸は280nmにおける吸光度を、横軸は溶出時間(分)である。 ヒトFcRnトランスジェニックマウスにIL6R H0-M66/L0-k0、IL6R H0-M66/L0-k3、IL6R H0-M106/L0-k3およびIL6R H0-IgG2/L0-k3を1mg/kgで投与したときの抗体の血漿中濃度推移を示した図である。図中、縦軸は抗体の血漿中濃度(μg/mL)、横軸は投与後の経過時間(日)である。
 本発明は、アミノ酸配列が改変された抗体定常領域、該定常領域を含む抗体、該抗体を含む医薬組成物、ならびに、それらの製造方法を提供する。
 抗体の重鎖定常領域にはIgG1、IgG2、IgG3、IgG4タイプの定常領域が存在している。本発明においては特に限定されないが、重鎖定常領域は好ましくはヒト重鎖定常領域である。又、本発明においては特にヒトIgG2定常領域が好ましい。ヒトIgG2定常領域のアミノ酸配列は公知である(配列番号:24)。ヒトIgG2定常領域としては、遺伝子多形による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。
 又、抗体の軽鎖定常領域にはκ鎖とλ鎖タイプの定常領域が存在している。本発明においては特に限定されないが、軽鎖定常領域はヒト軽鎖定常領域である。又、本発明においてはヒトκ鎖定常領域が好ましい。ヒトκ鎖定常領域のアミノ酸配列は公知である(配列番号:32)。ヒトκ鎖定常領域とヒトλ鎖定常領域としては、遺伝子多形による複数のアロタイプ配列がSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されているが、本発明においてはそのいずれであっても良い。
 なお本発明のアミノ酸が改変(置換、欠損、付加および/または挿入)された抗体定常領域は、本発明のアミノ酸の改変を含むものである限り、他のアミノ酸の改変や修飾を含んでもよい。
 具体的には、次のような改変を含む定常領域は、いずれも本発明に含まれる。
 *配列番号:24(ヒトIgG2定常領域)のアミノ酸配列に対して本発明に基づく改変を導入する。
 *改変された配列番号:24(ヒトIgG2定常領域)のアミノ酸配列に対して本発明に基づく改変を導入する。
 *配列番号:24(ヒトIgG2定常領域)のアミノ酸配列に対して本発明に基づく改変を導入し、更に付加的な改変も導入する。
 同様に、次のような改変を含む定常領域も本発明に含まれる。
 *配列番号:32(ヒトκ鎖定常領域)のアミノ酸配列に対して本発明に基づく改変を導入する。
 *改変された配列番号:32(ヒトκ鎖定常領域)のアミノ酸配列に対して本発明に基づく改変を導入する。
 *配列番号:32(ヒトκ鎖定常領域)のアミノ酸配列に対して本発明に基づく改変を導入し、更に付加的な改変も導入する。
 また同様に、次のような改変を含む定常領域も本発明に含まれる。
 *配列番号:37(ヒトλ鎖定常領域)のアミノ酸配列に対して本発明に基づく改変を導入する。
 *改変された配列番号:37(ヒトλ鎖定常領域)のアミノ酸配列に対して本発明に基づく改変を導入する。
 *配列番号:37(ヒトλ鎖定常領域)のアミノ酸配列に対して本発明に基づく改変を導入し、更に付加的な改変も導入する。
 また定常領域に糖鎖が結合する場合、結合する糖鎖の構造は如何なる構造でもよい。例えば、EUナンバリングの297番目の糖鎖は如何なる糖鎖構造であってもよく(好ましくはフコシル化された糖鎖)、また糖鎖が結合していなくてもよい(例えば大腸菌で生産することで可能)。
<アミノ酸改変IgG2定常領域及び当該定常領域を含む抗体>
 本発明は、安定性、ヘテロジェニティー、免疫原性および/または薬物動態が改善された重鎖定常領域を提供する。また本発明は当該重鎖定常領域を含む抗体を提供する。
 より具体的には配列番号:24に記載のアミノ酸配列を有する重鎖定常領域(IgG2定常領域)において、14番目(EUナンバリング131番目)のCys、16番目(EUナンバリング133番目)のArg、103番目(EUナンバリング220番目)のCys、20番目(EUナンバリング137番目)のGlu、21番目(EUナンバリング138番目)のSer、147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArgおよび298番目(EUナンバリング419番目)のGlnが他のアミノ酸に置換されたアミノ酸配列を有する重鎖定常領域及び当該重鎖定常領域を含む抗体を提供する。
 置換後のアミノ酸は特に限定されないが、14番目のCysはSerに、16番目のArgはLysに、103番目のCysはSerに、20番目のGluはGlyに、21番目のSerはGlyに、147番目のHisはGlnに、234番目のArgはGlnに、298番目のGlnはGluに置換されることが好ましい。
 これらの置換を行うことにより、抗体の安定性、免疫原性および/または薬物動態を改善することが可能となる。特に、これらの置換によりIgG1よりも優れた薬物動態を有し、安定性、免疫原性にも優れた重鎖定常領域、及び当該重鎖定常領域を含む抗体を提供することが可能となった。
 本発明により提供される重鎖定常領域は少なくとも上述のアミノ酸置換が行われていればよく、同時に他のアミノ酸の改変(置換、欠損、付加および/または挿入など)や修飾がおこなわれていてもよい。
 さらに、本発明は、上述の重鎖定常領域にさらにアミノ酸置換を加えることにより、Fcγレセプターへの結合を低下させた重鎖定常領域を提供する。また本発明は当該重鎖定常領域を含む抗体を提供する。
 より具体的には、配列番号:24に記載のアミノ酸配列を有する重鎖定常領域(IgG2定常領域)において、14番目(EUナンバリング131番目)のCys、16番目(EUナンバリング133番目)のArg、103番目(EUナンバリング220番目)のCys、20番目(EUナンバリング137番目)のGlu、21番目(EUナンバリング138番目)のSer、147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArg、298番目(EUナンバリング419番目)のGln、209番目(EUナンバリング330番目)のAla、210番目(EUナンバリング331番目)のPro、218番目(EUナンバリング339番目)のThrが他のアミノ酸に置換されたアミノ酸配列を有する重鎖定常領域、及び当該重鎖定常領域を含む抗体を提供する。
 置換後のアミノ酸は特に限定されないが、14番目のCysはSerに、16番目のArgはLysに、103番目のCysはSerに、20番目のGluはGlyに、21番目のSerはGlyに、147番目のHisはGlnに、234番目のArgはGlnに、298番目のGlnはGluに、209番目のAlaはSerに、210番目のProはSerに、218番目ThrはAlaに置換されることが好ましい。
 これらの置換を行うことにより、抗体の安定性、ヘテロジェニティー、免疫原性、安全性および/または薬物動態を改善することが可能となる。
 本発明により提供される重鎖定常領域は少なくとも上述のアミノ酸置換が行われていればよく、同時に他のアミノ酸の改変(置換、欠損、付加および/または挿入など)や修飾がおこなわれていてもよい。
 さらに、本発明は上述のいずれかの重鎖定常領域において、325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysがさらに欠損したアミノ酸配列を有する重鎖定常領域、及び当該重鎖定常領域を含む抗体を提供する。これらのアミノ酸を欠損させることによりC末端のヘテロジェニティーを改善することが可能である。
 このようなアミノ酸の改変が行われた重鎖定常領域の具体的な例として、配列番号:30に記載のアミノ酸配列を有する重鎖定常領域(M66)、または配列番号:31に記載のアミノ酸配列を有する重鎖定常領域(M106)を挙げることができる。
 これらの重鎖定常領域は、Fcγレセプターへの結合活性の低下、免疫原性リスクの低減、ヒンジ領域のヘテロジェニティーの低減、C末端のヘテロジェニティーの低減、および/または薬物動態の向上という性質を有する、最適化された重鎖定常領域である。
 さらに、本発明においては上述のアミノ酸改変に加えて、さらに酸性での安定性が改善する為のアミノ酸改変を加えてもよい。
 酸性での安定性を改善する為のアミノ酸改変の具体例としては、例えば、配列番号:24に記載のアミノ酸配列を有するIgG2定常領域において、276番目(EUナンバリングの397番目)のMetを他のアミノ酸に置換する改変を挙げることができる。他のアミノ酸は特に限定されないが、Valであることが好ましい。配列番号:24に記載のアミノ酸配列において276番目(EUナンバリングの397番目)のMetが他のアミノ酸であることにより、抗体の酸性条件下での安定性を向上させることが可能である。
<アミノ酸改変κ鎖定常領域及び当該κ鎖定常領域を含む抗体>
 さらに、本発明はヒンジ領域のヘテロジェニティーを改善する為に用いることが可能な軽鎖定常領域を提供する。また本発明は当該軽鎖定常領域を含む抗体を提供する。
 より具体的にはヒトκ鎖定常領域において、102番目~106番目の位置に少なくとも1つのCysが存在するヒトκ鎖定常領域、及び当該ヒトκ鎖定常領域を含む抗体を提供する。例えば、配列番号:32に記載のアミノ酸配列を有するヒトκ鎖において、102番目~106番目の位置に少なくとも1つのCysが存在するとは、102番目のPhe~106番目のGluの位置に少なくとも1つのCysが存在することを意味する。
 ヒトκ鎖の102番目~106番目に含まれるCysの数は特に限定されないが、5個以下、好ましくは3個以下、より好ましくは2個以下、さらに好ましくは1個である。
 又、Cysが存在する位置は特に限定されないが、好ましくは104番目、105番目または106番目であり、より好ましくは105番目又は106番目であり、特に好ましくは106番目である。
 ヒトκ鎖の102番目~106番目に少なくとも1つのCysが存在するヒトκ鎖定常領域において、当該定常領域に含まれるアミノ酸の数は特に限定されないが、好ましくは102アミノ酸~107アミノ酸であり、より好ましくは105アミノ酸~106アミノ酸であり、さらに好ましくは106アミノ酸である。
 102番目~106番目の位置に少なくとも1つのCysが存在するヒトκ鎖定常領域を作製する方法としては、特に限定されないが、例えば以下の方法を挙げることが出来る。又、以下の挿入、置換、欠損を組み合わせることも可能である。
・102~106番目の位置に少なくとも1つのCysを挿入する
・102~106番目のアミノ酸の少なくとも1つをCysで置換する
・1~106番目のアミノ酸のうち1~5個のアミノ酸を欠損させる
 さらに、本発明はヒトκ鎖定常領域において、107番目の位置にCysが存在しないヒトκ鎖定常領域、及び当該ヒトκ鎖定常領域を含む抗体を提供する。例えば、配列番号:32に記載のアミノ酸配列を有するヒトκ鎖において、107番目にCysが存在しないとは、107番目のCysが欠損している、他のアミノ酸に置換されている、他のアミノ酸が挿入されている、他の位置に移動していること等を意味する。好ましいヒトκ鎖定常領域としては、107番目のCysが欠損している、他の位置に移動している、又は他のアミノ酸に置換されているヒトκ鎖定常領域を挙げることができる。
 本発明のヒトκ鎖定常領域の好ましい態様として、ヒトκ鎖定常領域において102番目~106番目の位置に少なくとも1つのCysが存在し、かつ107番目の位置にCysが存在しないヒトκ鎖定常領域を挙げることができる。
 このようなヒトκ鎖定常領域の好ましい例としては、例えば、1番目~106番目のアミノ酸の少なくとも1つが欠損しているヒトκ鎖定常領域を挙げることができる。例えば、配列番号:32に記載のアミノ酸配列を有するヒトκ鎖定常領域において、106番目のGluが欠損した場合、107番目のCysは106番目に移動することから、106番目にCysが存在し、107番目にCysが存在しないヒトκ鎖定常領域となる。アミノ酸が欠損する部位は特に限定されないが、102番目~106番目のアミノ酸の少なくとも1つが欠損することが好ましく、105番目又は106番目のアミノ酸が欠損することがさらに好ましい。
 又、欠損するアミノ酸の数は特に限定されず、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個のアミノ酸を欠損することができる。
 このようなヒトκ鎖定常領域の好ましい例としては、105番目のアミノ酸が欠損しているヒトκ鎖定常領域、または106番目のアミノ酸が欠損しているヒトκ鎖定常領域を挙げることができる。
 又、上述のヒトκ鎖定常領域の好ましい他の態様として、102番目~106番目のアミノ酸の少なくとも1つがCysに置換され、かつ107番目のCysが欠損または他のアミノ酸に置換されているヒトκ鎖定常領域を挙げることができる。Cysに置換されるアミノ酸の数は特に限定されないが、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個である。
 Cysに置換される部位は特に限定されないが、好ましい置換部位として、105番目または106番目を挙げることができる。
 このようなヒトκ鎖定常領域の好ましい例としては、105番目GlyがCysに置換され、かつ107番目のCysが欠損または他のアミノ酸に置換されたヒトκ鎖定常領域、または106番目のGluがCysに置換されかつ107番目のCysが欠損または他のアミノ酸に置換されたヒトκ鎖定常領域を挙げることができる。本発明のヒトκ鎖定常領域の具体的な例として、配列番号:33(k3)のアミノ酸配列を有するヒトκ鎖定常領域、または配列番号:34(k4)のアミノ酸配列を有するヒトκ鎖定常領域を挙げることができる。
 本発明のヒトκ鎖定常領域は、上述のアミノ酸の改変に加えて、他のアミノ酸改変が行われてもよい。上述のアミノ酸改変が行われる限り、さらに他のアミノ酸の改変や修飾が行われたヒトκ鎖定常領域も、本発明のヒトκ鎖定常領域に含まれる。
 本発明のヒトκ鎖定常領域を用いることにより、ヒンジ領域のヘテロジェニティーを減らすことが可能となる。特に、配列番号:30(M66)又は配列番号:31(M106)のアミノ酸配列を有する重鎖定常領域のように、EUナンバリング219又はEUナンバリング220のいずれか一方のみがCysとなっている重鎖定常領域(例えば、EUナンバリング219のみがCysとなっている重鎖定常領域)と本発明のκ鎖定常領域を組み合わせると効果的である。
<アミノ酸改変λ鎖定常領域及び当該λ鎖定常領域を含む抗体>
 さらに、本発明はヒンジ領域のヘテロジェニティーを改善する為に用いることが可能な軽鎖定常領域を提供する。また本発明は当該軽鎖定常領域を含む抗体を提供する。
 より具体的にはヒトλ鎖定常領域において、99番目~103番目の位置に少なくとも1つのCysが存在するヒトλ鎖定常領域、及び当該ヒトλ鎖定常領域を含む抗体を提供する。例えば、配列番号:37に記載のアミノ酸配列を有するヒトλ鎖において、99番目~103番目の位置に少なくとも1つのCysが存在するとは、99番目のVal~103番目のGluの位置に少なくとも1つのCysが存在することを意味する。
 ヒトλ鎖の99番目~103番目に含まれるCysの数は特に限定されないが、5個以下、好ましくは3個以下、より好ましくは2個以下、さらに好ましくは1個である。
 又、Cysが存在する位置は特に限定されないが、好ましくは101番目、102番目または103番目であり、より好ましくは102番目又は103番目であり、特に好ましくは103番目である。
 ヒトλ鎖の99番目~103番目に少なくとも1つのCysが存在するヒトλ鎖定常領域において、当該定常領域に含まれるアミノ酸の数は特に限定されないが、好ましくは100アミノ酸~103アミノ酸であり、より好ましくは102アミノ酸~103アミノ酸であり、さらに好ましくは103アミノ酸である。
 99番目~103番目の位置に少なくとも1つのCysが存在するヒトλ鎖定常領域を作製する方法としては、特に限定されないが、例えば以下の方法を挙げることが出来る。又、以下の挿入、置換、欠損を組み合わせることも可能である。
・99~103番目の位置に少なくとも1つのCysを挿入する
・99~103番目のアミノ酸の少なくとも1つをCysで置換する
・1~103番目のアミノ酸のうち1~5個のアミノ酸を欠損させる。
 さらに、本発明はヒトλ鎖定常領域において、104番目の位置にCysが存在しないヒトλ鎖定常領域、及び当該ヒトλ鎖定常領域を含む抗体を提供する。例えば、配列番号:37に記載のアミノ酸配列を有するヒトλ鎖において、104番目にCysが存在しないとは、104番目のCysが欠損している、他のアミノ酸に置換されている、他のアミノ酸が挿入されている、他の位置に移動していること等を意味する。好ましいヒトλ鎖定常領域としては、104番目のCysが欠損している、他の位置に移動している、又は他のアミノ酸に置換されているヒトλ鎖定常領域を挙げることができる。
 本発明のヒトλ鎖定常領域の好ましい態様として、ヒトλ鎖定常領域において99番目~103番目の位置に少なくとも1つのCysが存在し、かつ104番目の位置にCysが存在しないヒトλ鎖定常領域を挙げることができる。
 このようなヒトλ鎖定常領域の好ましい例としては、例えば、1番目~103番目のアミノ酸の少なくとも1つが欠損しているヒトλ鎖定常領域を挙げることができる。例えば、配列番号:37に記載のアミノ酸配列を有するヒトλ鎖定常領域において、103番目のGluが欠損した場合、104番目のCysは103番目に移動することから、103番目にCysが存在し、104番目にCysが存在しないヒトλ鎖定常領域となる。アミノ酸が欠損する部位は特に限定されないが、99番目~103番目のアミノ酸の少なくとも1つが欠損することが好ましく、102番目又は103番目のアミノ酸が欠損することがさらに好ましい。
 又、欠損するアミノ酸の数は特に限定されず、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個のアミノ酸を欠損することができる。
 このようなヒトλ鎖定常領域の好ましい例としては、102番目のアミノ酸が欠損しているヒトλ鎖定常領域、または103番目のアミノ酸が欠損しているヒトλ鎖定常領域を挙げることができる。
 又、上述のヒトλ鎖定常領域の好ましい他の態様として、99番目~103番目のアミノ酸の少なくとも1つがCysに置換され、かつ104番目のCysが欠損または他のアミノ酸に置換されているヒトλ鎖定常領域を挙げることができる。Cysに置換されるアミノ酸の数は特に限定されないが、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個である。
 Cysに置換される部位は特に限定されないが、好ましい置換部位として、102番目または103番目を挙げることができる。
 このようなヒトλ鎖定常領域の好ましい例としては、102番目のThrがCysに置換され、かつ104番目のCysが欠損または他のアミノ酸に置換されたヒトλ鎖定常領域、または103番目のGluがCysに置換されかつ104番目のCysが欠損または他のアミノ酸に置換されたヒトλ鎖定常領域を挙げることができる。本発明のヒトλ鎖定常領域の具体的な例として、配列番号:38のアミノ酸配列を有するヒトλ鎖定常領域、または配列番号:39のアミノ酸配列を有するヒトλ鎖定常領域を挙げることができる。
 本発明のヒトλ鎖定常領域は、上述のアミノ酸の改変に加えて、他のアミノ酸改変が行われてもよい。上述のアミノ酸改変が行われる限り、さらに他のアミノ酸の改変や修飾が行われたヒトλ鎖定常領域も、本発明のヒトλ鎖定常領域に含まれる。
 本発明のヒトλ鎖定常領域を用いることにより、ヒンジ領域のヘテロジェニティーを減らすことが可能となる。特に、配列番号:30(M66)又は配列番号:31(M106)の配列を有する重鎖定常領域のようにEUナンバリング219又はEUナンバリング220のいずれか一方のみがCysとなっている重鎖定常領域(例えば、EUナンバリング219のみがCysとなっている重鎖定常領域)と本発明のヒトλ鎖定常領域を組み合わせると効果的である。
 なお、特定の理論に拘束されるものではないが、本発明のヒトκ鎖定常領域またはヒトλ鎖定常領域を用いることによりヒンジ領域のヘテロジェニティーが減少する理由として、例えばκ鎖を例として、以下のように考えることも可能である。
 図15に示すように、ヒトκ鎖定常領域の107番目の位置にあるシステインは、抗体に含まれる2つのH鎖のEUナンバリング219番目のシステインの両方とジスルフィド結合を形成することができる。この2種類のジスルフィド結合の存在により、ヒンジ領域のヘテロジェニティーが発生すると考えられる。
 一方、本発明のヒトκ鎖定常領域のようにシステインの位置をN末端側に移動させることにより、このシステインと一方のH鎖のEUナンバリング219番目のシステインとの距離が遠くなり、2つのH鎖のうち片一方のH鎖に存在するEUナンバリング219番目のシステインとしかジスルフィド結合を形成できなくなる。その結果としてヒンジ領域のヘテロジェニティーが減少すると考えられる(図16参照)。つまり、ヒトκ鎖定常領域のシステインと一方のH鎖EUナンバリング219番目のシステインとの距離を遠くすることにより、ヒンジ領域のヘテロジェニティーを軽減できると考えられる。同様の方法により、ヒトλ鎖定常領域においても、一方のH鎖EUナンバリング219番目のシステインとの距離を遠くすることにより、ヒンジ領域のヘテロジェニティーを軽減できると考えられる。
<ヒト以外の動物由来のκ鎖定常領域及び当該κ鎖定常領域を含む抗体>
 さらに、本発明の軽鎖定常領域の改変は、ヒト以外の動物由来の軽鎖定常領域を対象とすることも可能である。ヒト以外の動物由来の軽鎖定常領域の例としては、マウス抗体のκ鎖定常領域(配列番号:40)、ラット抗体のκ鎖定常領域(配列番号:41)、ラビット(ウサギ)抗体のκ鎖定常領域(配列番号:42または配列番号:43)などを挙げることができるがこれらに限定されない。
 従って本発明は、マウス抗体のκ鎖定常領域またはラット抗体のκ鎖定常領域において、102番目~106番目の位置に少なくとも1つのCysが存在するマウスκ鎖定常領域またはラットκ鎖定常領域、及び当該定常領域を含む抗体を提供する。例えば、配列番号:40に記載のアミノ酸配列を有するマウスκ鎖定常領域または配列番号:41に記載のアミノ酸配列を有するラットκ鎖定常領域において、102番目~106番目の位置に少なくとも1つのCysが存在するとは、102番目のPhe~106番目のGluの位置に少なくとも1つのCysが存在することを意味する。
 また本発明は、ラビット抗体のκ鎖定常領域(配列番号:42)において、99番目~103番目の位置に少なくとも1つのCysが存在するラビットκ鎖定常領域、及び当該ラビットκ鎖定常領域を含む抗体を提供する。例えば、配列番号:42に記載のアミノ酸配列を有するラビットκ鎖において、99番目~103番目の位置に少なくともCysが存在するとは、99番目のPhe~103番目のAspの位置に少なくとも1つのCysが存在することを意味する。
 また本発明は、ラビット抗体のκ鎖定常領域(配列番号:43)において、101番目~105番目の位置に少なくとも1つのCysが存在するラビットκ鎖定常領域、及び当該ラビットκ鎖定常領域を含む抗体を提供する。例えば、配列番号:43に記載のアミノ酸配列を有するラビットκ鎖において、101番目~105番目の位置に少なくともCysが存在するとは、101番目のPhe~105番目のAspの位置に少なくとも1つのCysが存在することを意味する。
 マウスκ鎖定常領域の102番目~106番目、ラットκ鎖定常領域の102番目~106番目、ラビットκ鎖定常領域(配列番号:42)の99番目~103番目、またはラビットκ鎖定常領域(配列番号:43)の101番目~105番目に含まれるCysの数は特に限定されないが、5個以下、好ましくは3個以下、より好ましくは2個以下、さらに好ましくは1個である。
 又、Cysが存在する位置は特に限定されないが、マウスκ鎖定常領域またはラットκ鎖定常領域の場合、好ましくは104番目、105番目または106番目であり、より好ましくは105番目又は106番目であり、特に好ましくは106番目である。
 ラビットκ鎖定常領域(配列番号:42)の場合、好ましくは101番目、102番目または103番目であり、より好ましくは102番目又は103番目であり、特に好ましくは103番目である。
 ラビットκ鎖定常領域(配列番号:43)の場合、好ましくは103番目、104番目または105番目であり、より好ましくは104番目又は105番目であり、特に好ましくは105番目である。
 これらのκ鎖定常領域において、当該定常領域に含まれるアミノ酸の数は特に限定されないが、マウスκ鎖定常領域またはラットκ鎖定常領域の場合、好ましくは102アミノ酸~107アミノ酸であり、より好ましくは105アミノ酸~106アミノ酸であり、さらに好ましくは106アミノ酸である。
 又、ラビットκ鎖定常領域(配列番号:42)の場合、好ましくは99アミノ酸~104アミノ酸であり、より好ましくは102アミノ酸~103アミノ酸であり、さらに好ましくは103アミノ酸である。
 又、ラビットκ鎖定常領域(配列番号:43)の場合、好ましくは101アミノ酸~106アミノ酸であり、より好ましくは104アミノ酸~105アミノ酸であり、さらに好ましくは105アミノ酸である
 102番目~106番目の位置に少なくとも1つのCysが存在するマウスまたはラットκ鎖定常領域を作製する方法としては、特に限定されないが、例えば以下の方法を挙げることが出来る。又、以下の挿入、置換、欠損を組み合わせることも可能である。
・102~106番目の位置に少なくとも1つのCysを挿入する
・102~106番目のアミノ酸の少なくとも1つをCysで置換する
・1~106番目のアミノ酸のうち1~5個のアミノ酸を欠損させる
 又、99番目~103番目の位置に少なくとも1つのCysが存在するラビットκ鎖定常領域を作製する方法としては、特に限定されないが、例えば以下の方法を挙げることが出来る。又、以下の挿入、置換、欠損を組み合わせることも可能である。
・99~103番目の位置に少なくとも1つのCysを挿入する
・99~103番目のアミノ酸の少なくとも1つをCysで置換する
・1~103番目のアミノ酸のうち1~5個のアミノ酸を欠損させる
 又、101番目~105番目の位置に少なくとも1つのCysが存在するラビットκ鎖定常領域を作製する方法としては、特に限定されないが、例えば以下の方法を挙げることが出来る。又、以下の挿入、置換、欠損を組み合わせることも可能である。
・101~105番目の位置に少なくとも1つのCysを挿入する
・101~105番目のアミノ酸の少なくとも1つをCysで置換する
・1~105番目のアミノ酸のうち1~5個のアミノ酸を欠損させる
 さらに、本発明はマウスκ鎖定常領域またはラットκ鎖定常領域において、107番目の位置にCysが存在しないマウスκ鎖定常領域またはラットκ鎖定常領域、及び当該κ鎖定常領域を含む抗体を提供する。例えば、配列番号:40に記載のアミノ酸配列を有するマウスκ鎖定常領域または配列番号:41に記載のアミノ酸配列を有するラットκ鎖定常領域において、107番目にCysが存在しないとは、107番目のCysが欠損している、他のアミノ酸に置換されている、他のアミノ酸が挿入されている、他の位置に移動していること等を意味する。好ましいκ鎖定常領域としては、107番目のCysが欠損している、他の位置に移動している、又は他のアミノ酸に置換されているκ鎖定常領域を挙げることができる。
 本発明のκ鎖定常領域の好ましい態様として、κ鎖定常領域において102番目~106番目の位置に少なくとも1つのCysが存在し、かつ107番目の位置にCysが存在しないκ鎖定常領域を挙げることができる。
 このようなκ鎖定常領域の好ましい例としては、例えば、1番目~106番目のアミノ酸の少なくとも1つが欠損しているκ鎖定常領域を挙げることができる。例えば、配列番号:40または41に記載のアミノ酸配列を有するκ鎖定常領域において、106番目のGluが欠損した場合、107番目のCysは106番目に移動することから、106番目にCysが存在し、107番目にCysが存在しないκ鎖定常領域となる。アミノ酸が欠損する部位は特に限定されないが、102番目~106番目のアミノ酸の少なくとも1つが欠損することが好ましく、105番目又は106番目のアミノ酸が欠損することがさらに好ましい。
 又、欠損するアミノ酸の数は特に限定されず、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個のアミノ酸を欠損することができる。
 このようなκ鎖定常領域の好ましい例としては、105番目のアミノ酸が欠損しているκ鎖定常領域、または106番目のアミノ酸が欠損しているκ鎖定常領域を挙げることができる。
 又、上述の、107番目の位置にCysが存在しないマウスκ鎖定常領域またはラットκ鎖定常領域の好ましい他の態様として、102番目~106番目のアミノ酸の少なくとも1つがCysに置換され、かつ107番目のCysが欠損または他のアミノ酸に置換されているκ鎖定常領域を挙げることができる。Cysに置換されるアミノ酸の数は特に限定されないが、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個である。
 Cysに置換される部位は特に限定されないが、好ましい置換部位として、105番目または106番目を挙げることができる。
 このようなκ鎖定常領域の好ましい例としては、105番目のAsnがCysに置換され、かつ107番目のCysが欠損または他のアミノ酸に置換されたヒトκ鎖定常領域、または106番目のGluがCysに置換されかつ107番目のCysが欠損または他のアミノ酸に置換されたκ鎖定常領域を挙げることができる。
 本発明のマウスκ鎖定常領域またはラットκ鎖定常領域は、上述のアミノ酸の改変に加えて、他のアミノ酸改変が行われてもよい。上述のアミノ酸改変が行われる限り、さらに他のアミノ酸の改変や修飾が行われたκ鎖定常領域も、本発明のκ鎖定常領域に含まれる。
 さらに、本発明はラビットκ鎖定常領域(配列番号:42)において、104番目の位置にCysが存在しないラビットκ鎖定常領域、及び当該κ鎖定常領域を含む抗体を提供する。例えば、配列番号:42に記載のアミノ酸配列を有するラビットκ鎖定常領域において、104番目にCysが存在しないとは、104番目のCysが欠損している、他のアミノ酸に置換されている、他のアミノ酸が挿入されている、他の位置に移動していること等を意味する。好ましいκ鎖定常領域としては、104番目のCysが欠損している、他の位置に移動している、又は他のアミノ酸に置換されているκ鎖定常領域を挙げることができる。
 本発明のκ鎖定常領域の好ましい態様として、κ鎖定常領域において99番目~103番目の位置に少なくとも1つのCysが存在し、かつ104番目の位置にCysが存在しないκ鎖定常領域を挙げることができる。
 このようなκ鎖定常領域の好ましい例としては、例えば、1番目~103番目のアミノ酸の少なくとも1つが欠損しているκ鎖定常領域を挙げることができる。例えば、配列番号:42に記載のアミノ酸配列を有するκ鎖定常領域において、103番目のAspが欠損した場合、104番目のCysは103番目に移動することから、103番目にCysが存在し、104番目にCysが存在しないκ鎖定常領域となる。アミノ酸が欠損する部位は特に限定されないが、99番目~103番目のアミノ酸の少なくとも1つが欠損することが好ましく、102番目又は103番目のアミノ酸が欠損することがさらに好ましい。
 又、欠損するアミノ酸の数は特に限定されず、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個のアミノ酸を欠損することができる。
 このようなκ鎖定常領域の好ましい例としては、102番目のアミノ酸が欠損しているκ鎖定常領域、または103番目のアミノ酸が欠損しているκ鎖定常領域を挙げることができる。
 又、上述の、104番目の位置にCysが存在しないラビットκ鎖定常領域の好ましい他の態様として、99番目~103番目のアミノ酸の少なくとも1つがCysに置換され、かつ104番目のCysが欠損または他のアミノ酸に置換されているκ鎖定常領域を挙げることができる。Cysに置換されるアミノ酸の数は特に限定されないが、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個である。
 Cysに置換される部位は特に限定されないが、好ましい置換部位として、102番目または103番目を挙げることができる。
 このようなκ鎖定常領域の好ましい例としては、102番目のGlyがCysに置換され、かつ104番目のCysが欠損または他のアミノ酸に置換されたヒトκ鎖定常領域、または103番目のAspがCysに置換されかつ104番目のCysが欠損または他のアミノ酸に置換されたκ鎖定常領域を挙げることができる。
 本発明のラビットκ鎖定常領域は、上述のアミノ酸の改変に加えて、他のアミノ酸改変が行われてもよい。上述のアミノ酸改変が行われる限り、さらに他のアミノ酸の改変や修飾が行われたκ鎖定常領域も、本発明のκ鎖定常領域に含まれる。
 さらに、本発明はラビットκ鎖定常領域(配列番号:43)において、106番目の位置にCysが存在しないラビットκ鎖定常領域、及び当該κ鎖定常領域を含む抗体を提供する。例えば、配列番号:43に記載のアミノ酸配列を有するラビットκ鎖定常領域において、106番目にCysが存在しないとは、106番目のCysが欠損している、他のアミノ酸に置換されている、他のアミノ酸が挿入されている、他の位置に移動していること等を意味する。好ましいκ鎖定常領域としては、106番目のCysが欠損している、他の位置に移動している、又は他のアミノ酸に置換されているκ鎖定常領域を挙げることができる。
 本発明のκ鎖定常領域の好ましい態様として、κ鎖定常領域において101番目~105番目の位置に少なくとも1つのCysが存在し、かつ106番目の位置にCysが存在しないκ鎖定常領域を挙げることができる。
 このようなκ鎖定常領域の好ましい例としては、例えば、1番目~105番目のアミノ酸の少なくとも1つが欠損しているκ鎖定常領域を挙げることができる。例えば、配列番号:43に記載のアミノ酸配列を有するκ鎖定常領域において、105番目のAspが欠損した場合、106番目のCysは105番目に移動することから、105番目にCysが存在し、106番目にCysが存在しないκ鎖定常領域となる。アミノ酸が欠損する部位は特に限定されないが、101番目~105番目のアミノ酸の少なくとも1つが欠損することが好ましく、104番目又は105番目のアミノ酸が欠損することがさらに好ましい。
 又、欠損するアミノ酸の数は特に限定されず、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個のアミノ酸を欠損することができる。
 このようなκ鎖定常領域の好ましい例としては、104番目のアミノ酸が欠損しているκ鎖定常領域、または105番目のアミノ酸が欠損しているκ鎖定常領域を挙げることができる。
 又、上述の、106番目の位置にCysが存在しないラビットκ鎖定常領域の好ましい他の態様として、101番目~105番目のアミノ酸の少なくとも1つがCysに置換され、かつ106番目のCysが欠損または他のアミノ酸に置換されているκ鎖定常領域を挙げることができる。Cysに置換されるアミノ酸の数は特に限定されないが、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個である。
 Cysに置換される部位は特に限定されないが、好ましい置換部位として、104番目または105番目を挙げることができる。
 このようなκ鎖定常領域の好ましい例としては、104番目GlyがCysに置換され、かつ106番目のCysが欠損または他のアミノ酸に置換されたヒトκ鎖定常領域、または105番目のAspがCysに置換されかつ106番目のCysが欠損または他のアミノ酸に置換されたκ鎖定常領域を挙げることができる。
 本発明のラビットκ鎖定常領域は、上述のアミノ酸の改変に加えて、他のアミノ酸改変が行われてもよい。上述のアミノ酸改変が行われる限り、さらに他のアミノ酸の改変や修飾が行われたκ鎖定常領域も、本発明のκ鎖定常領域に含まれる。
 さらに、本発明は上述のいずれかに記載のアミノ酸の改変を有する重鎖定常領域を含む抗体を提供する。又、本発明は上述のいずれかに記載のアミノ酸の改変を有する軽鎖定常領域を含む抗体を提供する。さらに本発明は、上述のいずれかに記載のアミノ酸の改変を有する重鎖定常領域、及び、上述のいずれかに記載のアミノ酸の改変を有する軽鎖定常領域を含む抗体を提供する。本発明の抗体におけるアミノ酸の改変には、本明細書の記載から特定可能な全ての改変、及びその組み合わせが含まれる。
 さらに、本発明は上述のいずれかに記載のアミノ酸改変を有する軽鎖定常領を含む軽鎖、および少なくとも一つのCysが他のアミノ酸に置換された重鎖定常領域を含む抗体を提供する。重鎖定常領域は特に限定されないが、IgG2定常領域であることが好ましい。重鎖定常領域がIgG2定常領域の場合、置換されるHisは特に限定されないが、例えば、EUナンバリング131(配列番号:24の14番目)、EUナンバリング219(配列番号:24の102番目)、EUナンバリング220(配列番号:24の103番目)のCysの少なくとも1つが他のアミノ酸に置換された定常領域を挙げることができる。2つのCysが他のアミノ酸に置換される場合、その組み合わせは特に限定されず、EUナンバリング131とEUナンバリング219の組み合わせ、EUナンバリング131とEUナンバリング220の組み合わせ等を挙げることができる。
 さらに、本発明は上述のいずれかに記載のアミノ酸改変を有する軽鎖定常領域を含む軽鎖、およびEUナンバリング219(配列番号:24の102番目)がCysであり、EUナンバリング220(配列番号:24の103番目)がCysでない重鎖定常領域を含む重鎖を含む抗体を提供する。重鎖定常領域は特に限定されないが、好ましくはIgG2定常領域、より好ましくはM66又はM106である。抗体定常領域は1または複数のアミノ酸(例えば、20アミノ酸以内、10アミノ酸以内など)が置換、欠失、付加および/または挿入されていてもよい。
 本発明の抗体を構成する可変領域は、任意の抗原を認識する可変領域であることが出来る。本発明における好ましい可変領域として、抗原の中和作用を有する抗体の可変領域を示すことが出来る。たとえば、IL6受容体、IL31受容体、RANKLの中和作用を有する抗体の可変領域を、本発明の抗体を構成する可変領域とすることが出来る。
 本発明の抗体は上述の抗体定常領域を有する限り、抗原の種類、抗体の由来などは限定されず、いかなる抗体でもよい。抗体の由来としては、特に限定されないが、ヒト抗体、マウス抗体、ラット抗体、ウサギ抗体などを挙げることができる。又、本発明の抗体はキメラ抗体、ヒト化抗体、完全ヒト化抗体等であってもよい。本発明の抗体の好ましい態様として、ヒト化抗体を挙げることができる。
 本発明の抗体分子は、通常、重鎖と軽鎖とを含む。重鎖は、定常領域に加え、可変領域を含むことができる。可変領域は、ヒトのみならずヒト以外の動物種に由来する可変部を含むこともできる。更に、マウスなどのヒト以外の種に由来する可変部からCDRを移植して可変部をヒト化することもできる。重鎖と軽鎖で構成される抗体分子は、オリゴマーであることもできる。具体的には、1量体、2量体、あるいはそれ以上のオリゴマーであってもよい。
 また、上述の抗体定常領域は生理活性ペプチド、抗原結合ペプチド等の様々な分子と結合させて、融合蛋白質とすることも可能である。
 また本発明の抗体には、上述のいずれかに記載の定常領域を含む抗体であればその修飾物も含まれる。
 抗体の修飾物の例としては、例えば、ポリエチレングリコール(PEG)や細胞障害性物質等の各種分子と結合させた抗体を挙げることができる。このような抗体修飾物は、本発明の抗体に化学的な修飾を施すことによって得ることができる。抗体の修飾方法はこの分野においてすでに確立されている。
 さらに、本発明の抗体は二重特異性抗体(bispecific antibody)であってもよい。二重特異性抗体とは、異なるエピトープを認識する可変領域を同一の抗体分子内に有する抗体をいうが、当該エピトープは異なる分子中に存在していてもよいし、同一の分子中に存在していてもよい。
 上述の抗体定常領域は任意の抗原に対する抗体の定常領域として使用することが可能であり、抗原は特に限定されない。
 本発明の抗体は当業者に公知の方法で作製することが可能である。例えば、1又は複数のアミノ酸残基を目的の他のアミノ酸に置換する方法、または、1又は複数のアミノ酸残基を欠損される方法としては、例えば、部位特異的変異誘発法(Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis. Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors.Methods Enzymol. 100, 468-500、Kramer,W, Drutsa,V, Jansen,HW, Kramer,B, Pflugfelder,M, and Fritz,HJ(1984) The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 12, 9441-9456、Kramer W, and Fritz HJ(1987) Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods. Enzymol. 154, 350-367、Kunkel,TA(1985) Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc Natl Acad Sci U S A. 82, 488-492)が挙げられる。該方法を用いて、抗体の定常領域の所望のアミノ酸を目的の他のアミノ酸に置換することができる。また1又は複数のアミノ酸残基を欠損させることが出来る。
 抗体を取得する為の別の態様としては、まず、当業者に周知な方法によって、目的の抗原に結合する抗体を得る。取得された抗体が非ヒト動物抗体であれば、ヒト化することもできる。抗体の結合活性は当業者に公知の方法で測定することができる。次いで、抗体の定常領域中の1又は複数のアミノ酸残基を、目的の他のアミノ酸に置換または欠損する。
 本発明は、以下の(a)及び(b)の工程を含む、重鎖定常領域のアミノ酸残基および/または軽鎖定常領域のアミノ酸残基が改変された抗体の製造方法に関する。
(a)定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損された重鎖および/または定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損された軽鎖をコードするDNAを発現させる工程
(b)工程(a)の発現産物を回収する工程
 重鎖定常領域のアミノ酸残基の改変としては、例えば以下が挙げられるがこれらに限定されない。
(1)IgG2定常領域(配列番号:24のアミノ酸配列)において、14番目(EUナンバリング131番目)のCysをSerに、16番目(EUナンバリング133番目)のArgをLysに、103番目(EUナンバリング220番目)のCysをSerに、20番目(EUナンバリング137番目)のGluをGlyに、21番目(EUナンバリング138番目)のSerをGlyに、147番目(EUナンバリング268番目)のHisをGlnに、234番目(EUナンバリング355番目)のArgをGlnに、298番目(EUナンバリング419番目)のGlnをGluに置換する。このような置換により、安定性が向上した抗体、免疫原性および/または薬物動態が改善された抗体を製造することが可能である。
(2)IgG2定常領域(配列番号:24のアミノ酸配列)において、14番目(EUナンバリング131番目)のCysをSerに、16番目(EUナンバリング133番目)のArgをLysに、103番目(EUナンバリング220番目)のCysをSerに、20番目(EUナンバリング137番目)のGluをGlyに、21番目(EUナンバリング138番目)のSerをGlyに、147番目(EUナンバリング268番目)のHisをGlnに、234番目(EUナンバリング355番目)のArgをGlnに、298番目(EUナンバリング419番目)のGlnをGluに、209番目(EUナンバリング330番目)のAlaをSerに、210番目(EUナンバリング331番目)のProをSerに、218番目(EUナンバリング339番目)のThrをAlaに置換する。このような置換により、Fcγレセプターへの結合を低下させた抗体を製造することが可能である。
(3)IgG2定常領域(配列番号:24のアミノ酸配列)において、325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysを欠損させる。このような欠損により、C末端のヘテロジェニティーが改善された抗体を製造することが可能である。
(4)IgG2定常領域(配列番号:24のアミノ酸配列)において、276番目(EUナンバリングの397番目)のMetをValに置換する。このような置換により、酸性条件下での安定性が向上した抗体を製造することが可能である。
 また軽鎖定常領域のアミノ酸残基の改変としては、例えば以下が挙げられるがこれらに限定されない。以下の改変により、ヒンジ領域のヘテロジェニティーを減らすことが可能である。
(1)ヒトκ鎖定常領域(配列番号:32のアミノ酸配列)、マウスκ鎖定常領域(配列番号:40のアミノ酸配列)またはラットκ鎖定常領域(配列番号:41のアミノ酸配列)において、102番目~106番目に少なくとも1つのCysが存在するようにアミノ酸を置換または欠損させる。
(2)ヒトκ鎖定常領域(配列番号:32のアミノ酸配列)、マウスκ鎖定常領域(配列番号:40のアミノ酸配列)またはラットκ鎖定常領域(配列番号:41のアミノ酸配列)において、107番目の位置にCysが存在しないようにアミノ酸を置換または欠損させる。
(3)ヒトκ鎖定常領域(配列番号:32のアミノ酸配列)、マウスκ鎖定常領域(配列番号:40のアミノ酸配列)またはラットκ鎖定常領域(配列番号:41のアミノ酸配列)において、102番目~106番目に少なくとも1つのCysが存在し、かつ107番目の位置にCysが存在しないようにアミノ酸を置換または欠損させる。
(4)ヒトκ鎖定常領域(配列番号:32のアミノ酸配列)、マウスκ鎖定常領域(配列番号:40のアミノ酸配列)またはラットκ鎖定常領域(配列番号:41のアミノ酸配列)において、1番目~106番目のアミノ酸の少なくとも1つを欠損させる。
(5)ヒトκ鎖定常領域(配列番号:32のアミノ酸配列)、マウスκ鎖定常領域(配列番号:40のアミノ酸配列)またはラットκ鎖定常領域(配列番号:41のアミノ酸配列)において、102番目~106番目のアミノ酸の少なくとも1つを欠損させる。
(6)ヒトκ鎖定常領域(配列番号:32のアミノ酸配列)、マウスκ鎖定常領域(配列番号:40のアミノ酸配列)またはラットκ鎖定常領域(配列番号:41のアミノ酸配列)において、105番目のアミノ酸を欠損させる。
(7)ヒトκ鎖定常領域(配列番号:32のアミノ酸配列)、マウスκ鎖定常領域(配列番号:40のアミノ酸配列)またはラットκ鎖定常領域(配列番号:41のアミノ酸配列)において、106番目のアミノ酸を欠損させる。
(8)ヒトκ鎖定常領域(配列番号:32のアミノ酸配列)、マウスκ鎖定常領域(配列番号:40のアミノ酸配列)またはラットκ鎖定常領域(配列番号:41のアミノ酸配列)において、102番目~106番目のアミノ酸の少なくとも1つをCysに置換する。
(9)ヒトκ鎖定常領域(配列番号:32のアミノ酸配列)、マウスκ鎖定常領域(配列番号:40のアミノ酸配列)またはラットκ鎖定常領域(配列番号:41のアミノ酸配列)において、102番目~106番目のアミノ酸の少なくとも1つがCysを置換し、かつ107番目のCysを他のアミノ酸に置換する又は欠損させる。
(10)ヒトλ鎖定常領域(配列番号:37のアミノ酸配列)またはラビットκ鎖定常領域(配列番号:42のアミノ酸配列)において、99番目~103番目に少なくとも1つのCysが存在するようにアミノ酸を置換または欠損させる。
(11)ヒトλ鎖定常領域(配列番号:37のアミノ酸配列)またはラビットκ鎖定常領域(配列番号:42のアミノ酸配列)において、104番目の位置にCysが存在しないようにアミノ酸を置換または欠損させる。
(12)ヒトλ鎖定常領域(配列番号:37のアミノ酸配列)またはラビットκ鎖定常領域(配列番号:42のアミノ酸配列)において、99番目~103番目に少なくとも1つのCysが存在し、かつ104番目の位置にCysが存在しないようにアミノ酸を置換または欠損させる。
(13)ヒトλ鎖定常領域(配列番号:37のアミノ酸配列)またはラビットκ鎖定常領域(配列番号:42のアミノ酸配列)において、1番目~103番目のアミノ酸の少なくとも1つを欠損させる。
(14)ヒトλ鎖定常領域(配列番号:37のアミノ酸配列)またはラビットκ鎖定常領域(配列番号:42のアミノ酸配列)において、99番目~103番目のアミノ酸の少なくとも1つを欠損させる。
(15)ヒトλ鎖定常領域(配列番号:37のアミノ酸配列)またはラビットκ鎖定常領域(配列番号:42のアミノ酸配列)において、102番目のアミノ酸を欠損させる。
(16)ヒトλ鎖定常領域(配列番号:37のアミノ酸配列)またはラビットκ鎖定常領域(配列番号:42のアミノ酸配列)において、103番目のアミノ酸を欠損させる。
(17)ヒトλ鎖定常領域(配列番号:37のアミノ酸配列)またはラビットκ鎖定常領域(配列番号:42のアミノ酸配列)において、99番目~103番目のアミノ酸の少なくとも1つをCysに置換する。
(18)ヒトλ鎖定常領域(配列番号:37のアミノ酸配列)またはラビットκ鎖定常領域(配列番号:42のアミノ酸配列)において、99番目~103番目のアミノ酸の少なくとも1つがCysを置換し、かつ104番目のCysを他のアミノ酸に置換する又は欠損させる。
(19)ラビットκ鎖定常領域(配列番号:43のアミノ酸配列)において、101番目~105番目に少なくとも1つのCysが存在するようにアミノ酸を置換または欠損させる。
(20)ラビットκ鎖定常領域(配列番号:43のアミノ酸配列)において、106番目の位置にCysが存在しないようにアミノ酸を置換または欠損させる。
(21)ラビットκ鎖定常領域(配列番号:43のアミノ酸配列)において、101番目~105番目に少なくとも1つのCysが存在し、かつ106番目の位置にCysが存在しないようにアミノ酸を置換または欠損させる。
(22)ラビットκ鎖定常領域(配列番号:43のアミノ酸配列)において、1番目~105番目のアミノ酸の少なくとも1つを欠損させる。
(23)ラビットκ鎖定常領域(配列番号:43のアミノ酸配列)において、101番目~105番目のアミノ酸の少なくとも1つを欠損させる。
(24)ラビットκ鎖定常領域(配列番号:43のアミノ酸配列)において、104番目のアミノ酸を欠損させる。
(25)ラビットκ鎖定常領域(配列番号:43のアミノ酸配列)において、105番目のアミノ酸を欠損させる。
(26)ラビットκ鎖定常領域(配列番号:43のアミノ酸配列)において、101番目~105番目のアミノ酸の少なくとも1つをCysに置換する。
(27)ラビットκ鎖定常領域(配列番号:43のアミノ酸配列)において、101番目~105番目のアミノ酸の少なくとも1つがCysを置換し、かつ106番目のCysを他のアミノ酸に置換する又は欠損させる。
 また本発明は、本発明のアミノ酸の改変を有する重鎖定常領域を含む抗体重鎖をコードするポリヌクレオチド及び/又は本発明のアミノ酸の改変を有する軽鎖定常領域を含む抗体軽鎖をコードするポリヌクレオチドが導入されたベクターを含む宿主細胞を培養する工程を含む、抗体を製造する方法を提供する。
 より具体的には、以下の工程を含む、本発明のアミノ酸の改変を有する重鎖定常領域及び/又は本発明のアミノ酸の改変を有する軽鎖定常領域を含む抗体の製造方法を提供する。
(a)本発明のアミノ酸の改変を有する重鎖定常領域を含む抗体重鎖をコードするポリヌクレオチド及び/又は本発明のアミノ酸の改変を有する軽鎖定常領域を含む抗体軽鎖をコードする遺伝子が導入されたベクターを含む宿主細胞を培養する工程、
(b)当該遺伝子によりコードされる抗体重鎖及び/又は抗体軽鎖を取得する工程。
 重鎖定常領域のアミノ酸の改変としては上述の(1)~(3)に記載のアミノ酸置換やアミノ酸欠損が挙げられるがこれらに限定されない。
 軽鎖定常領域のアミノ酸の改変としては上述の(1)~(27)に記載のアミノ酸置換やアミノ酸欠損が挙げられるがこれらに限定されない。
 本発明の抗体の製造方法においては、まず、抗体の重鎖をコードするDNAであって、定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損された重鎖をコードするDNA、および/または抗体の軽鎖をコードするDNAであって、定常領域中の1又は複数のアミノ酸残基が目的のアミノ酸に置換または欠損された軽鎖をコードするDNAを発現させる。定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損された重鎖および/または定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損された軽鎖をコードするDNAは、例えば、野生型の重鎖および/または軽鎖をコードするDNAの定常領域部分を取得し、該定常領域中の特定のアミノ酸をコードするコドンが目的の他のアミノ酸をコードするよう、適宜置換を導入することによって得ることが出来る。
 また、あらかじめ、野生型重鎖の定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損されたタンパク質をコードするDNAを設計し、該DNAを化学的に合成することによって、定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損された重鎖および/または定常領域中の1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損された軽鎖をコードするDNAを得ることも可能である。
 アミノ酸置換及び欠損の種類としては、これに限定されるものではないが、本明細書に記載の置換及び欠損が挙げられる。
 また、定常領域中において、1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損された重鎖および/または1又は複数のアミノ酸残基が目的の他のアミノ酸に置換または欠損された軽鎖をコードするDNAは、部分DNAに分けて製造することができる。部分DNAの組み合わせとしては、例えば、可変領域をコードするDNAと定常領域をコードするDNA、あるいはFab領域をコードするDNAとFc領域をコードするDNAなどが挙げられるが、これら組み合わせに限定されるものではない。
 上記DNAを発現させる方法としては、以下の方法が挙げられる。例えば、重鎖可変領域をコードするDNAを、重鎖定常領域をコードするDNAとともに発現ベクターに組み込み重鎖発現ベクターを構築する。同様に、軽鎖可変領域をコードするDNAを、軽鎖定常領域をコードするDNAとともに発現ベクターに組み込み軽鎖発現ベクターを構築する。これらの重鎖、軽鎖の遺伝子を単一のベクターに組み込むことも出来る。発現ベクターとしては例えばSV40 virus basedベクター、EB virus basedベクター、BPV(パピローマウイルス)basedベクターなどを用いることができるが、これらに限定されるものではない。
 以上の方法で作製された抗体発現ベクターにより宿主細胞を共形質転換する。宿主細胞としてはCHO細胞(チャイニーズハムスター卵巣)等上述の細胞の他にも大腸菌、酵母や枯草菌などの微生物や動植物の個体が用いられる(Nature Biotechnology 25, 563 - 565 (2007)、Nature Biotechnology 16, 773 - 777 (1998)、Biochemical and Biophysical Research Communications 255, 444-450 (1999)、Nature Biotechnology 23, 1159 - 1169 (2005)、Journal of Virology 75, 2803-2809 (2001)、Biochemical and Biophysical Research Communications 308, 94-100 (2003))。またヒト胎児腎癌細胞由来HEK298H細胞が用いられる。また、形質転換にはリポフェクチン法(R.W.Malone et al.,Proc.Natl.Acad.Sci.USA 86,6077 (1989), P.L.Felgner et al.,Proc.Natl.Acad.Sci.USA 84,7413 (1987)、エレクトロポレーション法、リン酸カルシウム法(F.L.Graham & A.J.van der Eb,Virology 52,456-467(1973))、DEAE-Dextran法等が好適に用いられる。
 抗体の製造においては、次に、発現産物を回収する。発現産物の回収は、例えば、形質転換体を培養した後、形質転換体の細胞内又は培養液より抗体を分離、精製することによって行うことが出来る。抗体の分離、精製には、遠心分離、硫安分画、塩析、限外濾過、1q、FcRn、プロテインA、プロテインGカラム、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィーなどの方法を適宜組み合わせて行うことができる。
 本発明は上記のようにして製造された抗体を提供する。すなわち本発明は、次の工程によって製造することができる抗体に関する。
 (a)可変領域と定常領域を含む抗体の重鎖と、軽鎖をコードするDNAを宿主細胞で発現させる工程;、および
 (b)(a)において発現された抗体を回収する工程;
 上記方法において、重鎖及び軽鎖の定常領域のアミノ酸配列は、本発明によって提供された上記の定常領域であることを特徴とする。本発明の好ましい態様において、重鎖の定常領域はたとえば配列番号:24、26~31に示すアミノ酸配列からなる。このアミノ酸配列をコードする塩基配列からなるDNAを、重鎖可変領域をコードするDNAと連結すれば、抗体の重鎖をコードするDNAとすることができる。また、軽鎖の定常領域はたとえば配列番号:32~34、37~39に示すアミノ酸配列からなる。このアミノ酸配列をコードする塩基配列からなるDNAを、可変領域をコードするDNAと連結すれば、抗体の重鎖をコードするDNAとすることができる。
 上述のとおり、本発明の抗体を構成する可変領域は、任意の抗原を認識する可変領域であることが出来る。本発明の抗体を構成する可変領域は特に限定されるものではないが、例えば以下の可変領域が例示できる。
 例えばIL6受容体の中和作用を有する抗体の場合、重鎖の可変領域として、配列番号:5に示されるアミノ酸配列を有するヒト化抗体の重鎖におけるCDR1、CDR2、CDR3を有する可変領域が挙げられる。また軽鎖の可変領域として、配列番号:2に示されるアミノ酸配列を有するヒト化抗体の軽鎖におけるCDR1、CDR2、CDR3を有する可変領域が挙げられる。
 例えばIL31受容体の中和作用を有する抗体の場合、重鎖の可変領域として、配列番号:13に示されるアミノ酸配列を有するヒト化抗体の重鎖におけるCDR1、CDR2、CDR3を有する可変領域が挙げられる。また軽鎖の可変領域として、配列番号:12に示されるアミノ酸配列を有するヒト化抗体の軽鎖におけるCDR1、CDR2、CDR3を有する可変領域が挙げられる。
 例えばRANKLの中和作用を有する抗体の場合、重鎖の可変領域として、配列番号:17に示されるアミノ酸配列を有するヒト化抗体の重鎖におけるCDR1、CDR2、CDR3を有する可変領域が挙げられる。また軽鎖の可変領域として、配列番号:16に示されるアミノ酸配列を有するヒト化抗体の軽鎖におけるCDR1、CDR2、CDR3を有する可変領域が挙げられる。
 重鎖可変領域及び軽鎖可変領域を構成するアミノ酸配列は、その抗原結合活性が維持される限り、1又は複数のアミノ酸残基の改変及び/又は修飾が許容される。本発明において、抗体の可変領域を改変する場合、そのCDRのアミノ酸配列を保存することが好ましい。CDRのアミノ酸配列を保存することによって、可変領域の抗原結合活性を維持することが出来る。可変領域において改変が許容されるアミノ酸残基の数は、通常1から10、例えば1から5、好ましくは1または2アミノ酸である。
 例えば、可変領域のN末端のグルタミンのピログルタミル化によるピログルタミン酸への修飾は当業者によく知られた修飾である。したがって、本発明の抗体は、その重鎖のN末端がグルタミンの場合には、それがピログルタミン酸に修飾された可変領域を含む。
 なお本発明の改変には、上アミノ酸の置換、欠損、付加及び/又は挿入、並びにそれらの組み合わせが含まれる。
 さらに、本発明は本発明のアミノ酸の改変を有する抗体の定常領域をコードする遺伝子を提供する。本発明の定常領域をコードする遺伝子はDNA、RNAなど、如何なる遺伝子でもよい。
 さらに、本発明は当該遺伝子を含むベクターを提供する。ベクターの種類はベクターが導入される宿主細胞に応じて当業者が適宜選択することができ、例えば上述のベクターを用いることができる。
 さらに、本発明は当該ベクターにより形質転換された宿主細胞に関する。宿主細胞は当業者が適宜選択することができ、例えば上述の宿主細胞を用いることができる。
 さらに、本発明は当該宿主細胞を培養し、発現した本発明の定常領域を回収する工程を含む、本発明の定常領域の製造方法に関する。
<重鎖定常領域のアミノ酸改変による抗体の機能改変>
 また本発明は、配列番号:24に記載のヒトIgG2定常領域のアミノ酸を改変する工程を含む、抗体の機能を向上させる方法に関する。また本発明は、当該工程を含む方法によって製造された抗体に関する。抗体の機能向上としては、抗体の安定性の向上、免疫原性の低減、薬物動態を改善などが挙げられるがこれらに限定されない。本発明の方法は以下(a)~(h)の工程を含む。
(a)配列番号:24の14番目(EUナンバリング131番目)のCysを他のアミノ酸に置換する工程、
(b)配列番号:24の16番目(EUナンバリング133番目)のArgを他のアミノ酸に置換する工程、
(c)配列番号:24の103番目(EUナンバリング220番目)のCysを他のアミノ酸に置換する工程、
(d)配列番号:24の20番目(EUナンバリング137番目)のGluを他のアミノ酸に置換する工程、
(e)配列番号:24の21番目(EUナンバリング138番目)のSerを他のアミノ酸に置換する工程、
(f)配列番号:24の147番目(EUナンバリング268番目)のHisを他のアミノ酸に置換する工程、
(g)配列番号:24の234番目(EUナンバリング355番目)のArgを他のアミノ酸に置換する工程、
(h)配列番号:24の298番目(EUナンバリング419番目)のGlnを他のアミノ酸に置換する工程。
 置換後のアミノ酸は特に限定されないが、14番目のCysはSerに、16番目のArgはLysに、103番目のCysはSerに、20番目のGluはGlyに、21番目のSerはGlyに、147番目のHisはGlnに、234番目のArgはGlnに、298番目のGlnはGluに置換されることが好ましい。
 本発明の方法は、上記工程を含む限り、他のアミノ酸の改変(置換、欠損、付加および/または挿入)や修飾、その他工程を含むものであってもよい。アミノ酸の改変や修飾の方法は特に限定されるものではないが、例えば上述の部位特異的変異誘発法や実施例の記載の方法によって行うことが出来る。
 さらに、本発明の方法は、上述の工程に加えて、C末端のヘテロジェニティーを減少させるために、
325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysを欠損させる工程、
をさらに含んでもよい。
 また本発明は、配列番号:24に記載のヒトIgG2定常領域のアミノ酸を改変する工程を含む、抗体の機能を向上させる方法に関する。また本発明は、当該工程を含む方法によって製造された抗体に関する。抗体の機能向上としては、抗体の安定性の向上、免疫原性の低減、安全性をの向上、薬物動態の改善などが挙げられるがこれらに限定されない。本発明の方法は以下(a)~(k)の工程を含む。
(a)配列番号:24の14番目(EUナンバリング131番目)のCysを他のアミノ酸に置換する工程、
(b)配列番号:24の16番目(EUナンバリング133番目)のArgを他のアミノ酸に置換する工程、
(c)配列番号:24の103番目(EUナンバリング220番目)のCysを他のアミノ酸に置換する工程、
(d)配列番号:24の20番目(EUナンバリング137番目)のGluを他のアミノ酸に置換する工程、
(e)配列番号:24の21番目(EUナンバリング138番目)のSerを他のアミノ酸に置換する工程、
(f)配列番号:24の147番目(EUナンバリング268番目)のHisを他のアミノ酸に置換する工程、
(g)配列番号:24の234番目(EUナンバリング355番目)のArgを他のアミノ酸に置換する工程、
(h)配列番号:24の298番目(EUナンバリング419番目)のGlnを他のアミノ酸に置換する工程、
(i)配列番号:24の209番目(EUナンバリング330番目)のAlaを他のアミノ酸に置換する工程、
(j)配列番号:24の210番目(EUナンバリング331番目)のProを他のアミノ酸に置換する工程、
(k)配列番号:24の218番目(EUナンバリング339番目)のThrを他のアミノ酸に置換する工程。
 置換後のアミノ酸は特に限定されないが、14番目のCysはSerに、16番目のArgはLysに、103番目のCysはSerに、20番目のGluはGlyに、21番目のSerはGlyに、147番目のHisはGlnに、234番目のArgはGlnに、298番目のGlnはGluに、209番目のAlaはSerに、210番目のProはSerに、218番目ThrはAlaに置換されることが好ましい。
 本発明の方法は、上記工程を含む限り、他のアミノ酸の改変(置換、欠損、付加および/または挿入)や修飾、その他工程を含むものであってもよい。アミノ酸のの改変や修飾の方法は特に限定されるものではないが、例えば上述の部位特異的変異誘発法や実施例の記載の方法によって行うことが出来る。
 さらに、本発明の方法は、上述の工程に加えて、C末端のヘテロジェニティーを減少させるために、
325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysを欠損させる工程、
をさらに含んでもよい。
 さらに、本発明は抗体定常領域のジスルフィド結合パターンを制御(又は改変)することにより、抗体の血中動態(薬物動態)を向上させる方法に関する。抗体定常領域は特に限定されないが、抗体軽鎖定常領域(κ鎖定常領域又はλ鎖定常領域)とIgG2定常領域との間のジスルフィド結合パターンを制御することが好ましい。
 具体的には本発明は、重鎖定常領域EUナンバリング219のCysと軽鎖C末端領域のCysとの間で特異的にジスルフィド結合を形成させる工程を含む、抗体の薬物動態を向上させる方法に関する。
 上述の工程においては、さらに重鎖定常領域EUナンバリング220のCysと軽鎖C末端領域のCysとの間でジスルフィド結合を形成させないことが好ましい。
 本発明の方法においては必ずしも全ての抗体が重鎖EUナンバリング219のCysと軽鎖C末端領域のCysとの間でジスルフィド結合を形成する必要はなく、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは99%以上の抗体が重鎖EUナンバリング219のCysと軽鎖C末端領域のCysとの間でジスルフィド結合を形成していればよい。
 重鎖EUナンバリング219のCysと軽鎖C末端領域のCysとの間でジスルフィド結合を形成させる工程は如何なる方法により行われてもよく、例えば、重鎖EUナンバリング220(配列番号:24の103番目)のCysを他のアミノ酸に置換することにより行うことができる。重鎖EUナンバリングの220のCysを他のアミノ酸に置換することにより、軽鎖C末端に存在するCysと重鎖EUナンバリング220との間でジスルフィド結合が形成することがなくなり、軽鎖C末端に存在するCysと重鎖EUナンバリング219(配列番号:24の102番目)のCysとの間でジスルフィド結合が形成されることになる。
 本発明においては、EUナンバリング220のCysとともに、さらにEUナンバリング131番目のCysも他のアミノ酸に置換してもよい。置換後のアミノ酸は特に限定されないが、例えばSerに置換することが可能である。
 本発明の方法において軽鎖C末端領域のCysとは、例えばヒトκ鎖定常領域の場合、通常、102番目~106番目(例えば配列番号:32に記載のヒトκ鎖定常領域の102番目~106番目)の領域に存在するCysであり、好ましくは104番目~106番目の領域に存在するCysである。又、例えばヒトλ鎖定常領域の場合、通常、99番目~105番目(例えば、配列番号:37に記載のヒトλ鎖定常領域の99番目~105番目)の領域に存在するCysであり、好ましくは102番目~104番目の領域に存在するCysである。
 本発明の方法で使用されるIgG2定常領域は、配列番号:24に記載のアミノ酸配列から1又は複数(例えば20アミノ酸以内、10アミノ酸以内、など)のアミノ酸が欠失、置換、付加および/または挿入されていてもよい。又、本発明の方法で使用されるIgG2は、本明細書の記載から特定可能な改変又はその組み合わせを含むことが出来る。
 又、本発明の方法で使用されるヒトκ鎖定常領域は、配列番号:32に記載のアミノ酸配列から1又は複数(例えば20アミノ酸以内、10アミノ酸以内、など)のアミノ酸が欠失、置換、付加および/または挿入されていてもよい。
 又、本発明の方法で使用されるヒトλ鎖定常領域は、配列番号:37に記載のアミノ酸配列から1又は複数(例えば20アミノ酸以内、10アミノ酸以内、など)のアミノ酸が欠失、置換、付加および/または挿入されていてもよい。
 又、本発明の方法で使用されるヒトκ鎖定常領域、ヒトλ鎖定常領域は、本明細書の記載から特定可能な改変又はその組み合わせを含むことが出来る。
 重鎖定常領域EUナンバリング219のCysと軽鎖C末端領域のCysとの間でジスルフィド結合が形成された抗体は、重鎖定常領域EUナンバリング220のCysと軽鎖C末端領域のCysとの間でジスルフィド結合が形成された抗体と比較して、薬物動態が高いことが判明した。従って、本発明は重鎖定常領域EUナンバリング219のCysと軽鎖C末端領域のCysとの間でジスルフィド結合を形成させることにより薬物動態が向上した抗体を提供する。本発明の方法は医薬品として優れた、高い薬物動態を有する抗体の作製に有用である。
<軽鎖定常領域のアミノ酸の改変による抗体の機能改変>
 また本発明は、配列番号:32に記載のヒトκ定常領域、配列番号:40に記載のマウスκ鎖定常領域または配列番号:41に記載のラットκ鎖定常領域において、102番目~106番目に少なくとも1つのCysを導入する工程を含む、ヒンジ領域のヘテロジェニティーを減少させる方法に関する。また本発明は、当該工程を含む方法によって製造された抗体に関する。
 本発明において、102番目~106番目に少なくとも1つのCysを導入するとは、ヒトκ鎖定常領域の102番目~106番目に少なくとも1つのCysが存在する状態にすることを言う。
 さらに本発明は、配列番号:32に記載のヒトκ定常領域、配列番号:40に記載のマウスκ鎖定常領域または配列番号:41に記載のラットκ鎖定常領域において、107番目のCysを消失(欠損)させる工程を含む、ヒンジ領域のヘテロジェニティーを減少させる方法に関する。また本発明は、当該工程を含む方法によって製造された抗体に関する。
 本発明において、107番目のCysを消失させるとは、ヒトκ鎖定常領域の107番目の位置にCysが存在しない状態にすることを言う。
 さらに本発明は、配列番号:32に記載のヒトκ鎖定常領域、配列番号:40に記載のマウスκ鎖定常領域または配列番号:41に記載のラットκ鎖定常領域において、
(a)102番目~106番目に少なくとも1つのCysを導入する工程、および
(b)107番目のCysを消失(欠損)させる工程
を含む、ヒンジ領域のヘテロジェニティーを減少させる方法に関する。また本発明は、当該工程を含む方法によって製造された抗体に関する。
 本発明において、102番目~106番目に少なくとも1つのCysを導入する工程と107番目のCysを消失させる工程は単一の工程で行われてもよい。
 102番目~106番目に少なくとも1つのCysを導入する工程において、導入するCysの数は特に限定されないが、5個以下、好ましくは3個以下、より好ましくは2個以下、さらに好ましくは1個である。
 Cysが導入される位置は特に限定されないが、好ましくは104番目、105番目または106番目であり、より好ましくは105番目又は106番目であり、特に好ましくは106番目である。
 102番目~106番目に少なくとも1つのCysを導入する工程の具体的な例としては、例えば以下の工程を挙げることができる。又、これらの工程を組み合わせることも可能である。
・102~106番目の位置に少なくとも1つのCysを挿入する工程
・102~106番目のアミノ酸の少なくとも1つをCysで置換する工程
・1~106番目のアミノ酸のうち1~5個のアミノ酸を欠損させる工程
 107番目のCysを消失させる工程の具体的な例としては、例えば以下の工程を挙げることができる。
・107番目のCysを欠損する工程
・107番目のCysを他のアミノ酸に置換する工程
・107番目の位置に他のアミノ酸を挿入する工程
・1~106番目のアミノ酸の少なくとも1つを欠損させることにより107番目のCysを他の位置に移動させる工程
 本発明の方法(配列番号:32に記載のヒトκ鎖定常領域、配列番号:40に記載のマウスκ鎖定常領域または配列番号:41に記載のラットκ鎖定常領域において、(a)102番目~106番目に少なくとも1つのCysを導入する工程、および(b)107番目のCysを消失させる工程を含む、ヒンジ領域のヘテロジェニティーを減少させる方法、FcRnへの結合を増強する方法)の好ましい態様として、例えば、
ヒトκ鎖定常領域の1~106番目のアミノ酸において1~5アミノ酸を欠損させる工程
を挙げることができる。1~106番目の1~5アミノ酸を欠損させることにより、107番目のCysが102番目~106番目に移動するので、102番目~106番目に少なくとも1つのCysを導入する工程と107番目のCysを消失させる工程を同時に行うことが可能である。
 アミノ酸が欠損する部位は特に限定されないが、102番目~106番目のアミノ酸の少なくとも1つが欠損することが好ましく、105番目又は106番目のアミノ酸が欠損することがさらに好ましい。
 又、欠損するアミノ酸の数は特に限定されず、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個のアミノ酸を欠損することができる。
 このような工程の好ましい例として、以下の工程を挙げることが出来るがこれらに限定されない。
・105番目のアミノ酸を欠損させる工程、または
・106番目のアミノ酸を欠損する工程
 又、本発明の方法の好ましい他の態様として、
(a)102番目~106番目のアミノ酸の少なくとも1つをCysに置換する工程および
(b)107番目のCysを欠損または他のアミノ酸に置換する工程
を含む方法が挙げられる。Cysに置換されるアミノ酸の数は特に限定されないが、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個である。Cysに置換される部位は特に限定されないが、好ましい置換部位として、105番目または106番目を挙げることができる。
 このような工程の具体的な例としては、ヒトκ鎖定常領域の場合、
(a)105番目のGlyまたは106番目のGluをCysに置換する工程、および
(b)107番目のCysを欠損または他のアミノ酸に置換する工程
を挙げることができる。
 またマウスおよびラットκ鎖定常領域の場合、
(a)105番目のAsnまたは106番目のGluをCysに置換する工程、および
(b)107番目のCysを欠損または他のアミノ酸に置換する工程
を挙げることができる。
 また本発明は、配列番号:37に記載のヒトλ定常領域または配列番号:42に記載のラビットκ鎖定常領域において、99番目~103番目に少なくとも1つのCysを導入する工程を含む、ヒンジ領域のヘテロジェニティーを減少させる方法に関する。また本発明は、当該工程を含む方法によって製造された抗体に関する。
 本発明において、99番目~103番目に少なくとも1つのCysを導入するとは、ヒトλ鎖定常領域の99番目~103番目に少なくとも1つのCysが存在する状態にすることを言う。
 さらに、本発明は配列番号:37に記載のヒトλ定常領域または配列番号:42に記載のラビットκ鎖定常領域において、104番目のCysを消失(欠損)させる工程を含む、ヒンジ領域のヘテロジェニティーを減少させる方法に関する。また本発明は、当該工程を含む方法によって製造された抗体に関する。
 本発明において、104番目のCysを消失させるとは、ヒトλ鎖定常領域の104番目の位置にCysが存在しない状態にすることを言う。
 さらに、本発明は配列番号:37に記載のヒトλ鎖定常領域または配列番号:42に記載のラビットκ鎖定常領域において、
(a)99番目~103番目に少なくとも1つのCysを導入する工程、および
(b)104番目のCysを消失させる工程
を含む、ヒンジ領域のヘテロジェニティーを減少させる方法に関する。
 本発明において、99番目~103番目に少なくとも1つのCysを導入する工程と104番目のCysを消失させる工程は単一の工程で行われてもよい。
 99番目~103番目に少なくとも1つのCysを導入する工程において、導入するCysの数は特に限定されないが、5個以下、好ましくは3個以下、より好ましくは2個以下、さらに好ましくは1個である。
 Cysが導入される位置は特に限定されないが、好ましくは101番目、102番目または103番目であり、より好ましくは102番目又は103番目であり、特に好ましくは103番目である。
 99番目~103番目に少なくとも1つのCysを導入する工程の具体的な例としては、例えば以下を挙げることが出来る。又、以下の工程を組み合わせることも可能である。
・99~103番目の位置に少なくとも1つのCysを挿入する工程
・99~103番目のアミノ酸の少なくとも1つをCysで置換する工程
・1~103番目のアミノ酸のうち1~5個のアミノ酸を欠損させる工程
 104番目のCysを消失させる工程の具体的な例としては以下の工程を挙げることが出来るがこれらに限定されない。
・104番目のCysを欠損する工程
・104番目のCysを他のアミノ酸に置換する工程
・104番目の位置に他のアミノ酸を挿入する工程
・1~103番目のアミノ酸の少なくとも1つを欠損させることにより105番目のCysを他の位置に移動させる工程
 本発明の方法(配列番号:37に記載のヒトλ鎖定常領域または配列番号:42に記載のラビットκ鎖定常領域において、(a)99番目~103番目に少なくとも1つのCysを導入する工程、および(b)104番目のCysを消失させる工程を含む、ヒンジ領域のヘテロジェニティーを減少させる方法)の好ましい態様として、例えば、
ヒトλ鎖定常領域の1~103番目のアミノ酸において1~5アミノ酸を欠損させる工程
を含む方法を挙げることができる。1~103番目の1~5アミノ酸を欠損させることにより、104番目のCysが99番目~103番目に移動するので、99番目~103番目に少なくとも1つのCysを導入する工程と104番目のCysを消失させる工程を同時に行うことが可能である。
 アミノ酸が欠損する部位は特に限定されないが、99番目~103番目のアミノ酸の少なくとも1つが欠損することが好ましく、さらに好ましくは102番目又は103番目のアミノ酸が欠損することが好ましい。
 又、欠損するアミノ酸の数は特に限定されず、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個のアミノ酸を欠損することができる。
 このような工程の好ましい例として以下を挙げることが出来るがこれらに限定されない。
・102番目のアミノ酸を欠損させる工程または
・103番目のアミノ酸を欠損する工程
 又、本発明の方法の好ましい他の態様として、
(a)99番目~103番目のアミノ酸の少なくとも1つをCysに置換する工程および
(b)104番目のCysを欠損または他のアミノ酸に置換する工程
を含む方法が挙げられる。Cysに置換されるアミノ酸の数は特に限定されないが、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個である。Cysに置換される部位は特に限定されないが、好ましい置換部位として、102番目または103番目を挙げることができる。
 このような工程の具体的な例としては、ヒトλ鎖定常領域の場合、以下を挙げることが出来るがこれらに限定されない。
(a)102番目のThrまたは103番目のGluをCysに置換する工程および
(b)104番目のCysを欠損または他のアミノ酸に置換する工程
 また配列番号:42に記載のラビットκ鎖定常領域の場合、以下を挙げることが出来るがこれらに限定されない。
(a)102番目のGlyまたは103番目のAspをCysに置換する工程および
(b)104番目のCysを欠損または他のアミノ酸に置換する工程
 また本発明は、配列番号:43に記載のラビットκ鎖定常領域において、101番目~105番目に少なくとも1つのCysを導入する工程を含む、ヒンジ領域のヘテロジェニティーを減少させる方法に関する。また本発明は、当該工程を含む方法によって製造された抗体に関する。
 本発明において、101番目~105番目に少なくとも1つのCysを導入するとは、ラットκ鎖定常領域の101番目~105番目に少なくとも1つのCysが存在する状態にすることを言う。
 さらに、本発明は配列番号:43に記載のラビットκ鎖定常領域において、106番目のCysを消失(欠損)させる工程を含む、ヒンジ領域のヘテロジェニティーを減少させる方法に関する。また本発明は、当該工程を含む方法によって製造された抗体に関する。
 本発明において、106番目のCysを消失させるとは、ラットκ鎖定常領域の106番目の位置にCysが存在しない状態にすることを言う。
 さらに、本発明は配列番号:43に記載のラビットκ鎖定常領域において、
(a)101番目~105番目に少なくとも1つのCysを導入する工程、および
(b)106番目のCysを消失させる工程
を含む、ヒンジ領域のヘテロジェニティーを減少させる方法に関する。
 本発明において、101番目~105番目に少なくとも1つのCysを導入する工程と106番目のCysを消失させる工程は単一の工程で行われてもよい。
 101番目~105番目に少なくとも1つのCysを導入する工程において、導入するCysの数は特に限定されないが、5個以下、好ましくは3個以下、より好ましくは2個以下、さらに好ましくは1個である。
 Cysが導入される位置は特に限定されないが、好ましくは103番目、104番目または105番目であり、より好ましくは104番目又は105番目であり、特に好ましくは105番目である。
 101番目~105番目に少なくとも1つのCysを導入する工程の具体的な例としては、例えば以下を挙げることが出来る。又、以下の工程を組み合わせることも可能である。
・101番目~105番目の位置に少なくとも1つのCysを挿入する工程
・101番目~105番目のアミノ酸の少なくとも1つをCysで置換する工程
・1~105番目のアミノ酸のうち1~5個のアミノ酸を欠損させる工程
 106番目のCysを消失させる工程の具体的な例としては以下の工程を挙げることが出来るがこれらに限定されない。
・106番目のCysを欠損する工程
・106番目のCysを他のアミノ酸に置換する工程
・106番目の位置に他のアミノ酸を挿入する工程
・1~105番目のアミノ酸の少なくとも1つを欠損させることにより106番目のCysを他の位置に移動させる工程
 本発明の方法(配列番号:43に記載のラビットκ鎖定常領域において、(a)101番目~105番目に少なくとも1つのCysを導入する工程、および(b)106番目のCysを消失させる工程を含む、ヒンジ領域のヘテロジェニティーを減少させる方法)の好ましい態様として、例えば、
ラビットκ鎖定常領域の1~105番目のアミノ酸において1~5アミノ酸を欠損させる工程
を含む方法を挙げることができる。1~105番目の1~5アミノ酸を欠損させることにより、106番目のCysが101番目~105番目に移動するので、101番目~105番目に少なくとも1つのCysを導入する工程と106番目のCysを消失させる工程を同時に行うことが可能である。
 アミノ酸が欠損する部位は特に限定されないが、101番目~105番目のアミノ酸の少なくとも1つが欠損することが好ましく、さらに好ましくは104番目又は105番目のアミノ酸が欠損することが好ましい。
 又、欠損するアミノ酸の数は特に限定されず、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個のアミノ酸を欠損することができる。
 このような工程の好ましい例として以下を挙げることが出来るがこれらに限定されない。
・104番目のアミノ酸を欠損させる工程または
・105番目のアミノ酸を欠損する工程
 又、本発明の方法の好ましい他の態様として、
(a)101番目~105番目のアミノ酸の少なくとも1つをCysに置換する工程および
(b)106番目のCysを欠損または他のアミノ酸に置換する工程
を含む方法が挙げられる。Cysに置換されるアミノ酸の数は特に限定されないが、通常1~5個、好ましくは1~3個、さらに好ましくは1個又は2個、より好ましくは1個である。Cysに置換される部位は特に限定されないが、好ましい置換部位として、104番目または105番目を挙げることができる。
 このような工程の具体的な例としては、以下を挙げることが出来るがこれらに限定されない。
(a)104番目のGlyまたは105番目のAspをCysに置換する工程および
(b)106番目のCysを欠損または他のアミノ酸に置換する工程
 本発明の方法は上述の工程を含んでいる限り、他の工程、例えば他のアミノ酸を改変(置換、欠損、付加および/または挿入)する工程や修飾する工程などをさらに含んでいてもよい。
<抗体を含む医薬組成物>
 本発明は、本発明の抗体または本発明の定常領域を含む、医薬組成物を提供する。
さらに、本発明は、重鎖定常領域EUナンバリング219のCysと軽鎖C末端領域のCysとの間でジスルフィド結合が形成した抗体の割合が80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは99%以上である抗体医薬組成物を提供する。
 本発明の医薬組成物は、抗体または定常領域に加えて医薬的に許容し得る担体を導入し、公知の方法で製剤化することが可能である。例えば、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用できる。例えば、薬理学上許容される担体もしくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤などと適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することが考えられる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。
 注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。
 注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80(TM)、HCO-50と併用してもよい。
 油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールと併用してもよい。また、緩衝剤、例えばリン酸塩緩衝液、酢酸ナトリウム緩衝液、無痛化剤、例えば、塩酸プロカイン、安定剤、例えばベンジルアルコール、フェノール、酸化防止剤と配合してもよい。調製された注射液は通常、適当なアンプルに充填させる。
 投与は好ましくは非経口投与であり、具体的には、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型などが挙げられる。注射剤型の例としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与することができる。
 また、患者の年齢、症状により適宜投与方法を選択することができる。抗体または抗体をコードするポリヌクレオチドを含有する医薬組成物の投与量としては、例えば、一回につき体重1kgあたり0.0001mgから1000mgの範囲で選ぶことが可能である。あるいは、例えば、患者あたり0.001から100000mg/bodyの範囲で投与量を選ぶことができるが、これらの数値に必ずしも制限されるものではない。投与量、投与方法は、患者の体重や年齢、症状などにより変動するが、当業者であれば適宜選択することが可能である。
 本明細書で用いられているアミノ酸の3文字表記と1文字表記の対応は以下の通りである。
アラニン:Ala:A
アルギニン:Arg:R
アスパラギン:Asn:N
アスパラギン酸:Asp:D
システイン:Cys:C
グルタミン:Gln:Q
グルタミン酸:Glu:E
グリシン:Gly:G
ヒスチジン:His:H
イソロイシン:Ile:I
ロイシン:Leu:L
リジン:Lys:K
メチオニン:Met:M
フェニルアラニン:Phe:F
プロリン:Pro:P
セリン:Ser:S
スレオニン:Thr:T
トリプトファン:Trp:W
チロシン:Tyr:Y
バリン:Val:V
 なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
〔実施例1〕IgG分子のC末端ヘテロジェニティーの改善
H鎖C末端ΔGK抗体の発現ベクター構築
 IgG抗体のH鎖C末端配列のヘテロジェニティーとして、C末端アミノ酸のリジン残基の欠損、および、C末端の2アミノ酸のグリシン、リジン両方の欠損によるC末端カルボキシル基のアミド化が報告されている(Anal Biochem. 2007 Jan 1;360(1):75-83.)。抗IL-6レセプター抗体であるTOCILIZUMABにおいても、その主成分は塩基配列上存在するC末端アミノ酸のリジンが翻訳後修飾により欠損した配列であるが、リジンが残存している副成分およびグリシン、リジン両方の欠損によるC末端カルボキシル基のアミド化された副成分もヘテロジェニティーとして存在する。目的物質/関連物質のヘテロジェニティーの製造間差を維持しつつ医薬品として大量に製造することは容易ではなくコスト増につながるため、可能な限り単一物質であることが望まれる。抗体を医薬品として開発する上にはこれらのヘテロジェニティーが低減されていることが望ましい。よって医薬品として開発する上ではH鎖C末端のヘテロジェニティーは存在しないことが望ましい。
 そこで、C末端アミノ酸のヘテロジェニティーを低減させることを目的にC末端アミノ酸の改変を行った。具体的には、天然型IgG1のH鎖定常領域のC末端のリジンおよびグリシンを塩基配列上あらかじめ欠損させた。C末端の2アミノ酸のグリシン、リジンの欠損により、C末端アミノ基のアミド化を抑制することが可能かどうかを検討した。
 参考例1の方法を用いて、H鎖としてH0-IgG1(アミノ酸配列番号:1)、L鎖としてL0-k0 (アミノ酸配列番号:2)からなるTOCILIZUMAB(以降、IL6R H0/L0-IgG1と略)を作製し、さらにH鎖のEUナンバリング447番目のLysおよび/またはEUナンバリング446番目のGlyをコードする塩基配列について、これを終止コドンとする変異を導入した。これにより、C末端の1アミノ酸のリジン(EUナンバリング447)をあらかじめ欠損させた抗体のH鎖であるH0-IgG1ΔK(アミノ酸配列番号:3)、C末端の2アミノ酸のグリシン(EUナンバリング446)、リジン(EUナンバリング447)をあらかじめ欠損させた抗体のH鎖であるH0-IgG1ΔGK(アミノ酸配列番号:4)の発現ベクターを作製した。
 H鎖としてH0-IgG1(アミノ酸配列番号:1)、L鎖としてL0-k0 (アミノ酸配列番号:2)からなるIL6R H0-IgG1/L0-k0、H鎖としてH0-IgG1ΔK(アミノ酸配列番号:3)、L鎖としてL0-k0 (アミノ酸配列番号:2)からなるIL6R H0-IgG1ΔK /L0-k0、および、H鎖としてH0-IgG1ΔGK-k0(アミノ酸配列番号:4)、L鎖としてL0-k0 (アミノ酸配列番号:2)からなるIL6R H0-IgG1ΔGK /L0-k0の発現と精製は参考例1で記した方法で実施した。
H鎖C末端ΔGK抗体の陽イオン交換クロマトグラフィー分析
 精製した抗体のヘテロジェニティーの評価を陽イオン交換クロマトグラフィーにより実施した。カラムとしてはProPac WCX-10, 4×250 mm (Dionex) を使用し、移動相Aは25 mmol/L MES/NaOH, pH 6.1、移動相Bは25 mmol/L MES/NaOH, 250 mmol/L NaCl, pH 6.1を使用し、適切な流量およびグラジエントを用いて実施した。精製したIL6R H0-IgG1/L0-k0、IL6R H0-IgG1ΔK /L0-k0およびIL6R H0-IgG1ΔGK /L0-k0陽イオン交換クロマトグラフィーによる評価を行った結果を図1に示した。
 その結果、H鎖定常領域のC末端のリジンだけでなく、H鎖定常領域のC末端のリジンおよびグリシンを両方を塩基配列上あらかじめ欠損させることで初めてC末アミノ酸のヘテロジェニティーを低減可能であることが見出された。ヒト抗体定常領域IgG1、IgG2、IgG4において、C末端配列はいずれもEUナンバリング(Sequences of proteins of immunological interest, NIH Publication No.91-3242 を参照)447番目がリジン、446番目がグリシンになっていることから、本検討で見出されたC末アミノ酸のヘテロジェニティーを低減させる方法はIgG2定常領域とIgG4定常領域、あるいはそれらの改変体にも適用可能であると考えられた。
〔実施例2〕天然型IgG2の安定性を維持したままヘテロジェニティーの低減する新規定常領域
天然型IgG1と天然型IgG2のヘテロジェニティー
 標的細胞をエフェクター機能等で殺傷するような癌に対する抗体医薬の場合は、エフェクター機能を有するIgG1の定常領域(アイソタイプ)が好ましいが、標的抗原の機能を中和するような抗体医薬、あるいは、標的細胞に対して結合はするが殺傷することは避ける必要がある抗体医薬の場合は、Fcγレセプターへの結合は好ましくない。
 Fcγレセプターへの結合を低下させる方法としては、IgG抗体のアイソタイプをIgG1からIgG2あるいはIgG4に変える方法が考えられ(Ann Hematol. 1998 Jun;76(6):231-48.)、FcγレセプターIへの結合および各アイソタイプの薬物動態の観点からはIgG4よりはIgG2が望ましいと考えられた(Nat Biotechnol. 2007 Dec;25(12):1369-72)。一方、抗体を医薬品として開発するにあたり、そのタンパク質の物性、中でも均一性と安定性は極めて重要であり、IgG2アイソタイプは、ヒンジ領域のジスルフィド結合の掛け違いに由来するヘテロジェニティーが極めて多いことが報告されている(J Biol Chem. 2008 Jun 6;283(23):16194-205.、J Biol Chem. 2008 Jun 6;283(23):16206-15.、Biochemistry. 2008 Jul 15;47(28):7496-508.)。
 そこで実際に天然型IgG1の定常領域を有するIL6R H0-IgG1/L0-k0と天然型IgG2の定常領域を有するIL6R H0-IgG2/L0-k0を作製し、両者のヘテロジェニティーの評価を行った。実施例1で作製したH鎖としてIL6R H0-IgG1(アミノ酸配列番号:1)、L鎖としてIL6R L0-k0 (アミノ酸配列番号:2)からなるIL6R H0-IgG1/L0-k0、および、H鎖定常領域をIgG2に変換したH鎖としてIL6R H0-IgG2(アミノ酸配列番号:5)、L鎖としてIL6R L0-k0 (アミノ酸配列番号:2)からIL6R H0-IgG2/L0-k0の発現と精製を参考例1で記した方法で実施した。
 天然型IgG1の定常領域を有するIL6R H0-IgG1/L0-k0と天然型IgG2の定常領域を有するIL6R H0-IgG2/L0-k0のジスルフィド結合に由来するヘテロジェニティーの評価方法として、陽イオン交換クロマトグラフィーによる評価を行った。カラムとしてProPac WCX-10 (Dionex)を用い、移動相Aとして20mM Sodium Acetate, pH5.0、移動相Bとして20mM Sodium Acetate, 1M NaCl, pH5.0を使用し、適切な流量およびグラジエントを用いて実施した。その結果、図2に示すとおり、天然型IgG2の定常領域を有するIL6R H0-IgG2/L0-k0は複数のピークが見られ、ほぼ単一のメインピークのみからなる天然型IgG1の定常領域を有するIL6R H0-IgG1/L0-k0と比較して著しくヘテロジェニティーが高いことが分かった。
 IgGタイプの抗体のヒンジ領域周辺構造の詳細を図3に示した。IgG抗体はヒンジ領域近傍において、H鎖とL鎖(あるいは2つのH鎖)がジスルフィド結合している。このジスルフィド結合のパターンは、以下に記すようにIgGタイプの抗体のアイソタイプによって異なる。天然型IgG1のヒンジ領域におけるジスルフィド結合は、図4に示すような単一なパターンであるためジスルフィド結合に由来するヘテロジェニティーは存在せず、陽イオン交換クロマトグラフィーにおいてほぼ単一のメインピークとして溶出したと考えられる。一方、天然型IgG2のヒンジ領域におけるジスルフィド結合では、図3に示すように、天然型IgG2はヒンジ領域に2つのシステインを有する(EUナンバリング219番目と220番目)。このヒンジ領域の2つのシステインに隣接するシステインとして、H鎖のCH1ドメインに存在するEUナンバリング131番目のシステインとL鎖のC末端のシステイン、および、2量化する相手H鎖の同じヒンジ領域の2つのシステインが存在する。そのため、IgG2のヒンジ領域周辺にはH2L2の会合した状態では合計8個のシステインが隣接している。これにより、天然型IgG2はジスルフィド結合の掛け違いによる様々なヘテロジェニティーが存在し、著しくヘテロジェニティーが高いと考えられる。
 これらジスルフィド結合の掛け違いに由来する目的物質/関連物質のヘテロジェニティーの製造間差を維持しつつ医薬品として大量に製造することは容易ではなくコスト増につながり、可能な限り単一物質であることが望まれる。よってIgG2アイソタイプの抗体を医薬品として開発する上では安定性を低下させることなくジスルフィド結合由来のヘテロジェニティーが低減されていることが望ましい。実際、US20060194280(A1)において、天然型IgG2はイオン交換クロマトグラフィー分析においてジスルフィド結合に由来する様々なヘテロピークが観察されており、これらのピーク間では生物活性が異なることも報告されている。このヘテロピークを単一化する方法として、US20060194280(A1)においては精製工程におけるリフォールディングが報告されているが、製造においてこれらの工程を用いることはコストがかかり煩雑であるため、好ましくはアミノ酸置換によりジスルフィド結合が単一なパターンで形成されるIgG2変異体を作製することでヘテロピークが単一化することが望ましいと考えられた。しかしながら、これまでにジスルフィド結合が単一なパターンで形成されるようなIgG2変異体に関する報告はなく、同様に安定性を低下させることなくジスルフィド結合由来のヘテロジェニティーが低減されたIgG2変異体に関する報告はない。
H鎖とL鎖を結ぶジスルフィド結合のパターンの及ぼす安定性への影響
 天然型IgG1においては、IgG1のH鎖定常領域配列(アミノ酸配列番号:23)のH鎖EUナンバリング220番目のシステインとL鎖214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)のシステインがジスルフィド結合をしている(Nat Biotechnol. 2007 Dec;25(12):1369-72、Anal Chem. 2008 Mar 15;80(6):2001-9.)。一方、天然型IgG4においては、IgG4のH鎖定常領域配列(アミノ酸配列番号:25)のH鎖EUナンバリング131番目のシステインと L鎖214番目((Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)のシステインがジスルフィド結合をしている(Nat Biotechnol. 2007 Dec;25(12):1369-72、Protein Sci. 1997 Feb;6(2):407-15.)。このように天然型IgG1と天然型IgG4においては、H鎖とL鎖を結ぶジスルフィド結合のパターンが異なることが報告されている。天然型IgG1と天然型IgG4のジスルフィド結合のパターンを図5に示した。しかしながら、これまでH鎖とL鎖を結ぶジスルフィド結合のパターンの及ぼす安定性への影響に関する報告はない。
 実施例1で作製したH鎖としてIL6R H0-IgG1(アミノ酸配列番号:1)、L鎖としてIL6R L0-k0 (アミノ酸配列番号:2)からなるIL6R H0-IgG1/L0-k0、および、H鎖定常領域をIgG4に変換したH鎖としてIL6R H0-IgG4(アミノ酸配列番号:6)、L鎖としてIL6R L0-k0 (アミノ酸配列番号:2)からIL6R H0-IgG4/L0-k0の発現と精製を参考例1で記した方法で実施した。
 安定性の評価方法として、示差走査型熱量測定(DSC)による熱変性中間温度(Tm値)の評価を行った(N-DSCII、Calorimety Sceince Corporation製)。熱変性中間温度(Tm値)は安定性の指標であり、医薬品として安定な製剤を作製するためには、熱変性中間温度(Tm値)が高いことが望ましい(J Pharm Sci. 2008 Apr;97(4):1414-26.)。精製したIL6R H0-IgG1/L0-k0およびIL6R H0-IgG4/L0-k0を20mM sodium acetate, 150mM NaCl, pH6.0の溶液に対して透析(EasySEP, TOMY)を行い、約0.1mg/mLのタンパク質濃度で、40℃から100℃まで1℃/minの昇温速度でDSC測定を行った。得られたDSCの変性曲線を元にFab部分のTm値を算出し表1に示した。これよりIgG1のほうがIgG4よりもFab部分のTm値が高いことが示された。このTm値の違いはH鎖とL鎖を結ぶジスルフィド結合のパターンの違いによると考えられ、H鎖とL鎖のジスルフィド結合のパターンとしてH鎖EUナンバリング131番目のシステインと L鎖214番目((Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照))のシステインがジスルフィド結合した場合は、H鎖EUナンバリング220番目のシステインと L鎖214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照) のシステインがジスルフィド結合した場合と比較して、熱安定性が大きく低下することが示された。
Figure JPOXMLDOC01-appb-T000001
各種天然型IgG2変異体の作製
 天然型IgG2のジスルフィド結合の掛け違いによるヘテロジェニティーを低減する方法として、H鎖のヒンジ領域に存在するEUナンバリング219番目のシステインのみをセリンに改変する方法、および、220番目のシステインのみをセリンに改変する方法が考えられる(Biochemistry. 2008 Jul 15;47(28):7496-508.)。具体的には、天然型IgG2のH鎖定常領域配列(アミノ酸番号:24)のEUナンバリング219番目のシステインをセリンに改変したH鎖定常領域であるSC(配列番号:26)、および、EUナンバリング220番目のシステインをセリンに改変したH鎖定常領域であるCS(配列番号:27)が考えられる。しかしながら、これらH鎖定常領域であるSCおよびCSについては、図6に示すとおり、天然型IgG2のジスルフィド結合のパターンが単一ではなく、複数のパターンが考えられ、その中には上述のようにH鎖EUナンバリング131番目のシステインと L鎖214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)のシステインがジスルフィド結合することで安定性が低下するような好ましくないジスルフィド結合のパターンが存在する。
 そこで、安定性が低下するようなジスルフィド結合のパターンを取らず、単一なジスルフィド結合のパターンを形成するようなH鎖定常領域として、SC(配列番号:26)に対してさらにH鎖EUナンバリング131番目のシステインと133番目のアルギニンをそれぞれセリンとリジンに改変したH鎖定常領域であるSKSC(配列番号:28)が考えられた。これに対してさらに免疫原性と薬物動態を改善するために、H鎖EUナンバリングの137番目のグルタミン酸をグリシンへ改変し、138番目のセリンをグリシンへ改変し、268番ヒスチジンをグルタミンへ改変し、355番アルギニンをグルタミンへ改変し、419番グルタミンをグルタミン酸へ改変し、さらにH鎖C末端のヘテロジェニティーを回避するためにH鎖定常領域のC末端のリジンおよびグリシンを塩基配列上あらかじめ欠損させたM58(配列番号:29)が考えられた。これらH鎖定常領域であるSKSCおよびM58については、図7に示すとおり、安定性が低下するようなジスルフィド結合のパターンを取らず、単一なジスルフィド結合のパターンを形成すると考えられた。
 そこで、IL6R H0-SC(アミノ酸配列番号:7)、IL6R H0-CS(アミノ酸配列番号:8)、IL6R H0-SKSC(アミノ酸配列番号:9)、IL6R H0-M58(アミノ酸配列番号:10)の発現ベクターの構築を参考例1に記した方法で実施した。L鎖としてIL6R L0-k0 (アミノ酸配列番号:2)を用い、H鎖としてそれぞれのH鎖を利用したIL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、および、天然型IgG2変異体であるIL6R H0-SC/L0-k0、IL6R H0-CS/L0-k0、IL6R H0-SKSC/L0-k0およびIL6R H0-M58/L0-k0の発現および精製を参考例1で記した方法で実施した。
各種天然型IgG2変異体の陽イオン交換クロマトグラフィー分析
 各種天然型IgG2変異体ヘテロジェニティーの評価方法として、上述に記載した陽イオン交換クロマトグラフィーによる方法を用いて実施した。IL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、および天然型IgG2変異体であるIL6R H0-SC/L0-k0、IL6R H0-CS/L0-k0、IL6R H0-SKSC/L0-k0およびIL6R H0-M58/L0-k0の陽イオン交換クロマトグラフィーによる評価を行った結果を図8に示した。
 その結果、図8に示すとおり、H鎖定常領域をIgG1からIgG2に変換することでヘテロジェニティーが増大したが、H鎖定常領域をSKSCおよびM58に変換することでヘテロジェニティーが大幅に低減された。一方、H鎖定常領域をSCにした場合はH鎖定常領域をSKSCとした場合と同様にヘテロジェニティーが低減されたが、H鎖定常領域をCSにした場合は十分にヘテロジェニティーが改善しなかった。
各種天然型IgG2分子変異体のDSC分析
 一般に抗体を医薬品として開発するためにはヘテロジェニティーが少ないことに加えて、安定な製剤を調製するため高い安定性を有することが望ましい。そこでIL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、および天然型IgG2変異体であるIL6R H0-SC/L0-k0、IL6R H0-CS/L0-k0、IL6R H0-SKSC/L0-k0およびIL6R H0-M58/L0-k0の安定性の評価方法として、上述と同様に示差走査型熱量測定(DSC)による熱変性中間温度(Tm値)の評価を行った(VP-DSC、Microcal社製)。精製した抗体を20mM sodium acetate, 150mM NaCl, pH6.0の溶液に対して透析(EasySEP, TOMY)を行い、約0.1mg/mLのタンパク質濃度で、40℃から100℃まで1℃/minの昇温速度でDSC測定を行った。得られたDSCの変性曲線を図9に、Fab部分のTm値を以下の表2に示した。
Figure JPOXMLDOC01-appb-T000002
 IL6R H0-IgG1/L0-k0およびIL6R H0-IgG2/L0-k0WT-IgG1のFab部分のTm値はほぼ同等で約94℃程度(IgG2のほうが約1℃低い)であったのに対して、IL6R H0-SC/L0-k0およびIL6R H0-CS/L0-k0のTm値は約86℃であり、IL6R H0-IgG1/L0-k0およびIL6R H0-IgG2/L0-k0と比較して著しくTm値が低下していた。一方、IL6R H0-SKSC/L0-k0、IL6R H0-M58/L0-k0のTm値は約94℃であり、ほぼIL6R H0-IgG1/L0-k0およびIL6R H0-IgG2/L0-k0と同等であった。
 H鎖定常領域としてSCおよびCSは安定性がIgG1およびIgG2と比較して著しく低いことから、安定性が低下するようなジスルフィド結合のパターンを形成しているためと考えられた。上述のとおり、H鎖EUナンバリング131番目のシステインと L鎖214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)のシステインがジスルフィド結合した場合、Fab部分の安定性が低下する。SCおよびCSにおいて安定性が低下したのもこのようなジスルフィド結合を形成している分子種が存在するためと考えられた。これより安定性の観点からは、H鎖EUナンバリング131番目のシステインもセリンに改変したH鎖定常領域SKSCおよびM58のほうが医薬品としては優れていると考えられた。
 また、DSC変性曲線を比較した場合、IL6R H0-IgG1/L0-k0、IL6R H0-SKSC/L0-k0、IL6R H0-M58/L0-k0のFab部分の変性ピークはシャープかつ単一であったのに対して、IL6R H0-SC/L0-k0およびIL6R H0-CS/L0-k0はこれらと比較して、Fab部分の変性ピークがブロードであり、IL6R H0-IgG2/L0-k0はFab部分の変性ピークの低温側にショルダーピークが認められた。DSCの変性ピークは単一成分の場合は通常シャープな変性ピークを示すが、Tmが異なる複数成分(つまりヘテロジェニティー)が存在する場合、変性ピークはブロードになると考えられる。すなわち、H鎖定常領域IgG2、SCおよびCSには複数成分存在し、SCおよびCSは、天然型IgG2のヘテロジェニティーが十分低減されていない可能性が示唆された。このことから、野生型IgG2のヘテロジェニティーは、ヒンジ領域のH鎖EUナンバリング219番目と220番目のシステインのみならず、CH1ドメインのH鎖EUナンバリング131番目システインの両方が関与していると考えられ、DSC上のヘテロジェニティーを低減するためにはヒンジ部分のシステインのみならず、CH1ドメインのシステインも改変する必要があると考えられた。これよりヘテロジェニティーの観点からも、H鎖EUナンバリング131番目のシステインもセリンに改変したH鎖定常領域SKSCおよびM58のほうが医薬品としては優れていると考えられた。
 以上より、IgG2のヒンジ領域に由来するヘテロジェニティーを低減したH鎖定常領域として、ヒンジ部分のシステインのみをセリンに置換したH鎖定常領域であるSCとCSはヘテロジェニティーおよび安定性の観点で不十分であると考えられ、ヒンジ部分のシステインに加えて、CH1ドメインに存在するH鎖EUナンバリング131番目のシステインもセリンに置換することで初めてIgG2と同等の安定性を維持しつつヘテロジェニティーを大幅に低減することが可能であることが見出された。
様々な抗体における天然型IgG2変異体(M58-k0)のヘテロジェニティー改善効果
 抗IL-6レセプター抗体以外の抗体として、抗IL-31レセプター抗体であるIL31R H0-IgG1/L0-k0(H鎖アミノ酸配列 配列番号:11、L鎖アミノ酸配列 配列番号:12)、抗RANKL抗体であるRANKL H0-IgG1/L0-k0(H鎖アミノ酸配列 配列番号:15、L鎖アミノ酸配列 配列番号:16)、を使用した。それぞれの抗体に対して、H鎖定常領域をIgG1からIgG2に変換したIL31R H0-IgG2/L0-k0(H鎖アミノ酸配列 配列番号:13、L鎖アミノ酸配列 配列番号:12)およびRANKL H0-IgG2/L0-k0(H鎖アミノ酸配列 配列番号:17、L鎖アミノ酸配列 配列番号:16)、さらにH鎖定常領域をIgG1からM58に変換したIL31R H0-M58/L0-k0(H鎖アミノ酸配列 配列番号:14、L鎖アミノ酸配列 配列番号:12)およびRANKL H0-M58/L0-k0(H鎖アミノ酸配列 配列番号:18、L鎖アミノ酸配列 配列番号:16)の発現ベクターを作製した。これらの発現と精製は参考例1で記した方法で実施した。
 ヘテロジェニティーの評価方法として、上述と同様の方法を使用し、陽イオン交換クロマトグラフィー(IEC)による評価を行った結果を図10示した。図10に示したとおり、抗IL-6レセプター抗体だけでなく、抗IL-31レセプター抗体および抗RANKL抗体においても、H鎖定常領域をIgG1からIgG2に変換することでヘテロジェニティーが増大し、H鎖定常領域をIgG2からM58に変換することでいずれの抗体においてもヘテロジェニティーを低減できることが確認された。これより、H鎖のCH1ドメインに存在するEUナンバリング131番目のシステインとH鎖のヒンジ領域に存在するEUナンバリング219番目のシステインをセリンに改変することにより、可変領域の抗体配列および抗原の種類に関わらず、天然型IgG2に由来するヘテロジェニティーを低減できることが示された。
〔実施例3〕新規定常領域M58-k0による薬物動態改善効果
IgGタイプの抗体の薬物動態
 IgG分子の血漿中滞留性が長い(消失が遅い)のは、IgG分子のサルベージレセプターとして知られているFcRnが機能しているためである(Nat Rev Immunol. 2007 Sep;7(9):715-25)。ピノサイトーシスによってエンドソームに取り込まれたIgG分子は、エンドソーム内の酸性条件下(pH6.0付近)においてエンドソーム内に発現しているFcRnに結合する。FcRnに結合できなかったIgG分子はライソソームへ進みライソソームで分解されるが、FcRnへ結合したIgG分子は細胞表面へ移行し血漿中の中性条件下(pH7.4付近)においてFcRnから解離することで再び血漿中に戻る。
 IgGタイプの抗体として、IgG1、IgG2、IgG3、IgG4のアイソタイプが知られているが、これらのヒトでの血漿中半減期は、IgG1、IgG2が約36日、IgG3が約29日、IgG4が16日であることが報告されており(Nat Biotechnol. 2007 Dec;25(12):1369-72.)、IgG1およびIgG2の血漿中滞留性が最も長いと考えられている。一般に抗体医薬のアイソタイプはIgG1、IgG2、IgG4であるが、これらのIgG抗体の薬物動態をさらに向上する方法として、IgGの定常領域の配列を改変することで上述のヒトFcRnへの結合性を向上させる方法が報告されている(J Biol Chem. 2007 Jan 19;282(3):1709-17、J Immunol. 2006 Jan 1;176(1):346-56)。
 マウスFcRnとヒトFcRnでは種差が存在することから(Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18709-14)、定常領域の配列を改変したIgG抗体のヒトにおける血漿中滞留性を予測するためには、ヒトFcRnへの結合評価およびヒトFcRnトランスジェニックマウスにおいて血漿中滞留性を評価することが望ましいと考えられた(Int Immunol. 2006 Dec;18(12):1759-69)。
IgG1-k0とM58-k0のヒトFcRnへの結合比較
 ヒトFcRnの調製は参考例2に記された方法で実施した。ヒトFcRnへの結合評価にはBiacore 3000 を用い、センサーチップに固定化したProtein Lあるいはウサギ抗ヒトIgG Kappa chain抗体へ結合させた抗体に、アナライトとしてヒトFcRnを相互作用させた際のヒトFcRnの結合量よりaffinity(KD)を算出した。具体的には、ランニングバッファーとして150mM NaClを含む50mM Na-phosphate buffer、pH6.0を用い、アミンカップリング法によりセンサーチップ CM5 (BIACORE) にProtein Lあるいはウサギ抗ヒトIgG Kappa chain抗体を固定化した。その後、IL6R H0-IgG1/L0-k0およびIL6R H0-M58/L0-k0をそれぞれ0.02% Tween20を含むランニングバッファーで希釈してインジェクトしチップに抗体を結合させた後、ヒトFcRnをインジェクトし、ヒトFcRnの抗体への結合性を評価した。
 Affinityの算出にはソフトウエア、BIAevaluationを用いた。得られたセンサーグラムより、ヒトFcRnインジェクト終了直前の抗体へのhFcRn結合量を求め、これをsteady state affinity法でフィッティングしてヒトFcRnに対する抗体のaffinityを算出した。
 IL6R H0-IgG1/L0-k0とIL6R H0-M58/L0-k0のヒトFcRnへの結合性の評価をBIAcoreにより行った結果、表3に示すとおり、IL6R H0-M58/L0-k0の結合性はIL6R H0-IgG1/L0-k0よりも約1.4倍向上していることが見出された。
Figure JPOXMLDOC01-appb-T000003
ヒトFcRnトランスジェニックマウスにおけるIgG1-k0とM58-k0の薬物動態比較
 ヒト FcRnトランスジェニックマウス(B6.mFcRn-/-.hFcRn Tg line 276 +/+ マウス、Jackson Laboratories)における体内動態の評価は以下の通り行った。IL6R H0-IgG1/L0-k0およびIL6R H0-M58/L0-k0をそれぞれマウスに1 mg/kgの投与量で静脈内に単回投与し適時採血を行った。採取した血液は直ちに4℃、15,000 rpmで15分間遠心分離し、血漿を得た。分離した血漿は、測定を実施するまで-20℃以下に設定された冷凍庫に保存した。血漿中濃度はELISA法を用いて測定した(参考例3参照)。
 IL6R H0-IgG1/L0-k0およびIL6R H0-M58/L0-k0のヒトFcRnトランスジェニックマウスにおける血漿中滞留性の評価を行った結果、図11に示すとおり、IL6R H0-M58/L0 -k0はIL6R H0-IgG1/L0-k0と比較して薬物動態の向上が確認された。これは上記に示したとおり、IL6R H0-M58/L0 -k0のヒトFcRnへの結合性がIL6R H0-IgG1/L0-k0と比較して向上しているからであると考えられた。
様々な抗体におけるIgG1-k0とM58-k0のヒトFcRnへの結合比較
 上記に示したとおり、抗IL-6レセプター抗体であるIL6R H0-IgG1/L0-k0において、H鎖定常領域をIgG1からM58に変換することにより、ヒトFcRnへの結合性が向上し、ヒトFcRnトランスジェニックマウスにおいて薬物動態が向上することが見出された。そこで、抗IL-6レセプター抗体以外のIgG1抗体に対しても、H鎖定常領域をM58に変換することで薬物動態を向上できるかどうかを検討した。
 抗IL-6レセプター抗体以外の抗体として、抗IL-31レセプター抗体であるIL31R H0-IgG1/L0-k0(H鎖アミノ酸配列 配列番号:11、L鎖アミノ酸配列 配列番号:12)、抗RANKL抗体であるRANKL H0-IgG1/L0-k0(H鎖アミノ酸配列 配列番号:15、L鎖アミノ酸配列 配列番号:16)、を使用した。それぞれの抗体に対して、H鎖定常領域をIgG1からM58に変換したIL31R H0-M58/L0-k0(H鎖アミノ酸配列 配列番号:14、L鎖アミノ酸配列 配列番号:12)およびRANKL H0-M58/L0-k0(H鎖アミノ酸配列 配列番号:18、L鎖アミノ酸配列 配列番号:16)を作製し、上述の方法でヒトFcRnへの結合性を評価した。その結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 表4に示したとおり、抗IL-31レセプター抗体および抗RANKL抗体においても、H鎖定常領域をIgG1からM58に変換することで、抗IL-6レセプター抗体と同様に、ヒトFcRnへの結合性が向上することが確認された。これより、可変領域の抗体配列および抗原の種類に関わらず、H鎖定常領域をIgG1からM58に変換することでヒトにおける薬物動態が向上する可能性が示された。
〔実施例4〕M58-k0の薬物動態をさらに改善した新規定常領域M66-k0
新規定常領域M66-k0の作製
 実施例2に示したようにIgG分子のヒンジ領域のジスルフィド結合のパターンが大きく、ヘテロジェニティーと安定性に影響を与えることが示され、実施例3においてH鎖定常領域M58がIgG1よりも優れた薬物動態を有することが示された。そこで、さらにヒンジ領域のジスルフィド結合のパターンを最適化することで、M58よりも優れた薬物動態を示す新規定常領域を作ることが出来ないかと考え、検討を行った。
 図12に示すとおり、定常領域M58はH鎖EUナンバリング131番目と219番目のシステインがセリンに置換されていることから、H鎖EUナンバリング220番目のシステインと L鎖214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)のシステインがジスルフィド結合を形成していると考えられる。一方、実施例2で見出されたように、H鎖EUナンバリング131番目のシステインと L鎖214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)のシステインがジスルフィド結合を形成した場合は大きく安定性が低下する。
 そこで、図12に示すとおり、H鎖EUナンバリング219番目のシステインと L鎖214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)のシステインがジスルフィド結合を形成するように、H鎖EUナンバリング131番目と220番目のシステインがセリンに置換された新規H鎖定常領域M66(アミノ酸配列番号:30)を検討するために、IL6R H0-M66(アミノ酸配列番号:19)の発現ベクターを参考例1に記した方法で作製した。H鎖としてIL6R H0-M66(アミノ酸配列番号:19)、L鎖としてIL6R L0-k0 (アミノ酸配列番号:2)からなるIL6R H0-M66/L0-k0の発現および精製を参考例1で記した方法で実施した。
ヒトFcRnトランスジェニックマウスにおけるIgG1-k0とM58-k0とM66-k0の薬物動態比較
 実施例3に記した方法で、ヒト FcRnトランスジェニックマウス(B6.mFcRn-/-.hFcRn Tg line 276 +/+ マウス、Jackson Laboratories)を用いたIL6R H0-IgG1/L0-k0、IL6R H0-M58/L0-k0およびIL6R H0-M66/L0-k0の薬物動態の評価を行った。
 IL6R H0-IgG1/L0-k0、IL6R H0-M58/L0-k0およびIL6R H0-M66/L0-k0のヒトFcRnトランスジェニックマウスにおける血漿中滞留性の評価を行った結果、図13に示すとおり、IL6R H0-M66/L0 -k0はIL6R H0-M58/L0-k0と比較して薬物動態の向上が確認された。
 IL6R H0-M58/L0-k0とIL6R H0-M66/L0 -k0のアミノ酸配列の違いは、H鎖EUナンバリング219番目とH鎖EUナンバリング220番目がそれぞれIL6R H0-M58/L0-k0はセリンとシステインであるのに対して、IL6R H0-M66/L0 -k0はそれぞれシステインとセリンである。すなわち、L鎖214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)とジスルフィド結合をする位置がIL6R H0-M58/L0-k0ではH鎖EUナンバリング220番目であるのに対して、IL6R H0-M66/L0 -k0ではH鎖EUナンバリング219番目であり、両者はジスルフィド結合の位置が異なる。
 IgGの薬物動態がジスルフィド結合の位置によって変化するという報告はこれまでに無い。J Biol Chem. 2008 Jun 6;283(23):16194-205. 、J Biol Chem. 2008 Jun 6;283(23):16206-15. 、Biochemistry. 2008 Jul 15;47(28):7496-508.に記されているように、天然型IgG2のジスルフィド結合のパターン(アイソフォーム)はform Aとform Bのように多数存在するが、J Biol Chem. 2008 Oct 24;283(43):29266-72によるとこれらのジスルフィド結合の位置が異なるアイソフォーム間での薬物動態は変わらないことが報告されている。
 本検討より、IL6R H0-M58/L0-k0とIL6R H0-M66/L0 -k0のジスルフィド結合の位置の違いにより薬物動態が大きく異なることを初めて見出した。具体的には、ジスルフィド結合の位置をH鎖EUナンバリング220番目とL鎖214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)から、H鎖EUナンバリング219番目とL鎖214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)に変えることによって、大幅に薬物動態を向上させることが見出された。
新規定常領域M66-k0のDSC分析
 安定性の評価方法として、実施例2と同様に示差走査型熱量測定(DSC)による熱変性中間温度(Tm値)の評価を行った(N-DSCII、Calorimety Sceince Corporation製)。精製したIL6R H0-IgG1/L0-k0、IL6R H0-M58/L0-k0およびIL6R H0-M66/L0-k0を20mM sodium acetate, 150mM NaCl, pH6.0の溶液に対して透析(EasySEP, TOMY)を行い、約0.1mg/mLのタンパク質濃度で、40℃から100℃まで1℃/minの昇温速度でDSC測定を行った。得られたDSCの変性曲線を元にFab部分のTm値を算出し表5に示した。
Figure JPOXMLDOC01-appb-T000005
 表5に示したとおり、IL6R H0-M66/L0-k0は、H0-M58/L0-k0と同等のTm値を有していることが分かった。これより、H鎖定常領域としてH鎖定常領域M66(アミノ酸配列番号:30)を用いることにより、M58(配列番号:29)と比較して、安定性を低下させることなく、薬物動態が低減することができることが見出された。
新規定常領域M66-k0の陽イオン交換クロマトグラフィー分析
 実施例2に記載した方法によるIL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、IL6R H0-M58/L0-k0、IL6R H0-M66/L0-k0の陽イオン交換クロマトグラフィーによる評価を行った結果を図14に示した。
 その結果、図14に示すとおり、H鎖定常領域M58においては単一なピークであったのに対して、H鎖定常領域M66においては2つの大きなピークが観察された。同様に抗IL-31レセプター抗体においても、M58においては単一なピークであったのに対して、M66においては大きな2つのピークが観察された。
 M58はH鎖EUナンバリング219番目、220番目がそれぞれセリン、システインであるのに対して、M66は219番目、220番目がそれぞれシステイン、セリンである。この僅かな違いによって、M66はM58よりも薬物動態が大きく向上した。しかし一方でM66においてはM58では認められなかった新しいピークがヘテロジェニティーとして認められ、M66では2成分のヘテロジェニティー(アイソフォーム)が存在することが見出された。
〔実施例5〕M66-k0のヘテロジェニティーをL鎖定常領域の変異により改善した新規定常領域M66-k3、M66-k4
新規定常領域M66-k3、M66-k4の作製
 実施例4において確認されたIL6R H0-M66/L0のヘテロジェニティー(2種類の成分)は、H鎖とL鎖のジスルフィド結合パターンが異なることにより形成されると考えられた。すなわち、L鎖(k0 アミノ酸配列番号:32)のC末端の214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)のシステイン(アミノ酸配列番号32のk0における107番目のシステイン)が両方のH鎖のH鎖EUナンバリング219番目のシステインとジスルフィド結合を形成することができるため、図15に示す2種類のジスルフィド結合パターンを示す2種類の成分が検出されると考えられた。そこでヘテロジェニティーを低減させる(1種類の成分のみが生成するようにする)ためには、図16に示しようにL鎖のシステインが、いずれか一方のH鎖のH鎖EUナンバリング219番目のシステインとジスルフィド結合を形成できるようにすればよいと考えられた。そこで、ヘテロジェニティーを低減することを目的に、上述のL鎖のC末端のシステインの位置をN末側に移動させることを考えた。これによりL鎖のC末端のシステインは、一方のH鎖のH鎖EUナンバリング219番目のシステインとは距離が遠くなることで、もう一方のH鎖のH鎖EUナンバリング219番目とのみジスルフィド結合が出来るようになると考えた。L鎖のC末端のシステインの位置をN末側に移動させる方法として、L鎖のC末端近傍のペプチド鎖の長さを短くする改変を検討した。具体的には、天然型L鎖定常領域k0(アミノ酸配列番号:32)の106番目のグルタミン酸を欠損させた抗体の新規L鎖定常領域であるk3(アミノ酸配列番号:33)、天然型L鎖定常領域k0(アミノ酸配列番号:32)の105番目のグリシンを欠損させた抗体の新規L鎖定常領域であるk4(アミノ酸配列番号:34)を検討した。そこで、L鎖定常領域としてk3を有するIL6R L0-k3(アミノ酸配列番号:21)およびk4を有するIL6R L0-k4(アミノ酸配列番号:22)の発現ベクターを参考例1の方法に従って作製した。
 H鎖としてIL6R H0-M66(アミノ酸配列番号:19)、L鎖としてIL6R L0-k3 (アミノ酸配列番号:21)からなるIL6R H0-M66/L0-k3、およびH鎖としてIL6R H0-M66(アミノ酸配列番号:19)、L鎖としてIL6R L0-k4 (アミノ酸配列番号:22)からなるIL6R H0-M66/L0-k4の発現と精製を参考例1で記した方法で実施した。
新規定常領域M66-k3、M66-k4の陽イオン交換クロマトグラフィー分析
 実施例2に記載した方法によるIL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、IL6R H0-M58/L0-k0、IL6R H0-M66/L0-k0、IL6R H0-M66/L0-k3およびIL6R H0-M66/L0-k4の陽イオン交換クロマトグラフィーによる評価を行った結果を図17に示した。
 その結果、図17に示すとおり、H0-M66/L0-k0においては2つのピークが単一なピークであったのに対して、H0-M66/L0-k3およびH0-M66/L0-k4においてはH0-M58/L0-k0と同様に単一なピークが観察された。このことにより、L鎖のC末端近傍のペプチド鎖の長さを短くすることでL鎖のC末端のシステインの位置をN末側に移動させ、一方のH鎖のH鎖EUナンバリング219番目とのみジスルフィド結合が出来るようになり、ヘテロジェニティーが低減することができることが見出された。
 天然型IgG2のジスルフィド結合パターンによるヘテロジェニティー(アイソフォーム)(J Biol Chem. 2008 Jun 6;283(23):16194-205. 、J Biol Chem. 2008 Jun 6;283(23):16206-15. )を減らす方法として、これまでH鎖定常領域のシステインをセリンに置換する方法を検討してきたが、本実施例において初めてL鎖定常領域C末端のシステインの位置を移動させることでヘテロジェニティーを低減することができることが見出された。これまでにL鎖C末端のシステインの位置を移動させたL鎖定常領域に関する報告は無い。
 また、L鎖のC末端のシステインの位置をN末側に移動させる方法としては上述に記載した方法以外にも、例えば天然型L鎖定常領域k0(アミノ酸配列番号:32)の104番目のアルギニンを欠損させる方法、天然型L鎖定常領域k0(アミノ酸配列番号:32)の103番目のアスパラギンを欠損させる方法等、あるいは、天然型L鎖定常領域k0(アミノ酸配列番号:32)の106番目のグルタミン酸をシステインに置換し、さらに107番目のシステインをシステイン以外のアミノ酸に置換する方法等が考えられる。
 本実施例においてはヒトL鎖定常領域としてκ鎖(k0、アミノ酸配列番号:32)を用いているが、同様の方法をλ鎖の定常領域(アミノ酸配列番号:37)に対して適用可能であると考える。λ鎖の定常領域においては、アミノ酸配列番号37における104番目にシステインが存在するが(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングにおける214番目)にシステインが存在するため、103番目のグルタミン酸を欠損させる方法、102番目のスレオニンを欠損させる方法、101番目のプロリンを欠損させる方法、100番目のアラニンを欠損させる方法等、あるいは、天然型λ鎖定常領域(アミノ酸配列番号:37)の103番目のグルタミン酸をシステインに置換し、さらに104番目のシステインをシステイン以外のアミノ酸に置換する方法等が考えられる。
新規定常領域M66-k0とM66-k3のヒトFcRnへの結合評価
 IgGはFcRnと2価のavidityで結合することが知られている(Traffic. 2006 Sep;7(9):1127-42.)。実施例3で行った方法は、IgGをセンサーチップに固定し、アナライトとしてFcRnを流すことからIgGとFcRnの1価のaffinityで結合する。そこで、より生体内を模倣するため本実施例においては、ヒトFcRnをセンサーチップに固定化し、アナライトとしてIgGを流すことでIgGとFcRnの2価のavidityでの結合を評価した。Biacore T100 (GE Helthcare)を用い、センサーチップ上に固定化したFcRnに対して、H0-IgG1/L0-k0、H0-M58/L0-k0、H0-M66/L0-k0およびH0-M66/L0-k3をアナライトとして流すことにより、改変体のpH6.0におけるヒトFcRnに対する親和性解析を実施した。
 固定化および相互作用解析の方法を以下に示す。まずアミンカップリング法を利用して、ヒトFcRn をセンサーチップCM4 (GE Healthcare) に約2000RU固定化した。アミンカップリングに用いた試薬はエタノールアミン (GE Healthcare),50mM NaOH溶液 (GE Healthcare),NHS (GE Healthcare),EDC (GE Healthcare)であり、移動相はHBS-EP+溶液 (10倍のHBS-EP+溶液(GE Healthcare)を希釈して用いた)を使用した。続いてヒトFcRnを固定化したセンサーチップに対してアナライトとして抗体を3分間注入してヒトFcRnと抗体の結合を観測した後、5分間移動相を流すことによりヒトFcRnからの各改変体の解離を観測した。測定は全て25℃にて実施し、移動相は10 mM Cit pH6.0, 150 mM NaCl, 0.05% Tween20を用いた。
 得られたセンサーグラムの結合相3分間に対して、Biacore T100 Evaluation Software(GE Healthcare)を用い、結合速度定数 ka(1/Ms)、および解離速度定数 kd(1/s)を算出し、これらの値をもとに解離定数 KD (M) を算出し、表6に示した。
Figure JPOXMLDOC01-appb-T000006
 実施例3、4で示したように、ヒトFcRnトランスジェニックマウスにおけるH0-IgG1/L0-k0、H0-M58/L0-k0およびH0-M66/L0-k0の薬物動態とこれらの抗体の本測定系におけるヒトFcRnへの結合と相関した。H0-M66/L0-k3はH0-M66/L0-k0と比較してヒトFcRnへ同等以上の結合を示したことから、、ヒトFcRnトランスジェニックマウスにおける薬物動態はH0-M66/L0-k0と同等以上であると考えられた。
新規定常領域M66-k3、M66-k4のDSC評価
 安定性の評価方法として、実施例2と同様に示差走査型熱量測定(DSC)による熱変性中間温度(Tm値)の評価を行った(N-DSCII、Calorimety Sceince Corporation製)。精製したIL6R H0-IgG1/L0-k0 IL6R、H0-M66/L0-k0、IL6R H0-M66/L0-k3およびIL6R H0-M66/L0-k4を20mM sodium acetate, 150mM NaCl, pH6.0の溶液に対して透析(EasySEP, TOMY)を行い、約0.1mg/mLのタンパク質濃度で、40℃から100℃まで1℃/minの昇温速度でDSC測定を行った。得られたDSCの変性曲線を元にFab部分のTm値を算出し表7に示した。
Figure JPOXMLDOC01-appb-T000007
 表7に示したとおり、IL6R H0-M66/L0-k3とIL6R H0-M66/L0-k4は、H0-M66/L0-k0と同等のTm値を有していることが分かった。これより、L鎖定常領域としてk3(アミノ酸配列番号:33)あるいはk4(アミノ酸配列番号:34)を用いることにより、天然型L鎖定常領域k0(アミノ酸配列番号:32)と比較して、安定性を低下させることなくヘテロジェニティーが低減することができることが見出された。
 H鎖EUナンバリング219番目とL鎖214番目(Sequences of proteins of immunological interest, NIH Publication No.91-3242のナンバリングを参照)がジスルフィド結合を形成するようにしたH0-M66/L0-k0は、図14に示すように2種類のアイソフォームが存在することが示され、これらの2成分は図15に示す2つのジスルフィド結合パターンが存在することが考えられ、H鎖EUナンバリング137番目とH鎖EUナンバリング220番目のシステインをセリンに置換するだけでは、天然型IgG2に由来するヘテロジェニティーを完全には回避することは出来ないことが見出された。そこでL鎖定常領域のC末端のシステインの位置を移動させたH0-M66/L0-k3またはH0-M66/L0-k4にすることによって、初めて天然型IgG2のジスルフィド結合に由来するヘテロジェニティーを回避すること可能であることが見出された。H0-M66/L0-k3はH0-M66/L0-k0と比較して安定性およびヒトFcRnへの結合を低下しておらず、さらに実施例1で示したH鎖C末端のΔGKの改変によりH鎖C末端に由来するヘテロジェニティーも回避されていることから、抗体のH鎖/L鎖定常領域として、M66/k3あるいはM66/k4は極めて有用であると考えられた。
〔実施例6〕M66-k3のFcγレセプターへの結合を低減させたM106-k3
新規定常領域M106-k3の作製
 抗原を中和することが目的の抗体医薬においてはFc領域の有するADCC等のエフェクター機能は必要ではなく、従って、Fcγレセプターへの結合は不必要である。免疫原性や副作用の点から考えるとFcγレセプターへの結合は好ましくない可能性も考えられる(Nat Rev Drug Discov. 2007 Jan;6(1):75-92.、Ann Hematol. 1998 Jun;76(6):231-48.)。例えばヒト化抗IL-6レセプターIgG1抗体であるTOCILIZUMABはIL-6レセプターに特異的に結合し、その生物学的作用を中和することで、関節リウマチ等のIL-6が関連する疾患の治療薬として利用可能であり、Fcγレセプターへの結合は不必要である。
 Fcγレセプターへの結合を低下させる方法としては、IgG抗体のアイソタイプをIgG1からIgG2あるいはIgG4アイソタイプに変える方法が考えられる(Ann Hematol. 1998 Jun;76(6):231-48.)。Fcγレセプターへの結合を完全に無くす方法としては、人工的な改変をFc領域に導入する方法が報告されている。例えば、抗CD3抗体や抗CD4抗体は抗体のエフェクター機能が副作用を惹起するため、Fc領域のFcγレセプター結合部分に野生型配列には存在しないアミノ酸変異(J Immunol. 2000 Feb 15;164(4):1925-33.、J Immunol. 1997 Oct 1;159(7):3613-21.)を導入したFcγレセプター非結合型の抗CD3抗体や抗CD4抗体の臨床試験が現在行われている(Nat Rev Drug Discov. 2007 Jan;6(1):75-92、Transplantation. 2001 Apr 15;71(7):941-50.)。また、IgG1のFcγR結合部位(EUナンバリング:233、234、235、236、327、330、331番目)をIgG2(EUナンバリング:233、234、235、236)およびIgG4(EUナンバリング:327、330、331番目)の配列にすることでFcγレセプター非結合型抗体を作製することが可能であると報告されている(US 20050261229A1)。しかしながら、IgG1にこれらの変異を全て導入すると、天然には存在しないT-cellエピトープペプチドとなりうる9アミノ酸の新しいペプチド配列が出現し、免疫原性のリスクが高まることが考えられる。医薬品として開発する上では、免疫原性リスクは極力下げることが望ましい。
 上述の課題を解決するために、IgG2の定常領域への改変を検討した。IgG2の定常領域はFcγR結合部位のうちEUナンバリング:233、234、235、236が非結合型であるが、FcγR結合部位のうちEUナンバリング:330、331番目は非結合型のIgG4とは異なる配列であるため、EUナンバリング:330、331番目のアミノ酸をIgG4の配列に改変する必要がある(Eur J Immunol. 1999 Aug;29(8):2613-24におけるG2Δa)。しかしながら、IgG4はEUナンバリング:339番目のアミノ酸がアラニンであるのに対して、IgG2はスレオニンであるため、EUナンバリング:330、331番目のアミノ酸をIgG4の配列に改変しただけでは天然には存在しないT-cellエピトープペプチドとなりうる9アミノ酸の新しいペプチド配列が出現してしまい、免疫原性リスクが生じる。そこで、上述の改変に加えて新たにIgG2のEUナンバリング:339番目のThrをAlaに改変することで、新しいペプチド配列の出現を防ぐことが可能であることを見出した。そこで、これらの変異を定常領域M66(アミノ酸配列番号:30)に導入した定常領域M106(アミノ酸配列番号:31)を検討した。そこで、H鎖定常領域としてM106を有するIL6R H0-M106(アミノ酸配列番号:20の発現ベクターを参考例1の方法に従って作製した。
 H鎖としてIL6R H0-M106(アミノ酸配列番号:20)、L鎖としてIL6R L0-k0 (アミノ酸配列番号:2)からなるIL6R H0-M106/L0-k0、H鎖としてIL6R H0-M106(アミノ酸配列番号:20)、L鎖としてIL6R L0-k3 (アミノ酸配列番号:21)からなるIL6R H0-M106/L0-k3、およびH鎖としてIL6R H0-M106(アミノ酸配列番号:20)、L鎖としてIL6RL0-k4 (アミノ酸配列番号:22)からなるIL6R H0-M106/L0-k4の発現と精製を参考例1で記した方法で実施した。
新規定常領域M106-k3の陽イオン交換クロマトグラフィー分析
 実施例2に記載した方法によるIL6R H0-IgG1/L0-k0、IL6R H0-IgG2/L0-k0、IL6R H0-M106/L0-k0、IL6R H0-M106/L0-k3およびIL6R H0-M106/L0-k4の陽イオン交換クロマトグラフィーによる評価を行った結果を図18に示した。
 その結果、図18に示すとおり、H0-M106/L0-k0においては2つのピークが単一なピークであったのに対して、H0-M106/L0-k3およびH0-M106/L0-k4においてはH0-M66/L0-k3およびH0-M66/L0-k4と同様に単一なピークが観察された。このことより、H鎖定常領域改変体M106においてもH鎖定常領域改変体M66と同様に、 L鎖のC末端近傍のペプチド鎖の長さを短くすることでL鎖のC末端のシステインの位置をN末側に移動させ、一方のH鎖のH鎖EUナンバリング219番目とのみジスルフィド結合が出来るようになり、ヘテロジェニティーが低減することができることが見出された。
新規定常領域M106-k3の各種Fcγレセプターへの結合評価
 H0-IgG1/L0-k0、H0-IgG2/L0-k0およびH0-M106/L0-k3のFcγレセプターへの結合の評価を活性化FcγレセプターであるFcγRI、FcγRIIa、FcγRIIIaを用いて評価した。
 Fcγレセプターへの結合の評価はBiacore T100 (GE Healthcare) を用い、センサーチップ上に固定化したProtein Lで捕捉した抗体に対して、ヒトFcγレセプターを相互作用させ、その結合量を比較することによって行った。具体的には、ランニングバッファーにHBS-EP+ (GE Healthcare) を用い、ProteinL (ACTIgen)をアミンカップリング法によりセンサーチップCM5 (Biacore) に固定化した。その後、H0-IgG1/L0-k0、H0-IgG2/L0-k0、H0-M106/L0-k3をセンサーチップ上のProtein Lに捕捉させ、ランニングバッファーおよびランニングバッファーで10 μg/mLに希釈したFcγRI、FcγRIIa、FcγRIIIa (R&D systems) をアナライトとして相互作用させた。この際、各抗体のProtein Lへの捕捉量を一定にすることは困難であることから、各抗体のProtein Lへの捕捉量を一定とみなすための補正を行った。具体的には、各抗体に対する各ヒトFcγレセプターの結合量から、ランニングバッファーのみを相互作用させたときの結合量を引いて得られた値を各抗体の捕捉量で割り、得られた値に100をかけたものをNormalized responseとした。
 Normalized responseを用いて各抗体と各ヒトFcγレセプターとの結合の強さを比較した結果を図19に示した。この結果より、H0-M106/L0-k3の各種活性化Fcγレセプターに対する結合性は天然に存在するIgG1のそれよりも大幅に弱く、さらにH0-IgG2/L0-k0よりも弱く、新規定常領域M106-k3のFcγレセプターへの結合は天然型IgG2よりも弱いことも明らかとなった。このことから、H0-M106/L0-k3を使用することで、Fcγレセプターを介したAPCの取り込みに由来する免疫原性リスクやADCC等のエフェクター機能に由来する副作用を天然型IgG2よりも低減することが可能であると考えられる。
〔実施例7〕IgG2-k3の陽イオン交換クロマトグラフィー分析
 H鎖としてIL6R H0-IgG2(アミノ酸配列番号:5)、L鎖としてIL6R L0-k3 (アミノ酸配列番号:21)からなるIL6R H0-IgG2/L0-k3の発現と精製を参考例1で記した方法で実施した。実施例2に記載した方法を用いて、IL6R H0-IgG1/L0-k0およびIL6R H0-IgG2/L0-k0およびIL6R H0-IgG2/L0-k3の陽イオン交換クロマトグラフィーによる評価を行った結果を図20に示した。
 その結果、図20に示すとおり、IgG2-k0においてヘテロジェニティーが認められたが、IgG2-k3においてはヘテロジェニティーが低減された。天然型IgG2であるIgG2-k0は複数のジスルフィド結合パターンを有するためヘテロジェニティーが認められるが、L鎖のC末端近傍のペプチド鎖の長さを短くすることでL鎖のC末端のシステインの位置をN末側に移動させるだけで(IgG2-k3)、ヘテロジェニティーが低減することができることが見出された。
〔実施例8〕ヒトFcRnトランスジェニックマウスにおけるIgG1-k0、M66-k0、M66-k3、M106-k3、IgG2-k3の薬物動態比較
 実施例3に記した方法で、ヒト FcRnトランスジェニックマウス(B6.mFcRn-/-.hFcRn Tg line 276 +/+ マウス、Jackson Laboratories)を用いたIL6R H0-IgG1/L0-k0、IL6R H0-M66/L0-k0、IL6R H0-M66/L0-k3、IL6R H0-M106/L0-k3およびIL6R H0-IgG2/L0-k3の薬物動態の評価を行った。
 IL6R H0-M66/L0-k0、IL6R H0-M66/L0-k3、IL6R H0-M106/L0-k3およびIL6R H0-IgG2/L0-k3のヒトFcRnトランスジェニックマウスにおける血漿中滞留性の評価を行った結果、図21に示すとおり、IL6R H0-M66/L0-k0と比較してIL6R H0-M66/L0-k3は薬物動態の向上が確認された。これは実施例5において確認されたFcRnへの結合評価の結果を反映していると考えられた。L鎖定常領域であるk3(アミノ酸配列番号:33)は、天然型L鎖定常領域k0(アミノ酸配列番号:32)の106番目のグルタミン酸を欠損させたL鎖であり、L鎖をL0-k0からL0-k3に置換したことにより血漿中滞留性が向上したと考えられた。FcRnはH鎖定常領域のFc部分に結合するため、一般的にL鎖定常領域は抗体の薬物動態に影響しないと考えられ、実際にこれまでにヒト FcRnトランスジェニックマウスにおいて、L鎖定常領域のアミノ酸置換により薬物動態が向上したという報告は無い。本検討により初めてL鎖定常領域をアミノ酸置換することで薬物動態が改善することが見出された。さらにIL6R H0-M106/L0-k3はL6R H0-M66/L0-k3と比較して血漿中滞留性が向上した。
 本検討より、定常領域M66-k3、M106-k3、IgG2-k3は、陽イオン交換クロマトグラフィーによる評価において単一ピークとして溶出し、Fcγレセプターへの結合が天然型IgG1よりも著しく減弱し、且つ、ヒト FcRnトランスジェニックマウスにおいて天然型IgG1と比較して大幅に薬物動態が向上することが示された。
〔参考例1〕抗体の発現ベクターの作製および抗体の発現と精製
 目的の抗体のH鎖およびL鎖の塩基配列をコードする遺伝子は、PCR等を用いて当業者公知の方法で行った。アミノ酸置換の導入はQuikChange Site-Directed Mutagenesis Kit(Stratagene)あるいはPCR等を用いて当業者公知の方法で行った。得られたプラスミド断片を動物細胞発現ベクターに挿入し、目的のH鎖発現ベクターおよびL鎖発現ベクターを作製した。得られた発現ベクターの塩基配列は当業者公知の方法で決定した。抗体の発現は以下の方法を用いて行った。ヒト胎児腎癌細胞由来HEK293H株(Invitrogen)を10 % Fetal Bovine Serum (Invitrogen)を含むDMEM培地(Invitrogen)へ懸濁し、5~6 × 105個/mLの細胞密度で接着細胞用ディッシュ(直径10 cm, CORNING)の各ディッシュへ10 mLずつ蒔きこみCO2インキュベーター(37℃、5% CO2)内で一昼夜培養した後に、培地を吸引除去し、CHO-S-SFM-II(Invitrogen)培地6.9 mLを添加した。調製したプラスミドをlipofection法により細胞へ導入した。得られた培養上清を回収した後、遠心分離(約2000 g、5分間、室温)して細胞を除去し、さらに0.22μmフィルターMILLEX(R)-GV(Millipore)を通して滅菌して培養上清を得た。得られた培養上清からrProtein A SepharoseTM Fast Flow(Amersham Biosciences)を用いて当業者公知の方法で抗体を精製した。精製抗体濃度は、分光光度計を用いて280 nmでの吸光度を測定した。得られた値からPACE法により算出された吸光係数を用いて抗体濃度を算出した(Protein Science 1995 ; 4 : 2411-2423)。
〔参考例2〕ヒトFcRnの調製
 FcRnはFcRnとβ2-microglobulinの複合体である。公開されているヒトFcRn遺伝子配列(J. Exp. Med. 180 (6), 2377-2381 (1994))を元に、オリゴDNAプライマーを作製した。ヒトcDNA(Human Placenta Marathon-Ready cDNA, Clontech)を鋳型とし、作製したプライマーを用いPCR法により遺伝子全長をコードするDNA断片を調整した。得られたDNA断片を鋳型に、PCR法によりシグナル領域を含む細胞外領域(Met1-Leu290)をコードするDNA断片を増幅し、動物細胞発現ベクターへ挿入した(ヒトFcRnアミノ酸配列番号:35)。同様に、公開されているヒトβ2-microglobulin遺伝子配列(Proc. Natl. Acad. Sci. U.S.A. 99 (26), 16899-16903 (2002))を元に、オリゴDNAプライマーを作製した。ヒトcDNA(Hu-Placenta Marathon-Ready cDNA, CLONTECH)を鋳型とし、作製したプライマーを用いPCR法により遺伝子全長をコードするDNA断片を調製した。得られたDNA断片を鋳型に、PCR法によりシグナル領域を含むβ2-microglobulin全長(Met1-Met119)をコードするDNA断片を増幅し、動物細胞発現ベクターへ挿入した(ヒトβ2-microglobulinアミノ酸配列 配列番号:36)。
 可溶型ヒトFcRnの発現は以下の手順で行った。調製したヒトFcRnおよびヒトβ2-microglobulinのプラスミドを、10 % Fetal Bovine Serum (Invitrogen)を用いたlipofection法により、ヒト胎児腎癌細胞由来HEK293H株(Invitrogen)の細胞へ導入した。得られた培養上清を回収した後、IgG Sepharose 6 Fast Flow(Amersham Biosciences)を用い、(J Immunol. 2002 Nov 1;169(9):5171-80.)の方法に従い精製を行った。その後、HiTrap Q HP(GE Healthcare)により精製を行った。
〔参考例3〕マウスにおける抗体血漿中濃度の測定
 マウス血漿中抗体濃度測定は、抗ヒトIgG抗体を用いたELISA法にて、それぞれの抗体をスタンダードとして使用して、当業者公知の方法で測定した。
 本発明は、医薬品として生体に投与される抗体の製造に有用である。より具体的には、本発明の定常領域を含む抗体は、ヘテロジェニティーが低いので、医薬品の品質の維持において有利である。言い換えると、本発明の定常領域を含む抗体を医薬品として利用すれば、均質な抗体を安定に供給することができる。たとえば、IL6レセプターに対する抗体であるTOCILIZUMAB(一般名)は、自己免疫疾患などの治療に用いられるヒト化抗体である。したがって、たとえば当該抗体の定常領域を本発明によって提供された定常領域と置換することによって、その品質を安定に維持することができる。
 また本発明は、定常領域のアミノ酸配列を改変することによって、薬物動態が改善された抗体を提供した。本発明によって薬物動態が改善された抗体は、生体中において、より長い時間にわたって活性を維持する。したがって、たとえばIL6レセプターに対する抗体であるTOCILIZUMAB(一般名)の定常領域を、本発明によって提供される定常領域と置換することによって、その薬物動態を改善し、生体内における作用濃度をより長期にわたって維持しうる抗体とすることができる。

Claims (21)

  1. 配列番号:24(IgG2定常領域)のアミノ酸配列において、14番目(EUナンバリング131番目)のCys、16番目(EUナンバリング133番目)のArg、103番目(EUナンバリング220番目)のCys、20番目(EUナンバリング137番目)のGlu、21番目(EUナンバリング138番目)のSer、147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArgおよび298番目(EUナンバリング419番目)のGlnが他のアミノ酸に置換されたアミノ酸配列を有する抗体定常領域。
  2. 14番目のCysはSerに、16番目のArgはLysに、103番目のCysはSerに、20番目のGluはGlyに、21番目のSerはGlyに、147番目のHisはGlnに、234番目のArgはGlnに、298番目のGlnはGluに置換されることを特徴とする請求項1に記載の抗体定常領域。
  3. 325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysがさらに欠損したアミノ酸配列を有する請求項1又は2に記載の抗体定常領域。
  4. 配列番号:24(IgG2定常領域)のアミノ酸配列において、14番目(EUナンバリング131番目)のCys、16番目(EUナンバリング133番目)のArg、103番目(EUナンバリング220番目)のCys、20番目(EUナンバリング137番目)のGlu、21番目(EUナンバリング138番目)のSer、147番目(EUナンバリング268番目)のHis、234番目(EUナンバリング355番目)のArg、298番目(EUナンバリング419番目)のGln、209番目(EUナンバリング330番目)のAla、210番目(EUナンバリング331番目)のPro、218番目(EUナンバリング339番目)のThrが他のアミノ酸に置換されたアミノ酸配列を有する抗体定常領域。
  5. 14番目のCysはSerに、16番目のArgはLysに、103番目のCysはSerに、20番目のGluはGlyに、21番目のSerはGlyに、147番目のHisはGlnに、234番目のArgはGlnに、298番目のGlnはGluに、209番目のAlaはSerに、210番目のProはSerに、218番目のThrはAlaに置換されることを特徴とする請求項4に記載の抗体定常領域。
  6. 325番目(EUナンバリング446番目)のGlyおよび326番目(EUナンバリング447番目)のLysがさらに欠損したアミノ酸配列を有する請求項4又は5に記載の抗体定常領域。
  7. 請求項1~6いずれかに記載の定常領域を有する抗体。
  8. 請求項7に記載の抗体を含む医薬組成物。
  9. 102番目~106番目に少なくとも1つのCysが存在するヒトκ鎖定常領域。
  10. 107番目の位置にCysが存在しないヒトκ鎖定常領域。
  11. 102番目~106番目に少なくとも1つのCysが存在し、かつ107番目の位置にCysが存在しないヒトκ鎖定常領域。
  12. 配列番号:32のアミノ酸配列において、1番目~106番目のアミノ酸の少なくとも1つが欠損していることを特徴とする請求項9~11いずれかに記載のヒトκ鎖定常領域。
  13. 102番目~106番目のアミノ酸の少なくとも1つが欠損していることを特徴とする請求項12に記載のヒトκ鎖定常領域。
  14. 105番目のアミノ酸が欠損していることを特徴とする請求項13に記載のヒトκ鎖定常領域。
  15. 106番目のアミノ酸が欠損していることを特徴とする請求項13に記載のヒトκ鎖定常領域。
  16. 102番目~106番目のアミノ酸の少なくとも1つがCysに置換されていることを特徴とする請求項9に記載のヒトκ鎖定常領域。
  17. 102番目~106番目のアミノ酸の少なくとも1つがCysに置換され、かつ107番目のCysが他のアミノ酸に置換されている又は欠損していることを特徴とする請求項9~11いずれかに記載のヒトκ鎖定常領域。
  18. 請求項9~17いずれかに記載のヒトκ鎖定常領域を有する抗体。
  19. 請求項18に記載の抗体を含む医薬組成物。
  20. 請求項1~6いずれかに記載の重鎖定常領域および請求項9~17いずれかに記載の軽鎖定常領域を含む抗体。
  21. 請求項20に記載の抗体を含む医薬組成物。
PCT/JP2010/054767 2009-03-19 2010-03-19 抗体定常領域改変体 WO2010107109A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19180309.7A EP3674317A1 (en) 2009-03-19 2010-03-19 Antibody constant region variant
EP10753600A EP2409990A4 (en) 2009-03-19 2010-03-19 VARIANT OF A CONSTANT ANTIBODY REGION
US13/257,145 US20120071634A1 (en) 2009-03-19 2010-03-19 Antibody Constant Region Variant
JP2011504892A JP5787446B2 (ja) 2009-03-19 2010-03-19 抗体定常領域改変体
US14/680,250 US10253091B2 (en) 2009-03-19 2015-04-07 Antibody constant region variant
US16/298,032 US20190211081A1 (en) 2009-03-19 2019-03-11 Antibody constant region variant
US17/530,542 US20220064264A1 (en) 2009-03-19 2021-11-19 Antibody constant region variant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-068631 2009-03-19
JP2009068631 2009-03-19
JP2009-213901 2009-09-16
JP2009213901 2009-09-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/257,145 A-371-Of-International US20120071634A1 (en) 2009-03-19 2010-03-19 Antibody Constant Region Variant
US14/680,250 Division US10253091B2 (en) 2009-03-19 2015-04-07 Antibody constant region variant

Publications (1)

Publication Number Publication Date
WO2010107109A1 true WO2010107109A1 (ja) 2010-09-23

Family

ID=42739765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054767 WO2010107109A1 (ja) 2009-03-19 2010-03-19 抗体定常領域改変体

Country Status (5)

Country Link
US (4) US20120071634A1 (ja)
EP (3) EP3674317A1 (ja)
JP (2) JP5787446B2 (ja)
TW (3) TWI544077B (ja)
WO (1) WO2010107109A1 (ja)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047752A1 (ja) * 2011-09-30 2013-04-04 中外製薬株式会社 抗原の消失を促進する抗原結合分子
WO2013125667A1 (ja) * 2012-02-24 2013-08-29 中外製薬株式会社 FcγRIIBを介して抗原の消失を促進する抗原結合分子
WO2013180200A1 (ja) * 2012-05-30 2013-12-05 中外製薬株式会社 標的組織特異的抗原結合分子
JP2015513537A (ja) * 2012-02-22 2015-05-14 ユセベ ファルマ ソシエテ アノニム 配列対称形に修飾されたIgG4二重特異性抗体
JP2015514684A (ja) * 2012-02-22 2015-05-21 ユセベ ファルマ ソシエテ アノニム 配列非対称形に修飾されたIgG4二重特異性抗体
JP2015180627A (ja) * 2009-03-19 2015-10-15 中外製薬株式会社 抗体定常領域改変体
WO2016159213A1 (ja) * 2015-04-01 2016-10-06 中外製薬株式会社 ポリペプチド異種多量体の製造方法
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
WO2017096361A1 (en) 2015-12-04 2017-06-08 Merrimack Pharmaceuticals, Inc. Disulfide-stabilized fabs
US9688762B2 (en) 2007-09-26 2017-06-27 Chugai Sciyaku Kabushiki Kaisha Modified antibody constant region
US9828429B2 (en) 2007-09-26 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9890218B2 (en) 2011-06-30 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
US9969800B2 (en) 2015-02-05 2018-05-15 Chugai Seiyaku Kabushiki Kaisha IL-8 antibodies
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US10000560B2 (en) 2014-12-19 2018-06-19 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US10066018B2 (en) 2009-03-19 2018-09-04 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US10150808B2 (en) 2009-09-24 2018-12-11 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
US10253100B2 (en) 2011-09-30 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
US10435458B2 (en) 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
US10450381B2 (en) 2010-11-17 2019-10-22 Chugai Seiyaku Kabushiki Kaisha Methods of treatment that include the administration of bispecific antibodies
US10604561B2 (en) 2016-09-16 2020-03-31 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US10618965B2 (en) 2011-02-25 2020-04-14 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US10662245B2 (en) 2008-09-26 2020-05-26 Chugai Seiyaku Kabushiki Kaisha Methods of reducing IL-6 activity for disease treatment
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
US10774148B2 (en) 2015-02-27 2020-09-15 Chugai Seiyaku Kabushiki Kaisha Composition for treating IL-6-related diseases
US10919953B2 (en) 2012-08-24 2021-02-16 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIB-specific Fc region variant
US10961530B2 (en) 2013-12-04 2021-03-30 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US11053308B2 (en) 2016-08-05 2021-07-06 Chugai Seiyaku Kabushiki Kaisha Method for treating IL-8-related diseases
US11072666B2 (en) 2016-03-14 2021-07-27 Chugai Seiyaku Kabushiki Kaisha Cell injury inducing therapeutic drug for use in cancer therapy
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
US11267868B2 (en) 2013-04-02 2022-03-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US11820793B2 (en) 2011-11-30 2023-11-21 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
US11827699B2 (en) 2011-09-30 2023-11-28 Chugai Seiyaku Kabushiki Kaisha Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities
US11851476B2 (en) 2011-10-31 2023-12-26 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
US11891432B2 (en) 2018-03-15 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to Zika virus and methods of use

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236604B1 (en) 2007-12-05 2016-07-06 Chugai Seiyaku Kabushiki Kaisha Anti-nr10 antibody and use thereof
KR101215091B1 (ko) * 2008-02-01 2012-12-24 가부시키가이샤 아이에이치아이 연소 가열기
DK2708559T3 (en) 2008-04-11 2018-06-14 Chugai Pharmaceutical Co Ltd Antigen-binding molecule capable of repeatedly binding two or more antigen molecules
AR076875A1 (es) 2009-05-15 2011-07-13 Chugai Pharmaceutical Co Ltd Anticuerpo contra receptor de la tirosina quinasa (anti-axl)
GB201014033D0 (en) 2010-08-20 2010-10-06 Ucb Pharma Sa Biological products
CN108715614A (zh) 2010-11-30 2018-10-30 中外制药株式会社 与多分子的抗原重复结合的抗原结合分子
JP6152090B2 (ja) 2011-04-21 2017-06-21 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate 視神経脊髄炎を処置するための組成物および方法
TWI682941B (zh) 2013-02-01 2020-01-21 美商再生元醫藥公司 含嵌合恆定區之抗體
KR20160044042A (ko) 2013-08-28 2016-04-22 스템센트알엑스 인코포레이티드 부위-특이적 항체 접합 방법 및 조성물
JP6515111B2 (ja) 2013-11-06 2019-05-22 アッヴィ・ステムセントルクス・エル・エル・シー 新規の抗クローディン抗体および使用方法
AU2014361856A1 (en) 2013-12-12 2016-06-30 Abbvie Stemcentrx Llc Novel anti-DPEP3 antibodies and methods of use
KR20170008202A (ko) 2014-02-21 2017-01-23 애브비 스템센트알엑스 엘엘씨 흑색종에 사용하기 위한 항-dll3 항체 및 약물 접합체
TWI701042B (zh) 2014-03-19 2020-08-11 美商再生元醫藥公司 用於腫瘤治療之方法及抗體組成物
TW201617368A (zh) 2014-09-05 2016-05-16 史坦森特瑞斯公司 新穎抗mfi2抗體及使用方法
PL3221359T3 (pl) 2014-11-17 2020-11-16 Regeneron Pharmaceuticals, Inc. Sposoby leczenia nowotworów przy użyciu dwuswoistego przeciwciała CD3XCD20
PL3221346T3 (pl) 2014-11-21 2021-03-08 Bristol-Myers Squibb Company Przeciwciała ze zmodyfikowanym regionem stałym łańcucha ciężkiego
NZ731633A (en) 2014-11-21 2022-01-28 Bristol Myers Squibb Co Antibodies against cd73 and uses thereof
AU2016242866B2 (en) 2015-03-30 2021-06-03 Regeneron Pharmaceuticals, Inc. Heavy chain constant regions with reduced binding to FC gamma receptors
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
CA3110513A1 (en) 2018-08-31 2020-03-05 Regeneron Pharmaceuticals, Inc. Dosing strategy that mitigates cytokine release syndrome for cd3/c20 bispecific antibodies
AU2021377176A1 (en) * 2020-11-11 2023-06-22 Hq Han Bifunctional antagonists of activin/tgf-beta and rankl and uses thereof
CN115947830B (zh) * 2022-12-27 2023-09-12 优洛生物(上海)有限公司 一种经改造的抗体、其制备方法及其用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056606A2 (en) * 2003-12-03 2005-06-23 Xencor, Inc Optimized antibodies that target the epidermal growth factor receptor
US20060194280A1 (en) * 2004-10-22 2006-08-31 Amgen Inc. Methods for refolding of recombinant antibodies
WO2007108559A1 (ja) * 2006-03-23 2007-09-27 Kirin Pharma Kabushiki Kaisha ヒトトロンボポエチン受容体に対するアゴニスト抗体
WO2007114325A1 (ja) * 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha 二重特異性抗体を精製するための抗体改変方法
WO2008145141A1 (en) * 2007-05-31 2008-12-04 Genmab A/S Method for extending the half-life of exogenous or endogenous soluble molecules
WO2009041613A1 (ja) * 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗体定常領域改変体
WO2009041621A1 (ja) * 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗il-6レセプター抗体

Family Cites Families (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006718A1 (en) 1985-05-17 1986-11-20 The Australian National University Antimalarial compounds
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US5004697A (en) 1987-08-17 1991-04-02 Univ. Of Ca Cationized antibodies for delivery through the blood-brain barrier
US5670373A (en) 1988-01-22 1997-09-23 Kishimoto; Tadamitsu Antibody to human interleukin-6 receptor
US5322678A (en) 1988-02-17 1994-06-21 Neorx Corporation Alteration of pharmacokinetics of proteins by charge modification
US5126250A (en) 1988-09-28 1992-06-30 Eli Lilly And Company Method for the reduction of heterogeneity of monoclonal antibodies
RO105652B1 (ro) 1988-09-28 1992-11-30 Lilly Co Eli Procedeu de reducere a heterogenitatii anticorpilor monoclonali
GB8916400D0 (en) 1989-07-18 1989-09-06 Dynal As Modified igg3
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
WO1992019759A1 (en) 1991-04-25 1992-11-12 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin 6 receptor
US5468634A (en) 1991-06-24 1995-11-21 The University Of North Carolina At Chapel Hill Axl oncogene
US6136310A (en) 1991-07-25 2000-10-24 Idec Pharmaceuticals Corporation Recombinant anti-CD4 antibodies for human therapy
ZA936260B (en) 1992-09-09 1994-03-18 Smithkline Beecham Corp Novel antibodies for conferring passive immunity against infection by a pathogen in man
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
BR9204244A (pt) 1992-10-26 1994-05-03 Cofap Ferro fundido cinzento
EP0671951A4 (en) 1992-12-01 1997-05-21 Protein Design Labs Inc HUMANIZED ANTIBODIES REACTING WITH L-SELECTIN.
US5888510A (en) 1993-07-21 1999-03-30 Chugai Seiyaku Kabushiki Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
UA40577C2 (uk) 1993-08-02 2001-08-15 Мерк Патент Гмбх Біспецифічна молекула, що використовується для лізису пухлинних клітин, спосіб її одержання, моноклональне антитіло (варіанти), фармацевтичний препарат, фармацевтичний набір (варіанти), спосіб видалення пухлинних клітин
IL107742A0 (en) 1993-11-24 1994-02-27 Yeda Res & Dev Chemically-modified binding proteins
DE122009000068I2 (de) 1994-06-03 2011-06-16 Ascenion Gmbh Verfahren zur Herstellung von heterologen bispezifischen Antikörpern
US5945311A (en) 1994-06-03 1999-08-31 GSF--Forschungszentrumfur Umweltund Gesundheit Method for producing heterologous bi-specific antibodies
US8017121B2 (en) 1994-06-30 2011-09-13 Chugai Seiyaku Kabushika Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
US6309636B1 (en) 1995-09-14 2001-10-30 Cancer Research Institute Of Contra Costa Recombinant peptides derived from the Mc3 anti-BA46 antibody, methods of use thereof, and methods of humanizing antibody peptides
RU2147443C1 (ru) 1994-10-07 2000-04-20 Чугаи Сейяку Кабусики Кайся Лечебные средства против хронического ревматоидного артрита, содержащие антагонист il-6 в качестве эффективного компонента
EP0791359A4 (en) 1994-10-21 2002-09-11 Chugai Pharmaceutical Co Ltd MEDICINE AGAINST IL-6 PRODUCTION IN DISEASES
US6485943B2 (en) 1995-01-17 2002-11-26 The University Of Chicago Method for altering antibody light chain interactions
US5876950A (en) 1995-01-26 1999-03-02 Bristol-Myers Squibb Company Monoclonal antibodies specific for different epitopes of human GP39 and methods for their use in diagnosis and therapy
MX9706538A (es) 1995-02-28 1997-11-29 Procter & Gamble Preparacion de productos de bebida no carbonatada que tienen estabilidad microbiana superior.
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
ES2233974T3 (es) 1995-09-11 2005-06-16 Kyowa Hakko Kogyo Co., Ltd. Anticuerpo contra la cadena alfa del receptor de la interleucina 5 humana.
US20020147326A1 (en) 1996-06-14 2002-10-10 Smithkline Beecham Corporation Hexameric fusion proteins and uses therefor
AU720232B2 (en) 1996-07-19 2000-05-25 Amgen, Inc. Analogs of cationic proteins
US5990286A (en) 1996-12-18 1999-11-23 Techniclone, Inc. Antibodies with reduced net positive charge
US6884879B1 (en) 1997-04-07 2005-04-26 Genentech, Inc. Anti-VEGF antibodies
US7365166B2 (en) 1997-04-07 2008-04-29 Genentech, Inc. Anti-VEGF antibodies
ES2246069T3 (es) 1997-05-02 2006-02-01 Genentech, Inc. Procedimiento de preparacion de anticuerpos multiespecificos que tienen componentes comunes y multimericos.
US5980893A (en) 1997-07-17 1999-11-09 Beth Israel Deaconess Medical Center, Inc. Agonist murine monoclonal antibody as a stimulant for megakaryocytopoiesis
US20020187150A1 (en) 1997-08-15 2002-12-12 Chugai Seiyaku Kabushiki Kaisha Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient
CA2305712A1 (en) 1997-10-03 1999-04-15 Chugai Seiyaku Kabushiki Kaisha Natural humanized antibody
CN100374159C (zh) 1998-03-17 2008-03-12 中外制药株式会社 一种包含il-6拮抗剂活性成分的炎性肠道疾病的预防或治疗剂
HUP0101160A2 (hu) 1998-04-03 2001-08-28 Chugai Seiyaku Kabushiki Kaisha Humán szöveti faktor (TF) elleni humanizált antitest és eljárás előállítására
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
CA2341029A1 (en) 1998-08-17 2000-02-24 Abgenix, Inc. Generation of modified molecules with increased serum half-lives
US6329511B1 (en) 1998-12-01 2001-12-11 Protein Design Labs, Inc. Humanized antibodies to γ-interferon
EP1051432B1 (en) 1998-12-08 2007-01-24 Biovation Limited Method for reducing immunogenicity of proteins
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US6972125B2 (en) 1999-02-12 2005-12-06 Genetics Institute, Llc Humanized immunoglobulin reactive with B7-2 and methods of treatment therewith
EP1188830B1 (en) 1999-06-02 2010-01-20 Chugai Seiyaku Kabushiki Kaisha Novel hemopoietin receptor protein ,nr10
SK782002A3 (en) 1999-07-21 2003-08-05 Lexigen Pharm Corp FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens
SE9903895D0 (sv) 1999-10-28 1999-10-28 Active Biotech Ab Novel compounds
JP2004505609A (ja) 2000-04-03 2004-02-26 オックスフォード グリコサイエンシズ(ユーケー) リミテッド 核酸分子、ポリペプチド、ならびにアルツハイマー病の診断および処置を含むそれらの使用
JP2004511426A (ja) 2000-05-03 2004-04-15 ミュンヘン バイオテク アーゲー 活性化血管部位に関連する陽イオン性の診断薬、画像化剤、および治療薬
AU2000279625A1 (en) 2000-10-27 2002-05-15 Chugai Seiyaku Kabushiki Kaisha Blood mmp-3 level-lowering agent containing il-6 antgonist as the active ingredient
ES2649037T3 (es) 2000-12-12 2018-01-09 Medimmune, Llc Moléculas con semividas prolongadas, composiciones y usos de las mismas
AU2002248571B2 (en) 2001-03-07 2007-01-18 Merck Patent Gmbh Expression technology for proteins containing a hybrid isotype antibody moiety
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
UA83791C2 (ru) 2001-04-13 2008-08-26 Байоджен Айдек Ма Инк. Антитело против vla-1, фармацевтическая композиция, которая его содержит, и из применение для лечения индивидуума с иммунологическим расстройством, опосредованным vla-1
WO2003000883A1 (en) 2001-06-22 2003-01-03 Chugai Seiyaku Kabushiki Kaisha Cell proliferation inhibitors containing anti-glypican 3 antibody
US20030049203A1 (en) 2001-08-31 2003-03-13 Elmaleh David R. Targeted nucleic acid constructs and uses related thereto
US20030190705A1 (en) 2001-10-29 2003-10-09 Sunol Molecular Corporation Method of humanizing immune system molecules
JP4063769B2 (ja) 2001-12-28 2008-03-19 中外製薬株式会社 タンパク質安定化方法
PT1576112E (pt) 2002-01-18 2012-05-25 Zymogenetics Inc Multímeros de receptor de citocina zcytor17
CN100575482C (zh) 2002-01-18 2009-12-30 津莫吉尼蒂克斯公司 新的细胞因子zcytor17配体
JP2006506943A (ja) 2002-02-11 2006-03-02 ジェネンテック・インコーポレーテッド 抗原結合速度の大きい抗体変異体
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US20050130224A1 (en) 2002-05-31 2005-06-16 Celestar Lexico- Sciences, Inc. Interaction predicting device
JP2004086862A (ja) 2002-05-31 2004-03-18 Celestar Lexico-Sciences Inc タンパク質相互作用情報処理装置、タンパク質相互作用情報処理方法、プログラム、および、記録媒体
US20060141456A1 (en) 2002-06-12 2006-06-29 Cynthia Edwards Methods and compositions for milieu-dependent binding of a targeted agent to a target
EP1382969A1 (en) 2002-07-17 2004-01-21 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Diagnosis and prevention of cancer cell invasion
TW200407335A (en) 2002-07-22 2004-05-16 Chugai Pharmaceutical Co Ltd Non-neutralizing antibody to inhibit the inactivation of activated protein C
WO2004016740A2 (en) 2002-08-15 2004-02-26 Epitomics, Inc. Humanized rabbit antibodies
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
GB0224082D0 (en) 2002-10-16 2002-11-27 Celltech R&D Ltd Biological products
EP1608684A2 (en) 2003-02-07 2005-12-28 Protein Design Labs, Inc. Amphiregulin antibodies and their use to treat cancer and psoriasis
US20040223970A1 (en) 2003-02-28 2004-11-11 Daniel Afar Antibodies against SLC15A2 and uses thereof
WO2004091543A2 (en) 2003-03-04 2004-10-28 Alexion Pharmaceuticals, Inc. Method of treating autoimmune disease by inducing antigen presentation by tolerance inducing antigen presenting cells
EP1606316A2 (en) 2003-03-24 2005-12-21 ZymoGenetics, Inc. Anti-il-20 antibodies and binding partners and methods of using in inflammation
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
CA2527694C (en) 2003-05-30 2015-07-14 Hendricus Renerus Jacobus Mattheus Hoogenboom Fab library for the preparation of anti vegf and anti rabies virus fabs
KR20060027801A (ko) 2003-06-05 2006-03-28 제넨테크, 인크. B 세포 장애에 대한 조합 요법
WO2004113387A2 (en) 2003-06-24 2004-12-29 Merck Patent Gmbh Tumour necrosis factor receptor molecules with reduced immunogenicity
WO2005005604A2 (en) 2003-06-30 2005-01-20 Centocor, Inc. Engineered anti-target immunoglobulin derived proteins, compositions, methods and uses
JP2005101105A (ja) 2003-09-22 2005-04-14 Canon Inc 位置決め装置、露光装置、デバイス製造方法
AU2003271174A1 (en) 2003-10-10 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
JPWO2005035754A1 (ja) 2003-10-14 2006-12-21 中外製薬株式会社 機能蛋白質を代替する二種特異性抗体
AU2004290070A1 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. Neonatal Fc receptor (FcRn)-binding polypeptide variants, dimeric Fc binding proteins and methods related thereto
DK2418220T3 (da) 2003-12-10 2017-11-06 Squibb & Sons Llc Interferon-alpha-antistoffer og anvendelser deraf
KR101374514B1 (ko) 2003-12-10 2014-03-13 메다렉스, 인코포레이티드 Ip―10 항체 및 그의 용도
AR048210A1 (es) 2003-12-19 2006-04-12 Chugai Pharmaceutical Co Ltd Un agente preventivo para la vasculitis.
AU2004308439A1 (en) 2003-12-22 2005-07-14 Centocor, Inc. Methods for generating multimeric molecules
EP1707627B1 (en) 2003-12-25 2012-11-14 Kyowa Hakko Kirin Co., Ltd. Antagonistic anti-CD40 antibody mutant
JP4315982B2 (ja) 2004-01-09 2009-08-19 ファイザー インコーポレイティッド MAdCAMに対する抗体
ATE464908T1 (de) 2004-02-11 2010-05-15 Warner Lambert Co Verfahren zur behandlung von osteoarthritis mit anti-il-6 antikörpern
US8398980B2 (en) 2004-03-24 2013-03-19 Chugai Seiyaku Kabushiki Kaisha Subtypes of humanized antibody against interleuken-6 receptor
KR20070035482A (ko) 2004-03-24 2007-03-30 추가이 세이야쿠 가부시키가이샤 인터로킨-6 안타고니스트를 활성성분으로 함유하는내이장해 치료제
AR048335A1 (es) 2004-03-24 2006-04-19 Chugai Pharmaceutical Co Ltd Agentes terapeuticos para trastornos del oido interno que contienen un antagonista de il- 6 como un ingrediente activo
EP1737890A2 (en) 2004-03-24 2007-01-03 Xencor, Inc. Immunoglobulin variants outside the fc region
WO2005112564A2 (en) 2004-04-15 2005-12-01 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Germline and sequence variants of humanized antibodies and methods of making and using them
AR049390A1 (es) 2004-06-09 2006-07-26 Wyeth Corp Anticuerpos contra la interleuquina-13 humana y usos de los mismos
EP1773391A4 (en) 2004-06-25 2009-01-21 Medimmune Inc INCREASING THE PRODUCTION OF RECOMBINANT ANTIBODIES IN MAMMALIAN CELLS BY MUTAGENESIS ON THE SITE
WO2006023144A2 (en) 2004-07-06 2006-03-02 Bioren Inc. Look-through mutagenesis for developing altered polypeptides with enhanced properties
EP1919950A1 (en) 2004-07-15 2008-05-14 Xencor, Inc. Optimized fc variants
AU2005282700A1 (en) 2004-09-02 2006-03-16 Genentech, Inc. Heteromultimeric molecules
US20060074225A1 (en) 2004-09-14 2006-04-06 Xencor, Inc. Monomeric immunoglobulin Fc domains
EP1799718A1 (en) 2004-09-14 2007-06-27 National Institute for Biological Standards and Control (NIBSC) Vaccine
TWI309240B (en) 2004-09-17 2009-05-01 Hoffmann La Roche Anti-ox40l antibodies
US7563443B2 (en) 2004-09-17 2009-07-21 Domantis Limited Monovalent anti-CD40L antibody polypeptides and compositions thereof
US8911726B2 (en) 2004-09-22 2014-12-16 Kyowa Hakko Kirin Co., Ltd Stabilized human Igg4 antibodies
WO2006047350A2 (en) 2004-10-21 2006-05-04 Xencor, Inc. IgG IMMUNOGLOBULIN VARIANTS WITH OPTIMIZED EFFECTOR FUNCTION
US7462697B2 (en) 2004-11-08 2008-12-09 Epitomics, Inc. Methods for antibody engineering
WO2007024249A2 (en) 2004-11-10 2007-03-01 Macrogenics, Inc. Engineering fc antibody regions to confer effector function
US20090061485A1 (en) 2004-12-22 2009-03-05 Chugai Seiyaku Kabushiki Kaisha Method of Producing an Antibody Using a Cell in Which the Function of Fucose Transporter Is Inhibited
US20090087478A1 (en) * 2004-12-27 2009-04-02 Progenics Pharmaceuticals (Nevada), Inc. Orally Deliverable and Anti-Toxin Antibodies and Methods for Making and Using Them
CA2591059C (en) 2004-12-28 2018-11-06 Innate Pharma Monoclonal antibodies against nkg2a
US8716451B2 (en) 2005-01-12 2014-05-06 Kyowa Hakko Kirin Co., Ltd Stabilized human IgG2 and IgG3 antibodies
WO2006076594A2 (en) 2005-01-12 2006-07-20 Xencor, Inc. Antibodies and fc fusion proteins with altered immunogenicity
US20060182743A1 (en) 2005-02-14 2006-08-17 Janine Bilsborough Methods of treating skin disorders using an IL-31RA antagonist
TWI671403B (zh) 2005-03-31 2019-09-11 中外製藥股份有限公司 控制組裝之多肽的製造方法
WO2006106903A1 (ja) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha sc(Fv)2構造異性体
SI1876236T1 (sl) 2005-04-08 2014-11-28 Chugai Seiyaku Kabushiki Kaisha Protitelo, ki funkcionalno nadomesti faktor viii za koagulacijo krvi
RU2403261C2 (ru) 2005-04-15 2010-11-10 Дженентек, Инк. Варианты бета-цепи hgf
WO2006116260A2 (en) 2005-04-26 2006-11-02 Medimmune, Inc. Modulation of antibody effector function by hinge domain engineering
PA8672101A1 (es) 2005-04-29 2006-12-07 Centocor Inc Anticuerpos anti-il-6, composiciones, métodos y usos
UY29504A1 (es) 2005-04-29 2006-10-31 Rinat Neuroscience Corp Anticuerpos dirigidos contra el péptido amiloide beta y métodos que utilizan los mismos.
US8003108B2 (en) 2005-05-03 2011-08-23 Amgen Inc. Sclerostin epitopes
AU2006244445B2 (en) 2005-05-05 2013-04-18 Duke University Anti-CD19 antibody therapy for autoimmune disease
AU2006256041B2 (en) 2005-06-10 2012-03-29 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
TW200718780A (en) 2005-06-10 2007-05-16 Chugai Pharmaceutical Co Ltd Sc(Fv)2 site-directed mutant
EP1893647A2 (en) 2005-06-23 2008-03-05 MedImmune, Inc. Antibody formulations having optimized aggregation and fragmentation profiles
CN101627054A (zh) 2005-07-11 2010-01-13 马克罗基因公司 用人源化抗cd16a抗体治疗自身免疫疾病的方法
US8217147B2 (en) 2005-08-10 2012-07-10 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
PT2407486T (pt) 2005-08-19 2018-02-21 Univ Pennsylvania Anticorpos antagonistas contra gdf-8 e utilizações no tratamento de ela e outros distúrbios associados a gdf-8
EP1789435B1 (en) 2005-09-12 2010-02-24 Industry Foundation of Chonnam National University A method for production of mature natural killer cell
EP1928916A2 (en) 2005-09-29 2008-06-11 Viral Logic Systems Technology Corp. Immunomodulatory compositions and uses therefor
WO2007043641A1 (ja) 2005-10-14 2007-04-19 Fukuoka University 膵島移植における移植膵島障害抑制剤
BRPI0617664B8 (pt) 2005-10-21 2021-05-25 Chugai Pharmaceutical Co Ltd uso de um anticorpo que reconhece a il-6 para a produção de uma composição farmacêutica para tratar o enfarte do miocárdio ou suprimir a remodelagem ventricular esquerda depois do enfarte do miocárdio
WO2007060411A1 (en) 2005-11-24 2007-05-31 Ucb Pharma S.A. Anti-tnf alpha antibodies which selectively inhibit tnf alpha signalling through the p55r
US9084777B2 (en) 2005-12-28 2015-07-21 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing formulations
AU2007249713A1 (en) 2006-01-10 2007-11-22 Zymogenetics, Inc. Methods of treating pain and inflammation in neuronal tissue using IL-31Ra and OSMRb antagonists
ES2586825T3 (es) 2006-01-12 2016-10-19 Alexion Pharmaceuticals, Inc. Anticuerpos para OX-2/CD200 y usos de los mismos
EP3135298B1 (en) 2006-01-27 2018-06-06 Keio University Therapeutic agents for diseases involving choroidal neovascularization
CN101421303B (zh) 2006-03-23 2013-06-12 生命北极神经科学公司 改进的初原纤维选择性抗体及其用途
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
CN101495146B (zh) 2006-04-07 2012-10-17 国立大学法人大阪大学 肌肉再生促进剂
MY157173A (en) 2006-05-25 2016-05-13 Glaxo Group Ltd Modified humanised anti-interleukin-18
MX2008014804A (es) 2006-06-02 2009-01-27 Regeneron Pharma Anticuerpos de afinidad elevada a receptor de il-6 humano.
US8080248B2 (en) 2006-06-02 2011-12-20 Regeneron Pharmaceuticals, Inc. Method of treating rheumatoid arthritis with an IL-6R antibody
DK2047863T3 (da) 2006-06-08 2013-09-16 Chugai Pharmaceutical Co Ltd Middel til forebyggelse eller behandling af inflammatoriske sygdomme
ES2415655T3 (es) 2006-06-15 2013-07-26 The Board Of Trustees Of The University Of Arkansas Anticuerpos monoclonales que reconocen selectivamente Metanfetamina y compuestos similares a Metanfetamina
US20100034194A1 (en) 2006-10-11 2010-02-11 Siemens Communications Inc. Eliminating unreachable subscribers in voice-over-ip networks
US20110236374A1 (en) 2007-01-24 2011-09-29 Kyowa Hakko Kirin Co., Ltd. Genetically recombinant antibody composition capable of binding specifically to ganglioside gm2
WO2008092117A2 (en) 2007-01-25 2008-07-31 Xencor, Inc. Immunoglobulins with modifications in the fcr binding region
EP2069404B1 (en) 2007-02-14 2011-01-05 Vaccinex, Inc. Humanized anti-cd100 antibodies
BRPI0807710B1 (pt) 2007-02-23 2021-12-14 Merck Sharp & Dohme Corp Anticorpos que se ligam a il-23p19 e il-23 humana, anticorpo, ácido nucleico isolado, vetor de expressão, célula hospedeira microbiana, método de produção de um polipeptídeo e composição farmacêutica
WO2008114733A1 (ja) 2007-03-16 2008-09-25 Kyowa Hakko Kirin Co., Ltd. 抗Claudin-4抗体
AU2008234248C1 (en) 2007-03-29 2015-01-22 Genmab A/S Bispecific antibodies and methods for production thereof
GB0708002D0 (en) 2007-04-25 2007-06-06 Univ Sheffield Antibodies
EP2031064A1 (de) 2007-08-29 2009-03-04 Boehringer Ingelheim Pharma GmbH & Co. KG Verfahren zur Steigerung von Proteintitern
JP5963341B2 (ja) 2007-09-14 2016-08-10 アムジエン・インコーポレーテツド 均質な抗体集団
MX369784B (es) 2007-09-26 2019-11-21 Chugai Pharmaceutical Co Ltd Metodo de modificacion del punto isoelectrico de anticuerpos mediante la sustitucion de aminoacidos en region de determinacion de complementariedad (cdr).
WO2009041734A1 (ja) 2007-09-26 2009-04-02 Kyowa Hakko Kirin Co., Ltd. ヒトトロンボポエチン受容体に対するアゴニスト抗体
EP2196541B1 (en) 2007-09-28 2012-11-07 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody having improved kinetics in plasma
JO3076B1 (ar) 2007-10-17 2017-03-15 Janssen Alzheimer Immunotherap نظم العلاج المناعي المعتمد على حالة apoe
ES2400107T3 (es) 2007-10-22 2013-04-05 Merck Serono S.A. IFN-beta sencillo fusionado a un fragmento Fc de lgG mutado
AR069333A1 (es) 2007-11-15 2010-01-13 Chugai Pharmaceutical Co Ltd Anticuerpos monoclonales que se unen al receptor tirosin quinasa anexelekto (axl), hibridomas que los producen y sus usos
EP2241332A4 (en) 2007-12-05 2011-01-26 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT AGAINST PRITURE
EP2236604B1 (en) 2007-12-05 2016-07-06 Chugai Seiyaku Kabushiki Kaisha Anti-nr10 antibody and use thereof
RU2528738C2 (ru) 2007-12-18 2014-09-20 Биоэллаенс К.В. Антитела, узнающие углеводсодержащий эпитоп на cd43 и сеа, экспрессируемых на раковых клетках и способы их применения
SI2235064T1 (sl) 2008-01-07 2016-04-29 Amgen Inc. Metoda za izdelavo heterodimernih molekul - protitelesa fc z uporabo elektrostatičnih usmerjevalnih učinkov
SI2250279T1 (sl) 2008-02-08 2016-10-28 Medimmune, Llc Protitelesa anti-IFNAR1 z zmanjšano afiniteto do FC liganda
DK2708559T3 (en) 2008-04-11 2018-06-14 Chugai Pharmaceutical Co Ltd Antigen-binding molecule capable of repeatedly binding two or more antigen molecules
CA2722600C (en) 2008-05-01 2014-01-21 Amgen Inc. Anti-hepcidin antibodies and methods of use
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
AR074438A1 (es) 2008-12-02 2011-01-19 Pf Medicament Proceso para la modulacion de la actividad antagonista de un anticuerpo monoclonal
WO2010064090A1 (en) 2008-12-02 2010-06-10 Pierre Fabre Medicament Process for the modulation of the antagonistic activity of a monoclonal antibody
KR20160062207A (ko) 2008-12-05 2016-06-01 추가이 세이야쿠 가부시키가이샤 항nr10 항체 및 그의 이용
JP2010210772A (ja) 2009-03-13 2010-09-24 Dainippon Screen Mfg Co Ltd 液晶表示装置の製造方法
JP5787446B2 (ja) 2009-03-19 2015-09-30 中外製薬株式会社 抗体定常領域改変体
JP5717624B2 (ja) 2009-03-19 2015-05-13 中外製薬株式会社 抗体定常領域改変体
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
JP5616428B2 (ja) 2009-04-07 2014-10-29 ロシュ グリクアート アクチェンゲゼルシャフト 三価の二重特異性抗体
AR076875A1 (es) 2009-05-15 2011-07-13 Chugai Pharmaceutical Co Ltd Anticuerpo contra receptor de la tirosina quinasa (anti-axl)
CN102471378B (zh) 2009-06-26 2014-04-02 瑞泽恩制药公司 容易地分离的具有天然免疫球蛋白形式的双特异性抗体
EP2481752B1 (en) 2009-09-24 2016-11-09 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
MX2012007497A (es) 2009-12-25 2012-08-01 Chugai Pharmaceutical Co Ltd Metodo para modificacion de polipeptidos para purificar multimeros de polipeptido.
PT2519543T (pt) 2009-12-29 2016-10-07 Emergent Product Dev Seattle Proteínas de ligação de heterodímero e suas utilizações
CA2787783A1 (en) 2010-01-20 2011-07-28 Tolerx, Inc. Anti-ilt5 antibodies and ilt5-binding antibody fragments
CA2787755A1 (en) 2010-01-20 2011-07-28 Tolerx, Inc. Immunoregulation by anti-ilt5 antibodies and ilt5-binding antibody fragments
EP2543727B1 (en) 2010-03-02 2016-08-31 Kyowa Hakko Kirin Co., Ltd. Modified antibody composition
JP5889181B2 (ja) 2010-03-04 2016-03-22 中外製薬株式会社 抗体定常領域改変体
SA111320266B1 (ar) 2010-03-11 2015-06-21 رينات نيوروساينس كوربوريشن أجسام مضادة مع ارتباط مولد مضاد يعتمد على الأس الهيدروجيني
MX353144B (es) 2010-04-20 2017-12-20 Genmab As Proteinas que contienen fc de anticuerpos heterodimericos y metodos para produccion de las mismas.
TWI586806B (zh) 2010-04-23 2017-06-11 建南德克公司 異多聚體蛋白質之製造
EP2569337A1 (en) 2010-05-14 2013-03-20 Rinat Neuroscience Corp. Heterodimeric proteins and methods for producing and purifying them
AU2011283694B2 (en) 2010-07-29 2017-04-13 Xencor, Inc. Antibodies with modified isoelectric points
CA2808154A1 (en) 2010-08-13 2012-02-16 Medimmmune Limited Monomeric polypeptides comprising variant fc regions and methods of use
CN103429620B (zh) 2010-11-05 2018-03-06 酵活有限公司 在Fc结构域中具有突变的稳定异源二聚的抗体设计
CN103476793A (zh) 2010-11-08 2013-12-25 基因技术公司 皮下施用的抗-il-6受体抗体
EP2644698B1 (en) 2010-11-17 2018-01-03 Chugai Seiyaku Kabushiki Kaisha Multi-specific antigen-binding molecule having alternative function to function of blood coagulation factor viii
US20140112883A1 (en) 2011-04-20 2014-04-24 Liquidating Trust Methods for reducing an adverse immune response to a foreign antigen in a human subject with anti-cd4 antibodies or cd4-binding fragments thereof or cd4-binding molecules
AU2012328322A1 (en) 2011-10-27 2014-06-12 Genmab A/S Production of heterodimeric proteins
PT2773671T (pt) 2011-11-04 2021-12-14 Zymeworks Inc Geração de anticorpo heterodimérico estável com mutações no domínio fc
JP6280031B2 (ja) 2012-03-29 2018-02-14 中外製薬株式会社 抗lamp5抗体およびその利用
ES2743399T3 (es) 2012-04-20 2020-02-19 Merus Nv Métodos y medios para la producción de moléculas heterodiméricas similares a Ig
CA2881679C (en) 2012-08-13 2021-01-26 Regeneron Pharmaceuticals, Inc. Anti-pcsk9 antibodies with ph-dependent binding characteristics
EP2905290B1 (en) 2012-10-05 2019-12-04 Kyowa Kirin Co., Ltd. Heterodimeric protein composition
EP2914634B1 (en) 2012-11-02 2017-12-06 Zymeworks Inc. Crystal structures of heterodimeric fc domains
JP6449229B2 (ja) 2013-03-15 2019-01-09 アッヴィ・バイオセラピューティクス・インコーポレイテッド Fc変異体
RU2758952C1 (ru) 2013-09-27 2021-11-03 Чугаи Сейяку Кабусики Кайся Способ получения полипептидного гетеромультимера
TWI805046B (zh) 2015-02-27 2023-06-11 日商中外製藥股份有限公司 Il-6受體抗體用於製備醫藥組成物的用途
WO2016159213A1 (ja) 2015-04-01 2016-10-06 中外製薬株式会社 ポリペプチド異種多量体の製造方法
KR20180091918A (ko) 2015-12-28 2018-08-16 추가이 세이야쿠 가부시키가이샤 Fc 영역 함유 폴리펩타이드의 정제를 효율화하기 위한 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056606A2 (en) * 2003-12-03 2005-06-23 Xencor, Inc Optimized antibodies that target the epidermal growth factor receptor
US20060194280A1 (en) * 2004-10-22 2006-08-31 Amgen Inc. Methods for refolding of recombinant antibodies
WO2007108559A1 (ja) * 2006-03-23 2007-09-27 Kirin Pharma Kabushiki Kaisha ヒトトロンボポエチン受容体に対するアゴニスト抗体
WO2007114325A1 (ja) * 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha 二重特異性抗体を精製するための抗体改変方法
WO2008145141A1 (en) * 2007-05-31 2008-12-04 Genmab A/S Method for extending the half-life of exogenous or endogenous soluble molecules
WO2009041613A1 (ja) * 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗体定常領域改変体
WO2009041621A1 (ja) * 2007-09-26 2009-04-02 Chugai Seiyaku Kabushiki Kaisha 抗il-6レセプター抗体

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ARMOUR KL: "Recombinant human IgG molecules lacking Fcgamma receptor I binding and monocyte triggering activities", EUR. J. IMMUNOL., vol. 29, 1999, pages 2613 - 2624 *
DILLON TM ET AL.: "Structural and functional characterization of disulfide isoforms of the human IgG2 subclass.", J. BIOL. CHEM., vol. 283, no. 23, 2008, pages 16206 - 16215 *
JOHNSON KA ET AL.: "Cation exchange-HPLC and mass spectrometry reveal C-terminal amidation of an IgG1 heavy chain", ANALYTICAL BIOCHEMISTRY, vol. 360, 2007, pages 75 - 83, XP005725305 *
MARTINEZ T ET AL.: "Disulfide connectivity of human immunoglobulin G2 structural isoforms.", BIOCHEMISTRY, vol. 47, 2008, pages 7496 - 7508, XP002512403 *
See also references of EP2409990A4 *
WYPYCH J ET AL.: "Human IgG2 antibodies display disulfide-mediated structural isoforms.", J.BIOL. CHEM., vol. 283, no. 23, 2008, pages 16194 - 16205 *

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168344B2 (en) 2005-03-31 2021-11-09 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US10934344B2 (en) 2006-03-31 2021-03-02 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US9828429B2 (en) 2007-09-26 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US11332533B2 (en) 2007-09-26 2022-05-17 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant region
US11248053B2 (en) 2007-09-26 2022-02-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9688762B2 (en) 2007-09-26 2017-06-27 Chugai Sciyaku Kabushiki Kaisha Modified antibody constant region
US10662245B2 (en) 2008-09-26 2020-05-26 Chugai Seiyaku Kabushiki Kaisha Methods of reducing IL-6 activity for disease treatment
JP2015180627A (ja) * 2009-03-19 2015-10-15 中外製薬株式会社 抗体定常領域改変体
US10253091B2 (en) 2009-03-19 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US10066018B2 (en) 2009-03-19 2018-09-04 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
US10150808B2 (en) 2009-09-24 2018-12-11 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
US10435458B2 (en) 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
US10450381B2 (en) 2010-11-17 2019-10-22 Chugai Seiyaku Kabushiki Kaisha Methods of treatment that include the administration of bispecific antibodies
US10618965B2 (en) 2011-02-25 2020-04-14 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US11718678B2 (en) 2011-02-25 2023-08-08 Chugai Seiyaku Kabushiki Kaisha Method for altering plasma retention and immunogenicity of antigen-binding molecule
US9890218B2 (en) 2011-06-30 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
JP2018058891A (ja) * 2011-09-30 2018-04-12 中外製薬株式会社 抗原の消失を促進する抗原結合分子
US10253100B2 (en) 2011-09-30 2019-04-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
JPWO2013047752A1 (ja) * 2011-09-30 2015-03-30 中外製薬株式会社 抗原の消失を促進する抗原結合分子
US11827699B2 (en) 2011-09-30 2023-11-28 Chugai Seiyaku Kabushiki Kaisha Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities
WO2013047752A1 (ja) * 2011-09-30 2013-04-04 中外製薬株式会社 抗原の消失を促進する抗原結合分子
JP6998748B2 (ja) 2011-09-30 2022-01-18 中外製薬株式会社 抗原の消失を促進する抗原結合分子
JP2020079296A (ja) * 2011-09-30 2020-05-28 中外製薬株式会社 抗原の消失を促進する抗原結合分子
JP2017114882A (ja) * 2011-09-30 2017-06-29 中外製薬株式会社 抗原の消失を促進する抗原結合分子
US11851476B2 (en) 2011-10-31 2023-12-26 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
US11820793B2 (en) 2011-11-30 2023-11-21 Chugai Seiyaku Kabushiki Kaisha Drug containing carrier into cell for forming immune complex
JP2015514684A (ja) * 2012-02-22 2015-05-21 ユセベ ファルマ ソシエテ アノニム 配列非対称形に修飾されたIgG4二重特異性抗体
JP2018127465A (ja) * 2012-02-22 2018-08-16 ユセベ ファルマ ソシエテ アノニム 配列非対称形に修飾されたIgG4二重特異性抗体
JP2018117627A (ja) * 2012-02-22 2018-08-02 ユセベ ファルマ ソシエテ アノニム 配列対称形に修飾されたIgG4二重特異性抗体
JP2015513537A (ja) * 2012-02-22 2015-05-14 ユセベ ファルマ ソシエテ アノニム 配列対称形に修飾されたIgG4二重特異性抗体
JP2020090514A (ja) * 2012-02-22 2020-06-11 ユセベ ファルマ ソシエテ アノニム 配列非対称形に修飾されたIgG4二重特異性抗体
CN104244980B (zh) * 2012-02-24 2017-11-10 中外制药株式会社 经由FcγIIB促进抗原消除的抗原结合分子
WO2013125667A1 (ja) * 2012-02-24 2013-08-29 中外製薬株式会社 FcγRIIBを介して抗原の消失を促進する抗原結合分子
CN104244980A (zh) * 2012-02-24 2014-12-24 中外制药株式会社 经由FcγIIB促进抗原消除的抗原结合分子
JPWO2013125667A1 (ja) * 2012-02-24 2015-07-30 中外製薬株式会社 FcγRIIBを介して抗原の消失を促進する抗原結合分子
JP2020040975A (ja) * 2012-05-30 2020-03-19 中外製薬株式会社 標的組織特異的抗原結合分子
JPWO2013180200A1 (ja) * 2012-05-30 2016-01-21 中外製薬株式会社 標的組織特異的抗原結合分子
WO2013180200A1 (ja) * 2012-05-30 2013-12-05 中外製薬株式会社 標的組織特異的抗原結合分子
JP7285891B2 (ja) 2012-05-30 2023-06-02 中外製薬株式会社 標的組織特異的抗原結合分子
US11673947B2 (en) 2012-05-30 2023-06-13 Chugai Seiyaku Kabushiki Kaisha Target tissue-specific antigen-binding molecule
JP2021181480A (ja) * 2012-05-30 2021-11-25 中外製薬株式会社 標的組織特異的抗原結合分子
JP2018076374A (ja) * 2012-05-30 2018-05-17 中外製薬株式会社 標的組織特異的抗原結合分子
US10919953B2 (en) 2012-08-24 2021-02-16 Chugai Seiyaku Kabushiki Kaisha FcgammaRIIB-specific Fc region variant
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
US11267868B2 (en) 2013-04-02 2022-03-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
US10961530B2 (en) 2013-12-04 2021-03-30 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
US11912989B2 (en) 2013-12-04 2024-02-27 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US11001643B2 (en) 2014-09-26 2021-05-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US10738111B2 (en) 2014-12-19 2020-08-11 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US10000560B2 (en) 2014-12-19 2018-06-19 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US11454633B2 (en) 2014-12-19 2022-09-27 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
US9969800B2 (en) 2015-02-05 2018-05-15 Chugai Seiyaku Kabushiki Kaisha IL-8 antibodies
US11180548B2 (en) 2015-02-05 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Methods of neutralizing IL-8 biological activity
US10519229B2 (en) 2015-02-05 2019-12-31 Chugai Seiyaku Kabushiki Kaisha Nucleic acids encoding IL-8 antibodies
US10774148B2 (en) 2015-02-27 2020-09-15 Chugai Seiyaku Kabushiki Kaisha Composition for treating IL-6-related diseases
JPWO2016159213A1 (ja) * 2015-04-01 2018-02-15 中外製薬株式会社 ポリペプチド異種多量体の製造方法
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
WO2016159213A1 (ja) * 2015-04-01 2016-10-06 中外製薬株式会社 ポリペプチド異種多量体の製造方法
JP2021080260A (ja) * 2015-04-01 2021-05-27 中外製薬株式会社 ポリペプチド異種多量体の製造方法
WO2017096361A1 (en) 2015-12-04 2017-06-08 Merrimack Pharmaceuticals, Inc. Disulfide-stabilized fabs
US11359009B2 (en) 2015-12-25 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US11072666B2 (en) 2016-03-14 2021-07-27 Chugai Seiyaku Kabushiki Kaisha Cell injury inducing therapeutic drug for use in cancer therapy
US11053308B2 (en) 2016-08-05 2021-07-06 Chugai Seiyaku Kabushiki Kaisha Method for treating IL-8-related diseases
US11780912B2 (en) 2016-08-05 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Composition for prophylaxis or treatment of IL-8 related diseases
US10844113B2 (en) 2016-09-16 2020-11-24 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US11780908B2 (en) 2016-09-16 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant FC regions, and methods of use
US10604561B2 (en) 2016-09-16 2020-03-31 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies, polypeptides containing variant Fc regions, and methods of use
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
US11891432B2 (en) 2018-03-15 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Anti-dengue virus antibodies having cross-reactivity to Zika virus and methods of use

Also Published As

Publication number Publication date
JPWO2010107109A1 (ja) 2012-09-20
EP3674317A1 (en) 2020-07-01
JP5787446B2 (ja) 2015-09-30
JP2015180627A (ja) 2015-10-15
EP2826789A1 (en) 2015-01-21
TW201900878A (zh) 2019-01-01
TWI646193B (zh) 2019-01-01
EP2409990A1 (en) 2012-01-25
US20150274809A1 (en) 2015-10-01
EP2409990A4 (en) 2013-01-23
JP6305371B2 (ja) 2018-04-04
TW201602344A (zh) 2016-01-16
TW201100542A (en) 2011-01-01
US10253091B2 (en) 2019-04-09
TWI682995B (zh) 2020-01-21
US20220064264A1 (en) 2022-03-03
TWI544077B (zh) 2016-08-01
US20190211081A1 (en) 2019-07-11
US20120071634A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP6305371B2 (ja) 抗体定常領域改変体
JP7072032B2 (ja) 抗体定常領域改変体
JP6010148B2 (ja) 抗体定常領域改変体
AU2016202036B2 (en) Modified antibody constant region

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011504892

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010753600

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13257145

Country of ref document: US