WO2010052810A1 - 窒化物系半導体素子およびその製造方法 - Google Patents

窒化物系半導体素子およびその製造方法 Download PDF

Info

Publication number
WO2010052810A1
WO2010052810A1 PCT/JP2009/002532 JP2009002532W WO2010052810A1 WO 2010052810 A1 WO2010052810 A1 WO 2010052810A1 JP 2009002532 W JP2009002532 W JP 2009002532W WO 2010052810 A1 WO2010052810 A1 WO 2010052810A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride
gan
plane
electrode
Prior art date
Application number
PCT/JP2009/002532
Other languages
English (en)
French (fr)
Inventor
横川俊哉
大屋満明
山田篤志
加藤亮
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/679,347 priority Critical patent/US20110156048A1/en
Priority to JP2009536554A priority patent/JP4486701B1/ja
Priority to KR1020107012782A priority patent/KR101139142B1/ko
Priority to EP09815447.9A priority patent/EP2226853B1/en
Priority to CN2009801017261A priority patent/CN101971364B/zh
Publication of WO2010052810A1 publication Critical patent/WO2010052810A1/ja
Priority to US13/191,026 priority patent/US8110851B2/en
Priority to US13/708,136 priority patent/US8686561B2/en
Priority to US13/708,097 priority patent/US8648378B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous

Definitions

  • the present invention relates to a nitride semiconductor device and a method for manufacturing the same.
  • the present invention relates to a GaN-based semiconductor light-emitting element such as a light-emitting diode and a laser diode in the wavelength range of the visible range such as ultraviolet to blue, green, orange and white.
  • a GaN-based semiconductor light-emitting element such as a light-emitting diode and a laser diode in the wavelength range of the visible range such as ultraviolet to blue, green, orange and white.
  • Such light-emitting elements are expected to be applied to display, illumination, optical information processing fields, and the like.
  • the present invention also relates to a method for manufacturing an electrode used for a nitride semiconductor device.
  • a nitride semiconductor having nitrogen (N) as a group V element is considered promising as a material for a short-wavelength light-emitting element because of its large band gap.
  • LEDs blue light emitting diodes
  • Green LEDs and semiconductor lasers made of GaN-based semiconductors have also been put into practical use (see, for example, Patent Documents 1 and 2).
  • FIG. 1 schematically shows a unit cell of GaN.
  • FIG. 2 shows four basic vectors a 1 , a 2 , a 3 , and c that are generally used to represent the surface of the wurtzite crystal structure in the 4-index notation (hexagonal crystal index).
  • the basic vector c extends in the [0001] direction, and this direction is called “c-axis”.
  • a plane perpendicular to the c-axis is called “c-plane” or “(0001) plane”.
  • c-axis” and “c-plane” may be referred to as “C-axis” and “C-plane”, respectively.
  • capital letters are used for ease of viewing.
  • a c-plane substrate that is, a substrate having a (0001) plane on the surface is used as a substrate on which a GaN-based semiconductor crystal is grown.
  • polarization electrical polarization
  • the “c-plane” is also called “polar plane”.
  • a piezoelectric field is generated along the c-axis direction in the InGaN quantum well in the active layer.
  • a substrate having a nonpolar plane for example, a (10-10) plane called m-plane perpendicular to the [10-10] direction on the surface has been studied.
  • “-” attached to the left of the number in parentheses representing the Miller index means “bar”.
  • the m-plane is a plane parallel to the c-axis (basic vector c), and is orthogonal to the c-plane.
  • Ga atoms and nitrogen atoms exist on the same atomic plane, and therefore no polarization occurs in the direction perpendicular to the m plane.
  • the semiconductor multilayer structure is formed in a direction perpendicular to the m-plane, no piezoelectric field is generated in the active layer, so that the above problem can be solved.
  • the m-plane is a general term for the (10-10) plane, the (-1010) plane, the (1-100) plane, the (-1100) plane, the (01-10) plane, and the (0-110) plane.
  • the X plane may be referred to as a “growth plane”.
  • a semiconductor layer formed by X-plane growth may be referred to as an “X-plane semiconductor layer”.
  • a GaN-based semiconductor element grown on an m-plane substrate can exhibit a remarkable effect as compared with that grown on a c-plane substrate, but has the following problems. That is, a GaN-based semiconductor device grown on an m-plane substrate has a higher contact resistance than that grown on a c-plane substrate, which uses a GaN-based semiconductor device grown on an m-plane substrate. It has become a major technical obstacle.
  • the present inventor studied to solve the problem that the contact resistance of the GaN-based semiconductor element grown on the non-polar m-plane is high. I found a way to do this.
  • the present invention has been made in view of such a point, and a main object thereof is to provide a structure and a manufacturing method capable of reducing contact resistance in a GaN-based semiconductor element grown on a m-plane substrate.
  • the electrode includes the Mg layer and a metal layer formed on the Mg layer, and the metal layer is at least one selected from the group consisting of Pt, Mo, and Pd. Made of metal.
  • an alloy layer containing at least one metal selected from the group consisting of Pt, Mo and Pd and Mg is present between the Mg layer and the metal layer.
  • the electrode includes the Mg layer and an alloy layer formed on the Mg layer, and the alloy layer is at least one selected from the group consisting of Pt, Mo, and Pd. And an alloy containing Mg.
  • the Mg layer is composed of a film existing on the surface of the p-type semiconductor region.
  • the Mg layer is composed of a plurality of Mg existing in an island shape on the surface of the p-type semiconductor region.
  • the Mg layer has a thickness of 2 nm to 45 nm.
  • the Mg layer has a thickness of 2 nm to 15 nm.
  • the thickness of the Mg layer is equal to or less than the thickness of the metal layer.
  • the Ga concentration in the Mg layer is higher than the nitrogen concentration in the Mg layer.
  • the Ga concentration is 10 times or more the nitrogen concentration.
  • a semiconductor substrate that supports the semiconductor multilayer structure is provided.
  • the p-type semiconductor region is GaN.
  • the light source of the present invention is a light source including a nitride-based semiconductor light-emitting device and a wavelength conversion unit including a fluorescent material that converts a wavelength of light emitted from the nitride-based semiconductor light-emitting device, the nitride-based semiconductor light-emitting device
  • the p-type semiconductor region is GaN.
  • the step (c) includes a step of forming an Mg layer on the surface of the p-type semiconductor region.
  • the step (c) includes a step of forming a metal layer made of at least one metal selected from the group consisting of Pt, Mo and Pd after forming the Mg layer.
  • step (c) after forming the metal layer, a step of heat-treating the Mg layer is performed.
  • the heat treatment is performed at a temperature of 500 ° C. or higher and 700 ° C. or lower.
  • the heat treatment is performed at a temperature of 550 ° C. or higher and 650 ° C. or lower.
  • the step of forming the Mg layer performs deposition of Mg on the surface of the p-type semiconductor region by irradiating an electron beam in a pulsed manner.
  • the thickness of the Mg layer after the heat treatment is 2 nm or more and 45 nm or less.
  • the method includes a step of removing the substrate after performing the step (b).
  • the Ga concentration in the Mg layer is higher than the nitrogen concentration in the Mg layer.
  • the Ga concentration is 10 times or more the nitrogen concentration.
  • the p-type semiconductor region is GaN.
  • Mg is evaporated by irradiating Mg with a pulsed electron beam to form an Mg thin film.
  • the Mg thin film is formed without heating the support on which the Mg thin film is formed.
  • the electrode on the semiconductor multilayer structure includes the Mg layer, and the Mg layer is in contact with the surface (m-plane) of the p-type semiconductor region, thereby reducing the contact resistance. can do.
  • a perspective view schematically showing a unit cell of GaN Perspective view showing basic vectors a 1 , a 2 , a 3 and c of wurtzite crystal structure (A) is a cross-sectional schematic diagram of the nitride-based semiconductor light emitting device 100 according to the embodiment of the present invention, (b) is a diagram showing an m-plane crystal structure, and (c) is a diagram showing a c-plane crystal structure. (A) to (c) are graphs showing the relationship between the work function (eV) of a metal in contact with GaN and the specific contact resistance ( ⁇ ⁇ cm 2 ).
  • (A) is a graph showing the relationship between the Mg layer thickness (value after heat treatment) and the specific contact resistance in the Mg / Pt electrode
  • (b) is a graph showing the specific contact resistance of the Pd / Pt electrode.
  • (A) to (c) are photographs showing the surface state of the electrode after heat treatment when the Mg layer thickness is 2 nm, 15 nm, and 45 nm, respectively.
  • (A) And (b) is the profile figure of the depth direction of Mg in the electrode structure (Mg / Pt) by SIMS analysis (A) And (b) is the profile figure of the depth direction of Ga in the electrode structure (Mg / Pt) by SIMS analysis (A) And (b) is the profile figure of the depth direction of N in the electrode structure (Mg / Pt) by SIMS analysis (A) And (b) is a drawing substitute photograph of a cross-sectional transmission electron microscope (TEM) of an electrode structure (Mg / Pt) in which an Mg layer is formed on an m-plane GaN layer.
  • TEM cross-sectional transmission electron microscope
  • (A) And (b) is the profile figure of the depth direction of Pt in the electrode structure (Mg / Pt) by SIMS analysis
  • (A) is a figure which shows the cross section of the electrode structure (Mg / Pt) before heat processing which formed Mg layer on the m-plane GaN layer
  • (b) is the cross section of the electrode structure (Mg / Pt) after heat processing.
  • Illustration (A) is a graph showing current-voltage characteristics of a light emitting diode using an electrode made of an Mg / Pt layer
  • (b) is a graph showing a contact resistance value of the light emitting diode.
  • (A) is a graph showing contact resistance when an electrode made of an Au layer and an Mg / Au layer is used, and (b) and (c) show the surfaces of the electrodes of the Mg / Au layer and the Au layer, respectively.
  • Substitute photo of optical microscope (A) and (b) are graphs showing the hardness mapping of c-plane and m-plane GaN substrates, respectively. Sectional drawing which shows embodiment of a white light source
  • FIG. 3A schematically shows a cross-sectional configuration of the nitride-based semiconductor light-emitting device 100 according to the embodiment of the present invention.
  • a nitride-based semiconductor light emitting device 100 shown in FIG. 3A is a semiconductor device made of a GaN-based semiconductor, and has a nitride-based semiconductor multilayer structure.
  • the nitride-based semiconductor light-emitting device 100 of this embodiment is formed on a GaN-based substrate 10 having an m-plane as a surface 12, a semiconductor multilayer structure 20 formed on the GaN-based substrate 10, and the semiconductor multilayer structure 20.
  • the electrode 30 is provided.
  • the semiconductor multilayer structure 20 is an m-plane semiconductor multilayer structure formed by m-plane growth, and its surface is an m-plane. Since there are cases where a-plane GaN grows on an r-plane sapphire substrate, it is not always necessary that the surface of the GaN-based substrate 10 is an m-plane depending on the growth conditions.
  • at least the surface of the p-type semiconductor region in contact with the electrode in the semiconductor multilayer structure 20 may be an m-plane.
  • the nitride-based semiconductor light-emitting device 100 of the present embodiment includes the GaN substrate 10 that supports the semiconductor multilayer structure 20, but may include another substrate instead of the GaN substrate 10, or the substrate may be removed. It is also possible to use it in the state.
  • FIG. 3B schematically shows a crystal structure in a cross section (cross section perpendicular to the substrate surface) of the nitride-based semiconductor whose surface is an m-plane. Since Ga atoms and nitrogen atoms exist on the same atomic plane parallel to the m-plane, no polarization occurs in the direction perpendicular to the m-plane. That is, the m-plane is a nonpolar plane, and no piezo electric field is generated in the active layer grown in the direction perpendicular to the m-plane.
  • the added In and Al are located at the Ga site and replace Ga. Even if at least part of Ga is substituted with In or Al, no polarization occurs in the direction perpendicular to the m-plane.
  • a GaN-based substrate having an m-plane on the surface is referred to as an “m-plane GaN-based substrate” in this specification.
  • an m-plane GaN substrate is used and a semiconductor is grown on the m-plane of the substrate. This is because the surface orientation of the surface of the GaN-based substrate is reflected in the surface orientation of the semiconductor product structure.
  • the surface of the substrate does not necessarily need to be an m-plane, and the substrate does not need to remain in the final device.
  • FIG. 3C schematically shows a crystal structure in a nitride semiconductor cross section (cross section perpendicular to the substrate surface) having a c-plane surface.
  • Ga atoms and nitrogen atoms do not exist on the same atomic plane parallel to the c-plane.
  • polarization occurs in a direction perpendicular to the c-plane.
  • a GaN-based substrate having a c-plane on the surface is referred to as a “c-plane GaN-based substrate” in this specification.
  • the c-plane GaN-based substrate is a general substrate for growing GaN-based semiconductor crystals. Since the positions of the Ga atomic layer and the nitrogen atomic layer parallel to the c-plane are slightly shifted in the c-axis direction, polarization is formed along the c-axis direction.
  • a semiconductor multilayer structure 20 is formed on the surface (m-plane) 12 of the m-plane GaN-based substrate 10.
  • the Al d Ga e N layer 26 is located on the side opposite to the m-plane 12 side with respect to the active layer 24.
  • the active layer 24 is an electron injection region in the nitride semiconductor light emitting device 100.
  • the Al u Ga v In w N layer 22 of the present embodiment is a first conductivity type (n-type) Al u Ga v In w N layer 22.
  • an undoped GaN layer may be provided between the active layer 24 and the Al d Ga e N layer 26.
  • the Al composition ratio d need not be uniform in the thickness direction.
  • the Al composition ratio d may change continuously or stepwise in the thickness direction. That is, the Al d Ga e N layer 26 may have a multilayer structure in which a plurality of layers having different Al composition ratios d are stacked, and the dopant concentration may also change in the thickness direction. .
  • the uppermost part of the Al d Ga e N layer 26 (upper surface part of the semiconductor multilayer structure 20) is composed of a layer (GaN layer) in which the Al composition ratio d is zero. Is preferred.
  • the Mg layer 32 described later is in contact with the GaN layer.
  • the Al composition d may not be zero.
  • Al 0.05 Ga 0.95 N having an Al composition d of about 0.05 can also be used.
  • the Mg layer 32 described later is in contact with the Al 0.05 Ga 0.95 N layer.
  • An electrode 30 is formed on the semiconductor multilayer structure 20.
  • the electrode 30 of this embodiment is an electrode including an Mg layer 32 made of Mg, and a Pt layer made of Pt is formed on the Mg layer 32.
  • the Mg layer 32 in the electrode 30 is in contact with the p-type semiconductor region of the semiconductor multilayer structure 20 and functions as a part of the p-type electrode (p-side electrode).
  • the Mg layer 32 is in contact with the Al d Ga e N layer 26 doped with the second conductivity type (p-type) dopant.
  • the Al d Ga e N layer 26 is doped with Mg as a dopant, for example.
  • As a p-type dopant other than Mg for example, Zn or Be may be doped.
  • the metal layer 34 in contact with the surface of the Mg layer 32 for example, a Pt layer or a metal layer that is difficult to form an alloy with Mg as compared with Au can be used.
  • Au (gold) that easily forms an alloy with Mg is not preferable as the metal layer 34 that contacts the Mg layer 32.
  • the Mg layer 32 is not alloyed with a metal such as Pt constituting the metal layer 34.
  • not alloyed with a metal such as Pt includes a state in which a metal such as Pt is mixed in Mg at a concentration of less than% order (for example, 1%).
  • “alloying with a metal such as Pt” means a state in which a metal such as Pt is mixed in Mg at a concentration of% order (for example, 1%) or more.
  • the Mg layer 32 and the metal layer 34 may contain impurities or the like mixed in the manufacturing process of those layers.
  • an alloy layer containing Mg may be formed between the Mg layer 32 and the metal layer 34.
  • Pt, Mo, and Pd are metals that are less likely to be alloyed with Mg as compared with Au.
  • an alloy layer can be formed by reacting with a part of the Mg layer 32 by heat treatment described later.
  • all of the thin metal layer may be alloyed with a part of Mg in the Mg layer after the heat treatment. In this case, only the alloy layer exists on the Mg layer.
  • an electrode layer or a wiring layer made of a metal or alloy other than these metals may be formed on each of the electrodes.
  • the thickness of the electrode 30 of this embodiment is, for example, 10 to 200 nm.
  • the thickness of the Mg layer 32 in the electrode 30 is, for example, 2 nm to 45 nm.
  • the thickness of the Mg layer 32 is the thickness of the Mg layer after the heat treatment.
  • the thickness of the metal layer 34 (a layer made of at least one metal selected from the group consisting of Pt, Mo, and Pd) located on the Mg layer 32 is, for example, 200 nm or less (or 10 nm to 200 nm). ).
  • the Mg layer 32 is preferably thinner than the metal layer 34. This is to prevent peeling between the Mg layer 32 and the Al d Ga e N layer 26 due to the strain balance between the Mg layer 32 and the metal layer 34 being lost.
  • the thickness of the GaN-based substrate 10 having the m-plane surface 12 is, for example, 100 to 400 ⁇ m. This is because there is no problem in handling the wafer if the substrate thickness is about 100 ⁇ m or more.
  • the substrate 10 of the present embodiment may have a laminated structure as long as it has an m-plane surface 12 made of a GaN-based material. That is, the GaN-based substrate 10 of the present embodiment includes a substrate having an m-plane at least on the surface 12, and therefore, the entire substrate may be GaN-based or a combination with other materials. It doesn't matter.
  • an electrode 40 (n-type electrode) is formed on a part of an n-type Al u Ga v In w N layer (for example, a thickness of 0.2 to 2 ⁇ m) 22 on the substrate 10.
  • a recess 42 is formed in the region where the electrode 40 is formed in the semiconductor multilayer structure 20 so that a part of the n-type Al u Ga v In w N layer 22 is exposed.
  • An electrode 40 is provided on the surface of the n-type Al u Ga v In w N layer 22 exposed at the recess 42.
  • the electrode 40 is composed of, for example, a laminated structure of a Ti layer, an Al layer, and a Pt layer, and the thickness of the electrode 40 is, for example, 100 to 200 nm.
  • the active layer 24 of the present embodiment includes a GaInN / GaN multiple quantum well (MQW) in which Ga 0.9 In 0.1 N well layers (eg, 9 nm thick) and GaN barrier layers (eg, 9 nm thick) are alternately stacked. It has a structure (for example, a thickness of 81 nm).
  • MQW multiple quantum well
  • a p-type Al d Ga e N layer 26 is provided on the active layer 24.
  • the thickness of the p-type Al d Ga e N layer 26 is, for example, 0.2 to 2 ⁇ m.
  • an undoped GaN layer may be provided between the active layer 24 and the Al d Ga e N layer 26.
  • a second conductivity type (for example, p-type) GaN layer may be formed on the Al d Ga e N layer 26. Then, it is possible to form a contact layer made of p + -GaN on the GaN layer, and further form an Mg layer 32 on the contact layer made of p + -GaN.
  • a contact layer made of GaN instead think of the Al d Ga e N layer 26 is another layer, it can be considered to be a part of the Al d Ga e N layer 26.
  • FIGS. 4 (a) and 4 (b) are graphs showing the relationship between the work function (eV) of a metal in contact with m-plane GaN and the specific contact resistance ( ⁇ ⁇ cm 2 ). More specifically, FIGS. 4 (a) and 4 (b) show various metal layers (Mg layer thickness: 2 nm) on an Mg-doped p-type GaN layer (Mg concentration: about 1 ⁇ 10 19 cm ⁇ 3 ). The other metal layer thickness (200 nm) was formed, and the contact resistance was evaluated using a TLM (Transmission Line Method) method. “1.0E-01” shown on the vertical axis means “1.0 ⁇ 10 ⁇ 1 ”, and “1.0E-02” means “1.0 ⁇ 10 ⁇ 2 ”. , “1.0E + X” means “1.0 ⁇ 10 X ”.
  • the contact resistance is generally inversely proportional to the contact area S (cm 2 ).
  • R Rc
  • the proportional constant Rc is referred to as a specific contact resistance and corresponds to the contact resistance R when the contact area S is 1 cm 2 . That is, the magnitude of the specific contact resistance does not depend on the contact area S and is an index for evaluating the contact characteristics.
  • specific contact resistance may be abbreviated as “contact resistance”.
  • FIG. 4A shows a case where heat treatment is not performed after metal formation (as-depo).
  • FIG. 4B shows a case where Mg was heat-treated at 600 ° C. for 10 minutes in a nitrogen atmosphere, and Al, Au, Pd, Ni and Pt were heated at 500 ° C. for 10 minutes in a nitrogen atmosphere. The results when heat treatment is performed are shown. This difference in temperature is based on the fact that the contact resistance decreases most at 500 ° C. for metals other than Mg due to the difference in the optimum heat treatment temperature.
  • FIG. 5A is a graph showing the relationship between the Mg layer thickness and the specific contact resistance in the Mg / Pt electrode (Pt is formed on Mg).
  • the thickness of the Pt layer (before heat treatment) is fixed at 75 nm.
  • FIG. 5B is a graph showing the specific contact resistance of a Pd / Pt electrode (Pd thickness 40 nm, Pt thickness: 35 nm) for comparison.
  • the horizontal axis of the graph is the heat treatment temperature.
  • the thickness of the metal layer other than the Mg layer is the thickness before the heat treatment.
  • the data shown in FIG. 5 (a) is obtained from a sample in which an Mg layer is deposited using a pulse vapor deposition method.
  • the pulse deposition method will be described later.
  • the data shown in FIG. 5 (b) is obtained from a sample in which Pd and Pt layers are deposited using a normal electron beam evaporation method.
  • the Mg layer is deposited by the pulse vapor deposition method.
  • the Mg layer on the c-plane GaN layer is also deposited by pulse vapor deposition, but all metals other than Mg (Pd, Pt, Au) are deposited by ordinary electron beam vapor deposition. It is a thing.
  • the Mg / Pt electrode and the Pd / Pt electrode are in contact with the m-plane GaN layer doped with Mg.
  • Mg of 7 ⁇ 10 19 cm ⁇ 3 is doped in a region 20 nm deep from the surface (the outermost surface region having a thickness of 20 nm). Further, a region where the depth from the surface of the m-plane GaN layer exceeds 20 nm is doped with 1 ⁇ 10 19 cm ⁇ 3 of Mg.
  • the concentration of the p-type impurity is locally increased in the outermost surface region of the GaN layer in contact with the p-type electrode, the contact resistance can be minimized.
  • the horizontal axis in the graph of FIG. 5A indicates the thickness of the Mg layer after the heat treatment.
  • the thickness of the Mg layer after the heat treatment is reduced as compared with that before the heat treatment.
  • the thickness of the Mg layer before the heat treatment 600 ° C., 10 minutes
  • the thickness of the Mg layer after the heat treatment was 2 nm.
  • the thickness of the Mg layer before heat treatment 600 ° C., 10 minutes
  • the thickness of the Mg layer after heat treatment was 45 nm and 15 nm, respectively.
  • the graph of FIG. 5 (a) describes the experimental results showing the relationship between the measured value of contact resistance and the Mg thickness for a sample that has been heat-treated at 600 ° C. for 10 minutes. It was confirmed by experiment that the dependency of the contact resistance on the Mg layer thickness has the same tendency even under other heat treatment conditions.
  • the contact resistance of the Mg / Pt electrode to the m-plane GaN layer is the contact resistance of the Pd / Pt electrode to the m-plane GaN layer (FIG. 5 (b ), which is almost the same size as that shown in FIG.
  • FIG. 5A when the Mg layer thickness is 45 nm or less, the contact resistance is lower than that of the Pd / Pt electrode on the m-plane GaN, confirming the superiority of the present invention.
  • the contact resistance decreased as the Mg layer thickness decreased.
  • a sudden decrease in contact resistance was observed as the thickness of the Mg layer decreased from around 15 nm.
  • the lowest contact resistance was obtained when the Mg layer thickness was around 2 nm.
  • the thickness of the Mg layer 32 in the semiconductor element finally obtained through all the manufacturing steps including heat treatment is preferably 45 nm or less, and more preferably in the range of 2 nm to 15 nm. .
  • 6 (a) to 6 (c) are photographs showing the surface state of the electrode after heat treatment when the Mg layer thickness is 2 nm, 15 nm, and 45 nm, respectively.
  • the Mg layer thickness is a value after heat treatment at 600 ° C. for 10 minutes.
  • electrode surface roughness (unevenness) was observed in the sample with the Mg layer thickness of 45 nm.
  • the electrode surface roughness is considered to be a factor of increasing the contact resistance when the Mg layer thickness exceeds 45 nm.
  • the Mg layer thickness exceeded 45 nm, a phenomenon that the Mg layer partially lifted was also observed. From observation with a transmission electron microscope, it was also confirmed that voids were generated at the interface between the Mg layer and the GaN layer. This is presumably because when the Mg layer thickness exceeds 45 nm, the strain of the Mg layer increases and the Mg layer peels off at the interface between Mg and GaN. From the above, it is preferable to set the thickness of the Mg layer to 45 nm or less.
  • the Mg layer thickness is about 15 nm or less, the flatness of the electrode surface is extremely improved. For this reason, the Mg layer thickness is more preferably 15 nm or less.
  • FIG. 7 is a graph showing the contact resistance (measured value) when the contact surface is the m-plane and the c-plane for each contact resistance of the Mg / Pt electrode and the Pd / Pt electrode.
  • the electrode is in contact with the p-type GaN layer.
  • This p-type GaN layer is doped with Mg having the concentration distribution described above.
  • the heat treatment temperature and heat treatment time are as shown in Table 2 below.
  • FIG. 8 shows a case where an Mg layer is formed on an m-plane (hereinafter referred to as “m-plane GaN”) of a p-type GaN layer, and a Pt layer is formed thereon (that is, m-plane GaN (Mg / Pt)). ) Result.
  • a Pd layer is formed on a p-type m-plane GaN layer and a Pt layer is formed thereon (m-plane GaN (Pd / Pt), and the c-plane of the p-type GaN layer (hereinafter, “ Also shown is the result of forming a Pd layer on top of it (denoted as “c-plane GaN”) and a Pt layer thereon (c-plane GaN (Pd / Pt)).
  • Mg is doped so as to have a concentration distribution.
  • the contact resistance of m-plane GaN is higher than that of c-plane GaN.
  • an increase in contact resistance is observed at a heat treatment temperature exceeding 500 ° C.
  • the m-plane GaN (Mg / Pt) electrode has a higher contact resistance than the Pd / Pt electrode when heat treatment is not performed. This is consistent with the common technical knowledge that a metal having a lower work function has a higher contact resistance.
  • the heat treatment temperature is increased and the contact resistance is reduced.
  • the contact resistance of m-plane GaN (Mg / Pt) is It becomes equal to or less than the contact resistance of m-plane GaN (Pd / Pt).
  • the contact resistance of m-plane GaN (Mg / Pt) further decreases to be equivalent to the contact resistance of c-plane GaN (Mg / Pt), Even less.
  • the contact resistance of m-plane GaN (Mg / Pt) becomes less than (or less than) the contact resistance of c-plane GaN (Mg / Pt).
  • the contact resistance of m-plane GaN is lower than the contact resistance of both the m-plane and c-plane GaN (Mg / Pt) at a temperature of 600 ° C. Specifically, , About 1.0E-02 ⁇ cm ⁇ 2 or its periphery.
  • the contact resistance of m-plane GaN (Mg / Pt) is higher than that at 600 ° C., but the m-plane and c-plane GaN (Mg / Pt) at 700 ° C. It becomes lower than any of the contact resistances.
  • the heat treatment temperature of m-plane GaN is preferably, for example, 500 ° C. or higher.
  • a predetermined temperature for example, 800 ° C.
  • the vicinity of 600 ° C. is a more preferable heat treatment temperature.
  • FIG. 9 shows a photograph showing the surface state of the electrode after heat treatment at each temperature.
  • FIG. 9 shows the results of As-depo (when no heat treatment is performed) and heat treatment temperatures of 500 ° C., 600 ° C., and 700 ° C.
  • the Mg layer is formed on the p-type m-plane GaN layer and the Pt layer is formed thereon (in the case of M-GaN (Mg / Pt))
  • slight unevenness is observed at a heat treatment temperature of 700 ° C.
  • the surface Ra by AFM measurement was about 1.5 nm at 500 ° C., about 1.5 nm at 600 ° C., and about 4.5 nm at 700 ° C., and a good surface state was obtained.
  • the Ra of the electrode surface is preferably about 4.5 nm or less, and more preferably about 1.5 nm or less.
  • FIG. 10 shows the photoluminescence measurement results of the GaN layer when an Mg layer (30 nm) is formed on the GaN layer and heat-treated at 800 ° C. and 900 ° C. for 10 minutes.
  • 10A shows the result of heat treatment at 800 ° C.
  • FIG. 10B shows the result of heat treatment at 900 ° C.
  • the PL intensity on the vertical axis in FIGS. 10A and 10B means the photoluminescence intensity.
  • the PL intensity curve denoted as “Ref” obtained before the heat treatment is shown.
  • the heat treatment temperature in the electrode using the Mg layer is desirably 700 ° C. or lower from the viewpoint of maintaining the quality of GaN.
  • FIG. 11 shows the result of obtaining the profile of Mg atoms in the depth direction in the electrode structure (Mg / Pt) by using a secondary-ion-microprobe-mass-spectrometer (SIMS).
  • FIG. 11 (a) shows the result when the heat treatment is not performed (as-depo) in the configuration in which the Mg layer is formed on the GaN layer (Mg / Pt electrode), while FIG. 11 (b) shows the heat treatment. Later results are shown.
  • the temperature and time of the heat treatment are 10 minutes at 600 ° C. for c-plane GaN, 10 minutes at 600 ° C. and 10 minutes at 630 ° C. for m-plane GaN.
  • the Mg layer thickness before the heat treatment is 7 nm, and the Pt layer thickness is 75 nm.
  • the vertical axis represents the Mg concentration
  • the horizontal axis represents the distance in the depth direction.
  • the region where the numerical value on the horizontal axis is “ ⁇ ” is the electrode side, and the region “+” is the p-type GaN side.
  • the origin (0 ⁇ m) on the horizontal axis is the peak position of Mg and substantially corresponds to the position of the interface between the p-type GaN layer and the Mg layer.
  • indicates data related to a sample having a heat treatment temperature of 600 ° C. formed on c-plane GaN. Further, “ ⁇ ” in the graph indicates data related to a sample formed on m-plane GaN with a heat treatment temperature of 600 ° C., and “ ⁇ ” indicates data related to a sample formed on m-plane GaN having a heat treatment temperature of 630 ° C. Is shown. The same applies to the graphs of FIGS. 12, 13, and 15 described later.
  • the p-type GaN layer before the heat treatment is doped with 7 ⁇ 10 19 cm ⁇ 3 Mg in a region 20 nm deep from the surface of the p-type GaN layer in contact with the electrode.
  • the deeper region is doped with 1 ⁇ 10 19 cm ⁇ 3 Mg.
  • Mg on the c-plane GaN diffuses in the p-type GaN layer at a considerable concentration, as shown in FIG. It can also be seen that Mg is diffused in the Pt layer. On the other hand, it is confirmed that Mg on the m-plane GaN hardly diffuses in the p-type GaN layer and the Pt layer. More specifically, in the case of c-plane GaN, Mg diffuses deeply into the Pt layer after heat treatment, and also diffuses deeply into the GaN side. On the other hand, in the case of m-plane GaN, Mg slightly diffuses to the Pt layer side after heat treatment, but hardly diffuses to the GaN side.
  • FIG. 12 shows the result of obtaining a profile in the depth direction of Ga atoms in the electrode structure (Mg / Pt) using SIMS.
  • the Mg layer thickness before heat treatment is 7 nm
  • the Pt layer thickness is 75 nm.
  • the vertical axis of the graph shows the signal intensity of the SIMS detector, which is proportional to the atomic concentration.
  • the distance 0 ⁇ m on the horizontal axis in FIG. 12 substantially corresponds to the position of the interface between the p-type GaN layer and the Mg layer.
  • the origin (0 ⁇ m) on the horizontal axis was adjusted to the position of the Mg peak.
  • the region where the numerical value on the horizontal axis is “ ⁇ ” is the electrode side, and the region “+” is the p-type GaN side.
  • the vertical axis is normalized assuming that the Ga concentration in the as-depo GaN crystal is 1.
  • the intensity of 1 ⁇ 10 ⁇ 3 on the vertical axis is approximately equivalent to 1 ⁇ 10 19 cm ⁇ 3 as the concentration.
  • FIG. 12 (a) shows the result when heat treatment is not performed (as-depo) in the configuration in which the Mg layer is formed on the GaN layer (Mg / Pt electrode), while FIG. 12 (b) shows the heat treatment. Later results are shown.
  • FIG. 12B two types of results with heat treatment temperatures of 600 ° C. and 630 ° C. are shown. The temperature and time of the heat treatment are 10 minutes at 600 ° C. for c-plane GaN, 10 minutes at 600 ° C. and 10 minutes at 630 ° C. for m-plane GaN.
  • FIG. 12B it was confirmed that Ga was diffused in the Mg layer when heat treatment was performed.
  • Ga diffusion is observed in the Mg layer, and the contact resistance is low.
  • the contact resistance is low.
  • Ga diffuses into the Mg layer and Pt layer, and Ga also moves into the electrode from the back in the GaN crystal.
  • Ga is diffused significantly from the GaN layer into the electrode as a whole.
  • m-plane GaN when the heat treatment temperature is 600 ° C., unlike c-plane GaN, Ga atoms seem to move only near the interface. It is presumed that atoms are less likely to move on the m-plane than on the c-plane.
  • FIG. 13A is a graph showing a profile in the depth direction of nitrogen atoms in the Mg / Pt electrode before the heat treatment
  • FIG. 13B is a profile in the depth direction of nitrogen atoms in the Mg / Pt electrode after the heat treatment. It is a graph which shows.
  • the Mg layer thickness before heat treatment is 7 nm
  • the Pt layer thickness is 75 nm.
  • 13A and 13B the vertical axis represents the N intensity
  • the horizontal axis represents the distance in the depth direction.
  • N intensity of 1 ⁇ 10 -3 corresponds approximately to the N concentration of 1 ⁇ 10 19 cm -3.
  • the region where the numerical value on the horizontal axis is “ ⁇ ” is the electrode side, and the region “+” is the p-type GaN side.
  • the origin (0 ⁇ m) on the horizontal axis substantially corresponds to the position of the interface between the p-type GaN layer and the Mg layer.
  • the electrode structure and p-type GaN doping conditions are the same as those in the sample described with reference to FIG.
  • Ga vacancies have an acceptor property
  • Ga vacancies increase near the interface between the electrode and p-type GaN
  • holes easily pass through the Schottky barrier at this interface by tunneling.
  • nitrogen atoms diffuse together with Ga atoms to the electrode side
  • a nitrogen deficient state that is, nitrogen vacancies are also formed on the outermost surface of p-type GaN.
  • Nitrogen vacancies have donor properties and cause charge compensation with Ga vacancies. For this reason, when not only Ga but nitrogen is diffused to the electrode side like c-plane GaN, the contact resistance is not particularly lowered.
  • the relationship between the N (nitrogen) concentration and the Ga concentration in the Mg layer will be described in detail.
  • the SIMS detected concentration of Ga in the Mg layer on the m-plane GaN layer was 4 ⁇ 1.0E-02.
  • the detected intensity of SIMS is proportional to the atomic concentration. Therefore, when it is assumed that the Ga concentration of the base material of the GaN layer is about 1 ⁇ 10 22 cm ⁇ 3 , it is considered that Ga of about 4 ⁇ 10 19 cm ⁇ 3 exists in the Mg layer.
  • the SIMS detection intensity was 3 ⁇ 1.0E-02. Based on the same assumption, it is considered that Ga of about 3 ⁇ 10 19 cm ⁇ 3 exists in the Mg layer on the m-plane GaN layer.
  • the SIMS detection concentration of N (nitrogen) in the Mg layer on the m-plane GaN layer is the limit of detection sensitivity when heat treatment is performed at 600 ° C. and 630 ° C. 1 ⁇ 1.0E-03.
  • N (nitrogen) contained in the Mg layer on the m-plane GaN layer is considered to be 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the Ga atom concentration in the Mg layer on the m-plane GaN layer is one digit (10 times) or more higher than the N atom concentration.
  • Ga and N both have SIMS detection intensity of 1E-2 and both are present at about 1 ⁇ 10 19 cm ⁇ 3 . That is, the concentrations of Ga atoms and N atoms in the Mg layer on the c-plane GaN layer are approximately the same.
  • FIG. 14 shows a cross-sectional transmission electron microscope (TEM) photograph of an electrode structure (Mg / Pt) in which an Mg layer is formed on an m-plane GaN layer.
  • FIG. 14A shows the result when no heat treatment is performed (as-depo).
  • FIG. 14B shows the result after heat treatment at 600 ° C. for 10 minutes.
  • a 7 nm thick Mg layer was formed on the GaN crystal.
  • the Pt layer eroded into the Mg layer after the heat treatment, and the thickness of the Mg layer became 2 nm.
  • the Mg layer (the layer 32 in FIG. 3A) is thin (for example, 2 nm), but the Pt layer (the layer 34 in FIG. 3A).
  • the presence of an Mg layer (layer 32 in FIG. 3A) made of Mg that was not alloyed or absorbed was confirmed.
  • the existence of this thin Mg layer (32) is presumed to be one of the main factors that can reduce the contact resistance of m-plane GaN, which had a very large contact resistance in the prior art.
  • FIG. 15 shows the result of obtaining a profile in the depth direction of Pt in the electrode structure (Mg / Pt) using SIMS.
  • FIGS. 15A and 15B show the results when heat treatment is not performed (as-depo) and after the heat treatment, respectively, as in the above-described SIMS.
  • the Mg layer thickness before heat treatment is 7 nm
  • the Pt layer thickness is 75 nm.
  • 15A and 15B the vertical axis represents the Pt intensity
  • the horizontal axis represents the distance in the depth direction.
  • Pt intensity of 1 ⁇ 10 -3 corresponds approximately to a Pt concentration of 1 ⁇ 10 19 cm -3.
  • the region where the numerical value on the horizontal axis is “ ⁇ ” is the electrode side, and the region “+” is the p-type GaN side.
  • the origin (0 ⁇ m) on the horizontal axis substantially corresponds to the position of the interface between the p-type GaN layer and the Mg layer.
  • the electrode structure and p-type GaN doping conditions are the same as those in the sample described with reference to FIG.
  • FIG. 16A is a schematic diagram showing the Mg / Pt electrode structure before the heat treatment.
  • FIG. 16B is a schematic diagram showing the Mg / Pt electrode structure before the heat treatment. All drawings were prepared based on the cross-sectional TEM.
  • the thickness of the deposited Mg layer exceeds 5 nm, the thickness of the Mg layer is reduced by the heat treatment at 600 ° C. for 10 minutes, but the Mg layer exists as a substantially continuous film even after the heat treatment.
  • the thickness at the time of deposition of the Mg layer is about 2 nm, after heat treatment at 600 ° C. for 10 minutes, as shown in FIG. It was confirmed that the islands may exist.
  • the thickness of the Mg layer immediately after deposition is about 2 nm, the morphology of the Mg layer finally obtained may vary depending on the conditions of the heat treatment to be performed.
  • the “Mg layer” in this specification includes a collection of a large number of island-like (island-like) Mg existing on the surface of the p-type semiconductor region. Further, the “Mg layer” may be composed of a film having a plurality of openings (for example, a porous film). Thus, if Mg that is not eroded by Pt is in contact with the surface (m-plane) of the p-type semiconductor region, a contact resistance reduction effect can be sufficiently obtained.
  • contact resistance reduction effect substantially the same result (contact resistance reduction effect) can be obtained when a Mo layer or a Pd layer is deposited on the Mg layer instead of the Pt layer.
  • the important point from the viewpoint of obtaining the contact resistance reduction effect is that the Mg layer and the GaN-based semiconductor are in contact with each other, and the metal on the Mg layer is formed from a material that is difficult to form an alloy with Mg as compared with Au. There is to be.
  • an m-plane GaN substrate 10 and an Al u Ga v In w N layer (u + v + w 1, u ⁇ 0, v ⁇ 0, w ⁇ 0) 22.
  • the m-plane GaN substrate 10 is an n-type GaN substrate (for example, a thickness of 100 ⁇ m)
  • the Al u Ga v In w N layer 22 is an n-type GaN layer (for example, a thickness of 2 ⁇ m).
  • An active layer 24 is formed on the Al u Ga v In w N layer 22.
  • the semiconductor multilayer structure 20 including at least the active layer 24 is formed on the m-plane GaN substrate 10.
  • the active layer 24 is composed of, for example, an InGaN well layer and a GaN barrier layer having an In composition ratio of about 25%, the well layer thickness is 9 nm, the barrier layer thickness is 9 nm, and the well layer period is three periods. .
  • the Al d Ga e N layer 26 of this embodiment is doped with Mg as a p-type dopant.
  • Mg is doped to the Al d Ga e N layer 26 by, for example, about 10 18 cm ⁇ 3 .
  • an undoped GaN layer (not shown) is formed between the active layer 24 and the Al d Ga e N layer 26.
  • a second conductivity type (for example, p-type) GaN layer (not shown) is formed on the Al d Ga e N layer 26.
  • an Mg layer 32 is formed on the contact layer made of p + -GaN, and a Pt layer 34 is formed thereon.
  • the laminated structure of the Mg layer 32 and the Pt layer 34 becomes an electrode (p-type electrode) 30.
  • the semiconductor multilayer structure 20, Al u Ga v In w recess (recess) 42 for exposing the surface of the N layer 22 is formed, it is located on the bottom surface of the recess 42 Al u Ga v In w N layer 22
  • An electrode (n-type electrode) 40 is formed on the substrate.
  • the size of the recess 42 is, for example, a width (or diameter) of 20 ⁇ m and a depth of 1 ⁇ m.
  • the electrode 40 is, for example, an electrode having a laminated structure of a Ti layer, an Al layer, and a Pt layer (for example, the thicknesses are 5 nm, 100 nm, and 10 nm, respectively).
  • the operating voltage (Vop) can be reduced by about 1.5 V compared to the case of a conventional m-plane LED using a Pd / Pt electrode, and as a result. It was found that power consumption can be reduced.
  • an m-plane substrate 10 is prepared.
  • a GaN substrate is used as the substrate 10.
  • the GaN substrate of the present embodiment is obtained by using an HVPE (Hydride Vapor Phase Epitaxial) method.
  • a thick film GaN on the order of several mm is grown on a c-plane sapphire substrate.
  • an m-plane GaN substrate is obtained by cutting the thick film GaN in the direction perpendicular to the c-plane and the m-plane.
  • the production method of the GaN substrate is not limited to the above, and a method of producing an ingot of bulk GaN using a liquid phase growth method such as a sodium flux method or a melt growth method such as an ammonothermal method, and cutting it in the m plane But it ’s okay.
  • a gallium oxide, a SiC substrate, a Si substrate, a sapphire substrate, or the like can be used in addition to a GaN substrate.
  • the plane orientation of the SiC or sapphire substrate is preferably the m-plane.
  • the growth surface may not necessarily be the m-plane depending on the growth conditions. It is sufficient that at least the surface of the semiconductor multilayer structure 20 is m-plane.
  • crystal layers are sequentially formed on the substrate 10 by MOCVD (Metal Organic Organic Chemical Vapor Deposition) method.
  • an Al u Ga v In w N layer 22 is formed on the m-plane GaN substrate 10.
  • Al u Ga v In w N layer 22 for example, AlGaN having a thickness of 3 ⁇ m is formed.
  • a GaN layer is formed by supplying TMG (Ga (CH 3 ) 3 ), TMA (Al (CH 3 ) 3 ), and NH 3 on the m-plane GaN substrate 10 at 1100 ° C. accumulate.
  • the active layer 24 is formed on the Al u Ga v In w N layer 22.
  • the active layer 24 has a GaInN / GaN multiple quantum well (MQW) structure with a thickness of 81 nm in which a Ga 0.9 In 0.1 N well layer with a thickness of 9 nm and a GaN barrier layer with a thickness of 9 nm are alternately stacked.
  • MQW multiple quantum well
  • the growth temperature is preferably lowered to 800 ° C. in order to incorporate In.
  • an Al d Ga e N layer 26 is formed on the undoped GaN layer.
  • the Al d Ga e N layer 26 for example, by supplying TMG, NH 3 , TMA, TMI and Cp 2 Mg (cyclopentadienyl magnesium) as a p-type impurity, p-Al 0.14 Ga 0.86 having a thickness of 70 nm is provided. N is formed.
  • Cp 2 Mg is supplied as a p-type impurity.
  • the p-GaN contact layer, the Al d Ga e N layer 26, the undoped GaN layer, and a part of the active layer 24 are removed to form a recess 42, and Al x Ga y InzN
  • the n-type electrode formation region of the layer 22 is exposed.
  • a Ti / Pt layer is formed as the n-type electrode 40 on the n-type electrode formation region located at the bottom of the recess 42.
  • an Mg layer 32 is formed on the p-GaN contact layer, and a Pt layer 34 is further formed on the Mg layer 32. Thereby, the p-type electrode 40 is formed.
  • a technique pulse deposition method
  • Mg metal in a crucible held in a vacuum is irradiated with an electron beam in a pulse manner to evaporate the source metal in a pulse manner.
  • the source metal molecules or atoms adhere to the p-GaN contact layer, and the Mg layer 32 is formed.
  • the pulse has a pulse width of 0.5 seconds and a repetition of 1 Hz.
  • the pulse width is preferably 0.005 seconds to 5 seconds, and the pulse frequency is preferably 0.1 Hz to 100 Hz.
  • the Mg layer 32 a dense and good quality film was formed as the Mg layer 32.
  • the reason why the Mg layer becomes dense is thought to be that the kinetic energy of Mg atoms or Mg atom clusters that collide with the p-GaN contact layer is increased by performing pulse deposition. That is, due to the electron beam irradiation, a part of the raw material Mg instantaneously becomes Mg atoms having high energy and is vaporized or evaporated. Then, Mg atoms reach the p-GaN contact layer.
  • Mg atoms that have reached the p-GaN contact layer undergo migration and form a dense and homogeneous Mg thin film at the atomic level.
  • An Mg thin film of about 1 to 20 atomic layers is formed by one pulse of electron beam. By repeatedly irradiating the pulsed electron beam, the Mg thin film is laminated on the p-GaN contact layer, and the Mg layer 32 having a desired thickness is formed.
  • the electron beam preferably has a high peak intensity so that the kinetic energy necessary for the migration of Mg atoms after migration can be supplied to the Mg atoms.
  • the driving power of the electron gun it is preferable to determine the driving power of the electron gun so that the Mg thin film is formed with a thickness of 20 atomic layers (approximately 5 nm) or less per one pulse of the electron beam. If the Mg thin film formed per one pulse of the electron beam is thicker than the 20 atomic layer, it becomes difficult to obtain a dense and homogeneous Mg thin film. A more preferred deposition rate is 5 atomic layers or less per pulse of the electron beam. This is because when there are too many Mg atoms, the Mg atoms collide during the migration, thereby losing the kinetic energy of the Mg atoms.
  • Mg is an element that is easily oxidized by contact with water or air.
  • an Mg thin film formed on a support substrate by a normal vapor deposition method When placed in the atmosphere, it is rapidly oxidized. As a result, the Mg thin film gradually loses metallic luster and eventually becomes tattered and peels off from the support.
  • the Mg layer 32 created by the forming method (pulse vapor deposition) of the present embodiment is dense and homogeneous at the atomic level, and has a structure in which the atomic arrangement is very well arranged as epitaxially grown. . And there are few pinholes that are considered to be the cause of oxidation, and it is difficult to be oxidized. A beautiful mirror surface can be maintained even after being left in the atmosphere for several months.
  • Mg has the property of being vaporized at once when its melting point is exceeded. For this reason, it is very difficult to accurately control the thickness of the Mg thin film to be formed on the nanometer order by adjusting the deposition rate of the Mg thin film.
  • the thickness of the Mg layer 32 created by the forming method of the present embodiment can be accurately controlled on the nanometer order by appropriately setting the irradiation time of the pulsed electron beam.
  • the forming method of the present embodiment is also effective when an Mg thin film is formed on a Si substrate or a glass substrate. Therefore, the formation method of this embodiment is not limited to GaN, and an Mg thin film can be formed on various types of materials. And the formation method of this embodiment can be used suitably especially for formation of the electrode in the semiconductor field
  • the Mg layer 32 created by the forming method of the present embodiment is stable even when heat treatment is performed at a temperature of 600 ° C. or higher.
  • a technique of performing vapor deposition while vaporizing the source metal (Mg metal) in a pulsed manner is adopted, but other techniques can be adopted as long as the Mg layer 32 can be formed. It is.
  • a thermal CVD method or molecular beam epitaxy (MBE) can be employed as another method for forming a dense and high-quality Mg layer.
  • the substrate 10 and part of the Al u Ga v In w N layer 22 may be removed by using a method such as laser lift-off, etching, and polishing. In this case, only the substrate 10 may be removed, or only a part of the substrate 10 and the Al u Ga v In w N layer 22 may be selectively removed. Of course, the substrate 10 and the Al u Ga v In w N layer 22 may be left without being removed.
  • the nitride-based semiconductor light-emitting device 100 of this embodiment is formed.
  • nitride-based semiconductor light emitting device 100 of the present embodiment when a voltage is applied between the n-type electrode 40 and the p-type electrode 30, holes are transferred from the p-type electrode 30 toward the active layer 24. Electrons are injected from the active layer 24 toward the active layer 24 to emit light having a wavelength of 450 nm, for example.
  • FIG. 17A shows current-voltage characteristics of a light emitting diode using an electrode made of an Mg / Pt layer on m-plane GaN.
  • the nitride semiconductor structure of the light emitting diode is the same, the characteristics of the light emitting diode using the electrode made of the Pd / Pt layer, and the light emitting diode using the electrode made of the Mg / Pt layer on the c-plane GaN
  • the characteristics of The electrode configuration and heat treatment conditions in these three types of light emitting diodes are as shown in Table 4 below.
  • This light-emitting diode has a configuration in which an n-type GaN layer, an InGaN well layer (three layers) and a GaN barrier layer (two layers) are alternately stacked on an m-plane or c-plane GaN substrate, p-type GaN Layers are stacked. Further, an Mg / Pt electrode or a Pd / Pt electrode is provided as a p-type electrode on the p-type GaN layer. The n-type electrode is formed on the n-type GaN layer by etching the p-type GaN layer and the active layer to expose the n-type GaN layer.
  • the current value becomes the voltage value. It increases with the increase.
  • the rising voltage is about 3.1 V in the case of an electrode (on m-plane GaN) made of a Pd / Pt layer.
  • the rising voltage in the case of the electrode (on the m-plane GaN) made of the Mg / Pt layer is about 2.5 V, and a reduction is observed. It is confirmed that the operating voltage at which the current value on the vertical axis is 20 mA is reduced by 1.5 V or more in the electrode made of the Mg / Pt layer compared to the electrode made of the Pd / Pt layer.
  • a light-emitting diode (m-plane light-emitting diode) using an electrode made of an Mg / Pt layer on m-plane GaN and a light-emitting diode (c-plane light-emitting diode) using an electrode made of an Mg / Pt layer on c-plane GaN
  • the rising voltage is lower than that of the c-plane light emitting diode, and the effect of reducing the contact resistance is confirmed.
  • a current value of 20 mA is obtained at a driving voltage of 3.2 V.
  • the c-surface light emitting diode has a current value of 4.8 mA at the same driving voltage. Since the light output of the light emitting diode depends on the current value, it can be seen that the m-plane light emitting diode can obtain a light output nearly four times that of the c surface light emitting diode at the driving voltage of 3.2 V.
  • a light-emitting diode is a diode having a pn junction therein, and a curve indicating current-voltage characteristics of a pn junction diode is generally approximated by the following equation.
  • I I 0 exp (V / n ⁇ KT)
  • I is a current value flowing through a pn junction diode
  • I 0 is a current constant
  • V is an applied voltage
  • K is a Boltzmann constant
  • T is a temperature
  • the value of the contact resistance of this light emitting diode was 3.8 ⁇ 10 ⁇ 4 ⁇ cm 2 for the electrode made of the Mg / Pt layer.
  • Such a contact resistance value of 10 minus 4 is the first example in p-type m-plane GaN, and this is a surprising result. It has been found that this can reduce power consumption. In addition, it has been found that m-plane GaN devices can provide extremely great technical significance. In the case of an electrode composed of a Pd / Pt layer, the value was about 1 ⁇ 10 ⁇ 2 ⁇ cm 2 .
  • FIG. 18A shows the result of forming an Au layer or Mg / Au layer electrode on an m-plane GaN layer and measuring its specific contact resistance ( ⁇ ⁇ cm 2 ).
  • the specific contact resistance is a value of the specific contact resistance after the electrode is formed and heat treatment is performed.
  • the characteristic of the specific contact resistance is worse when the Mg / Au layer electrode is used than when the Au layer electrode is used.
  • This point is significantly different from the result of the characteristic improvement in the configuration of the electrode (for example, Mg / Pt layer) of the present embodiment.
  • Mg is an element that is easily oxidized by contact with water or air
  • the structure used as a laminate of Mg layers (Mg / Au layer) instead of a single electrode of Mg layer is Can be one of the candidates for consideration.
  • the contact resistance of the Mg / Au layer is increased as compared with the Au layer, so that the contact characteristics are poor.
  • the excellent contact resistance characteristics of the configuration of the present embodiment are for those skilled in the art in view of the poor results when the Au layer is stacked on the Mg layer. It seems to have had an unpredictable effect.
  • FIG. 18B is a drawing-substituting photograph showing the surface of the Mg / Au layer electrode after the heat treatment
  • FIG. 18C is a drawing-substituting photograph showing the surface of the Au layer electrode after the heat treatment. It is a photograph. When both were compared, it was found that the film quality of the Mg / Au layer electrode was worse.
  • FIG. 19 shows hardness mapping (5 mN, 1 ⁇ m conical) using a Conical chip.
  • FIG. 19A shows the result of the c-plane GaN substrate (C-GaN)
  • FIG. 19B shows the result of the m-plane GaN substrate (M-GaN).
  • Patent Documents 3 and 4 have no description that the crystal plane of the gallium nitride-based semiconductor layer is the m-plane, and therefore, the disclosure of these documents discloses an electrode on the c-plane gallium nitride-based semiconductor layer. It is related to the technology that formed.
  • Patent Document 3 relates to a structure in which an Au layer is laminated on an Mg layer, and even if an electrode having the laminated structure is formed on the m-plane, the effect of the electrode of this embodiment can be obtained. Not.
  • Patent Document 4 refers to a metal layer made of Ni, Cr, and Mg, but the disclosed examples are only those having an electrode structure with a Ni layer as a lower layer.
  • Patent Documents 3 and 4 both relate to an electrode structure formed on a c-plane gallium nitride semiconductor layer, and neither a problem nor a solution regarding contact resistance to an m-plane gallium nitride semiconductor layer is taught.
  • the light emitting device may be used as a light source as it is.
  • the light-emitting element according to the present invention can be suitably used as a light source (for example, a white light source) having an extended wavelength band when combined with a resin or the like including a fluorescent material for wavelength conversion.
  • FIG. 20 is a schematic diagram showing an example of such a white light source.
  • the light source of FIG. 20 includes a light emitting element 100 having the configuration shown in FIG. 3A and a phosphor that converts the wavelength of light emitted from the light emitting element 100 into a longer wavelength (for example, YAG: Yttrium Aluminum Garnet). And a resin layer 200 in which is dispersed.
  • the light emitting element 100 is mounted on a support member 220 having a wiring pattern formed on the surface, and a reflection member 240 is disposed on the support member 220 so as to surround the light emitting element 100.
  • the resin layer 200 is formed so as to cover the light emitting element 100.
  • the p-type semiconductor region in contact with the Mg layer 32 is made of GaN or AlGaN
  • a layer containing In, for example, InGaN may be used.
  • “In 0.2 Ga 0.8 N” with an In composition of 0.2, for example, can be used for the contact layer in contact with the electrode 30.
  • the effect of reducing the contact resistance can naturally be obtained in light emitting elements (semiconductor lasers) other than LEDs and devices other than light emitting elements (for example, transistors and light receiving elements).
  • the actual m-plane need not be a plane that is completely parallel to the m-plane, and may be inclined at a slight angle (0 to ⁇ 1 °) from the m-plane.
  • the contact resistance can be reduced in a GaN-based semiconductor element crystal-grown on an m-plane substrate or a GaN-based semiconductor multilayer structure having an m-plane as a surface. Therefore, GaN-based semiconductor elements grown on crystals on m-plane substrates (or GaN-based semiconductor multilayer structures with m-plane surfaces), which have been difficult to actively use due to poor contact resistance characteristics, have been heretofore used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 窒化物系半導体発光素子100は、m面12を表面とするGaN系基板10と、GaN系基板10のm面12の上に形成された半導体積層構造20と、半導体積層構造20の上に形成された電極30とを備えている。電極30は、Mg層32を含み、Mg層32は、半導体積層構造20におけるp型半導体領域の表面に接触している。

Description

窒化物系半導体素子およびその製造方法
 本発明は、窒化物系半導体素子およびその製造方法に関する。特に、本発明は、紫外から青色、緑色、オレンジ色および白色などの可視域全般の波長域における発光ダイオード、レーザダイオード等のGaN系半導体発光素子に関する。このような発光素子は、表示、照明および光情報処理分野等への応用が期待されている。また、本発明は、窒化物系半導体素子に用いる電極の製造方法にも関する。
 V族元素として窒素(N)を有する窒化物半導体は、そのバンドギャップの大きさから、短波長発光素子の材料として有望視されている。そのなかでも、窒化ガリウム系化合物半導体(GaN系半導体:AlxGayInzN(0≦x,y,z≦1、x+y+z=1)の研究は盛んに行われ、青色発光ダイオード(LED)、緑色LED、ならびに、GaN系半導体を材料とする半導体レーザも実用化されている(例えば、特許文献1、2参照)。
 GaN系半導体は、ウルツ鉱型結晶構造を有している。図1は、GaNの単位格子を模式的に示している。AlxGayInzN(0≦x,y,z≦1、x+y+z=1)半導体の結晶では、図1に示すGaの一部がAlおよび/またはInに置換され得る。
 図2は、ウルツ鉱型結晶構造の面を4指数表記(六方晶指数)で表すために一般的に用いられている4つの基本ベクトルa1、a2、a3、cを示している。基本ベクトルcは、[0001]方向に延びており、この方向は「c軸」と呼ばれる。c軸に垂直な面(plane)は「c面」または「(0001)面」と呼ばれている。なお、「c軸」および「c面」は、それぞれ、「C軸」および「C面」と表記される場合もある。添付図面では、見易さのため大文字の表記を使用している。
 GaN系半導体を用いて半導体素子を作製する場合、GaN系半導体結晶を成長させる基板として、c面基板すなわち(0001)面を表面に有する基板が使用される。しかしながら、c面においてはGaの原子層と窒素の原子層の位置がc軸方向に僅かにずれているため、分極(Electrical Polarization)が形成される。このため、「c面」は「極性面」とも呼ばれている。分極の結果、活性層におけるInGaNの量子井戸にはc軸方向に沿ってピエゾ電界が発生する。このようなピエゾ電界が活性層に発生すると、キャリアの量子閉じ込めシュタルク効果により活性層内における電子およびホールの分布に位置ずれが生じるため、内部量子効率が低下する。このため、半導体レーザであれば、しきい値電流の増大が引き起こされる。LEDであれば、消費電力の増大や発光効率の低下が引き起こされる。また、注入キャリア密度の上昇と共にピエゾ電界のスクリーニングが起こり、発光波長の変化も生じる。
 そこで、これらの課題を解決するため、非極性面、例えば[10-10]方向に垂直な、m面と呼ばれる(10-10)面を表面に有する基板を使用することが検討されている。ここで、ミラー指数を表すカッコ内の数字の左に付された「-」は、「バー」を意味する。m面は、図2に示されるように、c軸(基本ベクトルc)に平行な面であり、c面と直交している。m面においてはGa原子と窒素原子は同一原子面上に存在するため、m面に垂直な方向に分極は発生しない。その結果、m面に垂直な方向に半導体積層構造を形成すれば、活性層にピエゾ電界も発生しないため、上記課題を解決することができる。
 m面は、(10-10)面、(-1010)面、(1-100)面、(-1100)面、(01-10)面、(0-110)面の総称である。なお、本明細書において、「X面成長」とは、六方晶ウルツ鉱構造のX面(X=c、m)に垂直な方向にエピタキシャル成長が生じることを意味するものとする。X面成長において、X面を「成長面」と称する場合がある。また、X面成長によって形成された半導体の層を「X面半導体層」と称する場合がある。
特開2001-308462号公報 特開2003-332697号公報 特開平8-64871号公報 特開平11-40846号公報
 上述のように、m面基板上で成長させたGaN系半導体素子は、c面基板上で成長させたものと比較して顕著な効果を発揮し得るが、次のような問題がある。すなわち、m面基板上で成長させたGaN系半導体素子は、c面基板上で成長させたものよりもコンタクト抵抗が高く、それが、m面基板上で成長させたGaN系半導体素子を使用する上で大きな技術的な障害となっている。
 そのような状況の中、本願発明者は、非極性面であるm面上に成長させたGaN系半導体素子が持つコンタクト抵抗が高いという課題を解決すべく検討した結果、コンタクト抵抗を低くすることができる手段を見出した。
 本発明はかかる点に鑑みてなされたものであり、その主な目的は、m面基板上で結晶成長させたGaN系半導体素子におけるコンタクト抵抗を低減できる構造および製造方法を提供することにある。
 本発明の窒化物系半導体素子は、表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、前記p型半導体領域上に設けられた電極とを備え、前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0, y≧0, z≧0)半導体から形成され、前記電極は、前記p型半導体領域の前記表面に接触したMg層を含む。
 ある好ましい実施形態において、前記電極は、前記Mg層と、前記Mg層の上に形成された金属層とを含み、前記金属層は、Pt、MoおよびPdからなる群から選択される少なくとも1種の金属から形成されている。
 ある好ましい実施形態において、前記Mg層と前記金属層との間には、Pt、MoおよびPdからなる群から選択される少なくとも1種類の金属とMgとを含む合金層が存在する。
 ある好ましい実施形態において、前記電極は、前記Mg層と、前記Mg層の上に形成された合金層とを含み、前記合金層は、Pt、MoおよびPdからなる群から選択される少なくとも1種の金属とMgとを含む合金からなる。
 ある好ましい実施形態において、前記Mg層は、前記p型半導体領域の前記表面上に存在する膜から構成されている。
 ある好ましい実施形態において、前記Mg層は、前記p型半導体領域の前記表面上にアイランド状に存在する複数のMgから構成されている。
 ある好ましい実施形態において、前記半導体積層構造は、AlaInbGacN層(a+b+c=1,a≧0, b≧0, c≧0)を含む活性層を有し、前記活性層は光を発する。
 ある好ましい実施形態において、前記Mg層の厚さは2nm以上45nm以下である。
 ある好ましい実施形態において、前記Mg層の厚さは2nm以上15nm以下である。
 ある好ましい実施形態において、前記Mg層の厚さは前記金属層の厚さ以下である。
 ある好ましい実施形態において、前記Mg層中のGa濃度は前記Mg層中の窒素濃度よりも高い。
 ある好ましい実施形態において、前記Ga濃度は前記窒素濃度の10倍以上である。
 ある好ましい実施形態において、前記半導体積層構造を支持する半導体基板を有している。
 ある好ましい実施形態において、前記p型半導体領域は、GaNである。
 本発明の光源は、窒化物系半導体発光素子と、前記窒化物系半導体発光素子から放射された光の波長を変換する蛍光物質を含む波長変換部とを備える光源であって、前記窒化物系半導体発光素子は、表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、前記p型半導体領域上に設けられた電極とを備え、前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0, y≧0, z≧0)半導体からなり、前記電極は、前記p型半導体領域の前記表面に接触したMg層を含む。
 ある好ましい実施形態において、前記p型半導体領域は、GaNである。
 本発明による窒化物系半導体素子の製造方法は、基板を用意する工程(a)と、表面がm面であり、AlxInyGazN(x+y+z=1,x≧0, y≧0, z≧0)半導体からなるp型半導体領域を有する窒化物系半導体積層構造を前記基板上に形成する工程(b)と、前記半導体積層構造の前記p型半導体領域の前記表面上に電極を形成する工程(c)とを含み、前記工程(c)は、前記p型半導体領域の前記表面上に、Mg層を形成する工程を含む。
 ある好ましい実施形態において、前記工程(c)は、前記Mg層を形成した後に、Pt、MoおよびPdからなる群から選択される少なくとも1種の金属からなる金属層を形成する工程を含む。
 ある好ましい実施形態では、前記工程(c)において、前記金属層を形成した後に、前記Mg層を加熱処理する工程を実行する。
 ある好ましい実施形態において、前記加熱処理は、500℃以上700℃以下の温度で実行される。
 ある好ましい実施形態において、前記加熱処理は、550℃以上650℃以下の温度で実行される。
 ある好ましい実施形態において、前記Mg層を形成する工程は、パルス的に電子ビームを照射することによってMgを前記p型半導体領域の前記表面の上に蒸着させることを実行する。
 ある好ましい実施形態において、前記加熱処理後における前記Mg層の厚さを2nm以上45nm以下にする。
 ある好ましい実施形態では、前記工程(b)において、AlxInyGazN(x+y+z=1,x≧0, y≧0, z≧0)半導体の層を形成する工程を実行する。
 ある好ましい実施形態では、前記工程(b)を実行した後において、前記基板を除去する工程を含む。
 ある好ましい実施形態において、前記Mg層中のGa濃度は前記Mg層中の窒素濃度よりも高い。
 ある好ましい実施形態において、前記Ga濃度は前記窒素濃度の10倍以上である。
 ある好ましい実施形態において、前記p型半導体領域は、GaNである。
 本発明による半導体デバイスの電極用Mg薄膜の形成方法は、Mgにパルス状の電子ビームを照射することによって前記Mgを蒸発させ、Mg薄膜を形成する。
 ある好ましい実施形態において、前記Mg薄膜が形成される支持体を加熱せずに前記Mg薄膜を形成する。
 本発明の窒化物系半導体素子によれば、半導体積層構造上の電極がMg層を含み、そのMg層がp型半導体領域の表面(m面)に接触していることにより、コンタクト抵抗を低減することができる。
GaNの単位格子を模式的に示す斜視図 ウルツ鉱型結晶構造の基本ベクトルa1、a2、a3、cを示す斜視図 (a)は、本発明の実施形態に係る窒化物系半導体発光素子100の断面模式図、(b)はm面の結晶構造を表す図、(c)はc面の結晶構造を表す図 (a)から(c)は、GaNに接する金属の仕事関数(eV)と固有コンタクト抵抗(Ω・cm2)との関係を示すグラフ (a)は、Mg/Pt電極におけるMg層厚(熱処理後の値)と固有コンタクト抵抗との関係を示すグラフ、(b)は、Pd/Pt電極の固有コンタクト抵抗を示すグラフ (a)~(c)は、それぞれ、Mg層厚が2nm、15nm、45nmにおける熱処理後の電極の表面状態を示す写真 Mg/Pt電極およびPd/Pt電極の各々コンタクト抵抗について、接触面がm面の場合とc面の場合のコンタクト抵抗を示すグラフ コンタクト抵抗について熱処理温度の依存性を示すグラフ 各温度で熱処理を行った後の電極の表面状態を示す光学顕微鏡の図面代用写真 (a)および(b)は、それぞれ、800℃および900℃で熱処理した場合のGaN層のフォトルミネッセンス測定結果を示すグラフ (a)および(b)は、SIMS分析による電極構造(Mg/Pt)におけるMgの深さ方向のプロファイル図 (a)および(b)は、SIMS分析による電極構造(Mg/Pt)におけるGaの深さ方向のプロファイル図 (a)および(b)は、SIMS分析による電極構造(Mg/Pt)におけるNの深さ方向のプロファイル図 (a)および(b)は、m面GaN層上にMg層を形成した電極構造(Mg/Pt)の断面透過電子顕微鏡(TEM)の図面代用写真 (a)および(b)は、SIMS分析による電極構造(Mg/Pt)におけるPtの深さ方向のプロファイル図 (a)は、m面GaN層上にMg層を形成した熱処理前の電極構造(Mg/Pt)の断面を示す図、(b)は、熱処理後における電極構造(Mg/Pt)の断面を示す図 (a)はMg/Pt層からなる電極を用いた発光ダイオードの電流-電圧特性を示すグラフ、(b)は発光ダイオードのコンタクト抵抗の値を示すグラフ (a)は、Au層、および、Mg/Au層からなる電極を用いた場合のコンタクト抵抗を示すグラフ、(b)および(c)はそれぞれMg/Au層およびAu層の電極の表面を示す光学顕微鏡の図面代用写真 (a)および(b)は、それぞれ、c面およびm面のGaN基板の硬度マッピングを示すグラフ 白色光源の実施形態を示す断面図
 以下、図面を参照しながら、本発明の実施の形態を説明する。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。
 図3(a)は、本発明の実施形態に係る窒化物系半導体発光素子100の断面構成を模式的に示している。図3(a)に示した窒化物系半導体発光素子100は、GaN系半導体からなる半導体デバイスであり、窒化物系半導体積層構造を有している。
 本実施形態の窒化物系半導体発光素子100は、m面を表面12とするGaN系基板10と、GaN系基板10の上に形成された半導体積層構造20と、半導体積層構造20の上に形成された電極30とを備えている。本実施形態では、半導体積層構造20は、m面成長によって形成されたm面半導体積層構造であり、その表面はm面である。なお、r面サファイア基板上にはa面GaNが成長するという事例もあることから、成長条件によっては必ずしもGaN系基板10の表面がm面であることが必須とならない。本発明の構成においては、少なくとも半導体積層構造20のうち、電極と接触するp型半導体領域の表面がm面であればよい。
 本実施形態の窒化物系半導体発光素子100は、半導体積層構造20を支持するGaN基板10を備えているが、GaN基板10に代えて他の基板を備えていても良いし、基板が取り除かれた状態で使用されることも可能である。
 図3(b)は、表面がm面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示している。Ga原子と窒素原子は、m面に平行な同一原子面上に存在するため、m面に垂直な方向に分極は発生しない。すなわち、m面は非極性面であり、m面に垂直な方向に成長した活性層内ではピエゾ電界が発生しない。なお、添加されたInおよびAlは、Gaのサイトに位置し、Gaを置換する。Gaの少なくとも一部がInやAlで置換されていても、m面に垂直な方向に分極は発生しない。
 m面を表面に有するGaN系基板は、本明細書では「m面GaN系基板」と称される。m面に垂直な方向に成長したm面窒化物系半導体積層構造を得るには、典型的には、m面GaN基板を用い、その基板のm面上に半導体を成長させればよい。GaN系基板の表面の面方位が、半導体積構造の面方位に反映されるからである。しかし、前述したように、基板の表面がm面である必要は必ずしもなく、また、最終的なデバイスに基板が残っている必要も無い。
 参考のために、図3(c)に、表面がc面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示す。Ga原子と窒素原子は、c面に平行な同一原子面上に存在しない。その結果、c面に垂直な方向に分極が発生する。c面を表面に有するGaN系基板を、本明細書では「c面GaN系基板」と称する。
 c面GaN系基板は、GaN系半導体結晶を成長させるための一般的な基板である。c面に平行なGaの原子層と窒素の原子層の位置がc軸方向に僅かにずれているため、c軸方向に沿って分極が形成される。
 再び、図3(a)を参照する。m面GaN系基板10の表面(m面)12の上には、半導体積層構造20が形成されている。半導体積層構造20は、AlaInbGacN層(a+b+c=1,a≧0, b≧0, c≧0)を含む活性層24と、AldGaeN層(d+e=1, d≧0, e≧0)26とを含んでいる。AldGaeN層26は、活性層24を基準にしてm面12の側とは反対の側に位置している。ここで、活性層24は、窒化物系半導体発光素子100における電子注入領域である。
 本実施形態の半導体積層構造20には、他の層も含まれており、活性層24と基板10との間には、AluGavInwN層(u+v+w=1, u≧0, v≧0, w≧0)22が形成されている。本実施形態のAluGavInwN層22は、第1導電型(n型)のAluGavInwN層22である。また、活性層24とAldGaeN層26との間に、アンドープのGaN層を設けてもよい。
 AldGaeN層26において、Alの組成比率dは、厚さ方向に一様である必要は無い。AldGaeN層26において、Alの組成比率dが厚さ方向に連続的または階段的に変化していても良い。すなわち、AldGaeN層26は、Alの組成比率dが異なる複数の層が積層された多層構造を有していても良いし、ドーパントの濃度も厚さ方向に変化していてもよい。なお、コンタクト抵抗低減の観点から、AldGaeN層26の最上部(半導体積層構造20の上面部分)は、Alの組成比率dがゼロである層(GaN層)から構成されていることが好ましい。このとき、後述するMg層32はGaN層と接することになる。また、Al組成dはゼロでなくてもよい。Al組成dを0.05程度とした、Al0.05Ga0.95Nを用いることもできる。このとき、後述するMg層32は、このAl0.05Ga0.95N層と接することになる。
 半導体積層構造20の上には、電極30が形成されている。本実施形態の電極30は、MgからなるMg層32を含む電極であり、Mg層32の上には、PtからなるPt層が形成されている。電極30におけるMg層32は、半導体積層構造20のp型半導体領域に接触しており、p型電極(p側電極)の一部として機能する。本実施形態では、Mg層32は、第2導電型(p型)のドーパントがドープされたAldGaeN層26に接触している。AldGaeN層26には、例えば、ドーパントとしてMgがドープされている。Mg以外のp型ドーパントとして、例えばZn、Beなどがドープされていてもよい。
 Mg層32の表面に接触する金属層34としては、例えば、Pt層の他、Auに比べるとMgと合金を形成し難い金属の層を用いることができる。逆に、Mg層32と接触する金属層34として、Mgと合金を形成し易いAu(金)は好ましく無い。Mg層32は、金属層34を構成するPt等の金属との間で合金化していない。なお、「Pt等の金属との間で合金化していない」とは、%オーダー(例えば1%)未満の濃度でMg中にPt等の金属が混和している状態も含まれる。換言すれば、「Pt等の金属との間で合金化」とは、%オーダー(例えば1%)以上の濃度でPt等の金属がMg中に混和している状態を意味する。なお、Mg層32及び金属層34は、それらの層の製造工程で混入する不純物等を含んでいてもよい。
 なお、Mg層32と金属層34との間にMgを含む合金層が形成されていても良い。Pt、Mo、Pdは、Auに比べるとMgとの間で合金化しにくい金属であるが、後述する熱処理により、Mg層32の一部と反応して合金層が形成され得る。
 なお、Mg層32の上に比較的薄い金属層を堆積した場合、熱処理後には、薄い金属層の全てがMg層におけるMgの一部と合金化する場合がある。この場合には、Mg層の上には合金層のみが存在することになる。
 上記の各電極の上には、上述の金属層34または合金層とは別に、これらの金属以外の金属または合金からなる電極層や配線層が形成されていても良い。
 本実施形態の電極30の厚さは、例えば、10~200nmである。電極30におけるMg層32の厚さは、例えば、2nm~45nmである。なお、ここでのMg層32の厚さは、熱処理後のMg層の厚さである。
 また、Mg層32の上に位置する金属層34(Pt、MoおよびPdからなる群から選択される少なくとも1種類の金属からなる層)の厚さは、例えば、200nm以下(または、10nm~200nm)である。なお、Mg層32の厚さは、金属層34の厚さよりも薄いことが好ましい。Mg層32と金属層34との歪みのバランスが崩れることによるMg層32とAldGaeN層26との間での剥離が生じないようにするためである。
 また、m面の表面12を有するGaN系基板10の厚さは、例えば、100~400μmである。これはおよそ100μm以上の基板厚であればウエハのハンドリングに支障が生じないためである。なお、本実施形態の基板10は、GaN系材料からなるm面の表面12を有していれば、積層構造を有していても構わない。すなわち、本実施形態のGaN系基板10は、少なくとも表面12にm面が存在している基板も含み、したがって、基板全体がGaN系であってもよいし、他の材料との組み合わせであっても構わない。
 本実施形態の構成では、基板10の上に、n型のAluGavInwN層(例えば、厚さ0.2~2μm)22の一部に、電極40(n型電極)が形成されている。図示した例では、半導体積層構造20のうち電極40が形成される領域は、n型のAluGavInwN層22の一部が露出するように凹部42が形成されている。その凹部42にて露出したn型のAluGavInwN層22の表面に電極40が設けられている。電極40は、例えば、Ti層とAl層とPt層との積層構造から構成されており、電極40の厚さは、例えば、100~200nmである。
 本実施形態の活性層24は、Ga0.9In0.1N井戸層(例えば、厚さ9nm)とGaNバリア層(例えば、厚さ9nm)とが交互に積層されたGaInN/GaN多重量子井戸(MQW)構造(例えば、厚さ81nm)を有している。
 活性層24の上には、p型のAldGaeN層26が設けられている。p型のAldGaeN層26の厚さは、例えば、0.2~2μmである。なお、上述したように、活性層24とAldGaeN層26との間には、アンドープのGaN層を設けてもよい。
 加えて、AldGaeN層26の上に、第2導電型(例えば、p型)のGaN層を形成することも可能である。そして、そのGaN層の上に、p+-GaNからなるコンタクト層を形成し、さらに、p+-GaNからなるコンタクト層上に、Mg層32を形成することも可能である。なお、GaNからなるコンタクト層を、AldGaeN層26とは別の層であると考える代わりに、AldGaeN層26の一部であると考えることもできる。
 次に、図4から図15を参照しながら、本実施形態の特徴を更に詳細に説明する。
 まず、図4(a)及び(b)は、m面GaNに接する金属の仕事関数(eV)と固有コンタクト抵抗(Ω・cm2)との関係を示すグラフである。さらに説明すると、図4(a)及び(b)は、Mgをドープしたp型GaN層(Mg濃度:約1×1019cm-3)上に各種金属層(Mg層の厚さ:2nm、それ以外の金属層の厚さ:200nm)を形成し、そのコンタクト抵抗をTLM(Transmission Line Method)法を用いて評価した結果を示している。なお、縦軸に示した「1.0E-01」は「1.0×10-1」を意味し、「1.0E-02」は「1.0×10-2」を意味し、すなわち、「1.0E+X」は、「1.0×10X」の意味である。
 コンタクト抵抗は、一般に、コンタクトの面積S(cm2)に反比例する。ここで、コンタクト抵抗をR(Ω)とすると、R=Rc/Sの関係が成立する。比例定数のRcは、固有コンタクト抵抗と称され、コンタクト面積Sが1cm2の場合のコンタクト抵抗Rに相当する。すなわち、固有コンタクト抵抗の大きさは、コンタクト面積Sに依存せず、コンタクト特性を評価するための指標となる。以下、「固有コンタクト抵抗」を「コンタクト抵抗」と略記する場合がある。
 図4(a)は、金属形成後、熱処理を行なわない場合(as-depo)を示している。一方、図4(b)は、Mgでは600℃で10分間、窒素雰囲気中で熱処理を行った場合を示し、そして、Al、Au、Pd、Ni、Ptでは500℃で10分間、窒素雰囲気中で熱処理を行った場合の結果を示している。なお、この温度の違いは、最適熱処理温度が異なることにより、Mg以外の金属においては500℃で最もコンタクト抵抗が低下することに基づいている。
 図4(a)から理解できるとおり、各種金属の仕事関数が増加すると共に、コンタクト抵抗が低減することが見られる。これは、c面基板上にGaN系半導体素子を作製する場合に、一般に、仕事関数の大きな金属(例えば、Au)がp型電極として用いられる点と一致する。
 加熱処理後の結果においては、図4(b)からわかるように、Al、Au、Pd、Ni、Ptでは、各種金属の仕事関数が増加すると共に、コンタクト抵抗が低減することが見られる。しかしながら、Mgは仕事関数が小さい金属であるにもかかわらず、急激なコンタクト抵抗の低下が見られることが分かった。なお、図4(b)のグラフに、Mg以外の各種金属の傾向を示す点線を追加したものを図4(c)に示す。従来の技術的常識によれば、熱処理を行なわない場合においてMgは評価を行った金属の中では最も仕事関数が小さな金属であるため、コンタクト抵抗は大きくなることが推測されるが、逆にMgは熱処理によって急激なコンタクト抵抗の減少を示すことが分かった。
 図5(a)は、Mg/Pt電極(Mg上にPtを形成)におけるMg層厚と固有コンタクト抵抗との関係を示すグラフである。ここで、Pt層の厚さ(熱処理前)は75nmに固定されている。図5(b)は、比較のため、Pd/Pt電極(Pd厚さ40nm、Pt厚さ:35nm)の固有コンタクト抵抗を示すグラフである。グラフの横軸は熱処理温度である。Mg層以外の金属層の厚さは、いずれも、熱処理前の厚さである。
 図5(a)に示すデータは、パルス蒸着法を用いてMg層を堆積したサンプルから得たものである。パルス蒸着法については後述する。図5(b)に示すデータは、通常の電子ビーム蒸着法を用いてPd、Pt層を堆積したサンプルから得たものである。本願明細書における本発明の実施例では、いずれも、Mg層をパルス蒸着法によって堆積している。なお、本願明細書では、c面GaN層上のMg層もパルス蒸着法によって堆積しているが、Mg以外の金属(Pd、Pt、Au)は、いずれも、通常の電子ビーム蒸着法によって堆積したものである。
 Mg/Pt電極、およびPd/Pt電極は、Mgがドープされたm面GaN層に接触している。これらの電極が接触するm面GaN層では、表面から深さ20nmの領域(厚さ20nmの最表面領域)に7×1019cm-3のMgがドープされている。また、m面GaN層の表面からの深さが20nmを超える領域には、1×1019cm-3のMgがドープされている。このように、p型電極が接触するGaN層の最表面領域においてp型不純物の濃度を局所的に高めると、コンタクト抵抗を最も低くすることができる。また、このような不純物ドーピングを行なうことにより、電流―電圧特性の面内ばらつきも低減するため、駆動電圧のチップ間ばらつきを低減できるという利点も得られる。このため、本願に開示している実験例では、いずれも、電極が接触するp型GaN層の表面から深さ20nmの領域に7×1019cm-3のMgをドープし、それよりも深い領域には1×1019cm-3のMgをドープしている。なお、図4(b)に示すMgのコンタクト抵抗が、図5(a)に示すMgのコンタクト抵抗よりも高くなっている理由は、図4(b)の例では、Mgドープ量を表面で局所的に高めるという処理を行っていないためである。
 図5(a)のグラフにおける横軸は、熱処理後のMg層の厚さを示す。後述するように、透過電子顕微鏡の評価によると、熱処理後におけるMg層の厚さは熱処理前に比べて減少する。熱処理(600℃、10分)前のMg層の厚さが7nmの場合、熱処理後におけるMg層の厚さは2nmとなっていた。同様に、熱処理(600℃、10分)前のMg層の厚さが50nm、20nmの場合、熱処理後におけるMg層の厚さは、各々45nm、15nmとなっていた。
 図5(a)のグラフには、600℃、10分の熱処理を行ったサンプルについて、コンタクト抵抗の測定値とMg厚さとの関係を示す実験結果が記載されている。他の熱処理条件のもとでも、コンタクト抵抗のMg層厚依存性は同様の傾向にあることを実験で確認した。
 本発明者の実験によると、Mg層厚が45nmを超えて厚くなると、m面GaN層に対するMg/Pt電極のコンタクト抵抗は、m面GaN層に対するPd/Pt電極のコンタクト抵抗(図5(b)に示されている)とほぼ同程度の大きさとなるため、従来例に対する優位性が見られなかった。一方、図5(a)に示すように、Mg層厚が45nm以下になると、m面GaN上のPd/Pt電極よりもコンタクト抵抗が低くなり、本発明の優位性が確認された。
 Mg層厚が45nm以下の範囲においては、Mg層厚が減少するほど、コンタクト抵抗も減少することが観測された。Mg層厚が15nm付近から層厚の減少と共に急激なコンタクト抵抗の減少が観測された。Mg層厚が2nm付近で最も低いコンタクト抵抗が得られた。
 以上のことから、熱処理を含む全ての製造工程を経て最終的に得られる半導体素子におけるMg層32の厚さは、45nm以下であることが好ましく、2nm~15nmの範囲内にあることが更に好ましい。
 図6(a)~(c)は、それぞれ、Mg層厚が2nm、15nm、および45nmにおける熱処理後の電極の表面状態を示す写真である。ここで、Mg層厚は、600℃10分の熱処理後における値である。
 図6(c)に示すように、Mg層厚が45nmのサンプルでは、電極表面荒れ(凹凸)が観測された。電極表面荒れは、Mg層厚が45nmを超えて大きくなるとコンタクト抵抗が増加することの要因になっていると考えられる。また、Mg層厚が45nmを超えると、部分的にMg層が浮き上がる現象も見られた。透過電子顕微鏡の観察から、Mg層とGaN層との界面で空隙が生じていることも確認された。これは、Mg層厚が45nmを超えて大きくなると、Mg層の歪が増大し、MgとGaNとの界面でMg層の剥離が生じたものと考えられる。以上のことから、Mg層の厚さは45nm以下に設定することが好ましい。
 なお、Mg層厚が約15nm以下になると、電極表面の平坦性は極めて良くなる。このため、Mg層厚は15nm以下であることがより好ましい。
 図7はMg/Pt電極およびPd/Pt電極の各々コンタクト抵抗について、接触面がm面の場合とc面の場合のコンタクト抵抗(測定値)を比較して示すグラフである。いずれのサンプルでも、電極はp型GaN層に接触している。このp型GaN層には、前述した濃度分布を有するMgがドーピングされている。
 熱処理前における各層の厚さは、以下の表1に示す通りである。
Figure JPOXMLDOC01-appb-T000001
 また、熱処理温度および熱処理時間は以下の表2に示す通りである。
Figure JPOXMLDOC01-appb-T000002
 図7から明らかなように、Mg/Pt電極によれば、接触面がc面の場合でも、Pd/Pt電極に比べてコンタクト抵抗の若干の低減が観測された。しかし、m面の場合、Mg/Pt電極のコンタクト抵抗は、顕著に低下していることが判明した。
 次に、図8を参照しながら、コンタクト抵抗について熱処理温度の依存性を説明する。図8は、p型のGaN層のm面(以下、「m面GaN」と表記する)上に、Mg層、その上にPt層を形成した場合(すなわち、m面GaN(Mg/Pt))の結果を示している。また、対比として、p型のm面GaN層上にPd層、その上にPt層を形成した場合(m面GaN(Pd/Pt)、そして、p型のGaN層のc面(以下、「c面GaN」と表記する)上にPd層、その上にPt層を形成した場合(c面GaN(Pd/Pt))の結果も示している。p型GaN層には、いずれも、前述した濃度分布を有するようにMgがドーピングされている。
 熱処理前における各層の厚さは、以下の表3に示す通りである。
Figure JPOXMLDOC01-appb-T000003
 まず、Pd/Pt層の電極の場合、m面GaNのコンタクト抵抗は、c面GaNのコンタクト抵抗と比較して高い値となる。そして、m面およびc面GaNのいずれも500℃を超える熱処理温度においては、コンタクト抵抗の上昇が見られる。
 一方、m面GaN(Mg/Pt)の電極は、熱処理を行なわないときは、Pd/Ptの電極と比較してコンタクト抵抗は高い。これは、仕事関数が小さい金属の方がコンタクト抵抗が高いという技術常識と合致する。しかしながら、m面GaN(Mg/Pt)の電極の場合、熱処理温度を上げると共に、コンタクト抵抗が小さくなり、500℃の熱処理温度の場合には、m面GaN(Mg/Pt)のコンタクト抵抗は、m面GaN(Pd/Pt)のコンタクト抵抗と同等またはそれ以下となる。
 加えて、500℃を超えた温度(例えば、600℃)になると、m面GaN(Mg/Pt)のコンタクト抵抗は更に低下して、c面GaN(Mg/Pt)のコンタクト抵抗と同等となり、さらにはそれ以下になる。図8に示したグラフでは、おおよそ550℃以上になると、m面GaN(Mg/Pt)のコンタクト抵抗は、c面GaN(Mg/Pt)のコンタクト抵抗の値以下(またはそれ未満)になる。
 600℃の温度では、m面GaN(Mg/Pt)のコンタクト抵抗は、600℃の温度でのm面およびc面GaN(Mg/Pt)のいずれのコンタクト抵抗よりも低くなり、具体的には、約1.0E-02Ωcm-2又はその周辺まで低下する。また、700℃の温度では、m面GaN(Mg/Pt)のコンタクト抵抗は、600℃の温度の場合よりも上昇するものの、700℃の温度でのm面およびc面GaN(Mg/Pt)のいずれのコンタクト抵抗よりも低くなる。
 したがって、m面GaN(Mg/Pt)の熱処理温度としては、例えば、500℃以上が好ましい。700℃を超えて所定温度(例えば800℃)以上になると、電極やGaN層の膜質の劣化が進むため、上限は700℃以下が好ましい。そして、600℃近傍(例えば、600℃±50℃)がより好適な熱処理温度である。
 次に、各温度で熱処理を行った後の電極の表面状態を示す写真を図9に示す。図9では、As-depo(熱処理を行なわない場合)、熱処理温度500℃、600℃、700℃の結果を示している。
 図9からわかるように、p型のc面GaN層の上にPd層、その上にPt層を形成した場合(C-GaN(Pd/Pt)の場合)は、500℃、600℃、700℃のどの熱処理においても金属表面の劣化は見られない。AFM測定による表面の算術平均粗さ(Ra)は500℃で約2nm、600℃で約2nm、700℃で約4nmとなった。
 一方、p型のm面GaN層の上にPd層、その上にPt層を形成した場合(M-GaN(Pd/Pt)の場合)は、600℃、700℃の熱処理において金属表面の荒れが見られ、劣化が認められる。AFM測定によるRaは600℃で約30nm、700℃で約77nmとなった。すなわち、熱処理による電極の劣化が、m面GaNの電極に特有な課題であることがわかる。
 そして、p型のm面GaN層の上にMg層、その上にPt層を形成した場合(M-GaN(Mg/Pt)の場合)は、700℃の熱処理温度では僅かに凹凸は見られるものの、500℃、600℃、700℃の全ての熱処理温度において電極が劣化しないことが確認された。AFM測定による表面のRaは500℃で約1.5nm、600℃で約1.5nm、700℃で約4.5nmとなり、良好な表面状態が得られた。そして、本実施形態の構成において、電極の表面のRaは、約4.5nm以下であることが好ましく、約1.5nm以下であることがさらに好ましい。
 さらに、GaN層上にMg層(30nm)を形成し、800℃および900℃で10分間熱処理した場合のGaN層のフォトルミネッセンス測定結果を図10に示す。図10(a)は、800℃で熱処理した結果を示し、そして、図10(b)は、900℃で熱処理した結果を示している。図10(a)及び(b)中の縦軸のPL強度は、フォトルミネッセンス強度の意味である。図10(a)および(b)のグラフには、それぞれ、熱処理前に得られたPL強度(「Ref」と表記する曲線)が示されている。
 まず、本願発明者の実験によると、700℃以下の熱処理では、熱処理前と後でフォトルミネッセンスのスペクトルの変化は見られなかった。一方、図10(a)に示すように、800℃の場合では、530nm付近にイエローバンドと呼ばれる、空孔欠陥に起因すると考えられる発光が見られるようになる。さらに熱処理温度を上げると、図10(b)に示すように、530nm付近の発光は強度を増し、空孔欠陥の密度の増加を示す。これよりMg層を用いた電極における熱処理温度は、GaNの品質の保持という観点から、700℃以下にすることが望ましい。
 次に、図11に、電極構造(Mg/Pt)においてMg原子の深さ方向のプロファイルを、SIMS(Secondary Ion-microprobe Mass Spectrometer)を用いて得た結果を示す。図11(a)は、Mg層をGaN層上に形成した構成(Mg/Pt電極)において、熱処理を行なわない場合(as-depo)の結果を示し、一方、図11(b)は、熱処理後の結果を示している。なお、熱処理の温度および時間は、c面GaNの場合に600℃で10分、m面GaNの場合に600℃で10分および630℃で10分である。
 いずれの電極においても、熱処理前におけるMg層厚は7nmであり、Pt層厚は75nmである。
 図11(a)、図11(b)のグラフの縦軸は、Mg濃度であり、横軸は、深さ方向の距離である。横軸の数値が「-」の領域は電極側であり、「+」の領域はp型GaN側である。横軸の原点(0μm)は、Mgのピーク位置であり、p型GaN層とMg層との界面の位置にほぼ相当する。これらの事項は、後に説明する図12、図13、図15のグラフでも同様である。
 図11(a)、(b)のグラフにおいて、「◆」は、c面GaN上に形成した熱処理温度が600℃のサンプルに関するデータを示している。また、グラフ中の「△」は、m面GaN上に形成した熱処理温度が600℃のサンプルに関するデータを示し、「○」は、m面GaN上に形成した熱処理温度が630℃のサンプルに関するデータを示している。後述する図12、図13、図15のグラフにおいても、同様である。なお、熱処理前のp型GaN層には、いずれも、前述した通り、電極が接触するp型GaN層の表面から深さ20nmの領域に7×1019cm-3のMgがドーピングされ、それよりも深い領域には1×1019cm-3のMgがドーピングされている。
 図11(a)に示すように、as-depoの場合は、m面GaNにおいても、c面GaNにおいてもMgのプロファイルに変化は無い。一方、図11(b)に示すように、GaN層の上にMg層を形成後に熱処理を行った場合には、それぞれ、Mgのプロファイルは大きく異なるものとなった。
 熱処理を行った場合には、図11(b)に示すように、c面GaN上のMgは、p型GaN層にかなりの濃度で拡散していることが見られる。また、Pt層にもMgが拡散していることが見られる。一方、m面GaN上のMgは、p型GaN層にも、Pt層にも拡散はほとんどしていないことが確認される。さらに詳述すると、c面GaNの場合、熱処理後にはMgがPt層に奥深く拡散し、そして、GaN側にも奥深く拡散している。一方、m面GaNの場合、熱処理後にはMgがPt層側に僅かに拡散するものの、GaN側には殆ど拡散しないものであった。これは、600℃であっても630℃であってもほとんど差異が無かった。このように、熱処理の前と後で、c面GaN上のMgの拡散と、m面GaN上のMgの拡散との間に顕著な差が生じる。その理由は未だ不明であるが、c面とm面との最表面原子の配列、極性の違いや原子の緻密さに起因するものと推測される。
 図12は、電極構造(Mg/Pt)においてGa原子の深さ方向のプロファイルを、SIMSを用いて得た結果を示す。熱処理前におけるMg層厚は7nmであり、Pt層厚は75nmである。グラフの縦軸は原子濃度と比例関係にある、SIMSの検出器の信号強度を示す。図12における横軸の距離0μmはp型GaN層とMg層との界面の位置にほぼ相当する。なお、横軸の原点(0μm)は、Mgピークの位置に合わせた。横軸の数値が「-」の領域は電極側であり、「+」の領域はp型GaN側である。縦軸は、as-depoのGaN結晶中のGa濃度を1として規格化している。また母体の原子密度から算定すると、縦軸の強度の1×10-3は濃度として1×1019cm-3にほぼ相当する。
 図12(a)は、Mg層をGaN層上に形成した構成(Mg/Pt電極)において、熱処理を行なわない場合(as-depo)の結果を示し、一方、図12(b)は、熱処理後の結果を示している。なお、図12(b)では、熱処理温度が600℃と630℃との2種類の結果を示している。熱処理の温度および時間は、c面GaNの場合に600℃で10分、m面GaNの場合に600℃で10分および630℃で10分である。
 図12(a)に示すように、as-depoの場合は、m面GaNにおいても、c面GaNにおいてもGaのプロファイルに変化は無い。一方、図12(b)に示すように、GaN層の上にMg層を形成後に熱処理を行った場合には、Gaのプロファイルは異なるものとなった。
 具体的には、図12(b)に示すように、熱処理を行った場合はMg層中にGaが拡散していることが確認された。m面GaN上にMg層を形成して600℃で熱処理を行った試料では、Mg層中にGaの拡散が認められ、コンタクト抵抗も低くなる。その原因の詳細は不詳ではあるが、Mg層中のGa拡散量とコンタクト抵抗との間の相関があることが確認された。
 さらに詳述すると、c面GaNの場合は、GaがMg層およびPt層中に拡散し、GaN結晶中の奥からもGaが電極中に移動している。換言すると、c面GaNの場合、Gaは全体的にGaN層から電極中に顕著に拡散している。一方、m面GaNでは、熱処理温度が600℃の場合、c面GaNとは異なり、界面近傍のみでGa原子が移動しているようである。c面と比べてm面では原子が動きにくい状況にあると推測される。ただし、m面GaNの場合でも、熱処理温度が630℃の場合は、GaがMg層およびPt層の全体に拡散している。なお、m面コンタクト抵抗は熱処理温度が600℃の場合の方が630℃の場合によりも低い。これは、熱処理温度が600℃の場合、後述するようにm面では窒素が拡散しにくく、その結果、Gaの空孔がアクセプターとして機能するのに対し、熱処理温度が630℃の場合は、600℃の場合に比べ、より多くの窒素原子が電極側へ拡散するためではないかと考えられる。
 図13(a)は、熱処理前のMg/Pt電極における窒素原子の深さ方向プロファイルを示すグラフであり、図13(b)は、熱処理後におけるMg/Pt電極における窒素原子の深さ方向プロファイルを示すグラフである。熱処理前におけるMg層厚は7nmであり、Pt層厚は75nmである。図13(a)、図13(b)のグラフの縦軸は、N強度であり、横軸は、深さ方向の距離である。1×10-3のN強度は1×1019cm-3のN濃度にほぼ相当する。横軸の数値が「-」の領域は電極側であり、「+」の領域はp型GaN側である。横軸の原点(0μm)は、p型GaN層とMg層との界面の位置にほぼ相当する。電極の構造およびp型GaNのドーピング条件は、図11を参照して説明したサンプルにおけるものと同様である。
 蒸着後、熱処理を行なわないサンプルでは、図13(a)に示すように、c面GaNに対する電極およびm面GaNに対する電極の両方において、いずれも窒素原子が電極側に拡散していないことがわかる。
 一方、熱処理後におけるc面GaNに対する電極では、図13(b)に示すように、窒素原子が電極側に拡散していることが確認された。しかし、熱処理後におけるm面GaNに対する電極では、窒素原子は電極側にほとんど拡散していない。すなわち、m面GaNでは、Ga原子のみが電極側に拡散し、窒素原子は拡散していない。これに対し、c面GaNでは、Ga原子も窒素原子も電極側に拡散している。p型GaNにおいてGaが電極側に拡散すると、p型GaNの最表面でGa原子が不足する状態、すなわちGa空孔が形成される。Ga空孔はアクセプター的性質を有するため、電極とp型GaNとの界面の近傍でGa空孔が増加すると、この界面のショットキー障壁を正孔がトンネリングによって通過しやすくなる。しかし、Ga原子とともに窒素原子も電極側に拡散すると、p型GaNの最表面に窒素の不足する状態、すなわち窒素空孔も形成される。窒素空孔はドナー的性質を有し、Ga空孔との間で電荷補償を起こす。このため、c面GaNのようにGaのみならず窒素も電極側に拡散すると、コンタクト抵抗の低下は特に生じなくなる。
 次に、Mg層におけるN(窒素)濃度とGa濃度との関係について詳述する。図12(b)に示すように、600℃にて熱処理を行った場合、m面GaN層上のMg層におけるGaのSIMS検出濃度は4×1.0E-02となった。SIMSの検出強度はその原子濃度に比例する。従って、GaN層の母体のGa濃度が1×1022cm-3程度と仮定した場合、Mg層中に4×1019cm-3程度のGaが存在しているものと考えられる。630℃にて熱処理を行った場合は、SIMSの検出強度は3×1.0E-02となった。同様の仮定により、m面GaN層上のMg層中には3×1019cm-3程度のGaが存在するものと考えられる。
 一方、図13(b)に示すように、600℃及び630℃で熱処理を行った場合のどちらも、m面GaN層上のMg層におけるN(窒素)のSIMS検出濃度は、検出感度の限界である1×1.0E-03となった。同様の仮定により、m面GaN層上のMg層中に含まれるN(窒素)は1×1018cm-3以下と考えられる。以上より、m面GaN層上のMg層中のGa原子濃度は、N原子濃度より1桁(10倍)以上大きい。
 これに対し、c面GaN層上のMg層では、Ga及びNは、SIMS検出強度はいずれも1E-2であり、いずれも1×1019cm-3程度存在するものと考えられる。すなわち、c面GaN層上のMg層中におけるGa原子とN原子の濃度はほぼ同程度である。
 なお、このような各元素(Mg、Ga、N、Pt)の挙動は、Mg層が接触するGaN層において、Gaの一部がAlやInで置換されていても同様に生じると推定される。また、Mg層が接触するGaN系半導体層中にドーパントとしてMg以外の元素がドープされている場合でも同様であると推定される。
 次に、図14に、m面GaN層上にMg層を形成した電極構造(Mg/Pt)の断面透過電子顕微鏡(TEM)写真を示す。図14(a)は、熱処理を行なわない場合(as-depo)の結果を示している。図14(b)は、600℃で10分間の熱処理後の結果を示している。
 この例では、図14(a)に示すように、7nm厚のMg層をGaN結晶上に形成した。図14(b)に示すように、熱処理後はPt層がMg層に浸食し、Mg層の厚さが2nmとなった。
 図14(b)からわかるように、Mg層(図3(a)中の層32)の厚さは薄い(例えば、2nm)とはいえ、Pt層(図3(a)中の層34)によって合金化ないしは吸収されていないMgからなるMg層(図3(a)中の層32)の存在が確認された。この薄層のMg層(32)の存在が、従来技術では非常にコンタクト抵抗が大きかったm面GaNのコンタクト抵抗を低減できる主要な要因の一つと推測される。
 次に、図15に、電極構造(Mg/Pt)においてPtの深さ方向のプロファイルを、SIMSを用いて得た結果を示す。図15(a)および(b)は、上述のSIMSと同様に、それぞれ、熱処理を行なわない場合(as-depo)、および、熱処理後の結果である。熱処理前におけるMg層厚は7nmであり、Pt層厚は75nmである。図15(a)、(b)のグラフの縦軸は、Pt強度であり、横軸は、深さ方向の距離である。1×10-3のPt強度は1×1019cm-3のPt濃度にほぼ相当する。横軸の数値が「-」の領域は電極側であり、「+」の領域はp型GaN側である。横軸の原点(0μm)は、p型GaN層とMg層との界面の位置にほぼ相当する。電極の構造およびp型GaNのドーピング条件は、図11を参照して説明したサンプルにおけるものと同様である。
 図15(a)に示すように、as-depoの場合は、m面GaNにおいても、c面GaNにおいてもPtのプロファイルに変化は無い。一方、図15(b)に示すように、熱処理後は、c面GaNにおいてPtはGaN側に拡散していることがわかる。しかしながら、m面GaNにおいてはPtプロファイルに変化はほとんど無く、GaN層中にPtが拡散していないことが確認された。より詳述すると、c面GaNの場合、熱処理後においてPtはMg層側に大きく拡散する。一方、m面GaNの場合、熱処理後においてPtはMg層側に僅かに拡散しただけであった(c面GaNの1/10程度)。熱処理温度が600℃であっても630℃でもほとんど差異が無かった。
 このことは、本実施形態の構成(Mg/Pt)においては、GaN層と接触する領域においてはMgとの合金化がAuの場合と比較して顕著には起こっていないことを意味している。
 m面GaN上に厚さ2nmのMg層を形成した後、600℃で10分間の熱処理を行った試料を作製した。この試料の断面について、透過電子顕微鏡(TEM)による観察を行った。図16(a)は、熱処理前におけるMg/Pt電極構造を示す模式図である。図16(b)は、熱処理前におけるMg/Pt電極構造を示す模式図である。いずれの図面も、断面TEMに基づいて作成した。
 Mg層の堆積時の厚さが5nmを超える場合、600℃で10分間の熱処理によってMg層の厚さは減少するが、熱処理の後もMg層は実質的に連続した膜として存在する。しかし、Mg層の堆積時の厚さが2nm程度になると、600℃で10分間の熱処理の後、図16(b)に示すように、MgとPtとの合金形成に消費されなかったMgがアイランド状に存在する場合のあることが確認された。堆積直後のMg層の厚さが2nm程度になると、行なう熱処理の条件によって、最終的に得られるMg層のモフォロジーは多様であり得る。
 なお、本明細書における「Mg層」とは、p型半導体領域の表面に存在する多数のアイランド状(島状)Mgの集まりをも含むものとする。また、この「Mg層」は、複数の開口部が存在する膜(例えばポーラスな膜)から構成されていても良い。このように、Ptに浸食されないMgがp型半導体領域の表面(m面)と接触していれば、コンタクト抵抗低減効果を充分に得ることができる。
 なお、Pt層の代わりに、Mo層またはPd層をMg層上に堆積した場合も、ほぼ同様の結果(コンタクト抵抗低減効果)が得られると考えられる。コンタクト抵抗低減効果を得るという観点から重要な点は、Mg層とGaN系半導体とが接触することと、Mg層上の金属がAuと比較してMgと合金を形成し難い材料から形成されていることにある。
 次に、再び図3(a)を参照しながら、本実施形態の構成をさらに詳述する。
 図3(a)に示すように、本実施形態の発光素子100では、m面GaN基板10と、基板10上に形成されたAluGavInwN層(u+v+w=1, u≧0, v≧0, w≧0)22とが形成されている。この例では、m面GaN基板10は、n型GaN基板(例えば、厚さ、100μm)であり、AluGavInwN層22は、n型GaN層(例えば、厚さ2μm)である。AluGavInwN層22の上には活性層24が形成されている。言い換えると、m面GaN基板10の上には、少なくとも活性層24を含む半導体積層構造20が形成されている。
 半導体積層構造20において、AlxGayInzN層22の上には、AlaInbGacN層(a+b+c=1,a≧0, b≧0, c≧0)を含む活性層24が形成されている。活性層24は、例えば、In組成比が約25%のInGaN井戸層とGaNバリア層で構成され、井戸層の厚さは9nm、バリア層の厚さは9nm、井戸層周期は3周期である。活性層24の上には、第2導電型(p型)のAldGaeN層(d+e=1, d≧0, e≧0)26が形成されている。第2導電型(p型)のAldGaeN層(d+e=1, d≧0, e≧0)26は例えば、Al組成比が10%のAlGaN層で厚さは0.2μmである。本実施形態のAldGaeN層26には、p型のドーパントとして、Mgがドープされている。ここでMgは、AldGaeN層26に対して、例えば、1018cm-3程度ドープされている。またこの例では、活性層24とAldGaeN層26との間に、アンドープのGaN層(不図示)が形成されている。
 さらに、この例においては、AldGaeN層26の上には、第2導電型(例えば、p型)のGaN層(不図示)が形成されている。さらに、p+-GaNからなるコンタクト層上には、Mg層32が形成されており、その上にPt層34が形成されている。このMg層32とPt層34の積層構造が電極(p型電極)30となる。
 なお、半導体積層構造20には、AluGavInwN層22の表面を露出させる凹部(リセス)42が形成されており、凹部42の底面に位置するAluGavInwN層22には、電極(n型電極)40が形成されている。凹部42の大きさは、例えば、幅(または径)20μmであり、深さは1μmである。電極40は、例えば、Ti層とAl層とPt層(例えば、厚さはそれぞれ、5nm、100nm、10nm)の積層構造から成る電極である。
 本実施形態の窒化物系半導体発光素子100によれば、動作電圧(Vop)を、従来のPd/Pt電極を用いたm面LEDの場合よりも約1.5V低減させることができ、その結果、消費電力を低減できることがわかった。
 次に、引き続き図3(a)を参照しながら、本実施形態の窒化物系半導体発光素子100の製造方法を説明する。
 まず、m面基板10を用意する。本実施形態では、基板10として、GaN基板を用いる。本実施形態のGaN基板は、HVPE(Hydride Vapor Phase Epitaxy)法を用いて得られる。
 例えば、まずc面サファイア基板上に数mmオーダの厚膜GaNを成長する。その後、厚膜GaNをc面に垂直方向、m面で切り出すことによりm面GaN基板が得られる。GaN基板の作製方法は、上記に限らず、例えばナトリウムフラックス法などの液相成長やアモノサーマル法などの融液成長方法を用いてバルクGaNのインゴットを作製し、それをm面で切り出す方法でも良い。
 基板10としては、GaN基板の他、例えば、酸化ガリウム、SiC基板、Si基板、サファイア基板などを用いることができる。基板上にm面から成るGaN系半導体をエピタキシャル成長するためには、SiCやサファイア基板の面方位もm面である方が良い。ただし、r面サファイア基板上にはa面GaNが成長するという事例もあることから、成長条件によっては必ずしも成長用表面がm面であることが必須とならない場合もあり得る。少なくとも半導体積層構造20の表面がm面であれば良い。本実施形態では、基板10の上に、MOCVD(Metal Organic Chemical Vapor Deposition)法により結晶層を順次形成していく。
 次に、m面GaN基板10の上に、AluGavInwN層22を形成する。AluGavInwN層22として、例えば、厚さ3μmのAlGaNを形成する。GaNを形成する場合には、m面GaN基板10の上に、1100℃でTMG(Ga(CH33)、TMA(Al(CH33)およびNH3を供給することによってGaN層を堆積する。
 次に、AluGavInwN層22の上に、活性層24を形成する。この例では、活性層24は、厚さ9nmのGa0.9In0.1N井戸層と、厚さ9nmのGaNバリア層が交互に積層された厚さ81nmのGaInN/GaN多重量子井戸(MQW)構造を有している。Ga0.9In0.1N井戸層を形成する際には、Inの取り込みを行なうために、成長温度を800℃に下げることが好ましい。
 次に、活性層24の上に、例えば厚さ30nmのアンドープGaN層を堆積する。次いで、アンドープGaN層の上に、AldGaeN層26を形成する。AldGaeN層26として、例えば、TMG、NH3、TMA、TMIおよびp型不純物としてCp2Mg(シクロペンタジエニルマグネシウム)を供給することにより、厚さ70nmのp-Al0.14Ga0.86Nを形成する。
 次に、AldGaeN層26の上に、例えば厚さ0.5μmのp-GaNコンタクト層を堆積する。p-GaNコンタクト層を形成する際には、p型不純物としてCp2Mgを供給する。
 その後、塩素系ドライエッチングを行なうことにより、p-GaNコンタクト層、AldGaeN層26、アンドープGaN層および活性層24の一部を除去して凹部42を形成し、AlxGayInzN層22のn型電極形成領域を露出させる。次いで、凹部42の底部に位置するn型電極形成領域の上に、n型電極40として、Ti/Pt層を形成する。
 さらに、p-GaNコンタクト層の上には、Mg層32を形成し、さらにMg層32上にPt層34を形成する。これにより、p型電極40を形成する。本実施形態では、Mg層32の形成に原料金属をパルス的に蒸発させながら蒸着を行なう手法(パルス蒸着法)を用いている。より具体的には、真空中(例えば、5×10-6Torr)に保持したるつぼ中のMg金属に、パルス的に電子ビームを照射し、パルス的に原料金属を蒸発させる。その原料金属分子または原子がp-GaNコンタクト層に付着し、Mg層32が形成される。パルスは例えばパルス幅0.5秒、繰り返し1Hzである。パルス幅は0.005秒以上5秒以下、パルス周波数は0.1Hz以上100Hz以下であることが好ましい。このような手法により、Mg層32として緻密で良好な品質の膜が形成された。Mg層が緻密になる理由は、パルス的な蒸着を行なうことにより、p-GaNコンタクト層に衝突するMg原子またはMg原子クラスタの運動エネルギーが増加するためであると考えられる。すなわち、電子ビームの照射によって、原料Mgの一部が瞬間的に高エネルギーを持ったMg原子となって気化あるいは蒸発する。そして、Mg原子はp-GaNコンタクト層へ到達する。p-GaNコンタクト層へ到達したMg原子はマイグレーションを起こし、原子レベルで緻密で均質なMg薄膜を形成する。1パルスの電子ビームによって、1~20原子層程度のMg薄膜が形成される。パルス状の電子ビームを繰り返し照射することによってMg薄膜がp-GaNコンタクト層に積層され、所望の厚さのMg層32が形成される。電子ビームは、Mg原子が吸着後にマイグレーションを起こすのに必要な運動エネルギーをMg原子に供給することができるよう、高いピーク強度を有していることが好ましい。また、電子ビームの1パルスあたり、20原子層(およそ5nm)以下の厚さでMg薄膜が形成されるように電子銃の駆動パワーを決定することが好ましい。電子ビームの1パルスあたりに形成されるMg薄膜が20原子層よりも厚くなると、緻密で均質なMg薄膜が得られにくくなる。より好ましい堆積速度は、電子ビームの1パルスあたり、5原子層以下である。これはMg原子が多すぎると、Mg原子がマイグレーション中にぶつかり合い、それによりMg原子が持つ運動エネルギーが失われてしまうからである。
 一般にMgは水や空気との接触により酸化されやすい元素である。通常の蒸着方法によって支持基板上に形成したMg薄膜を大気中に置いた場合、速やかに酸化される。この結果、Mg薄膜は次第に金属光沢を失い、最終的にはボロボロとなって支持体から剥がれ落ちる。これに対し、本実施形態の形成方法(パルス蒸着)によって作成されたMg層32は、原子レベルで緻密で均質であり、エピタキシャル成長させたように非常に原子配列の整った構造を有している。そして、酸化の原因と考えられるピンホールは殆ど存在せず、酸化されにくい。大気中に数ヶ月放置してもきれいな鏡面を保持することができる。
 また、一般にMgはその融点を超えると一気に気化してしまう性質を有する。このため、Mg薄膜の堆積速度を調整することによって、形成するMg薄膜の厚さをナノメートルオーダーで正確に制御することが非常に困難である。これに対し、本実施形態の形成方法によって作成されたMg層32は、パルス状電子ビームの照射時間等を適宜設定することで、その厚さをナノメートルオーダーで正確に制御できる。
 なお、本実施形態の形成方法は、Si基板やガラス基板上にMg薄膜を形成する場合にも有効である。よって、本実施形態の形成方法はGaNに限らず、様々な種類の物質上にMg薄膜を形成できる。そして、本実施形態の形成方法は、特に半導体分野における電極の形成に好適に用いることができる。また、本実施形態の形成方法は、Mg蒸着時にMg薄膜が形成される基板や支持体を加熱する必要がない。このため、加熱ができない、あるいは、加熱しにくい形状の基板や支持体の上であっても、室温程度で緻密で均質なMg薄膜の形成が可能である。
 また、本実施形態の形成方法によって作成されたMg層32は、600℃以上の温度で熱処理を行っても安定である。
 なお、本実施形態では、原料金属(Mg金属)をパルス的に蒸発させながら蒸着を行なう手法を採用しているが、Mg層32を形成できるのであれば、他の手法を採用することも可能である。緻密で良質なMg層を形成する他の手法としては、例えば熱CVD法や分子線エピタキシ(MBE)などを採用することが可能である。
 なお、その後、レーザリフトオフ、エッチング、研磨などの方法を用いて、基板10、AluGavInwN層22の一部までを除去してもよい。この場合、基板10のみを除去してもよいし、基板10およびAluGavInwN層22の一部だけを選択的に除去してもよい。もちろん、基板10、AluGavInwN層22を除去せずに残してもよい。以上の工程により、本実施形態の窒化物系半導体発光素子100が形成される。
 本実施形態の窒化物系半導体発光素子100において、n型電極40とp型電極30との間に電圧を印加すると、p型電極30から活性層24に向かって正孔が、n型電極40から活性層24に向かって電子が注入され、例えば450nm波長の発光が生じる。
 ここで、図17(a)に、m面GaN上にMg/Pt層からなる電極を用いた発光ダイオードの電流-電圧特性を示す。比較のため、発光ダイオードの窒化物系半導体の構造は同じで、Pd/Pt層からなる電極を用いた発光ダイオードの特性、及びc面GaN上にMg/Pt層からなる電極を用いた発光ダイオードの特性を示す。これら3種類の発光ダイオードにおける電極の構成および熱処理条件は、以下の表4に示す通りである。
Figure JPOXMLDOC01-appb-T000004
 この発光ダイオードの構成は、m面またはc面GaN基板上に、n型GaN層、InGaN井戸層(3層)とGaNバリア層(2層)とが交互に積層された活性層、p型GaN層が積層されたものである。さらにp型GaN層上にはp型電極として、Mg/Pt電極またはPd/Pt電極を設けている。n型電極は、p型GaN層、活性層をエッチングし、n型GaN層を露出させ、n型GaN層上に形成している。
 図17(a)から明らかなように、電流が0ボルトから増加しても、電流値がほぼゼロの状態が続くが、印加電圧があるレベル(立ち上がり電圧)を超えると、電流値は電圧の増加に伴って増加する。立ち上がり電圧は、Pd/Pt層からなる電極(m面GaN上)の場合、約3.1Vである。これに対し、Mg/Pt層からなる電極(m面GaN上)の場合の立ち上がり電圧は、約2.5Vとなり、低減が見られる。縦軸の電流値が20mAとなる動作電圧は、Mg/Pt層からなる電極ではPd/Pt層からなる電極と比較し、1.5V以上低減していることが確認される。
 次に、m面GaN上Mg/Pt層からなる電極を用いた発光ダイオード(m面発光ダイオード)とc面GaN上Mg/Pt層からなる電極を用いた発光ダイオード(c面発光ダイオード)との比較を行う。m面発光ダイオードにおいては、立ち上がり電圧がc面発光ダイオードと比較し低く、コンタクト抵抗の低減効果が確認される。例えば、m面発光ダイオードにおいては駆動電圧3.2Vにおいて電流値は20mAが得られる。一方、c面発光ダイオードにおいては同じ駆動電圧では4.8mAの電流値となる。発光ダイオードの光出力は電流値に依存することから、駆動電圧3.2Vにおいてm面発光ダイオードにおいては、c面発光ダイオードの4倍近くの光出力が得られることが分かる。
 また、電流値-電圧特性を示す曲線の傾きは、Pd/Pt電極を有する素子に比べ、Mg/Pt電極を有する素子の方が急である。発光ダイオードは、内部にp-n接合を有するダイオードであり、p-n接合ダイオードの電流-電圧特性を示す曲線は、一般に以下の式で近似される。
 I=I0exp(V/n・KT)
 ここで、Iはp-n接合ダイオードを流れる電流値、I0は電流定数、Vは印加電圧、Kはボルツマン定数、Tは温度、nはダイオードの理想度合いを示すn値である。実験は室温で行ったため、KT=0.025(V)である。
 p-n接合ダイオードのn値は、電流-電圧特性を示す曲線の傾きから決定される。理想的なp-n接合ダイオードの場合、n=1であるが、現実のp-n接合ダイオードでは、n値は1から異なっている。n値は1に近いほど好ましい。本実験によれば、Mg/Pt電極を有する素子の場合、n=1.4となり、Pd/Pt電極を有する素子の場合、n=2.2であった。このことからわかるように、Mg/Pt電極を用いることにより、優れたダイオード特性を実現できる。
 図17(b)に示すように、この発光ダイオードのコンタクト抵抗の値は、Mg/Pt層からなる電極では3.8×10-4Ωcm2の値が得られた。このような10のマイナス4乗台のコンタクト抵抗の値は、p型のm面GaNにおいては、はじめての例であり、これは驚異的な結果である。これによって消費電力を低減できることがわかった。加えて、m面GaN素子において、極めて大きな技術的意義を提供できることが見出された。なお、Pd/Pt層からなる電極では、約1×10-2Ωcm2の値であった。
 次に、図18を参照しながら、Au層、および、Mg/Au層からなる電極を用いた例(比較例)について説明する。図18(a)は、m面のGaN層の上に、Au層、または、Mg/Au層の電極を形成し、その固有コンタクト抵抗(Ω・cm2)を測定した結果を示している。なお、この固有コンタクト抵抗は、電極を形成して熱処理を行った後の固有コンタクト抵抗の値である。
 図18(a)の結果からわかるように、Au層の電極に比べ、Mg/Au層の電極を用いた場合の方が固有コンタクト抵抗の特性は悪化する。この点、本実施形態の電極(例えば、Mg/Pt層)の構成における特性向上の結果と顕著に相違する。なお、上述したように、Mgは水や空気との接触により酸化されやすい元素であるので、Mg層の単独での電極では無くAu層の積層体(Mg/Au層)として使用される構成は検討候補の一つに成り得る。しかしながら、実際には、Au層と比較してMg/Au層のコンタクト抵抗は増加するがゆえに、コンタクト特性は悪い。換言すると、本実施形態の構成(例えば、Mg/Pt層)のコンタクト抵抗の特性が優れていることは、Mg層にAu層を積層した場合の結果が悪かったことを鑑みると、当業者にとって予見できない効果を有していたと思われる。
 また、図18(b)は、熱処理後のMg/Au層の電極の表面を示す図面代用写真であり、一方、図18(c)は、熱処理後のAu層の電極の表面を示す図面代用写真である。両者を比べると、Mg/Au層の電極の方の膜質が悪いことがわかった。
 次に、図19を参照する。図19は、Conicalチップによる硬度マッピング(5mN、1μm conical)を表している。図19(a)はc面GaN基板(C-GaN)の結果を示し、そして、図19(b)はm面GaN基板(M-GaN)の結果を示している。両者を比較すると、m面GaN基板の方が、硬度が低いことがわかった。なお、このようなm面GaN基板とc面GaN基板との物性の違いが、本実施形態の電極構成(例えば、Mg層/Pt層)の特性に影響を与えている可能性もあり得る。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項では無く、勿論、種々の改変が可能である。
 なお、本発明の実施形態と本質的に構成を異にするものであるが、関連する構造が特許文献3、4に開示されている。しかしながら、特許文献3および4には、窒化ガリウム系半導体層の結晶面がm面であることの記載は一切無く、したがって、これらの文献の開示はc面の窒化ガリウム系半導体層の上に電極を形成した技術に関するものである。特に、特許文献3は、Mg層の上にAu層を積層した構成に関するものであり、その積層構造の電極を仮にm面上に形成したとしても、本実施形態の電極の効果が得られるものでは無い。また、特許文献4は、Ni、Cr、Mgからなる金属層に言及しているが、開示されている実施例はNi層を下層にした電極構造を有しているもののみである。特許文献3、4とも、c面の窒化ガリウム系半導体層の上に形成された電極構造に関するものであり、m面の窒化ガリウム系半導体層に対するコンタクト抵抗に関する問題も解決策も教示されていない。
 本発明に係る上記の発光素子は、そのまま光源として使用されても良い。しかし、本発明に係る発光素子は、波長変換のための蛍光物質を備える樹脂などと組み合わせれば、波長帯域の拡大した光源(例えば白色光源)として好適に使用され得る。
 図20は、このような白色光源の一例を示す模式図である。図20の光源は、図3(a)に示す構成を有する発光素子100と、この発光素子100から放射された光の波長を、より長い波長に変換する蛍光体(例えばYAG:Yttrium Alumninum Garnet)が分散された樹脂層200とを備えている。発光素子100は、表面に配線パターンが形成された支持部材220上に搭載されており、支持部材220上には発光素子100を取り囲むように反射部材240が配置されている。樹脂層200は、発光素子100を覆うように形成されている。
 なお、Mg層32と接触するp型半導体領域がGaN、もしくはAlGaNから構成される場合について説明したが、Inを含む層、例えばInGaNであってもよい。この場合、Inの組成を例えば0.2とした「In0.2Ga0.8N」を、電極30と接するコンタクト層に用いることができる。GaNにInを含ませることにより、AlaGabN(a+b=1,a≧0, b>0)のバンドギャップをGaNのバンドギャップよりも小さくできるため、コンタクト抵抗を低減することができる。以上のことから、Mg層が接するp型半導体領域は、AlxInyGazN(x+y+z=1,x≧0, y≧0, z≧0)半導体から形成されていればよい。
 コンタクト抵抗低減の効果は、当然に、LED以外の発光素子(半導体レーザ)や、発光素子以外のデバイス(例えばトランジスタや受光素子)においても得ることが可能である。
 現実のm面は、m面に対して完全に平行な面である必要は無く、m面から僅かな角度(0~±1°)だけ傾斜していても良い。
 本発明によれば、m面基板上で結晶成長させたGaN系半導体素子、または、m面を表面とするGaN系半導体積層構造体において、そのコンタクト抵抗を低減することができる。したがって、従来、コンタクト抵抗の特性の悪さから積極的な利用が困難であった、m面基板上で結晶成長させたGaN系半導体素子(または、m面を表面とするGaN系半導体積層構造体)の産業上の利用可能性が向上する。
 10  基板(GaN系基板)
 12  基板の表面(m面)
 20  半導体積層構造
 22  AluGavInwN層
 24  活性層
 26  AldGaeN層
 30  p型電極
 32  Mg層
 34  金属層(Pt層)
 40  n型電極
 42  凹部
 100  窒化物系半導体発光素子
 200  樹脂層
 220  支持部材
 240  反射部材

Claims (30)

  1.  表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、
     前記p型半導体領域上に設けられた電極と
    を備え、
     前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0, y≧0, z≧0)半導体から形成され、
     前記電極は、前記p型半導体領域の前記表面に接触したMg層を含む、窒化物系半導体素子。
  2.  前記電極は、前記Mg層と、前記Mg層の上に形成された金属層とを含み、
     前記金属層は、Pt、MoおよびPdからなる群から選択される少なくとも1種の金属から形成されている、請求項1に記載の窒化物系半導体素子。
  3.  前記Mg層と前記金属層との間には、Pt、MoおよびPdからなる群から選択される少なくとも1種類の金属とMgとを含む合金層が存在する、請求項2に記載の窒化物系半導体素子。
  4.  前記電極は、前記Mg層と、前記Mg層の上に形成された合金層とを含み、
     前記合金層は、Pt、MoおよびPdからなる群から選択される少なくとも1種の金属とMgとを含む合金からなる、請求項1に記載の窒化物系半導体素子。
  5.  前記Mg層は、前記p型半導体領域の前記表面上に存在する膜から構成されている、請求項3または4に記載の窒化物系半導体素子。
  6.  前記Mg層は、前記p型半導体領域の前記表面上にアイランド状に存在する複数のMgから構成されている、請求項3または4に記載の窒化物系半導体素子。
  7.  前記半導体積層構造は、
     AlaInbGacN層(a+b+c=1,a≧0, b≧0, c≧0)を含む活性層を有し、前記活性層は光を発する、請求項1に記載の窒化物系半導体素子。
  8.  前記Mg層の厚さは2nm以上45nm以下である、請求項1から7の何れか一つに記載の窒化物系半導体素子。
  9.  前記Mg層の厚さは2nm以上15nm以下である、請求項8に記載の窒化物系半導体素子。
  10.  前記Mg層の厚さは前記金属層の厚さ以下である、請求項2に記載の窒化物系半導体素子。
  11.  前記Mg層中のGa濃度は前記Mg層中の窒素濃度よりも高い、請求項1に記載の窒化物系半導体素子。
  12.  前記Ga濃度は前記窒素濃度の10倍以上である、請求項11に記載の窒化物系半導体素子。
  13.  前記半導体積層構造を支持する半導体基板を有している、請求項1に記載の窒化物系半導体素子。
  14.  前記p型半導体領域は、GaNである請求項1に記載の窒化物系半導体素子。
  15.  窒化物系半導体発光素子と、
     前記窒化物系半導体発光素子から放射された光の波長を変換する蛍光物質を含む波長変換部とを備える光源であって、
     前記窒化物系半導体発光素子は、
     表面がm面であるp型半導体領域を有する窒化物系半導体積層構造と、
     前記p型半導体領域上に設けられた電極とを備え、
     前記p型半導体領域は、AlxInyGazN(x+y+z=1,x≧0, y≧0, z≧0)半導体からなり、
     前記電極は、前記p型半導体領域の前記表面に接触したMg層を含む、光源。
  16.  前記p型半導体領域は、GaNである請求項15に記載の窒化物系半導体素子。
  17.  基板を用意する工程(a)と、
     表面がm面であり、AlxInyGazN(x+y+z=1,x≧0, y≧0, z≧0)半導体からなるp型半導体領域を有する窒化物系半導体積層構造を前記基板上に形成する工程(b)と、
     前記半導体積層構造の前記p型半導体領域の前記表面上に電極を形成する工程(c)とを含み、
     前記工程(c)は、
     前記p型半導体領域の前記表面上に、Mg層を形成する工程を含む、窒化物系半導体素子の製造方法。
  18.  前記工程(c)は、
     前記Mg層を形成した後に、Pt、MoおよびPdからなる群から選択される少なくとも1種の金属からなる金属層を形成する工程を含む、請求項17に記載の窒化物系半導体素子の製造方法。
  19.  前記工程(c)において、
     前記金属層を形成した後に、前記Mg層を加熱処理する工程を実行する、請求項18に記載の窒化物系半導体素子の製造方法。
  20.  前記加熱処理は、500℃以上700℃以下の温度で実行される、請求項19に記載の窒化物系半導体素子の製造方法。
  21.  前記加熱処理は、550℃以上650℃以下の温度で実行される、請求項20に記載の窒化物系半導体素子の製造方法。
  22.  前記Mg層を形成する工程は、パルス的に電子ビームを照射することによってMgを前記p型半導体領域の前記表面の上に蒸着させることを実行する、請求項17から21の何れか一つに記載の窒化物系半導体素子の製造方法。
  23.  前記加熱処理後における前記Mg層の厚さを2nm以上45nm以下にする、請求項19に記載の窒化物系半導体素子の製造方法。
  24.  前記工程(b)において、AlxInyGazN(x+y+z=1,x≧0, y≧0, z≧0)半導体の層を形成する工程を実行する、請求項17に記載の窒化物系半導体素子の製造方法。
  25.  前記工程(b)を実行した後において、前記基板を除去する工程を含む、請求項17から24の何れか一つに記載の窒化物系半導体素子の製造方法。
  26.  前記Mg層中のGa濃度は前記Mg層中の窒素濃度よりも高い、請求項17に記載の窒化物系半導体素子の製造方法。
  27.  前記Ga濃度は前記窒素濃度の10倍以上である、請求項17に記載の窒化物系半導体素子の製造方法。
  28.  前記p型半導体領域は、GaNである請求項17に記載の窒化物系半導体素子。
  29.  Mgにパルス状の電子ビームを照射することによって前記Mgを蒸発させ、Mg薄膜を形成する半導体デバイスの電極用Mg薄膜の形成方法。
  30.  前記Mg薄膜が形成される支持体を加熱せずに前記Mg薄膜を形成する請求項29に記載の半導体デバイスの電極用Mg薄膜の形成方法。
PCT/JP2009/002532 2008-11-06 2009-06-04 窒化物系半導体素子およびその製造方法 WO2010052810A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US12/679,347 US20110156048A1 (en) 2008-11-06 2009-06-04 Nitride-based semiconductor device and method for fabricating the same
JP2009536554A JP4486701B1 (ja) 2008-11-06 2009-06-04 窒化物系半導体素子およびその製造方法
KR1020107012782A KR101139142B1 (ko) 2008-11-06 2009-06-04 질화물계 반도체 소자 및 그 제조 방법
EP09815447.9A EP2226853B1 (en) 2008-11-06 2009-06-04 Nitride semiconductor element and method for manufacturing the same
CN2009801017261A CN101971364B (zh) 2008-11-06 2009-06-04 氮化物类半导体元件及其制造方法
US13/191,026 US8110851B2 (en) 2008-11-06 2011-07-26 Nitride-based semiconductor device and method for fabricating the same
US13/708,136 US8686561B2 (en) 2008-11-06 2012-12-07 Nitride-based semiconductor device and method for fabricating the same
US13/708,097 US8648378B2 (en) 2008-11-06 2012-12-07 Nitride-based semiconductor device and method for fabricating the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008285155 2008-11-06
JP2008-285155 2008-11-06
JP2009-030147 2009-02-12
JP2009030147 2009-02-12
JP2009097684 2009-04-14
JP2009-097684 2009-04-14

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US12/679,347 A-371-Of-International US20110156048A1 (en) 2008-11-06 2009-06-04 Nitride-based semiconductor device and method for fabricating the same
US13/191,026 Division US8110851B2 (en) 2008-11-06 2011-07-26 Nitride-based semiconductor device and method for fabricating the same
US13/708,097 Continuation US8648378B2 (en) 2008-11-06 2012-12-07 Nitride-based semiconductor device and method for fabricating the same
US13/708,136 Continuation US8686561B2 (en) 2008-11-06 2012-12-07 Nitride-based semiconductor device and method for fabricating the same

Publications (1)

Publication Number Publication Date
WO2010052810A1 true WO2010052810A1 (ja) 2010-05-14

Family

ID=42152624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002532 WO2010052810A1 (ja) 2008-11-06 2009-06-04 窒化物系半導体素子およびその製造方法

Country Status (6)

Country Link
US (4) US20110156048A1 (ja)
EP (1) EP2226853B1 (ja)
JP (2) JP4486701B1 (ja)
KR (1) KR101139142B1 (ja)
CN (1) CN101971364B (ja)
WO (1) WO2010052810A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125301A1 (ja) 2010-04-02 2011-10-13 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2011125289A1 (ja) 2010-04-01 2011-10-13 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2012098850A1 (ja) * 2011-01-21 2012-07-26 パナソニック株式会社 窒化ガリウム系化合物半導体発光素子および当該発光素子を備える光源
WO2012140844A1 (ja) * 2011-04-12 2012-10-18 パナソニック株式会社 窒化ガリウム系化合物半導体発光素子およびその製造方法
JP2012231087A (ja) * 2011-04-27 2012-11-22 Mitsubishi Chemicals Corp 窒化物系ledの製造方法
US20130270574A1 (en) * 2011-04-08 2013-10-17 Panasonic Corporation Nitride-based semiconductor element and method for fabricating the same
US8647907B2 (en) 2010-04-28 2014-02-11 Panasonic Corporation Nitride-based semiconductor device and method for fabricating the same
US8823026B2 (en) 2011-05-18 2014-09-02 Panasonic Corporation Nitride semiconductor light-emitting element and manufacturing method therefor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101220042B1 (ko) 2006-02-20 2013-01-18 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조 방법
JP4486701B1 (ja) 2008-11-06 2010-06-23 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP4558846B1 (ja) 2009-03-11 2010-10-06 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2010116703A1 (ja) * 2009-04-06 2010-10-14 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP4843122B2 (ja) * 2009-12-25 2011-12-21 パナソニック株式会社 窒化物系半導体素子およびその製造方法
CN102687292B (zh) 2010-04-01 2014-09-24 松下电器产业株式会社 氮化物系半导体元件及其制造方法
JP5547279B2 (ja) * 2010-04-28 2014-07-09 パナソニック株式会社 窒化物系半導体素子およびその製造方法
CN103229557B (zh) 2010-12-01 2016-03-16 日本电气株式会社 中继基站、移动终端
WO2013054916A1 (ja) * 2011-10-13 2013-04-18 株式会社タムラ製作所 結晶積層構造体及びその製造方法、並びに半導体素子
JP6275817B2 (ja) * 2013-03-15 2018-02-07 クリスタル アイエス, インコーポレーテッドCrystal Is, Inc. 仮像電子及び光学電子装置に対する平面コンタクト
KR102111140B1 (ko) * 2013-08-30 2020-05-14 서울바이오시스 주식회사 발광 다이오드 및 그것을 제조하는 방법
KR101439064B1 (ko) 2013-12-02 2014-09-05 단국대학교 산학협력단 이종 접합 구조를 가지는 발광 다이오드 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711430A (ja) * 1993-06-29 1995-01-13 Mitsubishi Electric Corp 電子ビーム蒸着装置と電子ビームを用いた溶接装置及び自由電子レーザ装置
JPH0864871A (ja) * 1994-08-22 1996-03-08 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体素子
JPH1084159A (ja) * 1996-09-06 1998-03-31 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
JP2000174333A (ja) * 1998-12-02 2000-06-23 Toshiba Corp 窒化ガリウム系化合物半導体発光素子及び製造方法
JP2008235804A (ja) * 2007-03-23 2008-10-02 Rohm Co Ltd 発光素子

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711429A (ja) 1993-06-23 1995-01-13 Toshiba Corp 金属蒸気発生方法および装置
US5708301A (en) * 1994-02-28 1998-01-13 Sumitomo Chemical Company, Limited Electrode material and electrode for III-V group compound semiconductor
US6900465B2 (en) * 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
US6072197A (en) * 1996-02-23 2000-06-06 Fujitsu Limited Semiconductor light emitting device with an active layer made of semiconductor having uniaxial anisotropy
JPH10341039A (ja) 1997-04-10 1998-12-22 Toshiba Corp 半導体発光素子およびその製造方法
JP4013288B2 (ja) 1997-06-25 2007-11-28 住友化学株式会社 3−5族化合物半導体用電極の製造方法と3−5族化合物半導体素子
JP3299145B2 (ja) 1997-07-15 2002-07-08 日本電気株式会社 窒化ガリウム系半導体のp型電極およびその形成方法
JPH11233890A (ja) 1998-02-12 1999-08-27 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体素子
JP4183299B2 (ja) * 1998-03-25 2008-11-19 株式会社東芝 窒化ガリウム系化合物半導体発光素子
JP3494880B2 (ja) * 1998-03-26 2004-02-09 株式会社東芝 窒化物系半導体発光素子のp側電極及び窒化物系半導体発光素子
JP2000049114A (ja) * 1998-07-30 2000-02-18 Sony Corp 電極およびその形成方法ならびに半導体装置およびその製造方法
JP3525061B2 (ja) 1998-09-25 2004-05-10 株式会社東芝 半導体発光素子の製造方法
JP4627850B2 (ja) 1999-09-09 2011-02-09 シャープ株式会社 Iii族窒化物半導体の電極形成方法
JP2001160656A (ja) 1999-12-01 2001-06-12 Sharp Corp 窒化物系化合物半導体装置
JP3929008B2 (ja) 2000-01-14 2007-06-13 シャープ株式会社 窒化物系化合物半導体発光素子およびその製造方法
JP2001308462A (ja) 2000-04-21 2001-11-02 Matsushita Electric Ind Co Ltd 窒化物半導体素子の製造方法
JP2002170989A (ja) 2000-12-04 2002-06-14 Sharp Corp 窒化物系化合物半導体発光素子
JP3453558B2 (ja) 2000-12-25 2003-10-06 松下電器産業株式会社 窒化物半導体素子
US6649942B2 (en) * 2001-05-23 2003-11-18 Sanyo Electric Co., Ltd. Nitride-based semiconductor light-emitting device
EP1393352B1 (en) * 2001-05-28 2012-08-01 Showa Denko K.K. Semiconductor device, semiconductor layer and production method thereof
JP2003332697A (ja) 2002-05-09 2003-11-21 Sony Corp 窒化物半導体素子及びその製造方法
JP2004335559A (ja) * 2003-04-30 2004-11-25 Nichia Chem Ind Ltd Iii族窒化物基板を用いる半導体素子
US8350384B2 (en) * 2009-11-24 2013-01-08 Stats Chippac, Ltd. Semiconductor device and method of forming electrical interconnect with stress relief void
KR100590532B1 (ko) * 2003-12-22 2006-06-15 삼성전자주식회사 플립칩형 질화물계 발광소자 및 그 제조방법
KR100506741B1 (ko) * 2003-12-24 2005-08-08 삼성전기주식회사 플립칩용 질화물 반도체 발광소자 및 그 제조방법
KR100586943B1 (ko) * 2003-12-26 2006-06-07 삼성전기주식회사 질화갈륨계 반도체 발광소자의 제조방법
JP4439955B2 (ja) 2004-03-15 2010-03-24 パナソニック株式会社 半導体装置及び半導体レーザ装置の製造方法
JP2005290510A (ja) * 2004-04-02 2005-10-20 Sodick Co Ltd 電子ビーム蒸着方法及びその装置
KR100773538B1 (ko) * 2004-10-07 2007-11-07 삼성전자주식회사 반사 전극 및 이를 구비하는 화합물 반도체 발광소자
TW200711171A (en) 2005-04-05 2007-03-16 Toshiba Kk Gallium nitride based semiconductor device and method of manufacturing same
DE102005061828B4 (de) * 2005-06-23 2017-05-24 Osram Opto Semiconductors Gmbh Wellenlängenkonvertierendes Konvertermaterial, lichtabstrahlendes optisches Bauelement und Verfahren zu dessen Herstellung
US7329907B2 (en) * 2005-08-12 2008-02-12 Avago Technologies, Ecbu Ip Pte Ltd Phosphor-converted LED devices having improved light distribution uniformity
JP2007116076A (ja) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd 半導体素子
JP4137936B2 (ja) * 2005-11-16 2008-08-20 昭和電工株式会社 窒化ガリウム系化合物半導体発光素子
KR100742988B1 (ko) 2005-11-25 2007-07-26 (주)더리즈 p형 질화갈륨계 디바이스 제조방법
EP1999797A4 (en) * 2006-02-09 2010-11-24 Qd Vision Inc DEVICE COMPRISING SEMICONDUCTOR NANOCRYSTALS AND A LAYER COMPRISING A DOPE ORGANIC MATERIAL AND METHODS THEREOF
US7755172B2 (en) 2006-06-21 2010-07-13 The Regents Of The University Of California Opto-electronic and electronic devices using N-face or M-plane GaN substrate prepared with ammonothermal growth
JP2007329418A (ja) * 2006-06-09 2007-12-20 Rohm Co Ltd 窒化物半導体発光素子
JP4984119B2 (ja) * 2006-08-28 2012-07-25 スタンレー電気株式会社 窒化物半導体結晶ないしそれを用いた発光素子及びその製造方法
JP2008109066A (ja) 2006-09-29 2008-05-08 Rohm Co Ltd 発光素子
WO2008073384A1 (en) * 2006-12-11 2008-06-19 The Regents Of University Of California Non-polar and semi-polar light emitting devices
TWI533351B (zh) 2006-12-11 2016-05-11 美國加利福尼亞大學董事會 高效能非極性第三族氮化物光學裝置之金屬有機化學氣相沈積生長
JP2008153285A (ja) 2006-12-14 2008-07-03 Rohm Co Ltd 窒化物半導体装置および窒化物半導体製造方法
US7547908B2 (en) 2006-12-22 2009-06-16 Philips Lumilieds Lighting Co, Llc III-nitride light emitting devices grown on templates to reduce strain
CN101601093A (zh) * 2007-03-15 2009-12-09 富士通株式会社 支架组件的装配方法及支架组件的装配装置
JP2008258503A (ja) * 2007-04-06 2008-10-23 Sumitomo Electric Ind Ltd 窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法
KR100835116B1 (ko) 2007-04-16 2008-06-05 삼성전기주식회사 질화물 반도체 발광 소자
JP4924185B2 (ja) 2007-04-27 2012-04-25 住友電気工業株式会社 窒化物半導体発光素子
JP2009043613A (ja) 2007-08-09 2009-02-26 Toyota Motor Corp パルス電子ビーム発生装置およびパルス電子ビーム成膜装置
US7652301B2 (en) 2007-08-16 2010-01-26 Philips Lumileds Lighting Company, Llc Optical element coupled to low profile side emitting LED
KR100889956B1 (ko) 2007-09-27 2009-03-20 서울옵토디바이스주식회사 교류용 발광다이오드
US20100308357A1 (en) 2007-10-29 2010-12-09 Mitsubishi Chemical Corporation Semiconductor light emitting element and method for manufacturing the same
US7781780B2 (en) 2008-03-31 2010-08-24 Bridgelux, Inc. Light emitting diodes with smooth surface for reflective electrode
JP4510931B2 (ja) 2008-09-09 2010-07-28 パナソニック株式会社 窒化物系半導体発光素子およびその製造方法
JP2012507874A (ja) 2008-10-31 2012-03-29 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 無極性または半極性AlInNおよびAlInGaN合金に基づく光電子デバイス
US20100109025A1 (en) 2008-11-05 2010-05-06 Koninklijke Philips Electronics N.V. Over the mold phosphor lens for an led
JP4486701B1 (ja) 2008-11-06 2010-06-23 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP4558846B1 (ja) * 2009-03-11 2010-10-06 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2010113238A1 (ja) 2009-04-03 2010-10-07 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2010116703A1 (ja) 2009-04-06 2010-10-14 パナソニック株式会社 窒化物系半導体素子およびその製造方法
US8124986B2 (en) 2010-01-18 2012-02-28 Panasonic Corporation Nitride-based semiconductor device and method for fabricating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711430A (ja) * 1993-06-29 1995-01-13 Mitsubishi Electric Corp 電子ビーム蒸着装置と電子ビームを用いた溶接装置及び自由電子レーザ装置
JPH0864871A (ja) * 1994-08-22 1996-03-08 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体素子
JPH1084159A (ja) * 1996-09-06 1998-03-31 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
JP2000174333A (ja) * 1998-12-02 2000-06-23 Toshiba Corp 窒化ガリウム系化合物半導体発光素子及び製造方法
JP2008235804A (ja) * 2007-03-23 2008-10-02 Rohm Co Ltd 発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2226853A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125289A1 (ja) 2010-04-01 2011-10-13 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2011125301A1 (ja) 2010-04-02 2011-10-13 パナソニック株式会社 窒化物系半導体素子およびその製造方法
US8647907B2 (en) 2010-04-28 2014-02-11 Panasonic Corporation Nitride-based semiconductor device and method for fabricating the same
WO2012098850A1 (ja) * 2011-01-21 2012-07-26 パナソニック株式会社 窒化ガリウム系化合物半導体発光素子および当該発光素子を備える光源
JP5113305B2 (ja) * 2011-01-21 2013-01-09 パナソニック株式会社 窒化ガリウム系化合物半導体発光素子および当該発光素子を備える光源
US8994031B2 (en) 2011-01-21 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Gallium nitride compound semiconductor light emitting element and light source provided with said light emitting element
US20130270574A1 (en) * 2011-04-08 2013-10-17 Panasonic Corporation Nitride-based semiconductor element and method for fabricating the same
US8890175B2 (en) 2011-04-08 2014-11-18 Panasonic Corporation Nitride-based semiconductor element and method for fabricating the same
WO2012140844A1 (ja) * 2011-04-12 2012-10-18 パナソニック株式会社 窒化ガリウム系化合物半導体発光素子およびその製造方法
JP2012231087A (ja) * 2011-04-27 2012-11-22 Mitsubishi Chemicals Corp 窒化物系ledの製造方法
US8823026B2 (en) 2011-05-18 2014-09-02 Panasonic Corporation Nitride semiconductor light-emitting element and manufacturing method therefor

Also Published As

Publication number Publication date
US8648378B2 (en) 2014-02-11
JPWO2010052810A1 (ja) 2012-03-29
EP2226853B1 (en) 2014-02-26
US20130119398A1 (en) 2013-05-16
JP4486701B1 (ja) 2010-06-23
JP2010267950A (ja) 2010-11-25
KR20100087372A (ko) 2010-08-04
EP2226853A1 (en) 2010-09-08
KR101139142B1 (ko) 2012-04-26
US20130092968A1 (en) 2013-04-18
US8110851B2 (en) 2012-02-07
EP2226853A4 (en) 2012-05-02
US20110284905A1 (en) 2011-11-24
CN101971364A (zh) 2011-02-09
US20110156048A1 (en) 2011-06-30
US8686561B2 (en) 2014-04-01
CN101971364B (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
JP4486701B1 (ja) 窒化物系半導体素子およびその製造方法
JP4558846B1 (ja) 窒化物系半導体素子およびその製造方法
JP4676577B2 (ja) 窒化物系半導体素子およびその製造方法
JP4792136B2 (ja) 窒化物系半導体素子およびその製造方法
JP4843123B2 (ja) 窒化物系半導体素子およびその製造方法
JP4909448B2 (ja) 窒化物系半導体素子およびその製造方法
JP4843122B2 (ja) 窒化物系半導体素子およびその製造方法
JP2012227494A (ja) 窒化物系半導体発光素子およびその製造方法
JP5547279B2 (ja) 窒化物系半導体素子およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101726.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009536554

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009815447

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107012782

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 133/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE