WO2009107784A1 - 結晶性ノルボルネン系開環重合体水素化物及び成形体 - Google Patents

結晶性ノルボルネン系開環重合体水素化物及び成形体 Download PDF

Info

Publication number
WO2009107784A1
WO2009107784A1 PCT/JP2009/053695 JP2009053695W WO2009107784A1 WO 2009107784 A1 WO2009107784 A1 WO 2009107784A1 JP 2009053695 W JP2009053695 W JP 2009053695W WO 2009107784 A1 WO2009107784 A1 WO 2009107784A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
norbornene
opening polymer
opening
polymer hydride
Prior art date
Application number
PCT/JP2009/053695
Other languages
English (en)
French (fr)
Inventor
剛 平田
卓士 寶川
弘明 松田
陽介 中
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN2009801154589A priority Critical patent/CN102015819B/zh
Priority to JP2010500773A priority patent/JP5598326B2/ja
Priority to US12/920,239 priority patent/US8053531B2/en
Priority to EP09715234.2A priority patent/EP2248839B1/en
Publication of WO2009107784A1 publication Critical patent/WO2009107784A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/72Derivatisation
    • C08G2261/724Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/94Hydrogenation of a polymer

Definitions

  • the present invention relates to a crystalline norbornene-based ring-opening polymer hydride excellent in moldability and moisture resistance, and a molded body obtained by molding this crystalline norbornene-based ring-opening polymer hydride.
  • Patent Documents 1 and 2 Since the norbornene-based ring-opening polymer hydride is excellent in transparency and has low birefringence, use as a resin material for optical lenses and optical sheets has been proposed (Patent Documents 1 and 2). In addition, since it has excellent fluidity, dissolution and chemical resistance when melted, it is proposed that it is useful as various resin materials other than optical applications, including packaging films and medical containers. (Patent Documents 3 and 4). However, many of the hydrides of norbornene-based ring-opening polymers described in these documents are amorphous, so depending on their use, water vapor barrier properties, oil resistance, etc. are insufficient, and physical properties are further improved. Was desired.
  • Patent Document 5 discloses a norbornene monomer having an alkenyl group having a carbon-carbon double bond at the terminal and a norbornene monomer having no alkenyl group having a carbon-carbon double bond at the terminal. It is described that an amorphous norbornene-based ring-opening polymer hydride can be obtained by hydrogenation after ring polymerization. Furthermore, it is also disclosed that the resulting amorphous norbornene-based ring-opening polymer hydride has excellent moldability and is suitable as a molding material for optical injection molded articles. However, the amorphous polymer disclosed in this document has a limit in moisture resistance.
  • the hydride of norbornene-based ring-opening polymer having crystallinity is a crystal containing repeating units of norbornene monomers having three or more rings described in Patent Documents 6 to 8.
  • Norbornene-based ring-opening polymer hydrides are known.
  • the resin film or sheet obtained from the norbornene-based ring-opening polymer hydride described in these documents is excellent in transparency, heat resistance and chemical resistance, and excellent in mechanical properties.
  • Non-Patent Documents 1 and 2 disclose crystallized norbornene monomer ring-opening copolymer hydrides. However, these documents do not specifically describe the physical properties of the polymer. Among the specifically disclosed polymers, a polymer having a large molecular weight and a narrow molecular weight distribution has a high shear viscosity at a high shear rate when forming a film. It was difficult to obtain a smooth film. On the other hand, a polymer having a low molecular weight has a small tensile elongation at break of the molded film, and has a problem in mechanical properties when formed into a film. Furthermore, since the hydrogenation rate of the ring-opening polymer described in these documents is not always sufficient, there is a problem that the molded product obtained by molding this polymer is easily burnt. .
  • the present applicant first hydrogenates 80% or more of the carbon-carbon double bond of the ring-opening copolymer obtained by ring-opening copolymerization of 2-norbornene and a substituent-containing norbornene monomer.
  • This crystalline norbornene-based ring-opening polymer hydride is a resin material excellent in various physical properties required for a molding material such as water vapor barrier properties, heat resistance, oil resistance, mechanical properties, transparency, and workability.
  • this crystalline norbornene ring-opening polymer hydride is a linear polymer and has a low melt tension. Therefore, when this is formed into a film by a T-die, the effective width of the die.
  • the degree of neck-in the amount of neck-in
  • the neck-in amount By increasing the molecular weight, the neck-in amount can be reduced and the mechanical strength of the film can be increased.
  • the fluidity at high shear rates decreases, making the film difficult to form and the crystallization rate decreasing. As a result, the crystallization of the film does not proceed sufficiently and the moisture resistance may be lowered.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a crystalline norbornene-based ring-opening polymer hydride excellent in moldability and moisture resistance, and a molded body obtained by molding this. .
  • the present inventors have found that the molecular weight of the crystalline norbornene-based ring-opening polymer hydride has a branched structure.
  • the present inventors have found that a film excellent in water vapor barrier property (moisture resistance) can be easily formed without increasing the thickness, and thus completed the present invention.
  • the following hydrated crystalline norbornene-based ring-opening polymers (1) to (4) are provided.
  • Ring opening a norbornene-based monomer comprising 90 to 100% by weight of 2-norbornene and 10 to 0% by weight of 2-norbornene having a substituent not containing an aliphatic carbon-carbon double bond
  • a crystalline norbornene-based polymer obtained by hydrogenating 80% or more of carbon-carbon double bonds of a ring-opened polymer obtained by polymerization and having a melting point of 110 to 145 ° C. and a branching index of 0.3 to 0.98 Ring-opening polymer hydride.
  • the weight average molecular weight measured by gel permeation chromatography is 50,000 to 200,000, and the value of (weight average molecular weight) / (number average molecular weight) is 1.5 to 10.0.
  • the molded object as described in following (5) is provided.
  • a crystalline norbornene-based ring-opening polymer hydride excellent in moldability is provided.
  • a molded body (film or the like) having excellent moisture resistance can be easily molded.
  • the molded article of the present invention is excellent in terms of moisture resistance and processability required in the information field, food field, medical field, civil engineering field and the like in recent years.
  • a crystalline norbornene-based ring-opening polymer hydride has 90 to 100% by weight of 2-norbornene and 10 to 0 2-norbornene having a substituent not containing an aliphatic carbon-carbon double bond.
  • a ring-opening polymer obtained by ring-opening polymerization of a norbornene-based monomer consisting of% by weight, having a melting point of 110 to 145 ° C. and a branching index of 80% or more of hydrogenated carbon-carbon double bonds. It is a polymer of 0.3 to 0.98.
  • the norbornene monomer used in the present invention is a monomer having a norbornene structure that does not form a branched structure by an olefin metathesis reaction, and does not contain 2-norbornene and an aliphatic carbon-carbon double bond. It is composed of 2-norbornene having a substituent.
  • 2-norbornene bicyclo [2.2.1] hept-2-ene: 90 to 100% by weight, free of aliphatic carbon-carbon double bond
  • 2-Norbornene having a substituent 10 to 0% by weight.
  • the proportion of 2-norbornene is preferably 95 to 99% by weight, more preferably 97 to 99% by weight
  • the proportion of 2-norbornene having a substituent other than the substituent capable of olefin metathesis reaction is preferably 1 to It is 5% by weight, more preferably 1 to 3% by weight.
  • 2-Norbornene is a known compound and can be obtained, for example, by reacting cyclopentadiene with ethylene.
  • 2-Norbornene having a substituent that does not contain an aliphatic carbon-carbon double bond has a substituent that does not contain an aliphatic carbon-carbon double bond and does not have a ring that is condensed with the 2-norbornene ring.
  • a norbornene monomer having a ring structure condensed with an intramolecular norbornene ring and having a substituent that does not contain an aliphatic carbon-carbon double bond is
  • norbornene monomer having a substituent not containing an aliphatic carbon-carbon double bond and having no ring condensed with the norbornene ring in the molecule include 5-methyl-bicyclo [2.2 .1] Hept-2-ene (5-methyl-2-norbornene), 5-ethyl-bicyclo [2.2.1] hept-2-ene, 5-butyl-bicyclo [2.2.1] hept- 2-ene, 5-hexyl-bicyclo [2.2.1] hept-2-ene, 5-decyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexyl-bicyclo [2.2.
  • norbornenes having an alkyl group such as hept-2-ene, 5-cyclopentyl-bicyclo [2.2.1] hept-2-ene; Norbornenes having an aromatic ring such as 5-phenyl-bicyclo [2.2.1] hept-2-ene (5-phenyl-2-norbornene); 5-methoxycarbonyl-bicyclo [2.2.1] hept-2-ene (5-methoxycarbonyl-2-norbornene), 5-ethoxycarbonyl-bicyclo [2.2.1] hept-2-ene, 5- Methyl-5-methoxycarbonyl-bicyclo [2.2.1] hept-2-ene, 5-ethoxycarbonyl-5-methyl-bicyclo [2.2.1] hept-2-ene, 2-methylpropionic acid 5 -Hydroxy-bicyclo [2.2.1] hept-2-ene, 2-methyloctanoic acid 5-hydroxy-bicyclo [2.2.1] hept-2-en
  • the tricyclic or more polycyclic norbornene monomer having a substituent that does not contain an aliphatic carbon-carbon double bond includes a norbornene ring in the molecule and one or more rings condensed with the norbornene ring. And a norbornene monomer.
  • dicyclopentadiene such as tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), methyldicyclopentadiene, dimethyldicyclopentadiene; Tetracyclo [9.2.1.0 2,10.
  • Pentadeca-4,6,8,13-tetraene (also referred to as “1,4-methano-1,4,4a, 9,9a, 10-hexahydroanthracene”) Norbornenes; Tetracyclododecenes having an unsubstituted or alkyl group such as tetracyclododecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 8-cyclohexyltetracyclododecene, 8-cyclopentyltetracyclododecene, etc.
  • Tetracyclododecenes having an aromatic ring such as 8-phenyltetracyclododecene; 8-methoxycarbonyltetracyclododecene, 8-methyl-8-methoxycarbonyltetracyclododecene, 8-hydroxymethyltetracyclododecene, 8-carboxytetracyclododecene, tetracyclododecene-8,9-dicarboxylic acid Tetracyclododecenes having a substituent containing an oxygen atom such as tetracyclododecene-8,9-dicarboxylic anhydride; Tetracyclododecenes having a substituent containing a nitrogen atom such as 8-cyanotetracyclododecene, tetracyclododecene-8,9-dicarboxylic imide; Tetracyclododecenes having a
  • Hexacycloheptadecenes having an aromatic ring such as 12-phenylhexacycloheptadecene; 12-methoxycarbonylhexacycloheptadecene, 12-methyl-12-methoxycarbonylhexacycloheptadecene, 12-hydroxymethylhexacycloheptadecene, 12-carboxyhexacycloheptadecene, hexacycloheptadecene 12,13-dicarboxylic acid, Hexacycloheptadecenes having a substituent containing an oxygen atom such as hexacycloheptadecene 12,13-dicarboxylic anhydride; Hexacycloheptadecenes having a substituent containing a nitrogen atom such as 12-cyanohexacycloheptadecene, hexacycloheptadecene 12,13-dicarboxylic imide; Hexacyclo
  • the crystalline norbornene ring-opening polymer hydride of the present invention has a branched structure.
  • This branched structure can be generated by ring-opening polymerization of a norbornene monomer in the presence of a branching agent.
  • the branching agent contributes to the olefin metathesis reaction in which a recombination of the bond of two kinds of olefins occurs in the presence of a carbene complex catalyst and a new olefin is generated.
  • the branching agent has an aliphatic carbon-carbon double bond, and has a cycloalkane structure or a cycloalkene structure.
  • Examples of the substituent containing an aliphatic carbon-carbon double bond include alkenyl groups having usually 2 to 20, preferably 2 to 10, and more preferably 2 to 4 carbon atoms. Specific examples include a vinyl group, an allyl group, a 3-butenyl group, a 4-pentenyl group, a 2-methyl-3-butenyl group, and a 5-heptyl group. Among these, a vinyl group and an allyl group are preferable because a hydride of a norbornene-based ring-opening polymer having more excellent fluidity can be obtained.
  • these alkenyl groups may be bonded to the mother nucleus through an arbitrary group, or may be bonded to the mother nucleus through an arbitrary group to form a ring structure.
  • the optional group include an alkylene group, —O—, —S—, —O—CO—, —O—CH 2 —O—CO—, and phenylene.
  • the number of elements constituting an arbitrary group is preferably 10 or less, more preferably 5 or less, and other than alkyl groups, because a norbornene-based ring-opening polymer hydride having excellent fluidity can be obtained. Those having no divalent group are preferred.
  • Such branching agents include 5-vinyl-bicyclo [2.2.1] hept-2-ene, 5-allyl-bicyclo [2.2.1] hept-2-ene, 5-vinyloxycarbonyl- Bicyclo [2.2.1] hept-2-ene, 8-vinyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-allyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-vinyloxycarbonyl-tetracyclo [4.4.0.1 2,5 .
  • NB-dimer 4,4a, 4b, 5,8,8a, 9,9a-octahydro-1,4: 5 , 8-bismethano-1H-fluorene, 1 ⁇ , 4 ⁇ : 5 ⁇ , 8 ⁇ -dimethano-1,4,4a, 5,8,8a, 9,9a, 10,10a-decahydroanthracene, 5,5′-bi ( Norborna-2-ene), tetracyclo [6.2.1.1 3,6 .
  • dodecane-4,9-diene 1,4,4a, 5,8,8a, 9,9a, 10,10a-decahydro-1,4: 5,8: 9,10-trimethanoanthracene
  • a monomer having two norbornene structures in the molecule such as 1,2,4-trivinylcyclohexane, 4- (2-propenyl) -1,6-heptadiene, 3-vinyl-1,4-pentadiene, 3-vinyl-1,5-hexadiene, 1,3,5- Monomers having three or more terminal carbon-carbon double bonds in the molecule such as trivinylbenzene, 1,2,4-trivinylbenzene, 1,2,4,5-tetravinylbenzene, etc. Is mentioned.
  • 5-vinyl-bicyclo [2.2.1] hept-2 which is a compound having one or more substituents containing a cycloalkene structure and an aliphatic carbon-carbon double bond in the molecule.
  • norbornene monomer 2-norbornene (2-NB) is subjected to ring-opening polymerization in the presence of -ene (VNB), a tri-branched polymer is formed as shown below.
  • M represents a transition metal atom such as tungsten
  • L represents a ligand such as a halogen atom
  • R represents an alkyl group
  • m, n, and p each represents a positive integer.
  • NB-dimer which is a compound having two or more cycloalkene structures in the molecule as a branching agent
  • M, L, R, m, n, and p have the same meaning as described above, and q represents a positive integer.
  • 2-norbornene (2-NB) and NB-dimer undergo a ring-opening metathesis reaction to form a polymer chain (4), and another polymer chain (2-1) undergoes a metathesis reaction to form a polymer chain. (5) is generated.
  • 4-norbornene (NB) causes a metathesis reaction to form a 4-branched polymer (6).
  • norbornene is used as a branching agent in the presence of 1,2,4-trivinylcyclohexane (TVC), which is a cycloalkane compound having three or more substituents containing an aliphatic carbon-carbon double bond in the molecule.
  • TVC 1,2,4-trivinylcyclohexane
  • ring-opening polymerization of 2-norbornene (2-NB) produces a 3-branched polymer as shown below.
  • the branching agent to be used has a mother nucleus capable of ring-opening metathesis polymerization
  • this monomer also contributes to the ring-opening polymerization together with a norbornene monomer having no substituent capable of undergoing olefin metathesis reaction.
  • the crystalline norbornene-based ring-opening polymer hydride of the present invention is a polymer having a branching index of 0.3 to 0.98.
  • a crystalline norbornene-based ring-opening polymer hydride having a desired branching index can be obtained.
  • the blending amount of the branching agent is usually 0.01 to 5 mol%, preferably 0.05 to 5 mol%, more preferably 0.1 to 5 mol, when the total amount of norbornene monomers is 100 mol%. Mol%.
  • Metal polymerization catalyst examples of the metathesis polymerization catalyst used for the ring-opening polymerization of the norbornene-based monomer include, for example, Japanese Patent Publication No. 41-20111, Japanese Patent Application Laid-Open No. Sho 46-14910, Japanese Patent Publication No. 57-17883, Japanese Patent Publication No. 57-61044. Essentially (a) transition metal compound catalyst component and (b) metal compound described in JP-A-54-86600, JP-A-58-127728, JP-A-1-240517, etc. General metathesis polymerization catalyst comprising a co-catalyst component; Schrock type polymerization catalyst (Japanese Patent Laid-Open No.
  • a metathesis polymerization catalyst comprising (a) a transition metal compound catalyst component and (b) a metal compound promoter component is preferable in order to adjust the molecular weight distribution of the obtained polymer to a suitable range.
  • the (a) transition metal compound catalyst component is a compound of a transition metal of Groups 3 to 11 of the periodic table.
  • transition metal halides, oxyhalides, alkoxyhalides, alkoxides, carboxylates, (oxy) acetylacetonates, carbonyl complexes, acetonitrile complexes, hydride complexes, derivatives thereof, these or these Examples thereof include a complexed product of a derivative such as P (C 6 H 5 ) 3 with a complexing agent.
  • Specific examples include TiCl 4 , TiBr 4 , VOCl 3 , WBr 3 , WCl 6 , WOCl 4 , MoCl 5 , MoOCl 4 , WO 3 , H 2 WO 4 and the like.
  • W, Mo, Ti, or V is preferable from the viewpoint of polymerization activity and the like, and these halides, oxyhalides, and alkoxy halides are particularly preferable.
  • the (b) metal compound promoter component is a metal compound of Groups 1 to 2 and Groups 12 to 14 of the periodic table, and has at least one metal element-carbon bond or metal element-hydrogen bond. is there.
  • examples thereof include organic compounds such as Al, Sn, Li, Na, Mg, Zn, Cd, and B.
  • Specific examples include organoaluminum compounds such as trimethylaluminum, triisobutylaluminum, diethylaluminum monochloride, methylaluminum sesquichloride, and ethylaluminum dichloride; organotin compounds such as tetramethyltin, diethyldimethyltin, tetrabutyltin, and tetraphenyltin.
  • Organic lithium compounds such as n-butyl lithium; organic sodium compounds such as n-pentyl sodium; organic magnesium compounds such as methyl magnesium iodide; organic zinc compounds such as diethyl zinc; organic cadmium compounds such as diethyl cadmium; Organic boron compounds; and the like.
  • Group 13 metal compounds are preferred, and Al organic compounds are particularly preferred.
  • a metathesis polymerization activity can be enhanced by adding a third component in addition to the components (a) and (b).
  • a third component in addition to the components (a) and (b).
  • the third component to be used aliphatic tertiary amine, aromatic tertiary amine, molecular oxygen, alcohol, ether, peroxide, carboxylic acid, acid anhydride, acid chloride, ester, ketone, nitrogen-containing compound , Halogen-containing compounds, and other Lewis acids.
  • the compounding ratio of these components is the molar ratio of the (a) component: (b) component to the metal element and is usually in the range of 1: 1 to 1: 100, preferably 1: 2 to 1:10.
  • the molar ratio of component (a): third component is usually in the range of 1: 0.005 to 1:50, preferably 1: 1 to 1:10.
  • the polymerization catalyst is used in a molar ratio of (transition metal in the polymerization catalyst) :( total monomer), usually 1: 100 to 1: 2,000,000, preferably 1: 1,000 to It is 1: 20,000, more preferably 1: 5,000 to 1: 8,000. If the amount of the catalyst is too large, it may be difficult to remove the catalyst after the polymerization reaction or the molecular weight distribution may be widened. On the other hand, if the amount is too small, sufficient polymerization activity cannot be obtained.
  • Molecular weight regulator In the ring-opening polymerization, a molecular weight regulator can be added to the reaction system. The molecular weight of the resulting ring-opening polymer can be adjusted by adding a molecular weight regulator.
  • the molecular weight regulator to be used is not particularly limited, and conventionally known ones can be used.
  • ⁇ -olefins such as 1-butene, 1-pentene, 1-hexene and 1-octene
  • styrenes such as styrene and vinyltoluene
  • ethers such as ethyl vinyl ether, isobutyl vinyl ether and allyl glycidyl ether
  • allyl chloride and the like A halogen-containing vinyl compound such as glycidyl methacrylate
  • a nitrogen-containing vinyl compound such as acrylamide
  • Non-conjugated dienes such as methyl-1,4-pentadiene, 2,5-dimethyl-1,5-hexadiene, or 1,3-butadiene, 2-methyl-1,3-butadiene,
  • the addition amount of the molecular weight regulator may be an amount sufficient to obtain a polymer having a desired molecular weight, and the molar ratio of (molecular weight regulator) :( total monomer) is usually 1:50 to 1: 1. 1,000,000, preferably 1: 100 to 1: 5,000, more preferably 1: 300 to 1: 3,000.
  • Ring-opening polymerization can be initiated by mixing a norbornene monomer, a branching agent, a metathesis polymerization catalyst, and optionally a molecular weight regulator.
  • the ring-opening polymerization is usually performed in a solvent.
  • the organic solvent to be used is not particularly limited as long as the polymer and the polymer hydride are dissolved or dispersed under predetermined conditions and do not affect the polymerization and the hydrogenation reaction. Is preferred.
  • organic solvents examples include aliphatic hydrocarbons such as pentane, hexane, and heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, Alicyclic hydrocarbons such as tricyclodecane, hexahydroindenecyclohexane and cyclooctane; Aromatic hydrocarbons such as benzene, toluene and xylene; Halogenated aliphatic hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane Halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene; Nitrogen-containing hydrocarbons such as nitromethane, nitrobenzene and ace
  • the concentration of the monomer is preferably 1 to 50% by weight, more preferably 2 to 45% by weight, and particularly preferably 3 to 40% by weight. If the concentration of the monomer is less than 1% by weight, the productivity may be lowered, and if it is more than 50% by weight, the solution viscosity after polymerization is too high, and the subsequent hydrogenation reaction may be difficult.
  • the temperature for carrying out the ring-opening polymerization is not particularly limited, but is usually ⁇ 20 to + 100 ° C., preferably 10 to 80 ° C. If the polymerization temperature is too low, the reaction rate decreases, and if it is too high, the molecular weight distribution may be widened due to side reactions.
  • the polymerization time is not particularly limited, and is usually 1 minute to 100 hours.
  • polymerization are not specifically limited, When superposing
  • the obtained norbornene-based ring-opening polymer is subjected to the next hydrogenation reaction step.
  • the hydrogenation reaction can be continuously performed without adding a hydrogenation catalyst to the reaction solution subjected to the ring-opening polymerization and isolating the norbornene-based ring-opening polymer.
  • the hydrogenation reaction of the norbornene-based ring-opening polymer is a reaction in which hydrogenation is performed on a carbon-carbon double bond existing in the main chain and / or side chain of the norbornene-based ring-opening polymer.
  • This hydrogenation reaction is performed by adding a hydrogenation catalyst to an inert solvent solution of a norbornene-based ring-opening polymer and supplying hydrogen into the reaction system.
  • the hydrogenation catalyst either a homogeneous catalyst or a heterogeneous catalyst can be used as long as it is generally used for hydrogenation of olefin compounds. Considering the removal of residual metals in the resulting polymer, a heterogeneous catalyst is preferable.
  • homogeneous catalysts examples include cobalt acetate / triethylaluminum, nickel acetylacetonate / triisobutylaluminum, titanocene dichloride / n-butyllithium, zirconocene dichloride / sec-butyllithium, tetrabutoxytitanate / dimethylmagnesium, etc.
  • Catalyst systems comprising combinations of transition metal compounds and alkali metal compounds such as combinations; dichlorobis (triphenylphosphine) palladium, chlorohydridocarbonyltris (triphenylphosphine) ruthenium, chlorotris (triphenylphosphine) rhodium, bis (tricyclohexylphosphine) And a noble metal complex catalyst such as benzylidine ruthenium (IV) dichloride.
  • heterogeneous catalysts include nickel / silica, nickel / diatomaceous earth, nickel / alumina, palladium / carbon, palladium / silica, palladium / diatomaceous earth, palladium / alumina, nickel, palladium, platinum, rhodium, ruthenium, Alternatively, a solid catalyst system in which these metals are supported on a carrier such as carbon, silica, diatomaceous earth, alumina, titanium oxide or the like can be mentioned.
  • the amount of the catalyst used is usually 0.05 to 10 parts by weight with respect to 100 parts by weight of the norbornene-based ring-opening polymer.
  • the inert organic solvent used for the hydrogenation reaction the same aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons as those exemplified as the organic solvent that can be used in the ring-opening polymerization described above.
  • the temperature of the hydrogenation reaction varies depending on the hydrogenation catalyst used, but is usually ⁇ 20 ° C. to + 300 ° C., preferably 0 ° C. to + 250 ° C. If the hydrogenation temperature is too low, the reaction rate may be slow, and if it is too high, side reactions may occur.
  • the hydrogen pressure is usually 0.01 to 20 MPa, preferably 0.1 to 10 MPa, more preferably 1 to 5 MPa. If the hydrogen pressure is too low, the hydrogen addition rate is slow, and if it is too high, a high pressure reactor is required, which is not preferable.
  • the hydrogenation catalyst and the like are filtered off from the reaction solution, and the target crystalline norbornene-based ring-opening polymer hydrogen is removed by removing volatile components such as a solvent from the polymer solution after the filtration.
  • the compound can be obtained.
  • an antioxidant stabilizer
  • a nucleating agent e.g., a nucleating agent
  • a foaming agent e.g., a foaming agent
  • a flame retardant e.g., a compound such as a thermoplastic resin or a soft polymer
  • a compounding agent such as a lubricant
  • Other compounding agents usually used in the resin industry field such as dyes, antistatic agents, ultraviolet absorbers, light stabilizers, waxes and the like may be added, followed by heating as necessary, followed by filtration.
  • a known method such as a coagulation method or a direct drying method can be employed.
  • the coagulation method is a method in which a polymer is precipitated by mixing a polymer solution with a poor solvent for the polymer.
  • the poor solvent to be used examples include polar solvents such as alcohols such as ethyl alcohol, n-propyl alcohol and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate and butyl acetate;
  • the particulate component obtained by solidification is dried by heating, for example, in vacuum, nitrogen or air, or is extruded into a pellet from a melt extruder as necessary. be able to.
  • the direct drying method is a method in which the polymer solution is heated under reduced pressure to remove the solvent.
  • This method can be carried out using a known apparatus such as a centrifugal thin film continuous evaporation dryer, a scratched heat exchange type continuous reactor type dryer, a high viscosity reactor device or the like.
  • the degree of vacuum and temperature are appropriately selected depending on the device and are not limited.
  • the crystalline norbornene-based ring-opening polymer hydride of the present invention can be obtained.
  • the crystalline norbornene ring-opening polymer hydride of the present invention has a hydrogenation rate of carbon-carbon double bonds in the norbornene ring-opening polymer of usually 80% or more, preferably 90% or more, more preferably 95%. Above, more preferably 99% or more, particularly preferably 99.9% or more. When it is in the above range, it is preferable because coloring due to resin burning of the molded product is suppressed.
  • the hydrogenation rate of the crystalline norbornene-based ring-opening polymer hydride can be determined by measuring by 1 H-NMR using deuterated chloroform as a solvent.
  • the isomerization rate of the crystalline norbornene ring-opening polymer hydride of the present invention is usually 25% or less, preferably 20% or less, more preferably 15% or less, and even more preferably 10% or less. If the isomerization rate is too high, the heat resistance of the polymer may be lowered.
  • the isomerization rate can be calculated from 33.0 ppm peak integrated value / (31.8 ppm peak integrated value + 33.0 ppm peak integrated value) ⁇ 100 measured by 13 C-NMR using deuterated chloroform as a solvent.
  • the 31.8 ppm peak is derived from a cis isomer of a repeating unit derived from 2-norbornene in the polymer
  • the 33.0 ppm peak is a repeating unit derived from 2-norbornene in the polymer. It is derived from the trans form.
  • the reaction temperature is preferably 100 to 230 ° C., more preferably 130 to 220 ° C., and particularly preferably 150 to 210 ° C.
  • the amount of the hydrogenation catalyst used is preferably 0.2 to 5 parts by weight, more preferably 0.2 to 2 parts by weight with respect to 100 parts by weight of the norbornene-based ring-opening polymer.
  • the abundance ratio of the repeating unit (A) derived from 2-norbornene in the crystalline norbornene ring-opening polymer hydride of the present invention is usually 90% by weight or more, preferably 95% by weight or more, more preferably 97%.
  • the proportion of the repeating unit (B) derived from the norbornene monomer having a substituent not containing an aliphatic carbon-carbon double bond is 10% by weight or less, preferably 5% by weight or more. % By weight or less, more preferably 3% by weight or less.
  • the branched structure of the crystalline norbornene-based ring-opening polymer hydride of the present invention is 0.3 to 0.98, preferably 0.4 to 0.95. If the branching index is too large, the moisture permeability increases, but the melt tension of the crystalline norbornene-based ring-opening polymer hydride at the time of film production becomes low and the film moldability deteriorates, which is not preferable. If the branching index is too small, moisture permeability and heat resistance are lowered, which is not preferable.
  • [ ⁇ ] Bra is the limiting viscosity of the branched crystalline norbornene ring-opening polymer hydride
  • [ ⁇ ] Lin is the limit of the linear crystalline norbornene ring-opening polymer hydride having the same weight average molecular weight.
  • Viscosity is a value obtained by measuring a sample dissolved in cyclohexane at 60 ° C.
  • the melt tension becomes high even with the same weight average molecular weight, which is preferable. If the branching index is too high, the melt tension decreases even with the same weight average molecular weight.
  • neck-in When the melt tension is lowered, for example, in the formation of a film by a T-die, a phenomenon called “neck-in” occurs in which the width of the extruded film is considerably smaller than the effective width of the die. When neck-in occurs, both end portions of the film become thicker, so these portions are trimmed (removed) to obtain a product. The smaller the degree of neck-in, the wider the resulting film and the higher the productivity. In addition, the large degree of neck-in means that the melt tension of the crystalline norbornene ring-opening polymer hydride is low, which reduces the operability during film production and the surface accuracy of the resulting film. Cause it to cause.
  • the crystalline norbornene ring-opening polymer hydride of the present invention has a weight average molecular weight (Mw) measured by a square laser light scattering photometric method by gel permeation chromatography (GPC) using cyclohexane as an eluent. 50,000 to 200,000, more preferably 70,000 to 180,000, and still more preferably 80,000 to 150,000.
  • Mw weight average molecular weight
  • the Mw of the crystalline norbornene-based ring-opening polymer hydride is in this range, the solubility of the polymer in the solvent is good, so that the polymer productivity is excellent, the polymer purification is easy, and Molding is also easy, and the mechanical properties and heat resistance of the molded body are improved. That is, if the Mw is too high, the solution viscosity becomes too high and the filterability is lowered, so that the productivity may be deteriorated. Also, when the resin is formed into a film, the film thickness accuracy is increased. Therefore, it is necessary to increase the resin temperature, and there is a possibility that a die line resulting from resin burning may occur.
  • the crystalline norbornene ring-opening polymer hydride of the present invention has a molecular weight distribution (Mw / Mn) of preferably 1.5 to 10.0, more preferably 2.0 to 9.0, and even more preferably 3 0.0 to 8.0, particularly preferably 4.0 to 7.0. If Mw / Mn is too narrow, the melt viscosity with respect to the temperature of the polymer tends to change sensitively, so that the workability of molded products such as films and sheets may be deteriorated. Further, if Mw / Mn is too wide, the mechanical properties of the molded product may be deteriorated.
  • the melting point of the crystalline norbornene ring-opening polymer hydride of the present invention is usually 110 to 145 ° C., preferably 120 to 145 ° C., more preferably 130 ° C. to 145 ° C. When the melting point is in such a range, the molded product has excellent heat resistance and is suitable. In particular, the temperature range of 130 ° C. to 145 ° C. is preferable because it can withstand the steam sterilization performed in medical molded products and food molded products.
  • the melting point of the crystalline norbornene ring-opening polymer hydride varies depending on the molecular weight, molecular weight distribution, isomerization rate, etc. of the norbornene ring-opening polymer hydride.
  • the melt flow rate of the crystalline norbornene-based ring-opening polymer hydride of the present invention at 230 ° C. and a load of 21.18 N is usually 15 g / 10 min or less, preferably 10 g / 10 min or less.
  • the melt flow rate at 280 ° C. and a load of 21.18 N is usually 100 g / 10 min or less, preferably 70 g / 10 min or less. When the melt flow rate is within this range, a film having high molding stability and good thickness accuracy can be obtained.
  • the crystalline norbornene-based ring-opening polymer hydride of the present invention preferably has few foreign matters.
  • Metal residues, foreign matters, and the like of plastic molded products such as films may cause deterioration of electrical characteristics when applied to electronic components.
  • metal residues and foreign matters can be precisely removed by filtering the polymer solution with a filter having a pore size of 0.2 ⁇ m or less.
  • the crystalline norbornene-based ring-opening polymer hydride of the present invention is a polymer having a melting point, that is, a polymer that forms a crystal structure, a crystal part is formed (crystallized) inside the molded body, Combined with the crystal part, mechanical properties such as tensile elongation at break of the molded product are improved.
  • the crystalline norbornene-based ring-opening polymer hydride of the present invention may optionally contain other antioxidants (stabilizers), nucleating agents, foaming agents, flame retardants, other polymers such as thermoplastic resins and soft polymers, and lubricants.
  • antioxidants stabilizers
  • nucleating agents such as polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polystymer, polystymer hydride, polystyrene-stylene glycol dimethoxysulfate, polyethylene glycol dimethoxysulfate, polyethylene glycol dimethoxysulfate, polyethylene glycol dimethoxysulfate, polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polystyrenethacrylate, polystyrenethacrylate, polystyrenethacrylate, poly
  • a method of adding a compounding agent a method of adding a compounding agent to a hydrogenation reaction liquid; a kneading machine such as a ring-opening polymer hydride and a compounding agent, a single screw extruder, a twin screw extruder, a roll, a Banbury mixer, etc. And the like.
  • the crystalline norbornene-based ring-opening polymer hydride (or resin composition) of the present invention is usually processed into a size of about the size of rice grains called pellets so as to be easily handled. It is possible to produce a molded body. These pellets can be obtained by injection molding, such as optical discs and lenses, melt-extruded into tubes and rods, sheets and films wound up by melt-extrusion rolls, and pelletized into sheets by hot pressing. It can be used for various molded products such as molded products, films obtained by dissolving in an appropriate solvent and casting the solution, and films and sheets stretched.
  • the molded product of the present invention is obtained by molding the crystalline norbornene-based ring-opened polymer hydride of the present invention.
  • the molded body of the present invention can be produced, for example, by processing it into a size of about the size of rice grains called pellets as described above and then using this product for processing.
  • the shape of the molded body of the present invention is not particularly limited, and may be a shape and size according to various purposes.
  • a molding method is not particularly limited, and a known molding method can be employed. For example, an injection molding method, an injection compression molding method, a press molding method, an extrusion molding method, a blow molding method, a vacuum molding method and the like can be mentioned.
  • the molded article of the present invention is preferably a film.
  • mold a film Both a heat-melt-molding method and a solution casting method can be used.
  • the hot melt molding method is a method in which the above pellets are heated to a temperature equal to or higher than the melting point (Tm) of the polymer and lower than the thermal decomposition temperature to form a fluidized film.
  • the heat-melt molding method include an extrusion molding method, a calendar molding method, a compression molding method, an inflation molding method, an injection molding method, a blow molding method, and a stretch molding method. Further, after forming a film by an extrusion molding method, a calendar molding method, an inflation molding method, or the like, a stretch molding method may be performed.
  • the heating and pressurizing conditions in the hot melt molding method may be appropriately selected depending on the characteristics of the molding machine, the crystalline norbornene-based ring-opening polymer hydride used, and the temperature is usually Tm to (Tm + 100 ° C.), preferably (Tm + 20 ° C.) to (Tm + 50 ° C.).
  • the pressure at the time of molding is usually 0.5 to 100 MPa, preferably 1 to 50 MPa.
  • the pressurizing time is usually about several seconds to several tens of minutes.
  • a crystalline norbornene-based ring-opening polymer hydride or a compounding agent blended as necessary is dissolved in an organic solvent, and this is cast on a flat surface or a roll to obtain a solvent. Is removed by heating to form a film and a sheet.
  • the same aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic carbonization as those exemplified as the solvent for the ring-opening polymerization reaction of the norbornene monomer and the hydrogenation reaction of the ring-opening polymer are used.
  • examples thereof include hydrogens, halogen-based aromatic hydrocarbons, nitrogen-containing hydrocarbons, ethers and the like.
  • the temperature at which the solvent is volatilized becomes the molding temperature, and the temperature is appropriately set depending on the type of solvent used. Further, the molded body may be annealed after the molding in order to reveal the crystallinity of the molded product more strongly.
  • the thickness of the film is not particularly limited, but is usually 1 ⁇ m to 20 mm, preferably 5 ⁇ m to 5 mm, more preferably 10 ⁇ m to 2 mm. There is no special rule for the distinction between film and sheet, and there are cases where they are differentiated by thickness, but the actual situation is that the name changes depending on the usage and customs in the industry.
  • stretching may be applied to increase the crystallinity. Stretching means that the formed film is subsequently stretched by about 1.1 to 10 times to give plastic deformation. This plastic deformation has an effect of stretching and aligning not only the crystal chain but also the amorphous chain by internal friction.
  • the film may be a laminate having a layer containing a crystalline norbornene-based ring-opening polymer hydride and a layer containing another polymer.
  • examples of other polymers include rubbery polymers or other resins, and specific examples thereof are the same as those described above as those that can be used by being blended with a crystalline norbornene ring-opening polymer hydride. It is.
  • the number of layers to be laminated is usually two or three layers, but it can also be a multilayer laminate.
  • the arrangement order of the layers depending on the polymer species in three or more layers can be appropriately set depending on the purpose and application.
  • a layer of the same kind of polymer may be arranged with a layer of another polymer being separated, for example, a layer containing polystyrene between two layers containing a crystalline norbornene-based ring-opening polymer hydride.
  • a layer containing polystyrene between two layers containing a crystalline norbornene-based ring-opening polymer hydride.
  • a three-layer laminate sandwiched between them, a four-layer laminate in which a layer containing a hydrogenated styrene-isoprene block copolymer is further laminated on one outer side, and the like are possible.
  • a lamination method a method in which an adhesive is applied and bonded between layers, a method in which a single-layer or multiple-layer film or sheet is fused by heating to a melting point or higher by heat or high frequency, a crystalline norbornene-based method
  • a method in which an organic solvent in which another polymer or a crystalline norbornene-based ring-opening polymer hydride is dissolved is applied to the surface of a ring-opening polymer hydride or other polymer film or sheet and dried.
  • a crystalline norbornene-based ring-opening polymer hydride and other polymers can be coextruded with an extruder to produce a laminate.
  • the film obtained from the crystalline norbornene-based ring-opening polymer hydride of the present invention is excellent in water vapor barrier properties, heat resistance, transparency, oil resistance and mechanical properties such as tensile elongation at break. Further, since the pyrolysis temperature is high, there is an advantage that the processing temperature range is wide.
  • this film is excellent in water vapor
  • the moisture permeability measured based on JIS K 7129 (Method A) of a resin film or sheet having a thickness of 100 ⁇ m of the present invention is usually 0.50 g / (m 2 ⁇ 24 h) or less, preferably 0.40 g / (m 2 ⁇ 24h) or less.
  • Films having these characteristics can be used in a wide variety of applications such as food, medical, display, energy, optical, electrical and electronic, communications, automobile, consumer, and civil engineering. it can.
  • GPC-8020 series (DP8020, SD8022, AS8020, CO8020, RI8020, manufactured by Tosoh Corporation) was used.
  • standard polystyrene standard polystyrene (Mw of 500, 2630, 10200, 37900, 96400, 427000, 1090000, 5480000, a total of 8 points, manufactured by Tosoh Corporation) was used.
  • the sample was prepared by dissolving the measurement sample in toluene so that the sample concentration was 1 mg / ml, and then filtering with a cartridge filter (polytetrafluoroethylene, pore size 0.5 ⁇ m).
  • the measurement was performed under the conditions of using TSKgel GMHHR ⁇ H (manufactured by Tosoh Corporation) connected in series to a column, using a flow rate of 1.0 ml / min, a sample injection amount of 100 ⁇ l, and a column temperature of 40 ° C.
  • Model 350 HTGPC manufactured by Viscotek
  • TSKgel G2000HHR, TSKgel G4000HHR, and TSKgel G4000HHR manufactured by Tosoh Corporation
  • Melting point (Tm) is measured after heating the sample to 30 ° C. or higher from the melting point based on JIS K 7121 using a differential scanning calorimeter (product name “DSC6220SII”, manufactured by Nanotechnology Inc.) The sample was cooled to room temperature at a rate of ⁇ 10 ° C./min, and then measured at a rate of temperature increase of 10 ° C./min.
  • the melt flow rate was measured at 230 ° C., a load of 21.18 N, and 280 ° C., a load of 21.18 N based on JIS K 7210.
  • the branching index is the intrinsic viscosity [ ⁇ ] Bra of the branched norbornene ring-opening polymer hydride, and the intrinsic viscosity [ ⁇ ] of the linear norbornene ring-opening polymer hydride having the same weight average molecular weight. Calculated as the value divided by Lin.
  • the linear norbornene-based ring-opening polymer hydride is a branched norbornene-based ring-opening in the absence of a compound having a substituent capable of olefin metathesis reaction (hereinafter sometimes referred to as “branching agent”).
  • a linear norbornene-based ring-opening polymer having a different weight average molecular weight can be obtained by changing the amount of the molecular weight regulator by copolymerizing the same monomer as the polymer hydride and then hydrogenating it. Obtained.
  • Cooling roll Tm-20 ° C of resin (Tg-15 ° C for resins without melting point)
  • Cast roll Tm-10 ° C of resin (Tg-5 ° C for resins without melting point)
  • Sheet take-off speed 2.5 m / min Distance between T-die and cooling roll: 100 mm
  • Screw compression ratio The resin having no melting point was a screw having a compression ratio of 2.5, and the other was a screw having a compression ratio of 3.1.
  • the water vapor transmission rate is determined based on JIS K 7129 (Method A) at a temperature of 40 ° C. and a humidity of 90% RH as a water vapor transmission rate tester (L80-5000 type, manufactured by LYSSY). Measured with
  • the polymerization reaction liquid obtained above was transferred to a pressure-resistant hydrogenation reactor, and 1.0 part by weight of a diatomaceous earth-supported nickel catalyst (T8400, nickel support rate 58% by weight, manufactured by Zudehemy Catalyst Co., Ltd.) was added. The reaction was carried out at 5 ° C. and hydrogen pressure of 4.5 MPa for 6 hours. This solution was filtered through a filter equipped with a stainless steel wire mesh using diatomaceous earth as a filter aid to remove the catalyst. The obtained reaction solution was poured into 3000 parts by weight of isopropyl alcohol with stirring to precipitate a hydride, which was collected by filtration.
  • a diatomaceous earth-supported nickel catalyst T8400, nickel support rate 58% by weight, manufactured by Zudehemy Catalyst Co., Ltd.
  • the hydrogenation rate of the obtained ring-opened polymer hydride (A) was 99.9%, the weight average molecular weight (Mw) was 70,200, the molecular weight distribution (Mw / Mn) was 3.8, and the isomerization rate was The melting point was 136 ° C., and the branching index was 0.64.
  • antioxidant tetrakis [methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate] methane, irga Knox 1010, manufactured by Ciba Specialty Chemicals Co., Ltd.
  • antioxidant tetrakis [methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate] methane, irga Knox 1010, manufactured by Ciba Specialty Chemicals Co., Ltd.
  • antioxidant tetrakis [methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate
  • TEM35 twin-screw kneader
  • Example 2 (Ring-opening polymerization) A ring-opening copolymer (B) was obtained in the same manner as in Example 1 except that 17.5 parts by weight of NB-dimer was used instead of VNB. The polymerization conversion rate was almost 100%.
  • the ring-opening copolymer (B) had a weight average molecular weight (Mw) of 60,000 and a molecular weight distribution (Mw / Mn) of 4.0. (Hydrogenation reaction) In the same manner as in Example 1, the obtained ring-opening copolymer (B) was hydrogenated to obtain a ring-opening polymer hydride (B).
  • the hydrogenation rate of the ring-opening polymer hydride (B) is 99.9%, the weight average molecular weight (Mw) is 69,000, the molecular weight distribution (Mw / Mn) is 3.7, the isomerization rate is 5%, The melting point was 134 ° C. and the branching index was 0.43.
  • a resin composition (B) was obtained from the obtained ring-opened polymer hydride (B) in the same manner as in Example 1.
  • Example 2 (Film forming) In Example 1, except that the molten resin temperature was 174 ° C., the T die temperature was 184 ° C., the cooling roll temperature was 114 ° C., and the cast roll temperature was 124 ° C., the film (B) (layer A thickness of 100 ⁇ m) was obtained.
  • the hydrogenation rate of the ring-opened polymer hydride (C) is 99.9%, the weight average molecular weight (Mw) is 71,200, the molecular weight distribution (Mw / Mn) is 3.7, the isomerization rate is 7%, The melting point was 135 ° C. and the branching index was 0.93.
  • a resin composition (C) was obtained in the same manner as in Example 1.
  • Example 1 the film (C) (layer) was prepared in the same manner as in Example 1 except that the molten resin temperature was 175 ° C, the T-die temperature was 185 ° C, the cooling roll temperature was 115 ° C, and the cast roll temperature was 125 ° C. A thickness of 100 ⁇ m) was obtained.
  • Example 4 (Ring-opening polymerization)
  • the monomer is 240 parts by weight of 2-norbornene, 10 parts by weight of dicyclopentadiene (hereinafter sometimes abbreviated as “DCP”), 0.75 parts by weight of VNB, and 0 of 1-hexene.
  • DCP dicyclopentadiene
  • a ring-opening copolymer (D) was obtained in the same manner as in Example 1 except that the amount was changed to .79 parts by weight. The polymerization conversion rate was almost 100%.
  • the ring-opening copolymer (D) had a weight average molecular weight (Mw) of 64,800 and a molecular weight distribution (Mw / Mn) of 4.5.
  • Example 1 the film (E) (layer) was prepared in the same manner as in Example 1 except that the molten resin temperature was 180 ° C, the T-die temperature was 190 ° C, the cooling roll temperature was 120 ° C, and the cast roll temperature was 130 ° C. A thickness of 100 ⁇ m) was obtained.
  • the hydrogenation rate of the ring-opening polymer hydride (F) is 99.9%, the weight average molecular weight (Mw) is 71,000, the molecular weight distribution (Mw / Mn) is 4.0, the isomerization rate is 7%, The melting point was 110 ° C. and the branching index was 0.13.
  • a resin composition (F) was obtained from the obtained ring-opening polymer hydride (F) in the same manner as in Example 1.
  • Example 1 the film (G) (layer) was prepared in the same manner as in Example 1 except that the molten resin temperature was 172 ° C, the T-die temperature was 182 ° C, the cooling roll temperature was 112 ° C, and the cast roll temperature was 122 ° C. A thickness of 100 ⁇ m) was obtained.
  • the reaction solution containing the ring-opening polymer (H) obtained above was transferred to a pressure-resistant hydrogenation reactor, and Pd / CaCO 3 (Pd amount: 5% by weight) (made by Strem) as a catalyst was 5.25 parts by weight. And reacted at 100 ° C.
  • Example 1 (Film forming) In Example 1, except that the molten resin temperature was 183 ° C., the T-die temperature was 193 ° C., the cooling roll temperature was 123 ° C., and the cast roll temperature was 133 ° C., the film (H) (layer A thickness of 100 ⁇ m) was obtained.
  • Example 6 (Ring-opening polymerization)
  • the monomer was mixed with 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene (hereinafter abbreviated as “ETD”) 30 parts by weight, DCP 170 parts by weight, diisopropyl ether 0.18 parts by weight, triisobutylaluminum 0.59 parts by weight, isobutyl alcohol was used in the same manner as in Example 1 except that 0.45 part by weight of the compound and 10 parts by weight of a tungsten hexachloride 1.0% by weight toluene solution were used to obtain a ring-opening copolymer (J).
  • ETD 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene
  • the polymerization conversion rate was almost 100%.
  • the ring-opening copolymer (J) obtained in the same manner as in Example 1 was hydrogenated to obtain a ring-opening polymer hydride (J).
  • the hydrogenation rate of the obtained ring-opening polymer hydride (J) was 99.9%, the weight average molecular weight (Mw) was 31,000, the molecular weight distribution (Mw / Mn) was 3.0, and the glass transition temperature was 100.
  • the branching index was 1.0.
  • Preparation of resin composition A resin composition (J) was obtained from the obtained ring-opened polymer hydride (J) in the same manner as in Example 1.
  • Example 1 (Film forming) In Example 1, except that the molten resin temperature was 200 ° C., the T die temperature was 210 ° C., the cooling roll temperature was 85 ° C., and the cast roll temperature was 95 ° C., the film (J) (layer A thickness of 100 ⁇ m) was obtained.
  • Table 1 shows physical properties of hydrides (A) to (J) obtained in Examples and Comparative Examples, and Table 2 shows neck-in amounts and moisture permeability of films (A) to (J).
  • TVC means 1,2,4-trivinylcyclohexane
  • MFR means melt flow rate
  • Comparative Example 3 the molecular weight is high and the linear ring-opening polymer hydride (G) has a small MFR of 7, but the film (G) obtained from this has poor neck-in amount and water vapor barrier property. It was. Although the film (J) obtained from the amorphous norbornene ring-opening polymer hydride (J) of Comparative Example 6 had a small neck-in amount, it had poor water vapor barrier properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 本発明は、分岐剤の存在下、2-ノルボルネンが90~100重量%、脂肪族性の炭素-炭素二重結合を含まない置換基を有する2-ノルボルネン10~0重量%からなるノルボルネン系単量体を開環重合して得られる開環重合体の、炭素-炭素二重結合の80%以上を水素添加してなる、融点が110~145°C、分岐指数が0.3~0.98の結晶性ノルボルネン単量体開環重合体水素添加物、及びこれを成形して得られる成形体である。本発明によれば、工業生産性に優れた結晶性ノルボルネン単量体開環重合体水素添加物、及び生産性及び防湿性に優れる成形体が提供される。

Description

結晶性ノルボルネン系開環重合体水素化物及び成形体
 本発明は、成形性及び防湿性に優れた結晶性ノルボルネン系開環重合体水素化物、及びこの結晶性ノルボルネン系開環重合体水素化物を成形して得られる成形体に関する。
 ノルボルネン系開環重合体水素化物は、透明性に優れ、低複屈折性を有することから、光学レンズや光学シート用の樹脂材料としての利用が提案されている(特許文献1、2)。また、このものは溶融時の流動性や溶出性、耐薬品性に優れているため、包装用フィルム、医療容器をはじめとして、光学用途以外の種々の樹脂材料としても有用であることも提案されている(特許文献3、4)。
 しかし、これらの文献に記載されたノルボルネン系開環重合体水素化物の多くは非晶性であることから、その用途によっては、水蒸気バリア性、耐油性等が不十分であり、物性のさらなる改善が望まれていた。
 また、特許文献5には、末端に炭素-炭素二重結合があるアルケニル基を有するノルボルネン単量体と、末端に炭素-炭素二重結合があるアルケニル基を有しないノルボルネン単量体とを開環重合した後、水素添加することにより、非晶性のノルボルネン系開環重合体水素化物が得られることが記載されている。さらに、得られる非晶性のノルボルネン系開環重合体水素化物は成形性に優れ、光学射出成形体用の成形材料として好適であることも開示されている。
 しかし、この文献に開示された非晶性重合体は防湿性に限界があった。
 一方、結晶性を有する(すなわち、融点を有する)ノルボルネン系開環重合体水素化物としては、特許文献6~8に記載された、3環体以上のノルボルネン単量体の繰り返し単位を含有する結晶性のノルボルネン系開環重合体水素化物が知られている。これらの文献に記載のノルボルネン系開環重合体水素化物から得られる樹脂フィルム又はシートは、透明性、耐熱性及び耐薬品性に優れ、機械的特性にも優れるものである。
 しかし、これらの結晶性ノルボルネン系開環重合体水素化物を成形して得られるフィルムの透湿度は十分に要求を満たすものではなかった。また、これらの結晶性のノルボルネン系開環重合体水素化物は、溶剤に対する溶解性に乏しいため、対応する開環重合体を水素添加した反応液から析出して、触媒残渣の除去等の精製が十分に行えない場合があった。
 非特許文献1及び2には、結晶性を有する、ノルボルネンモノマ-の開環共重合体水素化物が開示されている。しかし、これらの文献には、ポリマーの物性について具体的には記載されていない。また、具体的に開示された重合体のうち、分子量が大きく、分子量分布が狭い重合体は、フィルム成形する際において、高剪断速度における剪断粘度が高いため、メルトフラクチャ-が生じやすく、表面の平滑なフィルムを得ることが困難であった。一方、分子量が小さい重合体は、成形フィルムの引っ張り破断伸びが小さく、フィルムにした際の機械的特性に問題があった。さらに、これらの文献に記載された開環重合体水素化物は水素添加率が必ずしも十分なものではないため、この重合体を成形して得られる成形体に焼けが生じ易い等の問題もあった。
特開昭60-26024号公報 特開平9-263627号公報 特開2000-313090号公報(WO2000/066357号パンフレット) 特開2003-183361号公報(EP559146号公報) 特開2007-262170号公報 特開2002-020464号公報 特開2002-194067号公報 特開2006-052333号公報 Polymer International,1994年,第34巻,49-57頁 Macromolecules,2000年,第37巻,7278-7284頁
 本出願人は、先に、2-ノルボルネンと置換基含有ノルボルネン単量体とを開環共重合して得られる開環共重合体の、炭素-炭素二重結合の80%以上を水素添加することにより得られるノルボルネン系開環重合体水素化物であって、2-ノルボルネン由来の繰り返し単位(A)の全繰り返し単位に対する存在割合が90~99重量%、置換基含有ノルボルネンモノマ-由来の繰り返し単位(B)の全繰り返し単位に対する存在割合が1~10重量%であり、かつ、融点が110~145℃であることを特徴とする結晶性ノルボルネン系開環重合体水素化物を提案している(特願2006-237000号、国際出願第PCT/JP2007/067043号等)。この結晶性ノルボルネン系開環重合体水素化物は、水蒸気バリア性、耐熱性、耐油性、機械的特性、透明性、加工性等の、成形材に求められる諸物性に優れる樹脂材料である。
 しかしながら、この結晶性ノルボルネン系開環重合体水素化物は、直鎖状の重合体であって、溶融張力が低いため、このものをTダイによるフィルムに成形する場合には、ダイの有効幅よりも押し出されたフィルムの幅の方が小さくなるネックインの程度(ネックイン量)が大きくなり易いという問題がある。分子量を大きくすることで、ネックイン量を小さくでき、フィルムの機械強度を高くすることができるが、高剪断速度における流動性が低下してフィルムの成形が困難になったり、結晶化速度が低下することによりフィルムの結晶化が充分に進まず、防湿性が低下したりすることがあった。
 本発明はかかる実情に鑑みてなされたものであり、成形性及び防湿性に優れる結晶性ノルボルネン系開環重合体水素化物、及びこれを成形して得られる成形体を提供することを目的とする。
 本発明者らは、成形性及び防湿性に優れる結晶性ノルボルネン系開環重合体水素化物を得るべく鋭意検討した結果、結晶性ノルボルネン系開環重合体水素化物に分岐構造を持たせると、分子量を大きくすることなく、水蒸気バリア性(防湿性)に優れるフィルムを容易に成形できることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記(1)~(4)の結晶性ノルボルネン系開環重合体水素化物が提供される。
(1)2-ノルボルネンが90~100重量%、及び脂肪族性の炭素-炭素二重結合を含まない置換基を有する2-ノルボルネンが10~0重量%からなるノルボルネン系単量体を開環重合して得られる開環重合体の、炭素-炭素二重結合の80%以上を水素添加してなる、融点が110~145℃、分岐指数が0.3~0.98の結晶性ノルボルネン系開環重合体水素化物。
(2)ゲル・パーミエーション・クロマトグラフィーにより測定される重量平均分子量が50,000~200,000で、(重量平均分子量)/(数平均分子量)の値が1.5~10.0である(1)に記載の結晶性ノルボルネン系開環重合体水素化物。
(3)開環重合が、分岐剤存在下で行われるものである(1)又は(2)に記載の結晶性ノルボルネン系開環重合体水素化物。
(4)230℃、荷重21.18Nにおけるメルトフローレートが15g/10分以下である(1)~(3)のいずれかに記載の結晶性ノルボルネン系開環重合体水素化物。
 本発明の第2によれば、下記(5)に記載の成形体が提供される。
(5)前記(1)~(4)のいずれかに記載の結晶性ノルボルネン系開環重合体水素化物を成形して得られる成形体。
 本発明によれば、成形性に優れる結晶性ノルボルネン系開環重合体水素化物が提供される。本発明の結晶性ノルボルネン系開環重合体水素化物を用いることにより、防湿性に優れる成形体(フィルム等)を容易に成形することができる。
 本発明の成形体は、近年の情報分野、食品分野、医療分野、土木分野等において要求される、防湿性、加工性の面で優れている。
 以下、本発明を、1)結晶性ノルボルネン系開環重合体水素化物、及び、2)成形体に項分けして詳細に説明する。
1)結晶性ノルボルネン系開環重合体水素化物、
 本発明の結晶性ノルボルネン系開環重合体水素化物は、2-ノルボルネンが90~100重量%、及び脂肪族性の炭素-炭素二重結合を含まない置換基を有する2-ノルボルネンが10~0重量%からなるノルボルネン系単量体を開環重合して得られる開環重合体の、炭素-炭素二重結合の80%以上を水素添加してなる、融点が110~145℃、分岐指数が0.3~0.98の高分子である。
(ノルボルネン系単量体)
 本発明に用いるノルボルネン系単量体は、オレフィンとメタセシス反応により分岐構造を生成しない、ノルボルネン構造を有する単量体であり、2-ノルボルネンと、脂肪族性の炭素-炭素二重結合を含まない置換基を有する2-ノルボルネンで構成される。
 これらの合計量を100重量%としたとき、2-ノルボルネン(ビシクロ[2.2.1]ヘプト-2-エン):90~100重量%、脂肪族性の炭素-炭素二重結合を含まない置換基を有する2-ノルボルネン:10~0重量%からなる。2-ノルボルネンの割合は、好ましくは95~99重量%、より好ましくは97~99重量%であり、オレフィンメタセシス反応しうる置換基以外の置換基を有する2-ノルボルネンの割合は、好ましくは1~5重量%、より好ましくは1~3重量%である。
 2-ノルボルネンは公知の化合物であり、例えば、シクロペンタジエンとエチレンとを反応させることにより得ることができる。
 脂肪族性の炭素-炭素二重結合を含まない置換基を有する2-ノルボルネンは、2-ノルボルネン環と縮合する環を有しない、脂肪族性の炭素-炭素二重結合を含まない置換基を有するノルボルネン単量体と、分子内ノルボルネン環に縮合した環構造を有する、脂肪族性の炭素-炭素二重結合を含まない置換基を有する3環以上の多環式ノルボルネン単量体とに大別される。
 前記分子内にノルボルネン環と縮合する環を有しない、脂肪族性の炭素-炭素二重結合を含まない置換基を有するノルボルネン単量体の具体例としては、5-メチル-ビシクロ[2.2.1]ヘプト-2-エン(5-メチル-2-ノルボルネン)、5-エチル-ビシクロ[2.2.1]ヘプト-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプト-2-エン、5-ヘキシル-ビシクロ[2.2.1]ヘプト-2-エン、5-デシル-ビシクロ[2.2.1]ヘプト-2-エン、5-シクロヘキシル-ビシクロ[2.2.1]ヘプト-2-エン、5-シクロペンチル-ビシクロ[2.2.1]ヘプト-2-エン等のアルキル基を有するノルボルネン類;
 5-フェニル-ビシクロ[2.2.1]ヘプト-2-エン(5-フェニル-2-ノルボルネン)等の芳香環を有するノルボルネン類;
 5-メトキシカルボニル-ビシクロ[2.2.1]ヘプト-2-エン(5-メトキシカルボニル-2-ノルボルネン)、5-エトキシカルボニル-ビシクロ[2.2.1]ヘプト-2-エン、5-メチル-5-メトキシカルボニル-ビシクロ[2.2.1]ヘプト-2-エン、5-エトキシカルボニル-5-メチル-ビシクロ[2.2.1]ヘプト-2-エン、2-メチルプロピオン酸5-ヒドロキシ-ビシクロ[2.2.1]ヘプト-2-エン、2-メチルオクタン酸5-ヒドロキシ-ビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシメチル-ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(ヒドロキシメチル)-ビシクロ[2.2.1]ヘプト-2-エン、5,5-ジ(ヒドロキシメチル)-ビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシイソプロピル-ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジカルボキシ-ビシクロ[2.2.1]ヘプト-2-エン、6-カルボキシ-5-メトキシカルボニル-ビシクロ[2.2.1]ヘプト-2-エン等の酸素原子を含む極性基を有するノルボルネン類;
 5-シアノ-ビシクロ[2.2.1]ヘプト-2-エン、6-カルボキシ-5-シアノ-ビシクロ[2.2.1]ヘプト-2-エン等の窒素原子を含む極性基を有するノルボルネン類;等が挙げられる。
 脂肪族性の炭素-炭素二重結合を含まない置換基を有する3環以上の多環式ノルボルネン単量体は、分子内にノルボルネン環と、該ノルボルネン環と縮合している1つ以上の環とを有するノルボルネン単量体である。
 具体的には、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン等のジシクロペンタジエン類;
 テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンとも言う)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン(「1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセン」ともいう。)等の芳香環を有するノルボルネン類;
 テトラシクロドデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、8-シクロヘキシルテトラシクロドデセン、8-シクロペンチルテトラシクロドデセン等の無置換又はアルキル基を有するテトラシクロドデセン類;
 8-フェニルテトラシクロドデセン等の芳香環を有するテトラシクロドデセン類;
 8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-メトキシカルボニルテトラシクロドデセン、8-ヒドロキシメチルテトラシクロドデセン、8-カルボキシテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸、テトラシクロドデセン-8,9-ジカルボン酸無水物等の酸素原子を含む置換基を有するテトラシクロドデセン類;
 8-シアノテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸イミド等の窒素原子を含む置換基を有するテトラシクロドデセン類;
 8-クロロテトラシクロドデセン等のハロゲン原子を含む置換基を有するテトラシクロドデセン類;
 8-トリメトキシシリルテトラシクロドデセン等のケイ素原子を含む置換基を有するテトラシクロドデセン類;
 ヘキサシクロヘプタデセン、12-メチルヘキサシクロヘプタデセン、12-エチルヘキサシクロヘプタデセン、12-シクロヘキシルヘキサシクロヘプタデセン、12-シクロペンチルヘキサシクロヘプタデセン等の無置換又はアルキル基を有するヘキサシクロヘプタデセン類;
 12-フェニルヘキサシクロヘプタデセン等の芳香環を有するヘキサシクロヘプタデセン類;
 12-メトキシカルボニルヘキサシクロヘプタデセン、12-メチル-12-メトキシカルボニルヘキサシクロヘプタデセン、12-ヒドロキシメチルヘキサシクロヘプタデセン、12-カルボキシヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13-ジカルボン酸、ヘキサシクロヘプタデセン12,13-ジカルボン酸無水物等の酸素原子を含む置換基を有するヘキサシクロヘプタデセン類;
 12-シアノヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13-ジカルボン酸イミド等の窒素原子を含む置換基を有するヘキサシクロヘプタデセン類;
 12-クロロヘキサシクロヘプタデセン等のハロゲン原子を含む置換基を有するヘキサシクロヘプタデセン類;
 12-トリメトキシシリルヘキサシクロヘプタデセン等のケイ素原子を含む置換基を有するヘキサシクロヘプタデセン類;等が挙げられる。
 脂肪族性の炭素-炭素二重結合を含まない置換基を有するノルボルネン単量体は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 本発明の結晶性ノルボルネン系開環重合体水素化物は分岐構造を有する。この分岐構造は、分岐剤存在下で、ノルボルネン系単量体を開環重合することにより生成させることができる。
 分岐剤は、カルベン錯体触媒存在下、2種のオレフィンの結合の組み替えが起こり、新たなオレフィンが生成するオレフィンメタセシス反応に寄与する。分岐剤は、脂肪族性の炭素-炭素二重結合を有するものであり、シクロアルカン構造又はシクロアルケン構造を有するものである。具体的には、(1)分子内に2つ以上のシクロアルケン構造を有する化合物、(2)分子内にシクロアルケン構造及び脂肪族性の炭素-炭素二重結合を含む置換基を1つ以上有する化合物、(3)脂肪族性の炭素-炭素二重結合を含む置換基を分子内に3つ以上有するシクロアルカン化合物である。
 脂肪族性の炭素-炭素二重結合を含む置換基としては、炭素数が通常2~20、好ましくは2~10、より好ましくは2~4のアルケニル基が挙げられる。具体的には、ビニル基、アリル基、3-ブテニル基、4-ペンテニル基、2-メチル-3-ブテニル基、5-ヘプチル基等である。これらの中でも、より流動性に優れるノルボルネン系開環重合体水素化物が得られることから、ビニル基とアリル基が好ましい。
 また、これらのアルケニル基は、任意の基を介して母核に結合していても良く、任意の基を介して母核に結合し環構造を形成してもよい。任意の基は、具体的には、アルキレン基、-O-、-S-、-O-CO-、-O-CH-O-CO-、フェニレン等が挙げられる。任意の基を構成する元素の数は、より流動性に優れるノルボルネン系開環重合体水素化物が得られることから、好ましくは10個以下、より好ましくは5個以下であり、また、アルキル基以外の二価の基を有しないものが好ましい。
 このような分岐剤としては、5-ビニル-ビシクロ[2.2.1]ヘプト-2-エン、5-アリル-ビシクロ[2.2.1]ヘプト-2-エン、5-ビニルオキシカルボニル-ビシクロ[2.2.1]ヘプト-2-エン、8-ビニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-アリル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-ビニルオキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン等のようなオレフィンメタセシス反応しうる置換基を有するノルボルネン構造を有する単量体;
 exo-trans-exo-ペンタシクロ[8.2.1.14,7.02,9.03,8]テトラデカ-5,11-ジエン(以下、「NB-dimer」ということがある。)、4,4a,4b,5,8,8a,9,9a-オクタヒドロ-1,4:5,8-ビスメタノ-1H-フルオレン、1α,4α:5α,8α-ジメタノ-1,4,4a,5,8,8a,9,9a,10,10a-デカヒドロアントラセン、5,5’-ビ(ノルボルナ-2-エン)、テトラシクロ[6.2.1.13,6.02,7]ドデカン-4,9-ジエン、1,4,4a,5,8,8a,9,9a,10,10a-デカヒドロ-1,4:5,8:9,10-トリメタノアントラセン等のような分子内に2つのノルボルネン構造を有する単量体;
 1,2,4-トリビニルシクロヘキサン、4-(2-プロペニル)-1,6-ヘプタジエン、3-ビニル-1,4-ペンタジエン、3-ビニル-1,5-ヘキサジエン、1,3,5-トリビニルベンゼン、1,2,4-トリビニルベンゼン、1,2,4,5-テトラビニルベンゼン等のような分子内に3つ以上の末端炭素-炭素二重結合を有する単量体;等が挙げられる。
 例えば、分岐剤として、分子内にシクロアルケン構造及び脂肪族性の炭素-炭素二重結合を含む置換基を1つ以上有する化合物である5-ビニル-ビシクロ[2.2.1]ヘプト-2-エン(VNB)の存在下、ノルボルネン系単量体である2-ノルボルネン(2-NB)を開環重合させると、下記に示すごとく、3分岐のポリマーが生成する。
Figure JPOXMLDOC01-appb-C000001
(式中、Mはタングステン等の遷移金属原子を表し、Lはハロゲン原子等の配位子を表し、Rはアルキル基等を表し、m、n、pはそれぞれ正の整数を表す。)
 すなわち、2-ノルボルネン(2-NB)と5-ビニルノルボルネン(VNB)が開環メタセシス反応を起こしてポリマー鎖(1)を生じ、これに別のポリマー鎖(2-1)がメタセシス反応することで、3分岐のポリマー(3)が生成する。
 分岐剤として、分子内に2つ以上のシクロアルケン構造を有する化合物であるNB-dimerの存在下、ノルボルネン系単量体である2-ノルボルネン(2-NB)を開環重合させると、下記に示すごとく、4分岐のポリマーが生成する。
Figure JPOXMLDOC01-appb-C000002
(式中、M、L、R、m、n、pは前記と同じ意味を表しqは正の整数を表す。)
 すなわち、2-ノルボルネン(2-NB)とNB-dimerが開環メタセシス反応を起こしてポリマー鎖(4)を生じ、これに別のポリマー鎖(2-1)がメタセシス反応することで、ポリマー鎖(5)が生成する。さらに、これに2-ノルボルネン(NB)がメタセシス反応を起こすことで、4分岐ポリマー(6)が生成する。
 また、分岐剤として、脂肪族性の炭素-炭素二重結合を含む置換基を分子内に3つ以上有するシクロアルカン化合物である1,2,4-トリビニルシクロヘキサン(TVC)の存在下、ノルボルネン系単量体である2-ノルボルネン(2-NB)を開環重合させると、下記に示すごとく、3分岐のポリマーが生成する。
Figure JPOXMLDOC01-appb-C000003
(式中、M、L、m、n、pは前記と同じ意味を表す。)
 すなわち、2-ノルボルネン(2-NB)から得られるポリマー鎖(2)と、1,2,4-トリビニルシクロヘキサン(TVC)の3つのビニル基とがそれぞれメタセシス反応を起こして、3分岐のポリマー(7)が生成する。
 なお、用いる分岐剤が、開環メタセシス重合可能な母核を有する場合、この単量体も、オレフィンメタセシス反応しうる置換基を有しないノルボルネン単量体と共に開環重合に寄与することになる。
 後述するように、本発明の結晶性ノルボルネン系開環重合体水素化物は、分岐指数が0.3~0.98の重合体である。開環重合における分岐剤の配合量を適宜調節することにより、所望の分岐指数を有する結晶性ノルボルネン系開環重合体水素化物を得ることができる。
 分岐剤の配合量は、ノルボルネン系単量体の合計100モル%としたときに、通常、0.01~5モル%、好ましくは0.05~5モル%、より好ましくは0.1~5モル%である。
(メタセシス重合触媒)
 ノルボルネン系単量体の開環重合に用いるメタセシス重合触媒としては、例えば、特公昭41-20111号公報、特開昭46-14910号公報、特公昭57-17883号公報、特公昭57-61044号公報、特開昭54-86600号公報、特開昭58-127728号公報、特開平1-240517号公報等に記載された、本質的に(a)遷移金属化合物触媒成分と(b)金属化合物助触媒成分からなる一般のメタセシス重合触媒;シュロック型重合触媒(特開平7-179575号公報、Schrock et al.,J.Am.Chem.Soc.,1990年,第112巻,3875頁~等)や、グラブス型重合触媒(Fu et al.,J.Am.Chem.Soc.,1993年,第115巻,9856頁~;Nguyen et al.,J.Am.Chem.Soc.,1992年,第114巻,3974頁~;Grubbs et al.,WO98/21214号パンフレット等)等のリビング開環メタセシス触媒;等が挙げられる。
 これらの中でも、得られる重合体の分子量分布を好適な範囲に調節するには、(a)遷移金属化合物触媒成分と(b)金属化合物助触媒成分とからなるメタセシス重合触媒が好ましい。
 前記(a)遷移金属化合物触媒成分は、周期律表第3~11族の遷移金属の化合物である。例えば、これらの遷移金属のハロゲン化物、オキシハロゲン化物、アルコキシハロゲン化物、アルコキシド、カルボン酸塩、(オキシ)アセチルアセトネ-ト、カルボニル錯体、アセトニトリル錯体、ヒドリド錯体、これらの誘導体、これら又はこれらの誘導体のP(C等の錯化剤による錯化物が挙げられる。
 具体例としては、TiCl、TiBr、VOCl、WBr、WCl、WOCl、MoCl、MoOCl、WO、HWO等が挙げられる。なかでも、重合活性等の点から、W、Mo、Ti、又はVの化合物が好ましく、特にこれらのハロゲン化物、オキシハロゲン化物、又はアルコキシハロゲン化物が好ましい。
 前記(b)金属化合物助触媒成分は、周期律表第1~2族、及び第12~14族の金属の化合物で少なくとも一つの金属元素-炭素結合、又は金属元素-水素結合を有するものである。例えば、Al、Sn、Li、Na、Mg、Zn、Cd、B等の有機化合物等が挙げられる。
 具体例としては、トリメチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムモノクロリド、メチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド等の有機アルミニウム化合物;テトラメチルスズ、ジエチルジメチルスズ、テトラブチルスズ、テトラフェニルスズ等の有機スズ化合物;n-ブチルリチウム等の有機リチウム化合物;n-ペンチルナトリウム等の有機ナトリウム化合物;メチルマグネシウムイオジド等の有機マグネシウム化合物;ジエチル亜鉛等の有機亜鉛化合物;ジエチルカドミウム等の有機カドミウム化合物;トリメチルホウ素等の有機ホウ素化合物;等が挙げられる。これらの中で、第13族の金属の化合物が好ましく、特にAlの有機化合物が好ましい。
 また、前記(a)成分、(b)成分の他に第三成分を加えて、メタセシス重合活性を高めることができる。用いる第三成分としては、脂肪族第三級アミン、芳香族第三級アミン、分子状酸素、アルコール、エーテル、過酸化物、カルボン酸、酸無水物、酸クロリド、エステル、ケトン、含窒素化合物、含ハロゲン化合物、その他のルイス酸等が挙げられる。
 これらの成分の配合比は、(a)成分:(b)成分が金属元素のモル比で、通常1:1~1:100、好ましくは1:2~1:10の範囲である。また、(a)成分:第三成分がモル比で、通常1:0.005~1:50、好ましくは1:1~1:10の範囲である。
 また、重合触媒の使用割合は、(重合触媒中の遷移金属):(全単量体)のモル比で、通常1:100~1:2,000,000、好ましくは1:1,000~1:20,000、より好ましくは1:5,000~1:8,000である。触媒量が多すぎると、重合反応後の触媒除去が困難になったり、分子量分布が広がったりするおそれがあり、一方、少なすぎると十分な重合活性が得られない。
(分子量調節剤)
 開環重合においては、反応系に分子量調節剤を添加することができる。分子量調節剤を添加することで、得られる開環重合体の分子量を調整することができる。
 用いる分子量調節剤としては特に限定されず、従来公知のものが使用できる。例えば、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィン類;スチレン、ビニルトルエン等のスチレン類;エチルビニルエーテル、イソブチルビニルエーテル、アリルグリシジルエーテル等のエーテル類;アリルクロライド等のハロゲン含有ビニル化合物;グリシジルメタクリレ-ト等酸素含有ビニル化合物;アクリルアミド等の窒素含有ビニル化合物;1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、2-メチル-1,4-ペンタジエン、2,5-ジメチル-1,5-ヘキサジエン等の非共役ジエン、又は1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン等を挙げることができる。これらの中で、分子量調節のし易さから、α-オレフィン類が好ましい。
 分子量調節剤の添加量は、所望の分子量を持つ重合体を得るに足る量であればよく、(分子量調節剤):(全単量体)のモル比で、通常1:50~1:1,000,000、好ましくは1:100~1:5,000、より好ましくは1:300~1:3,000である。
(開環重合)
 開環重合は、ノルボルネン系単量体、分岐剤、メタセシス重合触媒、及び所望により分子量調節剤を混合することにより開始させることができる。
 開環重合は通常、溶媒中で行う。用いる有機溶媒としては、重合体及び重合体水素化物が所定の条件で溶解もしくは分散し、かつ、重合及び水素添加反応に影響しないものであれば特に限定されないが、工業的に汎用されている溶媒が好ましい。
 このような有機溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデンシクロヘキサン、シクロオクタン等の脂環族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系脂肪族炭化水素類;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素類;ニトロメタン、ニトロベンゼン、アセトニトリル等の含窒素炭化水素類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;等の溶媒を使用することができる。これらの有機溶媒は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。これらの中でも、工業的に汎用されている芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素及びエーテル類が好ましい。
 重合を有機溶媒中で行う場合、単量体(モノマー混合物)の濃度は、1~50重量%が好ましく、2~45重量%がより好ましく、3~40重量%が特に好ましい。単量体の濃度が1重量%より小さいと生産性が低くなるおそれがあり、50重量%より大きいと重合後の溶液粘度が高すぎて、その後の水素添加反応が困難となるおそれがある。
 開環重合を行う温度は、特に限定されないが、通常-20~+100℃、好ましくは10~80℃である。重合温度が低すぎると反応速度が低下し、高すぎると副反応により、分子量分布が広がるおそれがある。
 重合時間は、特に制限はなく、通常1分間~100時間である。
 重合時の圧力条件は特に限定されないが、加圧条件下で重合する場合、加える圧力は通常1MPa以下である。
 反応終了後においては、通常の後処理操作により目的とするノルボルネン系開環重合体を単離することができる。
(水素添加反応)
 得られたノルボルネン系開環重合体は、次の水素添加反応工程へ供される。後述するように、開環重合を行った反応溶液に水素添加触媒を添加して、ノルボルネン系開環重合体を単離することなく、連続的に水素添加反応を行うこともできる。
 ノルボルネン系開環重合体の水素添加反応は、ノルボルネン系開環重合体の主鎖又は/及び側鎖に存在する炭素-炭素二重結合に水素添加する反応である。
 この水素添加反応は、ノルボルネン系開環重合体の不活性溶媒溶液に水素添加触媒を添加し、反応系内に水素を供給して行う。
 水素添加触媒としては、オレフィン化合物の水素添加に際して一般に使用されているものであれば、均一系触媒、不均一系触媒のいずれも使用することができる。得られる重合体中の残留金属の除去等を考慮すると、不均一系触媒が好ましい。
 均一系触媒としては、例えば、酢酸コバルト/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリイソブチルアルミニウム、チタノセンジクロリド/n-ブチルリチウム、ジルコノセンジクロリド/sec-ブチルリチウム、テトラブトキシチタネ-ト/ジメチルマグネシウム等の組み合わせ等の遷移金属化合物とアルカリ金属化合物の組み合わせからなる触媒系;ジクロロビス(トリフェニルホスフィン)パラジウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、クロロトリス(トリフェニルホスフィン)ロジウム、ビス(トリシクロヘキシルホスフィン)ベンジリジンルテニウム(IV)ジクロリド等の貴金属錯体触媒;等が挙げられる。
 不均一触媒としては、例えば、ニッケル/シリカ、ニッケル/ケイソウ土、ニッケル/アルミナ、パラジウム/カーボン、パラジウム/シリカ、パラジウム/ケイソウ土、パラジウム/アルミナ等の、ニッケル、パラジウム、白金、ロジウム、ルテニウム、又はこれらの金属をカ-ボン、シリカ、ケイソウ土、アルミナ、酸化チタン等の担体に担持させた固体触媒系が挙げられる。
 触媒の使用量は、ノルボルネン系開環重合体100重量部に対し、通常0.05~10重量部である。
 水素添加反応に用いる不活性有機溶媒としては、前述した開環重合において用いることができる有機溶媒として例示したものと同様の、脂肪族炭化水素類、脂環族炭化水素類、芳香族炭化水素類、ハロゲン系芳香族炭化水素類、含窒素炭化水素類、エーテル類等が挙げられる。
 水素添加反応の温度は、使用する水素添加触媒によって適する条件範囲が異なるが、通常、-20℃~+300℃、好ましくは0℃~+250℃である。水素添加温度が低すぎると反応速度が遅くなるおそれがあり、高すぎると副反応が起こる可能性がある。
 水素圧力は、通常0.01~20MPa、好ましくは0.1~10MPa、より好ましくは1~5MPaである。水素圧力が低すぎると水素添加速度が遅くなり、高すぎると高耐圧反応装置が必要となるので好ましくない。
 水素添加反応終了後は、反応溶液から水素添加触媒等を濾別し、濾別後の重合体溶液から溶媒等の揮発成分を除去することにより、目的とする結晶性ノルボルネン系開環重合体水素化物を得ることができる。また、水素添加反応液に、必要に応じて酸化防止剤(安定剤)、核剤、発泡剤、難燃剤、熱可塑性樹脂や軟質重合体等のその他の重合体、滑剤等の配合剤や、染料、帯電防止剤、紫外線吸収剤、耐光安定剤、ワックス等の樹脂工業分野で通常使用されるその他の配合剤を添加し、必要に応じて加熱した後、濾別を行うこともできる。
 溶媒等の揮発成分を除去する方法としては、凝固法や直接乾燥法等公知の方法を採用することができる。
 凝固法は、重合体溶液を重合体の貧溶媒と混合することにより、重合体を析出させる方法である。用いる貧溶媒としては、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル、酢酸ブチル等のエステル類;等の極性溶媒が挙げられる。
 凝固して得られた粒子状の成分は、例えば、真空中又は窒素中若しくは空気中で加熱して乾燥させて粒子状にするか、さらに必要に応じて溶融押出機から押し出してペレット状にすることができる。
 直接乾燥法は、重合体溶液を減圧下加熱して溶媒を除去する方法である。この方法には、遠心薄膜連続蒸発乾燥機、掻面熱交換型連続反応器型乾燥機、高粘度リアクタ装置等の公知の装置を用いて行うことができる。真空度や温度はその装置によって適宜選択され、限定されない。
 以上のようにして、本発明の結晶性ノルボルネン系開環重合体水素化物を得ることができる。
(結晶性ノルボルネン系開環重合体水素化物)
 本発明の結晶性ノルボルネン系開環重合体水素化物は、ノルボルネン系開環重合体中の炭素-炭素二重結合の水素添加率が通常80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは99%以上、特に好ましくは99.9%以上である。上記の範囲にあると、成形体の樹脂焼けに起因する着色が抑えられ好ましい。
 結晶性ノルボルネン系開環重合体水素化物の水素添加率は、溶媒に重クロロホルムを用い、H-NMRにより測定して求めることができる。
 本発明の結晶性ノルボルネン系開環重合体水素化物の異性化率は、通常25%以下、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは10%以下である。異性化率が高すぎると、該重合体の耐熱性が低下するおそれがある。
 異性化率は、溶媒に重クロロホルムを用い、13C-NMRにより測定した33.0ppmピーク積分値/(31.8ppmピーク積分値+33.0ppmピーク積分値)×100から算出することができる。13C-NMRスペクトルにおいて、31.8ppmピークは、該重合体中の2-ノルボルネン由来の繰り返し単位のシス体由来のもの、33.0ppmピークは、該重合体中の2-ノルボルネン由来の繰り返し単位のトランス体由来のものである。
 異性化率を上記範囲にするためには、ノルボルネン系開環重合体の水素添加反応において、反応温度を、好ましくは100~230℃、より好ましくは130~220℃、特に好ましくは150~210℃とし、かつ、使用する水素添加触媒の使用量を、ノルボルネン系開環重合体100重量部に対し、好ましくは0.2~5重量部、より好ましくは0.2~2重量部とする。このような範囲にあると、水素添加反応速度と得られるポリマーの耐熱性のバランスに優れ、好適である。
 本発明の結晶性ノルボルネン系開環重合体水素化物の2-ノルボルネン由来の繰り返し単位(A)の全繰り返し単位に対する存在割合が、通常90重量%以上、好ましくは95重量%以上、より好ましくは97重量%以上であり、脂肪族性の炭素-炭素二重結合を含まない置換基を有するノルボルネン単量体由来の繰り返し単位(B)の全繰り返し単位に対する存在割合が10重量%以下、好ましくは5重量%以下、より好ましくは3重量%以下である。繰り返し単位(A)と繰り返し単位(B)の存在割合がこのような範囲にあると、成形体の機械的特性、耐熱性や水蒸気バリア性が良好となる。
 本発明の結晶性ノルボルネン系開環重合体水素化物の分岐構造を有する。その分岐指数は、0.3~0.98、好ましくは0.4~0.95である。分岐指数が大きすぎると透湿度は高くなるものの、フィルム製造時の結晶性ノルボルネン系開環重合体水素化物の溶融張力が低くなり、フィルム成形性が悪化するので好ましくない。分岐指数が小さすぎると、透湿度や耐熱性が低下するので好ましくない。
 分岐指数は、g=[η]Bra/[η]Linによって定義される。
 [η]Braは分岐状の結晶性ノルボルネン系開環重合体水素化物の極限粘度、[η]Linは同一の重量平均分子量である直鎖状の結晶性ノルボルネン系開環重合体水素化物の極限粘度である。ここで極限粘度[η]は、シクロヘキサンに溶解した試料を60℃で測定した値である。
 結晶性ノルボルネン系開環重合体水素化物の分岐係数が上述した範囲であれば、同じ重量平均分子量でも溶融張力が高くなるので好ましい。分岐指数が高すぎると、同じ重量平均分子量でも溶融張力が低下する。
 溶融張力が低下すると、例えば、Tダイによるフィルムの成形では、ダイの有効幅よりも押し出されたフィルムの幅の方がかなり小さくなる”ネックイン”という現象が生じる。ネックインが生じると、フィルムの両端部は肉厚が大きくなるのでこの部分をトリミング(取り除く)して製品とする。このネックインの程度が小さいほど、得られるフィルムの幅が広くなり、生産性が向上する。また、ネックインの程度が大きいということは、結晶性ノルボルネン系開環重合体水素化物の溶融張力が低いということであり、フィルム製造時の操作性の低下、得られるフィルムの表面精度の低下を引き起こす原因となる。
 本発明の結晶性ノルボルネン系開環重合体水素化物は、シクロヘキサンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)により直角度レーザー光散乱光度測定法で測定した重量平均分子量(Mw)で、好ましくは50,000~200,000、より好ましくは70,000~180,000、さらに好ましくは80,000~150,000である。
 結晶性ノルボルネン系開環重合体水素化物のMwがこの範囲にあると、重合体の溶剤への溶解性が良好であるため、ポリマーの生産性に優れ、ポリマーの精製も容易であり、かつ、成形も容易であり、成形体の機械的特性や耐熱性が良好となる。すなわち、Mwが高すぎると、溶液粘度が高くなりすぎ、濾過性が低下するため、生産性が悪化するおそれがあり、また、当該樹脂をフィルム成形する際には、フィルムの膜厚精度を高めるため樹脂温度を高くする必要が生じ、樹脂焼けに起因するダイラインが発生するおそれがある。一方、Mwが低すぎると、成形品の機械的特性や耐熱性が低下するおそれや、当該重合体水素化物が結晶性であるため、溶液に溶解し難くなり、ポリマーの生産性の悪化やポリマーの精製が困難になるおそれがある。
 本発明の結晶性ノルボルネン系開環重合体水素化物は、その分子量分布(Mw/Mn)が、好ましくは1.5~10.0、より好ましくは2.0~9.0、さらに好ましくは3.0~8.0、特に好ましくは4.0~7.0である。
 Mw/Mnが狭すぎると、該重合体の温度に対する溶融粘度が敏感に変化し易くなるため、フィルム、シート等の成形品の加工性が悪化するおそれがある。また、Mw/Mnが広すぎると、成形品の機械的特性が低下するおそれがある。
 本発明の結晶性ノルボルネン系開環重合体水素化物の融点は、通常110~145℃、好ましくは120~145℃、より好ましくは130℃~145℃である。融点がこのような範囲にあると、成形品の耐熱性に優れ好適である。特に130℃~145℃の範囲においては、医療用成形品や食品用成形品において行われるスチ-ム滅菌にも耐えられるため、好ましい。結晶性ノルボルネン系開環重合体水素化物の融点は、ノルボルネン系開環重合体水素化物の、分子量、分子量分布、異性化率等によって変化する。
 本発明の結晶性ノルボルネン系開環重合体水素化物の、230℃、荷重21.18Nにおけるメルトフローレートは、通常15g/10分以下、好ましくは10g/10分以下である。また、280℃、荷重21.18Nにおけるメルトフローレートは、通常100g/10分以下、好ましくは70g/10分以下である。メルトフローレートがこの範囲であれば、成形安定性が高く、厚み精度の良いフィルムを得ることができる。
 本発明の結晶性ノルボルネン系開環重合体水素化物は、異物が少ないことが好ましい。フィルム等のプラスチック成形品の金属残渣や異物等は、電子部品への適用において電気特性の低下を招くおそれがある。重合反応後又は水素添加反応後に、孔径が0.2μm以下のフィルタにて重合体溶液を濾過することによって金属残査や異物等を精密に取り除くことができる。
 本発明の結晶性ノルボルネン系開環重合体水素化物は、融点を有する重合体、すなわち結晶構造を形成する重合体であるので、成形体内部に結晶部を形成(結晶化)し、これと非晶部とが相俟って成形品の引張り破断伸び等の機械的特性が向上する。
 本発明の結晶性ノルボルネン系開環重合体水素化物には、所望により酸化防止剤(安定剤)、核剤、発泡剤、難燃剤、熱可塑性樹脂や軟質重合体等のその他の重合体、滑剤等の配合剤や、染料、帯電防止剤、紫外線吸収剤、耐光安定剤、ワックス等の樹脂工業分野で通常使用される配合剤を添加して樹脂組成物とすることができる。
 配合剤の添加する方法としては、水素添加反応液に配合剤を添加する方法;開環重合体水素化物と配合剤を、単軸押出機、2軸押出機、ロール、バンバリーミキサー等の混練機によって溶融混合する方法;等が挙げられる。
 本発明の結晶性ノルボルネン系開環重合体水素化物(又は樹脂組成物)は、通常、取り扱いやすいようにペレットと呼ばれる米粒程度の大きさに加工され、このものを使用して、後述する本発明の成形体を製造することができる。
 このペレットは、例えば、光ディスクやレンズのように射出成形によって得られるもの、チュ-ブや棒状に溶融押出成形したもの、溶融押出しロールで巻き取ったシートやフィルム、ペレットを熱プレスによりシート状に成形したもの、適当な溶剤に溶解し溶液をキャストして得られるフィルム、さらにフィルムやシートを延伸したもの等、様々な成形品に利用される。
2)成形体
 本発明の成形体は、本発明の結晶性ノルボルネン系開環重合体水素化物を成形して得られるものである。
 本発明の成形体は、例えば、上述したペレットと呼ばれる米粒程度の大きさに加工した後、このものを使用して成形加工することにより製造することができる。
 本発明の成形体の形状としては特に制限されず、各種目的に応じた形状、大きさとすればよい。
 成形方法も特に制限されず、公知の成形方法を採用することができる。例えば、射出成形法、射出圧縮成形法、プレス成形法、押出成形法、ブロー成形法、真空成形法等が挙げられる。
 本発明の成形体としては、フィルムであることが好ましい。
 フィルムを成形する方法に特に制限はなく、加熱溶融成形法、溶液流延法のいずれも用いることができる。
 加熱溶融成形法は、上記のペレットを、重合体の融点(Tm)以上で、熱分解温度未満の温度に加熱して流動状態にしてフィルムに成形する方法である。加熱溶融成形法には、押出成形法、カレンダー成形法、圧縮成形法、インフレーション成形法、射出成形法、ブロー成形法、延伸成形法等がある。また、押出成形法、カレンダー成形法、インフレーション成形法等により製膜した後に、延伸成形法を行ってもよい。
 加熱溶融成形法における加熱、加圧条件としては、成形機、用いる結晶性ノルボルネン系開環重合体水素化物の特性等により適宜選択すればよく、温度は、通常Tm~(Tm+100℃)、好ましくは(Tm+20℃)~(Tm+50℃)である。
 成形時の圧力は、通常0.5~100MPa、好ましくは1~50MPaである。
 加圧時間は、通常数秒から数十分程度である。
 一方、溶液流延法は、結晶性ノルボルネン系開環重合体水素化物や必要に応じて配合される配合剤を有機溶媒に溶解して、このものを平面上又はロール上にキャスティングして、溶媒を加熱により除去してフィルム及びシートを成形する方法である。
 用いる溶媒としては、ノルボルネン系単量体の開環重合反応及び開環重合体の水素添加反応の溶媒として例示したものと同様の、脂肪族炭化水素類、脂環族炭化水素類、芳香族炭化水素類、ハロゲン系芳香族炭化水素類、含窒素炭化水素類、エーテル類等が挙げられる。
 溶液流延法は、溶媒を揮散する温度が成形温度となり、その温度は使用する溶媒の種類によって適宜設定される。
 また、成形後に、成形品の結晶性をより強く現出するために、成形体をアニール処理しても良い。
 フィルムの厚みは特に限定されないが、通常1μmから20mm、好ましくは5μmから5mm、より好ましくは10μmから2mmである。フィルムとシートの区別に格別な規定はなく、厚みによって区別することもあるが、用途や業種における慣習により呼称が変わるのが実状である。
 フィルムの機械的強度や水蒸気バリア性を増大すべく、結晶化度を高めるために延伸を施しても良い。延伸とは、成形されたフィルムを、続いて1.1~10倍程度伸張して塑性変形を与えることである。この塑性変形は、内部の摩擦で、結晶鎖は勿論、非晶鎖も引き伸ばして配向させる効果を有する。
 フィルムは、結晶性ノルボルネン系開環重合体水素化物を含有する層と、その他の重合体を含有する層とを有する積層体であってもよい。
 その他の重合体としては、ゴム質重合体又はその他の樹脂が挙げられ、それらの具体例は、いずれも結晶性ノルボルネン系開環重合体水素化物に配合して使用できるものとして前記したものと同様である。
 積層する層の数は、通常2層又は3層であるが、更に多層の積層体とすることもできる。3層以上の多層における重合体種による層の配置順序は、目的や用途により適宜設定することができる。
 また、同種の重合体の層を他の重合体の層を隔てて配置してもよく、例えば、結晶性ノルボルネン系開環重合体水素化物を含有する2つの層の間にポリスチレンを含む層を挟む3層の積層体や、さらにその一方の外側に水素化スチレン-イソプレンブロック共重合体を含む層が積層された4層の積層体等が可能である。
 積層方法としては、層と層の間に接着剤を塗布して貼り合わせる方法、単層もしくは複数層のフィルム又はシートを熱もしくは高周波により融点以上に加熱して融着する方法、結晶性ノルボルネン系開環重合体水素化物又はその他の重合体のフィルム又はシートの表面に、その他の重合体又は結晶性ノルボルネン系開環重合体水素化物を溶解させた有機溶媒を塗布して乾燥させる方法等がある。
 また、押出機で結晶性ノルボルネン系開環重合体水素化物とその他の重合体とを共押出して積層体を製造することもできる。
 本発明の結晶性ノルボルネン系開環重合体水素化物から得られるフィルムは、水蒸気バリア性、耐熱性、透明性、耐油性に優れ、かつ、引張り破断伸び等機の械的的特性に優れる。また、熱分解温度が高いので、加工温度範囲が広い利点を有する。
 また、このフィルムは水蒸気バリア性に優れる。本発明の厚さ100μmの樹脂フィルム又はシートのJIS K 7129(A法)に基づいて測定される透湿度は、通常0.50g/(m・24h)以下、好ましくは0.40g/(m・24h)以下である。
 これらの特徴を有するフィルムは、食品分野、医療分野、ディスプレイ分野、エネルギ-分野、光学分野、電気電子分野、通信分野、自動車分野、民生分野、土木建築分野等の多岐の用途で利用することができる。
 なかでも、食品分野、医療分野、エネルギー分野、ディスプレイ分野等の用途に適している。
 食品分野としては、ハム、ソーセージ、レトルト食品、冷凍食品等の加工食品、乾燥食品、特定保険食品、米飯、菓子、食肉、ラップフィルム、シュリンクフィルム等の食品包装袋、ブリスター・パッケージ用フィルム等として使用できる。
 医療分野では、薬栓、輸液用バッグ、点滴用バッグ、プレス・スルー・パッケージ(PTP)用フィルム、ブリスター・パッケージ用フィルム等で使用できる。
 エネルギー分野では太陽光発電システム周辺部材、燃料電池周辺部材、アルコール含有燃料系統部材及びそれらの包装フィルム等として使用できる。
 ディスプレイ分野では、バリアーフィルム、位相差フィルム、偏光フィルム、光拡散シート、集光シート等として使用できる。
 以下、本発明について、実施例及び比較例を挙げて、より具体的に説明する。ただし本発明は、これらの実施例のみに限定されるものではない。以下の実施例及び比較例において、部又は%は、特に断りがない限り、重量基準である。
 以下の実施例及び比較例において、各種物性の測定法は次のとおりである。
(1)ノルボルネン系開環重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、トルエンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として測定した。
 測定装置として、GPC-8020シリーズ(DP8020、SD8022、AS8020、CO8020、RI8020、東ソー社製)を用いた。
 標準ポリスチレンとしては、標準ポリスチレン(Mwが500、2630、10200、37900、96400、427000、1090000、5480000のものの計8点、東ソ-社製)を用いた。
 サンプルは、サンプル濃度1mg/mlになるように、測定試料をトルエンに溶解後、カートリッジフィルター(ポリテトラフルオロエチレン製、孔径0.5μm)で濾過して調製した。
 測定は、カラムに、TSKgel GMHHR・H(東ソー社製)を2本直列に繋いで用い、流速1.0ml/min、サンプル注入量100μl、カラム温度40℃の条件で行った。
(2)ノルボルネン系開環重合体水素化物の絶対重量平均分子量(Mw)及び数平均分子量(Mn)は、シクロヘキサンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)により、直角度レーザー光散乱光度測定法で測定した。
 サンプルは、サンプル濃度1mg/mlになるように、60℃にて測定試料をシクロヘキサンに加熱溶解させて調製した。
 測定装置として、Model 350 HTGPC(Viscotek社製)を用いた。
 測定は、カラムに、TSKgel G2000HHR、TSKgel G4000HHR、TSKgel G4000HHR(東ソー社製)を3本直列に繋いで用い、流速1.0ml/min、サンプル注入量100μl、カラム温度60℃の条件で行った。
(3)結晶性ノルボルネン系開環重合体水素化物の水素添加率は、溶媒に重クロロホルムを用い、H-NMRにより測定した。
(4)異性化率は、溶媒に重クロロホルムを用い、13C-NMRにより測定した33.0ppmピーク積分値/(31.8ppmピーク積分値+33.0ppmピーク積分値)×100から算出して求めた。
 ちなみに、31.8ppmピークは、該重合体中の2-ノルボルネンの繰り返し単位のシス体由来のもの、33.0ppmピークは、該重合体中の2-ノルボルネンの繰り返し単位のトランス体由来のものである。
(5)融点(Tm)は、示差走査熱量分析計(製品名「DSC6220SII」、ナノテクノロジ-社製)を用いて、JIS K 7121に基づき、試料を融点より30℃以上に加熱した後、冷却速度-10℃/minで室温まで冷却し、その後、昇温速度10℃/minで測定した。
(6)メルトフローレートは、JIS K 7210に基づき、230℃、荷重21.18N、及び280℃、荷重21.18Nで測定した。
(7)分岐指数は、分岐状のノルボルネン系開環重合体水素化物の極限粘度[η]Braを、同じ重量平均分子量の直鎖状のノルボルネン系開環重合体水素化物の極限粘度[η]Linで除した値として算出した。
 極限粘度[η]は、シクロヘキサンに溶解した試料を、60℃下、ウデロ-デ粘度計を用いる多点法により、濃度調整4点の粘度を測定し、各測定点の関係を濃度ゼロに外挿した。
 同じ重量平均分子量の直鎖状のノルボルネン系開環重合体水素化物の極限粘度は、4点以上の異なる絶対重量平均分子量の直鎖状のノルボルネン系開環重合体水素化物の極限粘度を[η]Lin=KMw(ここで、[η]Linは極限粘度、Mwは絶対平均分子量、K、aは定数である)で近似し、内挿することで求めた。
 直鎖状のノルボルネン系開環重合体水素化物は、オレフィンメタセシス反応しうる置換基を有する化合物(以下、「分岐化剤」ということがある。)の非存在下、分岐状のノルボルネン系開環重合体水素化物と同一の単量体を共重合後、水素添加することで得ることができ、分子量調節剤の量を変えることで異なる重量平均分子量の直鎖状のノルボルネン系開環重合体を得た。
(8)ネックインは、成形したフィルム幅からダイの幅を引いた値で評価した。
 フィルムの成形は、スクリュー径20mmφ、圧縮比2.5又は3.1、L/D=30のスクリューを備えたハンガーマニュホールドタイプのTダイ式フィルム溶融押出成形機(据置型、GSIクレオス社製)を使用し、以下の条件で、ペレット状の重合体を、下記の成形条件によるTダイ成形を行い、単層フィルム(C1)(層厚100μm)を製膜した。
<成形条件>
 ダイリップ:0.8mm
 溶融樹脂温度:樹脂のTm+40℃(融点を持たない樹脂は、Tg+100℃)
 Tダイの幅:300mm
 Tダイ温度:樹脂のTm+50℃(融点を持たない樹脂は、Tg+110℃)
 冷却ロール:樹脂のTm-20℃(融点を持たない樹脂は、Tg-15℃)
 キャストロール:樹脂のTm-10℃(融点を持たない樹脂は、Tg-5℃)
 シート引き取り速度:2.5m/分
 Tダイと冷却ロールの距離:100mm
 スクリュー圧縮比:融点をもたない樹脂は圧縮比2.5のスクリューを使用し、それ以外は圧縮比3.1のスクリューを使用した。
(9)透湿度は、JIS K 7129(A法)に基づいて温度:40℃、湿度:90%RHの条件下の水蒸気透過度を水蒸気透過度テスタ-(L80-5000型、LYSSY社製)で測定した。
[実施例1]
(開環重合)
 窒素雰囲気下、脱水したシクロヘキサン700重量部に、1-ヘキセン0.89重量部、ジイソプロピルエーテル1.06重量部、トリイソブチルアルミニウム0.34重量部、及びイソブチルアルコール0.13重量部を室温で反応器に入れ混合した。そこへ、2-ノルボルネン(2-NB)250重量部、5-ビニル-2-ノルボルネン(以下、「VNB」とすることがある。)1.25重量部及び六塩化タングステン1.0重量%トルエン溶液26重量部を、55℃に保ちながら、2時間かけて連続的に添加し、重合を行った。重合転化率は、ほぼ100%であった。
 得られた開環重合体(A)の重量平均分子量(Mw)は、61,000、分子量分布(Mw/Mn)は4.1であった。
(水素添加反応)
 上記で得た重合反応液を耐圧の水素化反応器に移送し、そこへ、ケイソウ土担持ニッケル触媒(T8400、ニッケル担持率58重量%、ズードヘミー触媒社製)1.0重量部を加え、200℃、水素圧4.5MPaで6時間反応させた。この溶液を、珪藻土を濾過助剤としてステンレス製金網を備えた濾過器により濾過し、触媒を除去した。
 得られた反応溶液を3000重量部のイソプロピルアルコール中に撹拌下に注いで水素化物を沈殿させ、濾別して回収した。さらに、アセトン500重量部で洗浄したのち、0.13×10Pa以下、100℃に設定した減圧乾燥器中で48時間乾燥して、開環重合体水素化物(A)を190重量部得た。
(重合体物性)
 得られた開環重合体水素化物(A)の水素添加率は99.9%、重量平均分子量(Mw)は、70,200、分子量分布(Mw/Mn)は3.8、異性化率は7%、融点は136℃、分岐指数は0.64であった。
(樹脂組成物の調製)
 得られた開環重合体水素化物(A)100重量部に酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、イルガノックス1010、チバスペシャリティ ケミカルズ社製)(以下「酸化防止剤(A)」と略す。)0.1重量部を加え、2軸混練機(TEM35、東芝機械社製)で混練し、ペレット化して樹脂組成物(A)を得た。
(フィルム成形)
 スクリュー径20mmφ、圧縮比2.5又は3.1、L/D=30のスクリューを備えたハンガーマニュホールドタイプのTダイ式フィルム溶融押出成形機(据置型、GSIクレオス社製)を使用し、以下の条件で、ペレット状の樹脂(2-ノルボルネン開環重合体水素化物)を、下記の成形条件によるTダイ成形を行い、フィルム(A)(層厚100μm)を得た。
<成形条件>
 ダイリップ:0.8mm
 溶融樹脂温度:176℃
 Tダイの幅:300mm
 Tダイ温度:186℃
 冷却ロール:116℃
 キャストロール:130℃
 シート引き取り速度:2.5m/分
 Tダイと冷却ロールの距離:100mm
 スクリュー圧縮比:3.1
[実施例2]
(開環重合)
 実施例1において、VNBの代わりにNB-dimerを17.5重量部用いた以外は実施例1と同様にして開環共重合体(B)を得た。重合転化率は、ほぼ100%であった。
 開環共重合体(B)の重量平均分子量(Mw)は、60,000、分子量分布(Mw/Mn)は4.0であった。
(水素添加反応)
 実施例1と同様にして、得られた開環共重合体(B)を水素添加して開環重合体水素化物(B)を得た。
(重合体物性)
 開環重合体水素化物(B)の水素添加率は99.9%、重量平均分子量(Mw)は、69,000、分子量分布(Mw/Mn)は3.7、異性化率は5%、融点は134℃、分岐指数は0.43であった。
(樹脂組成物の調製)
 得られた開環重合体水素化物(B)から、実施例1と同様にして樹脂組成物(B)を得た。
(フィルム成形)
 実施例1において、溶融樹脂温度を174℃、Tダイ温度を184℃、冷却ロール温度を114℃、キャストロール温度を124℃にした以外は、実施例1と同様にしてフィルム(B)(層厚100μm)を得た。
[実施例3]
(開環重合)
 実施例1において、VNBの代わりに1,2,4-トリビニルシクロヘキサンを0.60重量部用いた以外は実施例1と同様にして開環共重合体(C)を得た。重合転化率は、ほぼ100%であった。
 開環共重合体(C)の重量平均分子量(Mw)は、61,000、分子量分布(Mw/Mn)は4.1であった。
(水素添加反応)
 実施例1と同様にして、得られた開環共重合体(C)を水素添加して開環重合体水素化物(C)を得た。
(重合体物性)
 開環重合体水素化物(C)の水素添加率は99.9%、重量平均分子量(Mw)は、71,200、分子量分布(Mw/Mn)は3.7、異性化率は7%、融点は135℃、分岐指数は0.93であった。
(樹脂組成物の調製)
 得られた開環重合体水素化物(C)から、実施例1と同様にして樹脂組成物(C)を得た。
(フィルム成形)
 実施例1において、溶融樹脂温度を175℃、Tダイ温度を185℃、冷却ロール温度を115℃、キャストロール温度を125℃にした以外は、実施例1と同様にしてフィルム(C)(層厚100μm)を得た。
[実施例4]
(開環重合)
 実施例1において、モノマ-を、2-ノルボルネン240重量部、ジシクロペンダジエン(以下「DCP」と略すことがある。)10重量部とし、VNBを0.75重量部、1-ヘキセンを0.79重量部にした以外は実施例1と同様にして開環共重合体(D)を得た。重合転化率は、ほぼ100%であった。
 開環共重合体(D)の重量平均分子量(Mw)は、64,800、分子量分布(Mw/Mn)は4.5であった。
(水素添加反応)
 実施例1と同様にして、得られた開環共重合体(D)を水素添加して開環重合体水素化物(D)を得た。
(重合体物性)
 得られた開環重合体水素化物(D)の水素添加率は99.9%、重量平均分子量(Mw)は74,600、分子量分布(Mw/Mn)は4.2、異性化率は6%、融点は139℃、分岐指数は0.85であった。
(樹脂組成物の調製)
 得られた開環重合体水素化物(D)から、実施例1と同様にして樹脂組成物(D)を得た。
(フィルム成形)
 実施例1において、溶融樹脂温度を179℃、Tダイ温度を189℃、冷却ロール温度を119℃、キャストロール温度を129℃にした以外は、実施例1と同様にしてフィルム(D)(層厚100μm)を得た。
[比較例1]
(開環重合)
 実施例1において、VNBを加えなかった以外は実施例1と同様にして開環共重合体(E)を得た。重合転化率は、ほぼ100%であった。
 開環共重合体(E)の重量平均分子量(Mw)は、61,000、分子量分布(Mw/Mn)は4.8であった。
(水素添加反応)
 実施例1と同様にして、得られた開環共重合体(E)を水素添加して開環重合体水素化物(E)を得た。
(重合体物性)
 得られた開環重合体水素化物(E)の水素添加率は99.9%、重量平均分子量(Mw)は、70,500、分子量分布(Mw/Mn)は3.5、異性化率は5%、融点は140℃、分岐指数は1.01であった。
(樹脂組成物の調製)
 得られた開環重合体水素化物(E)から、実施例1と同様にして樹脂組成物(E)を得た。
(フィルム成形)
 実施例1において、溶融樹脂温度を180℃、Tダイ温度を190℃、冷却ロール温度を120℃、キャストロール温度を130℃にした以外は、実施例1と同様にしてフィルム(E)(層厚100μm)を得た。
[比較例2]
(開環重合)
 実施例1において、VNBを37.5重量部にした以外は実施例1と同様にして開環共重合体(F)を得た。重合転化率は、ほぼ100%であった。
 開環共重合体(F)の重量平均分子量(Mw)は、62,000、分子量分布(Mw/Mn)は4.3であった。
(水素添加反応)
 実施例1と同様にして、得られた開環共重合体(F)を水素添加して開環重合体水素化物(F)を得た。
(重合体物性)
 開環重合体水素化物(F)の水素添加率は99.9%、重量平均分子量(Mw)は、71,000、分子量分布(Mw/Mn)は4.0、異性化率は7%、融点は110℃、分岐指数は0.13であった。
(樹脂組成物の調製)
 得られた開環重合体水素化物(F)から、実施例1と同様にして樹脂組成物(F)を得た。
(フィルム成形)
 実施例1において、溶融樹脂温度を150℃、Tダイ温度を160℃、冷却ロール温度を90℃、キャストロール温度を100℃にした以外は、実施例1と同様にしてフィルム(F)(層厚100μm)を得た。
[比較例3]
(開環重合)
 比較例1において、1-ヘキセンを0.05重量部にした以外は、比較例1と同様にして開環共重合体(G)を得た。重合転化率は、ほぼ100%であった。
 開環共重合体(G)の重量平均分子量(Mw)は、161,000、分子量分布(Mw/Mn)は6.8であった。
(水素添加反応)
 実施例2と同様にして、得られた開環共重合体(G)を水素添加して開環重合体水素化物(G)を得た。
(重合体物性)
 開環重合体水素化物(G)の水素添加率は96.3%、重量平均分子量(Mw)は、185,300、分子量分布(Mw/Mn)は5.3、異性化率は9%、融点は132℃、分岐指数は0.99であった。
(樹脂組成物の調製)
 得られた開環重合体水素化物(G)から、実施例2と同様にして樹脂組成物(G)を得た。
(フィルム成形)
 実施例1において、溶融樹脂温度を172℃、Tダイ温度を182℃、冷却ロール温度を112℃、キャストロール温度を122℃にした以外は、実施例1と同様にしてフィルム(G)(層厚100μm)を得た。
[比較例4]
(開環重合)
 窒素雰囲気下、攪拌機付きオートクレーブに、70%ノルボルネン/トルエン溶液37.5重量部と1-ヘキセン0.052重量部、シクロヘキサン49.3重量部を加えて攪拌した。続いて2,6-ジイソプロピルフェニルイミドネオフィリデンモリブデン(VI)ビス(tert-ブトキシド)0.023重量部及びトリメチルホスフィン0.016重量部を8.6重量部のトルエンに溶解した溶液を加えて、30℃にて1時間反応させた後、ベンズアルデヒド0.40重量部添加し、開環重合体(H)を含む反応溶液を得た。
重合転化率は、ほぼ100%であった。
 得られた開環重合体(H)の重量平均分子量(Mw)は、65,000、分子量分布(Mw/Mn)は1.1であった。
(水素添加反応)
 上記で得た開環重合体(H)を含む反応溶液を耐圧の水素添加反応器に移送し、触媒としてPd/CaCO(Pd量:5重量%)(Strem社製)5.25重量部を加え、100℃、水素圧3.5MPaで48時間反応させた。この溶液を、ケイソウ土をろ過助剤としてステンレス製金網を備えたろ過器によりろ過し、触媒を除去した。得られた反応溶液を3000重量部のイソプロピルアルコール中に攪拌下に注いで水素化物を沈殿させ、ろ別して回収した。さらに、アセトン500重量部で洗浄した後、0.13×10Pa以下、100℃に設定した減圧乾燥器中で48時間乾燥し、開環重合体水素化物(H)を190重量部得た。
(重合体物性)
 得られた開環重合体水素化物(H)の水素添加率は99.75%、重量平均分子量(Mw)は64,200、分子量分布(Mw/Mn)は1.3、異性化率は0%、融点は143℃、分岐指数は0.99であった。
(樹脂組成物の調製)
 得られた開環重合体水素化物(H)から、実施例1と同様にして樹脂組成物(H)を得た。
(フィルム成形)
 実施例1において、溶融樹脂温度を183℃、Tダイ温度を193℃、冷却ロール温度を123℃、キャストロール温度を133℃にした以外は、実施例1と同様にしてフィルム(H)(層厚100μm)を得た。
[比較例5]
(開環重合)
 実施例3において、VNBを加えなかった以外は実施例3と同様にして開環共重合体(I)を得た。重合転化率は、ほぼ100%であった。
 得られた開環共重合体(I)の重量平均分子量(Mw)は、62,800で、分子量分布(Mw/Mn)は、4.1であった。
(水素添加反応)
 実施例1と同様にして、得られた開環共重合体(I)を水素添加して開環重合体水素化物(I)を得た。
(重合体物性)
 得られた開環重合体水素化物(I)の水素添加率は99.9%、重量平均分子量(Mw)は72,300、分子量分布(Mw/Mn)は3.8、異性化率は4%、融点は134℃、分岐指数は1.0であった。
(樹脂組成物の調製)
 得られた開環重合体水素化物(I)から、実施例1と同様にして樹脂組成物(I)を得た。
(フィルム成形)
 実施例1において、溶融樹脂温度を174℃、Tダイ温度を184℃、冷却ロール温度を114℃、キャストロール温度を124℃にした以外は、実施例1と同様にしてフィルム(I)(層厚100μm)を得た。
[比較例6]
(開環重合)
 実施例1において、モノマーを8-エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(以下「ETD」と略記する。)30重量部、DCP170重量部とし、ジイソプロピルエーテルを0.18重量部、トリイソブチルアルミニウムを0.59重量部、イソブチルアルコールを0.45重量部、六塩化タングステン1.0重量%トルエン溶液を10重量部用いた以外は実施例1と同様にして開環共重合体(J)を得た。重合転化率は、ほぼ100%であった。
(水素添加反応)
 実施例1と同様にして得られた開環共重合体(J)を水素添加して、開環重合体水素化物(J)を得た。
(重合体物性)
 得られた開環重合体水素化物(J)の水素添加率は99.9%、重量平均分子量(Mw)は31,000、分子量分布(Mw/Mn)は3.0、ガラス転移温度は100℃、分岐指数は1.0であった。
(樹脂組成物の調製)
 得られた開環重合体水素化物(J)から、実施例1と同様にして樹脂組成物(J)を得た。
(フィルム成形)
 実施例1において、溶融樹脂温度を200℃、Tダイ温度を210℃、冷却ロール温度を85℃、キャストロール温度を95℃にした以外は、実施例1と同様にしてフィルム(J)(層厚100μm)を得た。
 実施例及び比較例で得られた水素化物(A)~(J)の物性を表1に、フィルム(A)~(J)の、ネックイン量及び透湿度を表2にそれぞれ示す。表1中、「TVC」は、1,2,4-トリビニルシクロヘキサンを、「MFR」はメルトフローレートをそれぞれ意味する。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1、2から、実施例1~4の、分岐指数が0.3~0.98の範囲にあるノルボルネン系開環重合体水素化物(A)~(D)から得られたフィルム(A)~(D)は、ネックイン量が60mm以下で生産性に優れ、透湿度は0.35g/(m・24h)以下であり、防湿性に優れていることが分かる。
 一方、比較例1、4、5の分岐指数が0.98以上の直鎖状の開環重合体水素化物(E)、(H)、(I)及びフィルム(E)、(H)、(I)は、水蒸気バリア性に優れているものの、MFRが大きく、ネックイン量が非常に大きく生産性に劣っていた。
 比較例2において、分岐化剤の量を多くして、分岐指数を0.13まで小さくする(開環重合体水素化物(F)及びフィルム(F))と、融点が低く耐熱性に劣り、また、MFRが非常に高く、ネックイン量が大きく、防湿性も低下した。
 比較例3において、分子量が高く、直鎖状の開環重合体水素化物(G)はMFRが7で小さいものの、このものから得られるフィルム(G)は、ネックイン量、水蒸気バリア性ともに劣っていた。
 比較例6の非晶性のノルボルネン開環重合体水素化物(J)から得られたフィルム(J)は、ネックイン量が小さいものの、水蒸気バリア性に劣っていた。
 以上のことから、実施例のノルボルネン開環重合体水素化物及びフィルムは、近年の情報分野、食品分野、医療分野、土木分野等において要求される、防湿性、加工性の面で優れているといえる。

Claims (5)

  1.  2-ノルボルネンが90~100重量%、脂肪族性の炭素-炭素二重結合を含まない置換基を有する2-ノルボルネン10~0重量%からなるノルボルネン系単量体を開環重合して得られる開環重合体の、炭素-炭素二重結合の80%以上を水素添加してなる、融点が110~145℃、分岐指数が0.3~0.98の結晶性ノルボルネン系開環重合体水素化物。
  2.  ゲル・パーミエーション・クロマトグラフィーにより測定される重量平均分子量が50,000~200,000、(重量平均分子量)/(数平均分子量)の値が1.5~10.0である請求項1記載の結晶性ノルボルネン系開環重合体水素化物。
  3.  開環重合が、分岐剤存在下で行われるものである請求項1又は2記載の結晶性ノルボルネン系開環重合体水素化物。
  4.  230℃、荷重21.18Nにおけるメルトフローレートが15g/10分以下である請求項1~3のいずれかに記載の結晶性ノルボルネン系開環重合体水素化物。
  5.  請求項1~4のいずれかに記載の結晶性ノルボルネン系開環重合体水素化物を成形して得られる成形体。
PCT/JP2009/053695 2008-02-29 2009-02-27 結晶性ノルボルネン系開環重合体水素化物及び成形体 WO2009107784A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801154589A CN102015819B (zh) 2008-02-29 2009-02-27 结晶性降冰片烯类开环聚合物氢化物及成形体
JP2010500773A JP5598326B2 (ja) 2008-02-29 2009-02-27 結晶性ノルボルネン系開環重合体水素化物及び成形体
US12/920,239 US8053531B2 (en) 2008-02-29 2009-02-27 Hydrogenated crystalline norbornene ring-opening polymer and molded article
EP09715234.2A EP2248839B1 (en) 2008-02-29 2009-02-27 Crystalline norbornene ring-opening polymer hydride and molded article of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-050118 2008-02-29
JP2008050118 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009107784A1 true WO2009107784A1 (ja) 2009-09-03

Family

ID=41016169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053695 WO2009107784A1 (ja) 2008-02-29 2009-02-27 結晶性ノルボルネン系開環重合体水素化物及び成形体

Country Status (5)

Country Link
US (1) US8053531B2 (ja)
EP (1) EP2248839B1 (ja)
JP (1) JP5598326B2 (ja)
CN (1) CN102015819B (ja)
WO (1) WO2009107784A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233422A (ja) * 2010-04-28 2011-11-17 Nippon Zeon Co Ltd リチウムイオン伝導性固体電解質組成物および全固体二次電池
JP2012149121A (ja) * 2011-01-17 2012-08-09 Nippon Zeon Co Ltd 押出ラミネート用樹脂組成物及び積層体
CN110007558A (zh) * 2017-12-29 2019-07-12 财团法人工业技术研究院 组合物、包含其的绝缘材料及其制法
WO2019188720A1 (ja) * 2018-03-28 2019-10-03 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法
KR20210142120A (ko) 2019-03-29 2021-11-24 제이에스알 가부시끼가이샤 전고체 이차 전지용 결합제, 전고체 이차 전지용 결합제 조성물, 전고체 이차 전지용 슬러리, 전고체 이차 전지용 고체 전해질 시트 및 그 제조 방법, 그리고 전고체 이차 전지 및 그 제조 방법
WO2022163389A1 (ja) 2021-01-29 2022-08-04 株式会社Eneosマテリアル 全固体二次電池用バインダー、全固体二次電池用バインダー組成物、全固体二次電池用スラリー、全固体二次電池用固体電解質シート及びその製造方法、並びに全固体二次電池及びその製造方法
KR20220155345A (ko) 2020-03-17 2022-11-22 가부시키가이샤 에네오스 마테리아루 전고체 이차 전지용 결합제, 전고체 이차 전지용 결합제 조성물, 전고체 이차 전지용 슬러리, 전고체 이차 전지용 고체 전해질 시트 및 그 제조 방법, 그리고 전고체 이차 전지 및 그 제조 방법
KR20220155590A (ko) 2020-03-17 2022-11-23 가부시키가이샤 에네오스 마테리아루 전고체 이차 전지용 결합제 조성물, 전고체 이차 전지용 슬러리, 전고체 이차 전지용 고체 전해질 시트 및 그 제조 방법, 그리고 전고체 이차 전지 및 그 제조 방법
KR20230137408A (ko) 2021-01-29 2023-10-04 가부시키가이샤 에네오스 마테리아루 전고체 이차 전지용 결합제, 전고체 이차 전지용 결합제 조성물, 전고체 이차 전지용 슬러리, 전고체 이차 전지용 고체 전해질 시트 및 그 제조 방법, 그리고 전고체 이차 전지 및 그 제조 방법
KR20240031140A (ko) 2022-08-31 2024-03-07 가부시키가이샤 에네오스 마테리아루 전고체 이차 전지용 결합제, 전고체 이차 전지용 결합제 조성물, 전고체 이차 전지용 슬러리, 전고체 이차 전지용 고체 전해질 시트 및 그 제조 방법, 그리고 전고체 이차 전지 및 그 제조 방법

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066511A1 (ja) * 2007-11-21 2009-05-28 Zeon Corporation 重合体組成物およびその利用
ITTO20101031A1 (it) * 2010-12-21 2012-06-22 Tek Global Srl Composizione sigillante per la riparazione di pneumatici
JP6304227B2 (ja) * 2013-02-12 2018-04-04 日本ゼオン株式会社 樹脂組成物及びその成形体
US9169361B1 (en) 2014-05-30 2015-10-27 Pall Corporation Self-assembling polymers—VI
US9616395B2 (en) 2014-05-30 2017-04-11 Pall Corportaion Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (Ic)
US9441078B2 (en) 2014-05-30 2016-09-13 Pall Corporation Self-assembling polymers—I
US9765171B2 (en) 2014-05-30 2017-09-19 Pall Corporation Self-assembling polymers—V
US9193835B1 (en) 2014-05-30 2015-11-24 Pall Corporation Self-assembling polymers—IV
US9604181B2 (en) 2014-05-30 2017-03-28 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (IIc)
US9593217B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (Va)
US9469733B2 (en) 2014-05-30 2016-10-18 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IVa)
US9592477B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (Ib)
US9328206B2 (en) 2014-05-30 2016-05-03 Pall Corporation Self-assembling polymers—III
US9592476B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (IIb)
US9163122B1 (en) 2014-05-30 2015-10-20 Pall Corporation Self-assembling polymers—II
US9162189B1 (en) 2014-05-30 2015-10-20 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (Ia)
US9598543B2 (en) 2014-05-30 2017-03-21 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (VIa)
US9593218B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IIIa)
US9593219B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (IIa)
JP6720867B2 (ja) * 2014-06-26 2020-07-08 日本ゼオン株式会社 培養表皮細胞の分化促進方法および培養表皮細胞分化促進剤
US9962662B2 (en) 2014-06-30 2018-05-08 Pall Corporation Fluorinated polymer and use thereof in the preparation of hydrophilic membranes (vi)
US9260569B2 (en) 2014-06-30 2016-02-16 Pall Corporation Hydrophilic block copolymers and method of preparation thereof (III)
US9394407B2 (en) 2014-06-30 2016-07-19 Pall Corporation Hydrophilic block copolymers and membranes prepared therefrom (I)
US9303133B2 (en) 2014-06-30 2016-04-05 Pall Corporation Hydrophilic membranes and method of preparation thereof (IV)
US9309367B2 (en) 2014-06-30 2016-04-12 Pall Corporation Membranes comprising cellulosic material and hydrophilic block copolymer (V)
US9718924B2 (en) 2014-06-30 2017-08-01 Pall Corporation Hydrophilic block copolymers and membranes prepared therefrom (II)
US9254466B2 (en) 2014-06-30 2016-02-09 Pall Corporation Crosslinked cellulosic membranes
CN108602928B (zh) 2016-02-12 2022-01-28 埃克森美孚化学专利公司 环烯烃共聚物及其制备方法
TW201741361A (zh) * 2016-05-24 2017-12-01 財團法人工業技術研究院 寡聚物、包含其之組成物及複合材料
US10844164B2 (en) 2016-05-24 2020-11-24 Industrial Technology Research Institute Oligomer, composition and composite material employing the same
CN107141450B (zh) * 2017-05-03 2019-12-27 多氟多化工股份有限公司 一种单离子聚合物电解质及其制备方法、单离子聚合物电解质膜、锂离子电池
WO2019168603A1 (en) 2018-02-28 2019-09-06 Exxonmobil Chemical Patents Inc. Polyethylene and cyclic olefin copolymer blend compositions with oxygen barrier properties and articles made therefrom
CN108752568A (zh) * 2018-04-26 2018-11-06 东南大学 聚降冰片烯及其衍生物薄膜和氢化产物薄膜及制备方法和应用
US11059938B2 (en) 2018-10-05 2021-07-13 Industrial Technology Research Institute Film composition and a film prepared thereby
KR20220117219A (ko) * 2019-12-17 2022-08-23 니폰 제온 가부시키가이샤 개환 공중합체
CN115433053A (zh) * 2022-09-06 2022-12-06 杭州睿丰融创科技有限公司 一种四环十二碳烯与降冰片烯的共产方法
CN116496446B (zh) * 2022-12-26 2024-03-22 杭州睿丰融创科技有限公司 一种降冰片烯类氢化开环聚合物及其制备方法和光学材料

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330815A (en) * 1964-03-24 1967-07-11 Union Carbide Corp Novel polynorbornenes, process for production thereof, and products produced therefrom
JPS5486600A (en) 1977-12-05 1979-07-10 Goodrich Co B F Open ring dimethylnorbornene and ispropylnorbornene copolymer
JPS5717883B2 (ja) 1973-06-05 1982-04-13
JPS5761044B2 (ja) 1973-11-05 1982-12-22 Goodrich Co B F
JPS58127728A (ja) 1982-01-20 1983-07-29 ザ・ビ−・エフ・グツドリツチ・カンパニ− 開環重合によるポリマ−の製造方法
JPS6026024A (ja) 1983-07-21 1985-02-08 Nippon Zeon Co Ltd 光学材料
JPH01240517A (ja) 1988-03-22 1989-09-26 Japan Synthetic Rubber Co Ltd 重合体並びにその前駆体および製造方法
EP0559146A1 (en) 1992-03-03 1993-09-08 Nippon Zeon Co., Ltd. Medical implement, polymer composition and optical material
JPH0614910A (ja) 1992-02-19 1994-01-25 Hitachi Medical Corp カセッテレス式x線透視撮影台
JPH07179575A (ja) 1993-12-22 1995-07-18 Mitsui Toatsu Chem Inc テトラシクロドデセン系重合体及びその製造方法
JPH09263627A (ja) 1996-03-29 1997-10-07 Nippon Zeon Co Ltd ノルボルネン系開環重合体水素添加物からなる光学材料および光学部材
WO1998021214A1 (en) 1996-11-15 1998-05-22 California Institute Of Technology Synthesis of ruthenium or osmium metathesis catalysts
WO2000066357A1 (fr) 1999-04-28 2000-11-09 Nippon Zeon Co., Ltd. Produit en couches et procede de fabrication correspondant
JP2000313090A (ja) 1999-04-28 2000-11-14 Nippon Zeon Co Ltd 積層体及びその製法
WO2001014446A1 (fr) * 1999-08-25 2001-03-01 Zeon Corporation Polymeres de norbornene par ouverture de cycle, produits de leur hydrogenation et procedes de productions de ces deux types de polymeres
JP2002020464A (ja) 2000-07-04 2002-01-23 Nippon Zeon Co Ltd 射出成形品
JP2002194067A (ja) 2000-12-25 2002-07-10 Nippon Zeon Co Ltd フィルムおよびシート
JP2002249553A (ja) * 2001-02-26 2002-09-06 Nippon Zeon Co Ltd ノルボルネン系開環重合体水素化物の製造方法
JP2003183361A (ja) 2002-09-27 2003-07-03 Nippon Zeon Co Ltd 医療用器材
WO2005016991A1 (ja) * 2003-08-13 2005-02-24 Zeon Corporation 重合性組成物、及びそれを用いてなる成形体
JP2005272642A (ja) * 2004-03-24 2005-10-06 Jsr Corp 環状オレフィン重合体、製造方法、重合体組成物、及びゴム成形体
JP2006052333A (ja) 2004-08-12 2006-02-23 Nippon Zeon Co Ltd ノルボルネン系開環重合体水素化物の製造方法およびノルボルネン系開環重合体水素化物
JP2006237000A (ja) 2005-02-21 2006-09-07 Ls Cable Ltd Ptc限流素子を用いた順次トリップ遮断器
JP2007070384A (ja) * 2005-09-02 2007-03-22 Univ Waseda ノルボルネン系架橋共重合体及びその製造方法
JP2007246921A (ja) * 2007-06-05 2007-09-27 Nippon Zeon Co Ltd 熱可塑性樹脂、架橋樹脂、架橋複合材料および銅張り積層板の製造方法
JP2007262170A (ja) 2006-03-28 2007-10-11 Nippon Zeon Co Ltd 光学用射出成形体
WO2008026733A1 (fr) * 2006-08-31 2008-03-06 Zeon Corporation Polymères de polymérisation par ouverture de cycle à base de norbornène hydrogéné, composition de résine et objets moulés

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204427A (en) * 1989-11-01 1993-04-20 Nippon Zeon Co., Ltd. Method of making ring-opened polynorbornene polymers using pot life extending agents
WO2005016990A1 (ja) * 2003-08-13 2005-02-24 Zeon Corporation ノルボルネン系開環重合体水素化物およびその製造方法
JP4952178B2 (ja) 2006-10-02 2012-06-13 日本ゼオン株式会社 酸素吸収性多層構造体

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330815A (en) * 1964-03-24 1967-07-11 Union Carbide Corp Novel polynorbornenes, process for production thereof, and products produced therefrom
JPS5717883B2 (ja) 1973-06-05 1982-04-13
JPS5761044B2 (ja) 1973-11-05 1982-12-22 Goodrich Co B F
JPS5486600A (en) 1977-12-05 1979-07-10 Goodrich Co B F Open ring dimethylnorbornene and ispropylnorbornene copolymer
JPS58127728A (ja) 1982-01-20 1983-07-29 ザ・ビ−・エフ・グツドリツチ・カンパニ− 開環重合によるポリマ−の製造方法
JPS6026024A (ja) 1983-07-21 1985-02-08 Nippon Zeon Co Ltd 光学材料
JPH01240517A (ja) 1988-03-22 1989-09-26 Japan Synthetic Rubber Co Ltd 重合体並びにその前駆体および製造方法
JPH0614910A (ja) 1992-02-19 1994-01-25 Hitachi Medical Corp カセッテレス式x線透視撮影台
EP0559146A1 (en) 1992-03-03 1993-09-08 Nippon Zeon Co., Ltd. Medical implement, polymer composition and optical material
JPH07179575A (ja) 1993-12-22 1995-07-18 Mitsui Toatsu Chem Inc テトラシクロドデセン系重合体及びその製造方法
JPH09263627A (ja) 1996-03-29 1997-10-07 Nippon Zeon Co Ltd ノルボルネン系開環重合体水素添加物からなる光学材料および光学部材
WO1998021214A1 (en) 1996-11-15 1998-05-22 California Institute Of Technology Synthesis of ruthenium or osmium metathesis catalysts
WO2000066357A1 (fr) 1999-04-28 2000-11-09 Nippon Zeon Co., Ltd. Produit en couches et procede de fabrication correspondant
JP2000313090A (ja) 1999-04-28 2000-11-14 Nippon Zeon Co Ltd 積層体及びその製法
WO2001014446A1 (fr) * 1999-08-25 2001-03-01 Zeon Corporation Polymeres de norbornene par ouverture de cycle, produits de leur hydrogenation et procedes de productions de ces deux types de polymeres
JP2002020464A (ja) 2000-07-04 2002-01-23 Nippon Zeon Co Ltd 射出成形品
JP2002194067A (ja) 2000-12-25 2002-07-10 Nippon Zeon Co Ltd フィルムおよびシート
JP2002249553A (ja) * 2001-02-26 2002-09-06 Nippon Zeon Co Ltd ノルボルネン系開環重合体水素化物の製造方法
JP2003183361A (ja) 2002-09-27 2003-07-03 Nippon Zeon Co Ltd 医療用器材
WO2005016991A1 (ja) * 2003-08-13 2005-02-24 Zeon Corporation 重合性組成物、及びそれを用いてなる成形体
JP2005272642A (ja) * 2004-03-24 2005-10-06 Jsr Corp 環状オレフィン重合体、製造方法、重合体組成物、及びゴム成形体
JP2006052333A (ja) 2004-08-12 2006-02-23 Nippon Zeon Co Ltd ノルボルネン系開環重合体水素化物の製造方法およびノルボルネン系開環重合体水素化物
JP2006237000A (ja) 2005-02-21 2006-09-07 Ls Cable Ltd Ptc限流素子を用いた順次トリップ遮断器
JP2007070384A (ja) * 2005-09-02 2007-03-22 Univ Waseda ノルボルネン系架橋共重合体及びその製造方法
JP2007262170A (ja) 2006-03-28 2007-10-11 Nippon Zeon Co Ltd 光学用射出成形体
WO2008026733A1 (fr) * 2006-08-31 2008-03-06 Zeon Corporation Polymères de polymérisation par ouverture de cycle à base de norbornène hydrogéné, composition de résine et objets moulés
JP2007246921A (ja) * 2007-06-05 2007-09-27 Nippon Zeon Co Ltd 熱可塑性樹脂、架橋樹脂、架橋複合材料および銅張り積層板の製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FU ET AL., J. AM. CHEM. SOC., vol. 115, 1993, pages 9856
KECK C.K. ET AL.: "Cross-linkers for improved high temperature performance of ROMP adhesives", ADV. SYNTH. CATAL., vol. 349, 2007, pages 165 - 174 *
MACROMOLECULES, vol. 37, 2000, pages 7278 - 7284
NGUYEN ET AL., J. AM. CHEM. SOC., vol. 114, 1992, pages 3974
POLYMER INTERNATIONAL, vol. 34, 1994, pages 49 - 57
SCHROCK ET AL., J. AM. CHEM. SOC., vol. 112, 1990, pages 3875
See also references of EP2248839A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233422A (ja) * 2010-04-28 2011-11-17 Nippon Zeon Co Ltd リチウムイオン伝導性固体電解質組成物および全固体二次電池
JP2012149121A (ja) * 2011-01-17 2012-08-09 Nippon Zeon Co Ltd 押出ラミネート用樹脂組成物及び積層体
CN110007558A (zh) * 2017-12-29 2019-07-12 财团法人工业技术研究院 组合物、包含其的绝缘材料及其制法
JP7207403B2 (ja) 2018-03-28 2023-01-18 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法
JPWO2019188720A1 (ja) * 2018-03-28 2021-03-11 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法
WO2019188720A1 (ja) * 2018-03-28 2019-10-03 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法
KR20210142120A (ko) 2019-03-29 2021-11-24 제이에스알 가부시끼가이샤 전고체 이차 전지용 결합제, 전고체 이차 전지용 결합제 조성물, 전고체 이차 전지용 슬러리, 전고체 이차 전지용 고체 전해질 시트 및 그 제조 방법, 그리고 전고체 이차 전지 및 그 제조 방법
KR20220155345A (ko) 2020-03-17 2022-11-22 가부시키가이샤 에네오스 마테리아루 전고체 이차 전지용 결합제, 전고체 이차 전지용 결합제 조성물, 전고체 이차 전지용 슬러리, 전고체 이차 전지용 고체 전해질 시트 및 그 제조 방법, 그리고 전고체 이차 전지 및 그 제조 방법
KR20220155590A (ko) 2020-03-17 2022-11-23 가부시키가이샤 에네오스 마테리아루 전고체 이차 전지용 결합제 조성물, 전고체 이차 전지용 슬러리, 전고체 이차 전지용 고체 전해질 시트 및 그 제조 방법, 그리고 전고체 이차 전지 및 그 제조 방법
WO2022163389A1 (ja) 2021-01-29 2022-08-04 株式会社Eneosマテリアル 全固体二次電池用バインダー、全固体二次電池用バインダー組成物、全固体二次電池用スラリー、全固体二次電池用固体電解質シート及びその製造方法、並びに全固体二次電池及びその製造方法
KR20230137408A (ko) 2021-01-29 2023-10-04 가부시키가이샤 에네오스 마테리아루 전고체 이차 전지용 결합제, 전고체 이차 전지용 결합제 조성물, 전고체 이차 전지용 슬러리, 전고체 이차 전지용 고체 전해질 시트 및 그 제조 방법, 그리고 전고체 이차 전지 및 그 제조 방법
KR20230137409A (ko) 2021-01-29 2023-10-04 가부시키가이샤 에네오스 마테리아루 전고체 이차 전지용 결합제, 전고체 이차 전지용 결합제 조성물, 전고체 이차 전지용 슬러리, 전고체 이차 전지용 고체 전해질 시트 및 그 제조 방법, 그리고 전고체 이차 전지 및 그 제조 방법
KR20240031140A (ko) 2022-08-31 2024-03-07 가부시키가이샤 에네오스 마테리아루 전고체 이차 전지용 결합제, 전고체 이차 전지용 결합제 조성물, 전고체 이차 전지용 슬러리, 전고체 이차 전지용 고체 전해질 시트 및 그 제조 방법, 그리고 전고체 이차 전지 및 그 제조 방법

Also Published As

Publication number Publication date
US8053531B2 (en) 2011-11-08
CN102015819A (zh) 2011-04-13
EP2248839A4 (en) 2011-04-06
EP2248839B1 (en) 2018-03-28
JP5598326B2 (ja) 2014-10-01
EP2248839A1 (en) 2010-11-10
US20110021731A1 (en) 2011-01-27
CN102015819B (zh) 2013-03-20
JPWO2009107784A1 (ja) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5598326B2 (ja) 結晶性ノルボルネン系開環重合体水素化物及び成形体
JP5564945B2 (ja) 樹脂組成物およびこれを用いたフィルム
JP5365603B2 (ja) 重合体組成物およびその利用
JP2009179650A (ja) 重合体組成物およびそれを用いてなるフィルム
JP2008195890A (ja) 樹脂組成物及びフィルム
JP5083530B2 (ja) フィルム
JP5810531B2 (ja) 押出ラミネート用樹脂組成物及び積層体
JP5041233B2 (ja) プラスチック成形品
JP2011111573A (ja) 非晶質環状オレフィン重合体及び結晶性ノルボルネン系重合体からなる樹脂組成物。
JP2011006498A (ja) 樹脂組成物およびフィルム
JP2009079101A (ja) 封止剤
JP2010059380A (ja) 開環共重合体水素化物及びこれを含有する樹脂組成物
JP7247704B2 (ja) 開環重合体水素化物、樹脂組成物、および成形体
JP5707940B2 (ja) ノルボルネン系開環重合体水素化物
JP5895738B2 (ja) 重合体組成物及びそれを用いてなるシート
JP2009209276A (ja) 架橋性ノルボルネン樹脂組成物、樹脂フィルム
JP5304471B2 (ja) 重合体組成物およびそれを用いてなるフィルム
US12018116B2 (en) Hydrogenated ring-opened polymer, resin composition, and shaped product
JP2009143573A (ja) 局所刺激剤含有製剤封入用包装体
JP2009209172A (ja) 結晶性ノルボルネン単量体開環重合体水素添加物の製造方法
JP2008111033A (ja) ノルボルネン系開環重合体水素化物を含有する樹脂溶液、および物品
WO2021132040A1 (ja) 樹脂組成物及びこれを成形して成る成形物、並びに、樹脂組成物の製造方法
JP2014148635A (ja) 樹脂組成物及びその利用
JP2009173249A (ja) 内燃機関用燃料タンク
JP2013171797A (ja) 密閉型二次電池電槽用成形材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115458.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715234

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500773

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009715234

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12920239

Country of ref document: US